
CoulombHiggs.m v2.1

Jan Manschot, Boris Pioline, Ashoke Sen

April 30, 2014

The Mathematica package CoulombHiggs.m allows to compute the Poincar-
Laurent polynomial of the moduli space of stable representations of quivers using
the Coulomb branch and Higgs branch formulae. The latter is based on Reineke’s
solution to the Harder-Narasimhan recursion [1] and applies to quivers without
oriented closed loops, while the former is based on a physical picture of BPS
states as bound states of elementary ’single-centered’ constitutents, and applies
to any quivers with or without oriented loops [2–4]. The first version of this
package was released together with the preprint [5] where a general algorithm
for computing the index of the quantum mechanics of multi-centered BPS black
holes (the Coulomb index) was outlined. The second version 2.0, released along
with the preprint [6], allowed to compute the Dolbeault-Laurent polynomial,
relax assumptions on single-centered indices for basis vectors, study the effect of
generalized mutations, and more. The third version 2.1, released along with the
review [7], has been optimized to speed up the evaluation of Coulomb indices.

The package file CoulombHiggs.m and various example files can be obtained
from the second named author’s webpage,

http://www.lpthe.jussieu.fr/∼ pioline/computing.html

1 Basic usage

Assuming that the file CoulombHiggs.m is present in the user’s Mathematica
Application directory, the package is loaded by entering

In[1]:= <<CoulombHiggs‘

Out[1]:= CoulombHiggs v 2.0 - A package for evaluating quiver

invariants using the Coulomb and Higgs branch formulae.

1

If the file CoulombHiggs.m has not yet been copied in the user’s Mathemat-

ica Application directory but is in the same directory as the notebook, evaluate
instead

In[1]:= SetDirectory[NotebookDirectory[]]; <<CoulombHiggs‘

Out[1]:= CoulombHiggs v 2.1 - A package for evaluating quiver

invariants using the Coulomb and Higgs branch formulae.

The first main routine is CoulombBranchFormula, whose basic usage is illus-
trated below: 1

In[1]:= Simplify[CoulombBranchFormula[4{{0, 1, -1},{-1, 0, 1}, {1,
-1, 0}}, {1/2, 1/6, -2/3}, {1, 1, 1}]]

Out[1]:= 2 + 1
y2

+ y2 + OmS({1, 1, 1}, y, t)

This routine computes the Dolbeault-Laurent polynomial of the quiver moduli
space, expressed in terms of the single-centered indices. The first argument corre-
sponds to the matrix of DSZ products αij (an antisymmetric matrix of integers),
the second to the FI parameters ζi (a vector of rational numbers), the third to the
dimension vector Ni (a vector of integers). The variables y and t are fugacities
conjugate to the sum of the Dolbeault degrees p+q (i.e. the angular momentum)
and to the difference of the Dolbeault degrees p− q, respectively. The Poincaré-
Laurent polynomial is obtained by setting t = 1. For generic superpotential, the
single-centered indices ΩS(γ, y) ≡ ΩS(γ, y, 1) are conjectured to be independent
of y. In the above example, the Dolbeault polynomial of the moduli space of a
three-node Abelian cyclic quiver with 4 arrows between each subsequent node is
expressed in terms of the single-centered index ΩS(γ1 + γ2 + γ3, y, t). The sec-
ond main routine is HiggsBranchFormula, which computes the Poincaré-Laurent
polynomial using the Higgs branch formula (which is only valid for quivers with-
out oriented loop, but the routine works irrespective of this assumption). The
arguments are the same as for CoulombBranchFormula:

1Note the following changes in v2.0: the fugacity y is no longer a parameter of Coulomb-
BranchFormula and QuiverBranchFormula, and the former computes the Dolbeault polyno-
mial in terms of ΩS(αi, t), rather than expressing the Poincaré polynomial in terms of ΩS(αi).
Starting in v2.1, if

∑
iNiζi does not vanish, rather than issuing an error message, a uniform

translation is applied internally to the ζi’s. Other changes are highlighted by margin notes
below.

2

In[1]:= Simplify[HiggsBranchFormula[{{0, 3},{-3, 0}}, {1/2,-1/2},
{2, 2}]]

Out[1]:= −(y2+1)(y8+y4+1)
y5

The above command computes the Poincaré-Laurent polynomial for the Kro-
necker quiver with 3 arrows, FI parameters (1/2,−1/2), dimension vector (2, 2).
The package allows for much more, as documented below. Inline documentation
can be obtained by typing e.g.

In[1]:= ?CoulombBranchFormula

Out[1]:=

2 Symbols

• y: fugacity conjugate to the sum of Dolbeault degrees p + q (i.e. angular
momentum);

• t: fugacity conjugate to the difference of Dolbeault degrees p− q;
• Om[charge vector ,y]:denotes the refined index Ω(γ, y);

• Omb[charge vector ,y]:denotes the rational refined index Ω̄(γ, y);

• OmS[charge vector ,y ,t]:denotes the single-centered index ΩS(γ, y, t).New in
v2.0: • OmS[charge vector ,y]:denotes ΩS(γ, y) ≡ ΩS(γ, y, t = 1).

• OmS[charge vector]:denotes ΩS(γ, y), under the assumption that it is indepen-
dent of y (which is conjectured to be the case for generic superpotential)

• OmT[charge vector ,y]:denotes the (unevaluated) function Ωtot(γ, y);

• Coulombg[list of charge vectors ,y]:: denotes the (unevaluated) Coulomb
index gCoulomb({αi}, {ci}, y), leaving the FI parameters unspecified;

• HiggsG[charge vector ,y]:denotes the (unevaluated) stack invariantGHiggs(γ, y);

• CoulombH[list of charge vectors ,multiplicity vector ,y]:denotes the (uneval-
uated) factor H({αi}, {ni}, y) appearing in the formula for Ωtot(

∑
niαi, y) in

terms of ΩS(αi, y).

• QFact[n ,y]:represents the (non-evaluated) q-deformed factorial [n, y]!

3

3 Environment variables

• $QuiverPerturb1: Sets the size of the perturbation ε1 = 1/$QuiverPerturb of
the DSZ products, set to 1000 by default.

• $QuiverPerturb2: Sets the size of the perturbation ε2 = 1/$DSZPerturb of the
DSZ products, set to 1010 by default.

• $QuiverNoLoop: If set to True, the quiver will be assumed to have no oriented
loop, hence all H factors and all ΩS(α) will be set to zero (unless α is a basis
vector). Set to False by default.

• $QuiverTestLoop: If set to True, all H factors and ΩS(α) corresponding to
subquivers without loops will be set to zero (unless α is a basis vector). Set
to True by default. Determining whether a subquiver has loops is time-
consuming, so for large quivers it may be advisable to disable this feature.
Note that $QuiverNoLoop takes precedence over this variable.

• $QuiverMultiplier: Overall scaling factor of the DSZ matrix in any evaluation
of Coulombg or HiggsG. Set to 1 by default, could be a formal variable.

• $QuiverVerbose: If set to False, all consistency tests on data and corresponding
error messages will be skipped. Set to True by default.

• $QuiverDisplayCoulombH: If set to True, the routine CoulombBranchFormula

will return a list {Q, R} where Q is the Poincaré-Laurent polynomial and R is
a list of replacement rules for the CoulombH factors. Set to False by default.

• $QuiverPrecision: Sets the numerical precision with which all consistency
tests are carried out. This is set to 0 by default since all data are assumed to
be rational numbers. This can be set to a small real number when using real
data, however the user is warned that rounding errors tend to grow quickly.

• $QuiverRecursion: If set to 1 (default value), then the new recursion relations
from [5, v2] are used for computing CoulombF; if set to 0 the recursion relation
from [5, v1] is used instead.New in

v2.0: • $QuiverOmSbasis: Set to 1 by default. If set to 0, the routines SimplifyOmSbasis
and SimplifyOmSbasismult are deactivated, so that the assumption that ba-
sis vectors carry ΩS(`γi) = δ`,1 is relaxed.New in

v2.1: • $QuiverOpt: Set to 1 by default. If set to 0, the routines CoulombF, CoulombG,
CoulombIndex will use the non-optimized code provided in version 2.0, oth-
erwise they use the optimized code provided in version 2.1.

4

4 Coulomb index

• CoulombF[Mat ,Cvec]:returns the index of collinear solutions F ({α̃1, · · · α̃n}, {c̃1, · · · c̃n})
with DSZ products α̃ij = Mat[[i, j]], FI terms c̃i = Cvec[[i]] and trivial order-
ing.

• CoulombG[Mat]:returns the index of scaling collinear solutions G({α̂1, · · · α̂n})
with DSZ products α̂ij = Mat[[i, j]] and trivial ordering. The total angular
momentum

∑
i<jMat[[i, j]] must vanish;

• CoulombIndex[Mat ,PMat ,Cvec ,y]:evaluates the Coulomb index gCoulomb({α1, · · ·
αn}; {c1, · · · cn}; y) with DSZ products αij = Mat[[i, j]], perturbed to PMat[[i,j]]
so as to lift accidental degeneracies, possibly rescaled by an overall factor of
$QuiverMultiplier, FI terms ci = Cvec[[i]], angular momentum fugacity y;

• CoulombFNum[Mat]:computes numerically the index F ({α̃1, . . . α̃n}, {c̃1, . . . c̃n})
with DSZ matrix α̃ij = Mat[[i, j]] and FI parameters c̃i = Cvec[[i]]. For test-
ing purposes only, works for up to 5 centers.

• CoulombGNum[Mat]:computes numerically the scaling index G(α̂1, . . . α̂n) with
DSZ matrix α̂ij = Mat[[i, j]]. For testing purposes only, works for up to 6
centers.

• CoulombIndexNum[Mat ,PMat ,Cvec ,k ,y]:returns the Coulomb index gCoulomb({α1, · · ·
αn}; {c1, · · · cn}; y) with DSZ products αij = Mat[[i, j]], possibly rescaled by
an overall factor of $QuiverMultiplier, FI terms ci = Cvec[[i]], angular mo-
mentum fugacity y, by searching collinear solutions numerically; For testing
purposes only, works for up to 5 centers.

5 Coulomb branch formula

• CoulombBranchFormula[Mat ,Cvec ,Nvec]:computes the Dolbeault polyno-
mial of a quiver with DSZ products αij = Mat[[i, j]], dimension vector Ni =
Nvec[[i]], FI parameters ζi = Cvec[[i]], in terms of single-centered invari-
ants ΩS. This standalone routine first constructs the Poincaré-Laurent poly-
nomial, evaluates the Coulomb indices gCoulomb, determines the H factors
recursively using the minimal modification hypothesis and finally replaces
y by t in the argument of ΩS to construct the Dolbeault polynomial. If

5

$QuiverDisplayCoulombH is set to True, the routine returns a list {Q, R},
where Q is the Poincaré polynomial and R is a list of replacement rules for
the CoulombH factors. For quivers without loops, the process can be sped
up greatly by setting $QuiverNoLoop to True. For complicated quivers it is
advisable to implement the Coulomb branch formula step by step, using the
more elementary routines described below.

• CoulombBranchFormulaFromH[Mat ,Cvec ,Nvec ,R]:returns the Dolbeault
polynomial of a quiver with DSZ products αij = Mat[[i, j]], dimension vector
Ni = Nvec[[i]], FI parameters ζi = Cvec[[i]], using the rule R to replace all
CoulombH factors.

• QuiverPoincarePolynomial[Nvec ,y]:constructs the Poincaré-Laurent poly-
nomial of a quiver. Coincides with QuiverPoincarePolynomialRat for prim-
itive dimension vector;

• QuiverPoincarePolynomialRat[Nvec ,y]:constructs the rational Poincaré-
Laurent polynomial Q̄Coulomb(γ; ζ; y);

• QuiverPoincarePolynomialExpand[Mat ,PMat ,Cvec , Nvec , Q]: evalu-
ates the Cou-lomb indices gCoulomb and total single-centered indices Ωtot(αi, y)
appearing in the Poincaré-Laurent polynomial Q of a quiver with DSZ prod-
ucts αij = Mat[[i, j]], perturbed to PMat[[i, j]], dimension vectorNi = Nvec[[i]],
FI parameters ζi = Cvec[[i]];

• CoulombHSubQuivers[Mat ,PMat ,Nvec ,y]:computes recursively all CoulombH
factors for DSZ matrix Mat, perturbed to PMat, and any dimension vector
strictly less than Nvec; relies on the next two routines:

• ListCoulombH[Nvec ,Q]: returns returns a pair {ListH, ListC} where ListH
is a list of CoulombH factors possibly appearing in the Poincaré-Laurent
polynomial Q of a quiver with dimension vector Nvec, and ListC is the list of
coefficients which multiply the monomials in ΩS(αi, y) canonically associated
to the H factors in Q.

• SolveCoulombH[ListH ,ListC , R]: returns a list of replacement rules for the
CoulombH factors listed in ListH, by applying the minimal modification hy-
pothesis to the coefficients listed in ListC. The last argument is a replacement
rule for CoulombH factors associated to subquivers.

6

• MinimalModif[f]:returns the symmetric Laurent polynomial which coincides
with the Laurent expansion expansion of the symmetric rational function f
at y = 0, up to strictly positive powers of y. Here symmetric means invariant
under y → 1/y. In practice, MinimalModif[f] evaluates the contour integral
in [4], Eq 2.9 ∮

du

2πi

(1/u− u) f(u)

(1− uy)(1− u/y)
(5.1)

by deforming the contour around 0 into a sum of counters over all poles of
f(u) and zeros of (1 − uy)(1 − u/y). This trick allows to compute (5.1)
even if the order of the pole of f(y) at y = 0 is unknown, which happens if
$QuiverMultiplier is a formal variable.

• SimplifyOmSbasis[f]:replaces ΩS(γ, y)→ 1 when γ is a basis vector, unless
$QuiverOmSbasis is set to 0;

New in
v2.0: • SimplifyOmSbasismult[f]:replaces ΩS(γ, y)→ 0 when γ is a non-trivial mul-

tiple of a basis vector, unless $QuiverOmSbasis is set to 0;

• CoulombHNoLoopToZero[Mat ,f]:sets to zero any H factor in f corresponding
to subquivers without loop, assuming DSZ products αij = Mat[[i, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

• OmTNoLoopToZero[Mat ,f]:sets to zero any Ωtot factor in f corresponding to
subquivers without loop, assuming DSZ products αij = Mat[[i, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

• OmSNoLoopToZero[Mat ,f]:sets to zero any ΩS factor in f corresponding to
subquivers without loop, assuming DSZ products αij = Mat[[i, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

• EvalCoulombH3[Mat ,f]: evaluates any 3-center H factor with multiplicity
vector {1, 1, 1} appearing in f . Not used in any routine so far.

• DropFugacity[f]:replaces ΩS(γ, ym, tm) by ΩS(γ, tm) everywhere in f
New in

v2.0: • SwapFugacity[f]:replaces ΩS(γ, ym) with ΩS(γ, ym, tm) everywhere in f

7

6 Higgs branch formula

• HiggsBranchFormula[Mat ,Cvec ,Nvec]:computes the Poincaré-Laurent poly-
nomial of a quiver with DSZ products αij = Mat[[i, j]] (possibly rescaled
by $QuiverMultiplier), dimension vector Ni = Nvec[[i]], FI parameters
ζi = Cvec[[i]], using the Higgs branch formula. It is assumed, but not checked,
that the quiver has no oriented loop;

• StackInvariant[Mat ,Cvec ,Nvec ,y]:gives the stack invariant of a quiver
with DSZ matrix αij = Mat[[i, j]], possibly rescaled by an overall factor of
$QuiverMultiplier, FI parameters ζi = Cvec[[i]], dimension vector Ni =
Nvec[[i]], using Reineke’s formula; the answer is written in terms of unevalu-
ated q-deformed factorials QFact[n,y];

• AbelianStackInvariant[Mat ,Cvec ,y]:gives the Abelian stack invariant
(??) of a quiver with DSZ matrix αij = Mat[[i, j]], possibly rescaled by
an overall factor of $QuiverMultiplier, FI parameters ζi = Cvec[[i]], us-
ing Reineke’s formula; coincides with StackInvariant with Nvec= {1, . . . 1}
except that tests of marginal or threshold stability are performed (unless
$QuiverVerbose is set to False);

• QDeformedFactorial[n ,y]:gives the q-deformed factorial [n, y]!

• EvalQFact[f]:evaluates any QFact[n,y] appearing in f

7 Utilities

• ListAllPartitions[charge vector]:returns the list of unordered partitions
{αi} of the positive integer vector γ as a sum of positive, non-zero integer
vectors αi;

• ListAllPartitionsMult[charge vector]:returns the list of unordered parti-
tions {αi,mi} of the positive integer vector γ as a sum of positive, non-zero
integer vectors αi with multiplicity mi;

• ListSubQuivers[Nvec]:gives a list of all dimension vectors less or equal to
Nvec;

• SubDSZ[Mat ,Cvec ,Li]:gives the DSZ matrix of the subquiver made of vec-
tors in list Li;

8

• SymmetryFactor[Li]:gives the symmetry factor 1/|Aut({α1, α2, · · · , αn}| for
the list of charge vectors Li;

• OmTRat[Nvec ,y]: gives the rational total invariant Ω̄tot(γ; y) in terms of
Ωtot(γ; y). Coincides with the latter if γ is primitive.

• OmTToOmS[f]:expands out any Ωtot(γ; y) in f into H factors and ΩS’s;

• OmToOmb[f]:expresses any Ω(γ; y) in f in terms of Ω̄(γ; y)’s;

• OmbToOm[f]:expresses any Ω̄(γ; y) in f in terms of Ω(γ; y)’s;

• HiggsGToOmb[Nvec ,y]:Returns the (unevaluated) HN invariant GHiggs(γ, y)
in terms of the rational refined indices Ω(γ; y);

• OmbToHiggsG[Nvec ,y]:Returns the (unevaluated) rational refined index Ω(γ; y)
in terms of the (unevaluated) stack invariants GHiggs(γ, y);

• RandomCvec[Nvec]:generates a random set of FI parameters ζi between -1
and 1, such that

∑
ζi Nvec[[i]] = 0;

• UnitStepWarn[x]:gives 1 for x > 0, 0 for x < 0, and 1/2 if x = 0. Produces
a warning in this latter case, irrespective of the value of $QuiverVerbose. If
so, the user is advised run the computation again with a different random
perturbation. For efficiency, this instruction is no longer used in v2.1, however
a warning is still issued if one encounters a Heaviside function with zero
argument in the evaluation of the Coulomb indices.

• GrassmannianPoincare[k ,n ,y]:computes the Poincaré polynomial of the
Grassmannian G(k, n) via Eq. (6.22) in [4].

New in
v2.0: • CyclicQuiverOmS[avec ,t]:computes the single-centered index ΩS(γ1, . . . , γK)

associated to a cyclic Abelian quivers with DSZ matrix αi,j+1 = avec[[i, i+1]]
via Eq (4.29) in [4].

• QuiverPlot[Mat]:Displays the quiver with DSZ matrix Mat.
New in

v2.1: • FIFromZ[Nvec ,Zvec]:Computes the FI parameters {ci} from the vector of
central charges Zvec = {Zi} and dimension vector Nvec = {Ni} via ci =
=(e−iφZi), where φ is the argument of

∑
iNiZi. The parameters ci are

rounded up to the nearest rational number with denominator less than $QuiverPerturb1.

9

7.1 Mutations
New in

v2.0: The following routines and environment variables were introduced in CoulombHiggs.m

v1.1, to allow investigation of mutations of generalized quivers [6]:

• MutateRight[Mat ,Cvec ,Nvec ,k]: Computes the DSZ matrix, FI parame-
ters and dimension vector of the quiver obtained by applying a right-mutation
with respect to the node k. If k is a list {ki}, then the right mutations ki are
applied successively, starting from the last entry in k. No consistency check
on the FI parameters is performed.

• MutateLeft[Mat ,Cvec ,Nvec ,k]: Computes the DSZ matrix, FI parame-
ters and dimension vector of the quiver obtained by applying a left-mutation
with respect to the node k. If k is a list {ki}, then the right mutations ki are
applied successively, starting from the last entry in k. No consistency check
on the FI parameters is performed.

• OmStoOmS2[f]:replaces OmS[gam, y, t] by OmS2[gam, y, t] anywhere in f. This is
useful for distinguishing the single-centered invariants of the mutated quiver
from those of the original one.

• MutateRightOmS[Mat ,k ,f]:expresses the single-centered invariants OmS[gam, y, t]
of the original quiver with DSZ matrix Mat in terms of the single-centered in-
variants OmS2[gam, y, t] of the quiver obtained by right-mutation with respect
to node k, using Eq. 1.13 in [6].

• MutateLeftOmS[Mat ,k ,f]:expresses the single-centered invariants OmS[gam, y, t]
of the original quiver with DSZ matrix Mat in terms of the single-centered
invariants OmS2[gam, y, t] of the quiver obtained by left-mutation with respect
to node k, using Eq. 1.13 in [6].

• MutateRightOmS2[Mat ,k ,f]:expresses the single-centered invariants OmS2[gam, y, t]
a quiver with DSZ matrix Mat in terms of the single-centered invariants
OmS[gam, y, t] of the quiver obtained by right-mutation with respect to node k.
Identical to MutateRightOmS, except for swapping OmS[gam, y, t] and OmS2[gam, y, t].

• MutateLefttOmS2[Mat ,k ,f]:expresses the single-centered invariants OmS2[gam, y, t]
a quiver with DSZ matrix Mat in terms of the single-centered invariants
OmS[gam, y, t] of the quiver obtained by right-mutation with respect to node k.
Identical to MutateLeftOmS, except for swapping OmS[gam, y, t] and OmS2[gam, y, t].

• DropOmSNeg[f]:equates to 0 any ΩS(γ, y, t) where the dimension vector asso-
ciated to γ has negative components.

• $QuiverMutationMult: Equal to 1 by default. Set to M , defined in Eq. (1.8)
of [6] when dealing with generalized quivers.

10

References

[1] M. Reineke, “The Harder-Narasimhan system in quantum groups and coho-
mology of quiver moduli,” Invent. Math. 152 (2003), no. 2, 349–368.

[2] J. Manschot, B. Pioline and A. Sen, “Wall Crossing from Boltzmann Black
Hole Halos,” JHEP 1107, 059 (2011) [arXiv:1011.1258 [hep-th]].

[3] J. Manschot, B. Pioline and A. Sen, “A Fixed point formula for the index of
multi-centered N=2 black holes,” JHEP 1105, 057 (2011) [arXiv:1103.1887
[hep-th]].

[4] J. Manschot, B. Pioline and A. Sen, “From Black Holes to Quivers,” JHEP
1211 (2012) 023 [arXiv:1207.2230 [hep-th]].

[5] J. Manschot, B. Pioline and A. Sen, “On the Coulomb and Higgs branch
formulae for multi-centered black holes and quiver invariants,” JHEP 1305
(2013) 166 [arXiv:1302.5498 [hep-th]].

[6] J. Manschot, B. Pioline and A. Sen, “Generalized quiver mutations and single-
centered indices,” JHEP 1401 (2014) 050 [arXiv:1309.7053 [hep-th]].

[7] J. Manschot, B. Pioline and A. Sen, “The Coulomb branch formula for quiver
invariants”, [arXiv:1404.7154 [hep-th]].

11

