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1 Introduction

The out of equilibrium relaxation of glasses is well understood at the mean-
field level. Fully-connected disordered spin systems, finite dimensional mani-
folds evolving in infinite dimensional transverse spaces with quenched random
potentials, and mode-coupling-like approximations to models of interacting
particles with short-ranged potentials have been successfully analyzed. The
results obtained are consistent with the alternative analysis of metastable
states that uses an effective free-energy density (Thouless-Anderson-Palmer
approach) and the replica trick extended to access metastability and not only
equilibrium properties. All these formalisms allow one to analyse global or
macroscopic observables and correlation functions measured over the full sys-
tem [1].

In super-cooled liquids and glasses glassy systems dynamic fluctuations are
expected to be very important [2]. It has been only recently that theoretical
attention has turned to their analytic description, notably in the super-cooled
liquid regime [3]. In this note we shall present a very short summary of a
theory of dynamic fluctuations in the glassy regime that is based on the as-
sumption that time-reparametrization invariance develops asymptotically in
these systems and that it is responsible for spatio-temporal fluctuations (for
a recent review see [4]). We provide a rather complete list of references on
this approach that should help the reader find all the details that are omitted
here. In this note we focus on the application of these ideas to disordered
spin models with an energy function. The proposal has also been discussed in
the context of kinetically facilitated spin systems and models of particles in
interaction.
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2 Mean-field disordered models

The p-spin spherical disordered model mimics glassiness in the so-called fragile
glasses [1]. It is defined by its energy function:

EJ (s) =
∑

i1 6=...6=ip

Ji1...ip
si1 . . . sip

+ z

(

∑

i

s2

i − N

)

,

where z is a Lagrange multiplier enforcing the spherical constraint on the
‘vector’ spin s = (s1, . . . , sN). Each component can take any real value. The
Ji1...ip

are quenched i.i.d. Gaussian random variables with [Ji1...ip
] = 0 and

[ J2

i1...ip
] ∝ N1−p with the square brackets denoting an average of the dis-

order strength distribution function. The integer p defines the model and it
characterizes different ‘universality classes’ depending on p = 2 or p > 2.

The system is coupled to its environment that generates stochastic dynam-
ics for si. Since the spin-components are continuous variables one proposes a
Langevin dynamics in the overdamped limit

γṡi(t) = −
δEJ(s)

si(t)
+ ξi(t) ,

with ξ a Gaussian white noise:

〈 ξi(t) 〉 = 0 , 〈 ξi(t)ξj(t
′) 〉 = 2γkBTδijδ(t − t′) .

γ is the friction coefficient, T is the temperature of the bath and kB is the
Boltzmann constant (kB = 1 henceforth). A rapid quench from high tem-
perature is mimicked by a random initial conditions, si(0), taken, e.g., from
a Gaussian pdf. Such an initial condition is uncorrelated with the quenched
randomness Ji1...ip

.
In the N → ∞ limit the causal dynamics can be described with the global

correlation function

C(t, tw) = N−1

N
∑

i=1

[ 〈si(t)si(tw)〉 ] ,

the associated linear response function

R(t, tw) = N−1

N
∑

i=1

〈 δsi(t) 〉

δhi(tw)

∣

∣

∣

∣

h=0

,

or its integral over time χ(t, tw) =
∫ t

tw
dt′R(t, t′). In the N → ∞ limit exact

causal Schwinger-Dyson equations

(∂t − zt)C(t, tw) = 2TR(t′, t) +

∫

dt′ [Σ(t, t′)C(t′, tw) + D(t, t′)R(tw, t′)] ,

(∂t − zt)R(t, tw) = δ(t − tw) +

∫

dt′ Σ(t, t′)R(t′, tw) ,
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where the self-energy and vertex are functions of C and R:

D(t, tw) =
p

2
Cp−1(t, tw) , Σ(t, tw) =

p(p − 1)

2
Cp−2(t, tw)R(t, tw) ,

and the time-dependent Lagrange multiplier zt is fixed by imposing C(t, t) =
1 [5, 6]. These equations can be solved numerically but also analytically in
the long tw limit [5, ?] if one uses a few assumptions.

Below a critical temperature Td(p) the system cannot equilibrate with its
environment and relaxes out of equilibrium. The correlation and linear reponse
age (stationary is lost). A separation of time scales controlled by tw develops
and it is illustrated in Fig. 1 (a). The relaxation below the plateau q scales as

Cs(t, tw) ≈ qfc

(

L(t)

L(tw)

)

, ∂tC
s(t, tw) ≪ Cs(t, tw) , (1)

with fc(1) = 1 and fc(∞) → 0, and it is very slow. One can then approximate
the dynamic equations by dropping the time-derivatives and approximating
the integrals. The equations for the slow correlation and linear response then
become invariant under time-reparametrization. For example, taking t− tw ≫
tw, using zt → z∞, dropping ∂tR and separating the fast contributions to the
integrals the equation for the linear response becomes

z̃∞Rs(t, tw) ∼

∫ t

tw

dt′ D′[Cs(t, t′)] Rs(t, t′)Rs(t′, tw) . (2)

z̃∞ differs from z∞ in that it got contributions from the integrals. Equation (2)
is invariant under the transformation

t → ht ≡ h(t) ,

{

Cs(t, tw) → Cs(ht, htw
) ,

Rs(t, tw) →
dhtw

dtw
Rs(ht, htw

) .

with ht any positive-definite and monotonic function of time.
The methods described in [1, 5] allow one to compute analytically fc and

χ(C)

χ(t, tw) ≡

∫ t

tw

dt′ R(t, t′) ∼
1 − q

T
+

1

Teff

Cs(t, tw) = χ(C)

at times t and tw such that 1 < L(t)/L(tw), but not the ‘clock’ L(t). Note
that the slow part of χ, 1/TeffCs(t, tw) is finite since Teff < +∞ [8].

In finite dimensional models numerical simulations show that the global
correlation function also shows a separation of time-scales stationary-aging,
although the plateau is less clearly established [9]. A Renormalization-Group
like argument based on the assumption that a separation of time-scales exists
allows one to show the approximate asymptotic invariance of the slow part
of the action Sslow in the Martin-Siggia-Rose generating functional of the
Langevin equation under global time-reparametrizations [10, 11, 12, 13]:
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Fig. 1. (a) Sketch of the decay of the two-time correlation below Td(p) for three
waiting-times tw1 < tw2 < tw3. (b) With a solid line the parameteric construction
χ(C) for tw fixed and t running from tw to ∞. The three points are the values
obtained at a pair (t, tw) using different functions L1(t) < L2(t) < L3(t).

t → ht ≡ h(t) ,

{

Cs
r (t, tw) → Cs

r (ht, htw
) ,

Rs
r(t, tw) →

dhtw

dtw
Rs

r(ht, htw
) .

Symmetry breaking terms become less important as tw → ∞ and t− tw → ∞.
The idea is to use this invariance to characterize the fluctuations measured

on different boxes with volume Vr centered at sites r in the sample:

Cr(t, tw) ≡
1

Vr

∑

i∈Vr

si(t)si(tw) ,

χr(t, tw) ≡
1

Vr

∑

i∈Vr

∫ t

tw

dt′
δsi(t)

δhi(t′)

∣

∣

∣

∣

h=0

.

These are local coarse-grained two-time functions and the proposal is that
they scale as

Cs
r (t, tw) ≈ qrfc

(

Lr(t)

Lr(tw)

)

(3)

with fc the same scaling function as the one in the global correlation. For

instance, different regions can have different L1 = ln
(

t
t0

)

, L2 = t
t0

, L3 =

e
ln

a
(

t

t0

)

with a > 1, as sketched in Fig. 2 (a). The reason for this is that the
time-reparametrization invariance makes it easy to modify the ‘clock’ from
region-to-region (massless fluctuations). Instead, the scaling function fc is
hard to change (massive fluctuations).

A number of consequences of this proposal are relatively easy to put to
the test numerically or even experimentally and have been summarized in [4].
One of the most stricking one is the extension of the triangular relations [14]
between global correlation functions measured at times t1 ≤ t2 ≤ t3, taken by
pairs C(ti, tj) with i, j = 1, 2, 3, to the local ones [15]. Indeed, the scaling (3)
implies that the local correlations should be related by the same triangular
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Fig. 2. (a) Decay of the local two-time correlation, at fixed tw as a function t− tw,
on different slower and faster regions. (b) Sketch of the triangular relations between
correlation functions measured at three times on local regions in space.

relation as the global ones. A sketch of the behaviour expected is shown in
Fig. 2 (b). Each curve is traced for a region using the intermediate time as
a parameter. Each region has its own different value of Cr

13. This fact was
checked in [15] for the 3d Edwards-Anderson model.

In order to go further one should obtain an effective action for the local
ages Lr(t) – a sigma model. Of course this is a very difficult task. A possible
family of models in which this action could be computed are spin-glass models
with Kac-type interactions [17]. In practice, in the past we have just proposed
an action S[Lr] requiring it to be (i) global time-reversal invariant; (ii) local
in space; (iii) positive definite [10, 11, 12, 16]. We have derived from it some
predictions that we checked numerically in disordered finite dimensional spin
models [10, 11, 12, 15] and kinetically constrained models [16].

The analysis of simple coarsening models [the O(N) model in the large
N limit] [18] suggests that dynamic fluctuations in simple coarsening systems
might be different from the ones in glassy problems. At least for this mean-field
model there is no invariance under generic time-reparametrization as the one
discussed above and this result seems to be strongly related to the fact that the
effective temperature [8], as defined from the deviations from the equilibrium
fluctuation dissipation theorem in the out of equilibrium relaxation, is infinite
in this case. This suggestion should be confirmed by further calculations and
numerical studies in other domain growth problems and critical dynamics.
One should be very careful, though, and analyse consequences of the time-
reparametrization invariance scenario that are not simply due to the existence
of a growing length scale (see the analysis and discussion of the dynamics of the
3d random field Ising model in [19]). Two candidates are the local triangular
relations and the local fluctuation-dissipation relation. It would be interesting
to extend the numerical study of Lennard-Jones mixtures [20] to the analysis
of these local properties.
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