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Invitation

A deeper and more complete understanding of out of equilibrium systems is cur-
rently one of the main goal of theoretical physics. The theory is not mature as
its equilibrium counterpart and it is not an obvious question whether it would be
even possible to reach that level or not. The research efforts towards generalizations
and improvements in the formulation of a unified framework for out of equilibrium
phenomena should therefore go along with inquiries on specific problems. The lat-
ter have of course the primary goal of understanding particular instances but the
methods developed and the knowledge accumulated in the process can contribute
to the advance of the general theory. The research body presented in this thesis
regards out of equilibrium properties of classical spin models.

Spin models are very attractive for theoretical physicists. The simplicity of
their structures and their dynamical rules often allows for efficient numerical and
analytical investigations and therefore provides a true fundamental understanding
of the mechanisms at play. At the same time this simplicity does not imply triviality.
The phenomenology these models display can be rich and complex and can mirror
the behavior of realistic, more complicated, systems or can represent the starting
point to approach their study.

The common thread running through the arguments considered in this thesis
is their nonequilibrium nature. Apart from that the problems tackled may be
sometimes loosely related to one another and this is partly due to the fragmented
nature of the apparatus of out of equilibrium statistical mechanics. They regard
aspects of the models which are diverse and the tools adopted for the inquiries
vary as well. Therefore in Chapter 1 a context for the problems analyzed in the
thesis is given but the introduction to the specific instances, along with a brief
summary of the original results, is delineated at the beginning of each chapter for
clarity. The rest of the thesis is dived in two parts. Part I is devoted to the Ising
model. In Chapter 2 the dynamical properties of the fluctuations of observables
of the model are studied. In particular a coarse grained field theoretical approach
is used to describe the model and fluctuations properties are investigated through
large deviation theory. Chapter 3 is inspired by the out of equilibrium properties
of the distribution of cluster’s sizes in the Ising model at criticality. The study of
an observable relevant to this scenario, the heterogeneity, is reported in the context
of a more general statistical system. PartII concerns the Potts model. In this
case the material of the chapters is more homogeneous. Indeed the focus on both
Chapter 4 and Chapter 5 is on the out of equilibrium dynamics of the Potts model
due to temperature quenches that bring the system across a critical point. For
given parameters of the model the phase transition is of first order and typical
features like metastability and nucleation emerge. The first chapter of this part
regards the description of the metastable states characteristic of this scenario and
the second one focus on the escape from it through nucleation processes. As for
the introductions also specific conclusions and comments can be found at the end
of each chapter.
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Chapter 1

Introduction

In this chapter we provide a general context for the problems studied in Part I and
II of this work. In the first section we discuss the absence of a unified framework in
out of equilibrium statistical mechanics, comparable with the one of the equilibrium
counterpart. Moreover we sketch some of the techniques used in the other chapters.
In the second section we define the classical spin models which are both object and
playground of this thesis: the Ising model and the Potts model.

1.1 Out of equilibrium problems

Out of equilibrium statistical mechanics lacks a well established framework which
allows to analyze transversely the problems the theory is set to tackle. The appa-
ratus of equilibrium statistical mechanics, on the other hand, allows to describe the
equilibrium configurations of statistical systems by means of few thermodynamic
variables and there are general principles that can be applied for this task. This
general principles are related to the existence of statistical ensembles, which have
no strict analogue in out of equilibrium problems. We elaborate on this point in
this section and discuss some aspects of the out of equilibrium dynamics followed
by statistical system in a relevant example: temperature quenches.

1.1.1 Statistical mechanics in and out of equilibrium

Physics thrives for the search of solid theories which can single-handedly account
for the description of many and diverse phenomena, and allow for quantitative in-
quiries of those. The power of a working theory is well exemplified by the one
which arguably decrees the beginning of theoretical physics: the apparatus of clas-
sical mechanics designed by Galilei and Newton. Newton writes in the preface of
its Philosophiae Naturalis Principia Mathematica [6]

"... Rational Mechanics will be the sciences of motion resulting from any forces
whatsoever, and of the forces required to produce any motion, accurately proposed
and demonstrated ... And therefore we offer this work as mathematical principles
of his philosophy. For all the difficulty of philosophy seems to consist in this from
the phenomenas of motions to investigate the forces of Nature, and then from these
forces to demonstrate the other phenomena ..."

A perspective on these lines is that Newton is proposing framework, a concise set of
principles to use systematically in the quest to understand physical reality. Classi-
cal mechanics finds its more powerful and versatile formulation in the Hamiltonian
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formalism [7]. The state of a hamiltonian dynamical system with N degrees of
freedom is defined by the set of its generalized coordinate {q1, . . . , qN , p1, . . . , pN}
which identifies a point on the 2N -dimensional phase space. The evolution in the
phase space is given by Hamilton’s equations

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

(1.1)

where H = H(q1, . . . , qN , p1 . . . , pN ) is the hamiltonian of the system. Hamiltonian
dynamics is the usual starting point to construct yet another theory, namely statis-
tical mechanics which deals with systems composed by a large number of degrees
of freedom, and aim to the understanding of macroscopic objects and phenomena
on the base of their microscopic constituents.

Equilibrium

In particular equilibrium statistical mechanics lays its basis in the ergodic hypothesis
first introduced by Boltzmann [8], which state that Eqs. (1.1) evolve a phase space
point of a confined Hamiltonian system in such a way that for a diverging time
t → ∞ it explore all the submanifold with equal energy. There are of course cases
when this is not satisfied, e.g., in the presence of other integrals of motion and even
in less trivial scenarios, see Fermi-Pasta-Ulam-Tsingou problem [9]. If the hypothe-
sis is assumed, it is possible to equate time averages of observables to averages over
a measure on the equal energy submanifold of the phase space and this measure is
constant. An Excusatio non petita is due: ergodicity is one of the cornerstones of
both classical and quantum equilibrium statistical mechanics and the importance
of a rigorous mathematical and physically sound description of this concept should
not be overlooked, see, e.g., Ref. [10]. Moreover for an interesting historical re-
view of the idea of the ergodic hypothesis, and some insights to its relevance even
for nonequilibrium scenarios see Ref. [11]. For a philosophical perspective on the
foundations of statistical mechanics see Ref. [12]. In this work however we do not
delve into the details of ergodicity, we just adopt the equiprobability principle that
it brings.

Classical spin models are at the core of this work, therefore we phrase the discus-
sion on basic ideas of equilibrium statistical mechanics in this context. Consider a
d-dimensional lattice with a spin variable ϕi at each vertex i which can assume a dis-
crete number of values. This implies that the space of all the possible microstates of
the system Γ is discrete, and we denote a generic microstate with ϕ = {ϕ1, . . . , ϕN}
where N is the total number of spins. The nature of the interactions among the
spins and between the spins and external fields is codified by an hamiltonian H[ϕ].
A caveat: spin systems can be defined through an hamiltonian but this does not
necessarily equip them with a “natural” dynamics. Therefore to study dynamical
properties of a spin model it should be completed with some rules, we elaborate
below on this point. For the present discussion, related to equilibrium properties,
we do not actually need that. The only fact we require to make contact with the
statistical mechanics of hamiltonian systems is again ergodicity, which in this con-
text purely1 amounts to the request that the a priori equiprobability principle holds.
If such is the case the equilibrium probability for a system at fixed energy E to be
in a specific microstate ϕ is given by

PE([ϕ]) =
δH[ϕ],E

Ω(E)
, (1.2)

1By purely here we mean that there are no arguments related to time averages, although when
a dynamics is defined such a connection can be made.
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where the Kronecker delta enforces the energy constraint and Ω(E) is the number
of microstates which satisfy it

Ω(E) =
∑
ϕ∈Γ

δH[ϕ],E . (1.3)

This last quantity is also called the microcanonical partition function and the proba-
bility distribution in Eq. (1.2) is themicrocanonical ensemble. From Eq. (1.3) is pos-
sible to define the entropy S(E) = kB ln Ω(E) associated to a macrostate with given
energy (kB is the Boltzmann constant), the concept of temperature 1/T = ∂S/∂E
and in general begin to build connections between the microscopic realm and the
laws of thermodynamics. From this point is also possible to build the canonical
ensemble, which is more tractable but equivalent to the microcanonical in the ther-
modynamic limit. We rely on the same assumptions about equiprobability used
above which characterize equilibrium statistical mechanics. In the canonical setting
we allow energy fluctuations, to achieve this we focus only on a part of the system
of total energy E, say a large portion n of the spins which is nonetheless small
compared to the total n � N/2. We denote now with ϕ ∈ Γ the microstates of
just the small portion and with ϕr ∈ Γr the microstates of the rest of the spins
which we consider as a reservoir at fixed temperature T . This means that we are
allowing the reservoir to absorb energy form the small system without letting the
temperature change. Denoting the total space of the microsates with Γt = Γ × Γr
we can understand this approximation acknowledging that the energy H[ϕ] � E
∀ϕ ∈ Γ. We can formally write the microcanonical partition function of the total
system as

Ω(E) =
∑
ϕ∈Γ

∑
ϕr∈Γr

δH[ϕ]+H[ϕr],E =
∑
ϕ∈Γ

Ωr(E −H[ϕ]) =
∑
ϕ∈Γ

eSr(E−H[ϕ])/kB . (1.4)

Taylor expanding now the entropy of the reservoir due to our consideration above
we can write

Ω(E) ≈
∑
ϕ∈Γ

e
Sr(E)/kB−∂Sr/∂H[ϕr]

∣∣∣
H[ϕr ]=E

H[ϕ]/kB
= eSr(E)/kB

∑
ϕ∈Γ

e−βH[ϕ], (1.5)

where β = 1/kBT and from this last equation is clear that we coarse grained the
degrees of freedom of the reservoir. At this point we employ again the equiproba-
bility principle and note that the probability of each microstate of the total system
is 1/Ω(E) and the number of those state for which the partition of the system has
microstate ϕ is eSr(E)/kBe−βH[ϕ]. Therefore the probability for the system of inter-
est of being in the microstate ϕ, given that the reservoir is at inverse temperature
β, is

Pβ([ϕ]) =
e−βH[ϕ]

Z(β)
, (1.6)

where
Z(β) =

∑
ϕ∈Γ

e−βH[ϕ]. (1.7)

The probability distribution above is the canonical ensemble and the partition func-
tion Z(β) is of course the most important object of equilibrium statistical mechan-
ics. The theory allows a broad and deep comprehension of a vast spectrum of
macroscopic phenomena, among which phase transitions, i.e., sharp changes in the
structure of matter, or in more abstract contexts in the collective behavior of the
constituents of a system, at critical values of external control parameters such as
temperature (Ref. [13] is a beautiful textbook on the subject). This success is due
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to the existence of the statistical ensembles which assign measures on the space of
possible microstates of a system at equilibrium requiring only the knowledge of the
nature of the microscopic interactions and of external control parameters. This is
not achievable in out of equilibrium regimes, the dynamical details and boundary
conditions are relevant and the theory does not provide a model-independent form
for the measures.

Out of equilibrium

Out of equilibrium situations are more common in nature then equilibrium ones,
this is true in physical settings but also in other areas such as biology for example.
Consider, e.g., homeostasis, one of the most characteristic features which allows to
distinguish living organisms from inert matter, it is precisely the effort to avoid
equilibration of the system with the environment (thermal, chemical and so on).
As we anticipated above the lack of a framework as solid as the one of equilibrium
problems is due to the relevance of the dynamics in this context, time enters the
game. Therefore we have a measure for the microstates which has no universal
form and it is either time dependent P ([ϕ], t) or, in the case of nonequilibrium
stationary states (NESS), a time independent one PNESS([ϕ]) which nonetheless
depends on the details of the dynamics. There are diverse situations where out
of equilibrium tools have to be employed. For example when an open system, say
in a canonical setting, has a very slow equilibration dynamics such that it never
really achieve equilibrium. A prominent instance of this scenario is the description
of glassy systems [14], one of the most interesting (and hard) open problems in
condensed matter and out of equilibrium statistical mechanics. An other typical
subject of out of equilibrium statistical mechanics is represented by externally driven
systems, in this case one is mostly interested in NESS but not necessarily. Examples
are driven lattice gasses [15], reaction-diffusion processes [16] and active matter [17]
to list just a few. The last situation we want to mention, which is the most relevant
for this thesis regard the relaxational dynamics (not necessarily slow in reaching
equilibrium) of systems which cross a phase transition and undergo phase ordering
kinetics [18]. For a nice overview of (classical and quantum) out of equilibrium
dynamics in statistical systems see, e.g., Ref. [19].

Let us express again basic concepts of the theory by means of classical spin
models and consider the generic one defined above to discuss equilibrium. Once the
model dependent properties of the dynamical scenario under analysis are set, we
need to give a rule, a dynamic conditions, for the evolution of the spin variables.
There are different ways to do this which target specific goals and serve for different
scopes, but are all related and in some sense equivalent. Two possible choices are the
following. To approach out of equilibrium problems from a computational point of
view the usual strategy is to simulate the system evolution viaMonte Carlo methods.
Concretely, one design a Markov chain in which at each microscopic time step one
site i is chosen at random and changes the value of the local spin ϕi according to a
probabilistic rule which may depend on both the initial and final microstates of the
system. An approach more versatile for analytical inquiries is that of Langevin, or
time dependent Ginzburg-Landau, equations. In this case a coarse graining of the
spin lattice is performed and the spin variables are describe by a field, the dynamics
of which is regulated by a specific stochastic partial differential equation. We sketch
below the problem of temperature quenches for classical spin system, an instance
relevant for the body of this thesis, to elucidate some of these ideas.
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1.1.2 Temperature quenches

Consider a canonical setting, in the sense that the system is coupled with a reservoir
and energy can be exchanged. The problem consist in preparing the system at
equilibrium with the bath at a given temperature Ti and then abruptly change the
temperature of the bath to Tf . We are interested in the relaxation dynamics which
leads the system to the new thermal equilibrium. We specialize for this discussion
the generic spin model introduced above to the d-dimensional Ising model with
nearest neighbor ferromagnetic interaction without external fields. The hamiltonian
of the model is given in the section below, for the purpose of the discussion it suffice
to say that the spin are binary variables ϕi ∈ {−1, 1} ∀i ∈ N and use the well
known fact that a finite critical temperature Tc separates, through a continuous
phase transition, a disordered (paramagnetic) high temperature phase to an ordered
(ferromagnetic) low temperature one.

One way to explore the dynamics is by means of Monte Carlo methods. Consider
a microstate ϕa, select with uniform probability distribution a spin ϕk from the
lattice and then propose the following move

ϕa = {ϕ1, . . . , ϕi, . . . , ϕN} → ϕb = {ϕ1, . . . ,−ϕi, . . . , ϕN}, (1.8)

turning, say, ϕi = 1 in ϕi = −1 resulting in the new microstate ϕb. The move
is accepted with probability, or transition rate, Ta→b. For relaxational problems
we require a dynamics which does not lead to a generic NESS, but the stationary
solution for t→∞ should be an equilibrium one. This is achieved if the transition
rates respect detailed balance [20]

Ta→b
Tb→a

= e−βf (H[ϕb]−H[ϕa]), (1.9)

where βf is the inverse temperature of the bath after the quench. This ensure that
the probability for the system to be found in a given microstate and change to
another is the same as the inverse process, it has to do with reversibility and its a
distinctive feature of equilibrium states. For a system with N spins, conventionally,
N update attempts correspond to one Monte Carlo step (MCs). There is some
freedom in the choice of the transition rates as it is clear by an inspection of Eq. (1.9),
one of the most common is

Ta→b = min
{

1, e−βf (H[ϕb]−H[ϕa])
}

(1.10)

which defines the Metropolis algorithm [21]. In Fig. 1.1 we display the relaxation
dynamics of the Ising model (see caption for details) as captured by snapshot at
various time obtained by means of Monte Carlo simulations.

time

Figure 1.1: Snapshots capturing the relaxation dynamics up to
105 MCs of the nearest neighbor 2d Ising model on a square lattice
of linear size L = 1000 with periodic boundary conditions (p.b.c.).
The system is prepared in a completely disordered state (Ti →∞)
and then quenched to Tf = 0.
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Another way to analyze the dynamics in the effort to grasp some understanding
of the process from an analytical point of view is through Langevin equations. To
describe the Langevin approach to the dynamics we define a coarse graining field
for the spin variables

φ(~x) ≡
∑
i∈C ϕi

Nld
, (1.11)

which is the average of the values of the spin included in a d-dimensional cube C of
side l and centered in ~x normalized to have φ =

∫
d~xφ(x) ∈ [−1, 1]. The Ginzburg-

Landau free energy for the ordered phase of the model has the form (see section
below for the derivation)

F [φ] =

∫
d~x
[1

2
(∇φ)2 + f(φ)

]
(1.12)

where the gradient term takes into account the energy cost of interfaces between
areas of different values (gray and white in Fig. 1.1) and

f(φ) = (1− φ2)2 (1.13)

is the characteristic double-well potential with minima in φ = ±1. The stochastic
dynamics of the system is built on the fact that the thermal bath induces fluctua-
tions in the systems and allows for dissipation of its energy. From the coupling of
the system with the bath is possible to derive (see, e.g., Ref. [13]) the overdamped2

Langevin equation
∂φ(~x, t)

∂t
= − δF [φ]

δφ(~x, t)
+ η(~x, t), (1.14)

where on the left hand there is the dissipative term, then a deterministic force is
represented by the functional derivative of the Ginzburg-landau free energy and
η(~x, t) is a zero mean Gaussian noise with correlation defined through averages over
realizations give by

〈η(~x, t)η(~x′, t′)〉 = 2β−1δ(~x− ~x′)δ(t− t′). (1.15)

This equation can be heuristically understood considering that the deterministic
part evolves the field towards configurations which minimize the free energy func-
tional and the noise allows for exploration of the landscape to avoid local minima.
As for the Monte Carlo methods the stationary solution of this evolution rule should
be an equilibrium one, i.e. the probability distribution P ([φ]) for a global configu-
ration of the field φ at stationarity should be a Gibbs measure. This is achieved by
the amplitude of the noise being proportional to the temperature of the bath, as
well as friction constants that we tacitly absorbed here simply rescaling time. With
this choice passing to from the stochastic Langevin equation for the field to the
equivalent deterministic Fokker-Planck equation for the evolution of the probability
distribution of the field P ([φ], t) (see, e.g., Ref. [13] for details) one obtains

∂P ([φ], t)

∂t
=

∫
d~x

δ

δφ

(δF [φ]

δφ
P ([φ], t) + β−1 δP ([φ], t)

δφ

)
, (1.16)

which is satisfied at stationarity by Peq([φ]) ∼ e−βF [φ] by direct inspection. The
Langevin approach is fruitful to study the phase ordering kinetics, namely the details
how the systems reach an ordered phase. In the scenario at hand is possible, as an
example, to provide in few lines quantitative insights on the time dependence of the

2In the sense that it does not contain an acceleration term which is dropped because the time
scales associated are short and not relevant for the dynamics.
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size of the ordering clusters with extremely simplified arguments. In the case of a
quench at Tf = 0 , as in Fig. 1.1, Eq. 1.15 reduce to a gradient descent

∂φ(~x, t)

∂t
= − δF [φ]

δφ(~x, t)
. (1.17)

We consider now the faith of an ideal spherical domain with bulk value of the field,
e.g., φ = −1 in a large portion of the space where φ = 1. How the radius R(t) of
the domain changes with time? We can place our reference frame at the center of
the domain and due to the spherical symmetry of the problem expect the field to
be of the form φ(r, t) = g(r − R(t)), where g(ξ) equals -1 for negative arguments,
1 for positive argument and varies from one to the other in a small region around
ξ = 0, the interface. The evolution equation can be cast in spherical coordinates

∂φ

∂t
=
∂2φ

∂r2
+
d− 1

r

∂φ

∂r
− df

dφ
, (1.18)

which, substituting the expected form for the field, reads

d2g

dξ2
+
(dR
dt

+
d− 1

r

)dg
dξ
− df

dg
= 0. (1.19)

If we consider a thin enough interface, dg/dξ is a function sharply picked around
zero, where d2g/dξ2 = 0, and zero everywhere else. Thus if we multiply the last
equation for dg/dξ, and keep in mind that f is equal on both side of the interface,
an integration in ξ leads to

dR

dt
+
d− 1

R
= 0. (1.20)

Solving for the radius this last equation gives R(t) =
√
R2(0)− 2(d− 1)t, which

means that a cluster of size R disappear after a time t ∼ R2. This quite naive
calculation allows to deduce something deep, indeed if there are no domains smaller
in linear size then t1/2 at time t, the typical length of the domains Rtyp can be
roughly estimated as

Rtyp(t) ∼ t−1/2. (1.21)

There are of course more refined methods to land to this result and confirm that it
is sound (see, e.g., Ref. [18]), but it is striking that this simple calculation allows
to understand something this general. Equation (1.21) is the Lifshitz-Allen-Cahn
(LAC) law [22,23], an example of growth law shared by many systems which are very
different but nonetheless display the same coarsening behavior. Indeed we used a
free energy functional form which only depends on symmetries and dimensionality
of the system and general dynamical equations which just have to lead equilibrium
and, in this specific case, do not conserve the order parameter (see Chapter 2), no
detailed microscopic features were invoked. This concluding remark is a way to state
that even though it is true that the theory of out of equilibrium statistical mechanics
does not share the unity of its equilibrium counterpart, there are nonetheless general
results like this one and many more in several other branches of the theory that we
(somehow guiltily) did not mention in this brief introduction.

1.2 Classical spin models of statistical mechanics
In this section we introduce the classical spin models which constitute the backbone
of this thesis, the Ising model and one of its best known generalizations: the Potts
model. This will not be an overview of the subject; the reason is twofold. The
topic is so wide and deep that an effort of giving a comprehensive overview of all
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the properties and applications of these models will result, in the best case, in an
enormous amount of information which would drive our focus away form the scope
of this work and in the worst case in a unsatisfactory result. The second motivation
is that the literature is already rich in beautiful reviews (see, e.g., Ref. [24, 25])
and adding a new one (possibly not as complete and clear) would be of no use.
Therefore we just define the models and describe facts which turn out useful for the
discussion below.

1.2.1 The Ising model

Figure 1.2: Snapshot of the n.n. Ising model on a two dimensional
square lattice of linear size L = 1000 with p.b.c. in equilibrium at
criticality.

This is arguably the most studied model of statistical mechanics, and its rel-
evance percolated throughout the maze of several other branches of physics and
mathematics. Introduced in 1925 by Lenz and Ising [26], in a rather general version
it is defined by the hamiltonian on a d-dimensional lattice

H[ϕ] = −
∑
i,j

Jijϕiϕj +
∑
i

hiϕi (1.22)

where Jij is regulates the strength and the kind of the interaction among the spins,
hi stands for the coupling of the spins with external fields and i, j ∈ {1, . . . , N}
runs over all the N spins of the lattice. This can of course be further generalized,
e.g. with terms accounting to interactions between more then two spins (see p-spin
models [27]), or general graph instead of geometric lattices. We instead, for the
scopes of this work, reduce to the ferromagnetic Ising model, meaning Jij > 0 ∀i, j,
without external magnetic fields. The partition function of the model on a 2d square
lattice with nearest neighbor (n.n.) interaction was exactly solved by Onsager [28]
in 1944. This allowed to rigorously prove the existence of a second order phase
transition at finite temperature Tc for the model which well justify its relevance in
statistical mechanics. In Fig. 1.2 we report a snapshot of the Ising model at its
critical point. Below we derive the Ginzburg-Landau free energy functional for the
model which is relevant in the body of this work.
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Ginzburg-Landau free energy

The form of the Ginzburg-Landau free energy for a system can be determined from
few crucial properties, the most important are the symmetries of the system. Then
the parameters that appear in the equation should be evaluated phenomenologically.
As mentioned in the section above this formalism is indeed also useful for analytical
explorations of out of equilibrium properties of statistical systems, we make use of it
to study in Chapter 2 some dynamical properties of the fluctuations of observables
of the model. Therefore we give below a direct derivation from the microscopic
hamiltonian which is feasible in the case of the Ising model.

We consider the coarse grained field φ(~x) defined in Eq. (1.11) and promote the
Jij in Eq. (1.22) to a continuous version J(|~x − ~x′|) which depends only on the
distance of two points in space. The microscopic hamiltonian can then be cast as

H[φ] = −N
∫
d~xd~x′J(|~x− ~x′|)φ(~x)φ(~x′)

=
N

2

∫
d~xd~x′J(|~x− ~x′|)

[(
φ(~x)− φ(~x′)

)2

−
(
φ2(~x) + φ2(~x′)

)]
(1.23)

≈ N

2

∫
d~xd~rJ(r)(∇φ · ~r)2 −N

∫
d~xd~rJ(r)φ2(~x), (1.24)

where ~r = ~x− ~x′. The first term of the last line can be explicitly written as

1

2

∫
d~xd~rJ(r)(∇φ · ~r)2 =

1

2

d∑
i=1

∫
d~rJ(r)r2

i

∫
d~x
( ∂φ
∂ri

)2

, (1.25)

and acknowledging that the integral
∫
d~rJ(r)r2

i is independent from the direction i
one can define a ≡

∫
d~rJ(r)r2

i /2 =
∫
d~rJ(r)r2/2d. Moreover defining b ≡

∫
d~rJ(r)

the hamiltonian reads

H[φ] = aN

∫
d~x(∇φ)2 − bN

∫
d~xφ2(~x). (1.26)

To construct the free energy functional F [φ] = H[φ]− TS[φ] we need the the total
entropy

S[φ] = N

∫
d~x
[
ln 2− 1− φ(~x)

2
ln(1− φ(~x))− 1 + φ(~x)

2
ln(1 + φ(~x))

]
. (1.27)

The derivation of the integrand, which correspond to the entropy, relative to the
magnetization of the small cube C considered in the coarse graining process, is
showed in an unusual context in the introduction of Chapter 2. Taylor expanding
to the fourth order the integrand of the entropy for small φ, which is justified in
the vicinity of Tc we end up with the Ginzburg-Landau free energy

F [φ] = N

∫
d~x
[
a(∇φ)2 +

T − 2b

2
φ2 +

T

12
φ4
]
, (1.28)

where we dropped uninfluential constants from the integrand.

1.2.2 The Potts model

The Potts model was introduced in 1951 by Domb and its student at the time
Potts [29] and it is a generalization of the Ising model in which the spin variables
take q integer values. As an historical note we mention that a version of the model
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Figure 1.3: Snapshot of a 2d Potts model on a square lattice of
linear size L = 1000 with a number q = 14 of possible values for the
spin variables. Specifically, in this picture the system is following
a relaxation dynamic towards a thermal equilibrium at subcritical
temperature after a quench from a completely disordered state, the
details though are not relevant at this point.

with q = 4 was already studied by Ashkin and Teller [30] in 1943. In a version
specialized for the interests of this thesis the model is defined by the hamiltonian

H[ϕ] = −J
∑
〈ij〉

δϕiϕj , (1.29)

where J > 0 is a coupling constant, the sum is restricted to nearest-neighbors on a
2d square lattice lattice, δab is the Kronecker delta and ϕi take integer values from
1 to q ≥ 2. In the sum one counts each bond once and for this geometry the energy
is bounded between −2JN , with N the number of spins in the sample, and 0. For
q = 2 it reduces to the Ising model, indeed

H[ϕ] = −J
∑
〈ij〉

δϕiϕj = −2J
∑
〈ij〉

(δϕiϕj −
1

2
)

= −J
∑
〈ij〉

ϕiϕj , (1.30)

where the last equality holds if we chose ϕi ∈ {−1, 1} instead of ϕi ∈ {1, 2}.
The model attracted attention at the early ages of phase transition studies since

the order of the phase transition changes when the number of states of the spins is
tuned: in two dimensions, for 2 ≤ q ≤ 4 it is of second-order, while for q > 4 it is
of first-order [25, 31]. Beyond the fundamental interest that it produced, the Potts
model found applications in many areas of physics, and even beyond the physical
domain. For instance, the large q limit is used to describe soap foams and metallic
grain systems [32–34]. In its anti-ferromagnetic version (J < 0), the Potts model
represents the coloring problem of computer science [35, 36]. Another application
in this realm is to community detection in complex networks [37–39]. Furthermore,
weakly disordered Potts ferromagnets are the paradigmatic models in which the
effects of randomness on phase transitions were studied [40, 41], and disordered
and frustrated mean-field Potts models [42,43] realize the random first-order phase
transitions scenario for the glassy arrest [44–46].
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Although the problem is not fully solvable for q > 2, some exact results are
known. Duality allows one to prove that the critical temperature is [29]

kBTc(q) =
J

ln
(
1 +
√
q
) . (1.31)

We set kB = J = 1, if not otherwise stated, in the body of the thesis. An exact
solution on the square lattice was provided in 1973: by exploiting a mapping to the
ice-rule six-vertex model Baxter gave an exact expression for the model’s free-energy
at the critical point. He thus showed that the transition is second order for q ≤ 4
and first order for q > 4, and he calculated the latent heat in the latter case [31]. A
proof that the simplest possible mean-field approach yields, in the thermodynamic
limit, the exact free-energy at criticality for q ≥ qc(d) (with qc(2) = 4) to leading
order in q, in the large q limit, was soon after given by Mittal and Stephen [47],
see also [48]. Many numerical studies put these ideas to the test since then. For
example, Binder in Ref. [49] and much more recently the authors of Refs. [50–53]
focused on the analysis of the critical properties, both in the second order and
first order cases, using different numerical methods. In this work our focus is on
the out of equilibrium dynamics of the Potts model after quenches to subcritical
temperature for the case where q > 4, i.e. in presence of a first order transition.

First order transition: behavior of the model after sudden quenches

We summarize here how the phenomenology displayed by the model during the re-
laxation dynamics varies with respect to the temperature of the quench. We point
out that there is a lack of understanding for shallow quenches, i.e. final tempera-
tures close to the critical one, where dynamical phenomena like metastability and
nucleation are relevant. In Chapters 4 and 5 we approach this problems.

A scheme of the dynamical regimes of the system was given in Ref. [54] and
is portrayed in Fig. 1.4. All the characteristic temperatures which enter the game
are in general dependent on the parameters and are not always properly defined
or precisely known, nonetheless this picture offers a true partition of the possible
relaxational regimes. Consider very low temperature quenches with 0 ≤ Tf ≤
Tg, the system approaches a glassy state [55–57] which relaxes really slow and
perdures for all the (long) observed evolution time in the simulations portrayed
in Fig. 1.4. It is known that the system finally reaches blocked state of the same
kind of those encountered even for higher temperature when glassy behavior is
absent. Indeed for quenches to temperatures in the range Tg ≤ Tf ≤ Tb the system
undergoes curvature driven coarsening which satisfies LAC law until get trapped in
blocked states (see Fig. 1.4). These are highly symmetrical configurations, which
have stripes or honeycomb like [22] shapes, and are escaped only through activated
processes (see, e.g., Ref. [54, 58]). If the temperature is high enough the system
relaxes through simple coarsening in agreement with LAC law, see e.g. Ref. [59,60].
But in the case of quenches close enough, in a way that we quantify more in the last
chapters of this work, to the critical temperature the behavior is different. Shallow
quenches are accompanied by metastability properties (with finite life-time in finite
dimensions) and in general, quantifying metastability and the dynamic escape from
it through nucleation is a hard and longstanding problem [61–63]. With respect
to the other regimes less numerical inquiries and analytical arguments exist and it
remains the less understood one. In Chapter 4 we describe the properties of the
metastable states, in particular in the large q limit where we can provide some
exact results and where it is also possible to give a more precise meaning to the
metastable temperature Tm. In Chapter 5 instead we focus on the complicated
nucleation process that brings the system from the metastable state to a coarsening
regime.
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See Chapters [4] and [5].nucleation

Figure 1.4: Dynamical regimes in the long term relaxation of the
model, with q > 4, after a quench from infinite temperature down
to subcritical ones. The Snapshots are instances of the relaxation
dynamics up to 106 MCs of the q = 9 Potts model on a squared
lattice of linear size L = 200 with p.b.c. for a quench starting from
initial temperature Ti →∞. The final temperature are Tf = 0.7Tc
for the simple coarsening, Tf = 0.4Tc for coarsening with blocked
states and Tf = 0.01Tc for the glassy dynamics.
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Chapter 2

Fluctuations and their
dynamics

In the first section of this chapter we introduce the problem of rare fluctuations and
of the description of their dynamics, motivating the theoretical and practical interest
in their study. We give a brief summary of the results contained in the chapter in
the second one and in the third one we tackle the problem of the dynamics of
the fluctuations of collective variables, i.e. observables, in the Gaussian model of
statistical mechanics, based on our works in Ref. [1, 2].

2.1 Introduction: Rare fluctuations

The law of large numbers is a probability concept familiar even to the layman. Toss
a fair coin several times and, in the long run, the number of heads and tails will be
comparable. To be more precise we can say that it is a very strong approximation
for the probability of the outcome of a collective variable (the number of heads in
the previous scenario for example) , i.e. it is one if the random variable equals
its mean and zero otherwise. The higher the number of tosses the better is this
approximation in predicting the outcome, being exact (in a sense that would deserve
some precisations) in the limit of infinite tosses. But we can of course do better then
considering just the mean value and even if we don’t have access to the complete
distribution we may be able to approximate it to a Gaussian distribution centered
around the average by means of the central limit theorem (see, e.g., [64]), when
it holds. Loosely speaking in this case we are taking into account the average
of the distribution and the fluctuations around it. What about rare fluctuations
though? A way to define what we mean by rarity here is indeed to consider rare
such fluctuations which are poorly, if not at all, described by the central limit
theorem. Therefore in other terms we are referring to events associated to the tails
of the distribution describing the process, which are not captured by the Gaussian
approximation about the mean.

2.1.1 Large deviation theory, an example with spin statistics

Large deviations theory (LDT) is the perfect language in which to phrase this
problem. To be brutally synthetic LDT consists of exponential approximations
for probability distributions which generalizes the central limit theorem. But it is
more then a useful tool to deal with rare events, it has been argued [65, 66] that it
represents the very mathematical language of statistical mechanics, in the same way
in which differential geometry relates to general relativity. Fundamental results in
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this branch of probability theory bear important consequences in several fields of
science [67–69] and are successfully applied to various practical situations [70,71].

Under conditions provided by general theorems (or sometimes to be checked for
the specific problem), the probability P (S) to observe a certain value S of a collective
variable S[ϕ] of the microstates ϕ of the system obeys a large deviation principle
(LDP) [66]. This amount to say that P (S) ∼ e−NI(s), where N is a measure of the
number of degrees of freedom contributing to S, assumed to be large, s = S/N is
the intensive variable associated with S, and I(s) the so-called rate function which
is non-negative and it generically vanishes at the average and most probable value
of s. The above holds in the large N limit. Consider to illustrate these concepts
a system composed by a number N of uncorrelated spins ϕi, with i ∈ {1, . . . , N}.
Each spin is with equal probability found in state 1 or −1, i.e.

P (ϕi) =

{
1/2 for ϕi ∈ {−1, 1}
0 otherwise , ∀ i ∈ {1, . . . , N}. (2.1)

A collective variable we may study is the sum of all the spin values, i.e. the total
magnetization

M[ϕ] =

N∑
i=1

ϕi , (2.2)

where ϕ = {ϕ1, . . . , ϕN} denotes a microstate of the system. The probability of a
fluctuation M of the magnetization can be formally expressed as

P (M) =
∑
ϕ∈Γ

P ([ϕ])δM[ϕ],M , (2.3)

where Γ stands for the space of all the possible microstates each having a proba-
bility P ([ϕ]) and the Knronecker delta, δ, constraints the sum to the subspace of
configurations associated to the macrostate with magnetization M . Equation (2.1)
tells us that P ([ϕ]) = 2−N ∀ϕ ∈ Γ therefore to evaluate Eq. (2.3) we just need to
count the microstates with magnetization M . The number of negative spins has to
be (N −M)/2 and consistently the positive spins are (N + M)/2, considering all
the permutations we end up with the exact expression for the probability

P (M) =
2−NN !

(N−M2 )!(N+M
2 )!

. (2.4)

If we consider the large N limit, the factorials present in the expression above can
be estimated through Stirling approximation (n! ∼ nne−n) and we can write after
some manipulations

P (M) ∼ 2−NNN

(N−M2 )(N−M2 )(N+M
2 )(N+M

2 )
. (2.5)

By taking the logarithm, exponentiating, collecting N and using the notation m =
M/N we are finally able to write the a large deviation principle P (M) ∼ e−NI(m)

for the probability of the total magnetization, with rate function

I(m) =
1−m

2
ln(1−m) +

1 +m

2
ln(1 +m) , (2.6)

which is depicted in Fig. (2.1). This rate function has all the properties we men-
tioned above, in particular it vanishes at the average value (〈m〉 = 0 specifically)
which is also the minimum. It is straightforward from here to recover the central
limit theorem (dashed line in Fig. 2.1), indeed expanding the rate function around



2.1. INTRODUCTION: RARE FLUCTUATIONS 17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−1 −0.5 0 0.5 1

I
(m

)

m

Figure 2.1: Rate function defined in Eq. (2.6), the dashed line
represents the quadratic exponent characteristic of the Gaussian
approximation obtained expanding to the second order the rate
function and recovering the central limit theorem.

the average to the second order we get I(m) ≈ m2/2. The law of large numbers is
finally recovered when N goes to infinity and the only value of m which does not let
P (M) vanish is the mean one. As a remark we mention that, in this case, −I(m)
is nothing but the entropy of the macrostate associated to a given magnetization1

rescaled by the number of total spins N .
In this simple example we have access to the complete probability distribution

and we then show that it obeys a LDP, often though this is not the case and the
derivation of a LDP is our best chance to understand the process.

2.1.2 Singular rate functions

Considering again the case of a generic observable S[ϕ], the rate function, and thus
P (S), can exhibit singular points [69, 72–84, 84–86] at which some derivatives are
discontinuous. This fact is usually interpreted as a phase transition occurring at the
level of fluctuating configurations. Namely, if sc is one of these singular points, the
configurations of the system corresponding to s < sc or to s > sc are qualitatively
different. This is exactly what occurs when an ordinary phase transition is present
in a statistical system. The difference is that in the latter case the typical and
statistical properties of the system change qualitatively when a control parameter
(the role of which is played here by s) crosses a critical value (the analogous of
sc), whereas here there is no need to change any external parameter, because rare
fluctuation spontaneously occurring with s < sc or s > sc naturally correspond to
radically different system properties.

In spite of the fact that large deviation theory has been widely used for studying
the stationary properties of both equilibrium and non-equilibrium stochastic pro-
cesses [69], the topic of the dynamics of large fluctuations is largely unexplored. The

1shifted by ln 2 which is the logarithm of phase-space volume for a single variable, therefore 2
in this case for binary spins.
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most general problem consists in understanding how an atypical state which realizes
a rare fluctuation can be reached by the system starting from a certain, specified
condition where such large fluctuations are absent. In literature [87], this issue was
addressed in a solvable model where S =

∑N
k=1 sk is the sum of a large number N of

independent and identically distributed variables sk, which evolve in time according
to a certain stochastic dynamics. Depending on the actual distribution of the sk,
the probability P (S) can exhibit a singular point Sc. Starting from a typical state
with S = 〈S〉, the probability P (S, t) of finding any value S was determined. It was
observed that the evolution of P (S, t) is radically different if a critical point Sc for
the variable S is present or not. In its absence, P (S, t) evolves quite smoothly and,
in a relatively short time, rare fluctuations with S−〈S〉 ∼ O(N) are developed such
that the probability to observe them quickly attain its stationary value. If, instead,
a critical point Sc is present, the evolution occurs as described above only on one
side of the value Sc (in that concrete example for S < Sc), whereas on the other
side, the evolution of P (S, t) is slow and characterized by a never-ending algebraic
relaxation which strongly resembles the one observed in thermodynamic systems
brought across a phase transition [18,88,89]. This fact reinforces the interpretation
of a singular point in P (S, t) as a sort of a phase transition.

We conclude this section noticing that when LDT does not apply one is not com-
pletely spoiled of systematic approaches to study rare events. For example when
the underlying statistics is characterized by fat-tailed distributions the mathemat-
ical framework of the big-jump principle can be in some cases fruitfully employed,
see e.g. [90, 91] .

2.2 Summary of the results

The main results presented in this chapter regards the dynamical properties of the
fluctiations of a collective variable in a paradigmatic model of statistical mechanics,
the Gaussian model. This field theory can be used to describe the local coarse-
grained order parameter of a d-dimensional Ising model in the disordered phase.
Specifically we focus on the probability distribution of the variance of the order
parameter whose deviations are characterised by a critical point both in and out of
equilibrium [72, 89, 92–97], where the model experiences a condensation transition
at the level of fluctuations, a phenomenon which has been dubbed condensation of
fluctuations. Accordingly, this is a natural candidate to study how the presence of
such a singularity affects the dynamical properties of large deviations. The dynami-
cal settings consist of a quench of the temperature of a thermal bath the system is in
contact with and the subsequent relaxation of the system in the cases of conserved
(COP) and not conserved order parameter (NCOP). We find that the fluctuations
of the variance s behave differently depending on weather they are affected by con-
densation or not. Specifically non-condensed values converge in an adiabatic-like
way to stationarity while fluctuation affected by condensation display a comlplex
evolution, corroborating an interesting interpretation of the phenomenon in terms
of ordinary theory of phase transitions. This is evinced from the dynamical evolu-
tion of the rate function I(s, t), which we evaluate analitically for both COP and
NCOP regimes, reported in Fig. 2.2. The main difference between the two cases
consists in the fact that in the absence of a conserved quantity the system relaxes
again to a true equilibrium configuration while the structure of the fluctuations in
the COP case is not the one expected for the system in equilibrium at the final
temperature. This is related to the fact that precisely the zero mode of the field,
i.e. the conserved quantity, has a special role in the condensation transition.
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Figure 2.2: Rate function I(s, t) for the COP (left) and NCOP
(right) dynamics as a function of the rescaled variable s/〈s(t)〉
where 〈s(t)〉 is the average value of s at time t, for various fixed
values of the time t after a quench from inverse temperature βi to
βf , see Fig. 2.4, Fig. 2.6 and body of the chapter for details. The

critical value s
(eq,βf )
c /〈s〉(eq,βf ) is marked by a thick dot.

2.3 Fluctuations in the Gaussian Model
We discuss in this section some new and interesting features of the dynamics of
fluctuations of observables in the Gaussian model.

2.3.1 The model
The Gaussian model [13,98], describes a real scalar field ϕ(~x) (with ~x a vector in a
d-dimensional space) which is characterized at equilibrium by the Hamiltonian

H[ϕ] =
1

2

∫
V

d~x
[
(∇ϕ)2 + rϕ2(~x)

]
. (2.7)

Here r is the non-negative parameter, often called the mass of the model, which
determines the equilibrium spatial correlation length of the system ξ = r−1/2 [13]
while the divergence term accounts for the energetic cost of the inhomgeneities of
the field.

It is useful to consider the expression of the hamiltonian in terms of the Fourier
components ϕ~k of the field

H[ϕ] =
∑
~k

H~k =
∑
~k

1

2V
ωkϕ~kϕ−~k, (2.8)

with ωk = k2 + r and V the volume if the system. A finite volume implies the
quantization of the modes, note the sum in Eq.(2.8), moreover we assign periodic
boundary conditions, even if this choice does not affect the results of the analysis
presented here. An other assumption we use is that an ultraviolet cut-off Λ is present
and accounts for a microscopic length scale, arising, e.g., in the Ising interpretation
from the spacing of the lattice. Only modes with wave vectors of smaller magnitude
than Λ are therefore allowed. A consequence of ϕ(~x) being a real field is that
ϕ−~k = ϕ∗~k, i.e. half of its Fourier components are actually independent. We keep
track of this by changing the notation and indicating now with

∑
~k the summation

on only half the ~k space and consistently weighting with a factor 2 the addends.
H~k in Eq. (2) now reads

H~k =
1

V
χkωkϕ~kϕ−~k, (2.9)
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where we defined the function χk as

χk =

{
1/2 for k = 0
1 otherwise, (2.10)

to properly take care of the zero modes which is to be counted once.
We consider in the following two paradigmatic dynamics for relaxational models,

the NCOP (Non Conserved Order Parameter) dynamics, often dubbed Model A
in literature, and the COP (Conserved Order Parameter) dynamics, the so-called
Model B [99]. These two different dynamics represent two common scenarios, back
to the underlying Ising model the first one would be the appropriate description
if we are modeling a ferromagnet the second one instead would be the correct one
if we are dealing with mixtures, e.g. a binary alloy, where the mass of the two
components is conserved in time. The evolution of the field is governed respectively
by the overdamped Langevin equations [13,99]

∂ϕ(~x, t)

∂t
=
(
∇2 − r

)
ϕ(~x, t) + η(~x, t), (2.11)

and
∂ϕ(~x, t)

∂t
= −∇2

[(
∇2 − r

)
ϕ(~x, t) + η(~x, t)

]
, (2.12)

where η(~x, t) is an uncorrelated, zero mean, Gaussian noise associated to a thermal
bath at temperature β−1 = kBT (kB is the Boltzmann constant), with

〈η(~x, t)η(~x′, t′)〉 = 2β−1δ(~x− ~x′)δ(t− t′). (2.13)

In both cases, the probability distribution function at stationarity for the field
is in general an equilibrium one, given therefore by Peq[ϕ] ∝ e−βH[ϕ]. To keep the
discussion as clear as possible we only focus here on Model B, stressing that the same
arguments are valid mutatis mutandis for the dynamics in absence of conservation
laws. We recover Model A below discussing the results. The dynamical process
we consider is the relaxation of the system, prepared at equilibrium with a bath at
initial inverse temperature βi, after an instant quench to βf > βi at t = 0. Casting
Eq.(2.12) in Fourier space gives

∂ϕ~k(t)

∂t
= −ω̃kϕ~k(t) + ζ~k(t), (2.14)

where ω̃k = k2(k2 + r) and we absorbed the laplacian in the definition of the noise,
now indicated by ζ, so that the correlator of its Fourier transform reads

〈ζ~k(t)ζ~k′(t
′)〉 =

V

χk
β−1k2δ~k,−~k′δ(t− t′). (2.15)

The solution for t > 0 of Eq.(2.14) for the generic k mode is

ϕ~k(t) = ϕ~k(0)e−ω̃kt +

∫ t

0

dt′ e−ω̃k(t−t′)ζ~k(t′). (2.16)

This implies the autocorrelation at a given time t is

〈ϕ~k(t)ϕ−~k(t)〉 = 〈ϕ~k(0)ϕ−~k(0)〉0e−2ω̃kt +
β−1
f V

2χkωk
(1− e−2ω̃kt), (2.17)

with 〈·〉0 indicating the average over initial conditions. Therefore the expectation
value of the Hamiltonian at time t can be expressed

2〈H~k〉 = β−1
k (t) =

(
β−1
i − β−1

f

)
e−2ω̃kt + β−1

f . (2.18)
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The function βk(t) introduced above can be heuristically interpreted as an instan-
taneous non-equilibrium mode-dependent inverse temperature. At equilibrium the
equipartition theorem holds therefore we have the same value for all the modes,
βk(0) = βi at the beginning and βk 6=0(t → ∞) = βf at the end of the dynamics.
When the system is relaxing the equipartition theorem breaks down and the ex-
pectation value 〈H~k〉 cannot be related to any temperature and it depends by the
specific k mode. We stress that the effective inverse temperature of the zero mode
β−1

0 (t) = β−1
0 does not evolve during the evolution and its value is determined by

the initial conditions because of the conservation laws encoded in the dynamics,
this is not the case for the Model A and this difference is clear in the discussion of
the dynamics of the fluctuations below.

2.3.2 Condensation of fluctuations
The collective variable we consider in our analysis is the order parameter variance

S[ϕ] =

∫
V

d~xϕ2(~x, t) =
2

V

∑
~k

χkϕ~k(t)ϕ−~k(t). (2.19)

The choice of a quadratic observable allows for an analytical treatment of the prob-
lem, the energy of the system (2.8) could be another proper candidate to ana-
lyze [100]. We are interested in the properties of the fluctuations of this quantity
and the chances that S[ϕ] takes the value S at time t are given by the formal
probability distribution

P (S, t) =

∫
Γ

DϕP ([ϕ], t) δ(S − S[ϕ]), (2.20)

where Γ is the space of configurations of the field ϕ, P ([ϕ], t) is the probability of
one of such configurations at time t, and δ is the Dirac delta function. Because the
problem is diagonalized in Fourier components, the phase-space measure P ([ϕ], t) =
Π~kP~k(ϕ~k, t) is factorized at all times. On the basis of the explicit solution for the
field at a certain time given in Eq. (2.16), it follows that the distribution of the
single ϕ~k are Gaussian and therefore they are completely characterized by their
(vanishing) average and variance, the latter being essentially encoded in H~k, the
expectation value of which is reported in Eq. (2.18). Thus

P~k(ϕ~k, t) = Z−1
~k

(t)e−βk(t)H~k(ϕ~k), (2.21)

where Z−1
~k

(t) =
[
χkβk(t)ωk

πV

] 1
2

.
In equilibrium conditions at inverse temperature β one has P ([ϕ], t) = Peq([ϕ]) =

Z−1e−βH[ϕ], where Z is the normalization constant. It is easy to show that, con-
sidering equilibrium states at different temperatures, we have

Peq(S) = f

(
S

〈S〉

)
, (2.22)

where 〈S〉 =
∫∞

0
dS S P (S) = β−1

∑
~k ω
−1
k , is the average value of S. Indeed if we

start from Eq. (2.20) and we change variable as ψ~k = (〈S(t)〉/V )−1/2ϕ~k we have

P (S, t) = Z−1(t)
∫

Γ
Dψ exp

{
− 1

2V

∑
~k ωk

ψ~kψ−~k
〈ψ~k(t)ψ−~k(t)〉

}
×

δ
(

1
V

∑
~k ψ~kψ−~k − S

〈S(t)〉

)
.

(2.23)

In equilibrium all the time dependencies drop out, and 〈ψ~kψ−~k〉 is independent
of the temperature (and of ~k), due to the equipartition theorem, hence one has
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Eq. (2.22). The scaling property (2.22) means that the only effect on Peq(S) of
considering different temperatures is to set a different scale 〈S〉 of S. Accordingly,
by measuring S in units of 〈S〉 one recovers the same universal behavior described
by the function f reported in Eq. (2.22).

Expressing the δ function constraint in Eq. (2.20) via the representation δ(y) =
1

2πi

∫ a+i∞
a−i∞ dz e−zy one arrives at

P (S, t) =
1

2πi

∫ a+i∞

a−i∞
dz e−V [zs+λ(z,t)], (2.24)

where s = S/V is the intensive variable associated with S, and

λ(z, t) = − 1

V
ln

∫
DϕP ([ϕ], t)ezS[ϕ] = − 1

V

∑
~k

ln
1√

1− 2z
βk(t)ωk

(2.25)

is the so called scaled cumulant generating function. In Eq. (15), a is any real
number such that λ(z, t) is analytic for Re z > a. Using Gärtner-Ellis theorem [69],
for a large volume V →∞ one arrives at the large deviation form

P (S, t) ∼ e−V I(s,t), (2.26)

where the rate function I(s, t) is given by

I(s, t) = z∗(s, t)s+ λ(z∗(s, t), t), (2.27)

where z∗(s, t) is determined by the extremization condition

∂λ(z, t)

∂z

∣∣∣∣
z=z∗(s,t)

+ s = 0. (2.28)

In the large volume limit, if the sums over the wavevector ~k can be transformed
into an integral according to 1

V

∑
~k · · · →

∫
d~k

(2π)d
. . . , where d is the number of

spatial dimensions, the extremal condition (2.28) reads

s = Ωd

∫ Λ

0

dk

(2π)d
kd−1

βk(t)ωk − 2z∗
, (2.29)

where Ωd = 2πd/2/Γ(d/2) is the d-dimensional solid angle, βk(t) is given in Eq. (2.18),
and Γ(·) the Euler function. This equation has to be solved in order to determine
z∗ = z∗(s, t). Since s is positive by definition, z must be smaller than β0(t)ω0/2,
because, given Eq. (2.18), β0 is the smallest among the βk(t) upon varying k. The
integral on the r.h.s. of Eq. (2.29) diverges in the limit z → β0ω0/2 if d ≤ 2, while
it is finite for d > 2. In the latter case the solution of Eq. (2.29) exists only for
values of s smaller than sc(t) defined by the condition

sc(t) = Ωd

∫ Λ

0

dk

(2π)d
kd−1

βk(t)ωk − β0ω0
. (2.30)

For s > sc(t), the solution requires a careful mathematical treatment [93]. Alter-
natively, the solution can also be found within an approach motivated and inspired
by what is known for the Bose-Einsten condensation: One singles out the mode
k = 0 from the momentum sum, transforming the rest into an integral as before,
thus arriving at

s =
1

V
s0(s, t) + Ωd

∫ Λ

0

dk

(2π)d
kd−1

βk(t)ωk − 2z∗
, (2.31)
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instead of Eq. (2.29), with

s0(s, t) =
1

β0ω0 − 2z∗(s, t)
. (2.32)

For s < sc(t),b one has z∗(s, t) ≤ β0ω0/2 and hence the first term is negligible for
large V . For s ≥ sc(t), instead, one has z∗ ≡ β0ω0/2 and, for s > sc(t) this term
becomes macroscopically large and takes the value s− sc(t). As a consequence, the
large deviation form (2.26) holds with

I(s, t) =

{
z∗(s, t)s+ λ(z∗(s, t), t) for s ≤ sc(t),
β0ω0(s− sc)/2 + I(sc, t) for s > sc(t),

(2.33)

instead of Eq. (2.28). Because I(s, t) is linear for s ≥ sc(t) while it is not for
s ≤ sc(t), the left and right derivatives with respect to s at s = sc(t) differ at a
certain order, lager than the first one [93]. Notice also that lims→0 I(s, t) = ∞2,
hence P (S = 0, t) = 0, because S = 0 can be realized by the sole configuration
ϕ ≡ 0.

2.3.3 Dynamics of fluctuations
We analyze both the COP and NCOP dynamics of the fluctuations of the order
parameter variance after the quench of the inverse temperature β of the stochastic
noise from βi to βf .

COP dynamics

We discuss here the phenomenology of the fluctuations dynamics for the Model
B derived solving the model equations in the previous section. The evolution of
I(s, t), in the sample case d = 3, is shown in Fig. 2.3 for three different values
of times, i.e., the initial state t = 0, t = 0.5 and t = ∞ corresponding to the
eventual stationary state. According to the large deviation form (2.26), the average
value 〈s(t)〉 corresponds to the minimum, which is also the zero, of I(s, t) and its
expression derives from Eq. (2.29) taking in account the fact that, for the average,
z∗ in (2.27)vanish at all times

〈s(t)〉 =
Ωd

(2π)d

∫ Λ

0

dk
kd−1

βk(t)ωk
. (2.34)

Since the fluctuations of the order parameter are due to thermal fluctuations, their
typical value 〈s(t)〉 moves from the initial to the final equilibrium values 〈s〉(eq,βi),
〈s〉(eq,βf ), obtained taking respectively t = 0 and t → ∞ in (2.34), decreasing in
time being βf > βi. Using the model equation we shown in Appendix A that the
evolution of the average variance for sufficiently long times is

〈s(t)〉 = 〈s〉(eq,βf ) +A t−d/2, (2.35)

with

A =
Ωd(β

−1
i − β−1

f )Γ(d/2)

r(2π)d(2r)d/2+1
, (2.36)

where Γ is the Gamma function. Because of the Gaussian nature of the problem
the critical point sc(t), above which condensation occurs, must also decrease pro-
portionally to what 〈s〉 does. Solving the model equations (see Appendix A) one

2Indeed it can be easily checked from Eq. (2.29) that z∗(s, t) → −∞ with z∗(s, t)s → const.
and that lims→0 λ(z∗(s, t), t) =∞, after Eq. (2.25).
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finds that during the non-equilibrium evolution sc(t) decreases monotonically and,
at long times, one has

sc(t) = s
(eq,βf )
c + a t−d/2, (2.37)

with

a =
ΩdβfΓ(d/2)ζ(d/2)

(2π)d(2r)d/2+1βi(βf − βi)
, (2.38)

where ζ is the Riemann zeta function.
During the process, the slope β0ω0/2 of the linear branch of I(s, t) corresponding

to condensation (see Eq. (2.33)) is fixed because, as already observed, β0 is time-
independent. This means that, in the condensed region for s > sc(∞), the rate
function I(s,∞) at t = ∞ cannot be superimposed on the initial one I(s, 0) using
the equilibrium relation (2.22). The reason of this apparent incongruence is that the
two equilibrium states are different not only because of β, as implicit in Eq. (2.22),
but also because of the reduction of the set of possible final states that can be
reached, starting from an assigned initial one, by the conserved dynamics.
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Figure 2.3: Rate function I(s, t) as a function of s for three dif-
ferent values of the time t = 0, 0.5, and∞ elapsed from the quench
with βi = 1/5 and βf = 1, in the case d = 3 (the same qualitative
features are observed for other values of d > 2), with r = 1, while
the value of the ultraviolet cut-off Λ is set to 1. The critical value
sc(t) of the variable s is marked by a thick dot. The three regions
NC, CD, and PC, discussed in the main text, are highlighted at the
top of the figure. [1]

Given this phenomenology, it is clear that the evolution of I(s, t) displays dif-
ferent features depending on whether condensation occurs or not. Indeed we argue
below that the dynamical process accompanying condensation, namely the building
up of a macroscopic s0(t) out of a microscopic initial value s0(t = 0), is much slower
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and collective than the easier rearrangement of fluctuations occurring at values of
s for which this does not occur. On the basis of these considerations we can divide
the range of values of s into three different sectors within which fluctuations have
markedly different character, as also indicated in Fig. 2.3.

Non-condensed (NC) region - This region corresponds to s < s
(eq,βf )
c = sc(t =

∞) and is characterized by the fact that condensation never occurs during the dy-
namics and all the fluctuating modes sk contribute to the final value s =

∑
~k sk of

the variance with “microscopic” contributions of order 1/V . Accordingly, during the
dynamics, one simply observes the redistribution of their contributions in order for
the fluctuations to pass smoothly from the initial to the final equilibrium behaviors.
Give that such a redistribution involves only modes which provide microscopic con-
tributions – contrary to what happens when condensation occurs – we expect the
dynamics within this NC region to be fast.

We rationalize this hypothesis as follows: in a system at equilibrium, the scaling
in Eq. (2.22) holds true. Clearly, the same does not hold a priori out of equilibrium
and, indeed, there is no way to show it as one does in the case of equilibrium
discussed above. However, if the process of rearrangement occurs quasi adiabatically,
we would expect the only effect of the quench on I(s, t) to be the shift of 〈s(t)〉,
according to Eq. (2.35), without affecting the form of f(y) reported in Eq. (2.22).
In this case, plotting I(s, t) for a fixed time t as a function of s/〈s(t)〉, one should
observe superposition of the curves at different times on the mastercurve f(y),
formally corresponding to the case t =∞. This scenario is tested in Fig. 2.4, where
one clearly sees that in the NC region (namely to the left of the thick dot in the
figure) curves corresponding to different times superimpose almost perfectly at all
times, implying an adiabatic evolution.

Clearly, the scaling encoded in Eq. (2.22) and observed in the NC region is not
expected to be exact, as in equilibrium, but it anyhow turns out to be an excellent
approximation. In particular, Eq. (2.22) does not hold out of equilibrium because
now in Eq. (2.23) there is an explicit time dependence in 〈ψ~k(t)ψ−~k(t)〉, where
ψ~k = 〈s(t)〉− 1

2 ϕ~k is the rescaled field. The observed approximate scaling behavior
might be possibly due to the fact that the domain of integration in Eq. (2.23),
given by the part of Γ where the argument of the δ-function vanishes, for s < sc
constrains the integration variables ψ~k in regions much smaller than their variances
ω−1
k 〈ψ~k(t)ψ~k(t)〉, thereby making the time-dependence induced by the dynamics

largely irrelevant. Clearly this is not possible in the presence of condensation since
the variance of the mode with k = 0 grows macroscopic.

Condensation-developing (CD) region - Any fixed value of s within the CD
region s

(eq,βf )
c < s < s

(eq,βi)
c is crossed by sc(t) at a certain time t∗(s). Note

that s(eq,βf )
c < s

(eq,βi)
c holds due to Eq. (2.30). This implies that for t < t∗(s), the

contribution to the average variance of the zero mode s0(s, t) is a finite quantity in
the thermodynamic limit, with s0 ∼ O(V 0). Instead, for t > t∗(s), s0(s, t) diverges
in the same limit, with s0 ∼ O(V ). This is pictorially sketched in Fig. 2.5, where in
the lower panel the time behavior of s0(s, t) for various values (s1, s2, s3, s4, s5) of s
within the CD region is shown; in the upper panel of the same figure the position of
these values is shown in relationship with the rate functions at t = 0 and at t =∞,
the critical values of which (indicated by the dots) define the boundaries of the CD
region. For times t . t∗(s) the divergence of s0(s, t) occurs as (see Appendix A)

lim
V→∞

s0(s, t) '
{

[t∗(s)− t]−1 for s > s
(eq,βf )
c ,

td/2 for s = s
(eq,βf )
c ,

(2.39)

i.e., s0(s, t) with s > s
(eq,βf )
c diverges linearly while s0(s

(eq,βf )
c , t) algebraically.
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Figure 2.4: Rate function I(s, t) as a function of the rescaled
variable s/〈s(t)〉 for various fixed values of the time t after a quench
from βi = 1/5 to βf = 1, with r = 1, Λ = 1, in the case d = 3. The

critical value s
(eq,βf )
c /〈s〉(eq,βf ) is marked by a thick dot and the

NC region is highlighted by a brown background. [1]

Figure 2.4 shows that the relaxation of the rate function in the CD region is
much slower than that in the NC region. Indeed, while for the times reported in the
figure fluctuations are adiabatically in equilibrium in the NC region (corresponding
to the values of s on the left of the thick dot), in the CD and in the further region
denoted as PC (discussed below) where condensation is present from the beginning
(on the right of the dot) a significant change is observed and convergence occurs
only at much longer times (t & 10 on the scale of the present figure).

Permanent-condensation (PC) region - For s > s
(eq,βi)
c , s0(s, t)/V increases

monotonically in time from s − s
(eq,βi)
c to s − s

(eq,βf )
c . Also in this case s0(s, t)

changes by an infinite amount in the thermodynamic limit V →∞. This is similar
to what happens when the value of s is within the CD region described above, apart
from the fact that in the latter case s0(s, 0) is finite. Accordingly, we observe also
in this case that fluctuations do not relax adiabatically. Notice also that, no matter
how large t is, for sufficiently large values of s the rate function I(s, t) differs sig-
nificantly from its asymptotic form. A similar behavior was observed in Ref. [87].
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Figure 2.5: Upper panel: Rate function I(s, t) as a function of s
the initial equilibrium state , i.e., immediately before the quench
(black line, t = 0) and in the final one (t =∞). In both cases, the
corresponding critical value of s are indicated by dots. Lower panel:
time dependence of s0(s, t), for various values (s1, s2, s3, s4, s5) of s
which, for comparison, are located in the upper panel with respect
to the rate functions at t = 0 and t = ∞. Both panels refer to
the case d = 3, r = 1 and Λ = 1 for a quench from βi = 1/5 to
βf = 1. [1]

NCOP dynamics

If we solve the Langevin equation in the absence of conservation laws, Eq. (2.11),
we obtain

ϕ~k(t) = ϕ~k(0)e−ωkt +

∫ t

0

dt′ e−ωk(t−t′)η~k(t′), (2.40)

where we recall that ωk = k2 + r and the correlator of the Fourier transform of the
noise is

〈η~k(t)η~k′(t
′)〉 =

V

χk
β−1δ~k,−~k′δ(t− t′). (2.41)

Following the same line of reasoning we developed for the Model B scenario, it is
possible form the solution of the model to construct the time-dependent form of the
rate function which describes the fluctuations of the field variance. In Figure 2.6
the rate function, I, is plotted versus s/〈s(t)〉 for the initial equilibrium state, for
intermediates times of the quench dynamics and for the final state reached by the
system at the end of the equilibration process, in spatial dimension d = 3. Due to
the scaling law (2.22) the profile of the rate function for the system equilibrated at
the initial inverse temperature βi and at the final one βf is the same. The solution
of the model shows that the singular point sc(t), starting from its initial value sc(0),
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decreases after the quench, reaches a minimum sinf = inft[sc(t)] at some time (the
dot in Fig. 2.6), and then increases up to the final value sc(∞) < sc(0).
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Figure 2.6: Rate function I(s, t) for r = 1 and d = 3 plotted
versus the rescaled variable s/〈s(t)〉, for various times t after a
quench from βi = 1/5 to βf = 1. The plots for t = 0 and t = ∞
are represented by the same black line. The value sinf/〈s(t)〉 is
marked by a thick dot while the brown background highlights the
region where condensation never occurs. [2]

In order to discuss the non-equilibrium behavior of the rate function, it is useful
again to separate the region that is never interested by condensation 0 ≤ s ≤
sinf , from the one with s > sinf , where condensation plays a role. In fact, it is
clearly seen in Fig. 2.6, that the evolution of the rate function is markedly different
within these two regions. In the range of s where condensation does not occur,
the rate function overlaps with the equilibrium expression at all times. Like in the
Model B scenario fluctuations in this case behave as adiabatically in equilibrium at
some time-dependent temperature corresponding to the actual value of 〈s(t)〉. The
evolution of the fluctuations associated to condensed configurations for s > sinf
is, instead, more complex. Here the rate function deviates appreciably from the
equilibrium form, from the very beginning of the non-equilibrium evolution. The
branch of I(s, t) with s > sc(t) is linear at all times, due to the condensation,
but with a slope which depends on time. Specifically, its behavior follows that of
sc(t), i.e., it initially decreases and then, when sc(t) reaches sinf , increases until
it attains the slope of the equilibrium state. Note that, since smaller values of I
correspond to a larger probability of the corresponding fluctuations, this signals
that out of equilibrium the chances for the system to reach a configuration affected
by condensation increase and have a peak, as already pointed out in Ref. [100].

The qualitatively different behavior occurring to the left and to the right of sinf
can be heuristically explained as for the COP dynamics. The system stays adia-
batically close to the equilibrium state characterized by the actual value of 〈s(t)〉 if
its own relaxation time is comparable to the time associated with the evolution of
〈s(t)〉. In the non-condensed phase the sample variance takes comparable contribu-
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tions from all the k-modes. Then the relaxation time of the system is comparable to
the average relaxation time of all these modes. Solving the model it can be shown
that this latter time is also comparable to the time associated with the displacement
of 〈s(t)〉. This explains why the equilibrium collapse of Eq. (2.22) is observed also
out of equilibrium for s ≤ sinf . For s > sinf , however, the contribution of the mode
with k = 0 becomes macroscopic and dominates the relaxation process. Since this
is also the slowest mode (see Eq. (2.40)), the overall evolution is much slower than
that of 〈s(t)〉 and therefore the condition of adiabaticity is not fulfilled.

2.4 Comments

In the last part of this Chapter we analysed some aspects of the dynamics of fluc-
tuations of the variance s, of the order parameter in the Gaussian model with a
COP and NCOP stochastic dynamics, in which large deviations may display the
phenomenon of condensation. After a quench of the temperature of the thermal
bath the model is in contact with, we have shown that the non-equilibrium behav-
ior of fluctuations is radically different depending on whether the selected value of
s is affected or not by the condensation as time goes by. In particular, fluctuations
which do not condense converge almost adiabatically to a stationary, equilibrium-
like form. Those affected by the condensation, instead, display a slow and complex
evolution determined by the slow contribution s0(s, t) of the k = 0 wavevector.

The emergence of these two qualitatively different behaviors, which was already
observed in another solvable model [94] of statistical mechanics, has a nice inter-
pretation in the framework of what is known for ordinary phase transitions. It
must be recalled, in fact, that the expression (2.19) of the probability we consider
is formally equivalent [69, 92] to the partition function of a Gaussian model on a
reduced phase space where the order-parameter variance is fixed to take the value
S. This correspondence is usually referred to as duality. A well-known model
with such a constraint is the spherical model of Berlin and Kac [101]. This model
has a ferromagnetic to paramagnetic phase transition located at sc(β). Crossing
a critical point in magnetic models induces a slow, never-ending (in the thermo-
dynamic limit) coarsening phenomenon characterized by an algebraic growth of a
quantity that sets the scale of spatial fluctuations. Indeed, the zero wavevector
mode of the structure factor diverges because of the formation of the Bragg peak,
limt→∞〈ϕ(~k, t)ϕ(−~k, t)〉 ∼ δ(~k). If we consider the COP dynamics studied above
for example, the values of s within the CD region are crossed, at a certain time, by
sc(t) and therefore they are expected to share some of the properties of the slow
kinetics observed in quenched ferromagnets. In fact, we have shown that this is ac-
tually the case, and the quantity s0(s

(eq,βf )
c , t) diverges algebraically. In the purely

relaxational dynamics (Model A), behave analogously Clearly, relaxation in the NC
region is much faster, corresponding — according to the analogy drawn above —
to quenching a ferromagnetic system without crossing the critical point.

While we studied here the case of a quench of the temperature of the thermal
bath, one might consider different kind of quenches, e.g., those in which other pa-
rameters are varied, such as r or, equivalently, the coefficient of the square gradient
term in Eq. (2.7) (which we fixed here to be one for simplicity). Similarly, other ob-
servables beyond the order-parameter variance could be considered, e.g. the energy
of the system as pointed out above. Apart from quantitative specific differences,
we expect to observe in all these cases phenomena similar to those described here,
with markedly different behavior of fluctuations depending on whether they cross
or not a critical point. An analogous behavior is expected in the Gaussian model
with purely relaxational dynamics, with the notable difference that, in this case,
the relaxation occurs exponentially fast in time, in contrast to the algebraic one
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observed in Model B.
The model considered here, and the related cases discussed above, as well as the

model considered in Ref. [94] are characterized by independently fluctuating modes.
However, there are examples of probability distributions which display a behavior
similar to the one discussed in this work also in more complex systems in which
these modes interact, for instance in intrinsically non-equilibrium states of models
of active matter [95, 102]. The dynamics of fluctuations in these cases is largely
unexplored and represents an interesting topic for further investigations.



31

Chapter 3

Heterogeneity

This chapter is somehow different from the others in this thesis in that its core is
not strictly about out of equilibrium problems nor the Ising model. That being
said, precisely the two dimensional Ising model and some of its out of equilibrium
properties inspired the discussion below and, as it is clear going through the sections,
its relevance to this subject is considerable. In the first section we introduce the
concept of heterogeneity in the context of the 2d Ising model. In the second we study
a general model of independent and identically distributed (i.i.d.) random variables
focusing on the evaluation of the heterogeneity and study a particular case relevant
for interacting classical spin systems. Finally we shortly add some complication to
the model to enhance the similarities with the Ising model at criticality in a last,
quite speculative, section.

3.1 Introduction: Cluster heterogeneity in the Ising
model

Close to its critical temperature, the spin configurations of the ferromagnetic Ising
model are quite heterogeneous, with domains of neighboring parallel spins (geomet-
ric domains) having a very broad size distribution. Such richness of domain sizes
is produced by the unbounded fluctuations associated with the continuous phase
transition. The geometrical understanding of phase transitions and the connection
with the percolation transition has been proved very useful, paving the way, for
example, to the introduction of powerful cluster algorithms to probe equilibrium
properties. In addition, the geometric approach has helped to unveil many dynami-
cal properties of these systems. For example, it was recently shown that at the early
stages of the coarsening dynamics following a sudden temperature quench into the
ordered phase [103–106], the system approaches the percolative critical point. This
property has an important role, allowing not only to demonstrate that dynamical
scaling is obeyed [103, 104] but also in determining whether the asymptotic state
will have spanning stripes [105,107–113].

Among the many single observables that have been proposed to geometrically
characterize a domain configuration, the equilibrium cluster size heterogeneity H(T )
[114–118] and its dynamical counterpart [119] have some interesting properties that
are not yet fully understood. Differently from the mean cluster size [120] that
considers both the sizes of the domains and their frequency, the heterogeneity H
only counts the number of different clusters sizes that are present in a single con-
figuration. Nonetheless, the number of domains with the same size are indirectly
accounted for by the space filling constraint. Consider, to illustrate the point, the
cluster size distribution at the critical temperature. Although in the thermody-
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namical limit this distribution is a dense, fully developed power-law, for finite-size
systems the space constraints impose both a size cutoff and the impossibility of all
possible sizes (those smaller than the system size) being present in a single config-
uration. To give an impression, we draw here a possible microstate for a system of
linear size L = 5

1

7

4

3

2

1

6

1

which has clusters of dimensions from 1 to 7 but a cluster of size 5 is missing.
Thus, H is measured for each sample and takes into account those holes in the
size distribution. Of course, once averaged, the distribution becomes dense. For
the 2d Ising model, the geometric domains percolate at the same critical tempera-
ture Tc. Very close to this temperature (say, T1), H(T ) presents a peak [116, 118]
that grows as H(T1) ∼ Ld/τ where τ = 379/187 ' 2.027 is the Fisher exponent
associated with the cluster size distribution n(a) ∼ a−τ at Tc [121, 122]. There is,
remarkably, a second and larger peak of H(T ) at a temperature T2 well above Tc
that seems related with the percolation transition [118]. Indeed, the value of τ that
well collapses this second peak is closer to the percolation value, albeit not equal.
This unexpected second peak is a finite-size feature as, for increasing system sizes,
both peaks merge and converge to Tc. Moreover, the equilibrium cluster size het-
erogeneity was recently extended [119] to out-of-equilibrium conditions and studied
for the coarsening dynamics of the 2d Ising model after the temperature is suddenly
quenched from very high temperatures into the ferromagnetic phase. The dynami-
cal measure of H also shows pronounced peak related with the first appearance of
a percolating cluster during the dynamics, whose height is, interestingly, very close
to the equilibrium peak of H at T2.

3.2 Summary of the results
An interesting question is how do we compare different long tailed distributions?
How different values of the exponent τ change the behavior of the heterogeneity in
a finite system? For large values of τ , most of the chosen sizes are small and similar,
resulting in a small heterogeneityH. In the other limit, small τ , large clusters do get
more probable and although it is more likely that all clusters have different sizes, the
total number of clusters necessary to fill S is smaller. Consequently, their diversity
will also be small. We thus expect that, for intermediate values of τ , there will be a
maximum value of the heterogeneity. The main result of this chapter is the comlete
determination of the average heterogeneity 〈H〉S as a function of the exponent τ
and the size of the system S and consequently the solution of the maximization
problem with respect to the exponent which is τ = 2. In the left panel of Fig. 3.1
the average heterogeneity is displayed and compared with numerical simulations.
In the right panel it is portrayed the behaviour with respect to τ of the exponent
α which characterize the size dependence of the heterogeneity: 〈H〉S ∼ Sα(τ).
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Figure 3.1: Left pane: average heterogeneity vs τ for several sys-
tem sizes S, analytical results (reported for the smaller and the
bigger size) corresponds to black solid lines while numerical simu-
lations are the colored ones. Right panel: exponent α vs τ . See
Fig. 3.4, Fig. 3.5 and main text for details.

3.3 Heterogeneity in statistical systems
In this section we introduce a general, albeit simple model that generate independent
domains whose only constraint is to fill the system area S. We describe the model,
show that is solvable, evaluate the heterogeneity and compare the results with
numerical simulations.

3.3.1 A general model with i.i.d. random variables
We consider a model where independent and identically distributed (i.i.d.) random
variables {sd}, are extracted from a probability distribution p(s). In the analogy
with a domains problem, sd represents the size, i.e. the volume, of the i-th domain.
p(s) is a generic probability distribution that will be denoted as bare since the
effective distribution of the sd is shaped by the presence of the global constraint

D∑
d=1

sd = S, (3.1)

where S is a parameter playing the role of the system’s size. HereD is the fluctuating
number of domains that, according to the particular extraction of the {sd}, is needed
to fulfill the constraint (3.1). As it is, this approach is rather general. However, it
can be adapted to describe specific models (e.g. random percolation or the Ising
model) by using the appropriate domains size distribution p(s).

The probability of a configuration C ≡ [s1, s2, ... , sD;D] ≡ [{sd};D] is given by

pS({sd};D) =
1

ZS

D∏
d=1

p(sd)δ∑D
d=1 sd,S

, (3.2)

where the constraint given by Eq. (3.1) is enforced by the Kronecker delta. The
quantities

ZS(D) ≡
S∑

s1=1

S∑
s2=1

...

S∑
sD=1

D∏
d=1

p(sd)δ∑D
d=1 sd,S

, (3.3)

and

ZS =

∞∑
D=1

ZS(D), (3.4)
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play the role of partition functions respectively in ensembles with a fixed number of
domains D and in another where D fluctuates. From this simple observation one
immediately obtains the probability to have a number D of domains as

pS(D) =
ZS(D)

ZS
, (3.5)

and the average number of domains reads

〈D〉S =

S∑
D=1

DpS(D) (3.6)

As already discussed, because of the constraint (3.1), the dressed probability dis-
tribution of finding a domain of size s is different from the bare one, and can be
obtained from Eq. (3.2) by marginalization as

pS(s) =
p(s)∑∞

D=1D ZS(D)

∞∑
D=1

D

S∑
s1=1

S∑
s2=1

· · ·
S∑

sD−1=1

D−1∏
d=1

p(sd)δ∑D−1
d=1 sd,S−s

=
p(s)∑∞

D=1D ZS(D)

∞∑
D=1

D ZS−s(D − 1) , (3.7)

where the extra factor D comes in the game if we do not care about which domain
takes the specific size s.

The average domain size therefore reads

〈s〉S =

S∑
s=1

spS(s). (3.8)

At this point we can consider the heterogeneity. Given a configuration C, this is
defined, using the notation where

∑1,S
n ≡∑S

n=1, as

H =

1,S∑
n1

δn1,s1 +

1,S∑
n2 6=s1

δn2,s2 +

1,S∑
n3 6=s1,s2

δn3,s3 + · · ·
1,S∑

nD 6=s1,s2.··· ,sD−1

δnD,sD , (3.9)

namely as the number different values assumed by the random variables {sd}.
The probability to observe a certain value of H is given by

pS(H) =
1

H!

S∑
D=H

D!

1,S∑
s1

1,S∑
s2 6=s1

1,S∑
s3 6=s1,s2

· · ·

· · ·
1,S∑

sH 6=s1,s2.··· ,sH−1

ki=1,D−H+1∑
k1, k2, · · · , kH∑

i ki = D

[
1∏H

j=1 kj !

H∏
m=1

p(sm)kmδ∑H
n=1 knsn , S

]
.

(3.10)

We can rationalize the equation above as follows. i) The product
∏H
m=1 p(sm)km

is the probability of a configuration where there are {km} domains of sizes {sm}.
ii) One can run over all such configurations by summing over all the km, provided
that

∑H
i=1 ki = D, the total number of domains. Furthermore, each ki goes from 1,

because each of the H different sizes must be represented by at least one domain,
up to D −H − 1, which is the situation in which all the other sizes, except si, are
represented by a single domain. iii) The factor D!/

∏H
j=1 kj ! (D! has been moved
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to the beginning of the expression since it is the last to be summed) is the number
of ways to have a realization of {km}. The extra factor H! comes from the fact
that we don’t want to over count configurations that have the same realization of
the domains due to the symmetry upon re-labeling of the sizes. iv) The δ function
fixes the system total size S. v) The sums over s1, · · · , sH are constrained not to
overlap because, given H, there must be H domains of different areas, no matter
what these areas are. vi) The sum over D starts from H is because while it is true
that there can be a different number of domains, given H, at least H of them are
needed.

From Eq. (3.10) the average heterogeneity is obtained as

〈H〉S =

S∑
H=1

HpS(H). (3.11)

3.3.2 Formal solution
In principle all the probabilities can be computed using the formulas provided above.
This approach, however, becomes rapidly unfeasible already for moderate values of
S, unless some clever way to handle such expression is adopted. Let us consider,
to fix the ideas, the computation of quantities like pS(s) or pS(D) (Eqs. (3.7,3.5)),
which involve the functions ZS defined in Eq. (3.4). The sums in its definitions
contain, a priori, a number SS of terms, which cannot be enumerated by a fast
computer already for relatively small values of S. However, due to the constraint
imposed by the δ function, only a small fraction of such terms doesn’t vanish. This
suggests that the algorithmic complexity involved in the determination of ZS can
be tamed by resorting to some clever summation scheme. This can be done using
the recurrency relation

ZS(D) =

∞∑
s=1

p(s)ZS−s(D − 1), (3.12)

that can be easily proved upon writing δ∑D
d=1 sd,S

= δ∑D
d=2 sd,S−s1

in Eq. (3.3). It
was shown in [94] that using the recurrency relation above the algorithmic complex-
ity is lowered to polynomial.

Employing this tool is possible to obtain an exact solution of the model up to
relatively large values of S. We start discussing the dressed size probability pS(s).
This quantity is plotted in Fig. 3.2 using an algebraic bare probability p(s) ∼ s−τ .
The exact determination of this quantity, obtained from Eq. (3.7), is compared with
the outcome of a numerical simulations where, after extracting the random variables
sd, only the configurations respecting the constraint (3.1) are kept. One sees a
perfect agreement. As expected, the dressed and the bare distribution coincide,
pS(s) ' p(s), up to values s . S. This suggests that the bare distribution p(s) can
be used, in place of pS(s), in the calculation of different quantities, thus simplifying
the task. We will use this fact in the next section.

Let us now move to the computation of the heterogeneity 〈H〉S , which requires
the evaluation of Eq. (3.10). Clearly, also in this case a huge number of terms in
the summations happen to vanish due to the δ function, but here, at variance with
ZS , a recurrency technique could not be found, because of the further requirements
s2 6= s1, s3 6= s1, s2, · · · , sH 6= s1, s2. · · · , sH−1. Hence we resort to a different
approach, which provides us directly the value of 〈H〉S .

Following [119], we argue that

〈H〉S ' s∗ + 〈D〉S
S∑

s=s∗

pS(s), (3.13)
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Figure 3.2: The exact dressed probability distribution pS(s) ob-
tained from Eq. (3.7) is compared with numerical simulations (see
main text) for a system of size S = 100, using a bare size distribu-
tion p(s) ∼ s−τ and several values of τ . [4]

where s∗ is defined by
〈D〉S pS(s∗) = 1. (3.14)

Indeed, it follows from the definition of s∗ that there is at least one domain of each
size s ≤ s∗ in the system, and such domains contribute the quantity s∗ on the r.h.s.
of Eq. (3.13). For s > s∗ a domain of size s is found only with probability pS , which
provides the further contribution on the r.h.s. of Eq. (3.13).

With Eq. (3.13), the computation of 〈H〉S is reconducted to the that of 〈D〉S
and pS(s), both of which can be done with the recurrency method discussed above.

3.3.3 Algebraic bare distribution: analysis for power laws
Here we discuss a case which is particularly relevant in view of application to critical
models: algebraic bare distributions. The proper definition for the bare probability
distribution, given a total size S of the system is

p(s) =

{
N−1(τ, S)s−τ ; for s ≤ S
0 ; for s > S,

(3.15)

where the normalisation is a generalized harmonic number and can written in terms
of the Riemann and Hurwitz zeta functions, respectively ζ(x) and ζ(x, y)

N(τ, S) =

S∑
s=1

p(s) = ζ(τ)− ζ(τ, S + 1),

' ζ(τ)− 1

1− τ S
1−τ , (3.16)

with the last line valid for large S.
The quantity 〈D〉S , computed by means of Eqs. (3.5,3.6), is plotted in Fig. 3.3

against S for three values of τ .
In this figure, this exact determination is compared with an analytical approxi-

mation which can be obtained by writing

〈D〉S '
S

〈s〉S
. (3.17)



3.3. HETEROGENEITY IN STATISTICAL SYSTEMS 37

10
0

10
2

10
4

10
2

10
3

10
4

S

〈D
〉 S

τ = 3

3/2

1

S

Sτ−1

Figure 3.3: Average number of domains as a function of the size
of the system for different values of τ evaluated through Eq. (3.6).
The solid lines represent the predicted asymptotic behavior given
by Eq. (3.18), while for τ = 1, 〈D〉S ' lnS. [4]

In this expression 〈s〉S can be evaluated through Eq. (3.8) with the approximation
pS(s) ' p(s). One obtains using Eq. (3.16), for large S

〈D〉S '



2−τ
1−τ ; for τ < 1

lnS ; for τ = 1

ζ(τ)(2− τ)Sτ−1 ; for 1 < τ < 2

ζ(2)S/ lnS ; for τ = 2
ζ(τ)
ζ(τ−1)S ; for τ > 2 .

(3.18)

Fig. 3.3 shows that this results agrees very well with the exact determination even
in τ = 1 and τ = 2 where the leading term is not a simple power law.

From Eq. (3.14) and approximating the Riemann zeta function by ζ(x) ' (x−
1)−1 + γ we can estimate s∗ as

s∗(τ, S) ' S1/τ

(
γ +

S2−τ − 1

2− τ

)−1/τ

(3.19)

where γ ' 0.577 is the Euler constant. substituting in Eq. (3.13), one arrives at the
sought after result for the heterogeneity:

〈H〉S '
τs∗ − (s∗)τS1−τ

τ − 1
. (3.20)

This determination of 〈H〉S is portrayed in Fig. 3.4 and compared with the outcome
of numerical simulations. In both cases 〈H〉S presents a peak at τ ' 2 that becomes
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Figure 3.4: The cluster size heterogeneity, 〈H〉S , obtained
through numerical simulations for various sizes S. The results
presents averages over a large number of samples (106 for the small-
est size and 104 for the largest). The solid line, whose agreement
with the numerical results is very good (shown for the smallest
and largest size), is the approximate analytical solution given by
Eq. (3.20). [4]

more pronounced as S increases. For large S,

〈H〉S '



2− τ
1− τ ; for τ < 1

lnS ; for τ = 1

τ(2− τ)1/τ

τ − 1
S1−1/τ ; for 1 < τ < 2

2

(
S

lnS

)1/2

; for τ = 2

τ

τ − 1

[
S

ζ(τ − 1)

]1/τ

; for τ > 2 .

(3.21)

From the above equation one has 〈H〉S ∼ Sα(τ) with

α(τ) =


0 ; for τ < 1

1− 1/τ ; for 1 < τ < 2

1/τ ; for τ > 2.

(3.22)

The exponent α(τ) is plotted in Fig. 3.5 and compared with its determination
obtained by means of numerical simulations.

From the form of α(τ) one concludes that, with an algebraic bare distribution
p(s), there is a maximum value of the heterogeneity corresponding to τ = 2. The
physical motivation of this fact is clear: For a given number of domains D, it is
intuitive that the steeper the bare distribution is, i.e. the larger τ is, the smaller
〈H〉S is. This is because small domains are repeatedly extracted, whereas larger
ones have little chances to be selected. The above is true for any value of τ , however
the dependence of 〈D〉S on S makes a difference between the two cases τ > 2 and
τ ≤ 2. Indeed, in the former case, fixing S implies a fixed (independent of τ) 〈D〉S
as well, in view of Eq. (3.18), and this explains the decay of 〈H〉S with increasing τ
(for fixed S). Instead, for 1 < τ ≤ 2, upon fixing S, 〈D〉 still depends on τ . Hence
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increasing τ in this range produces, next to the general result of lowering H at fixed
D, a competing effect due to the average increase of D. The second result globally
prevails, so that H increases for 1 < τ ≤ 2 and displays a pronounced maximum
right at τ = 2. Notice also the singular form of α(τ), signaling an abrupt change of
behavior around τ = 1 and τ = 2.

3.3.4 Algebraic with large-s cutoff

In this subsection we present some arguments which are still quite speculative in
nature and require more work to be soundly tested. We think nonetheless that
they are worth mentioning to elucidate the connection of the results above with
interacting spin models, praesertim, the Ising model.

In the neighborhood of a critical point, the probability distributions of observ-
able quantities, such as the domains size, usually behave as at criticality, namely
algebraically, up to a certain value Σ of s, playing the role of a coherence size, and
then rapidly fall off for s > Σ. Hence one has, in this case

p(s) =

{
N−1(τ, S)s−τf

(
s
Σ

)
; for s ≤ S

0 ; for s > S,
(3.23)

with the following properties of the cutoff function

f(x) '
{

1 ; for x� 1
0 ; for x� 1.

(3.24)

Criticality corresponds to Σ = ∞. Comparing with the expression (3.15) one sees
that for Σ � S one basically recovers the situation with p(s) purely algebraic but
with the replacement S → Σ. In other words, the correlation size Σ plays the
role played by the total system size in a system at criticality. Instead, for Σ � S,
the presence of the cutoff is irrelevant and one recovers the same results of the
previous section. In a physical system which becomes critical for a certain value
Tc of a control parameter T , the two situations above represent the two cases in
which the thermodynamic limit S → ∞ and T → Tc are taken in the two orders
limT→Tc limS→∞ or limS→∞ limT→Tc , respectively.

In particular, given a certain value of τ > 1, upon fixing S and letting Σ grad-
ually grow (corresponding to narrow criticality), we expect to see a crossover from
a regime Σ � S where 〈H〉S increases (as obtained by Eq. (3.21) letting S → Σ)
to another regime, when Σ � S, where 〈H〉S saturates to the value of Eq. (3.21).
In order to make a semi-quantitative comparison with the behavior of a physical
model, the two-dimensional Ising model, we should proceed as follows. First we
should chose for the bare the form of f(s/Σ(T )) typical of the Ising model near
criticality, and then plot 〈H〉S against an axis T such that Σ ∼ |T − Tc|−Dν , where
D is the fractal dimension of the geometric domains and ν the critical exponent of
the 2d Ising model.

3.4 Comments

We conclude with some comments on the relevance of the picture drawn in this
chapter with respect to the heterogeneity in interacting classical spin models. In
the model solved in the sections above, domains are chosen from the bare probability
distribution and the sample is kept when the area filling constraint is obeyed, i.e., the
sum of the all sizes is exactly the area S. It is, in a sense, a mean-field approach as
this is the only constraint imposed to the set of chosen domains. In a real system,
e.g., geometric domains in the 2d Ising model, the equilibrium dynamics impose
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Figure 3.5: Behavior of the exponent α(τ) as a function of τ . [4]

correlations between these domains. Since every domain is surrounded by others,
any surface change on a given domain also changes the area of the circumscribing
ones. For very large systems, the heterogeneity is maximum at Tc and the exponent
is τ = 379/187 ' 2.027 [121, 122], slightly larger than 2. There are, however,
other ways to chose domains for the Ising model other then the geometrical ones.
The Fortuin-Kasteleyn domains (or Coniglio-Klein droplets [123]), for example, are
smaller than the geometric ones and consider that within the same domain the spins
are not only parallel but effectively correlated. In this case, τ = 31/15 ' 2.067,
slightly larger than the value for geometric domains. Another possibility is to
consider the area inside every hull, the external perimeter perimeter of a geometrical
domain, despite the internal spins being all parallel or not. Although the number of
these domains is exactly the same as the geometric domains as each hull is associated
with a single domain, they do not need to obey the area constraint and, indeed,
their total area is larger than S. Interestingly, their Fisher exponent is not only
smaller, but is exactly 2. We thus think that the fewer constraints the domains are
demanded to obey, the closer to τ = 2 the Fisher exponent of their size distribution
will be, maximizing the heterogeneity.
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Part II

Potts model
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Chapter 4

Metastable phases

In the first section of this chapter we briefly overview the problem of metastability
in the two dimensional Potts model when it undergoes a temperature triggered
first order transition, i.e. for q > 4. In the second one we study the metastable
equilibrium properties of the model with heat-bath transition rates using a novel
expansion, based on the work in Ref. [3].

4.1 Introduction: Metastability in the Potts model

The first order transition of the ferromagnetic two dimensional Potts model with q >
4 is accompanied by metastability properties. Indeed when a control parameter is

State A
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State B

State A

State C

Figure 4.1: Pictorial representation of the free energy profile of
the ferromagnetic two dimensional Potts model with q > 4 before
and after a temperature quench. See main text for details.

changed in such a way that a thermodynamical system undergoes a first-order phase
transitions one can usually observe hysteresis and metastability. These phenomena
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are widespread in nature [124] and, particularly, in many areas of physics [125–
127], among which the glass transition problem [124, 128]. Besides, metastability
plays a prominent role also in biological systems such as, for instance, proteins
and nucleic acids [129, 130]. To develope an intuitive idea of the phenomenon in
the context of the Potts model consider the pictorial representation of the free
energy landscapes given in Fig. 4.1. The above profile corresponds to the model in
contact with a thermal bath at an uppercritical temperature, while the one below
to a temperature lower then the critical one. In the first case there is only one
minimum, State A, corresponding to a disordered phase. In the second, State A
has become a relative minimum and there is a number q > 4 of degenerate absolute
minima associated to ordered phases, here compactified in just two of them (State
B and State C) to allow visualization. If the system (the gray ball) is prepared in
equilibrium in the disordered phase, and then a quench to a sub-critical temperature
is performed, before the (possibly long and complicated) relaxation process towards
a new equilibrium it may remain trapped in the (now) metastable State A.

There are several considerations to be made with respect the simple picture
given above. In general, quantifying metastability and the dynamic escape from
it through nucleation is a hard and longstanding problem [61–63, 131]. Most dy-
namic studies of the model focused on the analysis of the coarsening dynamics
after deep quenches at moderate subcritical temperatures [34, 59, 132, 133] so as to
avoid getting stuck in long-lived metastable configurations [?, 22, 34, 54, 154, 158].
Referring to the intuitive representation of the problem in Fig. 4.1 the lower the
quenching temperatures the lower the depth of the free energy basin correspond-
ing to State A. The study of metastability and thermally assisted nucleation close
to the critical temperature in this rather simple model has not been so much de-
veloped in the literature. Numerical evidence for thermodynamic metastability in
finite but large size systems with q > 4 was provided in various papers. In par-
ticular, the analysis of the short-time dynamics [134] and Binder cumulant [135]
was recently used with this purpose. However, Meunier and Morel [136] argued
that thermodynamic metastability should disappear in the infinite system size limit
and other authors [137] provided arguments supporting this claim. Extracting the
infinite size limit behavior, and the eventual disappearance of metastability from
numerical studies is, however, a dauntingly hard task. In this chapter we address
metastability in the stochastic bidimensional Potts model with q > 4 from a novel
perspective, that is, by solving the microscopic dynamics in the large q limit, based
on the work in Ref. [3]. We focus on the (thermodynamic) characterization of the
metastable state, leaving some questions related to its escape, and the consequent
nonequilibrium dynamics, to be addressed in the next chapter.

4.2 Summary of the results

Classical spin models coupled to heat baths evolve in time stochastically according
to some microscopic updates that have to be provided to make their definition
complete. The microscopic rules of the Markov Chain that models the evolution
of the system, from one microstate to the next, can be freely choose, conditioned
to respect detailed balance. This last requirement indeed guarantees the stationary
state of the dynamics to be an equilibrium one. As we argue below, the dynamics are
faster, and also easier to understand analytically, when the heat bath microscopic
updates are used. This is the rule that we adopt. The choice of initial conditions
and working temperature decides the kind of metastability one accesses with the
dynamic protocol. More precisely, for sub-critical quenches, in which we follow
the evolution of a disordered initial state under conditions in which the system
should order ferromagnetically, the metastable state is disordered. Instead, in the



4.3. PROPERTIES OF THE METASTABLE PHASES IN THE LARGEQ LIMIT45

10−4

10−3

10−2

10−1

100

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

−
e(
d
) (
β
,q
)

T/Tc(q)

q = 105

104

103

102

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

−
(e

(o
) (
∞
,q
)
−
e(
o
) (
β
,q
))

T/Tc(q)

q = 105

104

103

102

Figure 4.2: Energy density of the disordered (left panel) and or-
dered (right panel) metastable state vs T/Tc for several values of
q (increasing from bottom to top), evaluated analitically (colored
solid lines). Values from simulations are also presented with data
points. They are time averages of the energy density. The error
bars correspond to a standard deviation. The critical temperature
is indicated with a vertical black line. See Fig. 4.7, Fig. 4.10 and
text below for details.

opposite quench, in which we prepare the system in a ferromagnetic state and we
heat it above the critical point, the metastable state is ferromagnetically ordered.
We consider both kinds of instantaneous temperature quenches.

The main result of this chapter is the identification of the (few) relevant mi-
croscopic transition paths in the large q limit, the consequent derivation of the
free-energy densities of the two phases and from this various thermodynamic ob-
servables that allow us to quantify the metastable state in full detail. Figure 4.2
displays the energy density of the metastable states. We also identify the spinodal
temperatures for the disordered and for the ordered phase, respectively Tc/2 and
2Tc for q →∞.

4.3 Properties of the metastable phases in the large
q limit

In this section we develope the method, based on an expansion in the large q limit,
which allows us to describe in detail the metastable states of the model.

4.3.1 The dynamics
In this subsection we define the Heat Bath microscopic rule, we enumerate all
possible updates of a chosen spin according to its surrounding configurations, and
we derive the transition probability for each of them.

As we mentioned in the introduction, the usual microscopic dynamics used in
Monte Carlo simulations of spin models are the Metropolis ones, in which one
tries to change the spin to a new value (chosen at random among the remaining
q − 1 possibilities) and the move i) is accepted if the new local energy e′i is lower
than the previous local energy ei or, otherwise, ii) it is accepted with probability
exp(−β(e′i − ei)). However, in the case of the Potts model, especially in its large q
limit, another rule also respecting detailed balance, the so-called heat bath rule, is
more efficient and allows for a partial analytic treatment, similarly to what found in
other ferromagnetic models [138]. In short, with this rule the transition probabilities
are proportional to e−βe

′
. Specifically, the scheme works as follows. First, one

considers the weight associated to each possible value that a spin, say ϕi, can take
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depending on its local environment. As an example, assume that ϕi is surrounded,
on the square lattice, by two spins taking the value 1, a spin with value 2 and another
one with value 3. We attribute the weights wi(ϕi = 1) = e2β , corresponding to the
fact that the spin i taking the value 1 yields a local energy of −2, wi(ϕi = 2) =
eβ = wi(ϕi = 3) because of the local energy being equal to −1 in these cases, and
wi(ϕi = j) = 1 for 3 < j ≤ q for similar reasons. Next, we normalize the wi and we
define the probabilities

Pi(ϕi = k) =
wi(ϕi = k)∑q
l=1 wi(ϕi = l)

. (4.1)

Having attributed probabilities to the state of the central spin, we can now
evaluate the transition probabilities for its update. Imagine that the spin ϕi takes
the value 1. Then, we choose a random number r ∈ [0 : 1]. If r < Pi(1), the spin
keeps its value ϕi = 1. Otherwise, if r < Pi(1) + Pi(2), ϕi takes the new value
ϕi = 2, or if r < Pi(1) + Pi(2) + Pi(3), it is updated to ϕi = 3, and so on and
so forth. Thus, we have the following transition probabilities for the spin ϕi = 1
surrounded by two spins 1, one spin 2 and one spin 3:

T HB
1→1 =

e2β

e2β + 2eβ + q − 3
, T HB

1→2 = T HB
1→3 =

eβ

e2β + 2eβ + q − 3
, (4.2)

T HB
1→j =

1

e2β + 2eβ + q − 3
, (4.3)

with j indicating any possible state with j > 3 (there are q− 3 such states). Notice
that these probabilities do not depend on the initial state of the spin. Despite this,
we prefer to use the notation above to make the comparison with the Metropolis
probabilities (Eq. (4.4)). Proceeding in a similar way one can evaluate the transition
probability of any spin, according to its state and the ones of its neighbors.

For the sake comparison, we recall the transition probabilities of the Metropolis
rule:

T M
1→1 = 1− 1

q − 1
(2e−β + (q − 3)e−2β),

T M
1→2 = T M

1→3 =
1

q − 1
e−β , (4.4)

T M
1→j =

1

q − 1
e−2β ,

for the same example considered above. In practice, we find that the heat-bath
dynamics are much more efficient, in the sense that the approach to equilibrium is
faster, in particular for large q. We only consider the heat-bath dynamics in the
following. For any integer q ≥ 5 we can classify all local configurations, seen as
vertices with a central spin and its four nearest neighbors, and identify all possible
updates. The method goes like this. Take one spin ϕi, count the number of neigh-
boring spins with the same value as the selected central one, and call this number
n1. Next, count the number of neighbors with the most present spin value different
from the central one and call this number n2. Continue in this way and organize
these numbers in decreasing order, that is, n1, n2, n3, . . . . It is easy to see that,
with this classification, there are only 11 local configurations (we do not distinguish
which are the neighbors that take the same or different values as the central one)
and they are represented in the figure below:
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(0) : (1) : (2) : (3) :

(4) : (5) : (6) : (7) :

(8) : (9) : (10) : (11) :

In the following we will use the name “sand” to refer to the configurations (11)
in which all sites take different values. We now use a more detailed notation to
identify each of these configurations writing explicitly the number of neighbors of
each kind, that is to say, using [n1, n2, . . . ] where only the values ni 6= 0 are kept.
Proceeding in this way we have

(0) : [4]→ (0) , (7)

(1) : [3, 1]→ (1) , (4) , (8)

(2) : [2, 2]→ (2) , (2) , (9)

(3) : [2, 1, 1]→ (3) , (5) , (10)

(4) : [1, 3]→ (4) , (1) , (8)

(5) : [1, 2, 1]→ (5) , (3) , (10)

(6) : [1, 1, 1, 1]→ (6) , (11)

(7) : [0, 4]→ (7) , (0)

(8) : [0, 3, 1]→ (8) , (1) , (4)

(9) : [0, 2, 2]→ (9) , (2)

(10) : [0, 2, 1, 1]→ (10) , (3) , (5)

(11) : [0, 1, 1, 1, 1]→ (11) , (6)

where the right arrows and the values after them indicate the transitions generated
by the update of the central spin. For example, the first configuration, denoted
by (0), can either keep the same value, thus the (0) on the right, or take another
value, thus the configuration (7) : [0, 4]. Again, this should be easy to grasp by
looking at the sketch above. For each local situation, we can then read the rules
for the heat-bath dynamics. The local configuration (0) remains the same with
probability ' e4β and changes to any of the other q − 1 possible values of the spin
with probability e0 = 1. Then, normalizing the probabilities, we obtain

P0→0 =
e4β

e4β + q − 1
, P0→7 =

q − 1

e4β + q − 1
. (4.5)
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In a similar way, we derive all other transition probabilities:

P1→1 =
e3β

e3β + eβ + q − 2
, P1→4 =

eβ

e3β + eβ + q − 2
, P1→8 =

q − 2

e3β + eβ + q − 2
,

P2→2 =
2e2β

2e2β + q − 2
, P2→9 =

q − 2

2e2β + q − 2
,

P3→3 =
e2β

e2β + 2eβ + q − 3
, P3→5 =

2eβ

e2β + 2eβ + q − 3
, P3→10 =

q − 3

e2β + 2eβ + q − 3
,

P4→4 =
eβ

eβ + e3β + q − 2
, P4→1 =

e3β

eβ + e3β + q − 2
, P4→8 =

q − 2

eβ + e3β + q − 2
,

P5→5 =
2eβ

2eβ + e2β + q − 3
, P5→3 =

e2β

2eβ + e2β + q − 3
, P5→10 =

q − 3

2eβ + e2β + q − 3
,

P6→6 =
4eβ

4eβ + q − 4
, P6→11 =

q − 4

4eβ + q − 4
,

P7→7 =
q − 1

e4β + q − 1
, P7→0 =

e4β

e4β + q − 1
,

P8→8 =
q − 2

e3β + eβ + q − 2
, P8→1 =

e3β

e3β + eβ + q − 2
, P8→4 =

eβ

e3β + eβ + q − 2
,

P9→9 =
q − 2

2e2β + q − 2
, P9→2 =

2e2β

2e2β + q − 2
,

P10→10 =
q − 3

e2β + 2eβ + q − 3
, P10→3 =

e2β

e2β + 2eβ + q − 3
, P10→5 =

2eβ

e2β + 2eβ + q − 3
,

P11→11 =
q − 4

4eβ + q − 4
, P11→6 =

4eβ

4eβ + q − 4
.

Note that for any spin in the bulk, that does not feel the boundary if there
exists one, these expressions are independent of the system size. Their large q limit
is established below, when we simultaneously decide the temperature range studied
that itself also varies with q.

4.3.2 Disordered metastable phase
Let us focus now on the first dynamic protocol, a quench to a subcritical temperature
T < Tc(q) from a completely disordered state, i.e., an equilibrium configuration at
T →∞.

Consider a totally random configuration, a typical initial state at t = 0. The
number of sites in the configurations labeled (a), with a = 0, . . . , 11 as in the sketch
with colored circles above, are Na(t = 0) = Na(0) = [(q − 1)/q4] Ña(0)N with

Ñ0(0) = 1/(q − 1) , Ñ1(0) = 4 , Ñ2(0) = 6 ,

Ñ3(0) = 6(q − 2) , Ñ4(0) = 4 , Ñ5(0) = 12(q − 2) ,

Ñ6(0) = 4(q − 2)(q − 3) , Ñ7(0) = 1 , Ñ8(0) = 4(q − 2) ,

Ñ9(0) = 3(q − 2) , Ñ10(0) = 6(q − 2)(q − 3) ,

Ñ11(0) = (q − 2)(q − 3)(q − 4) .

(4.6)

For large q, the state (11) largely dominates the disordered configuration since

N11(0) ' N(q − 1)(q − 2)(q − 3)(q − 4)/q4 ' N . (4.7)

The next configurations in the hierarchy are the (6) and (10) ones with

N6(0) ' 4N/q , N10(0) ' 6N/q . (4.8)
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All the other states appear with a much lower probability, reduced by at least
another power of q.

In the large q limit we can also write

eβ = eβcTc/T = eTc/T ln(1+
√
q) = (1 +

√
q)Tc/T ' qTc/(2T ) . (4.9)

Thus, during an update of the full lattice, the probability that a state (11) be
replaced by a state (6) can be expressed as

P11→6 =
4eβ

4eβ + q − 4
' 4qTc/(2T )

4qTc/(2T ) + q
=

1

1 + 1
4q

1−Tc/(2T )
, (4.10)

showing that the temperature T = Tc/2 plays a special role and can be identified
in this limit with the metastable temperature Tm we mentioned in the introduction.
Indeed, for q � 1

P11→6 → 1 at T < Tc/2 , (4.11)

i.e., the state (11) is completely unstable and the system tends to reorganize re-
ally fast at these low temperatures. In the same large q limit, at the cross-over
temperature,

P11→6 → 4/5 and P6→11 = 1− P11→6 → 1/5 at T = Tc/2 , (4.12)

meaning that the states labeled (11) are again unstable, even though in a weaker
way. The system will still reorganize at Tc/2. Finally,

P11→6 → 0 at T > Tc/2 , (4.13)

and the system remains disordered in the large q limit, in the full temperature
interval (Tc/2, Tc].
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Figure 4.3: The time evolution of Na(t)/N for a = 0, 3, 6, 10, 11
at T = 0.9Tc in a square lattice system with linear size L = 103

and q = 103. [3]

When q is large but finite the picture is qualitatively similar, although the change
is no longer at T = Tc/2 and it is not as sharp. The system does not in general
remain disordered after a quench at T > Tc/2 but it is only in this region that it
can be found in a metastable state. To be more precise, let us consider a particular
case. For a finite value of q = 103 and after a quench at T = 0.9Tc, we observe the
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behavior shown in Figs. 4.3 and 4.4. i) During a first period, most of the spins are
in the (11) state and there are only very small domains, the configurations look like
sand. The density of vertices (11) is almost 1, see Fig. 4.3, and the left snapshot in
Fig. 4.4 shows one such configuration. ii) At a later time, we see the appearance of
the stable state (0) and some larger domains are formed, see the central snapshot in
Fig. 4.4. For the chosen parameters q and T , the crossover occurs at a time t ' 100.
iii) At even later times, most of the states are in the (0) state and large domains are
formed, see the right panel in Fig. 4.4. This is the proper coarsening regime. Each
of these three regimes is characterized by a different type of dynamical behavior.
We call them i) metastable, ii) fast forming finite domains and iii) coarsening.

We found that the measurement of Na(t)/N is a very practical way of deter-
mining the type of dynamics. Next, we found that for a given value of q, the time
t at which the change of behavior is observed depends strongly on the value of the
temperature at which the system is quenched. In particular, if T moves close to Tc,
the system seems to be blocked in a metastable state forever. For T = 0.99Tc and
q = 103, as we will see below, the system is not able to escape the metastable state.

Figure 4.4: Snapshots at times t = 50, 200, 1000 for a square
lattice system with linear size L = 103 and q = 103. Different
colors are different spin values. [3]

Thus for a given value of q, after a quench to T < Tc, we observe metastable
states up to a time which seems to diverge at some temperature value that we
parameterize as rt(q) = T/Tc. The quantity rt(q) does not seem to depend on
the systems’ linear size considered. We found numerically rt(q = 103) ' 0.98,
rt(q = 104) ' 0.94, rt(q = 105) ' 0.92, rt(q = 106) ' 0.90 and rt(q = 109) ' 0.87.
Thus, as we increase q, the temperature above which we observe metastable states
forever slowly decreases. Presumably, this quantity will go to 0.5 in the limit of
infinite q.

For T/Tc > rt(q), we always observed metastable states. We will concentrate in
the following in the study of these metastable states.

We illustrate the properties of these metastable states in Fig. 4.5, where we
show the evolution of Na/N as a function of time for q = 103 and L = 103 at
T/Tc = 0.99. We only show the states which contribute the most. Already at times
of the order of t ' 101 MCs after the quench, we found N0(t) = N2(t) = N4(t) =
N7(t) = N8(t) = N9(t) = 0 while 0 6= N1(t) ' N5(t) ' O(1)� N are not shown in
the plot. The only values of order N at this time scale are N3, N6, N10 and N11.
Their expected values, according to the predictions based on the method we develop
below, are N11/N ' 0.862, N6/N ' 0.120, N3/N ' 0.010, N10/N ' 0.009 and are
shown with thin flat lines in the figure. The solid lines, instead, are the results of the
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Figure 4.5: The time evolution of Na(t)/N for a = 3, 6, 10, 11 at
T = 0.99Tc in a square lattice system with linear size L = 103

and q = 103. The thick lines are data from a numerical simulation
while the thin ones are analytical predictions based on the method
we develop in this work. The curves demonstrate the hierarchy in
Eq. (4.14). [3]

numerical simulations, and are in excellent agreement with the analytic predictions.
Statistically, the configurations do not change after running the simulation much
longer: the state made of “vertices” (3), (6), (10) and (11) according to the hierarchy

N3(t) ' N10(t)� N6(t)� N11(t) (4.14)

with all of them being O(N), is metastable over very long time-scales.
In the following, we concentrate on cases in which T is close to Tc. Moreover, we

use the hierarchy relation (4.14) to develop an expansion that is notably accurate
even keeping only the dominant order. We rename Na (a = 0, ..., 11) the normalized
(by N) abundances that can also be interpreted as the probabilities that a randomly
picked site be in the state (a). Exploiting the hierarchy relation (4.14), expected to
apply to the metastable state, we consider the evolution of

N11 ' 1 , N6 ' p , N10 ' p2 and N3 ' p2 (4.15)

thus rescaled with the parameter p ≡ P11→6 which, at T ' Tc, is proportional to
q−1/2:

p ≡ P11→6 ' q−1/2 for T ∼ Tc . (4.16)

In the large q limit, we will then use it as the small parameter in our expansion,
that we will develop up to second order in powers of p.

Concretely, our aim now is to construct a master equation for the probabili-
ties N11, N6, N10, . . . , and then find the stationary solution that determines the
proportions of the vertices of each kind in the metastable states.

In order to do so, we first picture what kind of structures, i.e., configurations of
spins of the same color (spin value) in a background of “sand” (i.e. spins in the (11)
state) have a probability to exist which is proportional to p2 or greater. It turns
out that spins in the states (6), (3) and (10), the only relevant ones in the large N
limit according to the discussion in the previous Subsection, can only be found in
the following structures
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where the gray sites in a given diagram possess the same color, while the white
sites have a different color with respect to the gray ones and also with respect
to the nearest and next-to-nearest other white ones. The numbers indicate the
kind of vertex, following the notation used in the previous Subsections. The red
segments, which highlight the satisfied bonds, are useful to keep track of the energy
contribution of the structures. It is possible to check that all the other possible
structures are of order p3 or higher and we will not take them into account.

Now, we identify the evolution that these structures can make in a single time
step. As an example consider structure B. The following move
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consists of a spin in state (11) turning into a state (6) and thus forming the structure
on the right. The probability of this move is negligible because the probability
to pick a (11) which is around the structure on the left (which contains (3)) is
proportional to p2 and the probability now for it to become a (6) is proportional
to p. The result is therefore proportional to p3 and hence negligible at the order
we are keeping. This kind of analysis can be performed for all the cases and thus
prove that the structures labeled A to F are at most of order p2 and every other is
negligible.

The next step is to list all the possible moves that are relevant for the second
order of our expansion and understand what are the consequences of each of these
moves. This will allow us to write down all the terms of the master equations for
the probabilities N11, N6, N3 and N10. In practice we find that for (3) and (10) we
need an equation for each of the configurations in which these states can be found
so we define the following quantities
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We can now express the probabilities for all the structures introduced above in
terms of the probabilities of the various states

P (A) = (N6 − 2N3a − 2N3b)/2 ,

P (B) = N3a ,

P (C) = N3b = N10c ,

P (D) = N3c/4 ,

P (E) = N10a ,

P (F) = N10b/2 ,

(4.17)

where the first one comes from the fact that for every two (6) which are not in
the structure B or C (which contain two (6) each) we count a structure A. The
derivation of P (B), . . . , P (F) is straightforward. These expressions turn out to be
useful to write down the probabilities of the moves, as we explain below.

Let us start with all the moves that a site which is in (11) can make. Pick a
site in (11) which is not a neighbor of any structure and turn it into a (6). The
probability for this move is

P11→6 = p, (4.18)

where we mean the extended, temperature and q dependent, form as in Eq. 4.10,
times the probability of picking such a (11) state. The latter equals N11 − 3N6

because there are 3 sites in state N11 surrounding every (6) in structure A, and
we are neglecting the other terms of P (A) and the other structures because they
will lead to contributions of higher orders. In this move we lose 2 (11) states and
we gain 2 (6) states. In the following sketch we represent the move, we give its
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probability P and we indicate below the sketch the loss and gain of vertices induced
by the move.

P = p(N11 − 3N6)

11

11

11

11

11

11

11

11

11

11

11

11

11 11

11

11

11

11

11

6

11

11

11

6

11

11

−2N11,+2N6

In a similar way, the probability of all the other 15 possible moves (to order p2)
are computed in Appendix B.

Collecting all the contributions for each of the probabilities Na we can now build
the master equations governing their evolution in this approximation

Ṅ11 = −N11
12

4eβ + q − 4
− 2N11p+ 2N6 −

7

4
N6p− 2N3a + 2N10b + 2N10a (4.19)

+ 2[(N3b +N3a)P3→10 − (N10b +N10a)P10→3] (4.20)

Ṅ6 = 2N11p− 2N6 +
1

2
N6p+ 4(N3a +N3b) + 2(N3cP3→10 −N10cP10→3) (4.21)

− 2[(N3b +N3a)P3→10 − (N10b +N10a)P10→3] (4.22)

Ṅ3a =
1

4
N6p− 2N3a − (N3aP3→10 −N10aP10→3) (4.23)

Ṅ3b =
1

2
N6p− 2N3b − (N3bP3→10 −N10bP10→3) + (N3cP3→10 −N10cP10→3)

(4.24)

Ṅ3c = −4(N3cP3→10 −N10cP10→3) (4.25)

Ṅ10a = N11
4

4eβ + q − 4
− 2N10a + (N3aP3→10 −N10aP10→3) (4.26)

Ṅ10b = N11
8

4eβ + q − 4
− 2N10b + 2(N3bP3→10 −N10bP10→3) (4.27)

Ṅ10c = Ṅ3b =
1

2
N6p− 2N3b − (N3bP3→10 −N10bP10→3) + (N3cP3→10 −N10cP10→3).

(4.28)

We want to solve the equations at stationarity, to do so we write down the proba-
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bilities in powers of p

N11 = α0 + α1p+ α2p
2

N6 = β1p+ β2p
2

N3a = γ2ap
2

N3b = γ2bp
2

N3c = γ2cp
2

N10a = δ2ap
2

N10b = δ2bp
2

N10c = δ2cp
2.

(4.29)

The normalization condition N11 +N6 +N3a +N3b +N3c +N10a +N10c +N10b =
1 implies α0 = 1, β1 = −α1, α2 = −(β2 + γ2a + γ2b + γ2c + δ2a + δ2b + δ2c).
Plugging the expressions in (4.29) in the master equation we find from Ṅ3c = 0
that γ2c = δ2cP10→3/P3→10, the first two equations contain first power terms of the
form 2α1p+ 2p, thus α1 = −1 and by construction δ2c = γ2b. We are left with

Ṅ11 = −12xp2 + 2p2 + 2β2p
2 − 7

4
p2 − 2γ2ap

2 + 2δ2bp
2 + δ2ap

2+

+ 2p2[(γ2b + γ2a)P3→10 − (δ2b + δ2a)P10→3]

Ṅ6 = −2p2 − 2β2p
2 +

1

2
p2 + 4p2(γ2a + γ2b)

− 2p2[(γ2b + γ2a)P3→10 − (δ2b + δ2a)P10→3]

Ṅ3a =
1

4
p2 − 2γ2ap

2 − p2(γ2aP3→10 − δ2aP10→3)

Ṅ3b =
1

2
p2 − 2γ2bp

2 − p2(γ2bP3→10 − δ2bP10→3)

Ṅ10a = 4xp2 − 2δ2ap
2 + p2(γ2aP3→10 − δ2aP10→3)

Ṅ10b = 8xp2 − 2δ2bp
2 + 2p2(γ2aP3→10 − δ2aP10→3),

(4.30)

where x ≡ p−2/(4eβ + q − 4).
From Ṅ10a = 0 we get

δ2a =
4x+ γ2aP3→10

2 + P10→3
, (4.31)

from Ṅ3a = 0

γ2a =
1/2 + P10→3/4 + 4xP10→3

4 + 2P10→3 + 2P3→10
, (4.32)

Ṅ10b = 0 gives

δ2b =
4x+ γ2bP3→10

1 + P10→3
, (4.33)

Ṅ10b = 0

γ2b =
1/2 + P10→3/2 + 4xP10→3

2 + 2P10→3 + P3→10
, (4.34)

and finally from Ṅ6 = 0

β2 = −3/4 + 2(γ21 + γ22)− [(γ2a + γ2b)P3→10 − (δ2b + δ2a)P10→3]. (4.35)
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Thus summarizing

α0 = 1

α1 = −1

α2 = −(β2 + γ2a + γ2b + γ2c + δ2a + δ2b + δ2c)

β1 = −α1

β2 = −3/4 + 2(γ21 + γ22)− [(γ2a + γ2b)P3→10 − (δ2b + δ2a)P10→3]

γ2a =
1/2 + P10→3/4 + 4xP10→3

4 + 2P10→3 + 2P3→10

γ2b =
1/2 + P10→3/2 + 4xP10→3

2 + 2P10→3 + P3→10

γ2c = δ2cP10→3/P3→10

δ2a =
4x+ γ2aP3→10

2 + P10→3

δ2b =
4x+ γ2bP3→10

1 + P10→3

δ2c = γ2b.

(4.36)

In order to put the approach above to the numerical test, we collected the
proportions Na measured with the heat bath Monte Carlo simulations and we com-
pared them to the values computed with the master equation analysis. Concretely,
we used systems with L = 103, and q = 104, 105 and 106, at T/Tc = 0.99. The
numerical and analytic data are displayed in Tab. 4.1. The number of digits shown
correspond to results up to order p2. The agreement between the values found with
the two approaches is excellent.

q 10 000 100 000 1 000 000
numerical analytic numerical analytic numerical analytic

N11 0.95731 0.95729 0.986509 0.986509 0.9957020 0.9957023
N6 0.04054 0.04064 0.013269 0.013272 0.0042752 0.0042751
N3a 0.00021 0.00021 0.000022 0.000022 0.0000023 0.0000023
N3b 0.00042 0.00041 0.000044 0.000044 0.0000046 0.0000046
N3c 0.00048 0.00046 0.000050 0.000050 0.0000053 0.0000053
N10a 0.00019 0.00019 0.000020 0.000020 0.0000020 0.0000020
N10b 0.00044 0.00041 0.000045 0.000044 0.0000046 0.0000046
N10c 0.00037 0.00038 0.000039 0.000039 0.0000040 0.0000040

Table 4.1: Na for systems with L = 103 and q = 104, 105, 106

evolving at temperatures T/Tc = 0.99 after an instantaneous
quench from infinite temperature. The first column show the nu-
merical values at MC times such that the system is stationary in the
metastable state, while the second ones give the asymptotic values
calculated with the master equations approach. Only the relevant
values (up to order p2) are shown. The error bars on the numerical
values are always smaller than one on the last shown digits.

In Tab. 4.2 we show data for a system with linear size L = 103 and q = 106,
and we vary the temperature, moving progressively towards criticality at Tc. As
explained below, for this value of q, we observe a divergence of the time required
to reach a ferromagnetic state at T/Tc ' 0.9. The data in Tab. 4.2 show that the
analytic approximation is very good (in the metastable state) even moderately away
from Tc. However, the numerical measurements at T/Tc = 0.88 have been done at
time t = 103, and at this time the agreement between numerical and analytical
data is still good but not as good as for the higher temperatures. In particular, one
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can notice a relatively important difference in N11 and N3c. For longer measuring
times, one would see this difference increase, showing that the system leaves the
metastable state at T/Tc = 0.88. For the higher temperatures, there are no time-
dependencies in the numerical results and for all purposes the metastable states
remain for ever.

T/Tc p N11 N6 103N3a 103N3b 103N3c 103N10a 103N10c

0.88 0.01017 numeric 0.9895816 0.0101646 0.0130 0.0260 0.1772 0.0020 0.0039
analytic 0.9895916 0.0101674 0.0129 0.0259 0.1705 0.0020 0.0039

0.92 0.00725 numeric 0.9926679 0.0072481 0.0066 0.0132 0.0444 0.0020 0.0039
analytic 0.9926690 0.0072485 0.0066 0.0131 0.0438 0.0020 0.0040

0.98 0.00459 numeric 0.9953845 0.0045892 0.0026 0.0053 0.0070 0.0020 0.0040
analytic 0.9953847 0.0045892 0.0026 0.0053 0.0070 0.0020 0.0040

0.99 0.00428 numeric 0.9957020 0.0042752 0.0023 0.0046 0.0053 0.0020 0.0040
analytic 0.9957023 0.0042751 0.0023 0.0046 0.0053 0.0020 0.0040

Table 4.2: Na for systems with linear size L = 103, q = 106

and various values of T/Tc (corresponding to different values of
p ((second row)). For each temperature, the first line shows the
numerical values at MC times such that the system is stationary
in the metastable state, while the second ones give the asymptotic
values calculated with the master equations approach. The error
bars for the numerical values are of the order the last digit or smaller
and they are not shown. We also have MC data for N1, 103N1 =
0.0044 at T/Tc = 0.88, 103N1 = 0.0005 at T/Tc = 0.92, 103N1 =
0.0000 at T/Tc = 0.98 and T/Tc = 0.99.

Once the proportions Na are known it is possible to thermodynamically charac-
terize the metastable states. For instance, we can evaluate the energy per spin of
the disordered metastable state extended below the critical temperature, exploiting
the stationary solutions obtained above. The only configurations that contribute to
the energy are the (6) ones with one bond and the (3) ones with two bonds. Thus
we have

e(d)(β, q) = −1

2
(N6(β, q) + 2N3(β, q)) , (4.37)

where the 1/2 factor avoids double counting of the bonds on the lattice. Note that
for quench inverse temperature β < βc the expression in Eq. (4.37) should provide
the equilibrium value of the energy at β. In Fig. 4.6 we plot the energy density of
the disordered state as predicted by Eq. (4.37) as a function of q at different ratios
between the quench temperature and the critical one. The values of the energy
density obtained with Monte Carlo simulations are also reported in the figure. The
latter are time averages over single runs computed as long as the system stays in the
metastable state (the error bars represent one standard deviation). A comparison
with the exact mean field result for the energy at criticality [25] is reported. It is
possible to appreciate that, for all temperatures, the energy decreases (in absolute
value) approximately as q−1/2, this is expected because the major contribution to
Eq. (4.37) is given by the (6) term which scales indeed as q−1/2 (see section above).
Figure 4.7 shows instead the behavior of the energy density of the disordered state
as a function of the final quench temperature. The results of the expansion are again
tested against Monte Carlo numerical simulations showing really good agreement.

4.3.3 Ordered metastable phase

As we anticipated above, the upper-critical protocol, which deals with the persis-
tence of the ordered phase after a quench to a temperature T > Tc starting from
a fully ordered configuration, is less interesting from a technical point of view. We
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Figure 4.6: Theoretical predictions in Eq. (4.37) and simulations
results for the energy density of a system with L = 200 when it is
stuck in a paramagnetic metastable configuration, as a function of
the number of states q, for several ratios of the quench tempera-
ture over the critical one. The numerical values are time averages
over a single run. The error bars equal a standard deviation. The
dashed tilted line correspond to the mean field exact result [25] at
criticality. [3]
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Figure 4.7: Energy density of the disordered metastable state vs
T/Tc for several values of q (increasing from bottom to top), evalu-
ated from Eq. (4.37) (colored solid lines). Values from simulations
are also presented with data points. They are time averages of the
energy density. The error bars correspond to a standard deviation.
The critical temperature is indicated with a vertical black line. [3]

nonetheless perform a similar analysis (though less rich in terms of numerical evalu-
ations) as for the disordered phase in order to complete the picture of metastability.

Let us take the initial configuration to be at zero temperature, that is to say, a
completely ordered state. Thus, the system is in one of the q possible ground states
and, consequently, all the N sites are in state (0).

Recalling that (see Eq. (4.9)) for large q we have eβ ' qTc/2T , during a lattice
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update, the probability for a state (0) to turn into a state (7) can be written as

P0→7 =
q − 1

q + e4β − 1
' q

q + q2Tc/T
=

1

1 + q2Tc/T−1
. (4.38)

Thus, in the upper critical regime, the crossover temperature that separates two
very different behaviors in the q →∞ limit is T = 2Tc:

P0→7 → 1 at T > 2Tc , (4.39)

the (0) states turn into (7) states, and the system disorders really fast. At the
crossover temperature

P0→7 → 1/2 at T = 2Tc , (4.40)

implying that states (7) can appear. Every (7) states will have as neighbors (1)
states which (always in the limit q → ∞) will become states (8) with probability
P1→8 → 1, and bring the system to a disordered configuration. Finally,

P0→7 → 0 at T < 2Tc , (4.41)

and the state (0) is completely stable in this temperature window close to Tc.
Going back to large but finite q, in Fig. 4.8, we show the evolution of Na as a

function of time for a = 0, 1 and 7, we only show the states which contribute the
most.

10−3

10−2

10−1

100

100 101 102 103 104

Na

t

a = 0
1
7

Figure 4.8: Na(t) for a = 0, 1, 7 evolving in time at T = 1.01Tc
in a square lattice system with linear size L = 103 and q = 103. In
thin lines are reported the analytical predictions obtained from the
master equations below, in thick lines data from a numerical sim-
ulation. Note that the (1) and (7) abundances are one the vertical
translation of the other. This is due to the fact that, by construc-
tion, there are four (1) states for every (7) one (see below). [3]

Therefore, at upper critical temperatures, the following hierarchy holds

N1 ' N7 � N0 ' 1 , (4.42)

where the Na are normalized by the number of spins in the sample, and all other
states are negligible.

Using again the expansion parameter p with,

p2 ' q−1 ' P0→7 at T ∼ Tc , (4.43)
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we consider the evolution of N0 ' 1, N7 ' p2 and N1 ' p2. Again we stop at second
order in p.

It is straightforward to verify that the only structure that can appear in the
sea of aligned spins (i.e., in the (0) state), with a probability proportional to p2 or
greater, is a (7) state surrounded by (1) states

0

0

1

0

0

1

7

1

0

0

1

0

0

Indeed there are only two ways to build different structures from the one above.
The first one is that a (1), which has a probability proportional to p2 to be picked,
turns into a (4) or into an (8), respectively with probabilities P1→4 ∼ p2 and
P1→4 ∼ p. The other possibility is that a (0) close to a 1, which again has probability
proportional to p2 to be picked, turns into a (7), with probability P0→7 ∼ p2. The
overall probabilities therefore are such that both scenarios are negligible in our
approximation.

The only moves that should be taken into account to build a master equation
for the ordered case are the switching of a (0) (surrounded by other (0) states) into
a (7) and vice versa. In particular, we have that the probability of picking such a
(0) is N0 − 8N7, because there are 8 (0) states next to a (1) surrounding each (7),
but to the second order in p we only retain N0, and the probability for it to turn
into a (7) creating in doing so also 4 (1) states is P0→7

P = N0P0→7

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

1

0

0

1

7

1

0

0

1

0

0

−5N0,+N7,+4N1

The inverse move, consistently, with probability N7P7→0 causes the destruction of
4 (1) states and of 1 (7) state creating 5 (0) states

P = N7P7→0
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The master equations are therefore

Ṅ0 = −5N0P0→7 + 5N7P7→0

Ṅ7 = −N7P7→0 +N0P0→7

Ṅ1 = −4N7P7→0 + 4N0P0→7 .

(4.44)

To solve them we write down the probabilities in powers of p

N0 = α0 + α1p+ α2p
2

N7 = β2p
2

N1 = γ2p
2.

(4.45)

By construction we have N1 = 4N7 and so γ2 = 4β2, moreover the normalization
condition N0 +N7 +N4 = 1 impose α0 = 1, α1 = 0 and α2 = −5β2. Finally, looking
for the stationary solution of either one of the three differential equations above, we
find β2 = 1/P7→0. Summarizing

α0 = 1

α1 = 0

α2 = −5/P7→0

β2 = 1/P7→0

γ2 = 4/P7→0 .

(4.46)

We can put the results from the previous section to the numerical test analyzing,
as for the disordered case, an interesting observable: the energy density of the
metastable state. In this case the spin which falls in the (0) configuration contributes
with four bonds, while the ones in (4) with three bonds. The ordered energy density
thus reads

e(o)(β, q) = −1

2
(4N0(β, q) + 3N4(β, q)) . (4.47)

This energy scales as q−1 at fixed temperature, consistently with the fact that the
major contribution comes from (0). The agreement with the mean field results [25]
and the outcome of the simulations analyses as in the disordered case is really good
as can be checked by inspecting Fig. 4.9. The dependence of the energy density
of the ordered state, as evaluated from Eq. (4.47), on temperature is portrayed in
Fig. 4.10, where the comparison to the results of numerical evaluations shows again
a perfect agreement.
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Figure 4.9: Energy density of the ordered state as predicted by
Eq. (4.47) and simulation data, for L = 200, as a function of the
number of states q, for several ratios of the quench temperature.
The numerical values are averages in time of the energy for a sin-
gle realization, the error bars correspond to a standard deviation.
Exact mean field predictions at criticality [25] are reported as well
(black dashed line). [3]
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Figure 4.10: Ordered energy vs T/Tc for several values of q, eval-
uated from Eq. (4.37). Values from simulations for L = 200 are also
present and are time averages for a single realization of the energy
of the system as long as it stays in the metastable state, the error
bars correspond to a standard deviation. [3]

4.4 Comments

The problem of metastability in the Potts model still poses unsolved questions. In
this chapter we discussed a large q expansion of the heat bath microscopic dynamics,
developed in Ref. [3], that allowed us to deduce, analytically, the metastability
properties of the finite but large size model, in a rather wide range of temperatures
around criticality (namely, from Tc/2 to 2Tc). Although in the strictly infinite size
limit the spinodals are expected to approach the critical point [136], we observe that
the lifetime of the metastable state goes beyond reasonable times for relatively small
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system sizes. Our expansion allows us to capture the properties of these metastable
states with amazing numerical accuracy.
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Chapter 5

Multinucletion and coarsening
dynamics

This chapter, based on the work in Ref. [5], is organized as follows. In the first sec-
tion we introduce the general problem of the escape from metastable states through
nucleation, specializing in the particular case of the Potts model. Below we pro-
vide a general description of the whole dynamical process, from the instant of the
quench, to the escape from metastability and further on with particular emphasis
on the multinucleation process.

5.1 Introduction: Escape from metastable states
We address here some issues related to the phenomenology of the escape, and conse-
quent relaxation dynamics, from a metastable state of the Potts model in the same
scenario of the chapter above. Exploiting again the pictorial representation used
to describe metastability, the problem at hand can be stated as follows: how the
system escape State A (see Fig. 5.1) and relaxes towards equilibrium?

The simplest example of metastability and escape from it is perhaps a uniax-
ial ferromagnet in an external field, whose paradigmatic modelization is the Ising
model. If the field is reversed, provided it is sufficiently small, if the temperature is
subcritical the magnetization remains at the pre-reversal value for a certain time,
the lifetime of the metastable state, before flipping to the new equilibrium value.
The phenomenon can be ascribed to the competition between surface tension and
bulk energy and is accounted for, at least at a simple semi-quantitative level, by
classical nucleation theory [124, 139, 140]: a nucleus of the equilibrium phase in a
metastable see is unstable unless its size exceeds a critical value. If it is not the case
it disappears. Then, in this picture, the lifetime of the metastable state is the time
needed to nucleate, by thermal fluctuations, critical nuclei. Elaborating on such
ideas, more refined theories of nucleation [141–151] have been developed which are
able to describe the phenomenon with good accuracy.

In the previous example, the metastable state and the equilibrium one are as-
sociated to the two ergodic components which characterize the system at low tem-
peratures. However, the situation is much less understood in systems where there
are more ergodic components, State B and State C in our simplified scheme. More
precisely upon quenching from T > Tc to T . Tc a finite-size systems remains for
some time in the disordered state before starting the evolution towards the final
equilibrium state. In this case the metastable state is the (single) ergodic compo-
nent at T > Tc while the target equilibrium state is one of the q symmetry-related
ergodic components at T < Tc. Hence, at variance with the above discussed case
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Figure 5.1: Pictorial representation of the first order transition
of the two dimensional Potts model with q > 4. See chapter 4
(Fig. 4.1) and main text for details.

of the field-driven transition in the Ising model, here nucleation occurs towards
a q-degenerate final state, and one speaks of multinucleation. Another important
difference is that the transition is temperature driven.

To determine the lifetime of the metastable state, its dependence on the system
size, the dynamic escape from it, and the nature of the nucleation process is a diffi-
cult and much debated issue [61–63,137,152]. In particular, as we already mentioned
in the above chapter, it was argued [137] that both the lifetime of the metastable
state and temperature range below Tc where it is observed shrink when the system
size increases. This intriguing feature has no analog in the discontinuous transition
of the Ising model. In [3] a rather precise description of the metastable state was
given, both from the microscopic and thermodynamic point of view. However, a
similar characterization of the escape kinetics is still missing for finite q. Specifically,
while the nature of the metastable state can be well described in such analytical
framework, its lifetime (for finite q) couldn’t yet be determined and its very exis-
tence in the thermodynamic limit cannot be proved. Related to that, the issue of
the order in which the two limits of large q and large system size remains to be
clarified.

In this chapter, based on Ref. [5], we study the process whereby the metastable
state is run away and how the target equilibrium state is approached in the Potts
model with q ≥ 4. We do this by numerical simulations for different values of q and
of the system size L.

5.2 Summary of the results

The main result of this chapter is the characterization of the multinucleation process.
We show that, for a given system size, the number k of phases that nucleate is a
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logarithmically increasing function of L

k(q, Tf , L) =

{
P(q) ln

[
L

A(q, Tf )

]}
∈[1,q]

, (5.1)

where the notation {Z}∈[1,q] = max{1,min{q, Z}} accounts for the constraint k ∈
[1, q], Tf is the temperature of the bath after the quench and P(q) and A(q, Tf ) are
quantities discussed in the body of the chapter (See Eq. 5.16). We also find that
k is a decreasing function of q (given some constraints), a fact which is consistent
with the large-q results in [3]. Phases which do not nucleate disappear from the
system immediately after the metastable state is escaped. Those which nucleate
start competing, resulting in a coarsening process which leads, at some point, to the
progressive elimination of the less represented colors until symmetry is definitively
broken, one single color survives and equilibrium is attained.

5.3 Multinucleation in the Potts model

We consider a protocol in which the system, initially prepared in an infinite temper-
ature equilibrium state, is suddenly quenched at time t = 0 to a low temperature
Tf < Tc. As already mentioned the dynamical evolution has been studied in pre-
vious works [54,59,60,112,132,153,154] mainly focusing on the coarsening regime.
Here we are more interested in metastability and nucleation, which are clearly ob-
served when Tf . Tc. We use to simulate the dynamics in this case a Monte Carlo
algorithm with Metropolis transition rates, defined in Eq. (1.10), associated with
moves which changes a microstate ϕa to ϕb which differs only for the flip of one
spin. For convenience we recall here the form of the rates

Ta→b = min
{

1, e−βf (H[ϕb]−H[ϕa])
}
, (5.2)

along with the hamiltonian of the model

H[ϕ] = −J
∑
〈i,j〉

δϕi,ϕj . (5.3)

After the quench the system relaxes to a low energy state and the energy density
e(t) = 〈H[ϕ](t)〉/L2 evolves towards the final equilibrium value e(∞). Here and in
the following the non equilibrium average 〈. . . 〉 is taken over thermal histories and
initial conditions. In order to quantify the relaxation, therefore, we consider the
energy density excess

∆e(t) = e(t)− e(∞). (5.4)

In a state with well formed domains, connected regions with the same spin state,
the excess energy is stored on domain walls, hence ∆e(t) is proportional to the
density of interfacial spins. Since for non fractal aggregates this quantity is, in
turn, inversely proportional to the typical size of the domains, from ∆e(t) one can
infer such characteristic length as

Re(t) = ∆e(t)−1. (5.5)

5.3.1 The correlation functions

A fundamental quantity, usually considered in coarsening processes, is the equal
time spin-spin correlation function. Specifically, we define the quantity
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Cij(r, t) =

q∑
p=1

[〈δϕi(t),pδϕj(t),p〉 − 〈δϕi(t),p〉〈δϕj(t),p〉](
q∑
p=1

[〈δ2
ϕi(t),p

〉 − 〈δϕi(t),p〉2]

)1/2(
q∑
p=1

[〈δ2
ϕj(t),p

〉 − 〈δϕj(t),p〉2]

)1/2

∣∣∣∣∣∣∣∣∣∣∣
|~ri−~rj |=r

.

(5.6)
Notice that, due to isotropy and homogeneity, Cij(r, t) only depends on the distance
r = |~r|, where ~r is the vector joining i and j, and should be independent of i and j.
Hence, below we just use C(r, t) and, enforcing this symmetry, we rather compute
the spatial average of the quantity in Eq. (5.6), namely L−2

∑
ij Cij(r, t). In this way

the statistic is improved. It is clear that on the one hand at r = 0, (namely i = j) it
is C(r = 0, t) = 1; and on the other hand, at very large distance, C(r →∞, t) = 0
because of the expected factorization of the first term in the numerator. Defining

σ2
p(t) = 〈δ2

ϕi(t),p
〉 − 〈δϕi(t),p〉2, (5.7)

Eq. (5.6) can be re-written as

C(r, t) =

q∑
p=1

σ2
p(t)Cp(r, t)

q∑
p=1

σ2
p(t)

, (5.8)

where

Cp(r, t) =
〈δϕi(t),pδϕj(t),p〉 −

〈
δϕi(t),p

〉
〈δϕj(t),p〉

σ2
p(t)

(5.9)

is the correlation function restricted to the color p. Equation (5.8) transparently
expresses the fact that the unrestricted correlation is the weighted average of the
restricted ones, the weights being the variances of the Boolean variables associated
to ϕi, see Eq. (5.7).

When dynamical scaling holds, C(r, t) takes the following form

C(r, t) = g

[
r

R(t)

]
, (5.10)

where g is a scaling function and R(t) a characteristic size with the meaning of
typical domains’ linear dimension. From the correlation function one can extract
such a size in different ways. For instance, one can use the momenta as

R(t) =

[∑
r r

m C(r, t)∑
r C(r, t)

] 1
m

. (5.11)

In case of dynamical scaling, determinations with different values of m provide
proportional results (however large m values are numerically problematic since the
noisy large-r tails of C(r, t) are heavily weighted). Similarly, one can use the half-
height width to define R(t) as

C(R(t), t) =
1

2
. (5.12)

In the following we will use this determination which is easier. Analogously, the
typical size of domains of a specific color Rp(t) can be defined replacing C with Cp
in Eq. (5.12):

Cp(Rp(t), t) =
1

2
. (5.13)
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Let us mention that Eq. (5.13) cannot be used to determine Rp in two situations: i)
The corresponding color is not present in the system. In this case Cp ≡ 0, Eq. (5.13)
loses its meaning, and Rp could be taken to be identically zero. ii) The color has
invaded the whole system. Also in this situation one has Cp ≡ 0, because of the
subtraction term in Eq. (5.9). Clearly, in this case Eq. (5.13) cannot be used to
determine the size of the domain of color p. Hence it must be kept in mind that
finding a small value of Rp does not necessarily mean that the corresponding color
is present only in small domains, but it could as well be that it has flooded the
system. Which case applies must be ascertained differently, for instance, by visual
inspection of the configurations. This is important in for discussion below. The
labeling of the q possible values of the spins is implemented in the following in a
dynamical way: at any time we order the color according to their abundances, from
the most to the least represented, and label them with p increasing from 1 to q.
This method is useful, particularly in the late stage of the dynamics where, as we
show below, a clear hierarchy of abundances sets in.

5.3.2 The dynamical process

Here we discuss the results of the numerical simulations of the Potts model intro-
duced above. We mainly consider the three values q = 9, 24, 100, as a paradigm
of small, intermediate and large q behaviors. These systems are quenched to final
temperatures close to the critical one, Tc(q), in order to appreciate the metastable
state and its lifetime. In most of our simulations we set Tf = 0.9912 · Tc for q = 9,
Tf = 0.98 · Tc for q = 24, and Tf = 0.95 · Tc for q = 100. This choice is motivated
by the requirement to have a comparable nucleation time τ(q, Tf ) (see discussion
below and Fig. 5.2) for the three reference values of q. Notice that fixing τ(q, Tf )
does not correspond to fixing (Tf − Tc)/Tc.

A first qualitative description of the kinetic process after a quench can be done
considering the behavior of Re(t), the typical length scale extracted from the anal-
ysis of the excess energy as in Eq. (5.5), which is shown in Fig. 5.2. With some
quantitative differences, the same kind of pattern is observed for any value of q (see
also [155] where this quantity for more q values was shown). After a short transient,
one can clearly identify three extended regimes. The first is associated to Re grow-
ing slowly or staying approximately constant, Re(t) ' Rm. This plateau, which is
flatter and longer as Tf → Tc at fixed q or as q → ∞ at fixed (Tf − Tc)/Tc, is a
clear manifestation of metastability. In this time lag the kinetics is useless because
the system is confined in a local free energy minimum and the trapping barrier is
not yet jumped over. In order to do that, critical nuclei, namely ordered domains
of a sufficient large size, must develop. However this is an activated process which
requires a certain time τ(q, Tf ), the nucleation time. At times t � τ(q, Tf ) the
system is still in a rather disordered state, visually not too different from the initial
one, as it can be seen from the snapshots taken at t = 800 shown in Fig. 5.3. Some
small domains can be spotted but they are too small to start nucleation.

Actually, this metastable state is similar to the equilibrium state at Tc, in a
sense we specify below. We illustrate this point by means of the correlation function
defined in Eq. (5.6). In Fig. 5.4 this quantity is plotted against r during the evolution
after a quench. Let us focus, to start with, on the left panel, where curves for a
quench to Tf = 0.99 · Tc (continuous lines) are compared to those for a quench
to Tf = Tc (dashed ones). In the latter case one sees that, as time goes on, the
correlation extends to larger values of r until, starting from teq(Tc) ' 103 the curves
start to superimpose, signaling that equilibrium has been reached. At short times,
a similar pattern is displayed by the curves of the subcritical quench (continuous
ones) which stay close to the ones previously discussed. At longer times, for t >
teq(Tc), the correlations move to the right further than those of the quench to Tc
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Figure 5.2: Upper-left panel: the time evolution of Re(t) for
q = 9, 24, 100 (see the key). The system size is L = 700. The
dashed segment shows the behavior t1/2. Upper-right panel: as
in the right panel for q = 24 and different system sizes L =
80, 92, 110, 160, 300, 700, 1000. Lower panel: the dependence on T
of the case with q = 24 and L = 700 is shown. [5]

and tend to accumulate on a curve somewhat broader than the equilibration one
at Tc. This occurs roughly in the range of times t ∈ [103, 104] which corresponds
to the lifetime of the metastable state. In this time range the correlation is almost
time-independent at short r, whereas some evolution can be spotted at large r.
This signals that the metastable state is not really stable, and that a prodrome of
its failure, which can be interpreted as the build up of critical nuclei, is occurring
at large distances. Finally, roughly for t > 104, a quick growth of correlations
is observed, unveiling that metastability is over and that the next stage, where
coarsening takes place, has been entered. In this case, the classification of the
behavior of the correlation into three stages (initial evolution, stasis, late evolution)
is not sharp because, as we discuss below, Tf is relatively far from Tc.

Let us now have a look at the right panel. Here the subcritical quench is so
close to Tc that the departure from the metastable state cannot be observed within
the simulated times. Besides that, one sees a pattern similar to the one observed
in the left panel, with the notable difference that the correlations in the metastable
state are almost indistinguishable from the ones of equilibrium at Tc. This clarifies
our statement that the metastable state is similar to the equilibrium one at Tc: the
more the system is quenched near to Tc (from below), the longer the metastable
state lives and the closer to equilibrium at Tc it is. More precisely, indicating
with STf (t) a one-time observable measured in a system quenched to Tf . Tc, one
has limTf→T−c STf (t) = Seq,Tc , where the latter is the measurement of S made in
equilibrium at Tc. Clearly, this cannot be true for any function S of the state of
the system, particularly if it is weighting hugely the large distance features, but the
statement is expected to be correct for most quantities of physical interest.

The nucleation time τ(q, Tf ) can be roughly identified as the time when the
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Figure 5.3: Snapshots of a typical evolution of the q = 24 Potts
model quenched to Tf = 0.98 Tc for different lattice sizes. It is pos-
sible to appreciate that the number of phases that nucleate increase
with the size of the system. [5]

plateau is over and Re(t) jumps rather abruptly to a higher value, see Fig. 5.2.
This is a violent process corresponding to the fast invasion of available space by the
super-critical nuclei, as it can be seen from the snapshots in Fig. 5.3 corresponding
to t = 4 · 104 and t = 6 · 104. It was shown in [155] that Re(t) increases in an
exponential way in this time domain. This violent relaxation becomes sharper upon
increasing q. This can be understood recalling that the metastable state is similar
to the equilibrium one at Tc, in the sense specified above, arguing then that the
size Rnucl of critical nuclei at the beginning of the nucleation process is comparable
to the equilibrium coherence length at Tc. This quantity decrease from ∞ to 0 as
q goes from q = 4 to q = ∞. [156]. Clearly, the smaller Rnucl is, the larger the
nuclei size must grow to take them in contact, yielding a more pronounced step in
the shape of Re(t).

The duration τ(q, Tf ) of the metastable state increases as T → T−c , as it can
be seen in the lower panel of Fig. 5.2. In the same picture we can also observe
that the plateau value Rm is rather Tf -independent while, instead, there is a clear
dependence on q, as it can be appreciated in the left panel. In [155] it was found that
this value is well approximated by Rm ∝ [ln(q−4)]−1 for small q (q . 50) and then,
increasing further q, it saturates to a value of order one. This can be understood as
follows: In [3], as shown in the previous chapter, the large-q behavior of the energy
density em in the metastable state was computed. This quantity goes to zero as
em ' −a(T )q−1/2, where a(T ) > 0 is a temperature dependent factor. For large q
the equilibrium quantity e(∞) < 0 becomes independent on q [157], hence we have
that em = em − e(∞) approaches a large-q value from below. Given the choice of
temperatures made in the upper-left panel of Fig. 5.2 (as to have τ(q, Tf ) fixed) it
is clear that, working instead at a constant Tf or even at a finite fraction of Tc, i.e.
Tf = x · Tc, the lifetime of metastability increases with q. Similarly, we have also
observed that the temperature range where metastability occurs widens for larger
q. Specifically, indicating with T` the lower temperature Tf where metastability is
still observed we find that (Tc − T`)/Tc increase with q.
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Figure 5.4: The correlation function C(r, t) is plotted against r
for a quench of the model with q = 24 from infinite temperature
to Tf = 0.99 · Tc (continuous lines, left panel) or Tf = 0.999 · Tc
(continuous lines, right panel). The dashed lines refer to a quench
to Tf = Tc. Different curves correspond to different times expo-
nentially spaced (from bottom to top t =2, 4, 7, 15, 31, 64, 137,
291, 618, 1316, 2802, 5968, 12709, 27066, 57642, 122762, 261451,
556822, 1185886, 2525627). [5]

The fast process associated to the steep increase of Re(t) ends at a time tcoal
when nuclei of different color come in contact, a configuration that can be observed
in Fig. 5.3 at times t = 8 · 104 and/or t = 105 (except for the smallest size L = 80
where one single color nucleates, see discussion in Sec. 5.3.3). At this point a
coarsening phenomenon sets in produced by the competition among domains, as
shown in Fig. 5.3 and reported in [54, 57, 59, 133, 153, 158] and, for the closely
related vector Potts (or clock) model in [159]. In this kind of evolution one expects
dynamical scaling and Re(t) ∼ t1/2, which is indeed roughly observed in Fig. 5.2 at
very long times (for q = 100 this behavior is likely to be observed on times longer
than the simulated ones).

Before closing this section let us comment on the fact that the data for Re are
free from finite-size effects until domains coarsen up to a length comparable to the
system size, which occurs at a time tfs(L). This can be seen in the upper-right
panel of Fig. 5.2 where one sees that the curves depart from the one corresponding
to the larger system size (L = 1000) when Re(t) ' 0.1 ·L. For instance, this occurs
at a time tfs(L = 300) of order 6 · 105, and around tfs(L = 160) ' 105. However,
the fact that this particular quantity (Re) does not feel the size of the system before
tfs(L) does not mean that the dynamics is globally free from finite-size effects in
this time domain. Actually, in Fig. 5.3 one clearly sees that the configurations of
the model at a given time look very different in systems of different sizes. The next
section is devoted to the discussion of this feature.

5.3.3 Multinucleation

We briefly mentioned above that, at variance with the Ising field-driven first order
transition, here the role of the system size is relevant for the metastable state
because τ(q, Tf ) and the pseudo-spinodal temperature seem to depend on it. In the
previous section we have already anticipated that also the nature of the dynamic
escape from the metastable state changes significantly with the system size. A visual
inspection of Fig. 5.3, where the same quench of the q = 24 model is operated on
systems of different sizes, clearly displays this fact. Specifically, in this figure one
observes that, when a relatively small size is considered (L = 80, upper row) one
sees that a single critical droplet forms and grows, invading the whole system (last
two snapshots). This is what we call mono-nucleation, or 1-nucleation. We have
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checked that such phenomenon is observed rather independently of the thermal
realization of the process. Notice that the winning color (orange) did not seem to
be the favored one before its outburst (one would have rather predicted the violet
or yellow color were better candidates), a fact that shows the rapidity of critical
nucleation.

In the second row the behavior of a slightly larger size (L = 92) is shown. This
small size increase is sufficient to modify qualitatively the situation, in that there
are two nucleating colors, the red and the violet ones. Then, in this case, we have bi-
nucleation, or 2-nucleation. Again, this feature is rather independent of the thermal
realization. After nucleation, surface tension closes the domain of the minority color
(last snapshot), symmetry is definitely broken and equilibrium is attained.

Increasing further the system size as in the two rows below, the fate of a system
changes again and one observes 3-nucleation and 6-nucleation. Notice that, after
nucleation, the competition among domains of different colors leads to a progressive
elimination of their number. Increasing further L (not shown) one can observe k-
nucleation with k up to q (q = 24 in this example).
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Figure 5.5: The typical lengths Rp(t) of the various colors are
plotted against time (on a log-log scale) for the model with q = 9
quenched to Tf = 0.9912 · Tc. The system size is L = 300 (left
panel), L = 700 (middle panel) and L = 1000 (right panel). Each
data is averaged over 500 non-equilibrium realizations. Colors are
ordered from the most represented (denoted #1) to the least rep-
resented one. [5]

In order to discuss the multinucleation process and its dependence on the system
size at a more quantitative level we consider the typical lengths of the various colors,
Rp(t), which are shown for three different system sizes in Fig. 5.5. From this figure
one clearly sees that Rp for the various colors initially grow, up to a characteristic
time when Rp(t) reaches a maximum R∗p and then it shrinks. This means that
domains of the corresponding color grow, reach a maximum size, and then collapse
and disappear. For the winning color, denoted by #1 in Fig. 5.5, the interpretation
is different, since the final decrease of R1 must be associated to the invasion of the
whole space, according to what discussed in case ii) at the end of Subsec. 5.3.1.

From the comparison between the three different system sizes represented in
Fig. 5.5, one can make some observations. First, it is clear that for small sizes some
colors do not nucleate, whereas they do in larger systems. For instance, color #9,
represented in blue, does not show the exponential increase typical of nucleation
for system size L = 300 and R9 does not go beyond ∼ 1, whereas it does grow
significantly in the larger systems with L = 700 and L = 1000. This indicates
that Rp is a quantity one can look at to establish the number of nucleating colors.
Secondly, from Fig. 5.5 one sees that both the peak time and its height R∗p(q, Tf , L)
are increased in a larger system. Exploiting these two observations we developed
a method to determine the number of nucleating phases as a function of L and q,
that we now describe. First, we measure R∗p(q, Tf , L) for all p’s and different system
sizes. This information is summarized for q = 24 in the inset of the upper-right
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Figure 5.6: R∗p(q, Tf , L) is plotted in log-log scales against the
rescaled size L/Lp(q, Tf ) (see text) for q = 9 (upper left panel),
q = 24 (upper right) and q = 100 (lower left). The dashed green
lines are the linear behavior y ∼ x. The inset in the upper right
panel contains the unscaled data (R∗p(q, Tf , L) vs L) for q = 24
and various values of p, (from the most abundant phase on the top,
to the less abundant on the bottom). In the lower right panel the
dependence of Lp on the color p is plotted for the three values of q,
in a semilog plot. [5]

panel of Fig. 5.6. The upper panels and the lower-left one of the figure, which refer
to different values of q, show that the data very clearly obey a scaling form

R∗p(q, Tf , L) = fq

[
L

Lp(q, Tf )

]
, (5.14)

where Lp(q, Tf ) is a fitting parameter which is plotted in the inset of the lower
panel of Fig. 5.6. A similar pattern is found for other values of q, not reported in
the figure. The scaling function fq(x) stays small for x � 1, it suddenly increases
around x = 1 (the larger the q, the steeper the growth) and it then behaves as
fq(x) ∼ x for large x. This latter trend indicates that, for each color such that the
representative point lies in this sector, the maximum size of the domains is triggered
linearly by the system size, as it usually happens for a finite size effect in a standard
(e.g. binary) coarsening system (see also the discussion at the end of this section).
Hence one can argue that L > Lp(q, Tf ) is the condition for the p-th color to enter
the coarsening stage. This is further discussed below. We observe also that the
small-x value of fq(x) decreases with increasing q. This is because, as pointed out
above, the size of the pre-nucleation domains gets smaller upon increasing q. Notice
that imposing collapse of the curves according to Eq. (5.14) only fixes Lp(q, Tf ) up
to an arbitrary constant. We fix it by asking that the steep part of fq(x) be centered
at x = 1.
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Looking at the plot of Lp(q, Tf ) in the lower right panel of Fig. 5.6, one finds an
exponential dependence

Lp(q, Tf ) = A(q, Tf )ep/P(q). (5.15)

This law describes well all the data for q = 9, 24, and the large p region for q = 100
(with fitting parameters A(q, Tf ) = 59.43, 82.97, 200.00 and P(q) = 3.546, 11.848,
67.568 for q = 9, 24, 100, respectively). Furthermore, we found an analogous behav-
ior for other values value of q not portrayed in Fig. 5.5. Repeating the procedure
above for different temperatures we find that P is, within errors, independent of
T . This is shown in Fig. 5.7 where, in the left panel, it is seen that for a fixed
q = 24, P (q) stays constant within errors upon changing Tf . Similar results are
found for other values of q. This explains the parameter dependencies written in
Eq. (5.15). As shown in Fig. 5.7 (left panel) P(q) turns out to increase in a roughly
linear way with q. Moving to A(q, Tf ), its dependence on Tf (at fixed q) can be
appreciated in Fig. 5.7 (right panel), where one finds that A(q, Tf ) increases with
Tf . On the other hand, with the choice of Tf made in our simulations, which as
discussed earlier correspond to fix the lifetime τ(q, Tf ) of the metastable state, one
finds that also A(q, Tf ) increases with q, similarly to P . This is shown in the right
panel of Fig. 5.7.
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Figure 5.7: Left panel: dependence of P on q by keeping Tf at a
q-dependent value such that the lifetime τ(q, Tf ) of the metastable
state is kept constant. In the inset the dependence of P on T is
displayed, showing that it is not significative (notice the narrow
interval on the y-axis). Right panel: dependence of A on q by
keeping Tf at a q-dependent value such that the lifetime τ(q, Tf ) of
the metastable state is kept constant. In the inset the dependence
of A on T is shown. [5]

Notice that, for large P(q), meaning for sufficiently large q, after Eq. (5.15) one
has A(q, Tf ) ' L1(q, Tf ), the typical size associated to the prevailing color. Since
for L/Lp(q, Tf ) the behavior fq(x) ∝ x is associated to the coarsening phenomenon,
one can interpret A(q, Tf ) ' L1(q, Tf ) as the smallest system size in order to have
coarsening. This means that such a size must host the largest domain present at
tcoal when coarsening starts. Hence we conclude that A(q, Tf ) has the physical
meaning of the typical size of the largest droplets in the system at the time tcoal.
This can be appreciated in Fig. 5.8 where a ruler of length Lp(q, Tf ) is plotted on
top of the configurations of the model at t = tcoal. We remark though that this
interpretation is sound for those values of q such that the exponential fit is good
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even for small p. For q = 100, for example, the fit deviate for small p (see Fig. 5.6)
and further investigation is needed to clarify these cases.

Coming to the issue of multinucleation, repeating the argument above for L1(q, Tf ),
we can say that the p-th color has nucleated if L > Lp. Using Eq. (5.15) we arrive
at the conclusion that, given a system size L, one has k-nucleation with

k(q, Tf , L) =

{
P(q) ln

[
L

A(q, Tf )

]}
∈[1,q]

, (5.16)

where the notation {Z}∈[1,q] = max{1,min{q, Z}} simply accounts for the con-
straint k ∈ [1, q]. Using the values of P(q) and A(q, Tf ) in this equation, in fact,
one can correctly predict the number of nucleating colors observed in the various
cases of Fig. 5.3. This result shows that, for a given q, the number of nucleating
phases grows only logarithmically with the system size. When the thermodynamic
limit is taken from the onset, all phases nucleate. Conversely, for a given finite size
L, increasing Tf towards Tc with fixed q reduces the number of nucleating phases to
one, because A(q, Tf ) increases. Also, if the size of the system is large enough, i.e.
L� A(q, Tf ), increasing q reduces the number of nucleating phases. This however
is true only for such large values of L, because when L is comparable with A(q, Tf )
probably an interplay takes place between the growth (with q) of P(q) and that of
A(q, Tf ), that can produce different results. Let us also notice that Eq. (5.16) in-
forms us on the number of nucleating phases, but does not predict the time needed
to nucleate. Clearly if this time grows to infinity, nucleation is not observed at all.
This happens in the large-q limit [3].

L=80 92 110 160

Figure 5.8: Snapshot at t = 105 for the q = 24 Potts model
quenched to T = 0.98 · Tc. This is approximately the time tcoal
when coarsening starts (see Fig. 5.3). The black ruler is the length
A(q, T ) (see Eqs. (5.15) and (5.16)). [5]

The discussion above shows that the multi-nucleation dynamics of the two di-
mensional Potts model is interested by peculiar finite size effects, rather different
from the usual ones observed in the phase-ordering of binary systems. In the latter,
there are only two competing colours and the growth of the domains does not feel
the finiteness of the system until some time tend(L), when the domains’ size be-
comes comparable to L. At this point the coarsening process is interrupted and the
system enters a final stage whereby equilibrium is approached. For times t � tend
any (intensive) measurement does not depend on the value of L. In the Potts model,
one observes an analogous behaviour when observing a quantity like Re, as we dis-
cussed at the end of Sec. 5.3.2. This also true also per the size R1, R2 of the two
winning colours. However, the number k of coarsening phases depends on L up to
a value of L as large as Lq, given in Eq. (5.15). Notice that this characteristic size
diverges both as T → Tc for a given q and as q → ∞ for a given T , as discussed
above. Worst, the sizes Rn (n ∈ [1, q−2]) of the domains of the minority colours, do
depend on L even if measured at times t� tend and even if L > Lq (see Fig. 5.6).
This strange size dependence is perhaps at the origin of many controversies on the
size dependence of the metastable dynamics.
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One might wonder how it may be possible that the unrestricted quantity Re

be size-independent whereas the restricted ones Rp do depend on L, given that Re
is morally the average of the Rps. This occurs because Re only fixes the average
size of domains but not their color, and it is schematically illustrated in Fig. 5.9.
The configuration on the left shows a portion of a system of size L = L1 at a
time t where six phases are present. On the right, instead, the same portion of an
analogous system with a different size L = L2 < L1 is represented at the same time
t. It can be seen that, although two phases (the green one and the brown one) are
absent in the smaller lattice (hence the number of colors is L dependent), the size
of the domains does not change (hence is L independent).

Figure 5.9: Two pictorial configurations of the bidimensional
Potts model. The system on the right has a size L2 and the picture
represents the whole lattice, the one on the left has a larger size
L1 > L2 but in the picture only a part of size L2 of it is shown.
The two systems are characterised by the same size of domains, but
in the right one the green and the brown phases have vanished. [5]

5.4 Comments

The main result of this chapter, which is contained in Eq. (5.16), is that the number
of nucleating phases of the two-dimensional Potts model increases logarithmically
with the system size. The logarithmic behavior itself informs us that this feature
cannot be related to the trivial geometrical fact that a larger system can accom-
modate a larger number of developing colors. If this were the origin, looking at the
snapshots in Fig. 5.3 one should see, in systems of different sizes, an equal number
of nucleating phases in portions of equal area. This is not observed. For instance,
comparing the systems of relative double size L = 80 (first line) and L = 160 (last
row), at time t = 80000, one sees that there is only one nucleating color (orange,
besides a remnant of the disordered phase) in the smallest system, whereas there
are typically more than one color in a portion of area 80 × 80 of the system with
L = 160. This raises an important question which, by the way, concerns also the
observed size dependence of the metastable state recalled in the introduction: how
can a system with a very short coherence length (of the order of the nuclei size, as it
can also be appreciated from the correlation function of Fig. 5.4) feel the boundary
effects? Rephrased differently, if nucleation is a local process, since correlations are
short, how could it be influenced by a global property such as the total size?

Here we provide a possible, although at the moment completely speculative,
answer. In a series of papers [105, 160–162] it has been shown that in a rather
broad class of 2d binary systems the fate of the system, namely which of the two
colors will eventually invade the sample, is decided at a very early stage when a
percolation cluster grows as large as the whole system. Since percolation is an
uncorrelated phenomenon, this occurs when spatial correlations are still minimal
and the ferromagnetic domains are yet microscopic. However, such tenuous invisible
structure determines the phase that will eventually (at much longer times) win the
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competition simply by touching the boundaries. Therefore, it may be conjectured
that something similar – in a way to be better investigated – happens also in the
present case with q colors. Namely, a large but slender structure (not necessarily
with a percolation topology as in the case with q = 2), which cannot be easily
associated to the pattern of the nucleating domains, can invade the sample till
its boundaries, and determine the fate of the colors. This seems to agree with
the observation, made regarding Fig. 5.4, that within the metastable state C(r, t)
does not vary at small r, whereas it does so at large distances. Which are the
geometrical features to look for to identify such large scale structure, if any, is still
an open question.
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Appendix A

In this Appendix we derive the expressions for the evolution at long times of qual-
ities of interest for the problem of the COP dynamics of fluctuations of the order
parameter sample variance in the Gaussian model (see Chapter 2). For the average
of s, in the large-volume limit we have, from Eq. (2.34)

〈s(t)〉 = Ωd
(2π)d

∫ Λ

0
dk kd−1

βk(t)ωk

= Ωd
(2π)d

∫ Λ

0
dk

kd−1((β−1
i −β

−1
f )e−2k2(k2+r)t+β−1

f )

k2+r .
(A.1)

The final equilibrium value, obtained for t→∞ in the previous expression, reads

〈s〉(eq,βf ) =
Ωd

(2π)d

∫ Λ

0

dk
kd−1

βf (k2 + r)
. (A.2)

The difference 〈s(t)〉 − 〈s〉(eq,βf ) is therefore given by

〈s(t)〉 − 〈s〉(eq,βf ) =
Ωd(β

−1
i − β−1

f )

(2π)d

∫ Λ

0

dk
kd−1e−2k2(k2+r)t

k2 + r
. (A.3)

Changing variable x = t
1
2 k leads to

〈s(t)〉 − 〈s〉(eq,βf ) =
Ωd(β

−1
i − β−1

f )t−d/2

(2π)d

∫ Λ
√
t

0

dx
x−d/2e−2x2(x2/t+r)

x2/t+ r
. (A.4)

For large t, due to the fact that only small x contribute, the integral can be written
as

〈s(t)〉 − 〈s〉(eq,βf ) '
Ωd(β

−1
i − β−1

f )t−d/2

r(2π)d

∫ ∞
0

dxx−d/2e−2x2r. (A.5)

Accordingly, one recovers Eq. (2.35), with

A =
Ωd(β−1

i −β
−1
f )

r(2π)d

∫∞
0
dxx−d/2e−2x2r

=
Ωd(β−1

i −β
−1
f )Γ(d/2)

r(2π)d(2r)d/2+1 ,
(A.6)

where Γ is the Gamma function. In order to assess the accuracy of this approxi-
mation for large t we evaluated numerically 〈s(t)〉 in the case d = 3, finding almost
perfect correspondence.

For the evolution of the critical point sc at long times we have, again in the
large-volume limit, starting from Eq. (2.30)

sc(t)− s(eq,βf )
c =

Ωd
(2π)d

∫ Λ

0

dk kd−1
[ 1

(k2 + r)βk(t)− rβi
− 1

(k2 + r)βf − rβi

]
,

(A.7)
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where βk(t) is defined in (2.18). Changing variables x = t
1
2 k one has

sc(t)−s(eq,βf )
c =

Ωdt
−d/2

(2π)d

∫ Λ
√
t

0

dxxd−1
[ 1

x2/t+r

(β−1
i −β

−1
f )e−2x2(x2/t+r)+β−1

f

− rβi
− 1

(x2/t+ r)βf − rβi

]
.

(A.8)
For large t we end up with

sc(t)− s(eq,βf )
c ' Ωdt

−d/2

(2π)d

∫ ∞
0

dxxd−1
[ 1

r
(β−1
i −β

−1
f )e−2x2r+β−1

f

− rβi
− 1

r(βf − βi)
]
,

(A.9)
namely Eq. (2.37). The value of the coefficient a introduced therein is

a = Ωd
(2π)d

∫∞
0
dxxd−1

[
1

r

(β
−1
i
−β−1

f
)e−2x2r+β

−1
f

−rβi −
1

r(βf−βi)

]
=

ΩdβfΓ(d/2)ζ(d/2)

(2π)d(2r)d/2+1βi(βf−βi)
,

(A.10)

where ζ is the Riemann zeta function. Numerical calculations, for the test case
d = 3, confirm Eq. (A.9) with excellent accuracy.

Finally we determine the dynamics of the condensing mode s0(s, t) in the condensation-
developing region. We recall that s0(s, t) is defined in Eq. (2.32), where z∗(s, t) is
defined via Eq. (2.28)

s = Ωd

∫ Λ

0

dk

(2π)d
kd−1

βk(t)ωk − 2z∗
, (A.11)

with ωk defined after Eq. (2.8). In order to determine the behavior of s0(s, t) as
time goes by, we must first determine that of z∗(s, t). Taking the time derivative of
Eq. (A.11) one has

0 =

∫ Λ

0

dkkd−1
[ω̃kωkβ

2
k(t)(β−1

i − β−1
f )e−2ω̃kt − ż∗(s, t)]

[βk(t)ωk − 2z∗(s, t)]2
, (A.12)

where ż∗ stands for the time derivative of z∗, while βk(t) is given in Eq. (2.18) and
ω̃k is defined after Eq. (2.14). Accordingly,

ż∗ =

∫ Λ

0
dk

kd−1ω̃kωkβ
2
k(t)(β−1

i −β
−1
f )e−2ω̃kt

[βk(t)ωk−2z∗(s,t)]2∫ Λ

0
dk kd−1

[βk(t)ωk−2z∗(s,t)]2

. (A.13)

In order to proceed, we distinguish between values of s inside the CD region, i.e.,
s

(eq,βf )
c < s < s

(eq,βi)
c and the limiting value s = s

(eq,βf )
c . In the former case, s0 will

diverge in a finite time so in the integrals in Eq. (A.13) we can consider the limit
of small k, which also correspond to the portion of the domain where the variation
in time is more important. Accordingly, from Eq. (A.13) one finds

ż∗ =

∫ Λ

0
dk

kd+1r2(β
−1
i
−β−1

f
)

(β
−1
i

)2(
r

β
−1
i

−2z∗
)2

∫ Λ

0
dk kd−1(

r

β
−1
i

−2z∗
)2

=

∫ Λ

0
dk

kd+1r2(β−1
i −β

−1
f )

(β−1
i )2∫ Λ

0
dk kd−1

= const. (A.14)

Thus z∗ is linear in t, implying

s0(s, t) ' (t∗(s)− t)−1, ∀s ∈ (s
(eq,βf )
c , s(eq,βi)

c ). (A.15)
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In the other case, s = s
(eq,βf )
c is at the border of the CD region and we can consider

the limit of long times in Eq. (A.13). The integrand in the denominator, then, can
be approximated by its leading behavior for small k � r1/2, i.e., as a constant

βk(t)ωk − 2z∗(s
(eq,βf )
c , t) ' βfr − 2z∗(s

(eq,βf )
c ,∞). (A.16)

Accordingly, Eq. (A.13) in the same limit renders

ż∗ ' d

Λd

∫ Λ

0

dk
kd−1k2r2(β−1

i − β−1
f )e−2k2rt

[(β−1
i − β−1

f )e−2k2rt + β−1
f ]2

, (A.17)

where we used that ω̃k ' k2r and ωk ' r. The change of variables x = t
1
2 k gives

ż∗ ' t
d+2
2 d

Λd

∫ Λ
√
t

0

dk
xd+1r2(β−1

i − β−1
f )e−2x2r

[(β−1
i − β−1

f )e−2x2r + β−1
f ]2

. (A.18)

In the long-time limit the integral is well approximated by the one in which the upper
extreme of integration is set to infinity, and therefore ż∗ ' t−d/2+1. Accordingly

z∗(s
(eq,βf )
c , t) ' z∗(s(eq,βf )

c ,∞) + Ct−d/2, (A.19)

where the asymptotic value equals β0ω0/2 and C is a proportionality constant. We
conclude that

s0(s
(eq,βf )
c , t) ' td/2, (A.20)

namely Eq. (2.39). We confirmed numerically the validity of this result in the
specific case d = 3.
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Appendix B

In this appendix we consider all the moves that should be taken into account to
build the master equation (??) which is at the core of Chapter 4.

Consider starting from a state (11) next to a structure A, turn it into a state
(6), and make then a structure B be born. The probability of picking the starting
site is N6 because there are 2 (11) in such position for every structure A (again we
are keeping only the terms which at the end will contribute up to the second order)
and the probability to switch to (6) exactly in the needed direction is p/4. The
probability of the move is thus pN6/4 and we end up with with 1 (11) less and 1
(3a) more.

P = pN6/4
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The same move but with as a consequence a formation of a structure C has mutatis
mutandis probability pN6/2, and we lose 2 states (11) and gain 1 (3b) and 1 (10c):

P = pN6/2
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−2N11,+N3b,+N10c

A site in a state (11) that is far from any structures and flips to another q value
but remains in the state (11) can, with probability N114/(4eβ + q − 4) assume the
same color of one of its next to nearest neighbors thus forming an E or, again with
probability, N114/(4eβ + q − 4) form an F structure. We have, respectively,

P = N11(4/(4eβ + q − 4))
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and

P = N11(4/(4eβ + q − 4))
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−2N11,+2N10b

Picking one of the two gray sites which are part of an E structure has probability
2P (E) = 2N10a. The probability for it to change color but stay in a state (11) is
P11→11 = 1− p. Thus, the following move

P = 2N10a

11

11

11

11

11

11

11

11

11

11

10

11

11 11

11

11

11

11

11

11

11

11

11

11

11

11

−N10a,+N11



85

occurs with probability 2N10a and causes a loss of a (10a) and a gain of an (11)

Similarly, there are two gray (11) which are part of a structure F. Thus with
probability N10b the following move cause a loss of 2 (10b) and the gain of 2 (11)

P = N10b
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−2N10b,+2N11

Now we consider the cases when the starting state is a (6). The probability of
picking a (6) which is part of a structure A is 2P (A) = N6 − 2N3a − 2N3b and it
turns to a (11) with probability 1−p. So, to the second order in p2, with probability
N6(1− p)− 2(N3a +N3b), 2 (6) disappears and 2 (11) appears

P = N6(1− p)− 2(N3a +N3b)
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Considering instead picking one of the two (6) which are part of a structure B
or C, the transition to a (11) leads respectively with probability 2N3a to a loss of
1 (3a) and a gain of a (11)
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P = 2N3a
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and with probability 2N3b to the destruction of 1 (3b) and 1 (10c) and the creation
of 2 (11)

P = 2N3b
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Now we consider all the moves involving as starting sites a (3) or a (10) of all
the possible kinds. This states, which can be picked with probability proportional
to p2 can turn one into the other with probabilities P3→10 ∼ 1/2 and P10→3 ∼ 1/2
for T ' Tc. Consider picking a (3a), this happens with probability N3a, if it turns
into a (10) (it happens with probability P3→10) it cause the loss of 1 (3a) and 2 (6)
and the gain of 1 (10a) and 2 (11)
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P = N3aP3→10
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The inverse is

P = N10aP10→3
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If we pick a (3b), the probability of the move is N3bP3→10 and cause the de-
struction of 1 (3b), 1 (10c) and 2 (6) while creates 2 (10b) and 2 (11). We have

P = N3bP3→10
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and the opposite move with



88 APPENDIX B.

P = N10bP10→3
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Finally, with probability N3cP3→10, 4 (3c) are destroyed and 1 (3b), 1 (10c) and
2 (6) are created by

P = N3cP3→10
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the opposite of which happens with probability

P = N10cP10→3
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