Hyperinstantons, black holes and wall-crossing

Boris Pioline

LPTHE, Paris

Bad Honnef 2011
 14/03/2011

based on work with Alexandrov, Saueressig, Vandoren, Persson, ...

Instantons corrections to hypermultiplet moduli spaces, black holes and wall-crossing

Boris Pioline

LPTHE, Paris

Bad Honnef 2011 14/03/2011

based on work with Alexandrov, Saueressig, Vandoren, Persson, ...

Introduction

- In $D=4$ string vacua with $\mathcal{N}=2$ supersymmetries, the moduli space splits into a product $\mathcal{M}=V M_{4} \times H M_{4}$ corresponding to vector multiplets and hypermultiplets.
- The study of $V M_{4}$ and of the BPS spectrum has had tremendous applications in mathematics and physics: classical mirror symmetry, Gromov-Witten invariants, Donaldson-Thomas invariants, black hole precision counting, etc...
- Understanding $H M_{4}$ may be even more rewarding: quantum extension of mirror symmetry, new geometric invariants, new checks of Het/ll duality richer automorphic properties...
- By gauging isometries of $H M_{4}$, one may construct vacua with spontaneously broken $\mathcal{N}=2$ SUSY, possibly relevant for phenomenology.

Hypers = Vectors

Upon compactification on $S^{1}(R)$,

- the HM moduli space stays unchanged:

$$
\mathrm{HM}_{3}=\mathrm{HM}_{4}
$$

- the VM moduli space is enhanced to a quaternion-Kähler manifold which includes VM_{4}, the radius R of the circle, the electric and magnetic holonomies of the $D=4$ Maxwell fields, and the NUT potential σ, dual to the Kaluza-Klein gauge field in $D=3$:

$$
\mathrm{VM}_{3} \approx \operatorname{c-map}\left(\mathrm{VM}_{4}\right)+\text { 1-loop }+\mathcal{O}\left(e^{-R}\right)+\mathcal{O}\left(e^{-R^{2}}\right)
$$

- VM_{3} and HM_{3} are two sides of the same coin, exchanged by T-duality along the circle. Let us focus on VM_{3} for now.

Instantons = Black holes + KKM

- The $\mathcal{O}\left(e^{-R}\right)$ corrections come from BPS black holes in $D=4$, whose Euclidean wordline winds around the circle: thus VM_{3} encodes the $D=4$ BPS spectrum, with chemical potentials for every electric and magnetic charges, and naturally incorporates chamber dependence.

Seiberg Witten; Shenker

- The $\mathcal{O}\left(e^{-R^{2}}\right)$ corrections come from Kaluza-Klein monopoles, i.e. gravitational instantons of the form $\mathrm{TN}_{k} \times \mathcal{X}$.
- Including these additional contributions may lead to enhanced automorphic properties, analogous to the $S L(2, \mathbb{Z}) \rightarrow \operatorname{Sp}(2, \mathbb{Z})$ enhancement in $N=4$ dyon counting.

Dijkgraaf Verlinde Verlinde; Gunaydin Neitzke BP Waldron

SYM vs. SUGRA

- A much simpler version of this problem occurs in (Seiberg-Witten) $\mathcal{N}=2$ SYM field theories on $\mathbb{R}^{3} \times S^{1}$. In this case $V M_{3}$ is a hyperkähler manifold of the form

$$
\mathrm{VM}_{3} \approx \operatorname{rigid} \mathrm{c}-\operatorname{map}\left(\mathrm{VM}_{4}\right)+\mathcal{O}\left(e^{-R}\right)
$$

- The $\mathcal{O}\left(e^{-R}\right)$ corrections similarly come from BPS dyons in $D=4$. Understanding their effect on the twistor space of VM_{3} leads to a physical derivation of the KS wall-crossing formula.

Gaiotto Moore Neitzke, Kontsevich Soibelman

- The extension to $\mathcal{N}=2$ string vacua is non-trivial, due (in part) to the intricacy of quaternion-Kähler geometry, the exponential growth of BPS degeneracies, and poor understanding of KK monopoles.

Back to HM

- On the flip side of the coin, $R=1 / g_{(4)}$ encodes the string coupling. The $\mathcal{O}\left(e^{-R}\right)$ and $\mathcal{O}\left(e^{-R^{2}}\right)$ corrections to HM_{4} now originate from Euclidean D-branes and NS5-branes, respectively.
- When \mathcal{X} is K 3 -fibered, HM_{4} can in principle be computed exactly using Het/type II duality: since the heterotic string coupling belongs to $\mathrm{VM}_{4}, H M_{4}$ is determined by the $(0,4)$ heterotic SCFT at tree level (still non-trivial due to non-perturbative α^{\prime} corrections)

Aspinwall

- Recent progress has instead occurred on the type II side, by combining wall-crossing, S-duality, mirror symmetry with twistor techniques.

Outline

(9) Introduction
(2) Wall-crossing and hyperinstantons in Seiberg-Witten theories
(3) Instanton corrections to the HM moduli space in type IIA/X

4 Mirror symmetry and S-duality
(5) Conclusion

Outline

(1) Introduction
(2) Wall-crossing and hyperinstantons in Seiberg-Witten theories
(3) Instanton corrections to the HM moduli space in type IIA/X

4 Mirror symmetry and S-duality
(5) Conclusion

BPS dyons in Seiberg-Witten theories I

- Consider a $\mathcal{N}=2$ gauge theory in \mathbb{R}^{4} with a rank r gauge group G, broken to $U(1)^{r}$ on the Coulomb branch. The low energy dynamics is described by the effective action

$$
S=\int \partial_{X^{\wedge}} \bar{\partial}_{\bar{X} \Sigma} K \partial_{\mu} X^{\wedge} \partial \mu \bar{X}^{\Sigma}+\frac{1}{4 \pi} \operatorname{Re}\left[\tau_{\Lambda \Sigma} \mathcal{F}^{\wedge} \wedge\left(\mathcal{F}^{\Sigma}+\mathrm{i} \star \mathcal{F}^{\Sigma}\right)\right]
$$

where the Kähler potential and gauge kinetic function are expressed locally in terms of a prepotential $F\left(X^{\wedge}\right)$ via

$$
K=\mathrm{i}\left(\bar{X}^{\wedge} F_{\Lambda}-X^{\wedge} \bar{F}_{\Lambda}\right), \quad \tau_{\Lambda \Sigma}=\partial_{X^{\wedge}} \partial_{X^{\Sigma}} F
$$

- Globally, X^{\wedge} is not a good coordinate, rather $\Omega \equiv\left(X^{\wedge}, F_{\Lambda}\right)$ is a holomorphic (Lagrangian) section of a flat bundle over VM_{4}, with non-trivial monodromies.

BPS dyons in Seiberg-Witten theories II

- VM_{4} can be realized as the parameter space of a suitable family of genus r Riemann surfaces Σ_{u}. The section $\Omega(u)$ is given by

$$
X^{\wedge}=\int_{A^{\wedge}} \lambda, \quad F_{\Lambda}=\int_{B_{\wedge}} \lambda
$$

where λ is a suitable meromorphic one-form and $\left(A^{\wedge}, B_{\Lambda}\right)$ a symplectic basis of $H_{1}\left(\Sigma_{u}, \mathbb{Z}\right)$.

- The lattice of electric and magnetic charges $\gamma=\left(p^{\wedge}, q_{\wedge}\right)$ is $\Gamma=H^{1}\left(\Sigma_{u}, \mathbb{Z}\right)$, with DSZ product

$$
\left\langle\gamma, \gamma^{\prime}\right\rangle=\gamma \cap \gamma^{\prime}=q_{\wedge} p^{\wedge}-q_{\Lambda}^{\prime} p^{\wedge} \in \mathbb{Z}
$$

- States which saturate the BPS bound

$$
\mathcal{M} \geq|Z(\gamma ; u)|, \quad Z(\gamma ; u)=q_{\wedge} X^{\wedge}-p^{\wedge} F_{\wedge}
$$

belong to short multiplets of the $\mathcal{N}=2$ SUSY algebra.

BPS dyons in Seiberg-Witten theories III

- Such multiplets may pair up into long multiplets but the index

$$
\Omega(\gamma)=-\frac{1}{2} \operatorname{Tr}(-1)^{2 J_{3}} J_{3}^{2}
$$

stays constant under this process.

- On certain codimension-one walls of marginal stability in VM_{4}, where the central charges of two charge vectors γ_{1}, γ_{2} align,

$$
W\left(\gamma_{1}, \gamma_{2}\right)=\left\{u / \arg \left(Z\left(\gamma_{1} ; u\right)=\arg \left(Z\left(\gamma_{2} ; u\right)\right\}\right.\right.
$$

the index $\Omega(\gamma)$ for $\gamma=M \gamma_{1}+N \gamma_{2}$ may jump, due to the decay of bound states of n dyons with charges $\alpha_{i}=M_{i} \gamma_{1}+N_{i} \gamma_{2}$, with fixed total charge $\gamma=\sum \alpha_{i}$.

Wall-crossing formulae I

- Defining the rational index

$$
\bar{\Omega}(\gamma) \equiv \sum_{d \mid \gamma} \Omega(\gamma / d) / d^{2},
$$

the jump $\Delta \bar{\Omega}(\gamma)=\bar{\Omega}^{-}(\gamma)-\bar{\Omega}^{+}(\gamma)$ takes the form

$$
\Delta \bar{\Omega}(\gamma)=\sum_{n \geq 2} \sum_{\substack{\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \in \tilde{I} \\ \gamma=\alpha_{1}+\cdots+\alpha_{n}}} \frac{g\left(\left\{\alpha_{i}\right\}\right)}{\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|} \prod_{i=1}^{n} \bar{\Omega}^{+}\left(\alpha_{i}\right)
$$

where the sum runs over all unordered decompositions of the total charge vector γ into a sum of n vectors $\alpha_{i} \in \tilde{\Gamma}$. The coefficients $g\left(\left\{\alpha_{i}\right\}\right)$ are universal functions of α_{i}.

- $\left|\operatorname{Aut}\left(\left\{\alpha_{i}\right\}\right)\right|=\prod r_{k}$! if $\left\{\alpha_{i}\right\}$ consists of r_{1} charges β_{1}, r_{2} charges of type β_{2}, etc.

The Coulomb branch wall-crossing formula I

- Physically, $g\left(\left\{\alpha_{i}\right\}\right)$ is the index of the quantum mechanics of n distinguishable particles in \mathbb{R}^{3} with charges α_{i}, interacting by Coulomb \& Lorentz forces. This can be computed by localization,

$$
g\left(\left\{\alpha_{i}\right\}\right)=\lim _{y \rightarrow 1}\left[\frac{(-1)^{\sum_{i<j}\left\langle\alpha_{i}, \alpha_{j}\right\rangle+n-1}}{(y-1 / y)^{n-1}} \sum_{\left\{z_{i}\right\}} s\left(\left\{z_{i}\right\}\right) y^{\sum_{i<j} \alpha_{i j} \operatorname{sign}\left(z_{j}-z_{i}\right)}\right]
$$

where $\left\{z_{i}\right\}$ runs over the solutions of

$$
\forall i=1 \ldots n, \quad \sum_{j \neq i} \frac{\left\langle\alpha_{i}, \alpha_{j}\right\rangle}{\left|z_{i}-z_{j}\right|}=\sum_{j \neq i}\left\langle\alpha_{i}, \alpha_{j}\right\rangle, \quad \sum_{i=1}^{n} z_{i}=0
$$

and $s\left(\left\{z_{i}\right\}\right)=(-1)^{\left.\#\left\{i ; z_{i+1}<z_{i}\right)\right\}}$. In SUGRA, $\left\{z_{i}\right\}$ corresponds to the locations of the centers of a collinear multi-centered BPS black hole solution.

The KS wall-crossing formula I

- Mathematically, the same $g\left(\left\{\alpha_{i}\right\}\right)$ can be extracted from the Kontsevich-Soibelman wall-crossing formula. Consider the Lie algebra spanned by abstract generators $\left\{e_{\gamma}, \gamma \in \Gamma\right\}$, satisfying the commutation rule

$$
\left[e_{\gamma_{1}}, e_{\gamma_{2}}\right]=(-1)^{\left\langle\gamma_{1}, \gamma_{2}\right\rangle}\left\langle\gamma_{1}, \gamma_{2}\right\rangle e_{\gamma_{1}+\gamma_{2}}
$$

For a given charge vector γ and VM moduli u^{a}, consider the operator $U_{\gamma}\left(u^{a}\right)$ in the Lie group $\exp (\mathcal{A})$

$$
U_{\gamma}\left(t^{a}\right) \equiv \exp \left(\Omega\left(\gamma ; u^{a}\right) \sum_{d=1}^{\infty} \frac{e_{d \gamma}}{d^{2}}\right)
$$

We shall see later that the operators U_{γ} naturally arise in the construction of HM moduli spaces.

The KS wall-crossing formula II

- The KS wall-crossing formula states that the product

$$
A\left(u^{a}\right)=\prod_{\substack{\gamma=M \gamma_{1}+N \gamma_{2}, M \geq 0, N \geq 0}} U_{\gamma}\left(u^{a}\right)
$$

ordered so that $\arg \left(Z_{\gamma}\right)$ decreases from left to right, stays constant across the wall. As u^{a} crosses $\boldsymbol{W}, \Omega\left(\gamma ; u^{a}\right)$ jumps and the order of the factors is reversed, but the operator A stays constant.
Equivalently,

$$
\prod_{\substack{M \geq 0, N \geq 0, M / N \downarrow}} U_{M \gamma_{1}+N \gamma_{2}}^{+}=\prod_{\substack{M \geq 0, N \geq 0, M / N \uparrow}} U_{M \gamma_{1}+N \gamma_{2}}^{-}
$$

The KS wall-crossing formula III

- To compute $\Delta \Omega\left(M \gamma_{1}+N \gamma_{2}\right)$, it suffices to project the KS formula to the finite-dimensional algebra

$$
\mathcal{A}_{M, N}=\mathcal{A} /\left\{\sum_{m>M \text { or } n>N} \mathbb{R} \cdot e_{m \gamma_{1}+m \gamma_{2}}\right\} .
$$

and use the Baker-Campbell-Hausdorff formula.

- For example, the projection of the KS formula to $\mathcal{A}_{1,1}$

$$
\begin{aligned}
& \exp \left(\bar{\Omega}^{+}\left(\gamma_{1}\right) e_{\gamma_{1}}\right) \exp \left(\bar{\Omega}^{+}\left(\gamma_{1}+\gamma_{2}\right) e_{\gamma_{1}+\gamma_{2}}\right) \exp \left(\bar{\Omega}^{+}\left(\gamma_{2}\right) e_{\gamma_{2}}\right) \\
= & \exp \left(\bar{\Omega}^{-}\left(\gamma_{2}\right) e_{\gamma_{2}}\right) \exp \left(\bar{\Omega}^{-}\left(\gamma_{1}+\gamma_{2}\right) e_{\gamma_{1}+\gamma_{2}}\right) \exp \left(\bar{\Omega}^{-}\left(\gamma_{1}\right) e_{\gamma_{1}}\right)
\end{aligned}
$$

leads to the primitive wall-crossing formula,

$$
g\left(\alpha_{1}, \alpha_{2}\right)=(-1)^{\left|\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right|+1}\left|\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right|
$$

Denef Moore

The KS wall-crossing formula IV

- For $S U(2)$ Seiberg-Witten theory with no flavor, the jump of the BPS spectrum on the wall where $a / a_{D} \in \mathbb{R}^{+}$

is encoded in the identity

$$
U_{2,-1} \cdot U_{0,1}=U_{0,1} \cdot U_{2,1} \cdot U_{4,1} \ldots U_{2,0}^{(-2)} \ldots U_{3,-1} \cdot U_{2,-1} U_{1,-1}
$$

Seiberg Witten; Bilal Ferrari; Denef

Reduction on a circle I

- Upon compactifying the $\mathcal{N}=2$ gauge theory on a circle $S^{1}(R)$, the moduli space VM_{3} is enlarged to include the holonomies $C=\left(\zeta^{\wedge}, \tilde{\zeta}_{\wedge}\right)$ of the gauge fields \mathcal{A}^{\wedge} and their magnetic duals $\tilde{\mathcal{A}}_{\Lambda}$ along the circle.
- Large gauge transformations imply that C lives in the rank $2 r$ torus $\mathcal{T}=H^{1}\left(\Sigma_{u}, \mathbb{R}\right) / H^{1}\left(\Sigma_{u}, \mathbb{Z}\right)$. Topologically, VM_{3} is the Jacobian of the family of Riemann surfaces Σ_{u}.
- As $R \rightarrow \infty$, the metric takes the semi-flat form

$$
\mathrm{d} s_{\mathrm{VM}_{3}}^{2}=R \mathrm{~d} s_{\mathrm{VM}_{4}}^{2}+\frac{1}{R}\left(\mathrm{~d} \tilde{\zeta}_{\Lambda}-\tau_{\Lambda \Sigma} \zeta^{\Sigma}\right)[\operatorname{Im} \tau]^{\Lambda \Lambda^{\prime}}\left(\mathrm{d} \tilde{\zeta}_{\Lambda^{\prime}}-\tau_{\Lambda^{\prime} \Sigma^{\prime}} \zeta^{\Sigma^{\prime}}\right)
$$

- At finite R, we expect $\mathcal{O}\left(e^{-|Z(\gamma, u)|+i\langle C, \gamma\rangle}\right)$ instanton corrections to the semi-flat metric, from Euclidean dyons wrapping around S^{1}.

Reduction on a circle II

- As required by SUSY, the semi-flat metric (aka the rigid c-map of the (rigid special Kähler) metric on VM_{4}) is hyperkähler.
- Indeed, it is Kähler in complex coordinates $\left(X^{\wedge}, W_{\Lambda}=\tilde{\zeta}_{\Lambda}-\tau_{\Lambda \Sigma} \zeta^{\Lambda}\right)$, with Kähler potential

$$
K_{c}=\mathrm{i} R\left(X^{\wedge} \bar{F}_{\Lambda}-\bar{X}^{\wedge} F_{\Lambda}\right)+\frac{1}{R}\left(W_{\Lambda}+\bar{W}_{\Lambda}\right)[\operatorname{Im} \tau]^{\wedge \Sigma}\left(W_{\Sigma}+\bar{W}_{\Sigma}\right)
$$

- Raising the indices from the Kähler form $\omega^{3}=\partial \bar{\partial} K_{c}$ and the complex symplectic form $\omega^{1}+\mathrm{i} \omega^{2}=\mathrm{d} W_{\wedge} \wedge \mathrm{d} X^{\wedge}$, one obtains three complex structures J_{1}, J_{2}, J_{3} such that

$$
J_{i} J_{j}=-\delta_{i j}+\epsilon_{i j k} J_{k}
$$

- Instanton corrections must preserve the HK property, and are most conveniently expressed in the language of twistors (or projective superspace, in physics parlance).

Twistor techniques for HK manifolds I

- Recall that any HK manifold \mathcal{M} admits a family of complex structures

$$
J(t, \bar{t})=\frac{1-t \bar{t}}{1+t \bar{t}} J^{3}+\frac{t+\bar{t}}{1+t \bar{t}} J^{2}+\mathrm{i} \frac{t-\bar{t}}{1+t \bar{t}} J^{1}
$$

parametrized by $t \in \mathbb{P}^{1}=S^{2}$. This complex structure extends to a complex structure on the twistor space $\mathcal{Z}=\mathbb{P}^{1} \times \mathcal{M}$.

- Using the hyperkähler metric on \mathcal{Z}, one obtains a triplet of Kähler forms ω^{i}. The complex symplectic form

$$
\omega^{[0]}(t)=\omega^{+}-\mathrm{i} t \omega^{3}+t^{2} \omega^{-}, \quad \omega^{ \pm}=-\frac{1}{2}\left(\omega^{1} \mp \mathrm{i} \omega^{2}\right)
$$

is holomorphic w.r.t. to $J(t, \bar{t})$. It is regular at $t=0$, but has a pole at $t=\infty$.

Twistor techniques for HK manifolds II

- Since the complex two-form is defined up to overall factor, one may instead consider

$$
\omega^{[\infty]}(t) \equiv t^{-2} \omega^{[0]}(t)=\omega^{-}-\mathrm{i} \omega^{3} / t+\omega^{+} / t^{2}
$$

ω is then real w.r.t. to the antipodal map $t \mapsto-1 / \bar{t}$,

$$
\omega^{[\infty]}(t)=\overline{\omega^{[0]}(-1 / \bar{t})}
$$

- More generally, one may introduce a covering of \mathbb{P}^{1} by open sets U_{i}, and a complex two-form $\omega^{[i]}$, holomorphic on U_{i}, such that

$$
\omega^{[i]}=f_{i j}^{2} \omega^{[j]} \quad \bmod d t, \quad \omega^{[\overline{[]}]}(t)=\overline{\omega^{[i]}(-1 / \bar{t})}
$$

where $f_{i j}$ are the transition functions of the $\mathcal{O}(1)$ bundle on \mathbb{P}^{1}. The knowledge of $\omega(t)$ allows to reconstruct the HK metric.

Hitchin

Twistor techniques for HK manifolds III

- Locally, one can choose complex Darboux coordinates, regular in patch U_{i}, such that

$$
\omega^{[i]}=\mathrm{d} \xi_{[i]}^{\wedge} \wedge \mathrm{d} \tilde{\xi}_{\Lambda}^{[i]}
$$

- They must be related by a complex symplectomorphism on the overlap of two patches $U_{i} \cap U_{j}$, and satisfy reality properties

$$
\overline{\xi_{[i]}^{\Lambda}(-1 / \bar{t})}=-\xi_{[\bar{j}]}^{\Lambda}(t), \quad \overline{\tilde{\xi}_{\Lambda}^{[]]}(-1 / \bar{t})}=-\tilde{\xi}_{\Lambda}^{\tilde{[\overline{]}}]}(t)
$$

- Any triholomorphic isometry of \mathcal{S} yields a triplet of moment maps $\vec{\mu}_{\kappa}=(v, \bar{v}, x)$, such that $\kappa \cdot \vec{\omega}=d \vec{\mu}_{\kappa}$. This yields a global $\mathcal{O}(2)$-section ξ (aka $\mathcal{O}(2)$ multiplet)

$$
\xi=\frac{v}{t}+x-\bar{v} t
$$

Twistor techniques for HK manifolds IV

- For toric hyperkähler manifolds (i.e. $4 d$-dimensional HK manifolds with d commuting tri-holomorphic isometries), one may choose the corresponding moment maps ξ^{\wedge} as 'position' coordinates. The remaining 'momenta' $\tilde{\xi}_{\Lambda}^{[1]}$ are determined by

$$
\tilde{\xi}_{\Lambda}^{[i]}-\tilde{\xi}_{\Lambda}^{[j]}=\partial_{\xi^{\wedge}} H^{[i j]}, \quad \xi^{\wedge}=\xi_{[i]}^{\wedge}=\frac{v^{\wedge}}{t}+x^{\wedge}-\bar{v}^{\wedge} t
$$

where $H^{[i j]}\left(\xi^{\wedge}\right)$ are holomorphic functions on $U_{i} \cap U_{j}$, satisfying cocycle and reality conditions.

- The space of solutions to these gluing conditions is the HK space itself. In coordinates $v^{\wedge}, \bar{v}^{\wedge}, x^{\wedge}, \rho_{\wedge}$ adapted to the toric action,

$$
\tilde{\xi}_{\Lambda}^{[i]}(t)=\rho_{\Lambda}+\frac{1}{2} \sum_{j} \oint_{C_{j}} \frac{\mathrm{~d} t^{\prime}}{2 \pi \mathrm{i} t^{\prime}} \frac{t+t^{\prime}}{t^{\prime}-t} \partial_{\xi^{\wedge}} H^{[0]]}\left(t^{\prime}\right)
$$

Alexandrov BP Saueressig Vandoren

Twistor techniques for HK manifolds V

- The complex coordinates and Kähler potential K of the HK metric are given by the Legendre transform of the 'tensor Lagrangian' associated to the 'generalized prepotential' $H=\left\{H^{[i]}\right\}$,

$$
K\left(v^{\wedge}, \bar{v}^{\wedge}, w_{\Lambda}, \bar{w}_{\Lambda}\right)=\left\langle\oint \frac{d t}{2 \pi \mathrm{i} t} H\left(\xi^{\wedge}, t\right)-x^{\wedge}\left(w_{\Lambda}+\bar{w}_{\Lambda}\right)\right\rangle_{x^{\wedge}}
$$

E.g. $H=\xi^{2} / t+m \xi \log \xi$ produces Taub-NUT space with mass parameter m.

- Perturbations of hyperkähler metrics correspond to deformations of the complex symplectomorphisms relating the Darboux coordinate systems on $U_{i} \cap U_{j}$.

The instanton corrected metric I

- For the semi-flat metric, the complex Darboux coordinates can be chosen as the complex moment maps of the torus action,

$$
\begin{aligned}
& \left.\xi^{\wedge}\right|_{\mathrm{sf}}=\zeta^{\wedge}+\frac{R}{2}\left(t \bar{X}^{\wedge}-t^{-1} X^{\wedge}\right) \\
& \left.\tilde{\xi}_{\wedge}\right|_{\mathrm{sf}}=\tilde{\zeta}_{\Lambda}+\frac{R}{2}\left(t \bar{F}_{\Lambda}-t^{-1} F_{\Lambda}\right)
\end{aligned}
$$

Neitzke BP, unpublished

- In the presence of instanton corrections, the Darboux coordinates are deformed. To express them, it is convenient to introduce the holomorphic Fourier modes

$$
\mathcal{X}_{\gamma} \equiv \exp \left[2 \pi \mathrm{i}\left(q_{\wedge} \xi^{\wedge}-p^{\wedge} \tilde{\xi}_{\wedge}\right)\right]
$$

The instanton corrected metric II

- The Darboux coordinates for the instanton-deformed HK metric on VM_{3} are given by solutions of a system of integral equations

$$
\mathcal{X}_{\gamma}=\mathcal{X}_{\gamma}^{\mathrm{sf}} \exp \left[-\sum_{\gamma^{\prime}} \Omega\left(\gamma^{\prime} ; u\right)\left\langle\gamma, \gamma^{\prime}\right\rangle \int_{\ell_{\gamma^{\prime}}} \frac{d t^{\prime}}{2 \pi i t^{\prime} t^{\prime} t+t} \operatorname{lt} \log \left(1-\sigma\left(\gamma^{\prime}\right) \mathcal{X}_{\gamma^{\prime}}\left(t^{\prime}\right)\right)\right]
$$

where $\ell(\gamma) \subset \mathbb{P}^{1}$ is the 'BPS ray'

$$
\ell(\gamma)=\left\{t: Z\left(\gamma ; u^{a}\right) / t \in \mathrm{i} \mathbb{R}^{-}\right\}
$$

where $\sigma(\gamma)$ is a choice of quadratic refinement (next page)

- This may be solved iteratively by plugging $\mathcal{X}_{\gamma} \rightarrow \mathcal{X}_{\gamma}^{\text {sf }}$ etc, eventually leading to a multi-instanton expansion for the components of the metric.

The instanton corrected metric III

- σ is a quadratic refinement of the DSZ inner product, i.e. a map $H_{3}(\mathcal{X}, \mathbb{Z}) \rightarrow U(1)$ such that

$$
\sigma\left(\gamma+\gamma^{\prime}\right)=(-1)^{\left\langle\gamma, \gamma^{\prime}\right\rangle} \sigma(\gamma) \sigma\left(\gamma^{\prime}\right)
$$

- Quadratic refinements are parametrized by characteristics $(\theta, \phi) \in \mathcal{T}$,

$$
\sigma(\gamma)=e^{-\mathrm{i} \pi p^{\wedge} q_{\Lambda}+2 \pi \mathrm{i}\langle\gamma, \Theta\rangle}, \quad \gamma=\left(p^{\wedge}, q_{\Lambda}\right), \quad \Theta=\left(\theta^{\wedge}, \phi_{\Lambda}\right)
$$

- The quadratic refinement is needed for consistency with wall-crossing. The choice of characteristics can be reabsorbed into a shift of $C=\left(\zeta^{\wedge}, \tilde{\zeta}_{\wedge}\right)$.

The instanton corrected metric IV

- In particular, across a BPS ray $\ell(\gamma)$, the Darboux coordinates jump by the symplectomorphism

$$
\mathcal{X}_{\gamma^{\prime}} \mapsto \mathcal{X}_{\gamma^{\prime}}\left(1-\sigma(\gamma) \mathcal{X}_{\gamma}\right)^{\left\langle\gamma, \gamma^{\prime}\right\rangle \Omega\left(\gamma, u^{a}\right)} .
$$

This provides a geometric realization of the operators $\mathcal{U}_{\gamma}\left(u^{a}\right)$ appearing in the KS wall-crossing formula!

The instanton corrected metric V

- As the moduli u^{a} vary in VM_{4}, BPS rays may cross each other. The KS formula guarantees that the twistor space is well-defined and the HK metric is smooth across walls of marginal stability.
- Physically, one-instanton contributions may jump, but the full multi-instanton sum is continuous.
- The integral equations above are formally identical to Zamolodchikov's Y-system in studies of integrable models.

GMN; Alexandrov Roche

Outline

(1) Introduction
(2) Wall-crossing and hyperinstantons in Seiberg-Witten theories
(3) Instanton corrections to the HM moduli space in type IIA/X

4 Mirror symmetry and S-duality
(5) Conclusion

Boris Pioline (LPTHE)
Hyperinstantons
Bad Honnef 2011

The perturbative metric I

- The HM moduli space in type IIA compactified on a CY 3-fold (family) \mathcal{X} is a quaternion-Kähler manifold \mathcal{M} of real dimension $2 b_{3}(\mathcal{X})=4\left(h_{2,1}+1\right)$.
- $\mathcal{M} \equiv \mathcal{Q}_{c}(\mathcal{X})$ encodes
(1) the 4 D dilaton $R \equiv 1 / g_{(4)}$,
(2) the complex structure of the CY family \mathcal{X},
(3) the periods of the RR 3 -form C on \mathcal{X},
(4) the NS axion σ, dual to the Kalb-Ramond B-field in 4D
- To write down the metric explicitly, let us choose a symplectic basis $\mathcal{A}^{\wedge}, \mathcal{B}_{\Lambda}, \Lambda=0 \ldots h_{2,1}$ of $H_{3}(\mathcal{X}, \mathbb{Z})$.

The perturbative metric II

- The complex structure moduli space $\mathcal{M}_{c}(\mathcal{X})$ may be parametrized by the periods $\Omega\left(z^{a}\right)=\left(X^{\wedge}, F_{\wedge}\right) \in H_{3}(\mathcal{X}, \mathbb{C})$ of the $(3,0)$ form

$$
X^{\wedge}=\int_{\mathcal{A}^{\wedge}} \Omega_{3,0}, \quad F_{\Lambda}=\int_{\mathcal{B}_{\wedge}} \Omega_{3,0}
$$

up to holomorphic rescalings $\Omega \mapsto e^{f} \Omega$.

- $\mathcal{M}_{c}(\mathcal{X})$ is endowed with a special Kähler metric

$$
\mathrm{d} s_{\mathcal{S K}}^{2}=\partial \bar{\partial} \mathcal{K}, \quad \mathcal{K}=-\log \left[\mathrm{i}\left(\bar{X}^{\wedge} F_{\wedge}-X^{\wedge} \bar{F}_{\wedge}\right)\right]
$$

and a \mathbb{C}^{\times}bundle \mathcal{L} with connection $\mathcal{A}_{K}=\frac{i}{2}\left(\mathcal{K}_{a} \mathrm{~d} z^{a}-\mathcal{K}_{\bar{a}} \mathrm{~d} \bar{z}^{\bar{a}}\right)$.

- Ω transforms as $\Omega \mapsto e^{f} \rho(M) \Omega$ under a monodromy M in $\mathcal{M}_{c}(\mathcal{X})$, where $\rho(M) \in \operatorname{Sp}\left(b_{3}, \mathbb{Z}\right)$.

The perturbative metric III

- Topologically trivial harmonic C-fields on \mathcal{X} may be parametrized by the real periods

$$
\zeta^{\wedge}=\int_{\mathcal{A}^{\wedge}} C, \quad \tilde{\zeta}_{\Lambda}=\int_{\mathcal{B}_{\wedge}} C
$$

- Large gauge transformations require that $C \equiv\left(\zeta^{\wedge}, \tilde{\zeta}_{\wedge}\right)$ have unit periodicities, i.e. C lives in the torus

$$
C \in T=H^{3}(\mathcal{X}, \mathbb{R}) / H^{3}(\mathcal{X}, \mathbb{Z})
$$

- Due to monodromies, the torus T is non-trivially fibered over $\mathcal{M}_{c}(\mathcal{X})$. The total space of this fibration is the intermediate Jacobian $\mathcal{J}_{C}(\mathcal{X})$.

The perturbative metric IV

- T carries a canonical symplectic form and complex structure induced by the Hodge $\star \mathcal{\chi}$, hence a Kähler metric

$$
\mathrm{d} s_{T}^{2}=-\frac{1}{2}\left(\mathrm{~d} \tilde{\zeta}_{\Lambda}-\overline{\mathcal{N}}_{\Lambda \Lambda^{\prime}} \mathrm{d} \zeta^{\Lambda^{\prime}}\right) \operatorname{Im} \mathcal{N}^{\Lambda \Sigma}\left(\mathrm{d} \tilde{\zeta}_{\Lambda}-\mathcal{N}_{\Sigma \Sigma^{\prime}} \mathrm{d} \zeta^{\Sigma^{\prime}}\right)
$$

where

$$
\mathcal{N}_{\Lambda \Lambda^{\prime}}=\bar{\tau}_{\Lambda \Lambda^{\prime}}+2 i \frac{[\operatorname{Im} \tau \cdot X]_{\Lambda}[\operatorname{Im} \tau \cdot X]_{\Lambda^{\prime}}}{X^{\Sigma} \operatorname{Im} \tau_{\Sigma \Sigma^{\prime}} X^{\Sigma^{\prime}}}, \quad \tau_{\Lambda \Sigma}=\partial_{X^{\wedge}} \partial_{X^{\Sigma}} F
$$

- \mathcal{N} (resp. τ) is the Weil (resp. Griffiths) period matrix of \mathcal{X}. While $\operatorname{Im} \tau$ has signature $\left(1, b_{3}-1\right), \operatorname{Im} \mathcal{N}$ is negative definite.

The tree-level metric

- At tree level, i.e. in the strict weak coupling limit $R=\infty$, the quaternion-Kähler metric on \mathcal{M} is given by the c-map metric

$$
d s_{\mathcal{M}}^{2}=\frac{4}{R^{2}} \mathrm{~d} R^{2}+4 \mathrm{~d} s_{\mathcal{S} \mathcal{K}}^{2}+\frac{\mathrm{d} s_{T}^{2}}{R^{2}}+\frac{1}{16 R^{4}} D \sigma^{2}
$$

where

$$
D \sigma \equiv \mathrm{~d} \sigma+\langle C, \mathrm{~d} C\rangle=\mathrm{d} \sigma+\tilde{\zeta}_{\wedge} \mathrm{d} \zeta^{\wedge}-\zeta^{\wedge} \mathrm{d} \tilde{\zeta}_{\Lambda}
$$

Cecotti Girardello Ferrara; Ferrara Sabharwal

- The c-map (aka semi-flat) metric admits continuous isometries

$$
T_{H, \kappa}:(C, \sigma) \mapsto(C+H, \sigma+2 \kappa+\langle C, H\rangle)
$$

with $H \in H^{3}(\mathcal{X}, \mathbb{R}), \kappa \in \mathbb{R}$, satisfying the Heisenberg relations

$$
T_{H_{1}, \kappa_{1}} T_{H_{2}, \kappa_{2}}=T_{H_{1}+H_{2}, \kappa_{1}+\kappa_{2}+\frac{1}{2}\left\langle H_{1}, H_{2}\right\rangle}
$$

The one-loop corrected metric I

- The one-loop correction deforms the metric on \mathcal{M} into

$$
\begin{aligned}
d s_{\mathcal{M}}^{2}= & 4 \frac{R^{2}+2 c}{R^{2}\left(R^{2}+c\right)} \mathrm{d} R^{2}+\frac{4\left(R^{2}+c\right)}{R^{2}} \mathrm{~d} s_{\mathcal{S} \mathcal{K}}^{2}+\frac{\mathrm{d} s_{T}^{2}}{R^{2}} \\
& +\frac{2 c}{R^{4}} e^{\mathcal{K}}\left|X^{\wedge} \mathrm{d} \tilde{\zeta}_{\Lambda}-F_{\wedge} \mathrm{d} \zeta^{\wedge}\right|^{2}+\frac{R^{2}+c}{16 R^{4}\left(R^{2}+2 c\right)} D \sigma^{2}
\end{aligned}
$$

where $D \sigma=\mathrm{d} \sigma+\langle C, \mathrm{~d} C\rangle+8 c \mathcal{A}_{K}, \quad c=-\chi(\mathcal{X}) /(192 \pi)$
Antoniadis Minasian Theisen Vanhove; Gunther Hermann Louis;
Robles-Llana Saueressig Vandoren

- The one-loop correction to $g_{r r}$ was computed by reducing the CP-even R^{4} coupling in 10D on \mathcal{X}. The correction to $D \sigma$ can be obtained with less effort by reducing CP-odd couplings in 10D.

The one-loop corrected metric II

- The one-loop correction to $D \sigma$ has important implications for the topology of the HM moduli space, as we shall discuss later.
- The one-loop corrected metric is presumably exact to all orders in $1 / R$. It will receive $\mathcal{O}\left(e^{-R}\right)$ and $\mathcal{O}\left(e^{-R^{2}}\right)$ corrections from D-instantons and NS5-brane instantons, eventually breaking all continuous isometries.
- Note the curvature singularity at finite distance $R^{2}=-2 c$ when $\chi(\mathcal{X})>0!$ This should hopefully be resolved by instanton corrections.

Topology of the HM moduli space I

- At least at weak coupling, \mathcal{M} is foliated by hypersurfaces $\mathcal{C}(R)$ of constant string coupling. We shall now discuss the topology of the leaves $\mathcal{C}(R)$.
- Quotienting by translations along the NS axion σ, we already saw that $\mathcal{C}(R) / \partial_{\sigma}$ reduces to the intermediate Jacobian $\mathcal{J}_{c}(\mathcal{X})$, in particular $C \in T=H^{3}(\mathcal{X}, \mathbb{R}) / H^{3}(\mathcal{X}, \mathbb{Z})$.
- This is consistent with the fact that Euclidean D2-branes wrapping a special Lagrangian submanifold in integer homology class $\gamma=q_{\wedge} \mathcal{A}^{\wedge}-p^{\wedge} \mathcal{B}_{\wedge} \in H_{3}(\mathcal{X}, \mathbb{Z})$ induce corrections roughly of the form

$$
\delta \mathrm{d} \mathrm{~S}^{2} \left\lvert\, \mathrm{D} 2 \sim \sigma(\gamma) \bar{\Omega}\left(\gamma, z^{a}\right) \exp \left(-8 \pi \frac{\left|Z_{\gamma}\right|}{g_{(4)}}-2 \pi \mathrm{i}\langle\gamma, C\rangle\right) .\right.
$$

Here $Z_{\gamma} \equiv e^{\mathcal{K} / 2}\left(q_{\Lambda} X^{\wedge}-p^{\wedge} F_{\wedge}\right)$ is the central charge.

Topology of the HM moduli space II

- NS5-brane instantons will further break continuous translations along σ to discrete shifts $\sigma \mapsto \sigma+2$ (in our conventions). Thus $\mathcal{C}(R)$ is a circle bundle over $\mathcal{J}_{C}(\mathcal{X})$, with fiber parametrized by $e^{\mathrm{i} \pi \sigma}$.
- The horizontal one-form $D \sigma=\mathrm{d} \sigma+\langle C, \mathrm{~d} C\rangle-\frac{\chi(\mathcal{X})}{24 \pi} \mathcal{A}_{K}$ implies that the first Chern class of \mathcal{C} is

$$
\mathrm{d}\left(\frac{D \sigma}{2}\right)=\omega_{T}+\frac{\chi(\mathcal{X})}{24} \omega_{C}, \quad \omega_{T}=\mathrm{d} \tilde{\zeta}_{\Lambda} \wedge \mathrm{d} \zeta^{\wedge}, \quad \omega_{C}=-\frac{1}{2 \pi} \mathrm{~d} \mathcal{A}_{K}
$$

where ω_{T}, ω_{C} are the Kähler forms on T and $\mathcal{M}_{C}(\mathcal{X})$.

- To identify the circle bundle $\mathcal{C}(R)$, let us examine NS5-brane instantons.

Five-brane instantons I

- NS5-brane instantons with charge $k \in \mathbb{Z}$ are expected to produce corrections to the metric of the form

$$
\left.\delta \mathrm{d} s^{2}\right|_{\mathrm{NS} 5} \sim \exp \left(-4 \pi \frac{|k|}{g_{(4)}^{2}}-\mathrm{i} k \pi \sigma\right) \mathcal{Z}^{(k)}\left(z^{a}, C\right)
$$

where $\mathcal{Z}^{(k)}=\operatorname{Tr}\left[\left(2 J_{3}\right)^{2}(-1)^{2 J_{3}}\right]$ is the (twisted) partition function of the world-volume theory on a stack of k five-branes.

- Recall that the type IIA NS5-brane supports a self-dual 3-form flux, together with its SUSY partners. The partition function of a self-dual form is known to be a holomorphic section of a non-trivial line bundle $\mathcal{L}_{\text {NS5 }}$ over the space of metrics and C fields.

Witten; Henningson Nilsson Salomonson; Belov Moore; . . .

Five-brane instantons II

- This means that $\mathcal{Z}(\mathcal{N}, C)$ satisfies the twisted periodicity condition

$$
\mathcal{Z}(\mathcal{N}, C+H)=\sigma(H) e^{\mathrm{i} \pi\langle H, C\rangle} \mathcal{Z}(\mathcal{N}, C)
$$

where $\sigma(H)$ is a quadratic refinement of the intersection product on $H^{3}(\mathcal{X}, \mathbb{Z})$, with characteristics $\Theta=\left(\theta^{\wedge}, \phi_{\Lambda}\right)$.

- $\left.\mathcal{L}_{\mathrm{NS} 5}\right|_{\mathcal{T}}$ admits a unique holomorphic section, given by the Siegel theta series

$$
\mathcal{Z}^{(1)}=N \sum_{n^{\wedge} \in \Gamma_{m}+\theta} e^{\mathrm{i} \pi\left(\zeta^{\wedge}-n^{\wedge}\right) \overline{\mathcal{N}}_{\wedge \Sigma}\left(\zeta^{\Sigma}-n^{\Sigma}\right)+2 \pi \mathrm{i}\left(\tilde{\zeta}_{\Lambda}-\phi_{\Lambda}\right) n^{\wedge}+\mathrm{i} \pi\left(\theta^{\wedge} \phi_{\Lambda}-\zeta^{\wedge} \tilde{\zeta}_{\Lambda}\right)}
$$

where Γ_{m} is a Lagrangian sublattice of $\Gamma=H^{3}(\mathcal{X}, \mathbb{Z})$.

- This agrees with the chiral five-brane partition function obtained by holomorphic factorization of the partition function of a non-chiral 3 -form $H=\mathrm{d} \mathcal{B}$ on \mathcal{X}, with Gaussian action. The \mathcal{C}-independent normalization factor N is tricky.

Topology of the NS axion I

- For the coupling $e^{-\mathrm{i} \pi \sigma} \mathcal{Z}^{(1)}$ to be invariant under large gauge transformations and monodromies, $e^{\mathrm{i} \pi \sigma}$ must parametrize the fiber of $\mathcal{L}_{\text {NS5 } 5}$. This implies that σ picks up additional shifts under discrete translations along \mathcal{T},

$$
T_{H, \kappa}:(C, \sigma) \mapsto\left(C+H, \sigma+2 \kappa+\langle C, H\rangle-n^{\wedge} m_{\wedge}+2\langle H, \Theta\rangle\right)
$$

where $H \equiv\left(n^{\wedge}, m_{\wedge}\right) \in \mathbb{Z}^{b_{3}}, \kappa \in \mathbb{Z}$. This shift is needed for the closure of large gauge transformations,

$$
T_{H_{1}, \kappa_{1}} T_{H_{2}, \kappa_{2}}=T_{H_{1}+H_{2}, \kappa_{1}+\kappa_{2}+\frac{1}{2}\left\langle H_{1}, H_{2}\right\rangle+\frac{1}{2 \pi \mathrm{i}}} \log \frac{\sigma\left(H_{1}+H_{2}\right)}{\sigma\left(H_{1}\right) \sigma\left(H_{2}\right)}
$$

- The invariance of $e^{-\mathrm{i} \pi \sigma} \mathcal{Z}^{(1)}$ under monodromies is guaranteed by the anomaly inflow mechanism, but details remain to be worked out.

Twistor techniques for QK spaces I

- QK manifolds \mathcal{M} are conveniently described via their twistor space $\mathbb{P}^{1} \rightarrow \mathcal{Z} \rightarrow \mathcal{M}$.
- Unlike the HK case, the fibration is non-trivial, and \mathcal{Z} admits a complex contact structure rather than a complex symplectic structure.
- Choosing a stereographic coordinate t on \mathbb{P}^{1}, the contact structure is the kernel of the local $(1,0)$-form

$$
D t=\mathrm{d} t+p_{+}-\mathrm{i} p_{3} t+p_{-} t^{2}
$$

where $p_{3}, p_{ \pm}$are the $S U(2)$ components of the Levi-Civita connection on \mathcal{M}. Dt is well-defined modulo rescalings.

Lebrun, Salamon

Twistor techniques for QK spaces II

- As in the symplectic case, there always exist Darboux coordinates $(\equiv, \tilde{\alpha})=\left(\xi^{\wedge}, \tilde{\xi}_{\wedge}, \tilde{\alpha}\right)$ such that

$$
D t \propto \mathrm{~d} \tilde{\alpha}+\langle\overline{ }, \mathrm{d} \equiv\rangle=\mathrm{d} \tilde{\alpha}+\tilde{\xi}_{\wedge} \mathrm{d} \xi^{\wedge}-\xi^{\wedge} \mathrm{d} \tilde{\xi}_{\Lambda}
$$

- The contact structure is encoded in complex contact transformations between local Darboux coordinate systems on their common domain $U_{i} \cap U_{j}$.
- By the moment map construction, any continuous isometry of \mathcal{M} can be lifted to a holomorphic action on \mathcal{Z}.

Salamon; Galicki Salamon;Alexandrov BP Saueressig Vandoren

Twistor description of the perturbative metric

- For the one-loop corrected HM metric, the following Darboux coordinates do the job, away from the north and south poles $t=0, \infty$:

$$
\begin{aligned}
& \Xi_{\mathrm{sf}}=C+2 \sqrt{R^{2}+c} e^{\mathcal{K} / 2}\left[t^{-1} \Omega-t \bar{\Omega}\right], \quad \Phi_{\mathrm{sf}}=2 \log R \\
& \tilde{\alpha}_{\mathrm{sf}}=\sigma+2 \sqrt{R^{2}+c} e^{\mathcal{K} / 2}\left[t^{-1}\langle\Omega, C\rangle-t\langle\bar{\Omega}, C\rangle\right]-8 \mathrm{i} c \log t
\end{aligned}
$$

Neitzke BP Vandoren; Alexandrov

- Large gauge transformations $T_{H, \kappa}$ acts holomorphically on \mathcal{Z} by

$$
(\equiv, \tilde{\alpha}) \mapsto\left(\equiv+H, \tilde{\alpha}+2 \kappa+\langle\equiv, H\rangle-n^{\wedge} m_{\wedge}+2\langle H, \Theta\rangle\right)
$$

- At fixed values of t, z^{a}, \mathcal{Z} is a complexified twisted torus $\mathbb{C}^{\times} \ltimes\left[H^{3}(\mathcal{X}, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}^{\times}\right]$.

D-instantons in twistor space I

- As in Seiberg-Witten theories, D-instanton corrections are essentially dictated by wall crossing. Across a BPS ray ℓ_{γ}, the Darboux coordinates $\xi^{\wedge}, \tilde{\xi}_{\Lambda}, \tilde{\alpha}$ jump by a complex contact transformation

$$
\mathcal{X}_{\gamma^{\prime}} \mapsto \mathcal{X}_{\gamma^{\prime}}\left(1-\sigma(\gamma) \mathcal{X}_{\gamma}\right)^{\left\langle\gamma, \gamma^{\prime}\right\rangle \Omega(\gamma)}, \quad \tilde{\alpha} \mapsto \tilde{\alpha}-\frac{1}{2 \pi^{2}} \Omega(\gamma) L\left[\sigma(\gamma) \mathcal{X}_{\gamma}\right]
$$

where $L(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}+\frac{1}{2} \log z \log (1-z)$ is Rogers' dilogarithm.

- The consistency of this prescription across lines of marginal stability is guaranteed by the KS formula. This structure can also (and was first) argued using type IIB S-duality and mirror symmetry.

D-instantons in twistor space II

- Due to exponential growth of $\bar{\Omega}(\gamma)$, the D-instanton series

$$
\sum \Omega(\gamma) e^{-\frac{|Z(\gamma)|}{g}+\mathrm{i}\langle C, \gamma\rangle}
$$

is divergent, and must be treated as an asymptotic series.

- Cutting off the series at $\|\gamma\|<Q$, and assuming that the ambiguity in the series is "on the order of the last term in the sum", one can optimize the cut-off Q such that

$$
\min _{\gamma}\left[e^{S_{B H}(\gamma)-\frac{|Z(\gamma)|}{g}}\right] \sim e^{-1 / g^{2}}
$$

BP Vandoren

- This ambiguity is suggestive of NS5/KKM instanton. Note however that BPS NS5-instantons depend on the NS-axion while the D-instantons don't.

Outline

(1) Introduction

(2) Wall-crossing and hyperinstantons in Seiberg-Witten theories
(3) Instanton corrections to the HM moduli space in type IIA/X

4 Mirror symmetry and S-duality
(5) Conclusion

HM moduli space in type IIB I

- The HM moduli space in type IIB compactified on a CY 3-fold $\hat{\mathcal{X}}$ is a QK manifold $\mathcal{M} \equiv \mathcal{Q}_{K}(\hat{\mathcal{X}})$ of real dimension $4\left(h_{1,1}+1\right)$
(1) the 4D dilaton $R \equiv 1 / g_{(4)}$,
(2) the complexified Kähler moduli $z^{a}=b^{a}+\mathrm{it}^{a}=X^{a} / X^{0}$
(3) the periods of $C=C^{(0)}+C^{(2)}+C^{(4)}+C^{(6)} \in H^{\text {even }}(\hat{\mathcal{X}}, \mathbb{R})$
(4) the NS axion σ
- Near the infinite volume point, $\mathcal{M}_{K}(\hat{\mathcal{X}})$ is governed by

$$
F(X)=-\frac{N\left(X^{a}\right)}{X^{0}}+\chi(\hat{\mathcal{X}}) \frac{\zeta(3)\left(X^{0}\right)^{2}}{2(2 \pi \mathrm{i})^{3}}+F_{\mathrm{GW}}(X)
$$

where $N\left(X^{a}\right) \equiv \frac{1}{6} \kappa_{a b c} X^{a} X^{b} X^{c}, \kappa_{a b c}$ is the cubic intersection form, and F_{GW} are Gromov-Witten instanton corrections:

$$
F_{\mathrm{GW}}(X)=-\frac{\left(X^{0}\right)^{2}}{(2 \pi \mathrm{i})^{3}} \sum_{k_{a} \gamma^{a} \in H_{2}^{+}(\hat{\mathcal{X}})} n_{k_{a}}^{(0)} \mathrm{Li}_{3}\left[\mathrm{E}^{\left.k_{a} \frac{x^{a}}{\chi^{0}}\right],}\right.
$$

HM moduli space in type IIB II

- D-instantons are now Euclidean D5-D3-D1-D(-1), described mathematically by coherent sheaves E on \mathcal{X}. Their charges are related to the Chern classes via the Mukai map

$$
q_{\Lambda}^{\prime} X^{\wedge}-p^{\wedge} F_{\Lambda}=\int_{\hat{\mathcal{X}}} e^{-(B+\mathrm{i} J)} \operatorname{ch}(E) \sqrt{\operatorname{Td}(\hat{\mathcal{X}})}
$$

where $q_{\Lambda}=q_{\Lambda}^{\prime}-A_{\Lambda \Sigma} p^{\Sigma}$, integer for suitable A.

- Quantum mirror symmetry implies $\mathcal{Q}_{c}(\mathcal{X})=\mathcal{Q}_{K}(\hat{\mathcal{X}})$. At the perturbative (resp. D-instanton) level, this reduces to classical (resp. homological) mirror symmetry.
- The exact HM metric should admit an isometric action of $S L(2, \mathbb{Z})$, corresponding to type IIB S-duality in 10 dimensions. This action is most easily described in the "primed" frame.

S-duality in twistor space I

- At tree level, an element $\delta=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L(2, \mathbb{R})$ acts on \mathcal{Z} via

$$
\begin{aligned}
\xi^{0} & \mapsto \frac{a \xi^{0}+b}{c \xi^{0}+d}, \quad \xi^{a} \mapsto \frac{\xi^{a}}{c \xi^{0}+d} \\
\tilde{\xi}_{a}^{\prime} & \mapsto \tilde{\xi}_{a}^{\prime}+\frac{c}{2\left(c \xi^{0}+d\right)} \kappa_{a b c} \xi^{b} \xi^{c}-c_{2, a} \varepsilon(\delta), \\
\binom{\tilde{\xi}_{0}^{\prime}}{\alpha^{\prime}} & \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{\xi}_{0}^{\prime}}{\alpha^{\prime}}+\frac{1}{6} \kappa_{a b c} \xi^{a} \xi^{b} \xi^{c}\binom{c^{2} /\left(c \xi^{0}+d\right)}{-\left[c^{2}\left(a \xi^{0}+b\right)+2 c\right] /\left(c \xi^{0}+d\right)^{2}} .
\end{aligned}
$$

where $\alpha^{\prime}=\left(\tilde{\alpha}+\xi^{\wedge} \tilde{\xi}_{\Lambda}^{\prime}\right) /(4 \mathrm{i})$. Here $\epsilon(\delta)$ is the multiplier system of the Dedekind eta function, required for consistency of D3-instantons,

$$
\eta\left(\frac{a \tau+b}{c \tau+d}\right) / \eta(\tau)=e^{2 \pi \mathrm{i} \epsilon(\delta)}(c \tau+d)^{1 / 2}
$$

S-duality in twistor space II

- Continuous S-duality is broken by Gromov-Witten instantons at tree level and by the one-loop correction. A discrete subgroup can be preserved provided $\mathrm{D}(-1)$ and D 1 -instantons combine with GW instantons into a Kronecker-Eisenstein series:

$$
\tau_{2}^{3 / 2} \operatorname{Li}_{3}\left(e^{2 \pi \mathrm{iq}_{a} z^{a}}\right) \rightarrow \sum_{m, n}^{\prime} \frac{\tau_{2}^{3 / 2}}{|m \tau+n|^{3}} e^{-S_{m, n, q}},
$$

where $S_{m, n, q}=2 \pi q_{a}|m \tau+n| t^{a}-2 \pi \mathrm{i} q_{a}\left(m c^{a}+n b^{a}\right)$ is the action of an (m, n)-string wrapped on $q_{a} \gamma^{a}$.

Robles-Llana Roček Saueressig Theis Vandoren

- After Poisson resummation on $n \rightarrow q_{0}$, we recover the sum over $D(-1)$-D1 bound states, with $\Omega\left(0,0, q_{a}, q_{0}\right)=n_{q_{a}}^{(0)}$, $\Omega(0,0,0,0)=-\chi(\hat{\mathcal{X}})$. In particular, Li_{3} turns into elliptic Li_{2} !

S-duality in twistor space III

- In the presence of D3-branes, S-duality requires that the sum over D3-D1-D(-1) instantons should be a multi-variable Jacobi form of index $m_{a b}=\frac{1}{2} \kappa_{a b c} p^{c}$ and multiplier system $e^{-2 \pi \mathrm{i}_{2 a} p^{2} \epsilon(\delta)}$.

Denef Moore; Cheng de Boer Dijkgraaf Manschot Verlinde; Manschot

- The trouble is that $m_{a b}$ has indefinite signature $\left(1, b_{2}(\hat{\mathcal{X}})-1\right)$, and the dimension of the space H^{0} of such Jacobi forms vanishes. H^{1} however is non-zero, and is probably where the D3-D1-D(-1) partition sum lives. This is presumably related to Mock modular forms, but details remain to be worked out.
- S-duality relates D5 and NS5. Starting from the known form of D5-D3-D1-D(-1) corrections, one may construct a Poincaré-type series to obtain the contributions from k five branes in one-instanton approximation.

Alexandrov Persson Pioline

Outline

(1) Introduction

(2) Wall-crossing and hyperinstantons in Seiberg-Witten theories

(3) Instanton corrections to the HM moduli space in type IIA/X
(4) Mirror symmetry and S-duality
(5) Conclusion

Conclusion

- Instanton corrections to HM moduli spaces are efficiently described using twistors: they amount to deformations of the complex symplectomorphisms (resp., complex contact transformations) between local Darboux coordinate systems.
- D-instanton corrections are essentially dictated by wall-crossing. The KS formula guarantees that the instanton-corrected metric is smooth across walls of marginal stability: the jumps in $\Omega(\gamma, t)$ cancel out of the multi-instanton series.
- NS5-instantons are still poorly understood. In principle, they are determined by S-duality, but this is subtle beyond one-instanton level. The consistency of D3-D1-D(-1) with S-duality also remains to be shown.
- What about hyperinstantons in flux compactifications ?

