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Introduction I

Understanding the vector multiplet moduli spaceMV of gauge
theories and string vacua with N = 2 SUSY in 4 dimensions (8
supercharges) has given key insights into non-perturbative
physics:

1 Exact resummations of gauge instantons: Seiberg Witten, ...
2 Classical mirror symmetry: Candelas de la Ossa Green Parks, ...
3 String dualities: Kachru Vafa, ...

The special Kähler metric onMV is governed by a holomorphic
function, the prepotential, determined by its behavior under
monodromies around conifold-type singularities.
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Introduction II
The hypermultiplet moduli spaceMH has been comparatively less
studied, yet it also carries crucial physical and mathematical
information, e.g.

1 the HK metric on the Coulomb branch of N = 2 gauge theories on
R3 × S1 encodes the spectrum of BPS monopoles in R4;

2 the QK metric on the HM moduli space of type II string theory
compactified on a Calabi-Yau 3-fold X receives D-instanton and
NS5-brane corrections, determined by geometric invariants of X ;

Progress has being hampered by the absence of a convenient
parametrization of HK and QK metrics. Using twistor methods,
they can still be described by holomorphic data, though the
relation to the actual metric is rather less direct.
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Introduction III
Twistor methods have been around in the physics literature under
the name projective superspace or harmonic superspace, but their
power has only started to be more widely appreciated recently.

Hitchin Karlhede Lindström Rocek; Galperin Ivanov Ogievetsky Sokatchev

In particular, it has become clear that HK/QK geometry is the
correct framework for understanding wall-crossing formulae for
governing the BPS spectrum in N = 2 gauge theories and
supergravity.

Denef Moore,Kontsevich Soibelman; Gaiotto Neitzke Moore
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Introduction IV

The HM moduli spaceMH in type II string theory compactified on
a CY three-fold show should be the physical framework for a
quantum version of mirror symmetry, which must weave together
homological mirror symmetry, modularity and possibly new
mathematics linked to NS5-branes.

Today, I will review recent progress towards understandingMH ,
based in part on my own work with Alexandrov, Saueressig and
Vandoren.

APSV 2008-09
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Outline

1 Classical and homological mirror symmetry

2 The perturbative hypermultiplet moduli space

3 Twistor methods for quaternion-Kähler spaces

4 The non-perturbative hypermultiplet moduli space
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Set-up I

Consider type IIA string theory compactified on a Calabi-Yau
three-fold X . The low energy physics is described by
N = 2,D = 4 (ungauged) supergravity, with nV = h1,1(X ) vector
multiplets and nH = h2,1(X ) + 1 hypermultiplets.
A vector multiplet (VM) consists of one complex-valued field ta

and one 1-form Aa
µ (hence its name), plus fermionic fields. A

hypermultiplet (HM) consists of one quaternion-valued field qΛ,
plus fermions.
The massless scalar fields (ta(xµ),qΛ(xµ)) provide a map from
D = 4 Minkowski space time into a Riemannian manifoldM,
known as the moduli space. M =MV ×MH splits into the
product of a projective special Kähler (PSK) manifoldMV , of real
dimension 2nV , and a quaternion-Kähler (QK) manifoldMH , of
real dimension 4nH .
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Set-up II

MV ≡ SKK (X ) parametrizes the complexified Kähler structure of
X , whileMH ≡ QKC(X ) parametrizes the complex structure of X ,
schematically

ta =

∫
γa

B + i J = ba + i ja , qΛ =

∫
γΛ

Ω + jR

where (J,Ω) are the Kähler and (3,0) form, (B,R) are the NS
2-form and RR multiform, γa a basis of H2(X ,Z) and γΛ a basis of
H3(X ,Z). Ω is normalized such that

R
γ0 Ω = σ + iV/g2

s l6s , where V is the volume of X

and gs the string coupling.

The goal is to compute the Riemannian metric onM from data
about X . String theory provides an asymptotic expansion in
powers of the string coupling constant gs, which a particular
coordinate onMH . The main difficulty is in understanding
non-perturbative effects of order e−1/gs or smaller.
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MV and classical mirror symmetry I

The VM moduli spaceMV is very well understood. By definition,
its metric is independent of gs, so can be computed in classical
string theory. Still, it depends on the symplectic structure of X in a
very non-trivial way.
SinceMV is a projective special Kähler manifold, its geometry is
encoded in the prepotential F (X Λ), a holomorphic function of
projective coordinates X Λ, ta = X a/X 0, homogeneous of degree
two. Its third derivative FΛΣΞ encodes the Yukawa couplings in the
SUGRA action.
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MV and classical mirror symmetry II

In the limit V � l6s , F is determined by the intersection product
Cabc =

∫
X JaJbJc in H4(X ) and the Euler number χ. In addition,

there are exponentially suppressed corrections (worldsheet
instantons); here eq = e2πiqaX a/X 0

:

F = −Cabc
X aX bX c

6X 0 + χζ(3)
(X 0)2

2(2πi)3 −
(X 0)2

(2πi)3

∑
q∈H+

2 (X)

N0,q eq

N0,q are rational numbers known as the genus 0 Gromov-Witten
invariants. Defining n0,q via the multi-covering formula

∑
q

N0,q eq =
∑

q,d≥1

n0,q
edq

d3

The integers n0,q count the number of rational curves in homology
class q. They can be used to define the quantum cohomology ring of X .
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MV and classical mirror symmetry III

The Gromov-Witten invariants N0,q are most conveniently
computed using (classical) mirror symmetry. Recall that for any
(non-rigid) CY threefold X , there exists a mirror Calabi-Yau Y ,
such that h1,1(X ) = h2,1(Y ), h2,1(X ) = h1,1(Y ); if X is fibered by
T 3, Y is fibered by T-dual/Mukai-transformed T 3).

Candelas et al; Strominger Yau Zaslow

Mirror symmetry requires thatMIIA
V (X ) =MIIB

V (Y ), so
SKK (X ) = SKC(Y ). The prepotential F (X Λ) follows from period
integrals of the (3,0) form Ω on Y :

X Λ =

∫
γΛ

Ω , FΛ =

∫
γΛ

Ω = ∂ΛF ,

where γΛ, γΛ is a symplectic basis of H3(Y ,Z), adapted to the
point of maximal unipotent monodromy.
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BPS spectrum and homological mirror symmetry I

Mirror symmetry requires not onlyMIIA
V (X ) =MIIB

V (Y ), but also
that the full type IIA/X and type IIB/Y string theories be equivalent.
In particular, the spectrum of BPS states should match.
BPS states in type IIA/X are obtained by wrapping D0,D2,D4,D6
branes on complex submanifolds of X . More generally, they are
realized as coherent sheaves on X ; even more accurately, as
elements in the derived category of coherent sheaves DCoh(X ).

Douglas

BPS states in type IIB/Y are obtained by wrapping D3-branes on
special Lagrangian cycles (SLAGs) of Y . More precisely, they are
realized as elements in the Fukaya category Fuk(Y ).

Boris Pioline (LPTHE) Progress on hypers Dublin 2010 13 / 48



BPS spectrum and homological mirror symmetry II

These algebras are graded by the charge vector γ ∈ Heven(X ,Z) in
type IIA, or γ ∈ H3(Y ,Z) in type IIB (more accurately, γ ∈ K (X ))

Minasian, Moore, . . .

Each of these derived categories are endowed with a stability
condition, determined by a choice of point inMV , which allows to
decide which D-brane configurations are stable.
The number of such configurations (counted with sign) defines the
generalized Donaldson-Thomas invariant Ω(γ, t). It is a locally
constant function onMV . It can jump on certain codimension one
walls inMV , known as lines of marginal stability (LMS), according
to certain (recently established) wall-crossing formulae.

Bridgeland; Joyce Son; Kontsevich Soibelman...
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BPS spectrum and homological mirror symmetry III

For D-brane charge γ = [X ]⊕ 0⊕ qaγ
a ⊕ 2J[pt ] ∈ Heven(X ) in type

IIA, and t in a suitable domain, Ω(γ, t) = NDT (q,2J). In general, it
provides a non-Abelian generalization of the Donaldson-Thomas
invariants.

The homological mirror symmetry conjecture states that
DCoh(X , t) = Fuk(Y , t) as an isomorphism of triangulated
categories with a stability condition. In particular, the generalized
Donaldson-Thomas invariants must agree.

Kontsevich

Boris Pioline (LPTHE) Progress on hypers Dublin 2010 15 / 48



Microscopics and Macroscopics of BPS states I

Physically, Ω(γ, t) arises as the Witten index of some SUSY
quantum mechanical system (quiver gauge theory) describing the
microscopic dynamics of open strings in a D-brane background,

Ω(γ, t) = TrHBPS(γ,t)(−1)F

BPS states have an alternative macroscopic description as certain
BPS solutions in N = 2 supergravity. Some of them are
spherically symmetric black hole solutions of Reissner-Nordström
type. Others are molecule-like bound states of several BPS black
holes, whose relative distances depend on the value of the VM
moduli at spatial infinity.
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Microscopics and Macroscopics of BPS states II

The Bekenstein-Hawking formula gives a powerful prediction for
the growth of the BPS degeneracies [A=total horizon area]

Ω(γ) ∼ e
1
4 A(γ) as |γ| → ∞,

The LMS is characterized by one of the relative distances going to
infinity, i.e the bound state decaying into multi-particle states. This
gives a macroscopic prediction for the wall-crossing formula
obeyed by Ω(γ, t). E.g, for primitive vectors γ1, γ2,

∆Ω(γ1 + γ2) = (−1)〈γ1,γ2〉 〈γ1, γ2〉Ω(γ1) Ω(γ2)

Denef Moore
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Perturbative hypermultiplet moduli space I

At weak coupling gs, the story withMH runs very similar toMV .
However, unlikeMV ,MH receives non-perturbative corrections
from D-brane and NS5-brane instantons. Thus, it combines
Gromov-Witten theory, generalized Donaldson-Thomas theory
and presumably new math/physics related to NS5-branes.
MH is a quaternion-Kähler space of real dimension
4(h1,2(X ) + 1). Despite the name,MV is not Kähler, and carries
no (globally defined) complex structure.
In type IIA/X ,MH ≡ QKC(X ) parametrizes the complex structure
of X , together with the string coupling constant gs, the RR 3-form
R ∈ Jac(X ) ≡ H3(X ,R)/H3(X ,Z) and the NS-axion σ ∈ S1.
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Perturbative hypermultiplet moduli space II

In the limit gs → 0, the QK metric onMH looks like

ds2
MH

=

(
dgs

gs

)2

+ ds2
MC

+ g2
s ds2

Jac + g4
s (dσ +A)2

where ds2
MC

is the PSK metric on the moduli space of complex
structures, the same as the VM moduli space in type IIB, and A is
a connection on the circle bundle S1

σ, with 1st Chern class
dA ∝ ωJac. This is known as the "c-map" or "semi-flat" metric.

Ceccoti Ferrara Girardello; Ferrara Sabharwal

The effect of the one-loop correction in string theory is (roughly) to
shift g2

s → g2
s + χ and ωJac → ωJac + χωMC . As a result, the metric

has a curvature singularity at g2
s ∼ χ.

Antoniadis Minasian Theisen Vanhove; Günther Herrmann Louis, . . .
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Perturbative hypermultiplet moduli space III

No perturbative corrections to dsMH are expected beyond
one-loop, since they would ruin the quantization of c1(A).

Instanton corrections from Euclidean D2-branes wrapping SLAGs
are expected to break the translational isometries along Jac(X ) at
order e−1/gs .

Instanton corrections from Euclidean NS5-branes wrapping X are
expected to break the translational isometry along S1

σ at order
e−1/g2

s .

The challenge is to find the exact quantum corrected QK metric on
MH . Unfortunately, type II string perturbation theory does not tell
us immediately how...
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Vectors meet hypers... I

The occurrence ofMIIB
V in the limit gs → 0 ofMIIB

H is not
coincidental. Consider type IIB string theory compactified on the
same CY X , further reduced on a circle of radius R to D = 3.
In D = 3, all 1-forms are Hodge dual to 0-forms, dA1 = ∗dA0. The
moduli space is now a product of two quaternion-Kähler manifolds
MIIB

H ×MIIB′
V of real dimensions 4h12(X ) + 4 and 4h11(X ) + 4.

The first is just the HM moduli space in D = 4.
The second factor describes the VM moduli ta in D = 4, the radius
R, the holonomy and hodge duals R ∈ Jac(X ) of the 1-forms, and
the Hodge dual σ of the Kaluza-Klein connection gi4. At large
radius R, the QK metric looks like

ds2
MIIB′

V
=

(
dR
R

)2

+ ds2
MC

+
1

R2 ds2
Jac +

1
R4 (dσ +A)2

Boris Pioline (LPTHE) Progress on hypers Dublin 2010 22 / 48



Vectors meet hypers... II

This is looks the same asMIIA
H ! In fact, T-duality along the circle

identifiesMIIB′
V =MIIB

H , gA
s = 1/RB. Euclidean D2-branes on

H3(X ) are mapped to Euclidean D3-branes on H4(X × S1), i.e.
black holes in D = 4 ! NS5-branes on X are mapped to Taub-NUT
instantons (or Kaluza-Klein monopoles) on X × S1.
SimilarlyMIIA′

V =MIIB
H . In addition, mirror symmetry identifies

M IIA
H (X ) with M IIB

H (Y ). To sum up, for a given CY threefold X , type
II string theory associates two QK manifolds QKK (X ) and
QKC(X ), such that the moduli spaces in D = 3 are given by

IIA/X × S1 IIB/X × S1

M′V ×MH QKK (X )×QKC(X ) QKC(X )×QKK (X )
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Constraints on the exact HM moduli space I

In the weak coupling limit gs → 0 (or R →∞), the QK metric must
reduce to the semi-flat metric;
D-instanton effects should be weighted by the generalized DT
invariants Ω(γ, t) (up to multi-covering effects);
The metric should be smooth and complete; in particular,
continuous across LMS, and regular at g2

s ∼ χ;
Under mirror symmetry,MK (X ) =MC(Y );
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Constraints on the exact HM moduli space II

MK (X ) should have an isometric action of SL(2,Z) , inherited
from the 10D S-duality symmetry of type IIB/X × S1, or
equivalently from the global diffeomorphisms of T 2 in M-theory on
X × T 2.
There are also reasons to expect an isometric action of SL(3,Z),
coming from 4D S-duality or Ehlers symmetry, or of a Picard
subgroup SU(2,1,Z[

√
−d ]) for certain rigid CY three-folds with

complex multiplication.

BP Persson; Bao Kleinschmidt Nilsson Persson BP

When X admits a K3-fibration with a global section, one could in
principle use heterotic-type II duality to compute the metric on
M(X ) using (0,4) SCFT techniques. This is promising, but little
has been accomplished so far.
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A word on the rigid limit I

In the limit where X becomes singular, it is sometimes possible to
decouple gravity and describe the low energy physics in terms of
an ordinary field theory with N = 2 “rigid” supersymmetries.
This is in particular so when X develops an AN−1 singularity,
fibered over a Riemann surface Σ. The D2-branes wrapped on
vanishing cycles lead to massless gauge bosons, described by
SU(N) N = 2 Super-Yang-Mills.
The SK metric on the Coulomb branch (where the gauge group is
broken to U(1)N−1) is described again by a prepotential F (X ) (no
longer homogeneous), which can be computed from period
integrals on the Seiberg-Witten curve Σ.
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A word on the rigid limit II

The BPS spectrum exhibit similar chamber dependence and lines
of marginal stability as in the SUGRA case.

Bilal Ferrari, . . .

Upon reduction on a circle, the VM moduli space is enhanced to a
hyperkähler manifold. When R →∞, it reduces to the ’rigid
c-map’ of the Coulomb branch. In addition there are O(e−R)
exponential corrections from BPS monopoles winding around the
circle. The wall-crossing formula ensures that the HK metric is
smooth across the LMS. The HK metric and BPS spectrum can be
computed using integrable model techniques (Hitchin system).

Gaiotto Moore Neitzke

In contrast to SUGRA, there are no O(e−R2
) corrections, and the

instanton sum converges.
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QK geometry and contact geometry I

Recall that a Riemannian manifold of real dimension 4n is
quaternion-Kähler if its holonomy group is (exactly)
Sp(n)× Sp(1). M is then Einstein. SUGRA requires negative
scalar curvature. Let ~p be the Sp(1) part of the Levi-Civita
connection, d~p + ~p ∧ ~p = ν

2~ω the quaternionic 2-forms.

M does not admit a (global) complex structure. Instead, it is more
convenient to study its twistor space Z. This is a complex contact
manifold of real dimension 4n + 2, endowed with a
(non-holomorphic) projection π : Z →M with CP1 fibers, and a
real structure acting as the antipodal map on CP1.

Salamon; Lebrun
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QK geometry and contact geometry II
Explicitly, the complex contact structure onM is given by the
kernel of the (1,0)-form Dz (which transforms homogeneously
under Sp(1) = SU(2) frame rotations)

Dz = dz + p+ − ip3z + p−z2

Moreover,M carries a Kahler-Einstein metric

ds2
Z =

|Dz|2

(1 + zz̄)2 +
ν

4
ds2
M

Locally, there exists a “contact potential" Φ(xµ, z) and Darboux
complex coordinates α, ξ, ξ̃ such that

X = 2 eΦ Dz
z

= dα + ξΛdξ̃Λ

Φ provides a Kähler potential K on Z via eK = (1 + zz̄)eRe(Φ)/|z|.
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QK geometry and contact geometry III
The complex contact structure can be specified globally by
providing contactomorphisms on the overlap of two Darboux
coordinate patches. Those are conveniently specified by a
Hamilton function S[ij](ξΛ

[i], ξ̃
[j]
Λ , α

[j]):

ξΛ
[j] = f−2

ij ∂
ξ̃

[j]
Λ

S[ij] , ξ̃
[i]
Λ = ∂ξΛ

[i]
S[ij] ,

α[i] = S[ij] − ξΛ
[i]∂ξΛ

[i]
S[ij] , eΦ[i] = f 2

ij eΦ[j] ,

where f 2
ij ≡ ∂α[j]S[ij] = X [i]/X [j].

S[ij] are subject to consistency conditions S[ijk ], gauge equivalence
under local contact transformations S[i], and reality constraints.
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QK geometry and contact geometry IV
For generic choices of S[ij], the moduli space of solutions of the
above gluing conditions, regular in each patch, is finite
dimensional, and equal toM itself.

On each patch Ui , u[i]
m = (ξΛ

[i], ξ̃
[i]
Λ , α

[i]) admit a Taylor expansion in
z around ζi , whose coefficients are functions onM. The functions
u[i]

m (z, xµ) parametrize the "twistor line" over xµ ∈M.

The metric onM can be obtained by expanding X [i] and du[i]
m

around zi , extracting the SU(2) connection ~p and a basis of (1,0)
forms onM in almost complex structure J(zi), and using
d~p + 1

2 ~p × ~p = ν
2 ~ω.

Deformations ofM correspond to deformations of S[ij], so are
parametrized by H1(Z,O(2)).

Lebrun, Salamon
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QK geometry and contact geometry V
Any (infinitesimal) isometry κ ofM lifts to a holomorphic isometry
κZ of Z. The moment map construction provides an element of
H0(Z,O(2)), given locally by holomorphic functions

µκ = κZ · X = eΦ
(
µ+ z−1 − iµ3 + µ−z

)
.

Galicki

The moment map of the Lie bracket [κ1, κ2] is the contact-Poisson
bracket {µκ1 , µκ2}PB. The zeros of µ canonically associate a
(local) complex structure Jκ to κ.
Toric QK manifolds are those which admit d + 1 commuting
isometries. In this case, one can choose µ[i] as the position
coordinates. The transition functions must then take the form

S[ij] = α[j] + ξΛ
[i] ξ̃

[j]
Λ − H [ij] ,

where H [ij] depends on ξΛ
[i] only.
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QK geometry and contact geometry VI

More generally, one can consider "nearly toric QK", where H [ij] is a
general function but its derivatives wrt to ξ̃[j]

Λ , α
[j] are taken to be

infinitesimal. For one unbroken isometry κ, ∂α[j]H [ij] = 0.
The twistor lines can then be obtained by Penrose-type integrals,
e.g. (in case with one isometry, no "anomalous dimensions")

ξΛ
[i] = ζΛ +

Y Λ

z
− zȲ Λ − 1

2

∑
j

∮
Cj

dz ′

2πiz ′
z ′ + z
z ′ − z

∂
ξ̃

[j]
Λ

H [+j](z ′)

eΦ[i] =
1
4

∑
j

∮
Cj

dz ′

2πiz ′
(

z ′−1Y Λ − z ′Ȳ Λ
)
∂ξΛ

[j]
H [+j](ξ(z ′), ξ̃(z ′))

The locus z = 0 defines the canonical complex structure Jκ.
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The perturbative hypermultiplet moduli space I

Let us now return to the HM moduli spaceMH in type IIA
compactified on X . For simplicity, assume χ(X ) = 0. In string
perturbation theory,Mpert

H ∼ c−map(MIIB
V ).

The twistor space is governed by the Hamilton functions

H [0+]
pert =

i
2

F (ξΛ) , H [0−]
tree =

i
2

F̄ (ξΛ)
Roček Vafa Vandoren

As a result, the twistor lines are given [upon defining
ξ̃Λ ≡ −2iξ̃[0]

Λ , α ≡ 4iα[0] + 2iξ̃[0]
Λ ξΛ,W (z) ≡ FΛζ

Λ − X Λζ̃Λ] by

ξΛ = ζΛ +
(
z−1X Λ − z X̄ Λ

)
/g2

s ,

ξ̃Λ = ζ̃Λ +
(
z−1FΛ − z F̄Λ

)
/g2

s ,

α = σ +
(
z−1W − z W̄

)
/g2

s ,

Neitzke BP Vandoren; Alexandrov; APSV
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Generalized Mirror Map I

Using mirror symmetry, the perturbative contact potential may be
written in terms of the GW invariants of Y [here τ2 = 1/gs],

eΦ =
τ2

2
2

V +
τ2

2
4(2π)3

∑
qaγa∈H+

2 (Y )

n0,qaRe [Li3 (eq) + 2πqata Li2 (eq)]

while the RR multiform ζΛ, ζ̃Λ and NS-axion σ are related to type
IIB variables τ1, ca, ca, c0, ψ by the "generalized mirror map"

ζ0 = τ1 , ζa = −(ca − τ1ba) ,

ζ̃a = ca +
1
2
κabc bb(cc − τ1bc) , ζ̃0 = c0 −

1
6
κabc babb(cc − τ1bc) ,

σ = −2(ψ +
1
2
τ1c0) + ca(ca − τ1ba)− 1

6
κabc bacb(cc − τ1bc) .

Gunther Herrmann Louis; Berkooz BP; APSV
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S-duality and symplectic covariance I

In the weak coupling, large IIB volume limit,MH admits an
isometric action of SL(2,R)

τ 7→ aτ + b
cτ + d

, ja 7→ ja|cτ + d | , ca 7→ ca ,(
ca

ba

)
7→
(

a b
c d

)(
ca

ba

)
,

(
c0
ψ

)
7→
(

d −c
−b a

)(
c0
ψ

)

This can be lifted to a holomorphic action on Z ,

ξ0 7→ aξ0 + b
cξ0 + d

, ξa 7→ ξa

cξ0 + d
, . . .

Berkovits Siegel; Robles-Llana Roček Saueressig Theis Vandoren; APSV
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S-duality and symplectic covariance II

The contact potential eΦ =
τ2

2
2 V (ja), though not invariant,

transforms so that KZ undergoes a Kähler transformation,

eΦ 7→ eΦ

|cτ + d |
, KZ 7→ KZ − log(|cξ0 + d |) , X [i] → X [i]

cξ0 + d

The worldsheet instanton corrections break SL(2,R) continuous
S-duality. A discrete subgroup SL(2,Z) can be restored by
summing over images:

Lik (e2πiqaza
)→

′∑
m,n

τ
k/2
2

|mτ + n|k
e−Sm,n,q ,

where Sm,n,q = 2πqa|mτ + n| ta − 2πiqa(mca + nba) is the action
of a (m,n)-string wrapped on qaγ

a.

Robles-Llana Roček Saueressig Theis Vandoren
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S-duality and symplectic covariance III
After Poisson resummation on n→ q0, we get a sum over
D(-1)-D1 bound states, eΦ = · · ·+

τ2

8π2

∑
q0∈Z

qaγa∈H+
2 (Y )

n(0)
qa

∞∑
m=1

|qΛX Λ|
m

cos
(

2πm qΛζ
Λ
)

K1

(
2πm |qΛX Λ|τ2

)
Robles-Llana Saueressig Theis Vandoren

Going back to type IIA variables, these are interpreted as
Euclidean D2 wrapped on SLAG in a Lagrangian subspace of
H3(X ,Z) (A-cycles only). These effects correct the mirror map into

ζ̃a = ζ̃
(0)
a +

1
8π2

∑
qa

n0,q
∑

n∈Z,m 6=0

mτ1 + n
m|mτ + n|2

e−Sm,n,q , . . .

Alexandrov Saueressig
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S-duality and symplectic covariance IV

In the "one instanton" approximation, the contributions of B-cycles
can be restored by symplectic invariance:

eΦ = · · ·+ τ2

8π2

∑
γ

nγ
∞∑

m=1

|Wγ |
m

cos (2πmΘγ) K1 (2πm |Wγ |)

Wγ ≡
1
2
τ2

(
qΛX Λ − pΛFΛ

)
, Θγ ≡ qΛζ

Λ − pΛζ̃Λ

At this point, nγ just parametrize the allowed deformations.
However, their behavior under wall-crossing and general
expectations from T-duality suggest that nγ = Ω(γ, t), the
generalized DT invariants.
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The hypermultiplet twistor space I

The contact structure on the twistor space can be obtained by
inserting an elementary symplectomorphism generated by

S[ij]
γ (ξΛ

[i], ξ̃
[j]
Λ , α

[j]) = α[j] + ξΛ
[i] ξ̃

[j]
Λ +

i
2(2π)2 nγ Li2 (Xγ) .

across the "BPS ray" `(γ),
Gaiotto Moore Neitzke

`(γ) = {z : ±Wγ/z ∈ iR−} ,

Xγ = e−2πi(qΛξ
Λ
[i]+2ipΛξ̃

[j]
Λ )

As t ∈MV is varied, the BPS rays may cross, and the invariants
nγ should transform so as to leave the contact structure intact.
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The hypermultiplet twistor space II

BPS rays `(γ1) and `(γ2) cross at lines of marginal stability. The
wall crossing formula

x∏
γ=nγ1+mγ2

m>0,n>0

Un−(γ)
γ =

y∏
γ=nγ1+mγ2

m>0,n>0

Un+(γ)
γ ,

ensures that the consistency of the twistor space across the LMS.

Gaiotto Neitzke Moore; Kontsevich Soibelman

The metric is regular across the LMS. Physically, single instanton
contributions on one side of the wall get replaced by multi-
instanton configurations on the other side.
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Black holes, Taub-NUT instantons and NS5-branes I

If indeed nγ,t = Ω(γ, t) ∼ e
1
4 A(γ), the instanton series is divergent,

and must be treated as an asymptotic series. Its accuracy can be
estimated by Borel type techniques. Schematically,∑

Q

eQ2−Q/gs ∼ e−1/g2
s

Thus NS5-brane or KK-monopoles are expected to play a crucial
role in regulating the black hole sum.

BP Vandoren
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Black holes, Taub-NUT instantons and NS5-branes II

In contrast to D-instantons, NS5-brane instantons should induce
genuine contact transformations, with S[ij] ∝ eikα[j]

Fk (ξ, ξ̃).
For gauge invariance, Fk must be a holomorphic section of the
Theta line bundle over Jac(X ). This seems to fit with known facts
about the NS5-brane partition function, and about the topological
string amplitude !

Witten; Freed Moore Belov; Dijkgraaf Verlinde Vonk, . . .

One may in principle determine the NS5 instantons by SL(2,Z)
duality from the D5-instantons. Automorphy under SL(3,Z)
provides a short cut.
There are indications that the motivic DT invariants and the
quantum dilogarithm should play an important role in this story,
although it is unclear yet how.

Kontsevich Soibelman; Dimofte Gukov, . . .
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Conclusion I

Determining the exact HM metric is hard, but (hopefully) not
impossible. Twistor methods are essential, but can still be
improved (completeness, discrete symmetries...)
In some highly symmetric cases (e.g. Enriques or Borcea-Voisin
CY), one may hope that automorphy will fix the hypermultiplet
metric exactly, giving access to new CY invariants. Heterotic/type
II duality may also be a very powerful approach.
The metric onMH offers a very convenient packaging of the
degeneracies of 4D BPS black holes. Divergences of the BH
partition function should be resolved by NS5 or TN-instantons.
It seems that higher derivative F̃g-type corrections to the hypers
should be governed by a one-parameter generalization of the
topological string amplitude, which mixes A and B-model data.
The way to non-perturbative topological string theory ?
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