CoulombHiggs.m v2.1

Jan Manschot, Boris Pioline, Ashoke Sen

April 30, 2014

The MATHEMATICA package CoulombHiggs.m allows to compute the Poincar-
Laurent polynomial of the moduli space of stable representations of quivers using
the Coulomb branch and Higgs branch formulae. The latter is based on Reineke’s
solution to the Harder-Narasimhan recursion [1] and applies to quivers without
oriented closed loops, while the former is based on a physical picture of BPS
states as bound states of elementary ’single-centered’ constitutents, and applies
to any quivers with or without oriented loops [2-4]. The first version of this
package was released together with the preprint [5] where a general algorithm
for computing the index of the quantum mechanics of multi-centered BPS black
holes (the Coulomb index) was outlined. The second version 2.0, released along
with the preprint [6], allowed to compute the Dolbeault-Laurent polynomial,
relax assumptions on single-centered indices for basis vectors, study the effect of
generalized mutations, and more. The third version 2.1, released along with the
review [7], has been optimized to speed up the evaluation of Coulomb indices.

The package file CoulombHiggs.m and various example files can be obtained
from the second named author’s webpage,

http://www.lpthe. jussieu.fr/~pioline/computing.html

1 Basic usage

Assuming that the file CoulombHiggs.m is present in the user’s MATHEMATICA
Application directory, the package is loaded by entering

m[1]:= <<CoulombHiggs"‘
out[1]:= CoulombHiggs v 2.0 - A package for evaluating quiver
invariants using the Coulomb and Higgs branch formulae.

If the file CoulombHiggs.m has not yet been copied in the user’s MATHEMAT-
ICA Application directory but is in the same directory as the notebook, evaluate
instead

m[1]:= SetDirectory[NotebookDirectory[]]; <<CoulombHiggs
out[1]:= CoulombHiggs v 2.1 - A package for evaluating quiver
invariants using the Coulomb and Higgs branch formulae.

The first main routine is CoulombBranchFormula, whose basic usage is illus-
trated below: !

mi1]:= Simplify[CoulombBranchFormula[4{{0, 1, -1},{-1, 0, 1}, {1,
-1, 0o}}, {1/2, 1/6, -2/3}, {1, 1, 1}1]
Out[1]:= 2+?%+y2+0ms({1,1,1},y,t)

This routine computes the Dolbeault-Laurent polynomial of the quiver moduli
space, expressed in terms of the single-centered indices. The first argument corre-
sponds to the matrix of DSZ products «;; (an antisymmetric matrix of integers),
the second to the FI parameters (; (a vector of rational numbers), the third to the
dimension vector N; (a vector of integers). The variables y and ¢ are fugacities
conjugate to the sum of the Dolbeault degrees p+ ¢ (i.e. the angular momentum)
and to the difference of the Dolbeault degrees p — ¢, respectively. The Poincaré-
Laurent polynomial is obtained by setting ¢ = 1. For generic superpotential, the
single-centered indices Q°(7y,y) = Q25(v,y, 1) are conjectured to be independent
of y. In the above example, the Dolbeault polynomial of the moduli space of a
three-node Abelian cyclic quiver with 4 arrows between each subsequent node is
expressed in terms of the single-centered index Q5(y; + v2 + 73, ¥,t). The sec-
ond main routine is HiggsBranchFormula, which computes the Poincaré-Laurent
polynomial using the Higgs branch formula (which is only valid for quivers with-
out oriented loop, but the routine works irrespective of this assumption). The
arguments are the same as for CoulombBranchFormula:

INote the following changes in v2.0: the fugacity y is no longer a parameter of Coulomb-
BranchFormula and QuiverBranchFormula, and the former computes the Dolbeault polyno-
mial in terms of Q(ay,t), rather than expressing the Poincaré polynomial in terms of Q°(ay).
Starting in v2.1, if >, N;(; does not vanish, rather than issuing an error message, a uniform
translation is applied internally to the (;’s. Other changes are highlighted by margin notes
below.

mf1]:- Simplify[HiggsBranchFormula[{{0, 3},{-3, 0}}, {1/2,-1/2},
{2, 2}]1]
2 8 4
Out[1]:= — (y +1)(yy5 A +1)

The above command computes the Poincaré-Laurent polynomial for the Kro-
necker quiver with 3 arrows, FI parameters (1/2, —1/2), dimension vector (2, 2).
The package allows for much more, as documented below. Inline documentation
can be obtained by typing e.g.

n[1]:= 7CoulombBranchFormula

Out[1]:=

2 Symbols

e y: fugacity conjugate to the sum of Dolbeault degrees p + ¢ (i.e. angular
momentum);

e t: fugacity conjugate to the difference of Dolbeault degrees p — ¢;

e Om[charge vector_,y_]:denotes the refined index Q(v, y);

e Omb[charge vector_,y_]:denotes the rational refined index Q(v, y);
New in ® OmS[charge vector_,y_,t_ 1:denotes the single-centered index Q5(v,y,t).
v2.0: e OmS[charge vector_,y_ 1:denotes Q3(7y,y) = Q5(vy,y,t = 1).

e OmS[charge vector_]:denotes Q5(7y, y), under the assumption that it is indepen-
dent of y (which is conjectured to be the case for generic superpotential)

e OmT[charge vector_,y_ J:denotes the (unevaluated) function Qo (7, y);

e Coulombgl[list of charge vectors_,y_1:: denotes the (unevaluated) Coulomb
index goouwlomb({@i}, {¢i}, v), leaving the FI parameters unspecified;

e HiggsGlcharge vector_,y_]:denotes the (unevaluated) stack invariant Guiges (7, ¥);

e CoulombH[list of charge vectors_,multiplicity vector_,y_]:denotes the (uneval-

uated) factor H({a;},{n;},y) appearing in the formula for Q. (> n;a4,y) in
terms of Q5(ay,y).

e QFact[n_,y_ J:represents the (non-evaluated) g-deformed factorial [n, y]!

3 Environment variables

e $QuiverPerturbl: Sets the size of the perturbation e; = 1/$QuiverPerturb of
the DSZ products, set to 1000 by default.

e $QuiverPerturb2: Sets the size of the perturbation e; = 1/$DSZPerturb of the
DSZ products, set to 10'° by default.

e $QuiverNoLoop: If set to True, the quiver will be assumed to have no oriented
loop, hence all H factors and all Q°(a) will be set to zero (unless « is a basis
vector). Set to False by default.

e $QuiverTestLoop: If set to True, all H factors and Q°(a) corresponding to
subquivers without loops will be set to zero (unless « is a basis vector). Set
to True by default. Determining whether a subquiver has loops is time-
consuming, so for large quivers it may be advisable to disable this feature.
Note that $QuiverNoLoop takes precedence over this variable.

e $QuiverMultiplier: Overall scaling factor of the DSZ matrix in any evaluation
of Coulombg or HiggsG. Set to 1 by default, could be a formal variable.

e $QuiverVerbose: If set to False, all consistency tests on data and corresponding
error messages will be skipped. Set to True by default.

e $QuiverDisplayCoulombH: If set to True, the routine CoulombBranchFormula
will return a list {Q,R} where Q is the Poincaré-Laurent polynomial and R is
a list of replacement rules for the CoulombH factors. Set to False by default.

e $QuiverPrecision: Sets the numerical precision with which all consistency
tests are carried out. This is set to 0 by default since all data are assumed to
be rational numbers. This can be set to a small real number when using real
data, however the user is warned that rounding errors tend to grow quickly.

e $QuiverRecursion: If set to 1 (default value), then the new recursion relations
from [5, v2] are used for computing CoulombF; if set to 0 the recursion relation
New in from [5, v1] is used instead.

v2.0: ¢ $QuiverOmSbasis: Set to 1 by default. If set to 0, the routines SimplifyOmSbasis
and SimplifyOmSbasismult are deactivated, so that the assumption that ba-
New in sis vectors carry Q5(€v;) = dp; is relaxed.

v2.1: $QuiverOpt: Set to 1 by default. If set to 0, the routines CoulombF, CoulombG,
CoulombIndex will use the non-optimized code provided in version 2.0, oth-
erwise they use the optimized code provided in version 2.1.

4

4 Coulomb index

e CoulombF[Mat_,Cvec_]:returns the index of collinear solutions F'({&q, - - - &}, {¢1, - €n})
with DSZ products &;; = Mat[[i, j]], FI terms ¢ = Cvec|[i]] and trivial order-
ing.

e CoulombG[Mat_]:returns the index of scaling collinear solutions G({é1, - - - &, })
with DSZ products &;; = Mat[[z, j]| and trivial ordering. The total angular

momentum), . Mat[[4, j]] must vanish;

e CoulombIndex[Mat_,PMat_,Cvec_,y_]:evaluates the Coulomb index gcowomb ({1, - - -
an}; {c1, -+ en}iy) with DSZ products a;; = Mat[[4, j]], perturbed to PMat(]i,j]]
so as to lift accidental degeneracies, possibly rescaled by an overall factor of

$QuiverMultiplier, FI terms ¢; = Cvec|[i]], angular momentum fugacity y;

e CoulombFNum[Mat_]: computes numerically the index F'({&1, ... a,}, {¢1,. .. })
with DSZ matrix &;; = Mat[[¢, j]] and FI parameters ¢; = Cvec|[i]]. For test-
ing purposes only, works for up to 5 centers.

e CoulombGNum[Mat_]: computes numerically the scaling index G(dy, . . . &,) with
DSZ matrix &;; = Mat[[i, j]]. For testing purposes only, works for up to 6
centers.

e CoulombIndexNum[Mat_,PMat_,Cvec_,k_,y_]:returns the Coulomb index gcoutomn ({1, « - -
an}; {c1, - cn}sy) with DSZ products «;; = Mat[[4, j]], possibly rescaled by
an overall factor of $QuiverMultiplier, FI terms ¢; = Cvec|[[i]], angular mo-
mentum fugacity y, by searching collinear solutions numerically; For testing

purposes only, works for up to 5 centers.

5 Coulomb branch formula

e CoulombBranchFormula[Mat_,Cvec_ Nvec_]:computes the Dolbeault polyno-
mial of a quiver with DSZ products «;; = Mat[[4, j]], dimension vector N; =
Nvec[[i]], FI parameters (; = Cvecl[i]], in terms of single-centered invari-
ants 5. This standalone routine first constructs the Poincaré-Laurent poly-
nomial, evaluates the Coulomb indices gcouomn, determines the H factors
recursively using the minimal modification hypothesis and finally replaces
y by t in the argument of Q% to construct the Dolbeault polynomial. If

$QuiverDisplayCoulombH is set to True, the routine returns a list {Q,R},
where (is the Poincaré polynomial and R is a list of replacement rules for
the CoulombH factors. For quivers without loops, the process can be sped
up greatly by setting $QuiverNoLoop to True. For complicated quivers it is
advisable to implement the Coulomb branch formula step by step, using the
more elementary routines described below.

e CoulombBranchFormulaFromH[Mat_,Cvec_,Nvec_,R_ J:returns the Dolbeault
polynomial of a quiver with DSZ products «;; = Mat[[7, j]], dimension vector
N,; = Nvec|[i]], FI parameters (; = Cvec|[i]], using the rule R to replace all
CoulombH factors.

e QuiverPoincarePolynomial[Nvec_,y_]:constructs the Poincaré-Laurent poly-
nomial of a quiver. Coincides with QuiverPoincarePolynomialRat for prim-
itive dimension vector;

e QuiverPoincarePolynomialRat[Nvec_,y_]:constructs the rational Poincaré-
Laurent polynomial Qcoutomb(7; ¢; ¥);

e QuiverPoincarePolynomialExpand[Mat_,PMat_,Cvec_, Nvec_, ()_]: evalu-
ates the Cou-lomb indices gooulom» and total single-centered indices Qo1 (v, ¥)
appearing in the Poincaré-Laurent polynomial () of a quiver with DSZ prod-
ucts o;; = Mat[[4, j]], perturbed to PMat|[[7, j]|, dimension vector N; = Nvec|[i]],
FI parameters (; = Cvec|[i]];

e CoulombHSubQuivers[Mat_,PMat_,Nvec_,y_]:computes recursively all CoulombH

factors for DSZ matrix Mat, perturbed to PMat, and any dimension vector
strictly less than Nvec; relies on the next two routines:

e ListCoulombH[Nvec_,()_]: returns returns a pair {ListH,ListC} where ListH
is a list of CoulombH factors possibly appearing in the Poincaré-Laurent
polynomial () of a quiver with dimension vector Nvec, and ListC is the list of
coefficients which multiply the monomials in Q°(ay, y) canonically associated
to the H factors in Q).

e SolveCoulombH[ListH_,ListC_, R_1]: returns a list of replacement rules for the
CoulombH factors listed in ListH, by applying the minimal modification hy-
pothesis to the coefficients listed in ListC. The last argument is a replacement
rule for CoulombH factors associated to subquivers.

New in
v2.0:

New in
v2.0:

e MinimalModif[f_]J:returns the symmetric Laurent polynomial which coincides
with the Laurent expansion expansion of the symmetric rational function f
at y = 0, up to strictly positive powers of y. Here symmetric means invariant
under y — 1/y. In practice, MinimalModif[f] evaluates the contour integral

in [4], Eq 2.9

271 (1 —uy)(1 — u/y)
by deforming the contour around 0 into a sum of counters over all poles of
f(u) and zeros of (1 — uy)(1 — u/y). This trick allows to compute (5.1)
even if the order of the pole of f(y) at y = 0 is unknown, which happens if
$QuiverMultiplier is a formal variable.

e SimplifyOmSbasis[f_]:replaces Q°(7,y) — 1 when « is a basis vector, unless
$QuiverOmSbasis is set to 0;

e SimplifyOmSbasismult[f_]:replaces 25(v,y) — 0 when 7 is a non-trivial mul-
tiple of a basis vector, unless $QuiverOmSbasis is set to 0;

e CoulombHNoLoopToZero[Mat_,f _]:sets to zero any H factor in f corresponding
to subquivers without loop, assuming DSZ products «;; = Mat|[[4, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

e OmTNoLoopToZero[Mat_,f_]:sets to zero any €1 factor in f corresponding to
subquivers without loop, assuming DSZ products «;; = Mat|[i, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

e OmSNoLoopToZero[Mat_.,f J:sets to zero any Q° factor in f corresponding to
subquivers without loop, assuming DSZ products «;; = Mat|[i, j]] ; active
only on 2-node subquivers if $QuiverTestLoop is set to False

e EvalCoulombH3[Mat
vector {1,1, 1} appearing in f. Not used in any routine so far.

f_1: evaluates any 3-center H factor with multiplicity

—

e DropFugacitylf_J:replaces Q5(v,y™, t™) by Q5(v,t™) everywhere in f

e SwapFugacity[f_J:replaces Q5(vy,y™) with Q5(~y,y™, ™) everywhere in f

6 Higgs branch formula

eHiggsBranchFormula[Mat_,Cvec_,Nvec_]:computes the Poincaré-Laurent poly-
nomial of a quiver with DSZ products «;; = Mat[[i, j]] (possibly rescaled
by $QuiverMultiplier), dimension vector N; = Nvecl[i]], FI parameters
¢; = Cvec|[i]], using the Higgs branch formula. It is assumed, but not checked,

that the quiver has no oriented loop;

e StackInvariant[Mat_,Cvec_,Nvec_,y_]:gives the stack invariant of a quiver
with DSZ matrix o;; = Mat[[z, j]], possibly rescaled by an overall factor of
$QuiverMultiplier, FI parameters (; = Cvec|[i]], dimension vector N; =
Nvecl[i]], using Reineke’s formula; the answer is written in terms of unevalu-

ated g-deformed factorials QQFact[n,y];

e AbelianStackInvariant[Mat_,Cvec_,y_]:gives the Abelian stack invariant
(??7) of a quiver with DSZ matrix «;; = Mat[[i, j]], possibly rescaled by
an overall factor of $QuiverMultiplier, FI parameters (; = Cvec[[i]], us-
ing Reineke’s formula; coincides with StackInvariant with Nvee= {1,...1}
except that tests of marginal or threshold stability are performed (unless

$QuiverVerbose is set to False);
e (DeformedFactorialln_,y_]:gives the g-deformed factorial [n,y]!

e EvalQFact[f_]:evaluates any (QFact[n,y| appearing in

7 Utilities

e ListAllPartitions[charge vector_]:returns the list of unordered partitions
{a;} of the positive integer vector v as a sum of positive, non-zero integer
vectors «;;

e ListAllPartitionsMult[charge vector_ J:returns the list of unordered parti-
tions {a;, m;} of the positive integer vector v as a sum of positive, non-zero
integer vectors «; with multiplicity m;;

e ListSubQuivers[Nvec_]J:gives a list of all dimension vectors less or equal to
Nvec;

e SubDSZ[Mat_,Cvec_,Li_]:gives the DSZ matrix of the subquiver made of vec-
tors in list Li;

e SymmetryFactor[Li_]:gives the symmetry factor 1/|Aut({ay, ag, -, a,}| for
the list of charge vectors Li;

e OmTRat[Nvec_,y_1: gives the rational total invariant Q. (7;y) in terms of

—/

Qiot(7;). Coincides with the latter if is primitive.
e OmTToOmS[f_]:expands out any Qi (v;y) in f into H factors and Q%’s;
e OmToOmb[f_]:expresses any Q(7;%) in f in terms of Q(v;y)’s;
e OmbToOm[f_]:expresses any Q(7;%) in f in terms of Q(v;y)’s;

e HiggsGToOmb[Nvec_,y_]:Returns the (unevaluated) HN invariant Guiges(7,y)
in terms of the rational refined indices Q(v;y);

e OmbToHiggsG[Nvec_,y_]: Returns the (unevaluated) rational refined index Q(y;)
in terms of the (unevaluated) stack invariants Guiges(7v, ¥);

e RandomCvec[Nvec_]:generates a random set of FI parameters (; between -1
and 1, such that) ¢; Nvec][[i]] = 0;

e UnitStepWarn[x_]:gives 1 for x > 0, 0 for x < 0, and 1/2 if x = 0. Produces
a warning in this latter case, irrespective of the value of $QuiverVerbose. If
so, the user is advised run the computation again with a different random
perturbation. For efficiency, this instruction is no longer used in v2.1, however
a warning is still issued if one encounters a Heaviside function with zero
argument in the evaluation of the Coulomb indices.

e GrassmannianPoincarelk ,n_,y_]:computes the Poincaré polynomial of the

New in Grassmannian G(k,n) via Eq. (6.22) in [4].

v2.0: eCyclicQuiverOmS[avec_,t_]:computes the single-centered index Q5(vi, ..., vk)
associated to a cyclic Abelian quivers with DSZ matrix o j11 = avec|[i, i+1]]
via Eq (4.29) in [4].

New in ® QuiverPlot[Mat_]1:Displays the quiver with DSZ matrix Mat.

v2.1: e FIFromZ[Nvec_,Zvec_]: Computes the FI parameters {¢;} from the vector of
central charges Zvec = {Z;} and dimension vector Nvec = {N;} via ¢; =
S(e™®Z;), where ¢ is the argument of > . N;Z;. The parameters ¢; are
rounded up to the nearest rational number with denominator less than $QuiverPerturbl.

New in
v2.0:

7.1 DMutations

The following routines and environment variables were introduced in CoulombHiggs .m

v1.1, to allow investigation of mutations of generalized quivers [6]:

e MutateRight[Mat_,Cvec_,Nvec_,k_]1: Computes the DSZ matrix, FI parame-
ters and dimension vector of the quiver obtained by applying a right-mutation
with respect to the node k. If kis a list {k;}, then the right mutations k; are
applied successively, starting from the last entry in k. No consistency check
on the FI parameters is performed.

e MutateLeft[Mat_,Cvec_,Nvec_,k_]1: Computes the DSZ matrix, FI parame-
ters and dimension vector of the quiver obtained by applying a left-mutation
with respect to the node k. If kis a list {k;}, then the right mutations k; are
applied successively, starting from the last entry in k. No consistency check
on the FI parameters is performed.

e OmStoOmS2[f_]:replaces OmS|gam, y, t| by OmS2[gam, y, t| anywhere in . This is
useful for distinguishing the single-centered invariants of the mutated quiver
from those of the original one.

e MutateRightOmS[Mat_ k_.f J:expresses the single-centered invariants OmS|gam, v, t|
of the original quiver with DSZ matrix Mat in terms of the single-centered in-
variants OmS2[gam, v, t| of the quiver obtained by right-mutation with respect
to node k, using Eq. 1.13 in [6].

e MutateLeftOmS[Mat_,k_,f J:expresses the single-centered invariants OmS|gam, y, t|
of the original quiver with DSZ matrix Mat in terms of the single-centered
invariants OmS2[gam, y, t| of the quiver obtained by left-mutation with respect
to node k, using Eq. 1.13 in [6].

e MutateRightOmS2[Mat_,k_,f]:expresses the single-centered invariants OmS2[gam, y, t|
a quiver with DSZ matrix Mat in terms of the single-centered invariants
OmS[gam, v, t] of the quiver obtained by right-mutation with respect to node k.
Identical to MutateRightOmS, except for swapping OmS|gam, y, t| and OmS2[gam. y. t].

e MutateLefttOmS2[Mat_ k_,f]:expresses the single-centered invariants OmS2[gam, y, t]
a quiver with DSZ matrix Mat in terms of the single-centered invariants
OmS|gam, v, t] of the quiver obtained by right-mutation with respect to node k.
Identical to MutateLeft0mS, except for swapping OmS|gam, y, t| and OmS2[gam, v, t].

e DropOmSNeg[f_]:equates to 0 any Q5(v,y,t) where the dimension vector asso-
ciated to v has negative components.

e $QuiverMutationMult: Equal to 1 by default. Set to M, defined in Eq. (1.8)
of [6] when dealing with generalized quivers.

10

References

[1] M. Reineke, “The Harder-Narasimhan system in quantum groups and coho-
mology of quiver moduli,” Invent. Math. 152 (2003), no. 2, 349-368.

2] J. Manschot, B. Pioline and A. Sen, “Wall Crossing from Boltzmann Black
Hole Halos,” JHEP 1107, 059 (2011) [arXiv:1011.1258 [hep-th]].

[3] J. Manschot, B. Pioline and A. Sen, “A Fixed point formula for the index of
multi-centered N=2 black holes,” JHEP 1105, 057 (2011) [arXiv:1103.1887
[hep-th]].

[4] J. Manschot, B. Pioline and A. Sen, “From Black Holes to Quivers,” JHEP
1211 (2012) 023 [arXiv:1207.2230 [hep-th]].

[5] J. Manschot, B. Pioline and A. Sen, “On the Coulomb and Higgs branch
formulae for multi-centered black holes and quiver invariants,” JHEP 1305
(2013) 166 [arXiv:1302.5498 [hep-th]].

[6] J. Manschot, B. Pioline and A. Sen, “Generalized quiver mutations and single-
centered indices,” JHEP 1401 (2014) 050 [arXiv:1309.7053 [hep-th]].

[7] J. Manschot, B. Pioline and A. Sen, “The Coulomb branch formula for quiver
invariants”, [arXiv:1404.7154 [hep-th]].

11

