D3-instantons, Mock Theta series and Twistors

Boris Pioline

CERN \& LPTHE

String Math 2012
based on arXiv:1207.1109 with S. Alexandrov and J. Manschot

Introduction

- In $D=4$ string vacua with $N=2$ supersymmetries, the moduli space splits into a product $\mathcal{M}=\mathcal{S K} \times \mathcal{Q K}$ of a special Kähler manifold, parametrized by vector multiplets and a quaternion-Kähler manifold, parametrized by hypermultiplets.
- The study of $\mathcal{S K}$ and the associated spectrum of BPS states has had many applications in mathematics and physics: classical mirror symmetry, Gromov-Witten invariants, Donaldson-Thomas invariants, black hole precision counting, etc...
- Understanding $\mathcal{Q K}$ may be even more rewarding: quantum extension of mirror symmetry, new geometric invariants, new checks of dualities, richer automorphic properties...

HM multiplet moduli space in $D=4$

- In type IIB compactified on a CY threefold Y, the QK metric on $\widehat{\mathcal{Q K}}$ near $g_{4}=0$ is obtained from $\mathcal{S K}$ by the (one-loop deformed) c-map construction.

Cecotti Ferrara Girardello

- In addition there are $\mathcal{O}\left(e^{-1 / g_{4}}\right)$ and $\mathcal{O}\left(e^{-1 / g_{4}^{2}}\right)$ corrections from D5-D3-D1-D(-1) brane instantons and NS5-branes, respectively.

Becker Becker Strominger

- D-instanton corrections are controlled by the generalized Donaldson-Thomas invariants, and essentially dictated by consistency with wall crossing. NS5-brane instantons are far less understood.

Alexandrov BP Saueressig Vandoren 2008

S-duality

- S-duality of type IIB string theory requires that $\mathcal{Q K}$ admits an isometric action of $S L(2, \mathbb{Z})$. Since S-duality commutes with the large volume limit, it should hold at any level in the hierarchy

$$
\binom{\text { one }- \text { loop }}{D(-1)}>\binom{F 1}{D 1}>D 3>\binom{D 5}{N S 5}
$$

- It is known that F1-D1-D(-1) instantons are consistent with S-duality. This is how they were first derived, although S-duality is no longer manifest in the standard twistorial construction.

Robles-Llana Roček Saueressig Theis Vandoren; Alexandrov Saueressig

- At the other end, S-duality determines NS5-instanton contributions from D5-instantons, at least in principle.

Alexandrov Persson BP

Punch-line

- Our goal is to show that D3-instanton corrections are also invariant under S-duality, at least in the one-instanton approximation, large volume limit.
- The argument is a souped-up version of the proof of modular invariance of the D4-D2-D0 black hole partition function.

Maldacena Strominger Witten; Gaiotto Strominger Yin; Denef Moore; . . .

- The relevance of mock theta series is not surprising: for fixed D3-brane charge, the sum over D1-branes is a theta series of indefinite signature $\left(1, b_{2}-1\right)$. But it must also be holomorphic in twistor space!

Outline

(1) Introduction
(2) HM moduli space in type IIB on a CY threefold
(3) S-duality and D3-D1-D(-1) instantons
(4) Conclusion

Outline

(1) Introduction

(2) HM moduli space in type IIB on a CY threefold

(3) S-duality and D3-D1-D(-1) instantons

4 Conclusion

HM moduli space in type IIB I

- The HM moduli space in type IIB compactified on a CY 3-fold Y is a QK manifold \mathcal{M} of real dimension $4\left(h_{1,1}+1\right)$ describing
(1) the 4D dilaton g_{4},
(2) the complexified Kähler moduli $z^{a}=b^{a}+\mathrm{i} t^{a} \in \mathcal{S} \mathcal{K}$
(3) the RR scalars $C=\left(\zeta^{\wedge}, \tilde{\zeta}_{\wedge}\right) \in T=H^{\text {even }}(Y, \mathbb{R}) / H^{\text {even }}(Y, \mathbb{Z})$
(4) the NS axion σ dual to B -field in 4 dimensions
- At tree level, i.e. in the strict weak coupling limit $R=\infty$, the quaternion-Kähler metric on \mathcal{M} is given by the c-map metric

$$
d s_{\mathcal{M}}^{2}=\frac{\mathrm{d} g_{4}^{2}}{g_{4}^{2}}+\mathrm{d} s_{\mathcal{S} \mathcal{K}}^{2}+g_{4}^{2} \mathrm{~d} s_{T}^{2}+g_{4}^{4} D \sigma^{2}
$$

where

$$
D \sigma \equiv \mathrm{~d} \sigma+\langle C, \mathrm{~d} C\rangle=\mathrm{d} \sigma+\tilde{\zeta}_{\wedge} \mathrm{d} \zeta^{\wedge}-\zeta^{\wedge} \mathrm{d} \tilde{\zeta}_{\wedge}
$$

HM moduli space in type IIB II

- At large volume, the metric on $\mathcal{S K}$ is governed by the prepotential

$$
F(X)=-\frac{1}{6} \kappa_{a b c} \frac{X^{a} X^{b} X^{c}}{X^{0}}+\chi(Y) \frac{\zeta(3)\left(X^{0}\right)^{2}}{2(2 \pi \mathrm{i})^{3}}+F_{\mathrm{GW}}(X)
$$

where $\kappa_{a b c}$ is the cubic intersection form and $F_{\text {GW }}$ are Gromov-Witten instanton corrections:

$$
F_{\mathrm{GW}}(X)=-\frac{\left(X^{0}\right)^{2}}{(2 \pi \mathrm{i})^{3}} \sum_{k_{a} \gamma^{a} \in H_{2}^{+}(Y)} n_{k_{a}}^{(0)} \mathrm{Li}_{3}\left[\mathrm{E}\left(k_{a} \frac{X^{a}}{X^{0}}\right)\right]
$$

- We ignore the one-loop correction in this talk.

Classical S-duality I

- In the large volume, classical limit, the metric is invariant under $S L(2, \mathbb{R}) \ltimes N$, where $S L(2, R)$ acts by

$$
\begin{aligned}
& \tau \mapsto \frac{a \tau+b}{c \tau+d}, \quad t^{a} \mapsto t^{a}|c \tau+d|, \quad \tilde{c}_{a} \mapsto \tilde{c}_{a} \\
&\binom{c^{a}}{b^{a}} \mapsto\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{c^{a}}{b^{a}}, \quad\binom{\tilde{c}_{0}}{\psi} \mapsto\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right)\binom{\tilde{c}_{0}}{\psi}, \\
& \tau= \tau_{1}+\mathrm{i} \tau_{2}, \quad \zeta^{0}=\tau_{1}, \quad \zeta^{a}=-\left(c^{a}-\tau_{1} b^{a}\right), \\
& \tilde{\zeta}_{a}= \tilde{c}_{a}+\frac{1}{2} \kappa_{a b c} b^{b}\left(c^{c}-\tau_{1} b^{c}\right), \quad \tilde{\zeta}_{0}=\tilde{c}_{0}-\frac{1}{6} \kappa_{a b c} b^{a} b^{b}\left(c^{c}-\tau_{1} b^{c}\right), \\
& \sigma=-2 \psi-\tau_{1} \tilde{c}_{0}+\tilde{c}_{a}\left(c^{a}-\tau_{1} b^{a}\right)-\frac{1}{6} \kappa_{a b c} b^{a} c^{b}\left(c^{c}-\tau_{1} b^{c}\right) .
\end{aligned}
$$

and N is the 3-step nilpotent algebra N of translations along $\left(b^{a}, c^{a}\right), \tilde{c}_{a},\left(c_{0}, \psi\right)$.

Classical S-duality II

- One expects D5-D3-D1-D(-1)-instanton corrections of the form

$$
\delta \mathrm{d} s^{2} \sim \sum \sigma(\gamma) \bar{\Omega}\left(\gamma ; z^{a}\right) \exp \left(-8 \pi\left|Z_{\gamma}\right| / g_{4}-2 \pi \mathrm{i}\langle\gamma, C\rangle\right)+\ldots
$$

(1) $Z_{\gamma} \equiv e^{\mathcal{K} / 2}\left(q_{\wedge} X^{\wedge}-p^{\wedge} F_{\wedge}\right)$ is the central charge
(2) $\bar{\Omega}\left(\gamma ; z^{a}\right)$ are the generalized DT invariants, roughly the number of stable coherent sheaves with charge γ
(3) the dots stand for loop corrections around single instantons, multi-instantons, NS5-branes...

- The exact form is essentially dictated by consistency with QK geometry and wall crossing, and best expressed in twistor space

Gaiotto Moore Neitze; Kontsevich Soibelman; Alexandrov BP Saueressig Vandoren

Twistors in a nutshell I

- The QK metric on \mathcal{M} is encoded in the complex contact structure on the twistor space \mathcal{Z}, a canonical \mathbb{P}^{1} bundle over \mathcal{M}. The contact structure is the kernel of the $(1,0)$-form, well-defined modulo rescalings,

$$
D t=\mathrm{d} t+p_{+}-\mathrm{i} p_{3} t+p_{-} t^{2}
$$

where $p_{3}, p_{ \pm}$are the $S U(2)$ components of the connection on \mathcal{M}.
Salamon; Lebrun

- Locally, there always exist Darboux coordinates ($\bar{\alpha}, \tilde{\alpha}$) such that

$$
D t \propto \mathrm{~d} \tilde{\alpha}+\langle\overline{ }, \mathrm{d} \equiv\rangle=\mathrm{d} \tilde{\alpha}+\tilde{\xi}_{\Lambda} \mathrm{d} \xi^{\wedge}-\xi^{\wedge} \mathrm{d} \tilde{\xi}_{\Lambda}
$$

Alexandrov BP Saueressig Vandoren

Twistors in a nutshell II

- Continuous isometries are classified by $H^{0}(\mathcal{Z}, \mathcal{O}(2))$, and always lift (by moment map construction) to a holomorphic action on \mathcal{Z}.
- Infinitesimal deformations of \mathcal{M} are classified by $H^{1}(\mathcal{Z}, \mathcal{O}(2))$, and correspond to deformations of the complex contact structure
- For the tree level HM metric, the following Darboux coordinates do the job, away from the north and south poles $t=0, \infty$ (here X is the symplectic vector $\left(X^{\wedge}, F_{\Lambda}\right)$:

$$
\begin{aligned}
& \overline{\mathrm{I}}_{\mathrm{sf}}=C+2 R e^{\mathcal{K} / 2}\left[t^{-1} X-t \bar{X}\right] \\
& \tilde{\alpha}_{\mathrm{sf}}=\sigma+2 R e^{\mathcal{K} / 2}\left[t^{-1}\langle X, C\rangle-t\langle\bar{X}, C\rangle\right]
\end{aligned}
$$

Neitzke BP Vandoren; Alexandrov

- We ignore the coordinates $\tilde{\xi}_{0}, \tilde{\alpha}$ in the sequel.

S-duality and D-instantons in twistor space I

- The action of S-duality on \mathcal{M}, combined with a suitable $U(1)$ rotation along the fiber,

$$
z \mapsto \frac{c \bar{\tau}+d}{|c \tau+d|} z, \quad z \equiv \frac{t+\mathrm{i}}{t-\mathrm{i}}
$$

lifts to a holomorphic action on \mathcal{Z} via (here $\left.\alpha=-\frac{1}{2}\left(\tilde{\alpha}+\xi^{\wedge} \tilde{\xi}_{\Lambda}\right)\right)$

$$
\begin{aligned}
& \xi^{0} \mapsto \frac{a \xi^{0}+b}{c \xi^{0}+d}, \quad \xi^{a} \mapsto \frac{\xi^{a}}{c \xi^{0}+d} \\
& \tilde{\xi}_{a} \mapsto \tilde{\xi}_{a}+\frac{c}{2\left(c \xi^{0}+d\right)} \kappa a b c \xi^{b} \xi^{c}, \ldots
\end{aligned}
$$

- $\left(\xi^{0}, \xi^{a}\right)$ transform like (modular parameter, elliptic variable).
$\mathrm{E}\left(p^{\mathrm{a}} \tilde{\xi}_{a}\right)$ transforms like the automorphic factor of a Jacobi form.
- Note that S-duality fixes the points $t= \pm \mathrm{i}$ along the \mathbb{P}^{1} fiber.

S-duality and D-instantons in twistor space II

- D-instanton corrections correct the Darboux coordinates into solutions of the integral equations

$$
\equiv=\bar{\Xi}_{\mathrm{sf}}+\sum_{\gamma} \Omega\left(\gamma ; z^{a}\right)\langle\cdot, \gamma\rangle \int_{\ell_{\gamma}} \frac{\mathrm{d} t^{\prime}}{8 \pi^{2} t^{\prime}} \frac{t+t^{\prime}}{t-t^{\prime}} \log \left[1-\sigma(\gamma) \mathcal{X}_{\gamma}\left(t^{\prime}\right)\right]
$$

where ℓ_{γ} are the BPS rays $\left\{t: Z\left(\gamma ; z^{a}\right) / t \in \mathbb{R}^{-}\right\}$and $\mathcal{X}_{\gamma}=\mathrm{E}(-\langle\bar{\Xi}, \gamma\rangle)$ are the holomorphic Fourier modes

GMN; Alexandrov BP Saueressig Vandoren; Alexandrov

S-duality and D-instantons in twistor space III

- The consistency of this prescription across lines of marginal stability is guaranteed by the KS formula. The resulting metric, including multi-instanton corrections, is smooth across the walls.
- Similar eqs allowing to compute $\tilde{\alpha}$ and Φ once \equiv is known.
- These eqs can be solved iteratively, by first substituting $\equiv \rightarrow \overline{\text { sff }}$ on the rhs, integrating, etc. leading to an infinite (divergent) series of multi-instanton corrections.
- Do D3-D1-D(-1) instanton corrections preserve S-duality ?

Outline

(1) Introduction

(2) HM moduli space in type IIB on a CY threefold

(3) S-duality and D3-D1-D(-1) instantons

4 Conclusion

S-duality and D1-F1-D(-1) instantons I

- Continuous S-duality is broken by Gromov-Witten instantons at tree level and by the one-loop correction.
- In the large volume limit, retaining D1-F1-D(-1) instantons, S-duality mixes (one-loop, $\mathrm{D}(-1)$) and ($\mathrm{D} 1, \mathrm{~F} 1$). It was shown that $S L(2, \mathbb{Z}) \subset S L(2, \mathbb{R})$ remains unbroken provided

$$
\Omega\left(0,0,0, q_{0}\right)=-\chi(Y), \quad \Omega\left(0,0, q_{a}, q_{0}\right)=n_{q_{a}}^{(0)}
$$

Robles-Llana Roček Saueressig Theis Vandoren

- The (GMN-type) 'type IIA' Darboux coordinates are not covariant, but they can be mapped by a contact transformation (and Poisson resummation on q_{0}) to a set of 'type IIB' Darboux coordinates which transform as above.

Alexandrov Saueressig; Alexandrov BP

S-duality and D3-D1-F1-D(-1) instantons I

- Since the same BPS invariants govern D3-D1-D(-1) instantons in IIB/X \mathcal{X} and D4-D2-D0 black holes in IIA/ \mathcal{X}, S-duality is expected to follow from the modularity of the D4-D2-D0 black hole partition

$$
\begin{aligned}
\mathcal{Z}_{\mathrm{BH}}\left(\tau, y^{a}\right) & =\sum_{q_{a}, q_{0}} \Omega_{p^{a}, q_{a}, q_{0}}^{\mathrm{MSW}} \mathrm{E}\left(-\left(q_{0}+\frac{1}{2} q_{-}^{2}\right) \tau-q_{+}^{2} \bar{\tau}+q_{a} y^{a}\right) \\
& =\operatorname{Tr}^{\prime}\left(2 J_{3}\right)^{2}(-1)^{2 \mathrm{~J}_{3}} \mathrm{E}\left(\left(L_{0}-\frac{c_{L}}{24}\right) \tau-\left(\bar{L}_{0}-\frac{c_{R}}{24}\right) \bar{\tau}+q_{a} y^{a}\right)
\end{aligned}
$$

where q_{+}, q_{-}are the projections of q_{a} on $H^{1,1}$ and $\left(H^{1,1}\right)^{\perp}$.

- When p^{a} is a very ample primitive divisor, $\mathcal{Z}_{\mathrm{BH}}$ is the modified elliptic genus of the MSW superconformal CFT, a multivariate Jacobi form of weight $\left(-\frac{3}{2}, \frac{1}{2}\right)$, index $\kappa_{a b}=\kappa_{a b c} p^{c}$ and multiplier system $v_{\eta}^{c_{2 a} p^{a}}$.

Maldacena Strominger Witten;
Denef Moore; Gaiotto Strominger Yin; de Boer Cheng Dijkgraaf Manschot Verlinde

S-duality and D3-D1-F1-D(-1) instantons II

- Spectral flow invariance of the SCFT implies that $\Omega^{\mathrm{MSW}}\left(p^{a}, q_{a}, q_{0}\right)$ depends only on $p^{a}, \hat{q}_{0} \equiv q_{0}-\frac{1}{2} q_{a} \kappa^{a b} q_{b}$ and on the residue $\mu^{a} \in \Lambda^{*} / \Lambda$ of q_{a} modulo Λ. Thus

$$
\mathcal{Z}_{\mathrm{BH}}\left(\tau, y^{a}\right)=\sum_{\mu \in \Lambda^{*} / \Lambda+\frac{1}{2} p} h_{p^{\mathrm{a}}, \mu_{\mathrm{a}}}(\tau) \overline{\theta_{p^{\mathrm{a}}, \mu_{\mathrm{a}}}\left(\tau, y^{a}, p^{a}\right)},
$$

where $\theta_{p^{a}, \mu_{a}}$ is a signature $\left(1, b_{2}-1\right)$ Siegel-Narain theta series,
$\theta_{p^{a}, \mu_{a}}\left(\tau, y^{a}, t^{a}\right)=\sum_{k \in \Lambda+\mu+\frac{1}{2} p}(-1)^{p \cdot k} \mathrm{E}\left(\frac{1}{2}\left(k_{+}\right)^{2} \tau+\frac{1}{2}\left(k_{-}\right)^{2} \bar{\tau}+k \cdot y\right)$
and

$$
k \in \Lambda+\mu+\frac{1}{2} p
$$

$$
h_{p^{a}, \mu_{a}}=\sum_{\hat{q}_{0}} \Omega^{\mathrm{MSW}}\left(p^{a}, \mu_{a}, \hat{q}_{0}\right) \mathrm{E}\left(-\hat{q}_{0} \tau\right)
$$

is a weight $\left(-\frac{b_{2}}{2}-1,0\right)$ vector-valued modular form.

S-duality and D3-D1-F1-D(-1) instantons III

- There is an important catch: the MSW degeneracies $\Omega_{p^{2}, q_{2}, q_{0}}^{\mathrm{MSW}}$ agree with the generalized DT invariants only at the 'large volume attractor point'

$$
\Omega^{\mathrm{MSW}}\left(p^{a}, q_{a}, q_{0}\right)=\lim _{\lambda \rightarrow+\infty} \bar{\Omega}\left(0, p^{a}, q_{a}, q_{0} ; b^{\mathrm{a}}(\gamma)+\mathrm{i} \lambda t^{a}(\gamma)\right)
$$

- Away from this point, DT invariants get contributions from bound states of MSW micro-states. To exhibit modular invariance, we need to first express the generalized DT invariants in terms of MSW invariants, and then do the multi-instanton expansion in powers of $\Omega_{p^{a}, q_{2}, q_{0}}^{\mathrm{MSW}}$.
- We shall restrict to the one-instanton approximation, effectively identifying $\bar{\Omega}\left(0, p^{a}, q_{a}, q_{0} ; z^{a}\right)=\Omega^{\text {MSW }}\left(p^{a}, q_{a}, q_{0}\right)$. Moreover we work in the large volume limit, zooming around $t= \pm i(z=0, \infty)$.

S-duality and D3-D1-F1-D(-1) instantons IV

- By expanding the integral equations to first order in $\Omega^{\text {MSW }}$, and allowing corrections of the same order to the mirror map between $\zeta^{\wedge}, \tilde{\zeta}_{\Lambda}, \sigma$ and $c^{a}, \tilde{c}_{a}, \tilde{c}_{0}, \sigma$, one finds

$$
\delta \xi^{0}=0, \quad \delta \xi^{a}=2 \pi \mathrm{i} p^{a} \mathcal{J}_{p}(z), \quad \delta \tilde{\xi}_{a}=-D_{a} \mathcal{J}_{p}(z), \quad \ldots
$$

where $S_{\mathrm{cl}}=\frac{\tau_{2}}{2} \kappa_{a b c} p^{a} t^{b} t^{c}-\mathrm{i} \tilde{c}_{a} p^{a}$ is the classical D3-brane action,

$$
\mathcal{J}_{p}(z)=\sum_{q_{\wedge}} \int_{\ell_{\gamma}} \frac{\mathrm{d} z^{\prime}}{(2 \pi)^{3^{\mathrm{i}}\left(z^{\prime}-z\right)}} \Omega^{\mathrm{MSW}}\left(p^{a}, q_{a}, q_{0}\right) \mathrm{E}\left(p^{\mathrm{a}} \tilde{\xi}_{\mathrm{a}}-q_{\wedge} \xi^{\wedge}\right),
$$

where ℓ_{γ} runs from $-\infty$ to $+\infty$, passing through the saddle point at $z_{\gamma}^{\prime}=-\mathrm{i}(q+b)_{+} / \sqrt{p \cdot t^{2}}$.

S-duality and D3-D1-F1-D(-1) instantons V

- Corrections to the Darboux coordinates have a modular anomaly, best exposed by rewriting the Penrose-type integral along z as an Eichler integral

$$
\mathcal{J}_{\boldsymbol{p}}(z)=\frac{\mathrm{i} e^{-2 \pi S_{\mathrm{cl}}}}{8 \pi^{2}} \sum_{\mu \in \Lambda^{*} / \Lambda} h_{\boldsymbol{p}, \mu}(\tau) \int_{\bar{\tau}}^{-\mathrm{i} \infty} \frac{\overline{\Upsilon_{\mu}(w, \bar{\tau} ; \bar{z})} \mathrm{d} \bar{w}}{\sqrt{\mathrm{i}(\bar{W}-\tau)}}
$$

where, restricting to $z=0$ for simplicity,

$$
\begin{aligned}
\overline{\Upsilon_{\mu}(w, \bar{\tau} ; 0)}= & \sum_{\boldsymbol{k} \in \Lambda+\mu+\frac{1}{2} \boldsymbol{p}}(-1)^{\boldsymbol{k} \cdot \boldsymbol{p}}(k+b)_{+} \\
& \times \mathrm{E}\left(-\frac{1}{2}(\boldsymbol{k}+\boldsymbol{b})_{+}^{2} \bar{W}-\frac{1}{2}(\boldsymbol{k}+\boldsymbol{b})_{-}^{2} \tau+\boldsymbol{c} \cdot\left(\boldsymbol{k}+\frac{1}{2} \boldsymbol{b}\right)\right) .
\end{aligned}
$$

S-duality and D3-D1-F1-D(-1) instantons VI

- The Eichler integral of an analytic modular form $F(\tau, \bar{\tau})$ of weight $(\mathfrak{h}, \overline{\mathfrak{h}})$ (known as the shadow) is defined by

$$
\Phi(\tau)=\int_{\bar{\tau}}^{-\mathrm{i} \infty} \frac{F(\tau, \bar{w}) \mathrm{d} \bar{w}}{[\mathrm{i}(\bar{w}-\tau)]^{2-\bar{h}}}
$$

It transforms with modular weight $(\mathfrak{h}+2-\overline{\mathfrak{h}}, 0)$, up to modular anomaly given by a period integral,

$$
\Phi(\gamma \tau)=(c \tau+d)^{\overline{\mathfrak{h}}+2-\mathfrak{h}}\left(\Phi(\tau)-\int_{-d / c}^{-\mathrm{i} \infty} \frac{F(\tau, \bar{w}) \mathrm{d} \bar{w}}{[\mathrm{i}(\bar{w}-\tau)]^{2-\bar{h}}}\right) .
$$

- In particular, $\mathcal{J}_{\boldsymbol{p}}(z)$ transforms with modular weight $(-1,0)$, up to modular anomaly of the form above.

S-duality and D3-D1-F1-D(-1) instantons VII

- Miraculously, the modular anomalies in the Darboux coordinates can be absorbed all at once by a contact transformation generated by

$$
H=\frac{1}{8 \pi^{2}} \mathrm{E}\left(p^{\mathrm{a}} \tilde{\xi}_{a}\right) \sum_{\mu \in \Lambda^{*} / \Lambda+\frac{1}{2} p} h_{p^{a}, \mu_{a}}\left(\xi^{0}\right) \Theta_{p^{a}, \mu_{a}}\left(\xi^{0}, \xi^{a}\right)
$$

where $\Theta_{p^{a}, \mu_{a}}$ is Zwegers' indefinite theta series, viewed as a holomorphic function in twistor space,

$$
\begin{aligned}
\theta_{p^{a}, \mu_{a}}\left(\tilde{\xi}^{0}, \xi^{a}\right)=\sum_{k \in \Lambda+\mu+p / 2}(\operatorname{sign}[& {\left.[k+b) \cdot t]-\operatorname{sign}\left[(k+b) \cdot t_{1}\right]\right) } \\
& \times(-1)^{p \cdot k} \mathrm{E}\left(-k_{a} \xi^{a}-\frac{1}{2} \xi^{0} k_{a} \kappa^{a b} k_{b}\right)
\end{aligned}
$$

Here t_{1} is an arbitrary point on the boundary of the Kahler cone.

S-duality and D3-D1-F1-D(-1) instantons VIII

- The fact that $h_{p^{a}, \mu_{a}}$ transforms with multiplier system $v_{\eta}^{p^{a} c_{2, a}}$ implies that \tilde{c}_{a} must transform with an additional shift $\tilde{c}_{a} \mapsto \tilde{c}_{a}-c_{2, a} \log v_{\eta}$ under S-duality.
- Amusingly, the holomorphic theta series provides the modular completion of the Eichler integral, rather than the other way around ! The latter arises as a Penrose-type integral (after Fourier transform along the fiber).
- The contact potential has no modular anomaly, and is given by the modular derivative of the MSW elliptic genus.

Outline

(1) Introduction

(2) HM moduli space in type IIB on a CY threefold

(3) S-duality and D3-D1-D(-1) instantons

4 Conclusion

Conclusion I

- In the one-instanton approximation and large volume limit, D3-instanton corrections turn out to be consistent with S-duality, albeit in a very non-trivial manner.
- At finite volume, D3-instanton corrections on \mathcal{M} are no longer given by Gaussian theta series (or Eichler integrals thereof), although they are still formally Gaussian on \mathcal{Z}.
- At two-instanton level, one expects a non-trivial interplay between modularity and wall-crossing.

Manschot; Alim Haghighat Hecht Klemm Rausch Wottschke

- It would be worth revisiting previous linear analysis of NS5 instantons. Is S-duality automatic, or does it require special properties of the D5-D3-D1-D(-1) DT invariants ?

Alexandrov Persson BP

