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Transitions de phase et diffusion dans des&aysts classiques et
guantiques dissipatifs

Réesume

Cette these est structée autour de trois chapitres principaux. Dans le premier chapitre,
je présente de nouveaugsultats obtenus pour laébrie¢* horséquilibre, dont la dynamique
est cecrite par une equation de Langevin eggance d’un bruit colé: Les corelations tem-
porelles du bruit @croissent avec une loi de puissanétedmiree par un certain exposant que
jappeleraia. Il s'avere qu'il y a una, de transition qui @pend de la dimensioP du syséme
et qui €pare le plarf, D) en une egion ai la couleur du bruit modifie le comportement cri-
tique et une autretocette couleur est non pertinente. Je dis@galement le comportement
d’échelle des fonctions de cétation horséquilibre. Dans le deuxime chapitre de magh
jintroduis un formalisme d’irégrale de chemin pourédrire le mouvement Brownien hors
équilibre. Je pesente de nouveaugsultats qui onéte obtenus pendant mon doctorat sur les
fonctions de coglation hors equilibre aps une trempe quantique. La tr@isie partie de ma
thése est consaeea la diffusion d'impurets dans des liquides quantiques en une dimension,
commurément appés des liquides de Luttinger. Ags une introduction aux prdarhes divers
liésa un tel systme compos d’'une impuret et d’un liquide de Luttinger, je psente une nou-
velle description de la dynamique de I'impugesn pesence d’un gige harmonique. La densit
du liquide de Luttinger non-homege influence fortement la dynamique de l'impéret nene
a des comportementsédits. De tels syémes physiques sont actuelleménidiés dans des
expériences d’atomes froids.

Abstract

This thesis is structured around three main chapters. In the first chgptesdnt new re-
sults which have been obtained for the out-of-equilibrium crititatheory. Its dynamics are
described by a Langevin equation driven by a colored noise. The tehgmoralation of this
noise features a power-law decrease which is governed by a cenpaineax. It turns out that
there exists a crossovet. which depends on the dimensid@nof the system and separates the
(v, D)-plane into a region where the color of the noise alters the critical behaaulia region
where the color is non relevant. | also discuss the scaling bahaviour nbthequilibrium cor-
relation functions. In the second chapter | introduce a path integral fisnm#o describe non
equilibrium quantum Brownian motion. | present the results which have bletned during
my PhD on the evolution of the non equilibrium correlation functions after aguma quench.
The third part of my thesis focuses on the impurity diffusion in one-dimenbkaurentum lig-
uids which are commonly called Luttinger liquids. After an introductory paitivicovers the
main issues related to such a system, | present a novel description of thétyndguamics in
the case where an external trapping potential is present. The non-boswmg density profile
of the Luttinger liquid then strongly influences on the impurity dynamics in a fatioig way.
Such systems are currently being studied in cold atoms experiments.
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CHAPTER 1

Introduction

“Dieu n'avait fait que I'eau, I'homme a fait le vin!”
Victor Hugo

In Mai 1905 Albert Einstein challenged in the last paragtaphhis celebrated article [1]
experimental physicists all over the world: With a simple microscope — he statedld one
observe the stochastic motion of (dust) particles suspended in a liquidssich@e water. This
appeal triggered widespread interest in his work; moreover, RobevtrBhad already observed
this phenomenon as early as in 1827, but in this ancient world the details diskigvery
had attained Einstein 70 years later in such a fragmented form that he wablado decide
whether his theory actually explained or rather predicted something. Eisdtesory, based
on an analysis of the osmotic forces induced by the stochastic motion of themaiecules,
was indeed confirmed only three years later by J. Perrin. This discteegmnmediately to the
final victory of Dalton’s atomistic hypothegis

Today, we mostly remember his famous formula (the Stokes-Einstein equatidict) @s-
tablished that the diffusion coefficiefit is proportional to the temperatdrg—!: a sphere with
a radiusr suspended in a liquid with friction coefficientundergoes stochastic motion with
D = B~1/(6myr). The underlying assumption is that classical statistical physics holds. The
number of degrees of freedom of the dust particle-liquid system is enmsuch that every
approach based on the calculation of the trajectory of each liquid molecsilhaevitably
fail*. Statistical physics reduces the complexity of the problem by introducireyaleaverage
guantities, such as temperature, pressure or volume, which can theedo® uharacterize the
system. The price to pay is the loss of knowledge of the dynamics of eackedeffreedom.

IM6ge es bald einem Forscher gelingen, die hier aufgeworfénelié Theorie der \Wirme wichtige Frage zu
entscheiden! — | hope that a scientist will soon be able to answer the quektwe raised in this work and which
is important for the theory of heat!

2For the sake of a fluid presentation of the historical context | did not meiiie contributions of M. Smolu-
chowski and L. Bachelier to the theory of Brownian motion, contributionitvare likely as important as Einstein’s.

*Throughout this manuscript | avoid the notatibrfor the temperature and | rather work with= 1/kpT.

“Note that L. Boltzmann always believed in atoms and molecules.
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Hence, equilibrium thermodynamics (rather thermostatics) is based on thg tfi¢loermody-
namic potentials such as the internal energy and the entropy which are liittethe mean
guantities such as temperature by static equations of state. While its succedsngable it
cannot be generalized to dynamical out-of-equilibrium phenomena.

Diffusion is a genuine non-equilibrium phenomenon. If we follow the samedfrergu-
ments which lead to classical statistical physics we can argue that the impsattoldegree
of freedom of the environment on the main particle is so small and the sulrgequpacts so
frequent, that the main particle only feels sostechastic nois&ith some well-defined prop-
erties. In conjunction with the central limit theorem one is then guided towaads<tan noise.
This Gaussian noise exerts a random force on the particle. From ndwmdifferent descrip-
tions of the particle dynamics are possible. Either one directly writes a Newteqiaation of
motion where the noise plays the role of the force and one tries to solve thadlsdlangevin
equation[2, 3]. In this case the resulting particle trajectory depends in genertiieonoise
history. By averaging over the possible noise configurations one theesaat mean values
which sufficiently describe the particle dynamics. However, one has adschibice to do the
opposite as long as the noise is uncorrelated in time: One writes down ficdtkar-Planck
equation[2, 3] of the probability density for the particle position and searches gmlation of
this generalized diffusion equation. Since all higher-order cumulantsi@ngically zero for a
Gaussian noise, one can easily convert a Langevin equation into arfelekek equation and
vice-versa.

The Langevin equation contains only useful information if the noise capéfged. There
are however many cases where no such noise exists. One often wmrsa@ituations where a
system changes stochastically its state with some known transition rates. Irfagixample
a particle on a one-dimensional lattice which jumps one step with some probabibtyhe
left or to the right. Such a process can be conveniently described withstger equationfi2, 3,
4]. Fortunately, in many cases this master equation can again be mappedkkea-Flanck
equationvia the Kramers-Moyal expansiof2]. For instance, in the hopping example cited
above the result is a simple Brownian diffusion equation.

Soon after the discovery of diffusion driven by stochastic forcescansleniently described
by classicalLangevin or Fokker-Planck equations, quantum mechanics paced itthpadigh
physics. The very first work which pointed towards quantum mechanéss Max Planck’s
analysis of the black body radiation. He showed that a simple trick couldatuumdesired
divergences in the formula for the black body radiation density of statehwésulted from the
classical statistical analysis of a photon gas. By assuming discrete esdugg (in contrast to
a continuous energy spectrum) for the quantum harmonic oscillator hedéhie correct black
body radiation formula. This raises the important question of the validity oft&imis result
at low temperatures, i.e. in the quantum regime. Quantum baths differ greatiycfassical
baths. Due to Heisenberg's uncertainty relation a quantum bath canngeckaergy even at
absolute zero. If we forget about any quantum effects for the partieleif we only measure
its mean displacemed)(¢), wheret is the time lag, one can ask whether quantum mechanics
modifies the classical diffusion law. The answer is yes. Einstein’s rel@tioh~ Dt has to be
replaced byQ(t) ~ log(vyt)®. Suchquantum Brownian motionan be conveniently dealt with
by using a path integral approach. Grabert et al. [5, 6, 7, 8] werérgteo find the stationary

SThese two relations hold for a so-call@hmicbath. In classical physics such an Ohmic bath leads to uncor-
related noise which drives the stochastic process called “Brownian motfnmntum stochastic processes driven
by a non-Ohmic environment are, however, also called “quantum BEeswmotion” in contrast to their classical
equivalents where the term “fractional Brownian motion” or “generaliBeownian motion” is prefered.
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guantum Brownian motion correlation functions within such a path integraldtism, without
relying on simplifying assumptions such as an initial decoupling between thielpand the
environment [9]. The second chapter of my thesis will be dedicated toergleration of their
formalism which works also for non-stationary cases.

One can easily imagine more complicated quantum environments for which thébiai
may even seem inappropriate; however | will use it also for the “exotiehtum baths | shall
describe in what follows. One of the main features of a quantum harmatilats bath is that
it is not entangled on its own: Only the coupling to the particle leads to quanttangtament
of different oscillators, which are independent from each other witttmicentral coupling to
a particle. A highly entangled bath, on the other hand, is formed by a onesliomal liquid
of interacting bosons or fermions which, as is well established, formscalted Luttinger
liquid [10] which features non Fermi-liquid [11] behaviour, such as ctillecexcitation and
a power-law decrease of correlation functions. In particular, the &argpiasiparticles [12,
11] do not exist anymore and the physics has to be described in termsigifydand charge
fluctuations [10]. Moreover, such one-dimensional systems can ltigedtanowadays with
cold-atom techniques. An impurity immersed in thigtinger liquid can then be considered as
a particle coupled to an exotic quantum bath under certain circumstanceathey.weak intra-
guantum liquid interactions (see the discussion in chapter 5 for more detatitssodelicate
issue). The non equilibrium dynamics of these impurities is extremely complethelthird
chapter | will focus on a small aspect of these very rich physics and Ipnel$ent results on
the impurity diffusion in ultracold Bose liquids, which can be obtained withoutintpidse of
heavy methods such as Bethe ansatz techniques and sophisticated rnwsimaulzdions. The
point of view | will adopt there will place the impurity in the center of our attentidmwill
not too much care about its effects on the Luttinger liquid, as | will be mostlyasted in the
impurity dynamics.

It is as interesting to adopt the opposite point of view and to ask about thetethe
impurity has on the Luttinger liquid. If the impurity is not mobile, i.e. if it representixed
obstacle, guantum tunneling still allows in principle the Luttinger liquid to crosbahnger. One
is immediately guided towards the question: Is this always the case? Therdasvegative
and it depends on the physical properties of the underlying Luttinger ligtie: analysis of
this problem has been performed by, e.g., Kane and Fisher [13] fookatad impurity and by
Giamarchi and Schulz [14] for an infinite number of impurities, i.e. for disgrty using a
renormalization group approachThis key word now leads us to another important topic which
will be relevant for the first part of my thesis.

Collective phenomena have always fascinated physicists. A system gf malecules,
electrons, photons or, why not, pedestrians, shows often an intrigeimaviour although the
underlying physical laws which govern the dynamics of each “unit” arg géten very simple
(This may be subject to debate for the pedestrians in the — say — subwapstatitowever,
the fact that many of these units interact with each other renders the phofsibe whole
system very complex. When an external parameter is varied one oftervebsphase tran-
sition where the system abruptly changes its state (for the pedestrians this teramg be
the density and the phase transition may be the onset of a collective panjaraj.aAt the
critical point the system becomes scale-free; the typical correlation length dominates all th
other microscopic length scales of the system and even diverges atlityitithe system be-
comes self-similar and it is thus often possible to integrate over fast fluctsdtaecover an
effective description of the system at large spatial or temporal scal@s.islthe heart of the
renormalization group approach. It implies in particular that many propegtitee critical or
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near-critical system angniversalin the sense that they only depend on macroscopic quantities
such as dimensionality, topological constraints and the internal symmetries system. By
using such techniques the authors cited above showed that the impurityeésantdarrier for

the Luttinger liquid if K < 1 whereK [13] is one of the two parameters which fully charac-
terize such a Luttinger liquid. In the case of a Gaussian disorder the crisitad iSK = 3/2

[14].

We now come back to the starting point of this introduction. In general, theairgimint
always separates two equilibrium phases. However, if the system istygeb(e.g. the system is
cooled down from some high temperature to the critical one) it needs time to egtaliburing
this equilibration time both phases are present and, if the system is infinite #mel case of
a critical quench, neither of them disappears: In this case the equilibtatiens infinite and
the system showsritical slow dynamicg15, 16] during which the equilibration dynamics has
universal properties. In order to model such critical dynamics a ferceeded, which drives
the phase transition. Fsubcritical dynamicgi.e. a quench below the critical temperature) the
dynamics are often governed by internal a-thermal forces such asrflaeestension between
regions of different low-temperature phases (here | mean the two lowetratope phases which
are two distinct realization, related by a symmetry, of the low-temperature equiilphase).
Usually, the two different phases are clearly separated: in, for instdodling water moving
vapour bubbles can be distinguished from the surrounding liquid waierlwnary alloys the
regions consisting of the substand¢are separated from the regions consistingafuring the
demixing process through a clear boundary. This phase boundary migiitsizeirface tension
and therefore drives the phase transition [17].

At criticality the picture is different. The boundary now has a fractal stmecand even
infinitesimal fluctuations in the medium heavily influence on its shape [18, 19, PBese
fluctuations can have a thermal or quantum origin and they can enhasiogvatown the critical
ordering process. Hence, due to the fractal nature of the boundagi&metic arguments used
for subcritical ordering dynamics are flawed and a renormalization gapppoach is needed.
Since the precise nature of the thermal (quantum) fluctuations is now impfantainé ordering
dynamics, one needs to specify its statistical properties to be able to fullsilmette system.
From the central limit theorem we expect that the noise is Gaussian. But itsahgpatial and
temporal correlations can be very important. Do such internal correlatioparticular if they
are long-range, influence on the critical properties of the system? It omag as a surprise that
this problem has not been intensely studied in the literature. Thus, in theditsif my thesis |
will show that strongly temporally correlated noises change the criticalrexqe of the phase
transition of ferromagnetic systems, which are conveniently describedeby'ttheory. The
critical dynamics of thig)* phase transition are then driven by the internal potential and by the
stochastic noise.

Let me close this introductory chapter by presenting the structure of my timesisre
details. The first part of my thesis is devoted — as already pointed ou¢ attomhe study of the
dynamics of the criticay*-theory in presence of heavily temporally correlated thermal noise.
This analysis will go beyond the standard Ornstein-Uhlenbeck casgpohentially correlated
noise by focusing on power-law correlated noise which is extensivetliestun the field of
fractional Brownian motion, but which has to date not been applied to theatritietheory.

I will present a renormalization group analysis up to second order in thpliog constants
which yields a quite complete picture of the equilibrium and non-equilibrium hycgof the
system.

The second part of this work focuses on quantum Brownian motion. Afténtroductory
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chapter | will present new results on out-of-equilibrium quantum Browniation. The analy-
sis involves path integral techniques previously used in [8] in this contextomtrast to previ-
ous studies | will not rely on a density matrix formalism, which only yields one-tinamtjties,

but rather on an approach based on a generating functional fronhalicon-equilibrium

correlation functions can be obtained.

The third part is about impurity dynamics in ultracold quantum liquids. QuanttowBian
motion can be directly applied to this problem if one assumes that Luttinger tieeeajid in
the parameter regime in question; however, the outcome is only partially stuirgfadote that
the Luttinger liquid behaves essentially as a bath of harmonic oscillators sisa @Gaussian
theory and every momentum mode can be identified with one oscillator. Hovweseoupling
between the Luttinger liquid and the impurity conserves the total momentum. In gaga
coupling is non-linear in the impurity position in strong contrast to standardtgqoaBrownian
motion. The density-density coupling of the impurity-quantum liquid system lead®vel
effects, such as an effective mass of the impurity and an enhancemina external poten-
tial. These phenomena have been recently observed in cold-atom exmisrand they can be
explained within an approach based on the equations of motion of the system.

Finally, the last part of my thesis concludes the work presented hereanpgates the
results to very recent studies.

How to read this thesis

The present thesis has three main research parts (chapters 2 to 4 ofrtbiscnipat). Chapter 2
is completely independent from chapters 3 and 4. Thus, a reader onlgstae in quantum
Brownian motion or in impurity dynamics in Luttinger liquids can directly go to chaptard 4,
respectively. Each part is meant to be self-consistent. Note howeseghhpter 4 makes use
of results and methods presented in chapter 3, in particular concernimdltigce functional
of quantum Brownian motion which is subsequently used as a starting pothefdescription
of impurity dynamics. The Sec. 3.3 can be considered as a junction betivapters 3 and 4.

The introductory parts of each chapter are supposed to provide tier vedh the necessary
background information in order to be able to understand the following pdwgse | present
new results and to be able to put these new results in their respective tcolbtisxhowever
impossible for these background information to be exhaustive within theesafoihe present
thesis. Some techniques such as path integral methods and the renormafjeatiorare not
explained in this thesis.

Note that the results presented in the main body of the thesis (ch. 2 to che d)nawst
never directly followed by a conclusion or any general comments. It isapteln 5 that | have
decided to comment on the results presented in this thesis. This is also wienpare the
results to slightly different but related approaches in the existing literature.

Published articles

The present thesis is based on three articles which | wrote in collaboraitioh. W= Cuglian-

dolo and A. Gambassi [21, 22, 23]. During my writing of the present meniptd worked on
yet another project on the dissipative phase transition of the spin-masdel. This work is not
included in the present text but can be found in its published form in [8d]article which |

wrote in collaboration with A. Rang¢on can be found in [25].






CHAPTER 2

Classical phase transitions and colored noise

“Le hasard est le pseudonyme de Dieu lorsqu’il ne voulait pas signer.
Anatole France

2.1 Introduction and preliminary remarks

In the first part of the present thesis | focus on the dynamical aspeclassical uniaxial fer-
romagnetic systems close to the Curie point. In this case thermal fluctuatiorespomsible
for the critical ordering dynamics and | will neglect all quantal effects in thapter. While
classical problems are usually easier to solve than their quantum coutgegbassical statis-
tical mechanics does not provide us with a natural dynamics in contrasatdauqu mechanics
which determines the fluctuations of the time-dependent order parametewa&yrio solve the
problem posed by the absence of a natural dynamics in the classicdkdasenpose some
suitably chosen dynamics to the system by hand. For instance, in the dliésisiganodel the
only dynamic event is a “spin flip” and every dynamic theory is solely gaeety its spin flip
probability. Thus, “Glauber dynamics” [26] amounts to setting the spin flipaftiee j-th spin
equal tows; = 1/2 —tanh(23.J)s;[s; 1+ s;41]/4 with J the ferromagnetic coupling strength
and  the inverse temperature. These dynamics satisfy detailed balance sutlietegstem
remains in equilibrium once it has reached it. One way of testing if a system gguitibgium
is to compare the time derivative of its correlation functid'(t, s) to its linear response (to
an infinitesimal external fieldR(¢, s). If

R(t,s) = BOsC(t,s) (2.2)

the system satisfies the fluctuation-dissipation theorem which is a necesadiiion for equi-
librium. However, an infinite system which is at initial time in a generic (non equiliby spin
configuration does not necessarily reach equilibrium within a finite time irteBaring the
spin ordering process thesedering dynamicshow universal features which are in general



CHAPTER 2. CLASSICAL PHASE TRANSITIONS AND COLORED NOISE

different from the equilibrium dynamics. If the system is critical, these mmdedynamics are
commonly callectritical dynamics

Before concentrating on critical systems, the reader might appreciatédio aln overview
of what is known of general ordering dynamics. Dynamical ferromagsgstems are conve-
niently described in terms of a coarse-grained order parameterq_S’fdé‘Ld) by using the fact
that the correlation length is much larger than the lattice constant of the orggimabkystem.
We use the short-hand notatid}Tfor the ensemble olV fields ¢; which depend on time and
D-dimensional space. The static behaviour of the system is then controli@dHbyniltonian
of the Ginzburg-Landau type

Hid = [abe | JT57 + jré+ 5], 2.2

g is the strength of the non-linearity that drives the phase transitimthe control parameter
for it, and the coefficient in front of the elastic term(ﬁgg)Q has been absorbed in the definition
of the field.

Dynamics are now incorporated in a twofold way. First, we expect thé¢garone considers
very short times) the friction forca&tqg exactly balances the potential ford.%H] which is
some functional of the energy. The diffusive dynamics are thus governed by an equation of

the form 5
V508 1) = F[H] (2:3)

as long as thermal fluctuations are absent. However, if the effect ah#thdiuctuations is

important Eq. (2.3), has to be complemented by an additional stochastictéonee(z, ) so
that

15;0@ 1) = F[H] + (1) . (2.4)
When do we have to take explictitly into account the stochastic fluctuations, ifeen Vs
Eq. (2.3) sufficient to correctly describe the ordering dynamics? Takiogaccount the ther-
mal noise is crucial in the case of critical ordering dynamics where th&afrsitcucture of the
phase boundaries is unstable against the weakest fluctuations in the meeéiee, Hturns out
that the noise statistics are irrelevant for most off-critical systems baiadfior critical dynam-
ics. Let me first briefly discuss off-critical dynamics (or sub-criticars@ning) from a simple
kinetic point of view where the phase transition is essentially driven by tHacgtension of
the phase boundary.

2.1.1 Subcritical ordering dynamics
If the order parameter fiel& is not conserved the potential force is simply given by

F( 1) = —— 7t
@)

According to the widely used classification of Halperin [27, 28] dynamicebdan Eg. (2.5)
are known as “model A’ dynamics and one can show that they generatizelduber dynamics
valid for lattice spin systems to the continuum case.

In conjunction with Eq. (2.3) one can then show [17] that the drivingdidor the domain
growth during the ordering dynamics is the wall curvature. It then folloved the typical
domain has the shape of a circlelin= 2 dimensions and the form of a hyper-sphere in general

(2.5)

8
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D dimensions. Itis instructive to seek for a spherical solution to Eq. (2c2)fecomponent non
conserved spherically symmetric fieldr, t) with » = |Z|. By using Eq. (2.5) one immediately
obtains 96 o d—106 1
- 3
o "o T Y (26)
By assuming that the typical droplet radipss much larger than the interface width one can
make theansatze(r,t) = f(r — v !p(t)). f'is assumed to be sharply peaked around p

and to vanish for — +oco. Inserting thisansatzinto Eq. (2.6) yields

f”+[d_l+p]f’—1f3:o. (2.7)
r 3!

Multiply Eq. (2.7) by f/ and integrate from p — ¢ to p + ¢ whered is chosen small but large
enough such that'(+0) — 0. By using the continuity of the functiofi the final results reads
p(t) = (d —1)/p(t) and it can be recast in the form

pP(t) = p*(0) —2(d — 1)t . (2.8)

Hence, the isolated bubble vanishes during the ordering dynamics with psmoliane which
scales as ~ p?(0). This holds true for general curved regions as well [29] which shitnarts
time and space scale according to

t ~x* (2.9)

with thedynamic exponent = 2.

In many cases external constraints impose a different growth mecharasmmtbdel A.
The Halperin classification ranges from model A to model E but | will onlyflyridiscuss the
so-called model B dynamics which describes a general demixing protessaoy alloys or
below the liquid-gas critical point (where the quantity of liquid is approximatehyserved). In
all cases one expects the continuity equation has to be satisfied so thadéhe@amameter is

subject to the constraint
0 o
9¢ +V-JH] =0, (2.10)
ot

where | focus on the single order parameter céaée<(1) and whereJ is someD-dimensional

vector functional of{. The simplest equation one can write is

oo OH
with o a kinetic coefficient related to the mobility. I = 3 dimensions it can be shown with
similar methods (albeit the analysis is technically more demanding for a codsemer pa-
rameter and after a long controversy the issue had only been settled byddsAin 1986 [30])
as in the previous section that

pP(t) = p*(0) — - (2.12)

The collapse time for the model B dynamics hence scales according tp(0)3 in contrast
to the result for a non-conserved order parameter Eq. (2.8) for whiel2. Accordingly, the
dynamic exponent for a conserved order parameters3.

After these two warm-up sections | now turn to critical dynamics for which tieential
noise statistics cannot be neglected anymore. | will first discuss utet@genoise and then
ultimately present the new results which where found during my PhD onlatedenoise.

9
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Figure 2.1: Simulation of a two-dimensional gas of a binailixtare of 2 x 5000 hard spheres with

a non-additive radiusr(z = 1.5r17 = 1.5792): Intra-species scattering events are simualated by the
hard-sphere constraint with; (or 22, respectively), whereas inter-species collisions areikitad by

the hard-sphere constraint with,. Left image: Snapshot after a short relaxation time. Rigcttiupe:
Snapshot after a large relaxation time. The simulationesponds to subcritical ordering dynamics with
a conserved order parameter (here the number of spheresto§pecies).

2.1.2 Colored noise

In the last | have presented an analysis of subcritical dynamics. Sinamdhresubject of
the present chapter are critical dynamics driven by colored noise lettneeluice colored, i.e.
time-correlated, noise in this subsection.

By definition, white noise processes have a vanishing correlation time, waithe directly
seen from the correlation function (I do not consider here a spatiasmce to simplify the
presentation)

(EEW)) =281yt — 1) = Do(t — 1) . (2.13)

Since the correlator only depends on the time differenee’ such a process is stationary. The
constanty,, measures the amplitude of the noise and it is related to the noise strengthewoieffic
v Of the previous section b = 2571, with 3 the (inverse) temperature of the ndisket
this white noise drive a partichda the Langevin equation

i(t) =&(t), (2.14)
then(z(t)z(#')) = z(0)2 + D min(t, ') thus leading to
((@(t) —2(t)) = DIt = '] , (2.15)

which is independent of the initial conditiar(0). Our particle hence undergoBsowian mo-
tion with the diffusion coefficienD. At this point it becomes important to distinguish two kinds

I will use the conventiorfot ds 6(t — s)f(s) = f(t)/2in the following, hence the factarin the definition of
D.

10
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of noises, stationary and non-stationary ones. Obviously, the white is@taionary while the
Brownian motion isot; indeed, the mean displacement function of the Brownian motion rather
than its correlation function is stationary. The tecolored noiseefers throughout the whole
manuscript exclusively tetationarycolored nois€ (¢) with a correlation function

{C)¢))y =p7"r~1), (2.16)

with T'(¢ —t’) some function other than the Diradunction. We denote the Eul&rfunction by
I'g in the following to avoid confusion with the noise kernel. Such a noise will sicered
in Secs. 2.2 and 2.3 where | will focus power-lawcorrelated noise with

T(t) ~t (2.17)

for larget. Examples of such noises occuring in nature will be listed in Sec. 2.1.3.

Let us relate the white noisgto the colored nois€ with a power-law correlator (2.16). If
a > 1 the noise kernel is not intregable and a small-time cuipffias to be introduced. By
defining the kernelA(t) = 1/(to + [t])”, withy > 1/2, we have

((t)o</ dt’ A(t —t)E) . (2.18)

—00

Indeed, if we defing in this way we find the correlation

min(t,s)
(€)= /O ds At — s)A(t' —s) o (to + |t —t']) 2. (2.19)

Accordingly, after the identificatioy = 1/2 + «/2 one recovers the form (2.16). This colored
noise can now be used to model a driven stochastic system whose télangevin equation
reads [16, 21] in equilibrium

/ ds I'(t — s)&(s) = ((t) . (2.20)

—00

Let me introduce the formal inverse functibr! of I, then obvioushy"~*(¢) ~ t*~2 for large
times. We thus find formally by standard power counting

t
x(t) ~ / ds (t — s)T=12¢(s) | (2.21)
where | introduced the so-callétlrst exponenf31, 32]
H= % : (2.22)

The relation (2.21, although in this manuscript established on a somewliatxshaguments,
can be put on firmer grounds and it is essentially correct and it leads tion@ower counting
which establishes Eq. (2.22). The physical meaningful analogue dREi.) has been exten-
sively studied since the 1950s [31, 32, 33, 34] and is cdiksctional Brownian motionltis a
generalization of the standard Wiener proce§s = ffoo ds &(s) (i.e. the standard Brownian
motion) and B. B. Mandelbrot defines it as [33]

0
bt) = by + FE(HlH/Q) { / s g(s) (- 912 — (s

+ /t ds &(s)(t — S)HW} . (2.23)
0

11
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The introduction off' p(H + 1/2) in the denominator has the following motivation: it ensures
that, whenH — 1/2 is an integer, a fractional integral becomes an ordinary integral. Also, the
definition of the fractional Brownian motian(t) can be made more symmetric by writing it as
the following convergent difference of divergent integrals:

/

b(t) —b(t') = M {/_ ds £(s)(t — s)T1/2 - /_Oods E(s)( —S)H_I/Q} .

o0
(2.24)
Very similar to standard Brownian motion, which correspond&te- 1/2 or o = 1, fractional
Brownian motion is, strictly speaking, not a stationary process while, hervihe displacement
x(t) — xz(t') is. From Eqg. (2.24) we directly find that fractional Brownian motion has the
correlation function

(BDE)) = 5 [12H + [~ — sf27] (2.25)

Again, we see that forf = 1/2 the process is diffusion-like. In this case the process is
Markoviansuch that the probability distribution of the actual increment does not depen
any past information. However, fdd > 1/2 the process is positively correlated and hence
super-diffusive with a variance that grows stronger than linearly in time,

(b(t)?) ~ >, (2.26)

while for H < 1/2 the process is negatively correlated which leads to subdiffusion.

It is well known that Brownian motion has a fractal nature in the sense thatsiélf-
affine [34]. Its generalization, the fractional Brownian motion, satisfiss aelf-affinity re-
lations as can be readily seen from Eq. (2.24). Indeed, we have

blat) ~ |alTb(t) , (2.27)

where the equivalence relatienis established with respect to the equivalence of the respective
probability distributions. Sinckt) is a Gaussian process this can be proven by the two relations

(b(at) — bat")) = 0 = (b(t) — b(
((blat) = b(at"))?) ~ [al [t = #'*T ~ |a|*{(b(t) — (¥

b(t)) , (2.28)
t')?) . (2.29)

| remind the reader again of the fact that fractional Brownian motion is oMypgkov process
it H=1/2.

2.1.3 Fractional noises in nature

Fractional Brownian motion is closely related to stochastic processes in pi@5pand physics [4]
where it can be used to model anomalous diffusion. These findings compyl#émeeoriginal
discovery by Hurst on long-range correlations of river flood rdsdB1]. In the interdisci-
plinary overlap between physics, chemistry and biology fractional Biawmotion occurs on
numerous occasions. The following list will not be — in any case — exhvagtis rather meant

2A stochastic proceds defined on a discrete time = iAt is called Markovian, if the conditional probability
distribution of future states dfdepends only upon the present state, i.e. ififox. 7 < 4 arbitrary,P(b; = B;|b; =
Bj,{bj; = Bj}) = P(bi = Bi|b; = Bj;), whereP(-|-) is the conditional probability 0. In the limit At — 0
one thus defines a Markov process on the continuum.

12
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as a teaser to arouse some interest in this multidisciplinary research field. lswiltite ex-
amples where fractional Brownian motion can be useful in combination with theldretical
approaches; this will build a bridge to the forthcoming sections which will déid critical
dynamics driven by such colored noise.

To begin with rather remote fields of research, fractional Brownian motisnbeen used
to determine statistical properties of interstellar gas [36], to describe cartzitrage opportu-
nities in finance [37] and to improve image processing [38]. In solid statsighyractional
Gaussian processes occur for instance when dealing with directoraflioctsl of nematic or-
dering [39] and when considering structural and flow properties @rigimedia generated by
fractional Brownian motion models [40]. The authors of [41] have rdgetudied a fractional
Brownian motion approach to polymer translocation and in [42] elastic menbearepoly-
mers were considered whose stochastic motion yields fractional Browniaa.nMoreover,
in [43] it has been shown that the membrane potential fluctuations of someftyeds have
fractal properties that can be modeled by using fractional Brownian motidrile authors
of [44] have introduced a new approach to cell mechanisms concermiigsdequences based
also on fractional Brownian motion. More generally, colored noise @itumany aspects of
biophysics such as cell membrane fluctuations [45] and DNA dynamics[#&idy mentioned
above.

The physical circumstances in which generally temporally correlated nogsare also
manifold including polymer translocation through a nanopore [47] or tleetie description of
a tracer in a glassy medium [48]. A review of the effects of colored noiggmamical systems
is given in [49]. Last but not least, the environment fluctuations in quaxtiggipative systems
give rise rather naturally to temporally correlated noises [50]. Indeégiyiell known that the
generalization of the classical influence functional of Brownian motion smtium dynamics
yields a power-law correlated noise even in the case of an Ohmic bathdde®qf the thesis].

Let me now cite one example where field theory approaches play a rolewdédli&nown
that polymerized membranes undergo a melting transition between a crystalise phhexatic
phase and a fluid phase which can be dealt with by using field theory aodwalization group
techniques [51]. Although the relevant free energy functionals deoriin the same terms as
the ones | shall consider in the following, a variant of the methods that wpkésented in this
manuscript can be generalized to such melting transitions of membranestt&seeell mem-
branes are immersed in hydrodynamic media, the stochastic propertieshdiygirodynamic
environments should greatly influence the critical membrane dynamics.dnaently it has
been shown in [52] by demonstrating that these hydrodynamic correld¢éiad4o a resonant
peak in the power spectral density, that hydrodynamic “memory” transtatethermal forces
which have a non-white noise spectrum. In many situations of practical sttefall treatment
of such acolorednoise is therefore necessary. For example, the escape rate of pambicles
fined within a potential well crucially depends on the statistics of the therma[®aith4, 55] as
observed in the desorption of molecules from a substrate undergoiegradserder phase tran-
sition which effectively provides a colored noise for the stochastic dyreofithe molecules
(this phenomenon is called Hedvall effect and it was studied theoreticale/dn,[56]). An-
other important instance is the stochastic Burgers modeling of turbulenae Wieenoise is
correlated in both time and space [57]. This equation is, in addition, closkliedeto the
Kardar-Parisi-Zhang description of surface growth that was andiyah spatially correlated
noise in, e.g., [58, 59] and references therein.

In the last paragraph of this subsection the so-called “pink noises’léimat remain un-
mentioned. Such pink noise has a spectral density which decreasg¢g¢agwhere f is the
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frequency) with5s ~ 1 and it is believed to be stationary. In particular, thg noise has been
found on numerous occasions in physical systems: It is omnipreseriidrstaies [60, 61, 62]
and in general in condensed matter systems [63] where it is often asdacidtectuation of
the electrical resistance [64]. Moreovéy,f-noise has been observed when studying the dy-
namics of granular media [65] and it has been used to characterize thecstiigoperties of
avalanches and cascades [66] occuring in various contexts, ssahdysle dynamics [67], self-
organizing traffic flows [68] and the statistical features of cascadesarilieats [69]. Further
more,1/ f-noise has been experimentally found for the dynamics of some proteiharf@dn
connexion with the evolution of fractal correlations in DNA base sequejvd.

| hope that the reader is now — if he hadn’t been already before -iramu/ that colored
noise occurs in various contexts in all fields of physics. As pointed ouphpsics ofl / f-noise
are rich and complex but they go beyond the scope of this thesis; in thelapter | will focus
more on noise with heavy time correlations. Such a noise has a spectriy dérish growsin
general with the frequency in contrast to the pink noise briefly discuds®ee. | will show that
such colored noise qualitatively changes the critical behaviour of thenfieignetic transition
in spin models, conveniently described by)&theory. This might be expected from a bolt
analogy: Long-range spatial correlations are known to change theathghaviour of — for
instance — the classical Ising chain [72]. Such spatial correlationsically static. Temporal
correlations, on the other hand, are usually associated to some statisticaherent which
induces noise on the system. The analogy is therefore not totally giveveudo, we will show
that long-range correlated noises do change the critical ferromagragtiition dramatically —
as long as they are “sufficiently” correlated.

2.2 Critical dynamics: Introduction

For more than 30 years critical dynamics have been explored with fieldetieadrmethods [73,
74,75, 76, 77, 78, 79, 80, 81]. A variety of dynamic models were intteduo describe the
collective evolution of systems close to critical points. Among these, the mashoo ones are
the dynamics of non-conserved or conserved order parameters sudchssfully describe the
evolution of uniaxial magnetic systems close to the Curie point or the dynantisarf alloys
close to the demixing transition, respectively. The subcritical dynamics sétkgstems have
been discussed in Sec. 2.1.1. | insist here, that these problems as wahwa®f their gener-
alizations discussed in [76, 77, 79, 81] atassicalin the sense that their stochastic nature can
be essentially ascribed to thermal fluctuations. Therefore, as in the sinffuisiah processes,
the evolution of the interacting degrees of freedom — described via affiels modeled by a
functional Langevin equation in which the coupling to the environment isoresple for both
thermal fluctuations, encoded in a stochastic external noise, and thafissi® Sec. 2.1]. If the
environment, which acts as a thermal bathdpis in equilibrium at a certain temperatuyse !,
the space and time dependence of the friction coefficient and of thdatmns of the thermal
fluctuations are related via the fluctuation-dissipation theorem, see Eq.Hekelected model
bath determines then the remaining functional form of the noise-noisdaiwreand the usual
choice is to take it to be delta-correlated in time which corresponds to white noise

In cases in which the initial conditions of the system are drawn from an equititGibbs-
Boltzmann distribution, or the system is allowed to evolve for a sufficiently long sinoh that
this distribution function is reached, the space-time behavior of dynamiditjears charac-
terized by scaling laws in which the usual static exponents)(etc.) appear but a new critical
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exponentz is needed to relate the space and time dependencies. In the case of slbcritic
dynamics we have seen that= 2 (z = 3) for an unconserved order parameter (conserved
order parameter, respectively). Besides the analysis of equilibriumnaigs, field-theoretical
methods allow one to study then-equilibriumdynamics after a sudden quench from a suit-
ably chosen initial condition to the critical point [82]. A Gaussian distributibthe initial
field configuration with zero average and short-range correlations mingcgach form the
disordered phase [82]. A distribution with non-zero average but stilltstange correlations
describes (in the case of a scalar figl[da quench from the ordered state [83, 84]. In these
non-equilibrium cases a new critical exponent — usually denotef d&ayd called the “initial
slip exponent” — characterizes the short-time behavior of the average padameter as well
as of the correlation and response functions [82] (see, €e.g., [8B7/Bfr summaries).

In all the studies mentioned above, the noise is assumed to have a Gaugssiautidis with
no temporal correlations, i.e., to be Gaussianahide The first assumptions can be justified
in many cases by the central limit theorem: If one considers a coarseedréiarmal noise,
that is the sung(t) = n='/2 37" | &4, with &; the microscopic random force at instanthe
probability distribution of¢(¢) locally converges to a Gaussian as long as the mean and the
variance of the; are finite. Note however that the absence of uniform convergence intipdies
only the eventg (¢) of order< O(,/n) are distributed according to a Gaussian; extreme events
are thus excluded from the central limit theorem. The Gaussian distributes it emerge
uniformly but it rather gradually “eats up” the extreme events situated fay dom the bulk.

If these extreme events are rare (for examptgj is bounded) the bulk distribution dominates
and the central limit theorem is valid for thwehole event space. However, there are well-
known cases where extreme events are frequent enough that tltbg sBpecial analysis (one
important example are financial markets) although the Gaussian central limiethepplies
[see also Bouchaud and Potters [88]].

The second hypothesis is yet less justified. Indeed, the very couplingrtodhreservoirs
yields, in general, non-Markovian Langevin equations in which the noiseriglated in time
and the friction coefficient has some memory [89, 90, 50]. Although oneacgue in some
cases that the typical correlation time of the thermal bath is much smaller than tbal typ
time scales in the system, it is known that some environments exjolier-lawcorrelated
thermal fluctuations which are scalefree: In such cases assuming Waarlsiatistics isiever
justified a priori. | refer the reader to Sec. 2.1.3 where | present soam@gs of such scalefree
environments which occur in nature.

In the present manuscript | will essentially focus on critical dynamics dfireamonserved
order parameter, i.e. described by [see Egs. (2.4 and (2.5)]

/ | &' Tt — )Op3(E 1) + —— = (3, 1), (2.30)
-7 0p(Z,t)

where—T is the initial time of the process ands a zero-mean Gaussian colored noise with
(G(@OGE ) = BT —1)0(F — T)d;. (2.31)

Note that the functio” determines both the noise-noise correlation [see Eq. (2.31)] and the
time-dependent retarded friction coefficient [see Eq. (2.30)] sinceave assumed the thermal
bath (which is weakly coupled to the system) to be in equilibrium at temperature The
Markovian examples of this dynamics are characterized bgarrelated (‘'white’) noise, i.e.,

T(t) = 2746 (t) , (2.32)
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where~y,, is the friction coefficient. In this case Eq. (2.30) has been extensivetlijestipoth
in and out of equilibrium, see, e.g., [75, 82, 86, 91]. Sa@imicdissipation is the simplest
form of short-range correlatedhoise. It can be formally obtained as the limjt— 0 of the
exponentially correlated Ornstein-Uhlenbeck (OU) process

Tou(t) = ?—Ue—ltl/to , (2.33)
0
where the finite characteristic relaxation timgplays the role of an internal scale. Under
renormalization one expects the exponentially correlated noise to becomalequto a white
(delta-correlated) one, Eq. (2.32), and the critical behavior of the @tass be identical to the
Markovian one. In thabsence of an internal scalmstead, there is no reason to expect a white
noise limit and the critical behavior might be affected. The simplest example widxplicit
time scale is
(t) = ﬁ 7 with a>0. (2.34)
(I'g the Eulerl-function). Fora > 1, i.e.,super Ohmic dissipatigrexpression (2.34) is not
integrable, unless a short-time cut-off and thus an internal scale is ineEdd@ne can show that
under naive scaling (introduced in Sec. 3) the Fourier or Laplaceftran®f I'(¢) generate a
white noise vertex that dominates over the colored noise part. Hence pgbarapce of a cut-off
scale suggests the non relevance of the colored noisifier-Ohmidissipation, i.e.qc > 1.
This statement will be made precise in the following. Insteadsédo-Ohmic dissipatian.e.,
a < 1, the noise is truly long-range correlated and its influence on the dynamidsimmilbut to
be non-trivial. The naive cross-over value between these two cases is. = 1, that is white
noise orOhmic dissipation In the presence of interactions we shall show that this scenario is
slightly modified, with the cross-over value (D, N') depending upo andN.
A functional-integral representation of the stochastic process, Mankar not, is better
suited for an analytic treatment of critical dynamics than the Langevin equ&ti8f). In
particular, it allows one to express the average ) over the possible realizations of the noise

fin Eq. (2.30) as a functional integral (which will be denoted(by ) in what follows)
() = /[dgf)dd)] . o Slod] (2.35)

over¢ and an auxiliary field with S = Sy + Sin: — In Prc [73, 74, 75, 92,

So = /de /O; di 57,('%: t) |:/tT dt’ F(t - t/)at’(bi(fv t/) + (T - vz)d)Z(f? t)
— 71 / dPx /_ O; dt /_ tT dt’ ¢,(Z, )T (t — '), (Z, 1) (2.36)
and

S = [ % [ at 55, 0)6(7,0)6,(7. )05 7.0 (2:37)

We used Einstein’s convention of summation over repeated indices. Theaerce func-
tional integral is identical td due to the normalization of the noise probability distribution.

%In the presence of colored noise no discretization problems arisee.ged92)].
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Prclé(#, —T)] is the statistical weight of the initial condition. The auxiliary fieaz?}d1 is con-
jugated to an external perturbatianin such a way that it{[¢, h] = H[¢] — ¢ - h, the linear
response of the order parameter to the field given by

0@ 1));;

R(Z—&t,1)0;; = ————2 =
(l’ T, ) J (5h](f/,t/) ii:ﬁ

<¢z(fv 75)5]' (flv t,)>> (238)

where(- - -); is the average over the stochastic process in the presence of the epéztoa

bation, i.e., Eq. (2.30) with{ 7—[[5, ﬁ]. The response function is causal irrespectively of
the noise statistics and the Jacobian of the transformation of variables;?ftonz? which al-
lows us to write the average over the stochastic process as in Eq. (2.8%) asfactor with no
consequences [92]. In addition to the (linear) response functionhalé nsider below the
correlation function of the order parameter, defined by

C(@ — &, 1,1)5 = (6u(&, D)y (@, 1) (2.39)

where we assumed translational invariance in space. The agtiens;,; is the sum of two
contributions each one made of several terms. The part with density/é¢; represents the
deterministic dynamics whereas the remaining part is due to the coupling to th& hetlatter
consists of the friction term and the noise-noise correlation and both intlodvkernell”. In
this formulation the problem is recast in the form of a field theoryia- 1 dimensions with
two vector fields, the analysis of which can be done via standard fieldettesd tools, such as
the renormalization group (RG) approach that we shall use below.

Since, in general, there is no tractable Fokker-Planck equation for th&liadkov stochas-
tic processes we are presently interested in, the usual and relatively pimpf@f equilibration
explained in, e.g., [19, 20] for the white-noise problem does not apmweder, we recall here
that Eq. (2.30) is an effective description of the dynamics of a classistdim with Hamiltonian
‘H’ which is weakly and linearly coupled to a (large) equilibrium bath of harmoséillators
at temperaturgg—!, acting as a source of the stochastic n(zfiﬂ‘fectively induced by such a
coupling. Indeed, the temperature that characterizes the correlatitins wbise in Eq. (2.31)
is 51, whereas the distribution of the frequencies of the harmonic oscillators witkibath
determines the functional form df. In addition,I" appears in Eqg. (2.30) and Eqg. (2.31) in
such a way to ensure the fluctuation-dissipation theorem for the bath learials a result,
even with this effective non-Markov dynamics the system should still lose meofids initial
condition angl equilibrate with the equilibrium bath of oscillators, resulting in amiaal distri-
butione—#*1¢l / Z () of one-time quantities at sufficiently long times (possibly divergent with
the system size) whetg(3) is the partition function and{ differs from?’ by a term which
iS quadratic in the relevant degrees of freedom (see, e.g., [50, d5ltails). The asymp-
totic critical equilibrium dynamicss expected to be described by the lirflit — oo of the
action in which one neglects the specific distributi®p- of the initial conditions that in any
case should be forgotten dynamically. Since we shall be interested in thaladificamics,
we sets = (. and we absorb this constant into a redefinition of the fields and of the coupling
constanty. In equilibrium the response and the correlation functions are invariatgrutime
translations, i.e.R(Z,t,t') = R(Z,t — t') [see Eq. (2.38)] and'(Z,t,t') = C(Z,t — t') [see
Eqg. (2.39)] , and they are related to each other by the fluctuation-dissightorem (FDT)
that readsk(%,t) = —[0,C(7,t)O(t), wheret represents the time dela@,(t < 0) = 0 and

—

4 is purely imaginary and it is sometimes writteniasin the literature.

17



CHAPTER 2. CLASSICAL PHASE TRANSITIONS AND COLORED NOISE

O(t > 0) = 15, and which is completely independent of the specific characteristics ojshe s
tem and the bath apart from its temperature. (A proof of this relation foergenolored noise
Langevin dynamics can be found in [92].) Once the latter has been &asiorthe redefinition
of ¢; andg the FDT becomes

R(Z,t) = —8,C(Z,1)0(t), (2.40)

and this is the form that we shall use in our calculations. Moreover, the teperdient corre-
lation is invariant under time-reversal, i.€!(7,t) = C(Z, —t).

Non-equilibrium dynamicsnstead, can be studied by leavifigfinite and by making the
initial distributionP;¢ explicit [82, 86]. A typical choice is a Gaussian weight in which cése
can still be absorbed into a redefinition of the fields an8tationarity is lost out of equilibrium
and correlation and linear response functions depend on all times invaltkeeir definitions {
andt’ in Eq. (2.38) and Eq. (2.39). Moreover, the FDT is no longer valid [86.99].

In addition to R defined in Eq. (2.38) and' defined in Eg. (2.39), one can construct the
quadratic correlatofe, (i, t)¢; (', ')) which, independently of the color of the noise, vanishes
identically due to causality.

2.2.1 Scaling

In the case of stochastic dynamics with white noise, a systematic RG analy§isnsotine
phenomenological scaling behavior of the linear response and comefatiotions both for
T — oo andT finite corresponding, respectively, to equilibrium and non-equilibriulax-e
ational dynamics. In terms of the equilibrium correlation length~ |r — r.|™", wherer. is
the critical value of the parameteiin Eq. (2.2), and of a dynamic growing lengtfr) ~ ¢'/2,
one expects [82, 86]

R(B,t,1) = p~ "2 [6(6) /€))7 fr(DEeqs E(t)/Ecar E(F') /E(1)) (2.41)

and
C(pt,t) =p 2T [E) /W)Y fopéeq, E(t) /Eeq: E(E) /E(T)), (2.42)

for the Fourier transform in space &(%,t,t') and C(Z,t,t"), respectively, with the white
noise valuex = 1 [82]. In the previous expressions,is the standard static critical exponent
associated with the correlation lengthis the dynamic critical exponent which characterizes
the different scaling behavior of space and time, whergiasthe static anomalous dimension
of the field ¢ and it controls the power-law spatial decay of the static correlation function
0 is the so-called initial-slip exponent [82, 85, 86] that accounts for thectsffof the initial
condition in the case of finit@. It is a novel universal quantity if the relaxation occurs from a
disordered initial state, whereas it is related to known equilibrium expoifahts initial state
has a non-vanishing average value of the order parameter [83,82.41) and (2.42Yr ¢

are scaling functions which become universal after the introductionaggornormalization.
Equilibrium dynamical scaling is recovered in the limiting ca$€) ~ £(t) > &q (i.€., in the
limit of long timest, ¢’ with finite ¢ — t'), whereas aging phenomena are expected to emerge for
£(t),&(t') < &eq and, in particular, right at the critical point= r.. In the presence of specific
instances of correlated noise we expect the scaling behavior in (2.412&2) to be modified

®Note that the b prescription of the Langevin equation Eq. (2.30) impl@&&) = 0 in the stochastic path
integral description [19, 75].
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both as far as the exponents and the scaling functions are concetreedhdnges appear at the
level of the Gaussian theory and non-trivial effects survive in thegee of interactions for
certain noise correlations, as we shall explain in the following.

2.2.2 Large<V limit for Ohmic dissipation

The limit where the number of componentsof gg is infinite can be solved exactly for the full
out of equilibrium dynamics driven by white noise Eq. (2.32). First, opdaes the coupling
g by g — ¢g/N in order to obtain a homogeneous scalinghNin Second, one notices that
the stochastic variablg_ Y, ¢?(#,t)/N tends to a Gaussian with medd’_, (¢%(7,1))/N =
(¢2(2,t)) (foralli € {1,...,N}) and variance o®(N~'/2). Hence, for largeV, a sensible
approximation is to replace the expressi;ﬁ?i’nin the interaction part (2.30) by its me&Hz =
0,¢ = 0). This is the usual largé¢ approximation which becomes exact ft — oo. The
equation of motion (2.30) for Ohmic dissipation then reads

’Ywé(fv t) = —[V2 + I(t)}(ﬁ(f, t) + C(f7 t) ) (2.43)

where¢ stands for each (now independent) comporgnthich are all equivalent for largs’.
We introduced the time-dependent function

I(t) =r+ g C(0,0), (2.44)

which has to be determined self-consistently. The scalar Gaussianiigis¢ has the correla-
tion

(@ OC(E 1)) = B b (T — Z)5(t —t') . (2.45)
The model (2.43) has to be complemented by information on the initial conditiomhdse a
completely disordered high-temperature initial condition to mimic a quench to theatptmnt:

—

(¢(2,0)) = 0, (2.46)
(61, 0)5(7,0)) = Tlo (2.47)

This initial condition will be reused in Sec. 2.3.5.
The noise amplitude,, can be scaled away by settihng— ~t. Then, the formal solution
of Eq. (2.43) can be written in the Fourier domain as

¢(k,t) = R(k,t,0)¢(k,0) + / ds R(k,t,5)¢(k, s) , (2.48)
0
where ¥(s)
7 _ T (S8) _k2(1—s)
R(k,t,s) = Y i) € (2.49)

is the non-equilibrium response functions (which depends on two tiragd s) with Y'(s) =
exp UOS dt’ I(t’)]. Consequently, solving the Langevin equation (2.43 amounts to determine
Y (s) self-consistently.

From the very definition o¥ (¢) follows that

=2|r+gC&=0,0)| Y?(t) . (2.50)




CHAPTER 2. CLASSICAL PHASE TRANSITIONS AND COLORED NOISE

Now, introduce an ultraviolet cutoff functiop(k) to write

ci=0,0)= [ -LE o on 2.51
@= 0.0 = [ G35 CEONE). (251)
We are only interested in the long-time dynamics which are expected to besaliged hence
independent of the precise form gfk). Therefore, we can choose a specifid:) which is
suitable for the calculationy (k) = exp[—k2/A2] with A some ultraviolet cutoff. By using
Eq. (2.48) we can write

t
C(k,t) = R*(k,t,0)r 1 42671 / ds R*(k,t,s), (2.52)
0

which leads in conjunction with Eq. (2.51) to an integro-differential equdtony (¢):

2 t
(9Y8t(t) =2rY2(t) + 297 h(t +1/2A%) + 497! / ds h(t — s +1/2A*)Y?(s) , (2.53)
0
where we defined(z) = [ (gﬁfD e~2k*z — (872)~P/2. By applying a Laplace transform it is

straightforward to find the asymptotic behaviour

t—(4=D)/4 for D < 4
Y(t N{ or U= (2.54)

const. forD >4

at the well known critical largeV point defined by* + ¢7* B = 0. B is the standard critical
one-loop bubble of the (regularized}-theory: B(0) = (gﬂ% X(E)/kz. From the general
scaling relation (2.41) one immediately finds for the Ohmic lakgenodel in the non-mean-
field caseD < 4

;o= 2, (2.55)
= (4-D)/4. (2.56)

The largeN approximation thus gives a qualitative behaviour that confirms (2.41)248)(
In the next section | present a renormalization group analysis for thedlificellt case: The out
of equilibrium dynamics of model A driven by power-law correlated nofsgeneralization to
the full colored noise case is not straightforward and has to my knowlsalgeeen performed,
yet.

2.3 Critical dynamics and colored noise

2.3.1 Equilibrium dynamics

According to the interpretation of the Langevin dynamics in Eq. (2.30) asgtireg from the
coupling to an equilibrium thermal bath, after a sufficiently long time the systempiscted

to relax towards an equilibrium state characterized by the effective Hamitt@hiae., by the
static¢*-theory. This relaxation occurs generically and for arbitrary initial ¢oals as long

as the asymptotic values of the control parameters of the systenthe case we are concerned
with) imply for H neither a spontaneous symmetry breaking nor criticality, which would indeed
provide instances @fging(see, e.g., [15]). However, the existence of a wide region of parameter
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space ¢ > 0) for which equilibration occurs, allows us to conclude that all static prtazeof

a theory with effective Hamiltonia{ carry over to the dynamic field-theoretical actiSrisee
Egs. (2.36) and (2.37)] which generates the dynamic correlation fusctiod therefore the
static ones as a special case. The upper critical dimensioraligbove which the Gaussian
theory becomes exact is therefore the same as igttheory, i.e.,D. = 4 (see, e.g., [19]).
Analogously, the same applies to the static exponerdgadn. In this section we show how
this arises within perturbation theory. In particular, we determine the conslitinder which
the critical dynamics is modified by the colored part of the noise with spectaisfon the
emergence of a cross-over ling(D, N') which bounds the region within which the dynamic
exponentz is affected by the color of the noise. We calculate this exponent in the whdte an
colored noise cases.

2.3.2 Gaussian theory

In the T" — oo limit the Gaussian part of the actia$y can be diagonalized via a Fourier
transform of the fields defined in Eg. (2.151). One obtains

dw dw’ dD dPy’ . L= -
/% 2 | @n)D (2m)D @' (p,w)C (P, wi P, W) B(p W) | (2.57)

where we used a vector notatigh= (¢(7,w) , qb(p, )T for the 2N-component fields and
we introduced the correlation matrix

cz@ﬂ@+ﬁﬁ@+w0< (2.58)

_iwr‘?w + (p2 + T) _(Fiw + Fz*w)
Here and in what follows we denote a function and its Fourier transformtivitisame symbol,
the difference being made clear by their arguments. In Eq. (2°58ktands for the Fourier
transform of©(¢)I'(¢) [the O(¢) factor is a consequence of the causal structure of Eq. (2.30)].
As usual,* denotes the complex conjugate. For the colored noise in Eq. (2.34) ose find

Diw = |w|* ! [sin(ra/2) — isign(w) cos(ma/2)] + Yu- (2.59)

0 iwli, + (p% +7) )

[Note that fora > 1 a short-time cut-off has to be introduced in order to transform Eq. (2.34).
However, the dynamic properties we are presently interested in are degdrbyirthe leading
behavior at smalb, which is not affected by the introduction of such a cut-off and is cdlgrec
captured by Eqg. (2.59). Accordingly, we shall use this form irrespelgtiof the value ofx.]

In this expression we have added a supplementénije-noise vertex,, for reasons that will
become clear in the following [note that the cut-off that has to be introducedar o make

Eqg. (2.34) integrable faft > 1 effectively leads to this supplementary white-noise vertex]. The
propagator$are deduced by inverting:

- — . = oy P = —_ e 1 ..
RO(paw)(sw - <¢z(paw)¢j( D, w)> - iniw +p2 T 6Zj (260)
and
Co(p,w)di; = (9i(P,w)e;(—p, —w))
_ Liw + T, 5. (2.61)

W IE +iw(p? +r)(Tiw — TF,) + (p? + 1)

®In what follows we denote the response and correlation functioR apdC, respectively. The various propa-
gators and quantities within the Gaussian approximation are denoted bybswipty .
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By construction they satisfy the FDT [see Eq. (2.40)] that in the frequdomain reads:
2iIm Ry(p,w) = —iwCo (P, w). (2.62)

We recall that we absorbed the temperatiré in a redefinition of the fields and the coupling
constany, and thatCy (p, w) is a real function.

The static correlation functio@y(p, ¢t = 0) can be obtained by integrating Eq. (2.61) over
the frequencyw and, as expected, the result agrees with the static Gaussian correlation tha
one would infer from the Hamiltonia®{ [see, c.f., the calculation leading to Eq. (2.155)].
Consequently, the static critical exponemntndn are not modified at this order by the dynamics
and they take the Gaussian valugs= 1/2 andn, = 0, respectively.

We anticipate here that in Sec. 2.3.5, while discussing the non-equilibriuemdgs of the
present model, we consider the Laplace transform [see Eq. (2.152).¢2.30) withg = 0
and the colored noise given in Eq. (2.34) (i.e., with = 0). This allows us to determine
the Laplace transform of the response functigf) formally obtained by replacingo with A
in Eq. (2.60); compare Eq. (2.151) and Eq. (2.152). This transfombeanverted to a form
given in terms of the so-called generalized Mittag-Leffler functibps; defined in (2.169) and
provides a closed expression 8 (p, t):

a—1
L Bpa(—Ato/), (2.63)
=

Ro(p,t) = O(t)

where A = p? + r. The equilibrium correlation functioft is readily determined from this
expression via the fluctuation-dissipation theorem (2.40) (see, c.f., 22 for details):

Co(7,) = 5 Ba(~Altl*/7) (2.64)
whereE, (z) = E,,1(2). InFig. 2.2(a) we ploAC) as a function of the (dimensionless) scaling
variableu = |t|(A/~)"/ associated with timé. Fora — 1 one recovers the purely exponen-
tial dependence™ (indicated by the decreasing dashed curve in Fig. 2.2) which charageriz
the case of white noise. Asdecreases, instead, the correlation function displays a faster initial
drop followed by a slower decay at large values:ofindeed, taking into account the known
asymptotic behavior of the Mittag-Leffler functions [c.f., Eqg. (2.170)]stheurves decay alge-
braically as~ 1/[I'g(1 — a)u®] for u — oo. In panel (b) of Fig. 2.2 we use a log-log-scale to
compare the curves shown in panel (a) with their corresponding leadymgpdotic algebraic
decays, indicated by the straight dashed curves fgr 5. As a — 0 the approximation pro-
vided by the leading term of the asymptotic expansion becomes less accutagetime span
and one needs to go to longer times to reach the asymptotic regime. The cuRigs 202
clearly illustrate the crossover between an exponential and an algesyaiptotic behavior of
the correlation function as decreases below the value= 1.

For the generic case of the noise in Eq. (2.59) with,, # 0, the propagator#, andCj
do not have a simple analytic form in the time domain, in contrast to the familiar expiah
relaxation which characterizes the case with white noise-=(0, v, # 0) briefly recalled in
Egs. (2.153) and (2.153) and to the purely colored case discussed jimetrieus paragraph
(v # 0 and~,, = 0). In spite of this difficulty, the Gaussian valug of the dynamic exponent
z can be determined by comparing the scaling of the first two terms in the denomindtg
for smallw andp since one expects ~ p* from the definition ofz (see, e.g., [19]). First we
note that for smalb, Eq. (2.59) scales d3,, ~ |w|*~! for a < 1, wheread";, ~ 1 for o > 1:
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Figure 2.2: Scaling functiorlCy, of the Gaussian correlatiafl, in equilibrium (" — oo0) as a function

of u = |t|(A/~)'/ for various values of, with A = 5% +r. (a) The horizontal dashed line corresponds
to the limitae — 0, whereas the other dashed line points out the purely expahbehaviore—*, which

is recovered fory = 1. The solid lines, instead, correspondito= 0.2, 0.4, 0.6, and 0.8, from bottom
to top at smallu and in the reverse order at large (b) Log-log plot of the curves shown in panel (a)
compared to their corresponding leading asymptotic aljetrehavior inferred from Eq. (2.170), which
are indicated as (straight) dashed lines.

in the former case the effect of the colored part of the vertex is domindet,eas in the latter
the contribution of the white noisex(,,) dominates. As a result, from the scaliag;,, ~ p?
one can read the Gaussian vabdeof the dynamic exponent:

0 2.65
z(()w):2 for a>1. ( )

{Z(COI) =2/a for a<1,
z0 —
A similar effect is observed in diffusion processes with colored noisesdhealled fractional
Brownian motion [see Sec. 2.1.2 and [95]]. The particle’s displacemetdtissary and char-
acterized by am—dependent exponent which is callddrst exponenin this context.

By rescaling the momentum and frequencys according top — b~'p andw — b *w
with b the scaling parameteof the RG flow, one deduces the Gaussian scaling behavior of the
response and the correlation propagator. We infer from Eq. (2.@DEgn(2.61) that

b2 Ro (b5, b w; 1, v, ) = Ro(f, w; b2, 5220y, b2~ 50, ) | (2.66)

with a similar expression fafy, where the prefactdr— on the left-hand side (Ihs) is replaced
by b=27*. As anticipated, one can identify two asymptotically scale-invariant bersaytoe
so-called Gaussian fixed-points in the parameter space) as the Gauggiahpointr = 0 is
approached. They correspondfo= (v = 0,7 # 0) fora < 1 and Py, = (1w # 0,7 = 0)
fora > 1, i.e., to the cases in which either the colored or the white noise is relevant. tTdre la
reduces to the standard Model A dynamics [19]. In orderfand P, to be fixed points, it is
necessary that the corresponding non-vanishing coupling streegties;y or 4, are constant
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under renormalization which, as expected from Eq. (2.65), impl'tesZ(()COI) =2/afora <1

(P)andz = ") = 2fora > 1 (Py).

In order for the actionSy to be invariant under the momentum and frequency rescaling
discussed above, one has to rescale the figldsnd ¢, as ¢;(b='p,b=*w) — b% ¢;(p,w)
ande; (b1, b~*w) - b%¢,(j7,w) whered, andd; are the so-called scaling dimensions of

the fields$ and ¢, respectively, in thép, w)-domain. (Below we shall introduce the scaling
dimensions of the fields in the time-domain; in order to keep the notation as simpiesiblp
we do not include an additional subscript to distinguish the two cases bexplain in the text
which one we use in each case.) The latter take the Gaussian values

dpo = (D +2)/2+ 2, (2.67)

dso=(D+2)/2. (2.68)

In the white-noise casg) = 2 we recover the standard scaling dimensions of Model A critical
dynamics [19]. As far as the transformation properties of the propagataler these rescalings
are concerned we have

b= 2o D200 (b7 b 0w; L) = Co(prw;. . .) (2.69)
p~de=dsTPFE0 B (b1 p b 0w; ) = Ro(Pw;...) , (2.70)

where the factob” %0 comes from the-function which guarantees the conservation of mo-
menta and frequencies. We have not specified the scaling of the parameteand ,, to
lighten the notation. By comparing with the scaling behavior of the Gaussigonss in
Eqg. (2.66) and of the correlation function, one confirms the Gaussiaes/&yg. (2.67) and
Eq. (2.68) for the dimensionk, andd ;, respectively.

In Eg. (2.59) we added to the colored-noise vertex associated with Bg) @white-noise
contribution proportional tes, for the purpose of highlighting the emergence of the two distinct
Gaussian fixed point® and P,,. As we shall show below such a white-noise contribution is
anyhow generated under the RG flow as soon as one accounts fofetieoéfnon-Gaussian
fluctuations (i.e.g # 0) on the Gaussian fixed-poifit = (v # 0, = 0) with colored noise
alone.

2.3.3 The interaction part

The interaction part of the action reads

a9 o N ey Ry /R A
21 21 27 (2m)D (2m)D (27)P 0T —p =1~ —w W)

<o (B, w)o (¥, ) o, w")

in the frequency and momentum domain. Under the naive scaling with EgS),(267), and
(2.68) one easily obtains the scaling of the coupling constant: b*~"g. The upper critical
dimension is thu®. = 4 independently ofr and the effects of fluctuations beyond mean-field
can be accounted for by using a standard perturbative expansiomis ¢é¢ = 4 — D.

In the presence of the interactid®,;, the scaling dimension of the fields and the cou-
pling constants are altered. In addition, we shall show that the crosgaluera,. = 1, which
separates the colored-noise-dominated case from the white-noise-tierona, acquires a de-
pendence oD, thus dividing the«, D)-plane (for NV fixed) in two distinct regions, each one

s /dwdw’dw” de de/ de// g—
int  —
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with different scaling properties. Under a RG flow with scaling paramieter 1 the noise
strengthsy and~,, scale as

ol — b2—0€20+0477’v ~, (271)
L (2.72)

which generalize the corresponding Gaussian scaling behavior offibemmeters — encoded
in Eqg. (2.66) — via the introduction of suitable anomalous dimensipnandn,, of v and
7w, respectively. These anomalous dimensignsand n,, determine the corrections to the
Gaussian value, of the dynamical exponentand the crossover value. which separates the
different regions in théa, D)-plane. Indeed, let be a length scale and be a time scale.
Dimensional analysis implies~ 7 andz ~ [. From Eqg. (2.60) we infer that ~ 7¢/I?> and
v ~ T/I%. Consider the case in which the colored noise dominates, which corgspon
having2 — azg + an, > 2 — zy + 1, in terms of the dimensions of the noise strengths [see
(2.71) and (2.72)] withey = 2/a. By choosingr® = ?y we havet ~ [%/“~y'/« Therefore,
under an RG flow with — bl (b > 1) we deduce from (2.71) that~ /@1 [2/ay1/@ On
the other hand, by noting that the dynamic expondsatdefined through — b*t we can readily
identify the dynamic exponent= 2/« + 7, in terms ofy,. In the white-noise-dominated case
we choose = [%+,, and a similar argument yields the white-noise resut 2 + 7. In short,

(2.73)

2+ Nw for a > a.(D,N),
2/a+ 1y for a < a.(D,N),

and therefore one needs to calculateandn, in order to determine.

In the presence of non-Gaussian fluctuations, the scaling dimengjeasi, , — 2o — 1/2
andda = do,a_ZO —7/2inthe(p, t)-domain of the fieldg andg, respectively, differ from their
Gaussian values by the corresponding anomalous dimengandsj (the extra—z, comes from
the conversion ofly anddw from the frequency to the time domain). In order to determine
the resulting scaling in th@), w)-domain one has to take into account the integral over time that
carries a dimension (which differs from the Gaussian valug); therefore

Gi(b71 5, b w) s b TETR0 g5 w) = HP/2HITETN2 4, (5 w), (2.74)
(071 F b W) = TR0 G (B w) = BP0 g5 ) (2.75)

The FDT implies a relation betweep, 7., n andz, which allows one to expressin terms
of the latter two. Indeed, the right-hand side (rhs) and the |hs of Eq.)(8kfuld have the
same scaling dimensions; therefare- d,, — d in terms of the dimensions of the fields in the
time-domain. Using now the expressions of the field anomalous dimensiondeatabove,
transforming into the dimensions in the frequency domain, and replacing thesiaa values
in Egs. (2.67) and (2.68) one concludes that

z =20+ L;TI (2.76)

2.3.4 Perturbative expansion

As we explained above, one does not expect any modification of equattimelation func-
tions, as they are determined by a static theory with the effective HamiltGhienEq. (2.2).
Hence, we focus on the dynamical exponerthe corrections to which can be obtained on the
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basis of the standard perturbative method consisting in a combined expam$i@ coupling
constanty and in the deviatiom = 4 — D from the upper critical dimensionality of the model
[20, 19, 18, 96]. In performing such an expansion one also takemngéatye of the fact that
will eventually be set to its fixed-point valug = O(e). We remind here that the inverse tem-
perature5 has been eliminated by a suitable redefinition of the fields and the couplinganbns
g. In the following we concentrate on the one-patrticle irreducible vertestioms [19, 96] with

n externalg-lines andr externalg-lines, denotetiby

Vn,ﬁ — ngﬁ + V{Lvﬁ + V;”ﬁ + .. (277)

The subscripts indicate the order in the perturbation series. For exah’ﬂ)feincludes all
terms proportional tg?, ge ande?. The Feynman rules of this perturbative expansion are
those associated with the statistical weighf in Eq. (2.35) and they are the same as in the
white noise case [82, 19], the only difference being in the form of thes&an response and
correlation functions. In the diagrammatic representation of the perturbsgioss we shall
indicate the relevant propagators and vertices as depicted in Fig. 2.3thdbthe noise vertex
I'i, + I'%, [see Fig. 2.3(d)] is diagonal in frequency space (i.e., it amounts to a multiplicatio
by anw-dependent factor) whereas it is non-local in the time domain. In additiemaint out

the fact that in principle the correlation function can be obtained in the émgudomain as a
multiplication of two response functions by the noise vertex, which correggptm a convolution

in the time domain.

(0i(=P, —w)$; (P.w))  (¢i(—D, —w); (P, w))
(@) (b)
g Fiw + F;kw
(©) (d)

Figure 2.3: Diagrammatic elements of the perturbationyie@) response propagator, (b) correlation
propagator, (c) interaction vertex and (d) noise vertexe 3tnaight parts of each line are associated to
fields ¢, whereas wiggled lines correspondgdields.

Renormalization of the noise vertex.

Our interest here is to know whether the correlated noise modifies the chébalior of the
model. Within the Gaussian approximatiens given by Eq. (2.65), where we assumed that
a white-noise vertex is generated under renormalization, a fact that yedddistinct fixed
points P and P,: the former is characterized by the colored noise and is stabte forx, = 1,
whereas the latter is characterized by the white noise, is stabdefot., and it reduces to the
standard Model A dynamics. We shall show that, on the one hand, exgaadundP (with

"Our notation differs from the standard one, thaffs™ for the 1PI-vertex functions, in order to avoid confusion
with the noise kernel.
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vw = 0) renormalization indeed generates a supplementary white noise vgrtex 0 and,
on the other hand, such a vertex becomes relevant’atand N-dependent value.(D, N),
wherea.(D, N') shows corrections to the Gaussian cross-over occurring at 1 for D < 4.

The first correction to the noise verté&?’2 is given by the second-order diagram depicted
in Fig. 2.4 which can be conveniently written as the Fourier transform of fisession in the

Figure 2.4: Lowest-order perturbative contribution to timése vertex.

time and space domain

V;),Q((j; U) _ N+2 /dD / dt equ ot CS( )
= —(NQH/ dt cos(ot) /dDa: 0T O3 1), (2.78)
0

where theN-dependent prefactor accounts for the combinatorics of the graphdsg, [19])
andCyj is the Gaussian correlation function with, = 0. In the last line of this equation we
used the symmetrg'(Z,t) = C(Z, —t). Since we are interested in the critical dynamics, we
setr to its critical valuer. = O(g) (determined, e.g., by the value oft whichC(5 = 0,t =

0) diverges [19, 18, 96]). However, at the ordgrwe are presently interested in, one can
neglect the shift of the critical point and set= 0. The leading behavior of the noise vertex
is completely determined by the smallnd smalls asymptotics owg’g. We can sety = 0
from the outset, while the small-frequency limit— 0 has to be considered with care since
the tree-level noise vertaX)*(c) = 2Rely, (1 = 0) = 27|0|* ! sin(r/2) [see Eq. (2.59)]
diverges in this limit fol < 1. At the end we shall see that no contributiorV&)2 proportional

to |o|*~! is actually generated. In what follows we only take the limit+ 0 when it becomes
manifestly possible. In this formulation, divergences arise due to the sirfiphawvior ofC( at
small distances and timelgi| — 0 and¢ — 0. In order to regularize the theory, we introduce a
short-distance cut-off, below which the description in the continuum is no longer considered
to be realistic. For example, in lattice models, the cutédéfnaturally identified with the lattice
spacing. Analogously, a short-time cut-off is introduced in the converfdent ¢*, which is
motivated by the scaling behavior discussed above. By using, c.f., thegsftam Eq. (2.156)

of the Gaussian correlatiaf, influenced by the colored noise (see App. B), the second-order
contribution to the regularized vertex function takes the form

g*Ap(N + 2)

V;),?((‘L o l) = — 5 /ez dtcos(at)/e dz x572D9300(7$2/ta)7

(2.79)

whereAp = 27P/2/T' (D /2) is the solid angle iD dimensions.
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The Wilsonian renormalization scheme. The Wilsonian renormalization scheme (see, e.g.,
[18]) amounts to a resummation of the perturbation series which is perforocedding to the
following steps:

(I) Effective vertex functions for the ‘slow’ fluctuations are determirgdperforming an
integration (averaging) over 'fast’ fluctuations, within a spatial shell ketw andb¢ and at a
temporal scale betweér and(b¢)*. As a result of this integration the effective vertex functions
— and therefore the coupling constants which characterize them — a@d&pendence on
the scaling parametér> 1. To be more specific, consider the typical integral which arises in
loop calculations and which can be written in the generic form

7(0) = / dt / AP F(i1),
& V4

with some integrandr(#,¢). The contribution of the integration over the fast fluctuations is
then equivalent t@(¢) — Z(b¢), an expression which we shall use repeatedly below. In the limit
b — 1withb > 1 one hasZ(¢) — Z(b) = — [0Z(¢)/01nf]Inb + O(In? b).

(I The effective vertex functions calculated in step (1) depend oevecut-offbl. In order
to recover the original cut-off one rescales the coordinates and fields in the frequency and
momentum domain according to

q — b7'q,

o — b7 %0,
¢z’ s bD/2+1+z—77/2¢i (280)
ai — bD/2+1+zfzofﬁ/2$i_

The resulting expression is multiplied by ”—* which accounts for the rescaling of the inte-
gration measure in the Hamiltonian.

(1) In order to study the evolution of the coupling constants under tinenmaalization
procedure it is convenient to consider the case 1+ which corresponds to an infinitely thin
integration shell. In this case the evolution equations for the coupling cassies coupled
differential equations that depend upanand the anomalous dimensions introduced by the
rescaling in step (I). The anomalous dimensions are determined by reqthienall coupling
constants have a finite asymptotic value under the RG transformatién-fosc.

The flow equation of z and the crossovera.. Applying step (I) to the noise vertex function
v§v2 we derive Eq. (2.79) with respect ta ¢ and we multiply the result byn b. By defining
[see Eqg. (2.175)]
V20,0 0)
200,27 . _ 2 ()

w4 (o) = IV (2.81)

with
u=Apg/@2m)? | (2.82)

we find that the effective noise verte®2(0,c — 0; b¢) for the slow fluctuations with short-
time and -distance cut-offg and(b¢)*, respectively, is given by

VO2(0,0 — 0;60) = —(Tigso+T5 o) — u?E%%(0;7) Inb
+O(u?In? b, u?). (2.83)

For details on the calculation 6f-?(c; ) we refer to App. 2.4.3.
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Clearly, the form of the effective noise vertex has changed, as theStef(0; v) generated
by the non-Gaussian fluctuations has the form of a white-noise contributiwreas the coeffi-
cienty of the colored noise is not modified up to this order in perturbation theorg. r&sult, it
is convenient to account for the contribution of a white-noise vertex ttaoutset, by replac-
ing I';» by I';» + vw. This implies that the Gaussian correlation functignthat determines the
loop correction still has a scaling form but with a scaling functep that is now a function of
two variables, see Eq. (2.163). The correcdff that is generated depends on betand~,,,
we denote it by?2(0; 7, v ) and we explicitly calculate it in Eq. (2.175).

The effective noise vertex depends on the cutbéff Following step (Il) of the renormal-
ization procedure we rescale the effective noise vertex as specifiefl {{2.B0). The coupling
strengths of the colored and the white nojsand~y, become running coupling constant&®)
and~y (b) and in the limith — 1 they satisfy the set of coupled differential equations

oy a, 3
G [2—0420—5(77—77)—77 v+ O(e) (2.84)
and
O _ oo = T 20260200, 0y 1 0(éH) (2.85)
O1nb 0 9 Yw B 3 Yw s .

valid at the critical point.u* = O(e) is the fixed point value of the coupling constant, i.e.,
the value at which the effective coupling constaft) — obtained by applying the procedure
outlined here to thed-point function — flows forb — oo andD < 4. ForD > 4, u* = 0
and the scenario within the Gaussian approximation presented in Sec. 2.8t2aitened by
the interaction. Accordingly we focus below on the cd¥e< 4. Two additional differential
equations can be written by considering how the coupling constant!3 and the coefficient
of the termec ¢% in V11(¢g,...) are modified by the non-Gaussian fluctuations. In particular,
the requirement of an effectiveindependent coefficient @f® fixesn to its well-known static
value [19] (see Sec. 2.3.4 for further details).

In order to determine the critical exponents we demand that the amplitude afiieevertex
in the effective Hamiltonian be constant as explained in step (Ill) of therrealization pro-
cedure. Neglecting for a while the contribution of the non-Gaussian fltictisato Egs. (2.84)
and (2.85) (which amounts to setting and the anomalous dimensions to zero), one can eas-
ily solve them and recover the Gaussian picture which we anticipated in Se2. 2ndeed,
v(b) ~ b?>~?%0 whereasy, (b) ~ b>* asb — oo, which impliesy(b) /vy (b) ~ b=,
Independently of the value ofy > 0, this ratio tends to zero forr > 1. The associated
fixed point is characterized by a finitg, (b — oo) with a vanishingy(b — o0), i.e., the fixed
point P, introduced in Sec. 2.3.2. In order fot,(b) to stay finite, it is necessary to have
zo = zéw) = 2in Eq. (2.85), as expected from our previous discussion. On the cgnftva
a < 1,v(b)/vw(b) — oo for b — oo and the associated fixed point has a finite — co) and
a vanishingy,, (b — o), corresponding to the fixed poiftof Sec. 2.3.2. The former condition
requireszy = zécon = 2/ain EQ. (2.84), consistently with the discussion therein.

Including now the effects of non-Gaussian fluctuations, the coloréskfi@ed pointP with
20 = z(()c‘)l) = 2/a andy(b — o0) # 0 is characterized by a value gfsuch that the Ihs of
Eq. (2.84) vanishes. This yields

7= ﬁ(col) - <1 o z) n+ 0(63) _ <1 _ 2) 2(]]\\]712)252 + 0(63) . (2.86)
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We replaced; by its static value given in [19, 18] since, as we shall show in Sec. 2.3.4, it is
a-independent. The valug< of z at this fixed point is determined via Eq. (2.76)

2

Z:Z(COI):H+O(€3):|:1 N +2
« [0

Weﬂ +O(e%). (2.87)

The fixed pointP is stable in thg«, D)-plane (region C in Fig. 2.5) as long as the value of
~w(b) determined by Eq. (2.85) at the fixed-poiftwith 77 = 7<) andzy = 2" = 2/a
stays finite forb — oco. A crossover towards the fixed-poift, in the (a, D)-plane (region
W in Fig. 2.5) controlled by the white noise occurs as soon@d — o) — oo. In this
limit, £%2(0;, vy — 00) =~ VWEQV’Q independently ofy [as long asy(b) remains finite, see
Eq. (2.179) for details] where the constait’ is given in Eg. (2.180) and is such that

N +2 4

x2 00,2 2 3
= ———3In—- . 2.
uEy (N+8)23 n e + O(¢e”) (2.88)

Thus, the equation which determines the evolution,pft the fixed pointP becomes

—=(col) (col)
2o - T T2 0wy, (289)

Ovw
Olnb

and the crossover occurs as soon as the the quantity in brackets €sargerhe expression of
the crossover line is readily determined by taking into account the valug&™Bf 7(co), z(coD,
and&y? reported in Egs. (2.86), (2.87), and (2.88):
3.4 N+2 5
ce=1—-In- ——— (@] : 2.90
« 2n3(N—|—8)26+ (€%) (2.90)
Fora > a. (region W in Fig. 2.5);w (b — o0) — oo and the point” is no longer a fixed point
of the rescaled effective action, as the white-noise contribution becomésminant. In order
for it to become constant and therefore to determine the fixed p&ing in Eqg. (2.85) should
now take the valug(™) such thatd, /dInb = 0, with zo = 2\ = 2. Assuming that the
coefficienty(b) of the colored noise vanishes asymptotically for> oo, the Ihs of Eq. (2.85)
becomes— (7™ + 1)/2 + (z/2)u*?E%?, where we used the fact th&f2(0;y = 0,7yy) =
WWE‘?V’Q. The condition that the rhs of the same equation vanishes implies
N +2 4 1
= =(w) 2*2 0,2 N S In= — Z|¢2 3 2.91
n=" n+2u*Ey* + O(e”) (N+8)2[6n3 2:|6 + O(€”) (2.91)
and from Eq. (2.76),

z:z(w):2+N+2{3 ng

1
L — 2] e+ 0(e%) (2.92)

in agreement with [75, 19]. In order to verify the consistency of theragsion~(b) — 0 for

b — oo under which Eg. (2.91) has been derived, one can specialize E4) (@.&he white-
noise fixed point?,,, by using;("), z((]w) = 2, andz(") [see Eq. (2.92)] as the values®fz,
andz. Accordingly, the term in parenthesis in the rhs can be writter 2@ — a.) + O(€®)

and thereforey(b) ~ b~2(@~2) indeed vanishes far > «, asb — oo. This also proves that
the white-noise fixed poinP, is stable against the perturbation of the colored noise as long as
a > a, a statement which complements the one presented above about the stalility of
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Summarizing, Eq. (2.90) determines the line in the D)-plane which separates region
W from region C: in the former, the white noise dominates and z(") (in agreement with
[75, 19]), whereas in the latter the colored noise dominates and(°) is given by Eq. (2.87).
Figure 2.5 illustrates this scenario ff = 1, 4, co.

Region W

|

|
|
q-------------
|
|
I
0.95 I
|
S 7
|
0.9 i Region C
|
:
|
[ | | |
O'8“1 2 3 4

D

Figure 2.5: Boundary between the regions W and C of thd)X)-plane characterized, respectively, by
white and colored noise. The boundary cutve- o.(D, N) as a function of the spatial dimensionality
D is reported here foiV = 1 (solid line, Ising universality class), (dashed), ando (dotted) where
the O((4 — D)?3)-correction in the corresponding perturbative expres®80) for D < 4 has been
neglected. The vertical dashed line indicates the lowgicatidimensionality of the model fav > 1.
The coefficient of the terr®((4 — D)?) in Eq. (2.90) takes its maximum value fr = 4 (dashed curve)
and then it decreases monotonically as a functiolN pfanishing forN — co. For D > 4, o, takes the
D-independent Gaussian valug, = 1 (dotted line). Clearly, the dependence of the boundaryecarv
the dimensionalityD is quantitatively rather weak.

Renormalization of the self-energy and FDT.

Figure 2.6: Second-order contribution to the self-energy.
The fluctuation-dissipation theorem (FDT) expressed in Eq. (2.40) isxgecpence of a

symmetry of the action in equilibrium [82, 92] and it has to be preservedruadermalization.
Therefore, the noise vertex and the memory kernel have to be related B{ptheven beyond
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the Gaussian approximation, that we analyzed in Sec. 2.3.2. Here we exglimtlythat this
relation is still valid when non-Gaussian corrections ugte?) (or, equivalentlyO(g?)) are

accounted for. The first correction to the memory kernel comes fromebensl-order self-
energy contribution

2(N+2) [
V(g o) = - LN +2) 6+ ) /U dt / AP 77170 CB (&, 1) Ro(7, ) (2.93)

represented in Fig. 2.6. Note th@g is causal and restricts the time integral to run over positive
values only. The expansion of this expression as a power serearidg allows one to identify
the terms which contribute to the renormalization of the different parametehe gbaussian
vertexVé’1 (7,0) = iolis+ ¢ +r. The terms which are independent of betandg contribute

to the renormalization of the parametgvhich is also modified by a®(g) term not discussed
here), the terms proportional t¢? contribute to the renormalization of the fields and those
proportional toio'¢® to the renormalization of the memory kerrigl First of all we observe
that the FDT given in Eq. (2.40) allows us to exprégsn Eq. (2.93) as-9,Cy. An integration

by parts yields

2(N +2 o 00 A
VN (G,0) = _g(N+2) / dPy % {Cg’(f, 0) —io / dt et C3(z, t)}.

18 o
(2.94)
Hence,
mV,'!(G,0) = 092(]\1[;2) Re / APz 77 /0 Tt it C3(%,1)
= —2%(d.0), (2.95)

where the last equality follows from a comparison with Eq. (2.78) and shiosighe FDT in
the frequency domain [see Eq. (2.62)] is satisfied by the correatdoné). Note that the vertex
V1! receives also a correctic)r’f’1 of O(g) given by a tadpole diagram which, however, is a real
constant and does not contribute to the imaginary part. We conclude thatamgl including
the second order in the coupling constaiitn V1 (0, o) = —oV%2(0, o). (This proof can be
readily extended to the corresponding regularized vertex functioasacterized by short- time
and distance cut-offs.)

Renormalization of the self-energy: the anomalous exponent

In the same spirit as before we can deduce the first correction to the stptinentr. It is
instructive to see why the dependence upotioes not affect the final result, even though the
regularized expression of Eq. (2.93) does®jpand Ry. In order to single out the contribution

of VQM to the coefficient of;?, one expands Eq. (2.93) — suitably regularized as discussed
above — up to second order difinding

V(G0 =0i0) =3q?g?NE2AD [ dt [ da xPH C2(Z, ) Ro(Z,t) + ..., (2.96)

where the dots indicate all the terms which do not contribute to the field renoatiatizi.e.,
which are not proportional t6¢>. In Eq. (2.96) we used the fact that, for a generic funcfion
[ APz z;x; f(|7]) = (6;5/D) [ dPx || f(|]), which is valid also for the regularized integral.
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As in the case of Eq. (2.94) one can take advantage of the FDT, Eq),(2048xpress the
integrand in Eq. (2.96) as a total derivative, which can be integratedltb yie

_ 2 2 Ap(N +2)
36D

We note here that even though the (full) dynamic correlation funafiofand therefore its
Gaussian approximatiafiy) depends on the value of the static correlation functiof(Z, ¢t =

0) does not. This is explicitly shown far in Eq. (2.155). While the limi¢ — 0 of the rhs

of Eq. (2.97) cannot be explicitly taken due to the short-distance singut#ritye integrand,
such a limit can be taken for the correlation function, i&(%,t = ¢*) ~ Cy(Z,t = 0) and
therefore the expression mﬁ’l((j, 0;¢ — 0) becomes — as expected — independent: @it

the leading relevant order i Applying the same renormalization procedure as in Sec. 2.3.4,
Eqg. (2.97) can be used to calculate the effective ve]ﬂ;ek(qi 0; b¢) after having integrated out
the fast fluctuations. Similarly to Eq. (2.81) one defines

V(. 0: ) /Z dz 2P C3(F, 6%) + ... (2.97)

R CAT))

2 2011 _
qguET + ... EINY] ) (2.98)
Forb — 1, the resulting effective vertex is
Vi (7,0;00) = ¢ + u?EM Inb + OW? In? b, u®) + . .. (2.99)

In order to recover the original cut-offwe rescale the fields and coupling constants according
to (2.80) and we také — 1. The part oﬂizl’l((j, 0; /) that is proportional tar’¢? satisfies the
evolution equation

vyt
Olnb

By demanding that the amplitude Ug’l be constant and by using the numerical valué€ bf
calculated in Eq. (2.182) we find

g [n - u*Qelvl} + O b, u?) + ... . (2.100)

2(N +8)2°
i.e., n has the same-independent value as in the static theory confirming our expectations
alluded to at the beginning of Sec. 2.3.1.

*251,1 _

n=u + O(e), (2.101)

2.3.5 Non-equilibrium dynamics
Preliminary remarks

In this Section we investigate the non-equilibrium dynamics assuming that thé is\pcegpared

in some initial condition at timeé = 0 and that it is let relax subsequently at its critical point.
This problem has been studied in detail in the white-noise case [82, 8B]adlysis reveals
the emergence of an interesting scaling behavior of two-time quantities, usegdlyed to
asaging (see, in this context, [86, 91, 15]). More precisely, the relaxation iseduda the
field-theoretical actior§ in Egs. (2.36) and (2.37) witli® = 0, supplemented by a suitable
distribution’P; for the initial condition at timg = T = 0. In particular, a high-temperature
disordered state is modeled by a Gaussian distribution with zero mean:

P = — / aPy %(ﬁ(f,t ~0) (2.102)
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The parameter, sets the inverse width of the initial distribution. Within the Gaussian approxi-
mation, the field) has a scaling dimensiafy  given by Eq. (2.65) in momentum and frequency
space, i.e., a dimensiafy o — zo — D in the space and time domain. Using this dimension for
the initial field ¢(Z,¢ = 0) we find thatry — b?7y under rescaling. Consequently, the width
of the initial distribution shrinks to zero ds — oo, leading to a zero effective value of the
initial order parametep(Z, ¢ = 0) = 0 and, therefore, to a correlation function with Dirichlet
boundary conditions &t = 0. In App. 2.4.4 [see EQs. (2.187) and (2.164)] we show that the
Laplace transforms of the Gaussian propagators are:

. B 1
F)\ + T
5\ — 2.104
Colpi A, %) A+ &) AT +p? +7) (kT +p* +7) ( )

where the Laplace transformed nois&js= y\“~! 4+, with A € R, [In order to transform
Eq. (2.34) fora > 1 one should introduce a short-time cut-off. However, as we pointed out
after Eq. (2.59), this modification is not necessary as long as one is tetliasthe leading
long-time, near critical dynamic behavior of the system. Accordingly, wé# gka this form
for Iy, irrespective of the value @f.] As in the equilibrium case, the propagators have a simple
analytic form in the time domain only fer = 1 or~,, = 0. Itis easy to show that the response
propagator is the same in and out of equilibrium and, therefore, that it isttamelationally
invariant.

The correlation functior®y can always be written as the sum of the Gaussian equilibrium
correlationC'Oe) and the remaining non-equilibrium contribution, which we denoteCéV)
and which will play an important role in fixing the genuinely non-equilibriumgandies of the
relaxation, e.g., the non-equilibrium exponénand the effective temperature. The Laplace
transformC(()e) (p, A) of the equilibrium correlation functioﬁ?ée) (p,t) can be obtained from
Eqg. (2.172):

e,=y 1 Ty
Cy ' (py ) = PERS Y e (2.105)
The full non-equilibrium correlator (2.104) can be expressed as
~ C(e)—")\ —l—C(e) —*7% N N
Col ) = PNECTED o OGP, (2108

A K

which displays the fact that is the sum of an equilibrium time-translationally invariant term
and a non-stationary term. Indeed, the Laplace transfijiifj(\, ) with respect to both and

t' of any (translationally invariant) functioR (|t —t'|) is given byL[F|(\, k) = (Fx+F.)/(A+

k), which is exactly the form of the first term in Eq. (2.106) [48]. Accordinae can identify
the non-equilibrium par€"® of Cy asC" (5, A, k) = —(p? + r)C\? (5, \)C (5, 1) which
translates, by virtue of Eq. (2.172), into the non-stationary expressign{ 0)

CE) (F51,) = = Fa(— (2 + 1)t 1) Ba(— (6 + 1) /7). (2.:107)

p

where we wrote the equilibrium Gaussian correlation function in terms of the dviitdfler
function, anticipated in Eq. (2.64) and discussed in App. 2.4.2.
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General non-equilibrium renormalization group analysis

The addition of the initial condition to the action modifies the scaling of the fieldsedidhnd-
aryt = 0 compared to the one in the ‘time bulk™> 0 [82]. In addition, to the bulk renormal-
ization a new initial time renormalization is required, which gives rise to contribsitiocated’
at the time surface (that is the hyperplane determined by the conditiod). These can be
absorbed by introducing a new anomalous dimension of the initial figlf) = #(p,0) (see
[97] for an application to surface critical phenomena). The geneadihgcof the initial fields
in the time and momentum domain reads [cf. Eqgs. (2.74) and (2.75)]

p(b7Ipt=0) — P22 ¢(5,0),

(b 1pt =0) — bP/2HI=20T/2-Mn/2 §(5,0), (2.108)

where7);, is a new exponent, with a Gaussian vaiiig, = 0. Note that the anomalous dimen-
sion of the initial response field(7, 0) is allowed to differ byg, , from its bulk value. In [82, 86]
one can find a careful analysis for the white-noise case where it isiegglevhy only the initial
response field has to be renormalized. Here, we make the same assumgtive emeck its
validity a posteriori 7j;,, is related to the so-called initial-slip exponérfintroduced at the end
of Sec. 3.2, see (2.41) and (2.42)] by [82]

0= 7, /(22). (2.109)

The analysis in [82, 86] has to be slightly modified to deal with colored noisg. s@rting
point is the general leading scaling behavior of the critical correlationtioms ™" of n
bulk fields#, 7 bulk response fieldg andny initial response fields,, evaluated at the set of
points{p, t} in momentum and time:

gn,ﬁ,ﬁo ({ﬁ, t}) ~ b76(n,ﬁ,ﬁo)gn,ﬁ,ﬁo ({bilﬁ, bzt}), (2110)

Whered(n,ﬁ,ﬁo) =-D+ n(D/2 +1-— 77/2) +ﬁ(D/2 +1—2z— ﬁ/2) +ﬁ0(D/2 +1-—

20 —7/2 — Tin/2). [In writing Eq. (2.110) and the analogous relations presented below, we
always understand that the correlation functions on the lhs and rhsharacterized by the
different length cut-off$¢ and/, respectively.] This scaling behavior is a consequence of the
scaling dimensions of the fields ¢ and¢, as functions of time and momentum [compare to
Egs. (2.74), (2.75) and (2.108)] and the dimension oftfienction ensuring the total momen-
tum conservation. Note that all correlation functions with an initial figdd= ¢(p,0) vanish

[see the discussion at the end of Sec. 2.3.5]. Specifically, the two poretation and response
functions G2Y andG!:?, respectively) scale as

C(p:t,t)) ~ b2 C(/b; b7t b*t), (2.111)
R(pit,t) =~ bo 250/ 02 R b b7t bt). (2.112)

By choosingh = (t — t')~1/# these scaling forms become

C(ﬁt,t/) (t—t/)(2_77)/2 ‘FN‘C((t_t/)l/z—»"t//t)7

R(ﬁ, t, t/) ~ (t— t’)(2fzfn)/z FR((t _ t/)l/zﬁ t’/t). (2.113)

In general the scaling functio&- andFj; are not expected to have a finite, non-vanishing value
fort’ — 0. In order to deduce their behavior for smdlive employ a short-distance expansion
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[19] of the fields¢(p, ') and ¢(p,t') aroundt’ = 0. However, these are not independent.
Indeed, the full correlation and linear response functions verify thatans [82]

t s
C(ﬁ;t,t'):/ ds/ ds" Ro(p:t, s)VVH(p, s, s ) Co(p: 1, s') (2.114)
0 0
t s’
—i—/ ds’/ ds Co(p: t, s)VV (P, s, s)Ro(p:t', 8) (2.115)
0 0
t t ~
+/ ds/ ds’ Ro(p:t,s)V°2(p, s, 8 )Ro(pit, s') (2.116)
0 0
and
t s B
R(pit, ') = / ds / ds' Ro(p;t, 5)V11 (B, 5,8 Ro (7 8', 1), (2.117)
t’ t’

whereV™™ are the (not necessarily one particle irreducible in contrast to the onedtoced
in Sec. 2.3.4) vertex functions with amputated external field and amputated external re-
sponse field legs, respectively. In writing these expressions we matezbtor the causality of
VEL(F,s,s') o« ©(s — s'). After taking the derivative of Eq. (2.114) with respectttamnly
the first term in the rhs survives in the linilt — 0 [note thatRy(p; s, s) = 0 [92]]. By com-
paring the resulting expression with the rhs of Eq. (2.117) one noticethnaguations differ
only by the last factor in their integrand8y Cy(p:t', s’) and Ry(p; s’,t’), respectively. We
deduce that if a relation between the dimensions of the time-derivative ofitted field and
the initial response field exists within the Gaussian approximation, it shoulceksenqwed when
non-Gaussian fluctuations are accounted for. Let us then examineofegators. We focus on
region C where they satisfy the equation,

t
Oy Co(pit,t' — 0) ~ t'al/ dsT(t — s)Ro(p;s,t' — 0) (2.118)
0
[proven in App. 2.4.4, see Eqg. (2.190)]. In the eafljlimit we formally expand the fields
according to

PPt = 0) ~ o(t)do(p) and (5t — 0) ~ B(t')dy(P). (2.119)

¢ is proportional todSO(p) and¢ is proportional tog,(p) since the former vanishes while the
latter is allowed to be finite fot’ — 0. We see from Eq. (2.118) that, under the rescaling
t — b*t, s — b*s andp — p/b (leavingt’ unchanged), the scaling dimensiolg andd% of

bo anda,, respectively, verify
dy, =21 —a)+ dg. - (2.120)

For o = 1 this reduces to the relation found in [82]. The expansiow @fi Eq. (2.119) can
be used to calculate the correlation functigh?(p¢,#' — 0) ~ p(¢)G1%1(p:t) and by
matching the scaling dimensions of the Ihs and rhs with the help of Eq. (2.1106prm¢tude
thatp(t') ~ #~% wheref is given by Eq. (2.109). Besides, the rescaling’akeepingt and

s unchanged) implies (') ~ ¢'“7 if the scaling dimensions of the Ihs and rhs in Eq. (2.118)
are to match. Hence, the smdlllimit of the response function is

R(p:t, 8 — 0) ~ B(E )N S(—7, ) o (7)) ~ ' GO (5, 1), (2.121)

36



CHAPTER 2. CLASSICAL PHASE TRANSITIONS AND COLORED NOISE

where we introduced a short-hand notation for the argumergs bt in which we only write
the non-vanishing time. The scaling properties ¢f*:*:1 (p, t) are given by Eq. (2.110):

g1,071(ﬁ’ t) o~ +—(/247/ 247, /2420-2) /2 gLO,l(tl/zﬁ7 1)
t(27777z)/z+0 gl,(),l(tl/zﬁ»7 1) (2_122)
where we used the relation between anomalous and dynamic exponen(g, 7/, and the

relation betweeid and7;,,, Eq. (2.109). Consequently, taking Egs. (2.113), (2.120) and (2.122
into account, we conclude that

o
R(pit,t' — 0) ~ ¢/ <f’> Fr(t'/%p,0) . (2.123)

A similar analysis of the scaling behavior of the correlation, taking into adcaqn(2.120),
yields

00—«
t
O(Fit, 1/ — 0) = O~/ <t> Fo(t/75,0) (2.124)

These results are used to capture the singular behavior of the scalstgpfsnin Eq. (2.113)
by writing:

0
R(7;t,8') = (t — ')~/ <tt,> Fr((t—t)"*p.1' /1), (2.125)
0—a
C(it, 1) = (¢ — )~/ <f> Fe((t = )5t /1), (2:126)
with
>
Lt for a > ac(D,N), (2.127)

which encompass the white noise result= 1 [82] for & > a.. The scaling functiong
and Fr are regular fot” — 0 and depend on.. Moreover, in the RG sense they are universal
functions up to an overall amplitude and the normalization of their first argumen

The emergence af = 1 for colored noise can be checked within the Gaussian approxima-
tion by looking at the initial-slip behavior of the propagatéts and Cy with o« < 1. First of
all, note that takes the valué, = 0 within the Gaussian theory, as one can infer by comparing
the scaling form (2.125) with the expression for the non-equilibrium nespg, at criticality,
which coincides with the equilibrium one in Eq. (2.63) and is invariant under tiiareslations.
Using this valug)y of # one hasﬁli_}n;o KCo(Py N\ k) ~ k™ © andﬁli_}rrolo kRo(P:\, k) ~ ¥ from
Egs. (2.103) and (2.104), respectively.

The initial-slip exponent . Out of equilibrium the first correction to the self energy leads to
a modification of the scaling of the initial response field. The responsé¢idmnap to first order
in the perturbative expansion reads, for zero external momentum,

t
R(0;t,t';0) = Ro(0;t,t") + /ds Ry(0;t,5)By-1(s)Ro(0; 5, 1"). (2.128)

t
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By,-1(s) stands for the ‘tadpole’ diagram represented in Fig. 2.7, which canlb@ated by us-
ing standard Feynman rules in the time domain [73, 74, 79], whéreéas the large-momentum
cut-off introduced in order to regularize the otherwise divergent iatetgfiningB,-1 (s):

D
By(s) = _9(N6+2>/1 » (;)pD ColF: 5, 5). (2.129)
pI<£~

The renormalization of the initial response field is due to the non-equilibriunfréﬁe) of Cp.

Figure 2.7: First order contribution to the non-equililbniself-energy.

Indeed, the equilibrium pan?ée) is characterized by time-translation invariance and therefore
it contributes with a time-independent functiongfo Cy(p; s, s) in Eq. (2.129). In turn, such
a function results in a time-independent contributi(@iri)1 to B,-1, which can be thought of
as due to a shift — r — Bﬁl of the mass- in the expression of the response functidtis
appearing in the rhs of Eq. (2.128), i.e., as a mass renormalization. [\aktret R (p; ¢, t')
actually depends on the two times Via- #'.] One can check that this term yields the correct
first order correction to the critical exponentvhich is the same as in the static theory.

In view of the renormalization procedure outlined in Sec. 2.3.4 we need tolatdc

u(N +2)
e

in the limit ¢ — 0, for » = 0 and D = 4. By using the asymptotic expansion of the generalized
Mittag-Leffler functions (2.170) and their definition, (2.169), one finds

0101 By (t) = 0O (] = 07Vt ) (2.130)

—x) 1 Tr(l - f —
Ea(x> = Eq 1(1‘) = ( x) / E( a) or v e (2.131)
’ E,(0)=1 for |z| <1
and therefore, using Eq. (2.107),
2 /12c f 21 1
A1, 0) = 022 (10 () = § QIO LY L ) )
O(=2) for (72t/y < 1.

Accordingly, £~19,-1 B,~1(t) — 0 in the limit ¢ — 0 for every fixedt > 0. The physical
interpretation of this fact is that only the initial field is renormalized by Eq. @)1mhdeed the
rhs of Eq. (2.132) for finit¢ provides an approximation of the delta distribution restricted to
z € RT, usually denoted by, (2):

(V)T EL(=2/(1£%) — d(;‘)5+(z) for ¢ —0, (2.133)
where the normalization constadit) is given by
d(e) =2 / dz B2(—2), (2.134)
0
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and the additional factot /2 on the rhs of Eq. (2.133) has been introduced for later con-
venience in order to havé(1) = 1. Taking advantage of the closed-form expressions of
the Mittag-Leffler function fora = 1, 1/2, and0, i.e., E1(—2) = exp(—=z), Ei)2(—2) =
(2/y/7) [2dte*” ", andEy(—2) = 1/(1 + z) [98], respectively, it is possible to calculate the
corresponding values of the-dependent constad{«). One findsd(1) = 1, d(0) = 2 and,
after some algebral(1/2) = \/2/7In(3 + 2/2) = 1.406 . ... Hence,

O0By-1(t) uy(N + 2)d(«a)
dine-1 12

04 (t*) for ¢—0. (2.135)

Using this expression and the one of the zero-momentum response fuRgtiar, s) = (& —
5)*1 /[yI'g(«)] at criticality which follows from Eq. (2.168), the derivative of the tadpole
contribution to the rhs of Eq. (2.128) can be written as

8 t — — U(N =+ 2) d(Oé) —
_ . B _ K / = / 5 ! 21
Oln/-1 Lds R(](Ovtvs) l 1(8)R0(0a87t) 6t ,0 12 OJFE(OJ)RO((Lt’t) ( 36)
wheredy o = 1 for t' = 0 and0 otherwise, illustrating the fact that only the initial field is
renormalized. In deriving this last equation we used the fact&h&t®) = . (¢)/(at*1).
Altogether, the effective response function with cut{gffeads

u(N + 2)d(«x) o b] .

9aTa) (2.137)

R(G, t,t'; bl) = Ro(@; t, t,) |:1 + 5,5/70

In order to recover the original cut-offive make use of the scaling relation (2.110) witk- 0.
By taking into account thaj = 77 = O(€?) we have

R(0;¢,0;b0) ~ b2+ + /2 R(0; bt, 0; £) (2.138)
- 7 N +2)d(«)
— £.0) bTn/2 |1 “(—1 b 2139
R0(07 ) 0) |: + 12(JLFE (OL) n ( )
N Tin u(N + 2)d(a)
= Ry(0:t,0) [1 + 5 b+ ~Zalp(a) Inb| . (2.140)

By requiring that the amplitude of the response function be constant atéte gointu* we

obtain (V 1 2)d(0)
Ty = — VT )l (a)e + O(e?) (2.141)

whence we find the:-dependent initial slip exponent from Eq. (2.109)

g 9 (N +2)d(«)

T = N T8 s () e+ O(e2). (2.142)

In the white noise case = 1 we obtaind = (N + 2)¢/[4(N + 8)] + O(€?) in agreement with
the first order result reported in [82]. The dependencemi« is shown in Fig. 2.80 increases
monotonically fromd = 0 ata = 0to 6§ = 6(1) ata = 1 which is the cross-over value up to
O(e).
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Figure 2.8: Ratid/0,—; between the initial-slip expone#tin Eq. (2.142) and its white-noise value
0.—1, as a function ofy, within the relevant rangé < « < 1 at the first order in the-expansion. The
dashed horizontal line indicates the vatife/2) / /7 = (v/2/7) In(3+2+/2) = 0.793 ... corresponding
to a« = 1/2 (vertical dashed line). The dash-dotted line points outlithear behavio®/0,—1 ~ 2«
expected forx — 0.

Fluctuation-dissipation ratio and effective temperature. A system which equilibrates after
a certain finite relaxation time satisfies the FDT. More generally, one defiediittuation-
dissipation ratio(FDR) by )

L BRI )

X(pit,t') = Ot (2.143)
where~! is the temperature of the thermal bath (set ta the previous analysis). In glassy
and weakly driven macroscopic systems with slow dynamics — small entroplgtion limit
— this ratio approaches a constant on asymptotic two-time regimes in which, vegréds
independent of the observable used to define the correlation andadisddmear response and
admits the interpretation of an effective temperature [99, 100]. For systémsritical points,
the asymptotic value

X = lim lim X(0,¢,t), (2.144)

t'—o0 t—00

has been suggested to behave as a universal property [101] arhveio as aeffective tem-

perature
B> = BX>. (2.145)

(Note, however, that beyond the Gaussian approximation such a tempedapends upon
the observable used to define it [102].) In equilibrium one &S = 1 (which is just a
reformulation of the FDT) and> = . Instead, X = 1 is a signal of an asymptotic non-
equilibrium dynamics and therefore we shall focus on this quantity for tmamcs we are
presently interested in.

Within the Gaussian approximation discussed in Sec. 2.3.2 the fluctuationadiissipatio
X can be easily calculated from the expressions in Egs. (2.63) and (8¢&xlso Egs. (2.168)
and (2.172)] for the response and correlation function, respectivelgrms of Mittag-Leffler
functions:
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Figure 2.9: Fluctuation-dissipation ratio for the globeder parameter (correspondingge= 0) at crit-
icality » = 0 within the Gaussian approximation, as a function of theorati< ¢'/¢ < 1 for various
values ofa. The straight horizontal and diagonal dashed lines coore$poa = 1 anda = 0, respec-
tively. The solid curves, instead, correspondite- 0.25, 0.5, 0.75, and 0.9 upon moving away from the
diagonal line.

(2.146)

o t 'Y Ea(—At? /) Eg (- At /7)
et =1+ (o) RS

t/
where we assumed> ' andA = p? 4. ForA # 0 (e.g., far from the critical point = 0 or at
criticality with 7 # 0) and long and well-separated times’, t —t' > (y/A)'/*, one can easily
see from Eq. (2.170) that —! — 1, confirming the expectation that the system equilibrates at
long times, independently of the value @f> 0. On the other hand, for the fluctuation of the
homogeneous mode = 0 at criticality one hasd = 0 and the FDR takes the simple form
(originally derived in Ref. [48] for an anomalously diffusing particle)

1 t l—a
- /
Kot (1) = 1+ (t’ - 1) 5 (2.147)

which is a universal scaling function of the dimensionless scaling varidhlereported in
Fig. 2.9 for various values ak. In contrast to the white noise case= 1, in the presence
of colored noisé) < o < 1, X . (,#) does actually depend afy't and it interpolates
continuously between the quasi-equilibrium regithe~ ¢, within which Xz .,iy ~ 1, and
the non-equilibrium regime of well separated timés< ¢, for which X;_¢ iy ~ 0 as it is
generically observed in the case of coarsening dynamics [93, 94, 103]

Beyond the Gaussian approximation, we can deduce an expressiontebttiene depen-
dent FDR and its limiting values from the scaling forms in Egs. (2.125) and§2. E&st of all
we note that for > ¢’ andp = 0 one has), C ~ t2=1/=+0-a(4 — 9)¢'* "~ F(0,0) and
R ~ t?=1=2)/2(t /t')? Fr(0,0). We thus obtain

F ~ " a—1
X>® = R(O7O)q lim lim (,> . (2.148)
(& — 0)Fc(0,0) t'—oot—oo \ t
In the caseir = 1 of dominant white noise this expression renders the well-known result
X = Fg(0,0)/[(1 — ) Fc(0,0)]|azr = X2°[101, 86], i.e.,X2° = 1/2 within the Gaussian
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approximation [104, 105, 106]. The contribution of non-Gaussian faiicins forD < 4 and

up to the second order in tlheexpansion have been calculated in [91], in rather good agreement
with Monte Carlo simulation (see Ref. [86] for a summary). Instead, if theredlaoise dom-
inates& = o < 1 and therefore the long-time limiX° of the FDR in Eq. (2.148) vanishes,
formally corresponding to an infinite effective temperature as obsen@mhirsening processes.
Note that this result holds at all orders in perturbation theory. Thexefor

(2.149)
0 for a < a.(D,N),

oo {XVOVO for o> ae(D, N) ,
where both values do not depend on the actual valuearid thereforeX > exhibits a discon-
tinuity as a function otx upon crossing the line = «a.(D, N). Within the Gaussian approx-
imation one can easily check the general result (2.149)Xfot, on the basis of Egs. (2.103)
and (2.104). Indeed the behavior of the correlation and responstédngs can be determined
by taking limy_.o ACo(0; A, &) andlimy_,o ARo(0; \, &), respectively, for the propagators at
zero momentum and at criticality. It is then straightforward to obf&§f = 1/2 within region
W and X§° = limy_,oI'x/T"y = 0 within region C, which confirms our general results. Ap-
parently, this result foX§© contradicts the corresponding ong® = 1 for a freely diffusing
particle in a super-Ohmic bath (correspondingto 1) found in [48], which our model reduces
to within the Gaussian approximation. However, within the field-theoreticabagp discussed
here, it turns out that a super-Ohmic bath, responsible for a hogih o« > 1 in Eq. (2.34),
is eventually controlled by the white-noise vertex and it is therefore unstebiterespect to
the effects of the interaction, which effectively generates such a veviax though it was not
present in the original coupling to the bath. Therefore, the white-nosstE;° = 1/2 does
not only apply to the cross-over line.(D, N) but it is valid within the whole region W. On
the same footing, the results discussed here suggest that, at least indpigti@ dimensions,
adding interactions to a system which displays superdiffusion (comelépptoz < 2) results
quite generically in a sub-diffusive behavior ¢ 2) as expected in the case of a diffusing
particle (Gaussian approximation) with interactions.

2.4 Appendix A

2.4.1 Fourier and Laplace conventions

Within the present study we define the Fourier transform and its inverse via

Flw) = / "t et F(t), (2.150)
and ~ q
F(t) = / ieiwt Fw) . (2.151)

Instead, for every\ > 0 the Laplace transform is defined as
F\ = / dt e F(t) . (2.152)
0

In the main text we shall drop the hats, whenever this does not generdtssion.
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2.4.2 The equilibrium propagators
Scaling in real time

For o = 1 (white noise) the equilibrium propagators have a simple analytic form in the time
domain [75, 82, 92]. They can be calculated by applying an inverseidfawansform to
Egs. (2.60) and (2.61):

Ro(p,t) = @(t)e*(pzw)t/vw

1

Co(pt) = ———e PN/, 2.153
0(p ) p2—|—T6 ( )

For generah dimensional analysis suggests that the criticat=(0) Gaussian correlation
Cy with 7 = 0 should scale as

Co(p,t) = p2 foo (01t /7). (2.154)
Using Egs. (2.59) and (2.61) the equal-time correlator is given by

dw

Copit =0) = [ 57 Colpie)

[ dw 2y sin(ma/2) |w|* !

N / 21 V2|w|2% + 2v(p? + 1) |w|® cos(ma/2) + (p? + r)?
B 1

P24

(2.155)

Hence, we infer thafc,(0) = 1. Naturally, we havefc,(co) = 0 since correlations have to
vanish in the long-time limit. Applying a Fourier transform to Eq. (2.154) itis @ashow that

at criticality (- = 0)
Co(Z,1) = EE gco (v /[t]*), (2.156)

where the functiomc, reaches the asymptotic valge, (co) = I'p(D/2 — 1)/(47P/?). In or-
der to deduce the leading behavior for, (v) whenu — 0 we start from the explicit expression
of the noise kerndll';,, given in Eq. (2.59). After some algebra we obtain

dPp dw 2usin(mar/2)|w|@ Lew iz

2.157
2m)P 27 u?|w|?® + 2up?|w|® cos(ma/2) + p* ( )

whereu = yz?2/t® and? is an arbitrary unit vector. Far < 1 we neglect the contributions of
O(u?) in the denominator and we obtain

dw . dPyp sin(mor/2)e'
0) = 2 = wla et . 2.158
9co(u—0) u/ ot jw]* e /(27r)D (p? + u|w|* cos(ra/2))? ( :

The integral ovey' is of O(u ln [u|w|* cos Tr/2]) for D = 4 and the resulting integral con-
verges fora < 1; consequently,

gc(u— 0) ~ O(ulnu). (2.159)
By using FDT we derive
Ro(Z,t) = ——)— gl (ya2/t*)O(t) (2.160)
o, t) =~ D=dsa+1 9007 : :
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In the white-noise case, the scaling functigf has the simple form

re2-1 [ Te(3-1%)

gCo(u) = ArD/2 - Tp (g _ 1) + O(E) ) (2-161)

with Tg(s,z) = [>°dy y*'e~!, whence we deduce fer = 1 andD = 4
9oy (u— 0) = O(u). (2.162)

For genericy and+y,, the scaling functioryc, is no longer a function of one variable. It is
easy to show that

S 1 o
Co(7,t) = w2 gco (7122 /181, el /[21). (2.163)
Moreover, by using a similar argument as above one haBfer4

tlim 9c, (u,v) = O((u + v) Inw), (2.164)
—00

whereu = v|z|?/t* andv = ~,|z|?/t vanish withu /v finite. In the opposite short-time limit
in which« andv diverge withu /v finite,

lim gc, (u,v) = Pp(D/2 — 1)/ (472 (2.165)

as for the purely colored problem.
The equilibrium propagators can be written in terms of the generalized Mig#pt func-
tions £, ;(z), as discussed in App. 2.4.2.

Generalized Mittag-Leffler functions

The Laplace transform a®y(p, t) is given by

= 2.166

A0+ A7 ( )
where we definedl = p? + r and, in the case of colored noide, = yA*~!. We formally
expand this expression for small

(e}

B 1 1 1 —A/y)k
A = 2.167
RO(pa ) 7)\0{ 1+ A("}/)\a )\a z:o )\ak ) ( )

where the terms of the form/\? (with Re 3 > 0) are recognized as the Laplace transform of
O(t)t?~1/Tx(p), so that Eq. (2.167) is identified as the Laplace transform of

1 00 tak—l—a—l
Ro(ﬁ,t) = @(t);Z(_A/ﬁY)km
k=0

a—1
L Ba(—At? /), (2.168)
vy

— o)

where we have introduced the generalized Mittag-Leffler function

EZPE ok + ) with «, 8,2 € C, Re{a, 8} > 0. (2.169)

=0

44



CHAPTER 2. CLASSICAL PHASE TRANSITIONS AND COLORED NOISE

Note that this function reduces to an exponentialdor g = 1: E; 1(z) = €*, whereas for
z € R[98],

k*
1 1 (o
k=1

The corresponding expression for the equilibrium Gaussian correfatiation can be obtained
from the FDT (2.11). Indeed, after integration Eg. (2.40) takes the form

[t]
Colp,t) = Colfi.t = 0) — / ds Ro(f,s) , (2.171)
0

where we used the fact that, in equilibriu@\z, t) = C(Z, —t). Taking into account Eq. (2.155)
and the first line of Eq. (2.168) one readily finds

Col7 ) = 5 Bal~AlMI*/7) (2.172)

whereE, (z) = E, 1(z) is the Mittag-Leffler function.

The correlation functioy (p, t) in Eq. (2.172) can also be expressed as the inverse Fourier
transform ofCy (P, w) reported in Eq. (2.61) [see also Eq. (2.59)]. After some suitable change
of variables one finds the following scaling form

Col7 1) = 5 feulAlHI* /) (2173)

where

2 /Oodv cos(u'/*v) v*” sin(na/2)
0 02 + 20% cos(ma/2) + 1

feo (u)

™

: (3] 1/a,,1/c
sin(ma/2) / cos(u/*v/%) (2.172)
Ta/2  Jy  v?2+2vcos(ra/2) +1
is the explicit expression for the scaling function introduced in Eq. (2.154)
2.4.3 Calculation of£%% and £11
Starting from Eqg. (2.79) we have for genefi@and-,
2
202 (g, ) = ¢ S APV H2) (;V +2)
o] 2 2
X {zﬁz_l Cos(afz)/ da 2572P 9%0 (’WU "ywzn )
¢ gaz gz
o] 2 2
—|—/ dt cos(at) £572P 92, (Zi, ’wa) } . (2.175)
ez

The result of the integral in the first term in curly brackets is an analytictfon of o that
admits a Taylor expansion in powersdf, i.e.,

co + 20 + cpot + ... (2.176)
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with coefficients that, in principle, depend separatelyyof, and/. The integral in the second
term in curly brackets yields, instead, a non-analytic functiom tifat we can still express as a
series:

do+ doo® + -+ dzq_10° ..., (2.177)

where the termx o3~ is due to the leading behavior gf, fort — +oc [see Eq. (2.159)]
which has to be subtracted far < 1/3 in order to make the integral convergent at largéf

3a — 1 > 0the limit ¢ — 0 can be safely taken and the white-noise vertex is renormalized
by co + dp. If, on the contrary3a — 1 < 0 the contribution proportional te3*~! is anyhow
negligible (fora > 0) with respect to the termo®~! which is already present in the tree-level
vertex. Therefore, there is no renormalization of the colored-noigexvand we can focus on
the limit ~, > =, i.e., on the correction to the white-noise vertex only. Since we calculate
evolution equations up to ordet we simply need to evaluate Eq. (2.175)lin= 4. We obtain

iy g?Ap(N + 2)
N 9

[e%¢) 2 2
771 de =3 o3, (T dw?
X {z /g T 90 | ar e
00 2 2
+/ e g3, (Z‘i%f)} (2.178)
[z

We are interested in the — a. limit in which ~,, — oo andz = 2 + O(e?). By first using
x s 2/ /7w andt — % /2? we transform the two-variable scaling function into the one-

variable white-noise one. Using then Eq. (2.161) adnd= 272 we obtain the second and third
line below.

u?E%2(037, )

29w g>Ap(N + 2 o _
u?E%2 (05, ) = 9( ) / dz 27°g¢, (0, 27)
Nats

VW
+/ dx x_3g%0(0,x2)]
0

2 00 3
_ 2ywu (N+2)/ da [1 - e—gﬂ/ﬂ =
9 0
2
Ywu (N +2) . 4
= T - .
5 ng (2.179)
Therefore, at the critical point, using the Wilson-Fisher fixed point value- 6e/(N + 8) +
O(€?) [19], we find

3(N+2) . 4
2¢00,2/0. *2 0,2 2 3

w (057, Yw) = U wEYT = Yw m nge +0(€) . (2.180)
We now computel! in D = 4. We start from Egs. (2.97) and (2.98). Using Egs. (2.187) and
(2.165) in the limit¢. — 0 we obtain

2 00
201,10, g AYN +2)m -0 / dr 1
u g (0;777W) , T[ (27-[-)6

a 144 Oln/t
~ u*(N +2)

= 2.181
= (2.181)
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Note that the term coming from the differentiation@f(z, ¢%) in Eq. (2.97) with respect tm ¢
vanishes in the limit — 0 [use Eq. (2.156)]. At the critical point we obtain
uw (N + 2) N+2

2011 — 3
u*°E = 3N +3) e+ 0(€) . (2.182)

2.4.4 Non-equilibrium propagators

For o = 1 the Gaussian non-equilibrium propagators read in the momentum and time domain

Colfit,) = o [ Gl _ e enienn] (2.8

PP+
Ro(it, ) = O(t — s)e” PHIE=)/ 7 (2.184)

For generica, however, analogously compact expressions are not available arahalysis
proceeds using Laplace transforms. In order to determine the resjoresien Ry — consis-
tently with the Gaussian approximation — we start with the linearized version afathgevin
equation (2.3) in the presence of an external perturbai?ﬁon

t
/ dt' T(t — )0 d(,t)) + (r — VA o(Z, ') = (&, 1) + h(Z,t) (2.185)
0
Calculating the expectation value of both sides with respect to the distributitimeafioise
eliminates the vanishing averagg. The Laplace transform yields

(ADa + p* + 1) {(BA())n = ha(P) (2.186)

in momentum space where we used the Dirichlet boundary condiignt = 0) = 0 [see
discussion at the beginning of Sec. 2.3.5]. Note that the expectation fahesarder parameter
depends ot. The response propagator in the Laplace domain is given by

. 5(pi (D)) 1 Shix

Ro(pi N\, k)05 = i s = d
O(p, 7"{') J 5h‘j,l€ ‘h:[) >\F,\+p2+7"5hj7ﬁ

1

= 0ii. 2.187
A+ &) ALy +p2 +7) ¥ ( )

The last equality follows from the fact thak;(t)/éh;(s) = ;;0(t — s) as a function of time
translates intd;; /(A + ) in Laplace space, given th§f* dtds e MRS (t—5) = 1/ (A + k).

In order to deduce the correlation propagator we start directly fronfZ485) withs = 0
and we consider its Laplace transform:

S U
B = (2.188)
which yields
ol )i = (Bia P03 —7) = e
_ DAL 5ii (2.189)

A+ R)ACA +p? +7) (kD +p2+7) 7
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In the last line we used the fact thAf® dtds e M ~**T'(t —s) = (T'y +T'x) /(A + x). The prop-
agators verify an ‘initial time FDT’. We see that for < 1 lim,_,oc KRo(P} A, k) = Ro(p, \)

andlimy, o £2Co (3 A, k) = limy_y00 KT\ Ro(p, A), With Ro(p, \) = 1/(AT\ + p? + 7).

In the time domain, the second identity reads

t
O Co(Fit, ¥ — 0) ~ t'”“l/ dsT(t — $)Ro( 5,1 — 0) . (2.190)
0

To derive this equation we used the convolution theorem for the Laplat&faran £, that is

c [ / Cat’ f(t - t’)g(t’>] ) = LWL (2.191)
0

In order to deduce the scaling of Eq. (2.190) with respettaaoe observes that XL [f(¢)](\) ~
A4 for A — cothenf(t) ~t=*fort — 0.
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CHAPTER 3

Out of equilibrium quantum Brownian motion

“Well, our friend Dirac, too, has a religion, and its guiding principle is: Godeafonot exist
and Dirac is His prophet”
Wolfgang Pauli

Quantum Brownian motion has been the starting point for the understanidingre com-
plex dissipative quantum systems [50]. Applications to quantum tunnel junscti®7], dissi-
pative two—state systems [108] and reaction—rate theory [109] are fagt among many. In
its simplest form, as proposed in the founding papers [110, 111, 9] ntiepeament induced
dissipation is modeled by an ensemble of quantum harmonic oscillators lineantyedoto
the particle of interest. So far, in most studies of the dissipative dynamic$afraonically
confined [111, 112] or a free [8, 113] quantum particle, the quantitiynteirest has been the
reduced density matrix that is obtained by tracing away the bath degreesedbm in the den-
sity matrix of the coupled system. For generic initial conditions this quantity hers dletained
with the help of functional integral methods [8, 114]. An alternative simplerugh in gen-
eral only approximate, description of the reduced density matrix is givenrbgster equation.
For factorizing initial conditions [115] and thermalized initial conditions [1&6]exact master
equation can be obtained. However, it is also known that there canaaiaster equation —in
the form of a partial differential equation local in time — for arbitrary initiahddgions [116].
The alternative quantum Langevin approach [117] extensively usgddntum optics [118]
is not sufficiently powerful either, for quite the same reason: only a fescigl initial condi-
tions can be successfully treated within this approach and the quantumstetisécs are not
tractable in the generic case.

In the following | show how to generalize the path integral formalism foun@]Js{ich that
generic Gaussian initial conditions can be treated. With the helmeharating functionaall
non-equilibrium correlation functions will be derived.
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CHAPTER 3. OUT OF EQUILIBRIUM QUANTUM BROWNIAN MOTION

3.1 What is Quantum Brownian motion?

In the previous chapter | have discussed aspects of critical dynamics pnébence of colored
— time correlated — noise. | have shown that such noise produced biadwvian envi-
ronments leads to novel critical dynamics for second-order phasatimass In general one
may say that the dynamics of a collective variable, i.e. a field, coupled to mddgnamic
environment has not yielded yet to the efforts of the physicists which weattito a full under-
standing of these dynamics and it is likely that some surprises might still bel alhes. The
case of a single particle coupled to an environment is on the other hanavenynderstood.
The particle’s dynamics are described by a Langevin equation and if thigelvan equation is
solvable without the stochastic term it is usually also solvable in presence abtke. In this
sense the problem may become more difficult when the bath is present, fwrtdaomentally
new physics arise. For instance, the onset of deterministic chaos dyndogisaot depend
on whether the particle in question is coupled to a bath or not — as long as thakngpis
linear, which is an extremely well approximation for many situatfosother example is the
escape rate of an activated particle confined to a well potential. Of gatiiseknown that
the color of the noise has some impact on the well-known Arrhenius formd]alat still the
noise statistics do not fundamentally change the physics. It goes withgoggaat | do not
imply here that such systems are not interesting. On the contrary, in ordedésstand many
effects in nature, and in biology in particular, one needs precise formuiad reflect a real-
istic description of the stochastic environment. However, even the mositdeateof classical
one-particle dynamics cannot deny that the thermal quantum world seblayletly differently.
One of the most striking single particle phenomena is quantum tunneling andcetbentderg
uncertainty relation. Both of these quantum phenomena lead to far reacirisgquences when
combined with dissipative dynamics. Let me briefly deviate from the main sudnjelctalk first
about quantum tunneling. A particle confined to a double-well potentiatwamel from one
potential well through the potential barrier to the other one and back. Tocesgs relies on
guantum coherence and therefore allows for quantum superposifitresta/o single potential
well states such that Rabo oscillations between the two wells are obsetusdassentially a
zero-temperature process and thus fundamentally different from tivatad hopping over a
potential barrier. While thermally activated processes are usually eathdoyca growing tem-
perature or an increase of the particle-bath coupling (i.e. by the enechgarmge rate between
the particle and the environment), the opposite is true for quantum tunnetinggses. Indeed,
at zero temperature the quantum bath can actually totally suppress themquanieling since
it destroys the quantum coherence. This phenomenon has been fodriolatany different
ways [121, 122, 123, 9, 108]. If we come back to the particle in a singletixeescape rate
due to tunneling drops to zero when the coupling to the bath increases. Gthéndiand, upon
increasing the temperature the tunneling rate grows [124, 50]. More inmplgrtthe typical
temperature which separates the quantum from the classical regime isddwyeaia increasing
coupling to the bath. The environment thus renders the system more dlassicaventually
destroys all quantum coherence, i.e. the quantum tunneling at absaloite ze

It is probably true for any introduction to quantum dissipation that it is a sigaak of
taste if the spin-boson model remains unmentioned in this context. The doallsyatem is
essentially universal. In the 1980s Leggett et. al. [108] consideredadiualled dissipative
two-level system or spin-boson system which arises naturally from tgdis/e particle in a

'Note however, that dissipation does not always has a “stabilizing” teffee to damping. In magneto-
hydrodynmics a finite resistance can trigger instabilities [119, 120].
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double-well system in the limit of a small tunneling rate (i.e. a neat separatitie ofvo wells).

All the parameters can then be combined into two variables, the tunneling mainzrie and
the disspative coupling constant to the bath, usually calle@he two-level system is conve-
niently described by a single spin, theeomponent of which is linearly coupled to the quantum
bath. The tunneling rate is described by the téwm in the Hamiltonian which flips between
the twoz-spin states. In the absence of dissipation the spin undergoes Rabi ostitzdioveen
the twoz-states with a frequendy. One might guess that these coherent oscillations are grad-
ually destroyed when the spin-bath coupling is switched on. Howevepmigtis coherence
destroyed, but tunneling itself (in the case of an Ohmic bath), i.e«afor 1 the spin remains
localized in one of the two states. This well-known localization transition shiledeatures of
the Kosterlitz-Thouless transition and it is closely related to the phase trassitiond in the
anisotropic Kondo model [108] and the long-range interacting classica] thain [125].

Let me come back to the second genuine quantum feature | mentioned: Tsenbtrg
uncertainty relation whose consequences are most far-reachingn Eifietein combined in his
ingenious approach classical thermodynamics with statistical methods,ievidiat is known
as the Einstein relation, namely that the diffusion is proportional to the temperatinis is
expressed by the classical FDT which links the linear response to thedatarn functionvia
the proportionality constant—'. Yet another way of stating this (for today’s mind) trivial
fact is the equipartition theorem. If we model the environment by a largef setiependent
harmonic oscillators, where each one has a different frequencipagtjtion states that each
mode will acquire the same energy on average. In the quantum world eifiopds however
not satisfied. Since the work by M. Planck on the thermal black body radiatiother energy
partition arises, characterized by the frequency dependent fagfof;,fw. This term always
arises for a set of quantum harmonic oscillators at then temperatane we will encounter it
on numerous occasions during the next section. For high temperatweagjahtum partition
reduces to classical equipartition, whichuisndependent. However, when the temperature is
lowered, the energy of the bath modes does not tend to zero as one nuigbt lex extrapolating
the classical law; we rather haveth[/ifw/2] — 1 for large 3. This simple statement leads
to a very important property of a quantum bath: It fluctuates at zero teyserand these
guantum fluctuation can lead to diffusion or suppress — as we have speEmtum coherence.
Interestingly enough, pure quantum diffusion at zero temperature is showir than classical
diffusion, i.e. one can show that the mean squared displacement growswitfsee [8] and
next paragraphl].

How does one usually model quantum Brownian motion? The environment istdin@ys
modeled by an ensemble of harmonic oscillators and it is coupled linearly to itielgraHow-
ever, important exceptions do exist. In some applications, the fundameigalia not caused
by phonons but by spins, one then needs a spin bath, which is far miicalttb deal with than
a quantum harmonic oscillator bath, but which leads to richer physics.[X26p, many arti-
cles deal with baths of two-level systems in order to model decohere@ce 128, 129]. The
analysis of the physical effects of quantum baths which are more complitetethe standard
guantum harmonic oscillator environment would go beyond the scope ofé¢kerg chapter. In
chapter 4, however, we will study heavily entangled quantum baths foomede-dimensional
guantum liquids. Here, let us assume that the bath can be modeled by haosoiliators.
Then the fundamental Hamiltonian of quantum Brownian motion réaedsHs +Hpg + Hsa,
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with

A2

Hsld,pl = 2%+V< 1. (3.1)

2
p SR (3.2)

B[{&n, Pn}] =

Hsp[{@n}, 4] = —q Z Cndin + ¢ Z (3.3)

2m w2'

One may convince oneself thHtindeed models dissipation. By using the Heisenberg equations
of motion for the particle and the bath one arrives at the reduced equdtimotmn of the
particle by eliminating the bath’s degrees of freedom. The result can bemwrittee form of a
quantum Langevin equation

. t . dV(q,t 5
M)+ 001 [ asa(e— i) + T — gy 34)
0
with the damping kernel
1 c?
V(1) =57 Zn: mmig? COs(eont) (3.5)
and the quantum stochastic force operator
£t) = ch q(0) + Cinfcn(()) coswpt + Da(0) sinwpt| . (3.6)
mnw% nWn

n

The Langevin force becomes stochasiieits dependence on the initial condition of the bath
andthe particle. It is thus in general necessary to specify the initial state afifgafticle-bath
system. To put it in other words: One needs to specify the experimentsnaitéon procedure.
Several possibilities have been studied in the literature. One common initial sthe $e-
called factorized initial state, where the bath and the particle are initially wlated. While
such an initial state leads to many simplifications in concrete calculations, its phgsitent
is not so clear. In many experiments it is most uncommon to “decouple” thelpdrom its
environment at some time. Moreover, when instantly coupled to the particte atthe system
undergoes a quench since the total energy increases due to the sugpigaraction energy.
From a physical point of view the factorizing initial state is hence most wausu

On the other hand, equilibrium can be described by setting the initial state pattiele-
bath system to its canonical Boltzmann weight?. Again, | insist that such an initial state is
different from the factorizing “equilibrium” state ?*ts @ e =5 which has a lower energy and
entropy. From now on | will set the potentill(q, t) equal to the harmonic oscillator potential
MQ2q? /2 for pedagogical reasons. The canonical equilibrium initial state is a mtaeel and
it is therefore described by a density matdix For an equilibrium preparatiofy is given by

o) o0 9 2 2
N Qb (0) . % 222 . Pn My (. Cn
po = exp | =fE = B0 (0) -8 e p—=" P q(0) 7

n=1
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where | completed the square with the counterterm. The statistical propéfrties @mndom
force&(t) then follow immediately%(¢) is a stationary operator valued Gaussian random vari-

able with(¢(¢)) = 0 and
2

(¢ [E0E) +E0E0])) = L3 5 cosw (1 — ) cothlfuwn /2] . (38)

2 2 — MpWn

Note the appearance of the typieath[fw/3 /2] characteristic for an oscillator bath. One should
bear in mind that is operator-valued; it has thus a non vanishing commutator:

E(0),&s)] = —in Y

2
—sinwy,(t — ) . (3.9)
nWn

m

The quantum Langevin equation is an operator equation which acts onlith&lihert space
spanned by the bath and the particle states. The dynamics thus lead alaaystanglement
between the particle and the oscillators. By using the equation of motion 3.4aonghow
together with the above noise commutator (@) andp(¢) satisfy at all times the Heisenberg
uncertainty relation, as required. This point is crucial: If one sets the caatony3.9) to
zero the Heisenberg uncertainty relation — however fundamental — wewdblated for the
particle (and moreover, for the bath, too). Consequently, the quanttimisbaot only a matter
of statistics. Oneannotreplacet (t) by ac-valued Gaussian noise with the same statistics as
¢, since an approximation of this type clearly would not satisfy the commutatpepies of
position and conjugate momentum. As a corollary it would violate the uncertaiatyoreand
thus fundamental quantum mechanics.

Let us now briefly discuss the equilibrium static properties that come with3E4). (The
usual strategy in order to find the reduced dynamics for the particle is toateggrace) out the
bath degrees of freedom in the initial density maggx When the theory is Gaussian and when
one is interested only in static properties, it is however easier to first inteothe variances
(¢?) and (p?). The reduced initial density matrix then takes necessarily the following form in
the position basis:

o = L[ CHIE )

R )P
) s 2w

There is indeed a very elegant way of deriving EqQ. (3.10). Let usfstan the average

(r— y)Q} : (3.10)

<€fiyﬁ(t)eird(t)> — Ty [eiiyﬁemﬁ(t)} — /dxlp(x/ + y,ml)eim/, (3.11)

wherep(z’ 4+ y, ) is the matrix element of in position space. With the help of the Baker-
Campbell-Hausdorff formula we find

pya(t) = /dr e—%r($+y)<e—i(y—$)ﬁ(t)+iré(t)>' (3.12)

On the other hand, we can evaluate the rhs of (3.12) in the path integralfsm where the
operators] andp are replaced by c—-numbeysandp. Moreover, we know that andp are — as
soon as the initial condition is Gaussian — Gaussian random variables faoathat

pyx(t) = /dr e—%T(Hy)<e—i(y—:v)ﬁ(t)+iré(t)>

)

_ / dr o= sr(@t) o= 3 (=222 (0) — 5r2 (@2 (1) +r(y—) (a(0) HD)] ) (3.13)
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where([q(t), p(t)]+) = {[q(t)p(t )+p( )q(t)])/2 is the symmetrized position-momentum equal
time correlator and we havgj(t), p(t)]+) = 0 due to symmetry reasons [8]. For simplicity we
assumedq) = 0 and(p) = 0, but everything that follows can be easily generalized to the case
whereg andp are not centered at zero. The final integral avéren gives back Eq. (3.10).

From the Langevin equation (3.4) we find in the Laplace domain

£(2)

M 3.14
Q=) = 224+ 29(2) + Q2 (3.14)
so that the linear response function reads
- M1

R(z) = . 3.15
(2) 224 29(2) + Q2 ( )

We now use the quantum mechanical version of the fluctuation-dissipatiorethe
C*(w) = hcoth[hwfB/2] Tm R(w) , (3.16)

with C1°9(w) the one-time stationary equilibrium correlation function in the Fourier domain.
The trick is now to use the causality of the response function which implies = R(iw).
Together with the formuld", w/(w? + v2) = (Bh/2) coth[hwB/2] with v, = 27k /RS the
bosonic Matsubara frequencies | can recast the correlator as

clea(y =3 Z w2 7 [ w) — R(—iw)| . (3.17)

By using an appropriate contour integration one finally finds the equal-timelator, which in
the case of thermal equilibrium does not depend on time at all,

: 3.18
MBZ EAT e (549
By the same method we get
wi + vk 7 ()
. 3.19
] Zumum wl) + 2 (349

Let us go back to the density matrix (3.10). Note that in the general nailibeyun case the
equal-time correlators are time dependent. As in the case of a non-dissgagieharmonic
oscillator one can now make use of Mehler’s formula for the Hermite polynontatsconve-
nient to define the real variable

A= G0) = gy 1+ 180:010?) (3.20)

and the complex variable

. 1 1 2
B = {0) + - (2—z<[q<t>,p<t>]+>) , (3.21)
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(Again, note that we assume a more general initial condition for wiljgh# 0 possibly) then
the reduced density matrix can be recast as

1 Apy—Bg2_B* 2
ey(t) = ————=e""Y"2" T2V, 3.22
p ,y( ) 27 (G2(0) ( )
By virtue of Mehler’'s formula we find
Vi &, .
pral) = 5y Zoju On (%) (v), (3.23)
with the “eigenstates”
/1/4
On(z) = Y ltj'n(\msc)e_mQ/2 : (3.24)

Vv 2rnly/T

H, (z) is then—th Hermite polynomial,

2u
A= """ 2
T2V (3.25)
2u?

v = B — m’v/ (326)
andv’” = Rewv. Note thatv is complex whileu is real. The solution to (3.25) and (3.26) are
found to be

B+A-vB —A
u= VB + v and o =V B?— A2, (3.27)

VB tA+VB - A

where B’ = Re B is the real part of3. This representation of the reduced density matrix has
been used in [25].

3.1.1 Some equilibrium results for Ohmic dissipation

Let me rewrite the formulae (3.18) and (3.19) for Ohmic dissipation. It is impbttaspecify
the cutoff procedure in order to remove unphysical divergences.instance, in the Drude
model the damping kernel has s short-time memory suchtftat= ywpe=“,t. With this
regularized theory we havgz) = wp/(wp + z) and therefore in equilibrium

o1 1

@)= 315 2 E T len e T T (3.28)
and Q2 4+ Alvalon/ Wb + val)
.9 M + Y|vn|lwp/(wp + |Vn

= — . 3.29

)= 2 Tonbon i + ) + (5:29)

There are two interesting questions related to the equilibrium widths (3.28)3s2@). First
one can study their dependence on the bath temperature. This is plotted B IFiglt is
interesting to note that the position width decreases with increasing partitiestwaplingy
while the position width increases such that Heisenberg’s uncertainty reisémsured. In the
next figure (Fig. 3.2) | plot the produdt§?) (p?) /h?, which grows with increasing. Note that
4(g%)(p*)/h? is exactly equal to one for zero temperature and zero particle-bath cguplin
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2M )/t
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Figure 3.1: Temperature dependence of the position and mioimecorrelations2M/Q(G?) /A (left) and
2(p%)/(MQh) (right) is plotted for the Drude model, withy, /2 = 1.0, versusl /5RS). The dashed line
corresponds tg /2 = 1.0 whereas the solid line correspondsytd? = 0.1.

While the Heisenberg uncertainty relation forbids théi?) (p?) /h? < 1, the environment
is perfectly allowed to excite the particle such that the width product incsedsdeed, if we
reason naively in terms of the undamped oscillator eigenstates, a zero atum@drehaviour
as depicted in Fig. 3.2 implies that the particle is not only in its ground state b fiaise
probability to be in its excited state. Let us put this reasoning on a more quaetitetsis.
In the last subsection | have shown that the reduced density matrix of thpedaharmonic
oscillator can be diagonalized in terms of stretched Hermite functions [se3) €8 (3.24)].
Standard thermodynamics always assumes that the interaction energghéteesystem and
its environment has to go to zero if the system is expected to be describeé bgribnical
density matrix. Obviously this is not the case, here. Indeedjfes oo andy = 0 we have
u = 0 as expected; however for/Q2 = 0.1 we find by using(¢(t)p(t) + p(t)q(t))(t) =
0 [8] u ~ 0.00166 and fory/Q = 1.0 we findu ~ 0.287. Therefore, there exists a non-
zero probability to find the particle in an excited state. Such a behaviour sedéwy the
entanglement between the bath and the particle which does not vanist eeem mperature.
Due to the entanglement the naive reasoning in terms of pure particle eigéahs breaks
down: The particle is not in its groundstate because it does not havea@nydstate itself; only
an entangled state depending on bath degrees of freedom can beuhdsgabe of the whole
particle-bath system.

The diagonal representation of the reduced density matrix (3.23) is sefylwhen quan-
tities such as the purity or the van Neumann entropy afe searched for. To cite an example,
it is straightforward to monitor the decoherence of a superposition of tvptedisd Gaussians
with this formula. It is also interesting to study the decoherence intensity asctdn of bath
characteristics.

At last, let me briefly discuss the subdiffusive behaviour of an untr@Boewnian particle.
The equilibrium position correlation function is given in Eq. (3.170) or in [®hen the external
potential is switched off, i.eQ2 — 0, the particle undergoes free quantum Brownian motion.
One of the fundamental questions one may ask concerns its diffusionibehahen quantum
effects dominate, i.e. when temperature is very low. As has been showor[8h Ohmic
bath by performing a large-time analysis of Eq. (3.170) that the displacdomegtion at zero
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Figure 3.2:4(¢?)(p?)/h* versusy/S for the Drude model withup /2 = 1.0 at zero temperature.

temperature has the behaviour

2h

((4(t) — 4(0))*) ~ log(yt) (3.30)

Qr(?) M~y

for vt — oo. Note that the correlation function is formally infinite since free Brownian motion
is not bounded. Only when the mean displacement is considered cantaireadfinite quantity
which describes the diffusion law of the particle. For super-Ohmic and3uhic baths, too,
behaviours which differ from the classical (fractional) diffusion laws abserved. For sub-
Ohmic baths with a spectral density [see Eq. 3.133}) ~ w® with o < 1 the displacement
function is bounded (at zero temperature) since the friction force dgdbe stochastic accel-
erating force of the bath. The particle is thus “trapped” in this case. Tmei©h = 1 case is
discussed above. Far< a < 3,a # 2 the diplacement function behaves@s (t) ~ t 1.
For the special case = 2 one haxQ () ~ t/log?(t). The caser = 3 corresponds to a three
dimensional (Ohmic) phonon bath such that the zero-temperature quaiffusiod for o = 3
anda = 1 are alike. The derivation of these diffusion laws can be found in [130].

The denominator of Eq. (3.30) shows the same viscosity coeffidientas the high tem-
perature classical case which is governed by the standard diffusesficeent D = 3= /M.
While thermal fluctuations have an effect on the particle displacement whedrlinscales with
temperature, the same “accelerating” effect of a pure quantum baths(i-e. c0) is strongly
suppressed (since at scales as the logarithm of the bath strength).

3.1.2 Other important dissipative quantum systems

Throughout this manuscript | will not talk anymore about quantum tunnelirtgdissipation.
Due to the great importance of this topic | would like to present some basic satiotine
dissipative effects on tunneling in this short subsection. The analysiaro€le in a double-
well and coupled to a bosonic quantum bath has been studied in [1229,1P38, 124]. All
these studies concluded that coherence is gradually destroyed byahtigubath. Hence,
above a certain threshold value quantum coherence is totally suppressdadnneling does
not occur anymore. In this case, the particle is localized in one of the twaotmdtevells.
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As shown in [108] the double-well problem can be well approximated bysthealled spin-
boson Hamiltonian, where the particle position can only take two valiiésdepending on
whether it is found in the right or the left potential well. Within this approximattbe, particle
thus behaves as an effective two-state system and it can be desgribegulantum spis’ =

%(a””,ay,az). The tunneling is directly introducedia a tunneling matrix elemeni. The

spin-boson Hamiltonian then reads

Hep = gaz + gax + Z )\i(az +a;)o® + Z Fuuiajai . (3.31)
The two potential wells have an energy difference modeled by the detuanagnptele. The
spin-boson model is probably the paradigm model of quantum dissipagoy,nwuch as the
Ising model for statistical physics or the Hubbard model in condensed rphitsics. In the best
tradition of its “brothers”, the spin-boson Hamiltonian cannot be integraied feneral bath
spectral density, despite its apparent simplicity. There are in general &y® of approaching
the problem. Either one considers Eqg. (3.31) as a well-defined approxinaditioe double-well
problem; in this case one can carry over results obtained in the latter forntalieeformer and
vise-versa. However, since the review by Legget et al. [108] thelspson problem has been
considered as an independent problem. In this context the close refgpitiesween Eq. (3.31)
and the anisotropic Kondo problem [108] and the long-range classiogl¢hain [125, 72, 131,
132] has been realized and extensively studied. The mapping to the aldssigrange Ising
chain led to renormalization group equations of the spin-boson system aednghlemented the
non-interacting-blip-approximation [108] used for describing its dynamfds these studies
concluded that a localization transition takes place if the spin is coupled to mic®hth.

However, many aspects of the spin-boson model are not yet undeérstbast of the re-
cent studies focus on the quantum phase transition of the spin boson fapdeb-Ohmic
bath spectral densities. It has been argued that the sub-Ohmic spin-basiel violates the
guantum-classical mapping[132], a claim which could not be upheld aftesr133]. How-
ever, it seems certain that the system undergoes a second ordetrphai®n at some critical
bath strength which depends hrand the bath cutoff frequency. Recently this picture has been
confirmed by using a variational ansatz [134] for the groundstate waggbn.

3.2 The Hamiltonian of a quantum Brownian particle

We study the evolution of a particle of mak&evolving in a (possibly time-dependent) potential
V(gq;t) whereq is the position operator. The Brownian motion stems from its interaction with
a quantum heat bath which is usually modeled by an infinite set of harmoiiliatuss linearly
coupled to the position operat¢r The full system is then described by the Hamiltorfan=

Hs + Hp + Hsp, with

]52

Asla,0] = o537 + V(@) - H)d, (3.32)
N — Dh | mawp
Ml ] = D oo+ S5 (3.33)
n=1

HS’B {xn} q = _qzcnxn +q Z (334)

2m w2‘
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p is the momentum operator of the particle. In contrast to Eq. (3.1) we intrddace rhs
of Eq. (3.32) a time-dependent soutkiét), a c-number, that couples linearly to the particle’s
positiong. This source term will be important for the derivation of the generatingtfanal in
the following. z,, andp,, are the position and momentum operators ofsthéh harmonic os-
cillator, with mass and frequeney,, andw,,, respectivelyc, is the coupling strength between
the particle and the-th oscillator’s position. The last term in Eq. (3.34) compensates for the
bath-induced renormalization of the potential. Indeed, the sum of Eq8) @18 (3.34) can be
rewritten as

e ~2 2
pn mnwn

2my, 2

Cn

q’ (3.35)

po— [xn - mnw%
which shows the absence of any drift force induced by the bath andemnthafi’ (¢, ¢) corre-
sponds to the physical potential right from the start. The model Hamiltonian(B3)-(3.34)
has been widely used in the literature as a generic model for the dissipgtieenats of a
guantum particle [9, 8, 50].

In the Heisenberg representation the time evolution of all possible obsesvkis governed
by
. . it LI
A(t) = [Texp <_h/ dt"]—[(t’))} A
0

X [%exp (;L /0 t dt’?—l(t’)ﬂ : (3.36)

with 7~ the time-ordering operator. By introducing the density matrix of the initial giatae
N-time average of a sétA4;} of V operators, is

(AN(tn)AN_1(tn-1) - Ai(tr)) =
Tr |An(tn) -+~ AL(t)po] (3.37)

where we took the product of thé;s to be time ordered (withy > ty_1 > ... > t1) so that
we can more easily make the connection between Eq. (3.37) and its pathlirepgeaentation.
We assumed that Fg is normalized to one. Note that for a generic initial magiixhis, as well
as any other, correlation function is not necessarily stationary, i.e., it rpgrdl on theV
times explicitly.

In all cases the model has to be supplemented by information on the initial conafitibe
coupled system. These are incorporated in the initial density matriEquilibrium dynamics
can be studied by choosirig to be the Boltzmann weight, that is

po = exp(—BH) , (3.38)

where?{ is thefull coupledHamiltonian and the normalization constant has been ignored. This
truly equilibrium density matrix has to be distinguished fropn= e #*s ® e=#*5, a casein
which each component of the “universe” (the whole particle—bath sysgeimequilibrium on
its own at the same temperature. This subtle point is often overlooked in théuitera

Non equilibrium dynamicsan be studied whenever the initial density matrix is not of the
form in Eqg. (3.38). The simplest choice is an initial product state for whiehrittial density
matrix factorizes into two contributionss, and o which solely depend on particle and bath
variables, respectively:

po = pso @ PBo - (3.39)
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Brownian motion [135, 50] as well as the dynamics of more complex macrmssygiems [136,
137,138, 139, 140, 141, 142, 92, 143] with a factorized initial densityirfaave been studied
in a variety of physical situations. However, in many cases it is not apiptepto assume
Eq. (3.39) since one has no command over the bath and it is impossible to “gwitciind off”
at will. In addition, with recent developments in cold atom experiments (sqaehd), new
classes of initial conditions become of relevance.

The first one covers all situations in which the particle is in equilibrium in a piatesnnd
either it is released or the potential is suddenly modified-at0. In this case Eq. (3.38) holds
with # replaced byH, (# #) describing the initial state.

The second class concerns all situations in which the position of the fréelepss measured
at¢ = 0. This procedure projects the initial density matrix onto the quantum states of the
measurement outcome. We focus on the case where no quantum quesrébrimed in addition
to the position measurement so thé = . If the position is exactly determined at= 0 the
initial density matrix is

po = M(q)e PMMl(q)  with  Ti(q) = |q)(g] (3.40)

the projection operator onto the stdtg. If, instead, we take the measured position of the
particle to be Gaussian distributed aroupdthe projection operator takes the form

~ _ (a—am)?>
fL(gm) = / dg e~ T )l (3.41)

whereA measures the uncertainty of the particle’s positioh-at0. Once again we neglected
the irrelevant normalization factor.

A third important class of initial conditions are the factorized density opesatee Eq. (3.39),
in which the initial state of the system is a pure state. Since any state can lnelespa terms
of displaced Gaussians (ooherent statedt suffices to consider initial states of the form

pso = [P) (el , (3.42)

where

_(a—am)? (@ —dp)?

W(q) = e a2 and o(q)=e a2 | (3.43)

to cover the whole class of initially factorized pure states.

In this article we derive a generating functional that allows us to obtaifvttiene correla-
tors for these types of initial conditions. We are mainly interested in the evolatidraverages
of the particle’s position observableer which A = Alq] with some function4 depending on
the positiong of the particle. Note that due to the coupling of the bath to the particle’s posi-
tion the momentum dynamics follow from the Heisenberg equatighg = p. Therefore, by
focusing on the particle position operator we simultaneously describe tlaenilys of the par-
ticle’s momentum. While in [8] the authors derived an explicit expression ®etfuilibrium
correlation functions the generating functional will allow us to go beyonethglibrium case.

3.3 The non-equilibrium generating functional

This part of my thesis is central since many of its results and formulae willusedein part 4
which focuses on impurity dynamics. It can be read as a junction sectiomiiongs both to
part 3 and to part 4.
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This section will generalize the path integral formalism in [8] to the languaggpérat-
ing functionalscommonly used in quantum field theory. We will use the Schwinger-Keldysh
formalism [111, 144] which is particularly well suited for our purposessifple alternative
approach based on the quantum Langevin equation has been disicugseohtroductory sec-
tion 3.1. From the generating functional we will easily deducenthre-equilibrium correlation
functionsfor generic non-factorizing Gaussian initial conditions (for a stochastcidption of
open quantum systemga a generating functional, see [145]) tleannotbe obtained within
the density matrix formalism. We will use this technique to treat two problems: theatala
dynamics of a particle confined in a harmonic potential after a position measot@erformed
at the “initial time” and the relaxation dynamics of a particle after an abruphgddn the
parameters of the confining potential.

More precisely, this chapter is organized as follows. In Sec. 3.3 we enpaltbyintegral
methods to derive the generating functional of out of equilibrium correlatioOur results
cover both factorized and non-factorized Gaussian initial conditionseisw/the effects of an
initial position measurement performed on the particle. In Sec. 3.4 we stuggthkbration
processes after an initial position measurement and after a quench inti@i@potential and
we derive the equilibration times for low and high bath temperatures.

Note that my work goes beyond the analysis in [8] where explicit expnessmr equi-
librium correlation functions were given. More precisely, | will derivduactional of two
time-dependent sourceg F, GG] such that the two-time correlation is given by

oo R 6 R[ 6 5 |
W) = 5w 7 s 25F(t’)} it

(3.44)

F,G=0

and similarly for higher order correlations.

Then | will obtain the path integral formulation of the generating functionahiaking
use of the coherent states of the bath variablés ¢ }) which are defined in App. 3.5.1. The
ensuing functional integration includes paths over particle and bath lesialSince we are
not interested in the degrees of freedom of the bath, we averagelblathavariables to find
a “reduced action” that only depends on the particle variables. In tr@atmases discussed
below (e.g., harmonic potential) the remaining path-integrals can also bemedand the
functional 7 can be fully determined. In this section we sketch all steps in the derivation.
Further technical details are reported in App. 3.5.1. The reader whd isteoested in these
technical details can jump directly to Eq. (3.87) where its rather lengthy figakssion is
given.

As a preview let be briefly discuss in what way the results in this section weaquilibrium
correlation functions in quantum Brownian motion will be of use in part 4: Mquailibrium
correlation functions have been recently observed in cold atoms expésimemthe dynamics
of animpurity atom moving in a one dimensional (1D) quantum liquid [146, 147, 148]. Both
the impurity and the quantum liquid are confined in an optical harmonic trap stheam-
purity motion resembles the dynamics of a damped quantum harmonic oscillateecl®.4
| apply the formalism developed here to impurity motion inla quantum gas described by
the Luttinger theory. In Sec. 4.4 a simplified modeling of the experiment in whitdrgnic
effects [149, 150] as well as the possible renormalization of the extpotahtial [146] are ne-
glected. These subtle effects will be analyzed in the subsequent Se@&iorv Luttinger lig-
uid will turn out to behave as an exotic quantum bath of harmonic oscillatorsaithhly non
Ohmic spectral densitgnd non-linearly coupled to the particle, see also Peotta et al. [151, 151].
This is shown to lead to the curious behavior that the oscillator frequencinceeaseupon
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increasing the coupling constant between the “bath” and the impurity in stamgast to the
behavior of an Ohmic damped oscillator.

3.3.1 The density matrix

In the following we will use the product statég {¢,.}) = |¢)|{{n}) between the particle and
the bath eigenstate$y) is the particle position eigenstate aHd,, }) is a coherent state of the
oscillators. If we define the oscillator creation and annihilation operatassidgir

= e g - L 3.45

an, on [Qn mnwnpn] ) (3.45)
MpWn | . T

ap = n nl 3.46

a oF [q P ] (3.46)

we have by definitioi,, |{¢, }) = £,[{&}). Interms of these product states the matrix elements
of the time evolution operator read

K(ap {&nr}:0i {€nitit) =
(g, (G, HTen o g, {g,33) (3.47)
and of its Hermitian conjugate
KAy A& sy a5, {6 1:t) =
(@ (&, Y Ther o HW|gp {g], 1) . (3.48)

71 is the anti-chronological time ordering operator. The elements of the timerdepedensity
matrix, p(t) = KpoK*, are given by

W(ap {&ns s ap A& 11 1) = (ar, &g}l () [d &1 1)
= /dqz-dql’-d&dﬁé K(ap, {&n.r} @is {€nsitst)
XW(qis {&ni}s 4> {60.01) KX (d5 {6 ) di {615 t) . (3.49)
where the matrix elements of the initial density matrix have been denoted by

W(in {fnﬂ'}; qgv {&L,z}) = <Qia {fn,z}‘ /30 |qg7 {f;’L,’L}> (350)

and we used the short-hand notation

o

dg; = [ e *nitnidg; dén - (3.51)

n=1

The path integral representationstofandC* are
K45 {6t {6ni)st) = D DE ST
K (ap €} a0 A€} 1) = / D~ Dg e n Sl

where we made clear with the superscriptand — which paths belong té andK*, respec-
tively. The functional integration measures are defined in App. 3.5.1.
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3.3.2 Reduced density matrix for a system initially coupledo an equilibrium
bath

The time-dependent density matrix in Eq. (3.49) still contains information @hewtegrees of
freedom of the bath which we are not interested in. Therefore, wagedtrace) over all the
bath variables to find a reduced density matrix that depends only on thdeaai@bles and
the external sources.

We are interested in a system that is initially coupled to an equilibrium bath. fbnefe

Hpo = Hp , Hspo = Hsp , (3.52)

where all initial Hamiltonians are labeled with a subscgipAt this point it is not necessary to
make? g, explicit since this term involves only particle variables that are not affelyetthe
trace over the bath variables. The matrix element of the initial density opdtgtdf3.50) in
Eq. (3.49) can be represented by an imaginary time path integral

W(gi, {&ni}i g (&0 )) = /qupgo e~ Sola (&)

where the initial actiorS, is in general different fron® reflecting the fact that{, # #. The
reduced density matrix can now be recast as

Wi(qy; dyit) = / dgidg;D¢"Dg Dy~
X 6%85[q+}7%55[q7]7%850[q0] f[q+,q7’ qo] ,

whereF[q", ¢, ¢"] is the “influence functional” that depends only on the particle variables, as
also doSs andSs. The path integral runs over all paths with

) =g, ¢(0)=a, ¢ t)=4q,
g (0)=q;, ¢"(Bh)=q(0), ¢"(0)=q"(0),

which is the reason for the name “closed-time path integral”. It is convetoantroduce the
linear combinations

r=(q"+q7)/2 and T=q —q . (3.53)
The calculation ofF can be found in App. 3.5.1 or in [8]; the result reads
Fla,z,¢°] = en®lemd’] (3.54)

with
Blz, 7. ¢°) = / ™ drdo b — ) (1)(0)
/ﬁth/ ds K*(s — ir)g"(1)2(s)
- / dsdu K (s — u)7(s)7(u)
M /0 s i’(s)% /0 " du (s — u)a(u) - (3.55)
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The kernelsk (0), v(t) andk(t) are defined in Egs. (3.134), (3.145) and (3.146), respectively.
K g denotes the real part df. Note that®[z, z, ¢°] depends on the fixed “end-points'and
(5h of the closed-time path.

Expected values evaluated at different times are now expressed in teanpath-integral
overq’, z andz with an effective actiort,

/
Q..>:t/}hydxﬁhaL/’DxDmImo...e%EM“”q, (3.56)

whereX[z, z, ¢°] is given by

E[mvfi?qo] =
®[z,7,¢°] +iSs0[q°] + Sslx + /2] — Ss[x — /2]
Bh
= ®[z,7,q"] +i /0 dr [1‘?@0)2 + %(q(’)]
t z z
+AdﬁM@Pwh@+2w)+mp@—zmﬂ. (3.57)

We introduced the initial maskl; of the particle and the initial potenti& that are in general
different from the “bulk” mass\/ and potential/. This allows for quenches in these parame-
ters. Note that the case in which the initial state is a pure state [e.g. Eq. (BadRlle easily
recovered by setting/, = 0 andV,, = 0 or, equivalently, by noting that the paif shrinks
identically to zero (since there is no initial Hamiltonian for this simple type of initiabtion).

The superscripts in the path integral in Eg. (3.56) remind us of the condtnairthe paths
are subject to. One has

2(0) = z;, #(0) =i,

v(t) = o5, ¢°(0) = 7 (0) =z + 3, (3.58)
#(t) =0, ¢"(Bh) =g~ (0) = — .

Note that due to the periodic boundary conditions of the tigce: ¢* () — ¢~ (t) = 0.

3.3.3 Generic Gaussian initial conditions

It is very easy to include the change®fz, 7, ¢°] induced by the initial position measurement
in Eq. (3.40). By using the explicit Gaussian form of the projedid,,) [see Eq. (3.41)]
the dependence on the initial measurement can be simply incorporateid im, ¢°] by an
additional term of the form

hopo T v T o
A2 |:($'L + 5 am)” + (z; 5 dm) }
_ _ih 2, T}
= 9A2 |:(':C’L —qm)” + 4} . (3.59)

In the limit of strong uncertainthA — oo the effect of the initial measurement is blurred.
In order to recover the case where the initial state of the system is pudeandples from
the environment [which corresponds to the factorized initial density matrix gvighgiven by
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Eq. (3.42)] the action in Eq. (3.57) has to be supplemented by

a7 [ g )+ = G =]
. _2 _2 1
= 2%12 [x?+az+x%+zr —2xmxi—2xmxl} ,
(3.60)
with the notation
Tm = (gm +4,,)/2 and T, = (gm — q.,) - (3.61)

Since Eq. (3.59) is a special case of Eq. (3.60) corresponding te ¢/, (or z,, = ¢,, and
Zm = 0) we will work with the latter in the following. The relevant cases can then ezt
by taking simple limits.

In the following expressions we will write only the terms that depend por z; since the
ones depending an,, andz,, contribute only to an overall constant.

3.3.4 The sources

The source term appears aglt’H(t')q" (') in K [see Eq. (3.47)] and as [ dt'H(t')q~ (')
in * [see Eq. (3.48)]. For convenience, we distinguished the function axistirthe positive
running branch of the closed time contour, which we still da(t), from the one existing on
the negative running branch of the same contour, which wefédHl). This implies that the
potentials in Eq. (3.57) are given B, (y) = V(y) — Hy andVy: (y) = V(y) — H'y.

After the transformation of variables in Eq. (3.53) we obtain two external tependent
sourcesF(s) = [H(s) + H'(s)]/2 andG(s) = [H(s) — H'(s)] which couple linearly to
the variablesz(s) andz(s), respectively. All correlation functions can be computed from the
generating functional7 [F, G] as derivatives of7 with respect toF' or G evaluated af’ =
G = 0. A physical force is represented B(s) = H'(s), thatis byF(s) # 0 andG(s) = 0.
Therefore, the linear response of the mean value Eq. (3.56) to ana@ximice can be obtained
for F'(s) # 0.

The generating functional, that is to say, the trace over the reducedyderagrix in the
presence of the external sources reads

eI ~ [ dzidzdey [ DaDEDe° erZl@2a ey &l

where the path integral is subject to the constraints in Egs. (3.58). Thallovermalization
factor depends oty 8 and all parameters in the model but not on the fields. We can now write

hoo
{a(t)) = €5G(t) ej[F,G]‘on,Gzo (3.62)
and
o h & A[ 6 5 -
Wat) =5 sam 7 [50@/) + 26F(t’)] e ’F,GEO (3.63)

and all other correlation functions can be obtained in a similar way by notingttig) = ¢ =
zyandg™ (') = z(t)+z(t) /2. At this point it has become obvious why two sources are needed
in order to obtain all non-equilibrium correlation functions.
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3.3.5 The harmonic case

To go further we restrict ourselves to the study of a quantum Brownigitieain a harmonic
potential for which

~V(z+3/2;8)+ V(e —2/2;8) = —MQ*zz (3.64)
and
1
Vo(q®) = 5 MoS%3(¢°)* (3.65)

The choice of a quadratic potential renders the problem analytically delv@he generating
functional can be calculated by simply evaluating the action on its minimal action(@agth

the initial condition branch and the time-dependent branches) as Galfissimmtions yield

only pre-factors that are independent of the sources and can bendetd at the end of the
calculation from the normalization of the density matrix. Note that, although bothliari

bulk potentials are harmonic, they are not necessarily the same thus allawitige fstudy of

guantum quenches.

3.3.6 Integration over the initial condition

We first treat the contribution of the initial condition pathin Eq. (3.57). The equation of
motion forq® can be easily obtained from Eq. (3.57):

Bh
Myi® (1) — / do k(1 — 0)¢°(0) — MoQ2¢" (1)
0
t
= —i/ ds K*(s —i1)Z(s) , (3.66)
0
with the fixed end-pointg®(0) = ¢, and¢®(Bh) = ¢; . As theq” path is part of the whole
closed-time path it implicitly depends on the fixed end-titrees well. In [8] one can find a

detailed analysis of this equation of motion which uses a Fourier expansibe pathg®(7)
on the interval0, S#|. By using the results found therein we obtain

i [t 1 =
Ylo, 2w, xp, %) = 7 ' z(s)T Mo |5 ; + 5
[z, Z, @i,z f, ] 2Mo/o dsdu R'(s,u)z(s)x(u) + i o[zAacl—i- 2@}
-l-ﬂ $2+j—’2—2:c l"—li’ Z;
2A2 71T 4 mEe g
t
+/ ds M {i:g'c—QQJ::I:—FF(s)x(S)%— (3.67)
0

We introduced the complex “force”

F(s) = F(s) + 2;Ci(s) — iz;Ca(s) , (3.68)
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with the functiong”; and(Cy
1 [e.e]
Ci(s) = BhA k:z—oo urgr(s) ,

Co(s) = 2 D, urvifils) - (3.69)

The constantd and= are given by

3 (@), (3.70)

k=—o00

1 < —
A—Bhk;oouk and =

with ug, = (% + v + G) 7L, v, = 2mk/BR, ¢ = [M~(0) — gx(0)] /Mo [for the definition of
~(t) see Eq. (3.75) below] and

gr(s) = /0 (:17(:)S(w)w22+wy2 cos(ws) , (3.71)
k

fr(s) :/0 d:S(w)wfj_ky2 sin(ws) , (3.72)
2

whereS(w) is the spectral density of the bath. The two-time functidmeads

R'(s,u) = R(s,u) + MoKRg(s —u) ,

R(s,u) = =AC1(s)C(u) + 515 kioo ur [gx(8)gr(u) = fi(s) fr(w)] (3.73)
with
Kp(s —u) = Blh Zk: g (s — ) (3.74)
the real part of the kerndl’. The time-dependent bath kerngl) is given by [see Eq. (3.145)]
v(s) = % /0 h %‘"S E:") cos(ws) . (3.75)

The functiong”; andC, as well as the kerngt(s, u) are not to be confused with the correlation

functions and the linear response function that will be denoted &ryd R, respectively.

3.3.7 Real time minimal action paths with external sources

The equations of motion far(s) andz(s) read

Z(s) + % /OS du (s — u)z(u) + Q%x(s)

B F(s) 7 t , B
= + VMo /0 du R'(s,u)x(u) , (3.76)
z(s) — c(lis/ du y(u — 8)Z(u) + Q*z(s) = G]\(j) (3.77)
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The action: evaluated along the minimal action paths can be determined by inserting the solu-
tions to Eqgs. (3.76) and (3.77) into Eqg. (3.67). However, the autho8 abted a simplification

of the calculation which can be generalized to our case where the S6is¢és also present

(in [8] no external source fat was used). The idea is the following. After a partial integration

in the second line of Eq. (3.67) the actibitakes the form

Z[I’,iﬁ,.’ﬂi,fl’f,.fi] =

- t
Mg — / 7(s)7
Mz;2; M /0 dsdu R'(s,u)Z(s)z(u)

t
+/ ds G(s)x(s) + border(z;, x ¢, Z;) (3.78)
0

when evaluated along the minimal action paths determined by Egs. (3.76).2i)l (8here we
used the boundary conditiory = 0. Here,border(z;,xs, z;) stands for all border terms in
Eq. (3.67).

On the other hand, one can split the force Eq. (3.68) into its real and immggiadsF (s) =
Fg(s) + iF;(s). Then, the minimal action path(s) splits intox(s) = zg(s) + iz/(s), where
x1(s) satisfies the boundary conditiong(0) = z;(t) = 0. The trick is to show now that
one can simply focus on the real part(s) of the minimal action path in order to obtain the
complete stationary phase action. Indeed, if we evaluate the action Eq) ¢8l§7along the
minimal zi(s) andz(s) we obtain

t
E[l’R,i’,l’i,xf,fz‘] = —Ml’iiR,i-i-/ ds G(S)%R(S)
0

t - i t / )
+/0 ds z(s) [FI(S) + 2]\40/0 du R (s,u)x(u)}
+border(x;, xf, ;) , (3.79)

where we used the fact thak/(s) satisfies the real part of Eq. (3.76). We now want to show
that Egs. (3.79) and (3.78) are indeed equal. With the help of the imagianargfEg. (3.76)
and the equation of motion (3.77) we can easily prove by integration by patts th

/0 tds:f:(s) [FI(S) + J&O /0 'du R’(s,u):z(u)]
t

= -—Mz;&1; +/ ds G(s)z1(s) ,
0

and by using this identity in Eq. (3.79) we recover Eq. (3.78). Theretbeeright-hand-side
(rhs) of Eq. (3.78) and the rhs of Eq. (3.79) coincide. It is suffictenévaluate the action
Eqg. (3.67) along the real component(s) that satisfies a much simpler equation tham).

In terms of the end points;, x; and z;, the solutions to the real parts of Egs. (3.76)
and (3.77) read

G.(s) : G+(s) 4 .
.fL'R(S) g+ (t) oy + |:g+($) - g+ (t) g+ (t) Tg
1 /° =
+M /0 du G4 (s — u)Fr(u)
1 Gi(s) [* 2
e /0 du G, (t — u) Fr(u) (3.80)
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and
_ t
3(s) = g*éj()s')x+ﬂl4/ du Gy (u— $)G(w)
1 Gi(t—s)
MG / du G4 (u (3.81)
wheregG, (t) is a propagator that in Laplace-transform reads
5 1
G+(\) = (3.82)

A2+ A5(N) + Q2

From Eq. (3.80) we immediately find, by using the boundary conditbn®) = 0, GL(0)=1
andg,(0) =0

: 1 G (1)
TR = XTr — €X;
SO NN ()
1/t _
- [ d t—u)F ) 3.83
A [, gt —wFa(w (383)
Inserting the solutions to Egs. (3.80) and (3.81), and Eq. (3.83) into &@9) we find an
effective actior[z;, x ¢, 7, that depends only on the end-points,z y andz;, and the external
sourcest’ andG:

E[xi,xf,a?i] =
iMy iMy_ _ 1 Gt | _
) Lilm Eﬂfzxm szxfm +M$z$zg7+(t) + G (1) /du G+ (t —u)Fpr(u)
i M, t
— i / ds Ca(s)z(s) + ZTO ( 1 TET 2) + W dsdu R'(s,u)z(s)Z(u)

+ 8
+;Uf/0 dsg+(t)G(s)

+xi/tds G(s) [g+(s)— g:((i } / ds/ du Gy (s — u)G(s)Fr(u)
1 d du Gy (t—u)

G(s)F , 3.84
- 0 ()G (5) P (284
with
1 _1. 1 ==, b 2 _ MoA?
V=13 + 2 =2+ 12 and € = el (3.85)

For the sake of a clear presentation we have not replacedand F by their corresponding
expressions in terms of the end-points yet.
3.3.8 Integration over the end-points

In order to find the final expression fof|[F, G] we still have to integrate over the end-points
x;, vy andz;. Since the exponent[z;, z ¢, ;] is linear inx; the integration over this variable
generates a—function of the form

5 [w—]\z /0 s g+(s)G(s)} , (3.86)
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up to a factor not depending on the end-points which, in combination with thgratien over
7, enforces a substitution af, by & [ ds G4 (s)G(s) andz(s) by 1 [* du G4 (u — s)G(u)
[the first and the third terms of the rhs of Eq. (3.81) cancel]. More@ftar the integration over
Z; the fifth and the last terms of the rhs of Eq. (3.84) cancel, too. Finally, this<n integral
overz; yields

JF,G) =

2 t

A/ t . M, -
- gt < /0 ds G(s)g+(s)> T EUACEO
_ h]\jf\Mo/o ds G(S)g+(s)/ ds’ /S du'Go (s —u)C1(u)G(5)

2 </OtdsG( G (s ) /ds/dug+s—u G(s)F(u)
+h]\1/[2/tdsg+(s) (s) /ds/dug+u—5)02( G ()
thm[/ ds G(s)G (s /ds/ du G (5 — w)G(s)Ch (u)

— %T% /0 ds /0 ds’ / du / , du/Gy (u—s)R"(s,5 )G (v — )G (u)G(u) .
(3.87)

Here we introduced the kernel
R”(S7 S/) = AlCl (S)Cl (8/) + R/(Sv S/) ) (388)

where we used Eq. (3.139). Equation (3.87) is the central result ofrdteért of this paper.
It allows us to derive all non-equilibrium correlation functions in a systema#ly. Direct
applications of this method will be presented in Secs. 3.4 and 4.4.

3.3.9 The correlation function

The two-time correlation function Eg. (3.63) has two contributions,

([a(®), q()l+) + %([d(t), q(t"]-)

(t,t) +iAt —t) . (3.89)

(at)q(t) =

Q[\D\»—t

The first term, the average of the anti-commutator or symmetrized contributioeali@nd
the second one, the average of the commutator or anti-symmetrized contrjlsiiioaginary
and proportional to the linear response functi®it, t'), as shown by the Kubo formula. For
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generic Gaussian initial conditions, Eq. (3.41), one finds

C(t,t') =
A gag. ) + EH0 [ augstt ~ e + 3,640 [ dugete— i

0

tl

hf\;[j\jog+(t)g+(t/) - % [ng(t) ; G (t' —u)Ca(u) —|—Q+(t’)/ Gy (t — u)Cy(u)
/2 t t/
# e 60+ 37 [ auute- i) [@ i [ e -
2 Y
- TR 0 (O) + / du / Q' Gt — )R (u, )G (' — )
(3.90)

To represent a pure initial condition that is initially decoupled from the batln &q. (3.42),

we setM = My, A’ = €2 and=' = 1/4¢* as well asCy(s) = 0, Cz(s) = 0 and R" (u,u’) =
MK (u — u). A non-factorized initial state with — say — an initial position measurement of
“width” e is obtained withz,, = ¢,, andZz,, = 0. In the classical case the non equilibrium
correlator of a Brownian particle is given by Eqg. (3.153).

3.4 Non equilibrium dynamics after quantum quenches.

Quenches from a high temperature initial state have been extensivelydsindie literature.
They correspond to the case of a factorizing density matrix as in Eq. (3rB#)is section we
will study the non-equilibrium dynamics of a quantum Brownian particle aftenghes from
different initial states. As already mentioned in the introduction, there areeiperimental
scenarios that are of interest to us. In the first one the initial position obaidan particle
trapped by a harmonic potential is measured at0. We will study this case in the first part
of this section by focusing on the two-time correlation function. The secoedasio consists
in a quench of the trapping potential, which in the case of a harmonic poteotiakponds to
an abrupt change in the trapping frequency. Such a quench will biedtinthe second part of
this section. In both cases, we will derive the asymptotic equilibration behai/tbe system
in the presence of Ohmic dissipation.

3.4.1 A particle in a harmonic potential with an initial position measurement

The general results in Sec. 3.3 are here specialized to the case of e peagiped in a harmonic
potential, on which a position measurement is performed=at). As we work with the same
particle initially and subsequently/y = M, while Q¢ = Q > 0. At t = 0 a measurement of
the particle position is performed with outcomg = 0 and uncertaintyA. The initial density
matrix is given by Eq. (3.40). Note that the particle is permanently coupled toaithe hence
the initial density matrix does not factorize. Thus, our starting point is thergéexpression
Eq. (3.90) withM = M,, Q = Q4 andx,,, = z,, = 0. The Laplace transform of the correlator

71



CHAPTER 3. OUT OF EQUILIBRIUM QUANTUM BROWNIAN MOTION

reads
; IR N N =/ M3
C()\, K}) = MQ+(/\)Q+(/<;) {A//\/f/ + M)\Cl (K/) + MHC&(/\) + MQO
1 - 1 - 1 -
= 170N = 77C() + MZR”()\,/@)} , (3.91)

an expression that can be simplified by using the method explained in App. 3.5.3
Introducing the functiork(\) = gx(\)/M + A, EQ. (3.91) can be written as

: hoo s (A=A -

€)= 379+ (G () (s S a9

5 5 51e 51e K
g+(/\)g+(ff)+c q(A))\ii ()

— .92
+ 4M €2 ’ (3.92)
with the equilibrium correlation functiod'®d()) in the Laplace domain defined in Eq. (3.170).
In App. 3.5.3 it is shown thak,(\) can be written in terms off ' (\) and G ' (|vy]) [see
Eq. (3.169)]. Fof2 = Q, we use the fact that,, = G (|v|) and we find from the definition of
the equilibrium correlator

. A . .
C0) = 537 2 73w [0+ = Glln)] (393)

which is derived in App. 3.5.3 [see Eqg. (3.170)], that the desired naoililegum correlation
function of a quantum Brownian particle with initial position measurement reads

5 MA —A

5 ; h
CAK) = S35 CINCNR) + 7759+ (NG (k)
Cled(X) + €1 (k)
+ o : (3.94)

The classical correlator for an initial position measurement with outcgine- 0 and un-
certainty A can be obtained from Eq. (3.158) by replaci(lﬁz) by A%, The initial mo-
mentum is not measured and it is therefore distributed according to the Boliztaanwith
(v3) = (BM)~L. In the limit of a sharp position measuremen (~ 0) the classical corre-
lator of an equilibrium particle read®4(\, k) — BMQ? C'*4(\)C'*9(k). As to the quantum
correlator, we note that’ = 0 for A — 0 and the sum of the first and the third term in the
rhs of Eq. (3.94) yield§®I(\, k) — M/(hA) C'*4(\)C'e(x) which already has the form of its
classical counterpart. It is easy to show that in the high temperaturedimit. |Q? — 42 /4]
the two expressions coincide exactly. The role of the second term in thef fBg. (3.94)
remains to be discussed: it describes the initial momentum due to Heisenbergigainty re-
lation. Consequently, it diverges when the initial position measurementrigcsharp unless
one considers that/(Me?) = h?/(M?A?) — 0 even thoughA — 0. More precisely, when
BhIO? — 4241/ <« 1 we haveC'™ ~ 1/(BMQ?) andG, ~ 1/9. In order for the second
term of the rhs of Eq. (3.94) to be small compared to the other terms the conditign A\
must hold, with\; = \/h?/(2r M) thethermal de Broglie—wavelengtsf the particle. Only
then can one speak of a classical particle: the conditilf2? — 72/4!1/2 < 1 that properly
defines thehigh temperature regime not sufficient One also has to take thmacroscopic
measurement limidefined through > Ap.
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In the real time domain the quantum correlation function is

MA —A

C(t,t/) _ f o Cleq(t/)cleq(t/)
h / e /
+mg+(t)g+(t ) + Cl q(’t —1 |) ) (3-95)

whereC'®4(t) is the real time equilibrium correlation function. This result applies to any kind
of spectral density of the bath. We will use the correlation function Eq5§3dr®Sec. 4.4 to
study the non equilibrium dynamics of an impurity in a Luttinger liquid bath for whispecific
spectral density of the bath applies.

We are interested in the equilibration behavior of Eq. (3.95) in the presdr@bmic dis-
sipation for which the spectral density behavesas) ~ ~yw for smallw, with ~ playing the
role of a friction coefficient [for more details see App. 3.5.4]. It is of@pkinterest to study
the strong quantum regim# > |Q2 — 42/4|~/2. By using the long—time limits Eq. (3.179)
and Eq. (3.180) presented in App. 3.5.4 validffor v~! we find that the propagatét, (t) ex-
ponentially approaches zero whereas the equilibrium correlation furétief) relaxes with
a power law~ t=2 for t — oo. In the long—time limit the correlator Eq. (3.95) thus relaxes as
fast as the squared equilibrium correlation function. Thereforejfios |Q> — ~42/4|~1/2 :

C(t,t') =Cr(jt —¢|) + O [(t)?] (3.96)

whent, ¢ > ~v~!, and the equilibrium functio@!®d(|t — #'|) = C®4(¢,t') is asymptotically
approached during the algebraic relaxation of the non—equilibrium termssequently, care
has to be taken in experiments when an equilibrium system is desired at wetgniperatures
after an initial position measurement. The relaxation of the system is slow indepity of the
dissipation strength. At high temperaturegh < |Q? — ~2/4|~1/2 the relaxation is of order
O(e™ ) [see the discussion in App. 3.5.4] and therefore exponential as in tregoalblgmit.

3.4.2 Quantum quench in the confining potential.

In this section we desire to gain insight into the equilibration process of a@wmaBrownian
particle after an abrupt change in the trapping frequency. At0 the particle is confined in a
harmonic potential with frequendy, > 0. At ¢ = 0 the experimentalist abruptly changes the
strength of the harmonic potential resulting in a higher or lower trappingiénecy. We do not
consider an initial position measurement since we assume that the particlegydbealized
by the initial harmonic trap. Hence we s&t= A, 2’ = 2, x,,, = 7,,, = 0 ande — oco. By
starting from Eq. (3.91) and by using Eq. (3.73) it is straightforward tmshith the methods
employed in App. 3.5.3 that the correlator in the Laplace domain reads

h Gr(NGi(r) 1 [ééeq(A)Jrééeqw)} : (3.97)

COR) = NG ) AR

whereG? (\) = 1/[A\2 + A\y(\) + Q3] is the propagator with initial frequendy, and

G0 = 57 2 g [0 ) (399)
k

is the equilibrium correlation function of a particle in a harmonic potential witguescy,
[see Eq. (3.170)]. The structure of Eq. (3.97) is very differentfithe classical counterpart
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Eq. (3.157). Still, by using the high temperature approxim&fﬂ(‘}ﬁ()\) ~ — [g;(x) — 1/93} /A
[see the end of the discussion in App. 3.5.4] one recovers the clasgizaksion Eq. (3.153).

The equilibration time for Ohmic dissipation in the strong quantum regifaes |Q? —
~2/4|71/2 can be found in the following way. Note first that whéff()) is multiplied by
G+(\)/G%(\) one obtains a new function that we odll

() = Al oy NG
CN =gt 27— |90 G g ey 9+ m] . (399

Second, we observe that the Laplace transfor@of- 0,/ ) f (¢, 1) is equal to A + ) f(\, k) —
f(t = 0;5) — f(A\;t' = 0) where f()\, ) is the Laplace transform of the generic function
f(t,t") with respect to both andt’ while f(\;t' = 0) [f(t = 0; k)] is the Laplace transform
of f(t,t' =0) [f(t = 0,¢')] with respect ta (t'). Now, by choosing/ (¢,¢") = C(t,t") we find
for the correlation function Eq. (3.97) in the time domain

(0¢ + 0 )C(t, ') = C'(t) [1+ (2 — Q)G+ ()]
+C(t) 1+ (2 - Q)G+ ()]
—C(t,0) —C(0,t) . (3.100)

From Eq. (3.97) we easily find the expression of the Laplace transfor@(iot’ = 0) by
multiplying C(\, k) by « and by taking the limit — oo:

Cnt =0) = Gl [1 (02— Q%)Q;(A)} —C'(\). (3.101)
Accordingly, Eq. (3.100) simplifies to
(O +0)C(t, 1) = C'(t)(2 - Q)G (t)+C' () - QDG (t). (3.102)

Finally, it is clear that{d; + 9,/)C(t,t') = 0 whenC(t,t') = C®i(t,t') = C'®4(|t — ¢'|) so that

the terms of the rhs of Eq. (3.102) can be understood as the derivative non equilibrium
part ofC(t,t"). In combination with the results of the discussion in App. 3.5.4 the equilibration
behavior of the correlator at low temperatures after a quench in the tcappiential can be
summarized as follows [by noting that the asymptotic long—time behavié(of andC'e4(t)

are identical]:

ct,ty=c(t—t))+0 [e—“/z/t’ + e‘”t'”/t} (3.103)

for t,t' > 1. Consequently, the non equilibrium contributions are exponentially ssggde
which leads to a faster equilibration than the one found after an initial positiasumement.
At high temperatures the relaxation@ft) andC'*d(t) are both exponential @ (e~7%/2)

so that in the high temperature regit, t') = C1°4(|t—t'|)+O [e—’v(t+t/)/2} in sharp contrast
with the algebraic relaxation found in Sec. 3.4.1.

3.5 Appendix B

3.5.1 Coherent state path integral formulation

In this Appendix we detail the derivation of a path-integral representatidhe generating
functional of the multi-time correlation functions of a quantum particle in contébta generic
guantum bath made of an ensemble of harmonic oscillators.
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The terms in the Hamiltonian of the dissipative quantum Brownian particle thandegn
the bath variables, Egs. (3.33) and (3.34), can be rewritten in termsaifarend annihilation
operators of the bath oscillators in view of a later use of coherent statesdéines the creator
and the annihilator of the-th oscillator mode by

St MpWn | . . v ~ 104

al, =1/ o [:L‘n mnwnpn] , (3.104)
[Mpwn | . (A

An = n n . 1

a o, |:ZL‘ + mnwnp ] (3.105)

The operatorsi,, and a,0 satisfy the bosonic commutation relatiofis;, a,,] = 6, and
[a;, at] = [an, am) = 0. Equations (3.33) and (3.34) read in terms of dfjeanda,,
. o
Hp = hwnian (3.106)
n=1
Hop =Y gnd(a) + n) . (3.107)
n=1

Here we introduced the notatign = +/hic2 /2m,wy,.
We introduce the coherent states of the harmonic oscillators, which d@reupenty suitable

when dealing with the bosonic ladder operators in Eq. (3.104),
€) = e577]0), (€l = (0™, (3.108)

where¢ is a complex number angf its complex conjugatea™ anda stand for the creation
and annihilation operator of each harmonic oscillator. The coherent sratesgyenstates of the
annihilation operator, that is

ale) = €le) | (€la* = (€le” (3.100)
with the properties
€0y =€ and 1= / de*de €16 (€] (3.110)

where1’ denotes the unity matrix of one oscillator. Hence, the unity matrix of the whole
particle—bath systerfi can be written in terms of the product states(¢,, }) as

1= [ [ TI{agae, e a6 a6} (3.111)

The trace of any observable that depends on the particle and the bath operators can be ex-
pressed as

1 = [dq [ T[{agiag,e 5 } 0. 61 Bla. (60)) (3.112)

The generating functional can now be obtained by supplementing the pbteiitias) in
Eqg. (3.32) by a linear term-H (s)¢ where H(s) is a c-number function that plays the role
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of an external source. To be more explicit, we introduce two distinct ssuf¢s) and H'(s)
in the potential” for the time evolution operator

K(ag, {&n, s }50i, {€ni}it) =
(af: {€np}Tem I g, (g, }) (3.113)

and its Hermitian conjugate

K* (¢, {601 100 A&} t) =
(gh, (€0 Y TTef b WO (e 1y (3.114)

respectively. 7T is the anti-chronological time ordering operator. In the following we will
use the shorthand notatielf; = [0, e *ni"'d¢; ;dg,,; . All correlation functions of the
position ¢ can be obtained by taking the corresponding variations of the trace dintiee
dependentensity matrixj(t) = KpoK*, Eq. (3.49), with respect té/(s) and H'(s). The

~

matrix elements of(t) = K poK* are given by

W(ar {&nr s ap &1 t) = (ap, {&nr}l p() 1d7: {€n s D) (3.115)
Wi {€ni}s ai- &) = (i {&ni}l Do lai {&.3) - (3.116)

The path integral representation/6fandC* are found by using standard methods:
a7 &gt (6nsdit) = [ D" DET
<o (slat (61) (3117)
KXy A& 11 6, (€1t = /Dq_D£_
Tt
X exp (_hS [q 7{511 }]> ) (3118)
where we make clear by the superscriptand ~ which path belongs téC and which tokC*,
respectively. The real time intervéd, t] has been discretized inf6 € IN steps of length
At with t = AtT. The functional integration measures are define®as= erz_ll dg; with

¢; = q(jt/T'). The terms contributing to the total actid®y, &, = Ss(q]+Sp[&n]+SsB4, &l
introduced in Eqgs. (3.117) and (3.118), read in discretized form

T M . 2
Sslgl => At - <(1]A(f_1> — V(g5 jAt)
j=1

+H(jA)g;] (3.119)

T—-1
Splén] + Sspla. &) = ih Y & i(Enj — €nj1)
=1
. J
+ At Z [y &nj—1 + 9na;(En j + Enj-1)] - (3.120)
j=1
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The reduced density matrix depends only on the particle variables andtémeahsources,

W(Qf Qfa )— /d%dqldfzdézdgflc qf, {én,f} q“{gnz} t)
X Wi, {&ni}; @ {60, DT (df {&n s }s @i {€0 151 - (3.121)

In Egs. (3.117) and (3.118) we omitted normalization factors that do netdiepn the bath nor
on the particle variables. Note that the integral runs only over bath atidlpaariables with
an index betweem and7’ — 1 sinceqq = ¢;, gr = ¢y (and analogously for the bath variables)
are fixed forkC andqy = q}, qr = ¢; (and analogously for the bath variables) are fixedor

The path integral description gf is obtained by dividing the imaginary time interyél 54
into 7' time steps. Consequently, by usipg= e ~#*o we find

W((é? {f;,i}ﬂli, {‘fn z}

/ Dq° _{Dgn exp (—SO[q @J)} : (3.122)

whereSy[q, &n] = Sosla] + Sos[&n] + Sossla, &n] With

T—1
Sol&n] + Sosnla, &n] = R Z & (Enj — Enj—1)
=1
. J
+ AN Ak a1 + gndi (En 5+ Eng-1)] - (3.123)
j=1

We introduced the imaginary time path sty = 5h/T.

Integration over the bath variables

The influence functional in discretized form reads

Fl{aj}] =
o 3T * i
11 / [T dénjde ; e T sk G080y
n j=1

e%gn Z?:l Atqj (én,j""f;’j)

1 2T x i 3T e
w e hIn 2=ri1 A4 (En jHE )= 590 2joor 1 Atgj (Eni+E ) 7 (3.124)

which depends on the correlation matrix

10 0 —ky
ks 10 0
» 0 —ks 1 0
E'=| o o0 _m 1 o | (3.125)
0 0 - —kyr 1
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with k; = 1+iAtwforj < T, kj = 1—iAtwforj > 2T andk; =1 - At'wforT < j < 2T.
Note that in this notation there a3é’ time steps in Eq. (3.124) ang = q;F forj <T,q; = q?
forT < 7 <2T andg; = qa; for j > 2T is understood with an analogous notation forghe.

The part of the action that depends only on the particle variagdesan be found by com-
bining the relevant contributions in Eqgs. (3.117), (3.118) and (3.122),

2 Ss({a)) = SsUaH ) = 35s({a} o)

— 2S5 ({6} r) (3.126)

Note that the exponential factors that stem from the bath integration mezgui@51) exactly
combine with the sums in the actions (3.119) and (3.123). The elemigritg’) of the matrix
K are easily found:

1 for j =4
K(j) = Mk for j> (3.127)
1—Fky- - ksr kl kst for j <.
Hl:]+1 l

The Gaussian integral in Eq. (3.124) is now readily done. Explicit espres of Eq. (3.127) in
the continuum limitl’ — oo are easily obtained: for instance, when’ < T', K(j, j') couples
to two ¢ ™ fields and is given by

K(j,5') =

1 iwAt(j—5") T
{ e for j/<j<T (3.128)

1— e Bhw | e PhotiwAti=i") for j < j' <T.

Note that under the sum ovgrand;’ only its symmetrized version occurs. By reintroducing
the fieldsqg™, ¢~ andq® we find [8]

_ 1 _
Flat.q.¢°] = exp (—hé[qﬂq ,q0]> : (3.129)

where the exponent reads

®lg",q7,q")
Bh Bh
/ dT/ do K(—it +i0)q"(1)q ()+/0 dT%qOQ(T)
8h
—i/ dT/ ds K*(s—iT)qo(T) [q+(s) —q_(s)] (3.130)
/ dt/ du [¢ q (s)] [K(s—u)g" (u)

—K*(s —u)q (u)]

+i/0 d8§ [q+2(s) —q_Q(S)] .

The kernelK reads for complex timeg=s —ir,0 < 7 < h

Z gn? cosh|w, (Bh/2 — i0)]

sinh|w,Bh/2] (3.131)
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and the constant is given by
o0 g 2
=2) 3.132
I En hoor ( )

Note that for a fermionic bath the only difference lies in the boundary comgitemforced by
the trace operation: for fermions anti-periodic boundary conditions apglyntrast to periodic
boundary conditions for bosons. This difference is incorporatedeplacing—~&; by k; in
Eqg. (3.125). The analysis for bosons can then be repeated, leadirfgrtoianic bath kernel
where thesinh in the denominator of Eq. (3.131) is replaced hysh. Note that the numerator
does not change since two minus signs arrise, one due to the anticommutktimm ref the
fields when passing fromgﬁh drdo-integral to afomZ dr fOT do-integral, and a second one due
to k1 — —k1.

The environment can be regarded as a proper heat bath only if thewspexdt the harmonic
oscillators becomes quasi-continuous. Accordingly, we introduce therapdensity of the
bath through (thei is a mere convention)

2 2
Swy=r>" 9%5(00 —w) =7y 2nfnw 5w — w) - (3.133)

Then the kerneK (6) and the constant are rewritten in terms of the spectral density

[T dw cosh|w(Bh/2 —i0)]
K@®) = /U ) s 2 (3.134)
and
B * dw S(w)
= 2/0 s (3.135)

The real and the imaginary parts of the kerh&b) = K (0) + iK;(0) are found to be

Kn(s —i7) = /0 h ?S(w)costh(é hﬂ/}? B ) cos(ws) (3.136)
Ki(s—ir) = —/0 ?S(w)smz[:éffgs/;} ™)l sin(ws) . (3.137)

The imaginary time argumentvaries in the interval0, 54] so that it is convenient to introduce
the Fourier series oK (s — i7) with respect tar. Introducing the Matsubara frequencies

2k

v = ﬁ (3.138)
we find
KR(S - ZT) = ﬁlh kz_:oo gk(g)eil/k”r (3139)
and
Ki(s—ir) = ﬁzh k:Z_oo fr(s)e™ T (3.140)
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where the functiong, and f;, are defined through

* dw 2w
and
B < dw 2up .

In the following we will express most quantities in terms of the functignand f;. For real
times the real and the imaginary parts of the kernel (3.134) read [se€3EL39) and (3.140)]

Kg(s) = / 9 6 ) coth(Bhw/2) cos(ws) (3.143)
0 T
and
Ki(s) = — /00 d—wS(w) sin(ws) . (3.144)
0 s

We now eliminate the local terms in Eq. (3.130). We define the two new kernels

2 [ dwS(w)
’y(s)—M/O — cos(ws) (3.145)
and
k() = %{: > e, (3.146)
k=—o00
where(}, is defined by
G = 1l — 9k 0)]
k= M, K= gk
1 [®dwS(w) 2v}
= —_— . 3.147
MQ/O T ow wl4vP ( )

The latter kernel is related t8 r(—i7) via
hB T
- / dT/ doKr(—it +io)f(r,0) = (3.148)
0 0

hB 1 (8
A desn [ anaokts - o110,

with a generic functiory. In terms of the kernels(s), k(7), K*(s — i7), Kr(s — u) and the
linear combinations

r=(q"+¢7)/2 and T=q"—q (3.149)
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the exponent of the influence functional reads

Bh
Dz, z, 0] L / drde k(r — U)qO(T)qO(U)

i / /0 ds (s — i) (r)z(s)

/dsdu Kgr(s —u)z(s)z(u) (3.150)

—i—zM/ds z / du (s —u)a(u) .

Details of the derivation of Eg. (3.150) can be found in the thorough aisaily [8].

3.5.2 Classical Brownian particle in a harmonic potential: hitial position mea-
surement and quenches in the trapping potential

This part is meant to be a reminder on classical stochastic motion inducechbsigbaths.
None of the results presented herein are new but they are useful tonfrerted with the
guantum results discussed in the body of the paper.

The classical Brownian motion of a particle confined in a harmonic potentiabeade-
scribed by the_angevin equation

() + Adwm—@<>+920 (). (3.151)

where¢ is a zero mean Gaussian nofseith correlation(¢(¢)¢(s)) = ﬁﬁy(yt — s|) and with
~(t) given in Eq. (3.75) [50]. In the Laplace transform formulation, the sofutiEqg. (3.151)
reads

Q) = G+ (V) [E0) + w0+ (A +700)°] (3.152)

where we used ., defined in Eq. (3.82) and we introduced the initial conditigft® = ¢° and
4(0) = vo. The correlation function is now easily computed and it reads

CON ) = AN = 50T

+ G NG (k) |08 + A+ 300 (5 + ()"
+ G (NG (k) vog® N+ F(N) + £ +3(x)] (3.153)

where we used the fact that the Laplace transform(pf— s|) with respect td ands is given
by [¥(A) +7(x)]/(A+ &). The initial values;” andvg can be sharp or drawn from a probability
distribution which is typically of the Maxwell-Boltzmann type, that is

M2 M, M,
PL o] = P50 exp - (g + TPage) | (3.154)

G+ (NG (k)

2The underlying probability distribution is of the (Gaussian) Boltzmann-Gilgpsexp(—3#) with H thefull
coupledHamiltonian of the particle—bath system. Equation (3.151) thus describesatie where the harmonic
oscillator bath and the particle are initiabpupledas in the quantum case studied in the present work. This subtle
point is often overlooked. For more details see p. 21-23 in [50].
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where(), is the frequency of the initial trapping potential afid is the initial mass. From
Eq. (3.154) we easily derive

(@°%) = (BMpQ2)™' and (v2) = (BM,) " . (3.155)
As long as)y = Q2 andM = M, the correlation function can be rewritten as

5 Sleq Sleq
Gea(n k) = SN FCHR) -
A+ K
1 F(A) + A
leq =
CHN = sy

(3.156)

which is the equilibrium correlation function.
The non equilibrium correlation can be recast in the form

i Glea()) + Clea
6101 = €I Cl)

+ BMQ2 Glea(\)Eeq (k) [BMQQqOQ - 1}
+G1 (NG (k) vog® A+ TN + £ +3(x)] - (3.157)

0.0 09 i - 7]

In many caseg’ andv are uncorrelated random variables. Then Eq. (3.157) transforms into

B Sleq Fleq K B B
en) = R 4 G, 0640 [(6d) - 5]
+ BMO2 Clea(\)Cle () [5MQ2<q02> - 1} . (3.158)

3.5.3 The equilibrium initial condition

In this Appendix we use Eqg. (3.87) in the particular case of an equilibriumliotiadition and
a subsequent evolution still in equilibrium. We show how to derive the equilibgarrela-
tion function and we prove that the fluctuation-dissipation theorem (FDTatisfied without
imposing time-translational invariance (TTI) as has been done before litettegure [8].

The fluctuation-dissipation theorem

The linear response is easily found by noting that the external s@irgerepresents a physical
drift force. Therefore, by calculating

) = g

exp (J[F,G]) lg=o0 = /0 ds R(t — s)F(s) (3.159)

for F' # 0 one finds the response functi®(¢) with respect to the external fordé(t). We set
e — oo Which corresponds to the absence of any initial measurement. By usir{§.B¢) we
obtain

1 ~ 1 1
R() =379+ and RN = o mmy e

(3.160)

in the time and Laplace transform domains, respectively. These expressi® independent
of the initial condition. Therefore, the response function is the same in @naf @quilibrium.
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Moreover, it is equal to the response function of a classical Browradicie [21] if it is coupled
to a bath with the same friction kernel

We will confirm the validity of the FDT when the system is in equilibrium. We chdbse
initial Hamiltonian to be equal to the “bulk” one, that is

Q= QO and M = Mo y (3161)

so that the initial density matrix is equal to the Boltzmann weight(—SH) with the terms
contributing to given in Eqgs. (3.32), (3.33) and (3.34). The initial state is not pertubyed
any measurement, so we take+ oo which impliesA’ = A and=' = Z. From Eq. (3.90) we
find the equilibrium correlation functiof®?(¢, ¢') which in the Laplace transform version reads

C\ k) = %g;u)g;(n) {AM + %Aél(ﬁ)

A - — 1~ 1 - 1 -
+M501()\) +=2— MCQ()\) — MCQ(K]) + WR”()" n)} . (3.162)

This expression can be greatly simplified. We first note that from the defigititg. and f;. in
Egs. (3.141) and (3.142) it follows that

. ~ Vi
fel) =vrgr(s) . o) = Far(N) | (3.163)
where we used;(0) = 0. The Laplace transform of the kernel

R"(s,s) hZUk gk (s)gr(s

— fi(8) fe(s)] + Mo Kp(s — s') (3.164)
[see Eq. (3.88) and (3.73) fdr = A’] can now be written as

B/ ) hzuk< 5 guNait)

ﬁhzg’f Aii’“ ) (3.165)

and by definingu(\) = gx(\)/M + X we find that the expression in the curly brackets in the
rhs of Eq. (3.162) can be recast as

R () + T
ﬂhZuk (1—/\>hk Vo (15 Z Kl Aiﬂk ), (3.166)

where we used Egs. (3.69) and (3.70). By combining the expressitihefdraplace transform
of the cosinef;” dt e * cos(wt) = A/(A\? + w?) with Egs. (3.145) and (3.141) we obtain

1 A

—K(A) = 2

i (w7 (wel) = A3(A) - (3.167)

By using instead Eqgs. (3.145) and (3.147) we derive

Cr = |ve|¥(lvkl) - (3.168)
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The kernel can be eliminated in favor @ through Eq. (3.82) which yields

) = g [0 () — G5 ] (3.169)
k

This expression can now be inserted via Eq. (3.166) into Eq. (3.162)ddHe equilibrium
correlator. Note that, fof2) = Q we haveG, (Jvx|) = ux. With the help of the one variable
function

Cla) = /3}\4 2 e GV (3.170)
k

the equilibrium correlation function becomes

_Cl() + Cle9(x)

Cr) A+ K

, (3.171)
which clearly displays time translational invariance (TTI). Indeed, thddaptransform with
respect ta andt¢’ of a generic functiory (|t — t|) that depends only on the time difference is
equal to[f(\) + f(x)]/ (A + ), wheref(\) denotes the Laplace transform ) with respect
to t. Hence, we hav€®i(t,t') = C'4(|t — ¢/|) with the explicit Laplace representation of
C'®4in Eq. (3.170). The equilibrium correlation function is thus found without igipg TTI.
By imposing TTI Eq. (3.170) can be directly found from Eq. (3.90) by sgttin= 0 which
simplifies the expression considerably. Rememberghgt = 0) = 1 andG, (t = 0) = 0. By
taking the Laplace transform of the result with respecdtand by using Eq. (3.167) one easily
recovers Eg. (3.170).

Itis now straightforward to establish the relation betw€&H (¢) andR (t). Firstly, we note
that sinceC'®4(¢) is an even function of its Fourier transforng'°4(w) is related to its Laplace
transform through

Clo9(w) = C*(iw) 4 C*Y(—iw) . (3.172)

Thus, by using Egs. (3.160) and (3.170) we have

Cled () = ; > w22+wu,3 [ﬁ(m) — R(—iw)| . (3.173)
k

Now, since the Fourier transform of the response functiofw ), is related to its Laplace trans-

form viaR(w) = R(iw) due to causality we obtain the quantum FDT in the form
C'(w) = hcothwBh/2) Im R(w) , (3.174)

where we used the formule, w/(w? + v2) = (8h/2) coth[wBh/2]. This result is completely
general, in the sense that it applies to any bath, as it should.

3.5.4 Asymptotic behavior ofG (¢) and C'*4(¢) for Ohmic dissipation

In the case o©Ohmic dissipatiorthe spectral function has the form

Sw)=vw for w—=0. (3.175)
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For large frequencies one typically introduces a high frequency dutioftion (since the ultra-
violet divergence is unphysical) that we choose to be of the Drude«typéw?, + w?) where
wp > w is the high frequency cut-off. The bath kernel

v(t) = ywpe wp? (3.176)
then has a finite memory and a simple form in the Laplace domain, namely

- wp
= . A77
() Yo (3.177)

We are interested in the equilibration behavior of the correlation functioBE2p) when quan-
tum effects dominate. In order to find the long—time behavia€'6f(¢) andG. () we study
their small-\ behavior. In the very low temperature limit the sum over the Matsubaradrequ
cies in Eq. (3.170) can be replaced by an integral. ¥e¢ 0 one finds

e = [T [0 - Guw)

L2
1 dv N2 = 1)+ AvA(\w) — )
L 3.178
T /0 2 —1 04 ( )
A e
)i v R+ viv)+Q?)

where the ellipsis stands for higher ordershin Now, by observing the ultraviolet behavior
of Eq. (3.177) one easily argues that all the terms in the rhs of Eq. (3dré8yf order~

A. Therefore, the long time behavior of the Ohmic equilibrium correlation funcéibzero
temperature is

+ ..,

1
cled o 2 for ¢t — oo and Bh> |Q? — 72/4’_1/2 . (3.179)

It is straightforward to show by direct inversion of the Laplace tramsftirat the propagator
G™(t) is exponentiallysuppressed for large times (and for Ohmic dissipation) on a typical time
scaley/2, hence we have

Gy(t) ~e M2 for t— o0 . (3.180)

Equation (3.180) holds for all temperatures. In the high temperature regiméasy, —
oo S0 thatC®d()\) ~ — [(L(A) - I/QQ] /(BM)). Translated into real time this states that

G. (t) is proportional to the derivative @f'°4(¢) which is nothing else than the classical FDT.
Accordingly, we find

Clehm ™2 for t— oo and Bh< Q% —~2/4]7V2%. (3.181)
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cHAPTER 4

Dissipative impurity dynamics in a 1D quantum liquid

“Indeed, what could be more rational than the suppression of indiMitug..] ?”
Herbert Marcuse in “The one-dimensional man”

4.1 Introduction to Luttinger liquid theory

One dimensional (1D) quantum liquids are fundamentally different froomF&quids. In-
deed, Fermi liquid theory predicts individual long-lived excitations, theated Landawuasi-
particles which are essentially free particles: They have a vanishing scattensg-section in
the perturbative limit of small interactions. Within this theory the interactions arigmalize
the effective mass and the effective weight of the spectral functioresktquasi-particles. The
Matsubara formalism [12] then allows to calculate the effective spectnakifin from which
all interesting equilibrium quantities can be deduced

Already on the qualitative level one realizes that the notion of individueit&ons must
be contradictory in 1D. If — say — an electron moves in a 1D liquid of othertreles it has
to push a macroscopic number of electrons away in order to be able tocadvatence, a
perturbation in a 1D liquid does not create an individual excitation but ratloellective one
and as a consequence, Fermi liquid theory breaks down in 1D. This gualiécture can be
made more precise of course. When constructing a perturbative themngeinto determine the
spectral function weight and the effective mass of the electron in the 100l lane encounters
divergences which are hardly interpretable [10]. The reason is thatalready pointed out —
there is no such thing as an effective mass or a spectral function in 1®thi@wery notion of
an individual excitation is fundamentally flawed.

Fortunately, there exists a very beautiful substitute to Fermi liquid theory jwhixh has
been developed from the 1960s onwards [152, 153, 154]. Thislsdd uttinger theoryis

!Luttinger theory has been first developed for fermions. In the followegwill see that the same formalism
can be used to describe 1D bosons. See in particular the next subsectitnphenomenological bosonization.
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essentially Gaussian for the low energy excitations (which are now cobeatigsyegardless

of the strength of the interactionThus, even strongly interacting 1D liquids can be elegantly
described by Luttinger theory. The heard of this theory is the followingfagion. Assume for

a moment that we deal with fermions. Then the Fermi enéigys typically finite and the term
“low energy excitation ” makes sense: Hence, we can concentrate ticigp&iole excitations
whose energy is small compared fy-. In this case, thea priori unknown) exact spectrum
of the quadratic part of the generic Hamiltonian describing the 1D liquid carxpaneed
aroundEr for small energies. The result is a Hamiltonian witlinear spectrum, the so called
Tomonaga-Luttinger Hamiltonian

Ho= Y wvplrk —kp)e) énr . (4.1)
ko=t

Here,vr (kr) is the Fermi velocity (momentum) anddenotes right-movingr( = +) and
left-movingr = — particles with creation and annihilation operatofs, ¢x,. Note thatin 1D
particles can only move forward or backwards which forces us to int@timo species of these
particles, the right movers and the left movers.

Introducing a linear spectrum amounts to assuming a constant density af statgnmon
approximation for fermions (the density of states is essentially the derivattittee spectrum
times the solid angle element which is equal to one in 1D). The particle-hole exastanow
have a well defined energy, , = vp(rk + q) — vprk = vpq and a well defined momentuin
independent fronk.

Let us now focus on the interaction term, which is in general present ialitie theory.
In most cases the interaction is quartic in the fermionic operators. Sincepeetecollective
excitations to be the relevant variables we can try a new basis of laddextaggewhich are
quadratic in they, .,

Phr =0 e nlha (4.2)
k
and which consequently mimic density fluctuations. We defined the density in tdrthe
normal ordered product defined asAB := AB — (0|ABJ0) for two operatorsd and B.
Indeed, because of the filled Fermi sea the avera@%gﬂék,r is formally infinite and has to
be removed from the Hamiltonian to yield a finite zero-energy level.

Now, a quartic action igjuadraticin the ', 5-basis and is therefore trivial to diagonalize.
This is expected from the very construction of t#hg. and is not very surprising. The more
important observation is that

rqlL

[ﬁg,r,ﬁ_q,’r,] — ﬁ&.m/éq’q, , (4.3)

which is found by correctly using the normal ordered products [10teHeis the length of the
system. Also, the Fermi level trivially verifig&)_, _|0) = 0 andp!_, ,|0) = 0 such that we
can define the two operators f@e£ 0

A 2w
by =77 2Ol . (4.4)
lal <
“ 27
bq = m Z G(rQ)pT—q,r ) (45)
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which satisfybosoniccommutation relation{iog,l;q/] = J,- Finally, one finds thaf,, Ho] =
quEq, a remarkable identity, since it tells us tH4 is quadraticin the bosonic density opera-
tors although is has been also quadratic in the original fermionic operatense, the free part
of the Hamiltonian can also be written as

Ho=> wvrlgbld, , (4.6)
970

where we explicitly used the assumption of a linear spectrum. In conjunction veitbltber-
vation that a quartic interaction is quadratic in ffieb we conclude that the linear Tomonaga-
Luttinger Hamiltonian with a supplement quartic term is exactly diagonalisaslihe nonlin-
ear relation (4.2).

Of course, real systems do not have an exactly linear spectrum. Howesvieng as the
spectrum is linear around the Fermi surface up to first order in the exaitatiergies, the
low-energy properties can be exactly calculated with Luttinger liquid thedoreover, these
low-energy excitations share common universal features which | widlgmtein the next sec-
tion. Luttinger theory can hence be considered as a universal theatyjich many 1D systems
“flow” in the renormalization group sense. All interesting quantities, suatoa®lation func-
tions or spectral densities, can in principle be calculated within Luttingeryraoiong as one
is interested in the long-range properties of these quantities. The shge-b&haviour of the
physical systems in question are not accessible within Luttinger theorytbiegelo in general
not share any common universal features.

To conclude this introductory part | want to emphasize that there are stiblecases
where the spectrum has no such linear part since the first orden@pptmn around the Fermi
energy vanishes. In these cases Luttinger theory is simply useless. Tmlitene example
here | mention spin waves in the ferromagnetic phase, which have a tjoaispersion at low
energies [147].

4.1.1 Phenomenological bosonization

The mapping between the fermionic operators and the bosonic density flostogerators
is commonly referred to alsosonization In this section | present a rather intuitive way of
deriving the effective Luttinger Hamiltonian, without directly using the exatations (4.2)
and (4.4) which translate between the two kinds of operators. Moremeewill see that the
bosonization scheme also works for 1D bosons. The notation and aemd@ph are introduced
in this presentation will be used on many occasions in the following. | followerattosely
the pedagogical line which can be found in the well-known reviews on thiesu[see, e.g.,
[10, 155, 156, 157, 158]].

In the previous section we have seen that the collective excitations of @i kquid can
be considered as density wave excitations. Hence, it is natural to startlie representation
of the density in space,

ple) =3 o(w =), 4.7)

where thet; are the position operators of the particles which form the 1D liquid. It is more
useful to work with the integrated density represented by a certain monatoaigtical field

$(z) which we require to take the values(z;) = 2 at the position of the-th particle

and which is a smooth function everywhere elsg(x) interpolates between the fixed values
gEl(xi) = 2mi and can hence admit fluctuations. These fluctuations will be governed by a
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Hamiltonian which we introduce further below. Note also that here the unidiovedgy of
the underlying system enters in a crucial way: For the fie(d:) to be well-defined the single
particles have to be labeled in a unique way. This can only be achieved in 1D.

With the help of¢; () the density can be recast as

= 25(5’3 Z|¢>l )[6(di(2) — 2mn) (4.8)

by using the standard formufdf(z)) = >, |f'(zn)| '8 (z — z,,) (with z,, the zeros off (z)).
The Poisson summation formula then yields

X () ipd
pla) = T DT (4.9)
p int
where the sum runs over all integerin order to make the notion of density fluctuations more
visible in our presentation we introduce the figlz) which is defined relative to a perfect

crystalline solution, where theth particles is fixed ati: One ha&[ﬁl(x) = 27por — 2<;3(x)
with « the lattice spacing angd, the unperturbed classical (average) density, suchq}ha)
describes the very density waves. The final result reads

pa) = [ ) Vit ]Z 2p(pne—(2) (4.10)

The integerp can be regarded as a parameter which introduces fluctuations with shidter
shorter wavelengths. Indeed, the= 0 term corresponds to the coarse-grained density where
all high frequency fluctuations are smoothed out. Simeared density

pomol) = po — V() (411)

valid for small wave vectorg ~ 0 is sometimes sufficiently accurate for real applications. In
virtual all other cases, including the first harmonic term is then sufficietain accurate
results. The expression

Pa~0(T) = po — %V(ZAS((E) + 2pg cos[2mpox — 2&(3:)] , (4.12)

obtained from Eq. (4.10) by including the= —1, 1 harmonic terms, is therefore widely used
in the literature. Note that during a typical coarse-graining procedurédh@onics cancel
each other out when long distances are considered as long as theoecarestraints that forbid
such a cancellation, such that higher harmonics become relevant el@rgerange scales. An
important example of a system for which higher harmonics have to be takeadcwont is the
Ising spin chain defined (by definition) on a lattice. As is well known [158]Iding quantum
chain in a transverse field can be exactly diagonalizada the Jordan-Wigner transformation
to yield a theory of free fermion®/ = >k eké,iék with energiese;, = Jcosak (J is the
ferromagnetic coupling) fok = 0. The Fermi velocity is readily found to hg: = Jasin kra
and the low-energy properties are described by Luttinger theory. lalibence of an external
magnetic field the magnetization is zets,) = (¢f(z)é(z)) — 1/2 = 0, and the ground state
is the half-filled fermionic band. What | want to point out here is the fact ihahis case
epmpor — p2ipr(1/2a)ja — gimpj — (_1)PJ (note thatr = aj on the lattice). Hence, fop
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even, the higher harmonics give contributions that do not cancel fygdasince they no longer
depend oz anymore. This simple example demonstrates that for models defined on lattices it
is in general necessary to keep the relevant harmonics and thus togulldbg coarse-grained
approximation Eq. (4.11).

Starting from the representation of the density (4.10) one can define hﬂ]eﬁ(ie) as the
“square root” of the density,

Ot (@) = V(@)e @ | (4.13)

wheref(z) is some operator describing the phase. Since we have by constri¢iipn=
&T(x)@ﬁ(x), ¢! is therefore a single particle creation operator which can be either bosons
fermions. In the following I will writeqﬂg for the boson creator ar’l,fziI7 for the fermion creation
operator. We now want to analyze the constraints imposed on the ﬁ(ﬂqsandé(a:) by
requiring that the)', ¢> be proper bosonic or fermionic ladder operators.

In order for theyl,, ¢ (1, 1) to verify the bosonic (fermionic) creation and annihilation
operator algebra we have to impose the conditions

[V5(2), ¥p(2)] = oz — '), (4.14)
{dr(@),dr(a)} = o(z —a'). (4.15)

Let us first focus on the bosonic field. For Eq. (4.14) to be satisfiecheads to have
(), e @] = §(x — 2)e~ @) (4.16)

if one makes the rather natural assumption fi&t),(z’)] = 0. We can proceed by first
inserting the smeared density (4.11) in order to get the right commutation reddtieast for
large wave lengths. The above relation is then satisfied if

[ivgg(x), é(m')] — —id(z — ). (4.17)

So far we have taken into account only large wave-lengths. What #imshorter wave-lengths
fluctuations described by the higher harmonics? The higher harmonic teias (4.10) lead
in the density-density commutator to expressions of the form

[e—2pid;(x)’€—ié(x/)] _ 6—2piq§(z)6—ié(m’)(1 _ eiwpsign(x—x’)) . (418)

We make the conventiarign(0) = 0. Then the commutator (4.18) vanishes exactlyifer 2/,
while for z # 2’ terms remain for odgh. As | have explained in the previous paragraph such
odd p terms usually cancel when coarse-grained, even if the system is definadattice:
Remember that it is typically the everterms which give rise to non trivial contributions.

If we assume that all assumptions | have enounced up to this point are mét, EA) is the
right commutation relation for the two fieldsandd. By applying an integration by parts one
deduces that

Vi(z) (4.19)

=
8
Il
BN

is the conjugate momentum é(m). $ andV4 are thus canonical fields the action of which can
be easily written down [see next section].
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The bosonic single particle operator is now easily found by putting all remgiether and
by observing that the square root of a delta function is itself a delta fun@tto a normaliza-
tion). Hence, we have

. .12 ) ; ”
¥h = [po - 1V¢>(fv>] D el (4.20)
™
p

What about the fermion operatdr}? The only difference with the bosonic operator is that
they have to satisfy anticommutation relations instead of commutation relations. ¥/eabhe

to introduce some supplement factor that generates the proper minus signsfotm a com-
mutation relation into an anticommutation relation. The answer is easy to guessgythes
relation (4.18) withp = 1 which can be viewed as the proper anticommutation relation. The
final answer is simply

() = P ()9 @/2 (4.21)
so that
R 1 . 1/2 4 X .
Jh = [po B W(m)] 3 e mpn (o) ~i0w) (4.22)
T
p

This transformation from commuting fields into anticommuting fields is also used (gilthia
a different form) in the Jordan-Wigner transformation which transforpis speratorsr;, o,

that commute in different sites, into Fermi operatdr,séi that anticommute, by attaching the
proper nonlinear “string” to the spin operators to generate the requiragsmeign [159].

4.1.2 The Tomonaga-Luttinger Hamiltonian

We now write down the Hamiltonian of our 1D system which should only depenith® two
conjugate fieldg andd. Let us first focus on the kinetic part of the Hamiltonian. Such a term
derives from the kinetic energy (here for the bosonic case)

Flan = [ do o (VI @)(To@) = 22(V02 + (Vo4 (429

2m 8mpo

where the dots stand for higher derivative terms. Note that all cross testaeend and ¢
have to vanish. Indeed, for a system with an inversion symmetry onghas= p(—z) which
can only be fulfilled ifq@(—x) = —&(m). In conjunction with the invariance of the one-particle
operator))(—z) = v (z) one also obtainé(—xz) = A(x); as a consequence (quadratic) mixed
terms between andé cannot appear.

A typical interaction is bilinear in the density operator,

~ hw . . ﬁw N
Hint = TL dx p(z)p(r) ~ #(ng)f +, (4.24)

which reconfirms explicitly at this level that the first terms in a gradient esiparof the Hamil-
tonian contain only quadratic terms in the fields although the underlying theorteiacting.
On large scales it is obvious that higher gradient terms are less relegaarththterms explicitly
listed above. Hence, the low energy properties (large space scakerjigepare governed by
the quadratic Tomonaga-Luttinger Hamiltonian

A h A K A
= %/dx [z(w)? + %(veﬁ TR (4.25)
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The dimensionless Luttinger parameferand the sound velocity parametrize this Hamil-
tonian and they depend on the parameters of the microscopic theory andidulpaon the
interaction strengttiwy. Note however that the exact relationship betweek andwy, is in
general not known and has to be determined with complementary methodsssncmerical
simulations. The ellipsis stands for all irrelevant operators (in the renormtializgroup sense),
which are subdominant on large scales.

Let us for a moment come back to the expansions (4.23) and (4.24). Bgrtiog them to
the momentum domain we obtain the spectrum

2
E(k):\/h3k2wLpo+<h2k2) ’ (4.26)

m 2m

which is nothing else than the Bogoliubov spectrum of an interacting bosonid [i$58]. In
particular, this spectrum Isear for smallk which confirms the underlying assumptions of Lut-
tinger theory that the low energy excitations have a linear spectrum. Itibgigsenough, for
bosons the non-interacting casg — 0 is singular and Luttinger liquid theory breaks down.
Intuitively this is expected since a non-interacting Bose liquid forms a true @E&ero tem-
perature) while each finite interacting destabilizes this condensate (fstatianally invariant
systems. Trapped Bose liquids may of course condense even if theyeakdyvinteracting).
More formally, one can consider — in the bosonic case — the prddugh, as the equivalent of
the Fermi energy.

The Luttinger Hamiltonian (4.25) is also found if one starts from a Fermi gas&@'t;hﬁp
given in Eq. (4.22). However, for a given interaction strengthand background densiiy
the parametera and K are different in the fermionic case from the ones one would find for
bosons. Obviously, the non-interacting Fermi gas gives ris€ te 1. It can be shown that,
K > 1 corresponds to fermions with attractive interactions wiile< 1 to fermions with
repulsive interactions. Since non-interacting fermions are equivaldnigenetrable bosons
[160] (bosons with repulsive contact interaction and— oc) one hag< = 1 for impenetrable
bosons, as well. Non-interacting bosons on the other hand are dekbyilé — . K < 1
can only be attained for bosons that are subject to long range repinigvactions.

Practically all 1D systems which exhibit a linear spectrum at low energiesdesmaibed by
Eq. (4.25). The very form of Eq. (4.25) already specifies most of titeomne of the theory
even without knowing the numerical valueswfind K. In order to completely describe the
low-energy properties of the system it is however necessary to knoextet expressions for
u and K, which cannot be found within the framework of Luttinger theory. Luttintperory
has thus to be combined with other methods to yield a full description of the spaatel in
guestion. However, once the two parameteend K are known, the low energy properties of
the model are correctly described by Eq. (4.25). In the subsection 4adlldbtiefly show how
u and K can be extracted from simulations in the case of a translationally invariaensys

It is also possible to give an expression of the total momentum operatanr{ctidnal) in
terms of the two fieldg) andd by essentially proceeding in the same way as before when we
have derived{; . One has

~ 1 ~ ~
P = Z/dx [po Ww} VO+ -, (4.27)

where the ellipsis stands — again — for irrelevant terms which only modify thdesuling be-
haviour of universal quantities.
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4.1.3 The interaction between an impurity and a Luttinger liquid

Let me introduce in this subsection the interaction Hamiltonian which models the pbtemntia
tween the impurity and the Luttinger liquid. The formulae of this subsection wilkbensively
used in the following of this thesis. In its general form the impurity-Luttingeritiqnteraction
reads

i = / dedy Uz — ) py)6(z — d) | (4.28)

whereU(x — y) is an interaction potentiap(y) the density of the Luttinger liquid given in
Eq. (4.10) and; the position operator of the impurity.

In many applications the atoms behave almost as hard spheres and opprecatmaate the
true interaction by a contact interaction potential

U(x —y) = hwd(z —vy) , (4.29)

so that Eq. (4.28) can be recast as

Hip = / da hwp(x)d(z — §) . (4.30)

As shown in formula (4.10) the density has two parts: The coarse-grdieresity (4.11) and
the higher harmonics. If | insert only the = 0 summand of the rhs of Eq. (4.10) into the
above equation | find the so-callémtward scatteringoart of the interaction which does not flip
the momentum of the Luttinger liquid atoms during a scattering event with the impuhty. T
higher harmonics lead on the other hand to the so-chlkettscatteringpart which reverses the
momentum of the Luttinger liquid atoms and thus converts left-movers into rightiavel
vice versa. In this thesis | will mostly work with the forward scattering interaddamiltonian

Hip = /dx hw [Po - ivﬁg(x)] é(z—q), (4.31)

which leads, when added to the free Luttinger Hamiltonian (4.25) to a quadiin in the
fields ¢ and§. The backscattering potential can be analyzed by using Bethe-ansatz meth
ods [161] and renormalization group techniques [13].

The forward scattering Hamiltonian (4.31) can be rewritten (after droppoanstant term)
in the Fourier domain as

Hip =Y ikUpdre ™, (4.32)
k

where | introduced &-dependent potentidl;, which has the main purpose of introducing a
cutoff scalek.. for the Luttinger momentum modes. | will use in particular the choice

Uy, = hwe kl/ke (4.33)

4.1.4 The Lieb-Liniger gas as a Luttinger liquid

Let us in this subsection in more detail an important application of Luttinger yhébe are
interested in the properties of 1D bosons which interact with a contactt@térhis system is
described by the so-callddeb-Liniger Hamiltonian

N .o N
A=y hwy 3 6 - 2) - (4.34)
=1

2m S
1<j=1
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Note that Eq. (4.34) is integrable [162]. Since we have seen in the psesidasection that the
low energy properties of EqQ. (4.34) are also described by the Tomdnatager Hamiltonian,
one can use Eg. (4.34) as a benchmark for Luttinger theory. The ibtktyraf the Lieb-
Liniger model allows in particular to find numerical valuesifandu. Let me demonstrate
how to determine: and K in practice (I closely follow the analysis presented in [158]):

The model (4.34) is translationally invariant. This symmetry imposes an additiestaic-
tion on the two Luttinger parameters. To be more explicit, consider the centeais¥ position
X = & [dz ap(z) = —x [da 2¢/(z) + -, where we used Eq. (4.11)X obeys the
equation of motion
P
 Nm '~
Now use the commutator (4.17) in order to compute the second term of Eq) &#h@85ompare
it to Eq. (4.27): The final result reads

B = %[”FtL, ] (4.35)

h
ulK = PO .

(4.36)

m

For translationally invariant systems there is hence omlgparameter which has to be deter-
mined: The ratia:/ K. Actually, it can be related to the inverse of the macroscopic compress-
ibility at zero temperature ! [10]:

9?Egs(N)
ON?

o u

K:_l = poN 0? 3

S

= hmp (4.37)
with E¢s(NN) the groundstate energy for a system witlparticles. The advantage of Eq. (4.37)
is that the stiffness parameter can be obtained in numerical simulation or by exploiting
additional analytic information on the system, such as integrability. By relatingd K to
“physically observable” quantities, it is thus possible to find numerical edloiethe Luttinger
parameters.

In the case of the Lieb-Liniger gas Eq. (4.36) and Eq. (4.37) can balagdd analytically
by using the exact Bethe-Ansatz solution of the ground state energy fil2 which the
compressibilityx; can be derived. It can be shown that the the Luttinger theory then depen
only on one dimensionless parameter= mwy,/hpo, theLieb-Liniger parameter From the
exact solution the Luttinger paramet&r= K () and the velocity. = u(~y) can be obtained.
Although analytical expressions are not available for generiis sufficient in most practical
situations to know the asymptotic behaviour [163, 158]

4
K() ~ 1+ p +0(y3), for y>1, (4.38)
~1/2
K(vy) ~ \%(1—;?) , for y<1. (4.39)

Note that the asymptotics afthen follows from Eq. (4.36). We will make use of these relations
in Sec. 4.6. Combined with additional information, Luttinger theory predicts ohnect low-
energy properties of the Lieb-Liniger gas. Since only one parameiemeeded in order to
obtain a full characterization of this Lieb-Liniger gas (note that for lattictesys which violate
the translation symmetry the two parameterand K have to be determined independently)
Luttinger theory radically simplifies the problem. As soomés ;) is known the long-range
behaviour of all interesting quantities can be easily determined. To cite amapd, it can
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be shown [10] that the Matsubara density-density correlation functistdidehave within the
Luttinger framework in general as

(4.40)

(0l 000(0,0)) = 5 + 5 (25)

- 2m2g2 + (2ras)? \ x

wherea is a small parameter which is usually related to the initial lattice spacing or, in the
continuum limit, which represents a short-range cutoff. The universalgsties of the physical
system do not depend on, .

While the1/z2-decay of the first summand is typical for a Fermi liquid, the second sum-
mand shows a characteristi¢z?/ -decay which points to the non-Fermi liquid behaviour of
the underlying system. Analogous formulae exist, e.g., for the spin-spialaton in X X 7-
chains, which again show, that Luttinger liquid theory yields the right — reemkliquid like —
long-range behaviour.

4.2 Drag force and critical velocities in a 1D quantum liquid

In this section | review some ideas about superfluidity in interaction 1D liglfitlse quantum
liquid forms a perfect condensate (i.e. for non-interacting Bose liquigs)thg force on a
mobile impurity vanishes. In the opposite Tonks-Girardeau limit of impenetraiderts (or
equivalently non-interacting fermions) the drag force grows linearly wighitpurity velocity
as long as the impurity moves subsonically. For supersonic impurities the ahagi$ inde-
pendent of the velocity. We will also see that an external potential clsathgepicture. The
so-called forward-scattering part of the impurity-liquid interaction becomg®rtant in this
case.

In Sec. 4.2.1 | will follow the line of arguments found in [164] to derive ariata for the
drag force in a Luttinger liquid. The approach makes use of Fermi’'s golderwhich allows
us to calculate the energy dissipated of the impurity during its motion in the limit of a small
teraction between the impurity and the Luttinger liquid. It turns out that onédhdistinguish
heavy impurities [165] from light impurities which can move through the sumding quantum
liquid without dissipation [166, 167] even though the Luttinger liquid doesfoiwh a super-
fluid. The reason for this lies in the difference between the dispersiatiomedaf a light and an
infinite mass impurity. The excitation spectrum of a 1D Lieb-Liniger gas shatseacteristic
gap between zero momentum and the Fermi momentum (see Fig. 4.1). Sucldeegapot
exist in higher dimensions. When the impurity dispersion lies within this gap nipdigm can
take place (at first order in the interaction).

In Sec. 4.2.2 | show that the forward scattering part of the interaction(#®3i) becomes
important if the impurity is accelerated. The effect has very much in common vatidard
electromagnetic bremsstrahlung which is emitted when a charge carrier israteg.

4.2.1 First order dissipation rate: Fermi’'s golden rule appoach

As already announced in the introduction we study the dissipation rate for@umity in a 1D
quantum liquid by using Fermi’s golden rule. At zero temperature the qualquid is in the
ground state0). On the other hand, the impurity initially carries some energy and we assume
that it is in some initial state\/) which is an eigenvector of the impurity Hamiltonian

~2
» b N
S N Ve 4.41
HI 2M[ + (Q) ) ( )
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where M7 is the impurity massp and g the impurity momentum and position operators and
V(¢) some position dependent external potential. The combined initial impurity-lte &a
thus|M, 0). We are interested in the transition rate frahd, 0) to some final stateV, n):

21 N
TN Mo = Ey<N, n|Hr|M,0)*5(E, + Ex — Ey) (4.42)

whereF,, is the energy of the wave excitation corresponding to the quantum nundret £
(Ey) is the energy of the impurityV-state (\/-state). The energy dissipation per time unit is
then given by

B=- Z Z(EM — EN)TN M0 (4.43)
n N

which is related to the drag forg&v) by E = — fv with v the impurity velocity. Note that the
drag force depends itself on the impurity velodity

In absence of an external potential the impurity energy states are tdréed by its mo-
mentum statelp) and Eq. (4.43) simplifies to

L2 H2k? H2k?
E=-"" [ k| (k- ) S (kb — —— ) | (4.44)
h 2my 2

my

where we used the explicit form of the interaction (4.32) and where wedintexd the dynamical
structure factor
S(k,w) =D {nldpxl0) 6w — En) . (4.45)

S(¢,w) can be calculated exactly in the Tonks-Girardeau and the Bogoliubov limitcarad
Lieb-Liniger gas with intermediate interactions it is known with arbitrary numéepcecision.

Its form is depicted in Fig. 4.1 foy = 20. The light shaded region represents the domain
in the (¢, w)-plane whereS(q,w) is zero. The region wherg(q,w) is finite is delimited by
the upper dispersiow (k) (dashed line) and the lower dispersion (k). Within Luttinger
theory the dispersions, (k) are expanded around the forward scattering pdint&(0) and

the backscattering poirit = 2k up to linear order: Luttinger theory assumes(k) = u/|k|
aroundk = 0 andw_ = u|k — 2kp| aroundk = 2kr. Consequently, Luttinger theory correctly
describes the interaction between a heavy impurity and a 1D liquids only wleamghurity
velocity is small. However, whem; is finite Luttinger theory can be employed in many cases
even for supersonic impurities: The impurity dispersion crosses

myr(v+u)? > dhkpu . (4.46)

As long as the typical momentuitky = m;(v + u) lies in the linear part of the Bogoliubov
spectrum of the 1D liquidS (ko, hko — h?k3 /2m;) is well described by Luttinger theory: More
specifically, this is the case whenevey (u + v)? < hwr,po.

As pointed out before, the impurity emits excitons whenever its dispersisaesahe region
where the DST is nonzero. It is thus clear that an impurity with infinite mass dissignergy
at all velocities due to the backscattering partSgk, w). It can be shown that the drag force
scales in this case as

[~ (4.47)

2It is important to understand that the above formula dassmply that the dynamics are Markovian. Here, the
constant velocity of the impurity is imposed by hand and therefore nonardical quantity. A classical particle
moving with constant velocity and linearly coupled to a harmonic oscillator bath dissipates energyfiftith~ v
regardless of the bath characteristics.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0
k/kp

Figure 4.1: Dynamical structure factor (DSF) for a Lieb-bier gas withy = 20. The solid lines
represent the dispersion relations for a heavy impuritgalk)l and a light impurity (white) whereas the
dashed line represents the upper dispersiotk) of the Lieb-Liniger gas and the dotted line its lower
dispersionu_.

for small impurity velocitiesv. On the other hand, a light impurity emits excitons only if
Eq. (4.46) is fulfilled, which thus defines the region in the;, v)-plane where an impurity
can move at a constant velociyithout friction We insist that this result is only valid if the
impurity is not subject to any potential energy. As we will show in the nexi@ean impurity
trapped in a harmonic potential always dissipates energy.

If v > u the dispersion of a light impurity crosses twice floeward scatteringpart of
S(k,w). But since within Luttinger theong (¢, w) shrinks to a line arounél = 0 the forward
scattering part does not contribute to the drag fof@nd for a general Lieb-Liniger gas this
contribution is negligible whenever Luttinger theory can be applied. In mpplcations where
a static impurity is considered, the forward scattering part of the interactioioe in practice
absorbed into a redefinition of the field10].

4.2.2 Forward scattering Bremsstrahlung of accelerated imprities

We begin with the full Hamiltonian with a forward scattering term [see EQs. J4.@531)
and (4.41)] of an untrapped impurity-Luttinger liquid system. After tramafog the resulting
Hamiltonian into momentum space it is straightforward to show that

7 — UYL 254 NS o P
H—zz[HkH_kJrk ¢k¢_k}+ ﬂh;kuk¢ke tar (4.48)

k

Note that | rescaled the fields accordingito— /(7K /)¢, andIly, — +/(h/7K )},

| now analyze the equations of motion obtained from the Hamiltonian (4.48). iddze
is that one can solve these equations if the trajectorg(of is imposed by hand. One thus
demandghat the impurity moves according to a certain evolution prescription in ordemdo fi
the force which the surrounding fluid exerts on the impurity .
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The equations of motion read the momentum domain:
Belt) + wR2e(t) = ik | U (4.49)
Mig(t) + ,/ Zk2U e~ ki g, (1) . (4.50)

If the impurity is not accelerated, then
q(t) = q(0) + ot , (4.51)

with © = p(0)/M;. Hence, for an impurity with constant velocity the solution to Eq. (4.49)
reads

~ ~

Ok(t) = Ap(t; 0)e™™ + gre™™ + hye A (4.52)
with the coefficients

. K eika(o V+ihk2t /2 M7

Ag(t;0) = iuk UL TS TR (4.53)
i = 1 [30(0) + = $0(0) — Ap(0:0) — A (0; 0

= 3 [ B0(0) + 1 dul0) — An(050) - An(0s0)? |

= % [@k(O) - ﬁ;bk(o) — Ay(0;9) + Ay (0; @)Z] .

gl

The first term on the right-hand-side of Eq. (4.52) describes a denaitgl that moves together
with the impurity creating a local density hole around the impurity, while the two lastste
describe the very wave excitation with sound velocity~or instance, in the limit, — oo we
have for a mobile impurity witltonstantvelocity

pla,t) ~ > ik Ag(t; 0)e™ TR 5 — 4(t) (4.54)
k

meaning that the LL density profile follows the impurity, thus creatinigesssedocal impurity.
Such a constantly moving density cloud does not have any back-effélce dmpurity as can be
seen by inserting the first term of the rhs of Eq. (4.52) into Eq. (4.50)th& confirm directly
that no dissipation takes place at zero temperature if only the forwardraogiteretained. As
pointed out before this approximation becomes exact for light impuritiesHge&.46)].
However, if the impurity is accelerated with a constant acceleratitwe picture drastically
changes. The density cloud part of the solution to the EOM (4.49) readsityg—G(0) = at?:

z+utt
b(x, t) Zu/dt/z - z'y/ hU&(m —at ) (4.55)
! 1 / /2
\/ 2u/ dt{ r+u(t—t)— ¢ )—5(x—u(t—t)—at )}

Fort < u/a we find the solution [see Fig. 4.2]
U (u2 + 2ax + 2aut)_1/2 , —ut < x < at?
d(x,t) = \ 2han ) (u? 4 2az — 2aut)_1/2 , at? <z < ut (4.56)
else .
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—-ut ke

Figure 4.2: The functiorfs (t') = at’*/2 & u(t — ') (see main text for details).

The classical energy associated to Eq. (4.56) is then found to be

KU?au 1 1
AL = — . 4.57
8mh { (u? + 2a2t? — 2aut)?  (u? + 2a2t? + 2aut)? } (4.57)

Fort = u/a the rhs of Eq. (4.57) diverges, which is when the impurity veloeity at has
attained the Luttinger speed of soundn this case the Bremsstrahlung becomes infinite and the
assumptions of a constant acceleration breaks down. However, fotisnes Eq. (4.57) makes
sense and it shows that an accelerated impurity emits phonons much askmated charge
emits electromagnetic radiation. It is therefore clear that Eq. (4.57) desdtie analogue of
the Bremsstrahlung phenomenon. Note that Eq. (4.57) was derivedlypgamsidering the
forward scattering potential which is the dominant part for a light impurity. (Bd7) is thus
only valid in the casen; (v + u)? < 4hkpu.

4.2.3 Backscattering: Renormalization group approach

In the last subsections we focused on light impurities for which backsicegteffects can be
neglected to a large extent. The full problem of describing a moving impurityLinténger
liquid subject to forward and backscattering effects is not analyticallyabtdv Nonetheless,
by combing analytical expressions based on the Bethe ansatz with heaeyioal methods
Mathy et al. [161] were able to access the regime of high energy impuritesg$grinteracting
with the surrounding liquid. More specifically, they considered an impuritickvis injected
into the Luttinger liquid. When the impurity has an initial velocity which exceeds tiie L
tinger liquid sound velocity, the impurity velocity sharply drops beneath thadspeed and
subsequently shows damped oscillations around some average velociligi(¢hzen the sound
speed). This intriguing behaviour has been explained by an entangledstaeen the impu-
rity and particle-hole excitations in the Luttinger liquid. Indeed, they showiddmwa simple
approach that the superposition of an “exciton state” (the Fermi see @umpurity and a
hole) and a “polaron state” (Fermi see plus the impurity and a particle-haleexcitation)
was sufficient to describe the oscillating behaviour of the wave functiate Blso that since
the final impurity velocity does not drop to zero the entangled state betweém plieity and
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the surrounding liquid does not lead to an energy flow directed from theritppa the quan-
tum liquid. This intriguing behaviour — which is in sharp contrast to the Fernaldan rule
approach — has to my knowledge not been explained, yet.

The simpler case of a static impurity can be tackled by considering the rencatitaiiz
group equation of the backscattering amplitude. It was Kane and FisBlewfib first solved
this problem. The main ingredient is the observation that the free action oftiadger liquid
can be written in two different ways,

1 1. K 1.
Sp=5 / dzdt [u¢2+u(v¢)2] =5 / dzdt [u92+u<v9>2} : (4.58)

This duality relation between the two conjugate fietdsnd6d will be very useful in the follow-

ing.
Consider first a weak barrier in a Luttinger liquid modeled by the interactioniltanian

Hint = / dz U(z)p(z) , (4.59)

whereU (z) = hwd(z). By using the decomposition of the density the forward scattering part
reads—(1/m)Ve¢(z = 0). It can be absorbed in a redefinition of the field (since the impu-
rity is immobile) according taj(z) = ¢(z) — £ Jo da’U(a") in the action. The interesting
physics comes rather from the backscattering part of the debisity. ~ cos[2¢(z = 0)].
By decomposing the field(z) into ¢ (=), which consists solely of slow momentum modes,
and intog~ () which regroups the high momentum modes, the Wilson renormalization group
scheme amounts to averaging over the high momentum modes: We are thudddtanes
{cos(24(0)))s = cos(2¢(0)) exp[— (4~ (0))~ /2], where the subscript indicates that the
average with respect to >z is only taken over the high momentum modes. By using Eq. (4.58)
we find (cos(24(0)))s = e K4 cos(2¢(0)) with d¢ a small parameter. The resulting renor-
malization equation for the backscattering péft. of the couplingw;, 2 is then found to
be

O¢Upack = (1 — K)Upack - (4.60)

Here,/ is the renormalization scale parameter. When the potential reaches theiupligg
regime one can use an intuitive picture to devise a strong-coupling pdrturllaeory. Ifw

was infinite it would cut the Luttinger liquid into two independent halfs. Howefes large but
finite w tunneling processes may occur which make some bosons (or fermiongphopne
side to the other. A reasonable candidate for a strong-coupling Hamiltorttaunmsi$13]

= Hy + Ha + Unn [} (0)952(0) + hec ] (4.61)

where Uiy, is @ small tunneling element and where the two subscripasd 2 denote the

two half-chains. By going back to Eq. (4.20) it is clear tfﬁatm[zﬂ(o)%z(()) + h.c] ~

Usun cos 20(0). The above renormalization group argument can now be repeated by simply
using the dual representation of the action (4.58). The final resulsread

OUun = (1 — K™ HUpun - (4.62)

3Note that the unrenormalized forward scattering and backscatterimgthesame coupling constant How-
ever, they do not not renormalize in the same way such that it becagnessary to introduce a new couplitig,cx
which stands for the backscattering, only.
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This second renormalization equation beautifully connects to Eq. (4.6dgeth if K < 1 the
barrier potentiall/;.cc grows until perturbation theory breaks down and the strong-coupling
regime takes over. The tunneling element subsequently decreases wdiddida thatl/},
further increases beyond the weak-coupling regime. The inverse isurée true as well.
For K > 1 the tunneling element,, increases until the renormalization flow &f, .. re-
sumes. Hence, it is natural to assume that the renormalization equation[(t.6@¢rnatively

Eq. (4.62)] describe the right physics over the whole parameter space.

4.2.4 Drag force and quantum stirring in a Luttinger liquid

Another approach to measuring the drag force in quantum liquids is quastituimg [see [168]

for the details]. For one-dimensional gases such a quantum stirringecset lnp by “pulling”

a laser through the quantum liquid. The fraction of stirred particles canlibaaken as a
measure for the superfluid behaviour. Note that a moving laser conéspma moving barrier,
i.e. to a moving impurity with infinite mass. Let us considérbosons confined to a ring of
circumferencel.. Due to Galilean invariance we haudl = 7whp,/m [see Eq. (4.36)]. The
barrier moves with constant velocity which can be modeled by the time-dependent potential
U(x,t) = Uyd(x — V't). The interaction Hamiltonian reads

Hint = /dm Uz, t)p(x) ~ hw |po — %Vé(Vt) + 2pg cos(2mpoVE — 20(VE))| , (4.63)

where we used only the most relevant harmonics to model the Luttinger dgqsitiie forward
scattering term proportional t¢ represents a slowly varying chemical potential and can be
absorbed ir{ by a redefinition of the field — ¢ — (K/u) [ da’ U(z'). The last term in
Eq. (4.63) represents the backward scattering whose renormalizatenre Ignesented in the
previous subsection.

We are interested in the fraction of stirred particlés /N which is related to the total
particle current through‘ﬁst = % fg dt’ f(t’). In the weak barrier limit one can perform the
following perturbation analysis: By using the standard formulae for theécpadensities of
right (left) movers [10] 6 () = po/2 = VO — V¢, we find the stirred current operator up to
first order .
-
with N, = [ dz pr(x). By using the bosonized expressions for the density and the stirring
Hamiltonian the authors of [168] find

j: [NLv/]:lint] ) (464)

I= ithpoeiQJ’(Vt)e%ipow . (4.65)

Linear response theory now yields the average backscattering turren

t 7.‘.2K—1 w 2 2K—2
[~ /_ dt’([f(t),ﬁf(t’)])go—(2F;(2K)((ZU)L2) (Z) oV . (4.66)

where we took the thermodynamic limiN, K — oo with N/L = py, in the last step. The
fraction of stirred particles is then given by, /N = I/(2xjV). Note that Luttinger liquid
theory is only valid for small stirring energies, i.e. fbor < u. Let us take some limits of
Eq. (4.66). First, the non-interacting boson limit is attained&or— oc. In this casel = 0
(note thatl” < ) as it should: Indeed, the non-interacting bosons form a condengaté w
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behaves as a superfluid for < u (superfluidity abruptly breaks down &t = «). The Tonks-
Girardeau limit of impenetrable bosons is equivalenkte= 1. In this caseVy, /N = (wy/u)?
independently oi/. The drag force is then proportional ¥band thus behaves adiabatically (or
Ohmic).

Interestingly enough, one can find a similar formula in the large barrier limit. fiihéa-
mental reason lies in the dualify<» 6 of the action (4.58) which allows a weak-coupling an a
strong-coupling perturbation theory. Indeed, the large barrier cutsrifénto two pieces and
the bosons can hop from one side to the othig@ia small tunneling elemerdt,,,, which can be
treated as a small perturbation. It can be shown that the resulting interbletioittonian reads
Hint = Upun cos(Qwé(Vt)) [168]. By repeating the above analysis we find

_ en¥ER, (VTR
1= (o) T 52/ K) \ 1 2mpV . (4.67)

How does the strong coupling equation (4.67) relate to the weak couplingifar4.66)? We
have seen in Sec. 4.2.3 that the backscattering bdrjgf. scales under renormalization as
OUpack = (1 — K)Upack- Upback becomes thus irrelevant as soonfas> 1: By noting that

V represents the true velocity scale the fac¢téy«) ! in Eq. (4.66) is nothing else than the
renormalization factor of the bare coupling If K < 1 the interactionw is relevant. Upon
decreasing/ the renormalizedv™® = w(V/u)%~! grows until perturbation breaks down, i.e.
whenV ~ u(w/u)/—K) The behaviour beyond this point is then described by the strong
coupling perturbation theory described above. Accordingly, the foren{d&6) and (4.67) are
consistent with the renormalization group approach by Kane and FigteSgx. 4.2.3].

4.3 Trapped Luttinger liquids

In this pedagogical chapter | will focus on trapped bosonic Luttinger liquldgs part of the
thesis is meant as a pedagogical bridge to Sec. 4.6 where | presentawetital results that
have been obtained for a particular experimental configuration of an itppumersed in a
trapped ultracold 1D gas. Thus, let me briefly discuss the experimentaidgeels which allow
for the creation of such ultracold vapors of bosonic atoms. Trapped at@tgpically confined
in 3D geometries in real experiments. However, by tuning the external twdtemrender it
very anisotropic it is possible to obtain quasi-1D condensates [169,1710,172]. Another
possibility is to use 2D arrays of effective 1D optical tubes [173, 14Gtom chips [174], a
technique which | will not discuss at all here.

The most important trapping technique of atoms is the so-called “optical tigippti-
tracold atoms are trapped in a configuration of standing light waves whitlheaenerated
by using interference of external laser sources. More preciselye ssume that the atom is
equivalent to a two-level system (the Alkali atoms sucA’@b come closest to this simplified
view) ared-detunedaser (i.e. one whose frequency is slightly below the characteristic tran-
sition frequency of the atom in question) creates a attractive force asleliee-detunedaser
(the opposite of red-detuned laser) acts as a repulsive force.dndéhkin the simplest model,
the Heisenberg energy uncertainty relation allows the atom to absorb ghwithra frequency
slightly detuned. Since the subsequent emission process is isotropic, thentnomand the
kinetic energy of the atom are changed on average. If the laser isstaded], the atoms thus
accumulate in regions of high light intensity while they are attracted to regiolesvdight in-
tensity if the laser is blue-detuned. One simple application of this trapping meth@Darrays
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Figure 4.3: Sketch of a 2D array of 1D optical tubes. Takemffb46], which reports on the experiment
that | will analyze in more detail in the following.

of standing waves. They are such that the atoms are confined to theh&sgrtbus creating a
system of many effective 1D systems which are separated by a “traes$yatential wall. The
various 1D tubes itself are subject to a residual “longitudinal” potential visienuch weaker.
The system remains effectively one-dimensional as long as the thermglexighe atoms is
small compared to the transverse potential strength. We show a sketclpafal experimental
situation in Fig. 4.3. Let us now turn to the theoretical description of suclpé&diD liquids.
Hereafter, Sec. 4.6 will deal with impurity dynamics in such a trapped Luttilinged.

4.3.1 Ground state of a trapped Lieb-Liniger gas: Thomas-Fermapproximation
and Tonks-Girardeau regime

A longitudinal trapping potential breaks the translation invariance of thatgoagas. As
we have seen already in Sec. 4.1.4, all parameters of a translationalliaimiviaieb-Liniger
liquids depend only on the Lieb-Liniger parametethe presence of the external potential thus
fundamentally changes the properties of the quantum gas. Moreoveobiiizus on intuitive
grounds that the trap leads to an inhomogeneous density profile of theslhga leading
in principle to a breakdown of Luttinger theory itself. Fortunately, it is pdesib develop a
static and even a dynamic theory which makes use of the same hydrodynaenioiléctive
excitations as observed in a standard Luttinger liquid. As one can easily iepagiwiew of
developing a theory of such collective excitations it is necessary to fistan insight into
the groundstate properties of a trapped Lieb-Liniger gas, or more ehgitszero-temperature
density profile. As we have seen in Sec. 4.1.4 the physics of the untragietiniger gas are
determined byy = mwy, /hpo. In the presence of a harmonic external potential (I only consider
harmonic potentials throughout this chapter) another dimensionless quamibedormed,
mwr,fpo

o — s 4.68
ano = "L (4.68)

wherel,, = \/h/mS is the typical quantum oscillator length scale. The parametgrcan be
regarded as the ratio betweép and the typical interaction length,, = A?/mg and it fully
characterizes the strength of the external potential. Indegd,> 1 corresponds to a weak
external potential whereas,, < 1 corresponds to the regime where the potential determines
the particle motion rather than the interaction.

In the regime of weak interactions, i.e. < 1, we can regard the 1D liquid as a quasi-
BEC for which the Gross-Pitaevskii equation holds. For a weakly intea®iose system
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Gross [175] and Pitaevskii [176] found an evolution equation for theadyical condensate
wave function by using a mean-field like approach. It takes in generdiotine of a non-
linear Schodinger equation. By applying this equation [see also Eq. (4.76)] to oltgm one
derives the static density profile [158]

2
po(z) = £ [1 - "’;"} . (4.69)
g TR
| have introduced the Thomas-Fermi radiisy = +/2u/(mQ?). The chemical potentigh

can be found by requiring thaﬁff; dz po(z) = N, with N the number of particles, from
which we find

2/3
3N O‘h°> . (4.70)

= = hQ2
H = HTF ( /32

This is the so-called Thomas-Fermi approximation which is valid as long &s 1. In the
inhomogeneous cagg is the mean density defined by ~ N/rrp. By using this identity one
hasy = anorrr/N L Which gives in conjunction with Eq. (4.70) and the definitionof:

v~ (ad, /NP3 (4.71)

Hence, the Thomas-Fermi regime is attaine@if, /N)%? < 1, i.e. either ifey,, < 1 for any
Norif N > aﬁo. It is intuitive clear that the weak coupling regime requires large number of
particles as reflected by the last equation.

Let us now focus on the opposite limit,, > 1 andN < o? . This case corresponds to
the Tonks-Girardeau regime of impenetrable bosons. By virtue of the exauping between
these bosons and free fermions [160] the Hamiltonian of the full systeds rea

MHre = Enchen (4.72)

whereE,, = h{dn + 1/2 are the energy levels of the harmonic oscillator. At zero temperature
all energy levels are occupied up to the Fermi endigy= AQN + 1/2 and the ground state

is a factorizing state of eigenstate of the harmonic oscillator. It is not diffiodind the final
density distribution:

(4.73)

mOroe x2 1/2
po = 1 ;

7h o2

and the chemical potentialrg = NASQ.

Finally, the non-interacting regime is attained wherg /2. In this case interactions are
so weak that the trapped gas forms a true BEC condensate. At zero &unpeahe density
profile is thus equal to the one of the harmonic oscillator, i.e. a Gaug@im‘mQ/eﬁo.

Both Egs. (4.69) and (4.73) can be found within are more general agipioy using an
energy functional. Let us assume that the ground state energy ofradpwsity profilepg can
be written as an integrdl[po] = [ dx e[po(x)] wheree|po] is the energy density of a uniform
interacting Bose gas with densityy. The above approach thus makes sense if the density does
not vary too much and it is therefore sometimes calleddbal density approximatian/Ve now
add the external potenti®l.(x) and a Lagrange multipliex so that the total energy reads

2
TR

Froulpo] = / dz e[po(x)] + (Va(@) — A)po(x) (4.74)
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By fixing the particle number one has to determinself-consistently. The difficulty lies in the
fact that the energy densigfpy] is in general unknown. However, in the weakly interacting
limit we havee|po] = gpg/2 which follows directly from mean-field arguments. In the opposite
Tonks-Girardeau limit the relevant energy scale is the Fermi energydér to find the energy
density we consider a small interval aroundvhere the density is quasi constant. Consider
only the fermions left from our interval: They already occupy some stdtes.supplementary
Fermi energy due to the additional small interval scales as the squaresimiritber particles,
i.e. po(z)?, and the total energy of the gas upatehus scales as(z)3. Accordingly, we have
E[po] ~ [ dx p}(x) for the Tonks-Girardeau gas.

By varying ;. with respect topy(z) and by usingV.(z) = xz? one can now find an
equation for the local densify (). In the weak-interacting limit and in the Tonks-Girdardeau
regime Eq. (4.69) and Eq. (4.73) are then recovered once the Lagnaulgplier is eliminated.
The space dependent chemical potential is found by assuming that thigygef) varies so
slowly that the gas in a small finite interval aroundan be assumed to be in equilibrium. The
whole liquid can then be divided into segments, each of which is in quasi-equitibStandard
thermodynamics yields in this case the very useful relation

_ ( 9elpo]
1(po) = < 0 >p0p0(z) , (4.75)

valid within the local density approximation. If an analytic expressiop ak a function oj
is given, equation (4.75) allows one to fipflr) by combining it with the solution of Eq. (4.74).

4.3.2 Hydrodynamic excitations in a trapped Luttinger liquid

Let us now discuss the properties of trapped 1D gases at finite temgstafig in a standard
Luttinger liquid, the excitations are collective and a systematic “hydrodynathédry can be

developed in the Thomas-Fermi regime for these excitations. | closely folleywddagogical

line of [169, 177, 158] in this section. Let me first focus on the non-icterg case. As

demonstrated in the experiment by Ketterle [178] a sharp crossoverdrclassical gas to a
BEC takes place when the temperature is lowered.

Itis generally believed that this sharp crossover stems from the disateteof the energy
spectrum. A direct consequence of this observation is the fact thatdtiters will destroy
such a sharp crossover by smearing out the energy spectrum. Jndekd presence of low
momentum collective fluctuations the spectrum becomes quasi continuoaiefdile, we can
formulate a heuristic criterion for the presence of the sharp crossdviehvis characteristic
for the classical-BEC transition. The interaction energy per particle has tauzh smaller
than the level spacing2 (we assume as before that the gas is trapped in a harmonic potential).
At low temperatures the gas is in its ground state such that the averagetintegsar particle
readsfiw;, N (mQ/h)'/2. By using Eq. (4.68) the criterion for a sharp crossover translates into
apo < 1/N. If this condition is not met the Thomas-Fermi regime dominates. The crassove
is not sharp anymore and collective excitations dominate the low energywspe¢iow would
one proceed in 2D or 3D to find the excitations of a weakly interacting quagash

Let us begin with the Gross-Pitaevskii equation [175, 176] for a weaksracting Bose
gas with interaction potentidl (x — /) = hwyd(x — 2’), chemical potential;, atomic mass
m and wave functionl(z, ¢):

2

iho U (Z,t) = [_ijn —pn+ /dx’V(ac —2)|W(Z,t)|*| U (Z,t) . (4.76)
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Let us now setl (Z,t) = \/p(Z, t)e?@1 then we find from Eq. (4.76) the two equations [179]

h
op + %V-(pVH)ZO, 4.77)
B h V3/p
— - =0. 4.7
o + m(VH) +wrp am b 0 (4.78)

The first equation is nothing else than the continuity equation, while the sexcpration de-
scribes the evolution of the phase fiéld Furthermore, these equations are validgoperflu-
ids of arbitrary dimensions and internal interactions (their range of validitynelté®eyond the
realm of the Gross-Pitaevskii regime). If one assumes a slowly varyimgjtgigrofile the above
equations simplify to the standard (classical) Euler equations for the flomarfiaiscous fluid
In other words, the hydrodynamics approach described by the EG3) @nd (4.78) governs
(beyond other systems) the dynamics of a 1D gas in the Thomas-Fermi rédiBjetHowever,
if one leaves this weakly interacting regime it is @opriori clear how to adapt the hydrody-
namic approach.

One can circumvent this difficulty by directly using the phenomenologicaifiaation ap-
proach in Sec. 4.1.1, with the only difference that the background dengity is not constant.
The Hamiltonian then reads

h2p0($) M2 h2(v5ﬁ)2 th 5)2 e
/dx[ o (V)2 + Smpn(@) + (6p)"| +--- (4.79)

with dp = p — po the density fluctuation. The ellipsis stands for higher order fluctuation terms.
| also used the same symmetry arguments as before to show that no term lif\@aamarise.

I now give a short review of the arguments developed in [169] which atmwanalyze the
different regimes Eq. (4.79) gives rise to. First of all, at high tempegatwe can treat the
fluctuations ofép andéd as classical variables. Since Eq. (4.79) is quadratic, we can compute
the correlation function§(p(z) — p(2))?) and((6(z) — 6(z'))?) if we make the simplification
po(z) = po = const in Eq. (4.79). The result for the density correlations at temperatute
reads:

(ple) — p(a'))?) = BT b0 [1 — ¢~ VBmapola—a'l/h| (4.80)
h3wL

By using the relation (4.70) for the chemical potential, Eq. (4.68) and thedlylgiogth scale

Ryr = /21/(m$?), valid for the trapped Bose gas in the Thomas—Fermi regime, we find

(o) = o))/ ~ 5 G - (4.81)

Hence, the relative density fluctuation is negligible provided
Bt < Bt =hON . (4.82)

Below the crossover temperatusg ! the Bose gas behaves as a weakly interacting gas with the
density profile (4.69). Abové;l the gas is essentially classical. By a similar calculation for
the phase [169] one arrives at a second crossover tempe@]ﬁr& hQBd‘l /e below which

both phase and density fluctuations are negligible; the gas then forms aHEflieaBd above
which only phase fluctuations are present. The gas is then cajleasi-condensatél he phase
diagram s given in Fig 4.4. Having identified the different regimes of the&dBose gas let us
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Figure 4.4: Different regimes of a 1D Bose gas [169, 158]. v&btine degeneracy temperatgﬁrg1 the
gas essentially behaves classical whereas it forms a tr@ lﬁow/é’;hl. In between the number of
particles discriminates between the weak-interacting(ii&s-Fermi) regime and the strong interacting
(Tonks-Girardeau) regime.

now discuss the collective interactions. One way to describe these flucsiatito generalize
the standard Tomonaga-Luttinger Hamiltonian to a non-uniform backgroemnsity. Evidence
that such a generalization can be performed has been found by, e g£1Gitr[180, 181, 182].
The inhomogeneous Tomonaga-Luttinger Hamiltonian is given by

. ho[R K .
Hyinn = %/Rdﬂf [W(Vﬁ)2 +

712
K@) (Vo) | , (4.83)

and it describes well the excitation spectrum of an inhomogeneous Lutfiqget as long
as the local density approximation holds. Note that Eq. (4.83) is the direergeation of
Eq. (4.25) for inhomogeneous background densities. The unpedtdeyesity profilepy(x) is
an external information which is complementary to the Hamiltonian (4.25) whidatrides the
thermal excitations. It can be derived from the methods presented indli®ps subsection.
The Luttinger parameters can be expressed in terms of the backgrouositydg(x) and the
chemical potentiak(z) which are assumed to be known. One has

u(z)K(z) = ﬁﬂ'/;:(a:) (4.84)
and () Bpoplpo(a)

u(z)  Opyplpo(

Ry = e (4.85)

which resembles a lot the relation (4.36) for a translationally invariant syatdmugh this
symmetry is broken here [180].

Let us pursue our analysis by focusing on the equations of motion whidredeom the
path integral built upon Eq. (4.83). We find that

Ro(x,t) = u(z)K(z)0(x,t), (4.86)
f(z,t) = KV {2((?)%(95,@}. (4.87)
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If we introduce the density fluctuation operatiy = —ng@/w and the “velocity” operator
v = hvé/m we see that Egs. (4.86) and (4.87) are equivalent to the linearizedversthe
hydrodynamic equations (4.77) and (4.78) [see [158, 179]]. Combthe®e two equations and
using the boundary condition

P(R,t) = ¢1 and ¢(—R,t) = ¢o , (4.88)

we arrive at a single equation fer

d(z,t) = u(z)K (2)V [;((Z)) Vo(z, t)} . (4.89)
The Fourier decomposition of Eg. (4.89) leads to
o, = u@) K@) | {9000 (4.90)

where the boundary conditions translate intd+R) = 0, and where the orthogonality relation
On ()P ()
= / 491
I @3y

holds. Citro et al. [182] found the expansion of the field operators in tefrbesonic creation
and annihilation operatotéb, by

: Jigda’ K(a')/u(a’) T
d(x) =¢o—m N —— b +b,]on(z), (4.92
e f_%da:' K (') fu(x") +;2wn[ Fhnlente). (92
; = mh? Wn2T———5 (w) bl — b
(z) = VO(z)/7h Zﬁ2 () K () n bl (4.93)

N is the operators of the number of particles. The fidlds) and¢(z) satisfy the canonical
commutation relation. The Hamiltonian (4.83) can be rewritten in terms dﬁm@ as
7rN2

Hiin + wpblb, . (4.94)
T g [ e K (a zn:

The solution of the eigenvalue problem (4.90) gives access to the eigesmbthe trapped
Luttinger liquid. Let us assume the gas is trapped in a harmonic potential wifineineyS2 — as
is the standard situation in this manuscript. By using Eq. (4.85) in conjunction \git(4E90)
we find

po(2)V [0 (2)Vn ()] = —w2n (@) (4.95)

One solution is given b;@(m) = Apo(x) with some proportionality constant. Indeed, in this
cased,, u(z)Vo(r) = Adu(r)/dr = — AmQ?z by definition. Thus, the differential equation
is satisfied forw = 2. This solution describes the center-of-mass oscillations of the gas cloud
in the harmonic trap (the so-called “Kohn mode”) [182].

An exact solution for the eigenvalue equation (4.95) is found by making gbenaption
that u(xz) = ugy/1 —2?/R?> and K(z) = KO\/l — 22 /R? for « > —1/2. Such profiles
are obtained for instance in the cays@ao) ~ pg with @ = 1/v — 1/2. From Eq. (4.84) it
immediately follows that the Thomas-Fermi gas is described by1/2 and the Tonks gas by
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a = 0. For generak the eigenmodes are obtained in terms of ultraspherical polynomials while
the eigenfrequencies have the form

2
Uu,
w? = R—g(n+1)(n+2a+1). (4.96)
In the Tonks limit the eigenfunctions can be expressed in terms of the simpéyCiev poly-
nomials while in the opposite Thomas-Fermi limit they can be written in terms of Legend
polynomials. Their explicit form — which | will not give here — can be found182].

4.4 A Luttinger liquid as a quantum bath

The evolution of impurities in a Luttinger liquid (LL) has attracted much attention ¢ent
years [147, 183, 151, 184] since this problem can be explicitly realizdoeld atom systems.
In particular, modern techniques allow one to tune the interspecies interattegth [185,
186, 187] so that it has become possible to study the diffusion of a minoegiespwithin an
ensemble of majority atoms, as a function of the interaction and the trappindipbf&46].

In this part of our work we apply the non equilibrium formalism developed edhap-
ter 3 to such an impurity—LL system. In particular, we seek to mimic the experinmentzss
described in [146] with our theoretical description. In this experiment thauritypatom is
trapped in a 1D harmonic potential together with an ensemble of a differeshokiatoms that
form the LL. The impurity is initially localized at the center of the confining potehiyea laser
blade. When the whole impurity—LL system reaches equilibrium the impurity iasete The
equal-times position correlation function of the impurify¢, t), then shows damped oscilla-
tions which strongly suggest that the impuritydis factoa quantum Brownian particle moving
in a quantum liquid bath.

In the following we will present a precise description of the impurity motion in thérbm
the quantum Brownian motion point of view. The LL itself will play the role of ant& quan-
tum bath that we here characterize. While this quantum Brownian motionagphas limited
success it serves as an excellent starting point for the more sophisteetiydis presented in
Sec. 4.6.

4.4.1 The impurity model

The impurity and the atoms constituting the bath are all confined in a harmonidipbt&ve
therefore take the Hamiltonian of the impurityg, to be of the standard form Eq. (3.32) without
external force I = 0) and with the harmonic potentidf(§) = MTQQQQ. We assume that the
interaction Hamiltonian between the position opergtof the impurity and the density of the
boson liquid is of the form

Flsn = [ dady Ule ~ ()5~ 0) (4.97)
with the density operatqi(z) of the LL approximately described by

() = pofa) — V() (4.98)
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where po(z) is the unperturbed density of the fluid in the 1D trap afd) is the density
variation. The Hamiltonian of the free LL reads
~ h [uK . U, -

Hp = o dx ﬁ(wﬂ(x))Q + —(Vo(x))?| , (4.99)

wherell(z) and¢(x) are conjugate operator fields. Equation (4.99) describes the lowyenerg
properties of a Lieb-Liniger gas [188] with a contact interaction potentiald(z). The pa-
rametersu, (with the dimension of a velocity) andl” (dimensionless) have to be determined
numerically for generalv;,. In order to reduce the complexity of the problem we will assume
the background densify, to be constant in the following. Accordingly, we define

po = i/dx po(x) , (4.100)

wherelL is a length scale of the order of the length of the trap. Note that in this modeling we
have not added the quadratic confining potential to the LL.
Since the Bose gas is confined in a space of lerigtie wave vectors are quantized with
valuesk,, = mn/L with n an integer. The Fourier representation of Eq. (4.97) is
Hsp = =3 U, e [—““”és(k >] (4.101)
SB \/E - kn = n 5 .

where we used(z — z') = (1/L) Y, ¢**(*=#") and we neglected a constant contribution. We
assume that the potenti@ has the form

Ui, = hwe ™ *I/ke (4.102)

with some finite cutoffk. that depends on the microscopic properties of the interaction. The
parametep has the dimension of a velocity and it determines the strength of the impurity—bath
interaction potential.

After redefining the fields according to

bo(x) — (7TK/h) ¢(x) (4.103)
and
(z) — /(h/7K)(zx), (4.104)

one introduces the bosonic ladder operators

b, = \/E (é(k) + é,ﬂ(k)) (4.105)
it =B (o~ i) (4.106)

and
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which describe bosonic density wave excitations with sound veladity)]. The full Hamilto-
nian now takes the form of the &hlich polaron Hamiltonian, which in the second quantization
language reads

2
> hu\k|bTbk+—+M2Q i
ke{kn}
1 KN\ ikgy 3t 1 kg b
_\/sz:(%lkl> g [(zke ) b} + (iketka) bk} . (4.107)

For eachk: mode the coupling between the operatéf and the bath operatoB% andby is bi-
linear, so we can use the general results derived in Sec. 3.3.2 by eongithate**¢ represents

a different operator for each that is coupled to one harmonic oscillator. The resulting influ-
ence functional is hence a sum of one-particle—one-oscillator influencgionals. By using
Eq. (3.130) we thus find

Bh T ‘ A
Olgtg ¢ =) { / dr / do Ky (—it + io)ed’ () =tka(@)
k 0
Bh ¢ L0 7+ o
+’L/ dT/ ds Kik(s — 7:7')@““1 (7) |:6*qu (s) _ ef’qu (s)
0 0

t s
_/ ds/ du [eiktfr(s) _ eikq_(s)} [K_k(s _ u)efiqur(u) — K* (s — u)eikq_(u)]} '
0 0

(4.108)

Note that, since in the initial Hamiltonian there is no counter-term the counter-te &as (3.130)
are absent in EqQ. (4.108). Thedependent kernel reads

lK]k:\ 0
L 27h

o coshlulk|Bh/2 — iOu|k|]

Ki(0) = sinh([u|k|8h/2]

(4.109)

A well known feature of the Fhlich polaron Hamiltonian (4.107) is its polaronic mass
shift which leads to an effective impurity mas¢* > M greater than the “bare mass” [50].
Another process described by this Hamiltonian is that during a collision bettheampurity
and an LL atom the former loses momentiitn by creating a density wave excitatitb;b in
the LL. However, the LL is itself confined in a harmonic potential and one mpge to have
some momentum transfer absorbed (or provided) from the LL to the optigal\tve will in this
section simply assume that the spring constant of the optical potential isrreliwad by such
a process in such a way that it balances the polaronic mass shift and weengkforth work
with the bare Hamiltonian (4.107) before turning to the more sophisticated anphgsented
in Sec. 4.6.

If the oscillations are small (if the impurity potential is sufficiently steep) we cqraed
the e’*4 in Eq. (4.108) to second order in Note that the linear order vanishes in Eq. (4.108)
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due to the symmetrk — —k. Ignoring the zero-th order ih we can make the replacements
e b s [0(r) — (0]
oika’(7) [e—z’kqﬂs) _ e—ikq—(s)} = k2¢0(7) [0t (s) — ()] — = [¢" ()2 — ¢~ (s)2] ,
[equﬂs) _ eikq_(s)} % [K_k(s —w)e—ikat @) _ K* (s — u)efikq_(u)}
= k(g7 (s) — a7 ()] [Ku(s —w)a™ (u) — Kji(s —u)q (u)]

2
6 — 0 (9] (s — ) — Kl —w) @.110)

4.4.2 Steep potential: The Luttinger bath and the initial condtion

If the external potential is steep we expect the Gaussian approximatioa Bithlich Hamilto-
nian (4.110) to be valid. Up to this order kneachk—mode plays the role of one bath harmonic
oscillator. Accordingly, forl, — oo we define the spectral density as

5@ =13 152 g — ulk)

ke{kn}
KB h? 3
_ Kw ZU emfwe = TH () el (4.111)
™ 4 \we
with w, = u|k.|/2 and
4hKw?w?
= MKW (4.112)
m2u

Hence, the bath inducesiper—Ohmidissipation with a power law behavidi(w) ~ w? for
smallw. This is the main difference from the analysis presented in Sec. 3.3.
In terms of the fundamental kernel [c.f. Eq. (3.131)]

K(0) = /O h ?S(w)cosﬁi[;"}(lf jﬁ/z /_2]1'9)} (4.113)
and WlthfﬂthK*(S—ZT) M~(s) and [; du [K(s —u) — K*(s —u)] = —iM~(0) +

iM~(s), wherey(s) is defined in Eq. (3.145), we obtaln

Bh
gt q g% = 1/ drdo K(—ir +io) [{°(7) — (0]

—Z/Bth/ ds K*(s —i7)q"°(7) [¢F (s) — 4™ ()]

/ ds/ du [¢ g (s)] [K(s —u)qg"(u) — K*(s —u)q (u)]
+1M; /Ods [ () —q ()] . (4.114)

The first line in Eqg. (4.114) shows that only the non-local parkdf-ir + io) contributes.
Hence we can replace the first line by, Ol drdo k(—iT +i0)q°(1)¢" (o). Furthermore, we

113



CHAPTER 4. DISSIPATIVE IMPURITY DYNAMICS IN A 1D QUANTUM LIQUID

see that the last line in Eq. (4.114) exactly represents the counter-teparponal tou. By
rewriting Eq. (4.114) in terms of the kernels; and~ [see Egs. (3.136) and (3.145)] and using
the transformed variables= (¢* + ¢~)/2 andz = ¢* — ¢~ the action becomes

E[$, Z, qO’ T, Xf, jl]

i /0 "4 [quo(ﬂ? + MQQQ L)+ /O Yo ke J)qO(T)qO(U)]

+ /O Y4 /0 45 K* (5 — in)(7)a(s)

+ /0 s [Mﬁc(s):b(s) — MOH(s)a(s) ~ M(s) - /0 du (s - u):z:(u)}

- % /Ot ds /Ot du Kg(s —u)Z(s)z(u) + % [azf + jﬂ : (4.115)

We remind the reader of the main approximations used so far. First, we wes&ahtissian
approximation (4.110) of the Bhlich Hamiltonian. Second, in order for the action (4.115) to
make sense we assum@do be large enough, so that non Gaussian effects are not too impor-
tant. Note, that the mass and the potential renormalization can modify the oscidlatjaitude
and the final width of the impurity position. Finally, we interpreted the laser iaatanitially
localizes the impurity at the center of the quantum liquid as an initial position nerasuat
with outcomeg,, = 0 and uncertaintyd. The effect of the initial position measurement is
incorporated into the action via the last term of the rhs of Eq. (4.115). Ibttedization is per-
formed itself by a very steep trapping potential with frequefigythe particle is in its harmonic
oscillator (with respect t6)y) ground state at initial time. We then have

e 2=2Q. (4.116)

This approximation is disputable since one could also consider the initial lowatizaf the
impurity as stemming from an initial trapping potential. The subsequent relédseimpurity
would then rather be described by a quench in the harmonic potentialdse8.8.2]. However,
in real experiments the “high temperature” regif#) < 1 prevails. From the discussion in
Secs. 3.4.1 and 3.4.2 we know that in this case the difference betweentibke paotion after
an initial position measurement and the one after an initial localization due to ahtnaigping
potential (followed by a quench in the potential) is blurred. Since it is teclinieasier to deal
with a position measurement we prefer this method to a quench in the trappimgiglotsote
that the “high temperature” regime is not equivalent to the classical regsnee gointed out
in Sec. 3.4.1 as it does not fulfill the “macroscopic measurement” condlion \p with Ap
the thermal de Broglie— wavelength of the impurity. For more details go back ttighession
in Sec. 3.4.1.

4.4.3 Signature of a Luttinger liquid bath

A typical experimental scenario consists in holding the impurity in the centereofrtép at

t < 0 and switching off the localizing potential &= 0 to let the impurity move in the residual
harmonic potential. Let us for a moment forget about the potential renomtializand the mass
shift. By using the results found in Sec. 3.4.1 we find in the limit 0 (which corresponds to
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an almost perfect localization of the impuritytat 0)

5 ~ h 5 > - %Nleq 7leq
COR) = 7m0 (NG (k) — 22 C A ()
5leq 5leq
+—)\+Fu CIN) +C*(r)| . (4.117)
In the time domain the correlation function reads
/ h / _% leq leq/y/
Ctt) = 5 GG (t') = M (t)
+Crea(|t —t)) . (4.118)

For the moment, experimental measurements focus on the equal-time correldticim ¢orre-
sponds to the time—dependent variance of the position)

e 2@( ) — %Cle%)? + C'*9(0) . (4.119)

The formula Eq. (4.119) is valid for all kinds of baths and for very smakhpmic effects and
potential renormalization.

In order to gain further insight into the dynamics of the impurity we need tonstated the
contribution of each of the three terms in Eq. (4.119).

We start from the analysis of the propagador(¢). To determine its time-dependence we
need the specific form of the spectral density of the LL bath (4.111) ringtef the function

B 1 o) 2 ¢ 2
g(Z) - 2/ CQ C2+22

C(t,t) =

- . _z 4.120
/ C2 + 22 (4:420)
the Laplace transform of the damping kerfiéh) [see Egs. (3.145)] can be recast as
M) = 49 (V) (4.121)
and the propagator (which is proportional to the linear response fuhcdads
~ 1
G (\) = (4.122)

A+ Eg(Nwe) + Q27

Our objective is to find the oscillation frequency and the damping of the impuritiomm the
small coupling limit. Thus, we need the inverse Laplace transform of EqRZ3vthich can be
expressed in terms of the Bromwich integral,

c+ioco

Gi(t) = = / dr e G, (), (4.123)
2mi c—100

where the real number is greater than the real part of all polesé)i()\). The integral in

Eqg. (4.123) can be solved by displacing the complex contour towards ttebbby evaluating

the encountered residues. Hence, we seek for the complex points &ttiwbidenominator of

Eq. (4.122) vanishes, thati8 + 1i/g(z) + Q% /w? = 0 with

T
z=ioc—T, where — <1 and y/ = 1 (4.124)
o Mw?
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Note thatz, o, I' andy’ are dimensionless andandI real. From Eq. (4.123) it is clear thAt
corresponds to the exponential damping (measured in unigs)aff the propagator and hence
I" has to be positive (whereasis the oscillating frequency measured in unitswgfand can
be positive or negative). Thus, the first singularities encounterea @isplacing the contour
towards the left are the imaginary axis for whigfx) is obviously singular wheRe z = 0. In
other words, we have to account for the differep¢er + 07) — g(ic — 0™) when displacing
the integration contour past the imaginary axis. We will come back to this poinsirajiew
lines. The integral in the second term of the rhs of Eq. (4.120) can bstras

oo ~
I(-T,0) = /0 dgﬁ

e—lol¢
a|/ 2—1—-2ilJo

oy [ Atk sign | 7] 1

I [50+ obe + sign [ 2] BGo1)]

12

12

where we expanded the denominator of the integrand to first ordéfdrand we defined

A(oc) = sinho Chio — cosho Shio ,
B(o) = o[cosho Chio — sinho Shio]
+ cosh o Shio — sinh o Chio
whereShi andChi are the hyperbolic sine and cosine integrals, respectively. The cdidribu

from the crossing of the imaginary axis is now easily obtain®d:= 7(0*,0) — I(—0",0) =
—ime~ 17l /o, After adding—2z*AT/2 to g(z) we thus obtain foRe z < 0

o?  imo? o3
~ _Ial — 714
o(2) =~ 2+ Tl - T ()
r 2
. 40 (1+ |o])e ol — xlo2elol | (4.125)

where we neglected all real terms®f (' /o)?) and all imaginary terms a®(T' /).

At the poles, the real and the imaginary part of the denomingtor 1/'g(z) + (Q/w.)?
vanish simultaneously. By using the formgif:) just derived we see that this can be achieved
with the choices

r— %02 elol (4.126)
02 2 ' 3 2 2
2 =0 +5[a A(o) 4+ o°] +2I%(5 + |o]) . (4.127)

Note the symmetry — —o in Eq. (4.127). Equations (4.126) and (4.127) determine the
oscillating behavior oG, (¢): T' corresponds to the damping anadto the frequency of the
oscillation (both quantities measured in units.Qj. We assumed the dampirgto be small
compared tar which by virtue of Eq. (4.126) translates into

4 4
f < e > 25 ~3.461. (4.128)
Yixea T
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The behavior of the oscillating frequeney(measured in units af.) strongly depends on the
trapping frequency?/w.. Figure 4.5 shows the dependencégfon i/ = p/(Mw?) and on

I" for the case2/w. = 3.0. Whenhs$) < 1 (as in [146]) the properties of the oscillations
of G, () coincide with the ones faf'4(t) [see App. 3.5.2]. Then, by observing Eq. (4.119)
one deduces that the actual oscillation frequencg(oft) and its damping are rathér and
2T, respectively. As can be seen for moderate to high trapping frequeetheiee is atincrease
of the oscillator frequency followed by a decrease induced by the bathHgy. 4.5]. Such
a behavior is not observed for small frequencies (compareg)to The experimental results
in [146] confirm such a “peak” although very few data-points are shimwthis paper and the
error bars are quite large so it is hard to draw firm conclusions on thalaetperimental
behavior at this stage. The “peak” in the curve of the oscillation frequenaybe used in
further experiments to determine whether the bath is actually described byoa hdt since

it is a direct consequence of the non-Ohmic spectral density (4.11Bigl.6 we show the

o o
3.02 3.0
3.0(pm=mmmmmmn s — —
2.9¢ 2.98
001 o1 10 o O.(I)OJI I 001 — 01 OI.2IF

Figure 4.5: Dependence of the oscillator frequemon the impurity-bath coupling’ = /(Mw?) (left
image) and on the dampirfig[see Eq. (4.126)] (right image) fét/w. = 3.0 obtained from Eq. (4.127).
A logarithmic scale has been used.

correlator Eq. (4.119) for values of the impurity—bath coupling=€ 0.5 andy’ = 0.2) in the
“high temperature” regimgh) < 1 typical for experiments. The parameters were chosen to
bel/(4€*w.) = 10 in both images for the thick line§)/w. = 1.0 in the upper an@ /w. = 3.0

in the lower image. The thin line in the upper image has been obtained ith*w.) = 50.
The curves qualitatively agree with the experimental data [146]. Onelclesmognizes the
increase of the oscillation frequengyduced by an increase in the couplingfor Q/w. = 3.0.
See however Sec. 4.6 for more details and a critical comparison of thig effih the ones
induced by the frequency renormalization due to the non-homogeneity alttiager liquid
and the polaronic mass shift. The typical oscillation width in experiments is dbpui with a
frequency ofr ~ 550s~!. The final position width of a (high temperature) quantum Brownian
particle is given byl /(M Q?) [8]. With the massM of the #'K atoms used as an impurity
and the bath temperatufe ~ 350nK in [146] this yields/C(¢,t) ~ 15um which is even
guantitatively the right value. Hence, quantum Brownian motion captureg mam features

of the impurity dynamics observed in [146]. The limits of the present appredktbe discussed

in the conclusion and Sec. 4.6.
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Figure 4.6: Theoretical results for the variance of the intpyositionC (¢, t) after its quantum Brown-
ian motion induced by a LL bath in the “high temperature™tmegwhich is experimentally available. We
chosel /(4¢%w,..) = 10 for the thick lines in both images, afifw. = 1.0 in the upper an€l/w,. = 3.0in
the lower image. The impurity—quantum liquid couplings @re- 0.5 (thick straight lines) ang’ = 0.2
(thick dotted lines), respectively. In the upper image the line has been obtained with (4¢%w,..) = 50
andy’ = 0.5.

4.5 Some notions about polaron theory

At this point it becomes important to provide the reader with some backgriotomnation on
polarons The polaron concept will be used in Sec. 4.6 which presents the maihraeuéis of
the present chapter.

In lattices where the characteristic phonon frequencies are sufficientlyalo electron
which passes by the atomic ions deforms the background lattice in such aavayteffective
potential for the electron is created. Holsteinpliich and Lieb [189, 190, 191] studied these
phenomenon, by approximating the background lattice by a continuouszabl@ medium. In
this case one calls the moving charge carrier a large polaron. If the motiaofiicsently slow,
the reaction of the polaron on the medium can follow the polaron as an ionizatiod, thus
creating a free quasiparticle with an enhanced mass.

When the polaron binding energy exceeds the half-bandwidth of theaidotnd in the
system, all states are “dressed” by phonons. This is the so-called-stoopiing regime where
the finite bandwidth becomes important so that the continuum limit can not be éplolithis
case the polarons are callsthall polaronsand they have been studied in, e.g. [192, 193], to
cite just a few.

In the next subsection we will discuss the case where the medium is noizpblarby
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an electric charge carrier, but rather deformable by a mobile localized mald@nsity, i.e.,
an impurity. This physical difference, however, does not need aegifép approach and the
impurity-Luttinger liquid system can be considered as a polaron-lattice sysitéina modified
interaction potential. Since we are interested in continuum systems the largepaaweak-
coupling, regime is relevant for us.

The so-called Fahlich polaron model is defined by the Hamiltonian

H = 2@\2/1 + Z UeT7 [z}jﬁ 13,5} + Z hwpblhg , (4.129)
g q

wherep and M are the momentum operator and the mass of the polaronégaﬁg phonon
creation and annihilation operators. The Fourier transformed potéftialgiven by

Ao h 1/4ﬁ/,u
RPN fwp 4.130
=Ny <2wa> 7 (4.130)

wherew, is the longitudinal optical phonon frequendy,the volume of the crystal and the
so-called Fohlich coupling constant:

e? [ mc? 1/2 1 1
- — . 4131
T e <2hwp> [Eoo Eo} (4.131)

Here,e is the charge of the electron affy and E., are the static and high-frequency dielectric
constants. Since these coupling constants are model dependent | wilentitem anymore. It
is only important to note that; ~ 1/|4].

We are interested in the groundstate of Eq. (4.129). If the interaction betthe polaron
and the phonons can be neglected the system is in the unperturbedgetend

Ik, 0) = eF70) | (4.132)

wheree?* 7 is the polaron plane wave af@) the phonon vacuum. We can now apply perturba-
tion theory by assuming that the coupling is weak. By using standar@&diger perturbation
theory the first order energy correction is given by the diagonal elenoéthe interaction term,

> U B b g (4.133)
q

which vanish identically, obviously. The interaction (4.133) conservesatad¢ momentum at
each scattering event. Hence, the second order perturbation leads to

Vel

0F; = — - - . (4.134)
F Zq; (k — 9)2/2M + w, — k2/2M
By transforming the momentum sum into an integral one finds the result:
e 2 a@MoH)Y?
E];‘ = T + 5EE = m — T arcsin [’k‘/\/ 2M(A}pi| s (4135)
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which in the limit of a slow polaron motion simplifies to

];’2
F- =

— awp . (4.136)

The second term of the rhs of the above equation is a consiadependent energy shift which
does not contribute to the dispersion relation of the polaron. Howeves ifirgh term | defined

1—-a/6

*

(4.137)

which we call henceforth theffective masef the polaron. Thus, we found that the mass of the
polaron is enhanced by the photon cloud which leads to a dressed polaron

This lowest order perturbation method can be largely improved. Feynnthid9%6 the
idea to transform the polaron Hamiltonian (4.129) into an action in which the plusgrees
of freedom are integrated out [190]. One then finds an influencditurat very similar to the
ones already encountered in this thesis. The effective polaron actioverslay

13 552 () 1B 13 1
= d d d 4.138
8 /0 T 23/2/ / ) =2’ (4.138)

where | restrict this analysis to a one-dimensional problem so that theopataprdinater is

a scalar. The action (4.138) has a very appealing form. Indeed, thadtiter term describes

a particle which interacts with itselfia a retarded Coulomb interaction. The retardation is
mediated by the ~I"~“|-term in the numerator. Eq. (4.138) is non Gaussian and therefore not
integrable. However, in [190] Feynman replaced the Coulomb-potentialdogpared potential
and performed a variational calculus by minimizing the non specified couptingtant. More
precisely, let us do the replacement

o €—|T—cr|

252 |x(7) — (o)

C andw are constants which have to be determined by minimizing the ground state énergy
by the well-known upper bound variational calculus which leads to

— Ce Ir=l(z(r) — z(0))? . (4.139)

E=Fo— lim ~(S—So)o . (4.140)
B—00 ﬁ

with Ej the free energy and, the trial action (i.e. the one withi andw). The average is taken
with respect taSy. It can be shown that the weak coupling expansion of Eq. (4.140) bftets
a short calculation to

M*/M ~1+ % 1 0.02502 4 - (4.141)

Eq. (4.141) generalizes Eq. (4.137) beyond the first order. im [146] the authors presented
results for the effective mass of an impurity in & liquid by using a similar Feynman varia-
tional ansatz as described above, albeit with a density-density couplivey than a Coulomb
potential. Note that such an impurity is couphéd a similar polaronic-like interaction to the
surrounding liquid, although the potential is different in the impurity case $e. 4.6].

Apart from the effective mass the mobility and the effective polaron raldive also at-
tracted interest [149]. | will not go into detail, here, nor will | discuss msophisticated
methods to tackle the polaron problem such as the diagrammatic Monte Carlichaipfdr94].
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Devreese et al. [195] introduced another approach to find Eq. (4d8yond other results].
They used the Hamiltonian (4.129) directly to write the Heisenberg equatiomotdn. By
imposing a constant velocity of the polaron the equations become solvabtmariithds again
the first-order result Eq. (4.129). This approach neglects the leadtion of the phonons on
themselvewia the particle interaction. It is hence equivalent to a linear response thdmmne
such back-reactions are commonly neglected. Since the approaclehpiesSec. 4.6 is also
based on equations of motion | will not present the approach by Devegesd. which is very
similar to the one in Sec. 4.6.

4.6 An impurity in a trapped 1D gas: Dynamical linear response
theory

“Make things as simple as possible, but not simpler”
Albert Einstein

In this section | present results which were obtained [23] during by Rinihe motion of
impurities in trapped 1D Bose liquids. Diffusion in such low dimensional quariguids has
been a major field of research in the last decade [165, 196, 197, 668167, 199, 164, 200,
10, 146]. In one-dimensional (1D) liquids of interacting bosons a movingiiitypis subject to
a drag force [199] and dissipates energy for all velocities even atteerperature [200] as we
have also seen in Sec. 4.2.1. The experimental design of artificial 1D impguiytum liquid
systems has now become possible by confining cold atoms in optical nanotidiag these
techniques, the diffusion of impurity atoms in contact with a Luttinger liquid (LL) vithable
impurity-LL interaction has been recently studied [146] by making use okalsach resonance
which allows for controlling the interaction strength [185]. The experimestahario is thus
the following:

Both the Luttinger liquid and the impurity are confined in an effective 1D optiché
with the sameresidual longitudinal potential. This longitudinal potential will be assumed to be
harmonic. For timeg < 0 the impurity is localized in the center of the nanotubez At 0 it is
released and it starts its mostly stochastic diffusion motion in the Luttinger liquichdasuring
several quantities such as the mean position width of the impurity one carctevraa these
dynamics. Note that due to the external trapping potential the minority atomsgendiemped
oscillations which directly confirm that dissipation takes place in this system.

In Ref. [183] the authors attempted to describe the impurity dynamics within theser
Pitaevskii approach at zero temperature. Such a Gross-Pitaevsioaappas also been em-
ployed in [201] where the authors found a strange “atome blockade”whbeds to a self-
trapping of thea priori untrapped impurities in the non-homogeneous Luttinger liquid. Peotta
et al. [151, 184] recently studied the trapped impurity-Luttinger liquid systém a dynam-
ical numerical renormalization group method (albeit their trapping potentiatifiarmonic).
In the original paper [22] [see Sec. 4.4] we followed an alternative yagipplying quantum
Brownian motion theory to the impurity problem. In this section | will pursue anradttre ap-
proach by considering the impurity atom as a quantum Brownian particleqddrtum liquid
then plays the role of an exotic quantum bath and it can be dealt with usingdeurttineory
[see Sec. 4.4]. Also, as already pointed out in [146, 22, 183] the impaidiyn acquires an
effective mass due to its interaction with the LL which can be related to the wellskipolaron
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paradigm where a charge carrier acquires an effective mass (Wwtebds his bare mass) when
passing past a charged lattice [see [191, 192, 193, 202] and Skd.wilbnot go into details
since this polaronic mass shift is not the main focus of this study. | will only nuslkeeof the
linear response approach using the equations of motions of the impurity Waithlso been
successfully applied by [195].

In the conclusion chapter 5 | will compare the different results obtainecesethapers with
the results | shall present in the following.

Quite obviously, the external trapping potential leads to an inhomogeneosgydprofile
of the LL with non-trivial effects on the impurity motion. In this section | combiegesal in-
dependent ideas that will allow us to: (a) estimate the mass shift of the imphbjigydluate the
effect of the non-homogeneous density profile of the LL as well as, tstafiproximation, the
renormalization of the confining potential, (c) use the non-equilibrium formadié quantum
Brownian motion developed in [22] to reproduce the data in [Ift&ntitatively

| repeat here the free Hamiltonian of an impurity with mass in an optical trap modeled
by a harmonic potential with spring constantwhich reads

H =L g (4.142)

with p andq the momentum and position operators.

The impurity interacts with an LL which is confined by the same potential [146}.tle
sake of simplicity we will incorporate the effects of the trap on the LL later. e en-
ergy excitations of an unconfined 1D quantum liquid are described byaimeiaga-Luttinger
Hamiltonian

~ o h UK S 2 u i 2
A= 5 [ do | (i1 + (Vo0
= bkl (4143
k40

with the two canonically conjugate bosonic field&z) andé(z) [10, 158]. ¢ is related to the
LL particle density throughp(x) = po — (1/7r)¢3’(:c). In the second quantization language the
Hamiltonian can be equally expressed in terms of bosonic ope@tarmlf)k which we define
below. The dimensionless coefficieRt and the sound velocity totally characterize the low
energy properties of such a 1D system. For translationally invarians tiasg only depend on
the Lieb-Liniger parameter = Mpwy /hpg, with My, the mass of the bosorisy, the strength
of the interaction ang, the density of the LL [158].

We model the impurity-LL interaction through

i = [ dady UGo — )p(w)d(o — d). (4.144)

with U (x) the interaction E)otentiab(x) the LL density andj the impurity position operator.
In Fourier space we defing(x) = L™'/23", e7"*¢,, with k = 27n/L andn € Z. The full
Hamiltonian is ther{ = Hy, + H 1, + H, with #; defined in Eq. (4.142) and

u A A ~ A
Hy = §Z[Hkn_k+k2¢k¢_k , (4.145)

k
H, = 1/£Zikqu3ke_ikq (4.146)
7h - ' '
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Note that we rescaled the fields accordingpior— /(7K /)¢, andIly, — +/(h/7K )},

In terms ofb], by, the (rescaled) field reads, = +/7/2[k|(b' , + by). We choosel;, =

haw /\/L e~ ulkl/2we with some cutoff wave vectas,. /u depending on the microscopic properties
of the coupling. Equation (4.146) considers only the so-called forwardrityeL L scattering.
The backward scattering potenti@,... iS not relevant in our case since we consider light
impurities [see Sec. 4.2.1 and [200, 166, 167]].

4.6.1 The experimental evidence

In [146] the impurities are initially localized at the center of the potential tubes avitser
blade that creates another harmonic potential well with spring consgasntx. After their sub-
sequent release they undergo stochastic dynamics that resemble tloé @adesnped harmonic
oscillator. Catanet al. measured the equal-time correlation functitii, ¢) and they drew the
following conclusions:

() The oscillation frequency?; is virtually not affected by the value of the impurity-LL
interactionfw.

(1) Equations (4.142)-(4.146) resemble the well-knowil#ich polaron Hamiltonian that
should result in the impurity mass renormalizatiéf; — M7, as a function of the interaction
hw. Point (1) then indicates that in parallel to the mass renormalization the poteptial
constant should be renormalized as well> «*, in such a way tha®; = |/x*/M; remained
equal to);.

(1) The initial kinetic energy of the impurity can be estimated from the high tewaipee
equipartition theorem to be 1/4 (note thati3+/ko/M; ~ 0.1 in [146]) by assuming that
the impurity has equilibrated with the LL before its release. The amplitude afteosrillation
o Should therefore scale as 1/+/x* when neglecting dissipation such thét;?> ~ 1/3 due
to energy conservation. Furthermor\gz(ﬁ/f@* ~ \/MI/M} due to point (I). The increase of
k* ~ Mj is clearly observed whehw is ramped up (see Fig. 4.7). Note that fofw;, 2 5
the 1D regime is not ensured any longer which explains the “saturatios® fifr large values
of w (not described by the effective 1D theory).

(IV) The final (equilibrium) width of the impurity cloud is independentiab.

We notice that (IV) is at odds with (ll). From the theory of quantum Briamrmotion we
know thatlim; ,~, C(t,t) ~ 1/(5k*) for a harmonic potential with spring constaxit [8];
therefore, the dependencedf on hw should entail a dependence of the cloud width with the
same parameter. Accordingly, a more thorough analysis of the coupltdrsys needed to
correctly interpret the experimental evidence. In the following | examing@direts (1)-(IV) in
detail and | propose a way out thisnundrum

4.6.2 The dynamical mass shift

It is well-known that a charged particle acquires an effective mass wwheteracts with lat-
tice vibrations through a Coulomb potential [191, 192, 193, 202]. Equaiiéri45)-(4.146)
describe such a polaron with the only difference that the interaction issdo@b-like. In the
following we estimate the polaronic mass shift in our problem by using the eqgaifanotion
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(EOM) for g?)k(t) andq(t) (see [195] for the use of EOM in this context):

Sr(t) + ki (t) = iuk\/?hU,:e““@(“ , (4.147)
™
: R K —ika(t) 2
Mig(t) + kg(t) = —\/; > KU FW g (1) (4.148)
k

Suppose that the impurity is not accelerated during a small time interval, theanvaake
the Ansatz

q(t) = 4(0) + ot (4.149)
with & = p(0)/M; and[j(t), ¢ (t)] ~ 0. The solution to Eq. (4.147) for smalreads

Or(t) = Ag(t; 0)e™ + gpe™™ 4 hye M (4.150)
with the coefficients
. . ' K tka(0)+ihk>t/2M;
Ag(t;0) = tuk Uy T BB TR (4.151)

= 3 | B0(0) + iz ul0) = Au(059) — An(39)7 |
~ 11~ 1 = o o 3
hi, = 5 |:¢k:(0) = 7 08(0) = A(0;0) + Ax(0; @Z] :

The first term on the right-hand-side of Eq. (4.150) represents atgetsud that moves to-
gether with the impurity, while the two last terms describe the very wave excitaionin-
stance, in the limitv. — oo we have for a mobile impurity witkonstantvelocity

pla,t) ~ > ikAR(t; 0)e™ R ~ (- 4(1) (4.152)
k

meaning that the LL density profile follows the impurity, thus creatinigessedocal impurity.
It is important to note that this simple picture has to be altered when the impuritydkeeated.
We will come back to this point later.

The combined system of the impurity and the density cloud has an effective winish
exceeds the bare impurity mass. As an illustration, we consider the initial corsditj¢0) =
Ar(0;0) and¢y(0) = 0. If the impurity is immobile [i.e.4(t) = ¢(0)] these initial conditions
lead to the static solutiony (t) = Ay (0;0) which describes a static density cloud without wave
excitations. Suppose now that the impurity is instantaneously acceleratech&éocamstant
velocity 9, then we obtain from Eq. (4.15@), = Aj(t, )™ — iA;(0;0) sin ukt. Hence,
upon acceleration energy is carried away by a wave excitation, sucthéhkinetic energy of
the impurity is less than the external energy provided. To be more spegifisjig Eq. (4.145)
the average energy of such a wave excitation is found tB;be “T’QZ(v/u)QAk(O; 0)A_x(0;0)
with v? = (92). We define the dynamical effective impurity mass through

My =1+ p)Mp, (4.153)

with the interaction-dependent correction= 2hw? Kw,. /(72 Mu*). Then, by instantaneously
providing an amount of energl/, the impurity acquires after acceleration a (mean) velocity
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Figure 4.7:1/r/k* versus the impurity-LL coupling)/w,. Lines obtained from Eq. (4.153) with (from
left to right)y = 0.25, v = 0.35 andy = 0.5. Experimental data points are taken from [146]. Triangular
points: Result from Feynman'’s variational theory [146].

given byE = M;v?/2. Itis straightforward to generalize this calculation to the case where the
impurity has already a velocityy before the acceleration: One simply replagdsy

ol
= 4.154
where we used the classical mean valgenstead ofi3. In the following we considen/; as
the true impurity mass. Note, that our definition of the dynamical effective whiéfsss from
the effective mass usually defined via the impurity self-energy diagram.

4.6.3 The potential renormalization

Ref. [146] indicates that the spring constant of the optical trap is rerfizedaas well. We will
show here that the effect of the external potential on the LL indeed lea@senormalization
of the potential felt by the impurity. In the same spirit as in the previous pgrhgre study
the effects of the external potential, which we previously negleefadts action on the density
cloud. The force exerted by the external harmonic potential on the detsitg is given by

R L/2 A . e \/7 i
F=- /_L/2 dz kxp(z) = Kq Th(a? =37 LU, (4.155)
where we used Eq. (4.150) to exprggs). By considering the combined impurity and the
density cloud system as one entifyacts in the end on the impurity itself. Interestingly enough,
F' changes sign wheihexceeds the sound speeduch that the subsonic and supersonic regimes
are quantitatively different. In [146] the impurity moves with supersoniedpg/(92) ~
8.5mm/s while u ~ 3mm/s typically) so thatF’ leads to arincreaseof the effective external
potential. In the following we approximai€ by its mean value? = (2).

The idea behind this approximation if the following: If we take the mean of Eg5&) with
respect to the impurity wavefuntion (written in the momentum domain) divergemugear as
soon as approaches. But in this case the formula (4.155) is certainly wrong. Indeed, one
has to bear the meaning of the approximation so far made in the mind. By imposimgtarat
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width [um]

width [um]

time [ms]

Figure 4.8:\/C(t,t) for Q;/w. = 2.5, 7 = 0.45 andw/wy, = 1(4) in the upper (lower) image. Points:
Experimental data from [146]. Lines: Solution to Eq. (4.1%4th 27 = Q;.

impurity velocity one actually assumes that the acceleration of the impurity is smalhwith
the time interval one considers. However, in Sec. 4.2.2 we have learneth¢hdissipation

of an accelerated impurity diverges when the impurity velocity approackesotimd velocity.
Therefore, even the tiniest deviation from the linear relation (4.149)ymesla huge dissipation
in the vicinity of the sound speed and the time interval within which the ansatz¢réhains
valid shrinks to zero.

Accordingly, it is difficult to take the average @ with respect to a wavefunction if this
wavefunction allows for arbitrary momenta. In order to stay in the rangelfity of Eq. (4.155)
it is therefore necessary to directly averageand to require that? not too close tax.

Intuitively, the potential renormalization can be easily understood. Wheimibarity cre-
ates a density exciton it has to push the LL atoms up the optical potential to b alvkate
the density cloud. Therefore it loses more energy than what the densigywauld cost. The
inverse is true as well. By absorbing an exciton the impurity gains more etf@gyhe exciton
provides since potential energy is freed during the absorption proEegstion (4.155) leads
to the effective spring constant

K =1+ paw))k, (4.156)

whereji(v) = £%4/(v? —u?). In conjunction with Eq. (4.154) we thus obtain for the effective
potential frequency
1+ A(v) o

)2 = ——207. 4.157

( I) 1+ M(U) I ( )
In Fig. 4.7 we compare the prediction in Eq. (4.156) to the experimental dé&. [The best
curves are obtained foy ~ 0.25 — 0.35. Note that all the constants are determined by the
experimental setup. However, since it is difficult to definfer a non-homogeneous density we
plotted results fory = 0.5 andy = 0.35 and~y = 0.25 for illustration. If the non-homogeneous
density profile is approximated by an homogeneous one the parameters thseeixperimental
setup in [146] lead tey ~ 0.45.
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4.6.4 Long time dynamics

In the previous two paragraphs we studied the potential renormalizatioihamupurity mass
shift by assuming that the impurity velocity was constant. Only then is the impuritydclo
perfectly localized around the impurity position. It is clear that such anceqipation can only
hold for short times in the system we consider. For instance, while Eq.G4cem still be
considered as a realistic approximation up to the first oscillation maximum of theitgnpu
certainly fails to describe the correct physicsfer co. The general solution to Eq. (4.150) is

t .

br(t) = / ds Smu,;(]i_s>eik‘§(5) + wave excitations , (4.158)
0

which leads to a density cloud of the forpx,t) ~ f(f ds o[z — G¢(s) — u(t — s)] — o[z —

4(s) +u(t — s)]. In the case of an exponentially damped oscillating impurity this density cloud

depends only on past valuesgivhent is large and hence, far— oo, the influence ofj(¢) on

p(z,t) becomes negligible.

To put it in other words, fot — oo the density cloud is independent of the impurity such
that its dynamics decouple from thosejof): The LL has no dynamical effects on the impurity
and one concludes that the LL neither renormalizes the impurity mass noténeadpotential.
Accordingly, the final width of the impurity reads

C(t,t) ~ /8];l-§ for t — oo (4.159)
and notl/gk*. We have thus found that dynamical quantities depend on the renormalized
valuess™ and M} while final equilibrium quantities have to be computed with the bare values
x andM;. We insist on the fact that this behaviour has been observed by [1&vthe final
impurity position width is not renormalized in contrast to the potential renormaliztiat is
observed at short times (see Fig. 4.7).

4.6.5 The impurity influence functional

We now use the Keldysh formalism to derive an effective out of equilibragtion for the
dynamical impurity position. The action of the free oscillator (describe®{ byvith the param-
etersM; andx*) is complemented by

Bh T . )
Smf[qu, q_,qo} = Z {—z/ dT/ do T(—iT + ia)e’kqo(T)_’kqo(")
. 0 0
Bh t . - —
+/ d’T/ dsT'%(s — iT)equO(T) [e_lkq (5) _ o—ikg™(s)
0 0

t s
—|—i/ ds/ du {eik(ﬁ(s) - eikqf(s)} |:F_k(3 - u)e—i’“ﬁ(u) —T* (s — u)e—ik‘q’(u)} }
0 0

M[? 2

+ |4+ } : (4.160)

whereg™(s), ¢~ (s) are the dynamical Keldysh branches with(0) = ¢; andq=(0) = ¢,

andqo(7) is the path over the initial condition (with imaginary timg [22]. The last line in
the right-hand-side of Eq. (4.160) describes the initial localization due tagee blade which
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we interpreted as an initial position measurement with widtky 3. Damping stems from the
impurity-bath coupling which induces the kernel [8]:

_ K|K|[Ux]? coshulk|(8h/2 — i0)]

I'(0) o7h sinh[u|k|8h/2]

(4.161)

with 6 = s — i7. In order to understand the effects induced by the non linear impurity-LL
coupling in Eq. (4.146) we expand Eg. (4.160) to second order Trhe result can be found in
chapter 3 and [22] and the correlation function can be calculated:

1
K*3
Here,R(t) andC®4(t) are the response and equilibrium correlation functions in the high tem-
perature limith3€2; < 1 which prevails in the experiment. In the Laplace domain they read
R(2) = (1/M})[2%+2wea(2)+(Q2%)? "1 andC®(z) = (1/82)[1/x*—R(z)]. Linear response
and correlator depend only on the “damping kernel”

& ,LLM[ w 2 /
at) = / dw — <) e~ ¥/ coswt . (4.163)
0 M[ We

h? Bk

C(t,t) ~ 1

R2(t) — k*B C%4(t)% +

(4.162)

As we pointed out, the final equilibrium value should be rathéts [22] than1/x*5
that would follow from Eq. (4.162). We conclude that, while the Gaussigmagmation of
Eq. (4.160) [see [22] for details] yields a realistic description of the impdsityamics for short
times, it cannot deliver the right correlation function for large times, wiaeceossover from
the effective constants® and M7 to bare quantities takes place. Since our approach does not
provide us with an explicit expression eft) and(2;(t) we directly construct an approximate
correlator

- h2/8'%0 2 * e 2
C(t,t) » —— R(t) — 5" C*A(1) B
—I'Qt i _ 1
(1= et (w m*ﬁ) , (4.164)

which interpolates between the two asymptotic expressions (4.162) an@)4Hére,I" is the
effective damping induced by the Luttinger bath. For small to moderate daritpéngjven by

I' ~ gu(QI/wc)e‘Qf/wC [see (4.126)]. We expect Eg. (4.164) to be a realistic approximation
of the impurity position width.

4.6.6 Discussion of the results

In [146] *'K atoms play the role of the impurities moving in optical 1D tubes through a Lut-
tinger liquid made of"Rb atoms. Both thé'K and the®”Rb are confined in the same lon-
gitudinal optical potential with the (bare) potential frequefity = 550s~! (390s~') for #'K
(®"Rb). We interpret the initial localization (witkg ~ 150x) of the impurities as a position
measurement. The experimental temperature is suchghat ~ 10~2 which ensures the high
temperature regime. The mean squared velocity is obtained tdBex 8.5 mm/s which
exceeds the typical sound velocity~ 3 mm/s so that the impurity moves in the supersonic
regime.
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As pointed out before, the mass has to be renormalized in such a wa@thr@mains
approximately constant over a wide rangefw;,. This can be achieved by a suitable choice
of w., the only free parameter in our theory. Fpe= 0.35 the choicew./Q2; = 40 — 50 leads
to a variation ofl0 % for Q; in the ranged < w/w; < 5. However, since the mass and
potential shifts decrease during equilibration the oscillation frequencslogintly change in
time. Thus, for large time®; approaches?; in any case. Hence, in order to experimentally
observe the; predicted by Eq. (4.157) one cannot average over many periodssadoma
in [146]. It is therefore not straightforward to make a direct precisantjtative comparison
between Eq. (4.157) and the experimental findings, although we think thavitlence in [146]
clearly indicates that the mass renormalization counteracts the potential shiéirge extent.

Finally, we compare Eq. (4.164) to experimental data in Fig. 4.8. In [Mélt,t) has an
offset of aboutsum which we add to our theoretical results. Moreover, for small interactions
(w/wr, < 1) there is a residual damping in the experiment due to inter-impurity collisions in
tubes with several impurity atoms [146] which is of course not coveredunytteory. We
therefore use the data from [146] for the damping constBnt( 0.03 for w/wy, = 1) in
a(t). As pointed out befor€; can slightly vary during the equilibration process. However,
this effect is not expected to be observable within the experimental earsrand therefore we
approximate; by 2 for all times. The match between the experimental data and our theoretic
curves is quite impressive.

In Sec. 4.4 | argued that non-trivial effects @, produced by the super-Ohmic spectral
density in the damping kernel (4.163), could be observedJfor: 0.3Q2;. Here, a second
effect, which is potentially more important, has been described. | think thatiexperiment
described here.. is much larger such that the effects of the polaronic mass shift and the poten
tial renormalization (which were previously neglected in Sec. 4.4 largely damthe influence
of the non-Ohmic spectral density.

In summary we gained a thorough theoretical understanding of the expégintata in
[146]. We calculated the effective potential spring constant with an E@ptaach, which
is expected to be correct for short times, and we obtained a result wiinguindetermined
parameter [see Fig. 4.7]. We argued that due to memory effects neithégraigbnor a mass
renormalization can take place in the long time limit. One question not resolvedyetms
the precise mechanism that links the mass and potential shifts which | hopewaVealed by
future experiments. Finally, using the analytic results developed in Secotdef Brownian
motion of a particle coupled to an exotic environment, after an initial position memasunt,
and with a phenomenological correction to the asymptotic limit, we described plesieental
data forC(t, t) very accurately.
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CHAPTER D

Conclusion and Outlook

“Even if | knew that tomorrow the world would go to pieces, | would still planytapple tree.”
Martin Luther

In this thesis | presented the main aspects of the research | conducitegl miyrPhD at the
LPTHE at Pierre-et-Marie Curie university in Paris. The thesis considgte@e main research
chapters. Let me here summarize the main achievements and compare tsrteesther
approaches in the literature.

5.1 Ciritical dynamics driven by colored noise

In chapter 2 | thoroughly studied the purely dissipative critical dynamics miodel with an
N-component order parameterihspatial dimensions, coupled to equilibriumthermal bath
which provides a colored thermal noise. We argued that the upper cdiinahsionality of the
model isD. = 4 and we used the framework of the field-theoreticakpansion to account for
the effects of non-Gaussian fluctuationstin e spatial dimensions.

Within the Gaussian approximation — valid fbr> D, — the equilibrium dynamic exponent
z which controls the different scaling of space and time takes the values

(col) — 9 f 1
ZOZ{ZO Ja for a<1, (5.1)

z((]w):2 for aa>1,
where« characterizes thalgebraiclong-time decay of the two-time correlation function of
the noise, see Eq. (2.4). Far= 1 one recovers the white-noise resvﬁv) = 2. The non-
equilibrium ‘initial slip exponent’d, instead, vanishes. Depending upon the value dfie
asymptotic long-time dynamics is effectively equivalent to one driven by widtee (Ohmic
bath) fora > «., whereas the effect of the colored noise is relevanufet a.. Within the
Gaussian approximation. = 1, as demonstrated by the change in behaviogofiven in
Eq. (5.1).
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In dimensionsD < 4 the critical behavior is modified due to the relevance of the interaction
term and of the non-Gaussian fluctuations. The valughich controls the cross-over between
the white-noise and the colored-noise dominated behaviors is modifidddspendent correc-
tions of ordere? and it therefore separates the two corresponding regions in the parspete
(a, D, N), named W and C in Fig. 2.5, respectively. The dynamical critical exponisrgiven

by

Zleol) = 24p,=2 [1 - 4(%12)2 62} + O(€3) within region C ,

W) =24, =2+ (15:82)2 3 ln% — 2] €2+ O(€®) within region W .

(5.2)

The N-dependent curve Eg. (2.90) which separates regions W and C ifuttie)-plane is
illustrated in Fig. 2.5 forV = 1, 4, co. Some comments are in order:

() Upon decreasind, the region W within which the Ohmic result is recovered extends
beyond the Gaussian value = 1.

(i) The correction to the Gaussian valugis positive within region W 4, = 2) and negative
within region C ¢y = 2/a).

(iii) The exponent is a continuous function afanda: At the transition line between regions
W and C one has(™) = z(c°D) as can be easily verified by using Eq. (2.90).

(iv) Inthe largeV limit the €? correction vanishes and the dynamic exponeanda.. take
their Gaussian valueg anda,. = 1, respectively. Thisis also consistent with the large-
result reported in Sec. 2.2.2

For random initial conditions, i.e., with vanishing correlations and averedgr parameter,
we determined the general scaling forms of the dynamic correlation functibitkin region
C, such scaling forms differ from the ones valid in the presence of whisemmly, studied in
Ref. [82] and recovered within region W. We determined the correspgtiwitial-slip exponent
6 up to orderO(¢) in the presence of colored noise. It is given by

(N +2)

b= iN+9)

d(a)Tg(a)e + O(e), (5.3)
and the plot of the ratio between this val@eand the referencé.,—; for the white noise is
reported in Fig. 2.8. Note that in the white-noise limit= 1 we recover the largé¥ result
0.—1 = €/4 [see Sec. 2.2.2].

In non-equilibrium conditions we also calculated the long-time lixf® of the FDR for
generala and N. The value ofX° in the presence of white noise is known analytically up
to O(€?) [91] and numerically via Monte Carlo simulations in various dimensions for models
belonging to the universality class of tli& V) model with dissipative dynamics (see, e.g.,
[86] for a review). We proved that this result is recovered within regiéninstead, if the
colored noise is dominant| < «.(D, N)], i.e., within region C, we showed th&*> = 0.
Therefore, the associated effective temperature is infinite, analogmouslyat is found in sub-
critical coarsening [93, 94]. Our result fof*>° within the Gaussian approximation is only
in partial agreement with the corresponding one derived in [48] forrmmalously diffusing
particle — i.e., of a fractional Brownian motion — which our model reduces toimihich
an approximation. Indeed, in the presence of a super-Ohmic noisea. = 1, one finds
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X =1 [48] and super-diffusionr < 2 for the fractional Brownian motion, while we argue
that X*° = X§° = 1/2 and normal diffusion = z(()w) = 2 in our field theoretical model. This
is due to the fact that even in the absence of a white-noise effectivewettes original model,
non-Gaussian fluctuations (induced by the interactions) generate itrntihio the dominant
one fora > a. < 1 such that the white-noise result is recovered.

In conclusion, noises correlated in time may affect significantly the equilibenchnon-
equilibrium dynamical properties of systems close to critical points. In thigest is impor-
tant to note that the distinction between super-Ohmic-(1) and sub-Ohmicq < 1) thermal
baths does not fully correspond to having irrelevant (white) and reteiemlored) long-time
correlations of the noise, respectively. Indeed, as shown in Fig. &5k, &weakly sub-Ohmic
noise witha.(D, N) < « < 1 is actually equivalent (in the RG sense) to an Ohmic (white)
noise in the physical dimensiori3 = 3 and D = 2 as far as the dynamical properties in the
long-time limit are concerned. In addition, in the presence of interactionger€hmic bath
does not result in a super-diffusive behavier< 2) but rather in the anomalous diffusion in-
duced by the equivalent white noise, in contrast to what happens fiseth&actional Brownian
motion.

The field-theoretical predictions for the relaxational Markov criticalaypics of systems
belonging to the universality class considered here have been put tatherioal test both
via Monte Carlo simulations and by solving the Langevin equations with a varietijferent
methods (see, e.g., [87] and references therein). An instance dladtoevian dynamics of
the ¢*-theory with a noise exponentially correlated in time was investigated in [208}.eMer,
in this case one does not expect the long-time dynamics of the system tocebedfby the
finite memory of the noise. Dealing numerically with power-law correlated Gausmise is a
significantly harder problem which remains basically open due to the diffisuitigenerating
such kind of random process, see, e.g., [47, 204] and referédmeresn.

5.2 Out-of-equilibrium quantum Brownian motion

After the study of classical critical out-of-equilibrium systems | focusedissipative quantum
systems, in particular on quantum Brownian motion. The chapter 3 is devotbd sudy of
such non equilibrium dynamics of a quantum Brownian particle coupled tcaatguon ther-
mal bath of harmonic oscillators for generic Gaussian initial conditions. Weda closed
expression for the non equilibrium correlation function, which we shateduk easy to derive
from variations of a generating functional Eq. (3.87). We used the sisaly[8] as a starting
point to obtain this generating functional by employing path integral methodsh&eshowed
that factorizing initial conditions (where the bath and the particle are initiallypupled) are
a special case of the non—factorizing initial conditions on which a positiorsumeaent has
been performed. We demonstrated the correctness of our approdehiving the equilibrium
correlation function without imposing time—translational invariance (predentdpp. 3.5.3).
We applied this general formalism to the study of three physical situationst, wie stud-
ied the equilibration process of a trapped particle after an initial position merasat. In this
case we considered Ohmic dissipation. While the classical (high temperaturelator re-
laxes exponentially on a time scaje!, the low temperature correlat6r(t, t') in the strongly
quantum regime shows an algebraic relaxation of the fotn’)2 which is independent of the
dissipation strength. Therefore, the information that an initial measurement on the system has
been performed persists for a very long time. We then showed that the eafilibprocess is
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Figure 5.1: Figure from Palzer et. al [148]. The majorityrato(blue atoms are trapp&th an optical
potential. At initial time the trapping is switched off fdne impurities (red atoms) which subsequently
are pulled downwards (here: to the left) by gravity.

different if, instead of a position measurement, a sudden quench in tipgniggpotential is per-
formed at the initial time. We showed that in this case the relaxation is exponerttiak even

in the quantum regime with the slight difference that at very low temperatueeretaxation
time is of order2y~! rather thany—! for high temperatures. Accordingly, the relaxation due to
guantum fluctuations is almost as effective as thermal relaxation in this case.

5.3 Impurity dynamics in 1D Bose liquids

Sec. 3.3 (which is a part of chapter 3) provided us with useful formulatiné study of impurity
dynamics in trapped Luttinger liquids. We showed that the quantum Brownfiaemte func-
tional is a good starting point for these impurity dynamics in 1D quantum liquidgaiticular,
guantum Brownian motion leads to damped oscillations for the impurity and to thexcté@nal
position width. On the other hand, we pointed out that this approach has lin@tations.
Indeed, the polaronic effects and the potential renormalization canrsdeeibed by standard
guantum Brownian motion since the impurity-Luttinger liquid coupling is a denstysity
coupling and therefare nonlinear in the impurity position coordinate: Notestaatlard quan-
tum Brownian motion is modeleda a linear impurity-bath coupling. In Sec. 4.6 we showed
how it is possible to understand the mass shift and the potential renormalilzgticsing a sim-
ple approach based on the equations of motion of the impurity and the cowaatum liquid.
As we have pointed out, the external potential is enhamiztthe surroundingrappedquantum
liquid bath for sufficiently fast impurities. This has dramatic consequerResently Palzer et
al. [148] experimentally studied an impurity-Luttinger liquid system with a vergieametry.
The external optical potential has to be such that it retains the impurity aggansty in the
center of the surrounding cloud of majority atoms (the Luttinger liquid). Thosegss is shown
in Fig. 5.1. When the external potential is switched off for the impurities (bufar the Lut-
tinger liquid) the impurities are pulled out of the majority atom cloud by gravity asveould
expect intuitively.

However, this system has recently also been simulated by using the Grasgskii equa-
tions. In 1D one can construct an approach which is valid for vaeakstrong internal inter-
actions within the quantum liquid, since strongly interacting bosons areagnivto weakly
interacting fermions in 1D. In [201] the authors showed that — after swigcbihthe external
potential for the impurities only — the impurity atoms are trapped in the Luttinger liquid f
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Figure 5.2: Figure from Rutherford et. al [201]. The minpatoms (red) are pulled out of the cloud of
majority atoms (gray) by gravity. The system has been sitedlaithin a Gross-Pitaevskii approach.

sufficiently great coupling strength, although they do not feel the ext@utential anymore.
To be more precise, while the majority atoms were still subject to the externabbpap,
the external potential was switched off for the minority atoms (the impurities) merch as
in the experiment. As in the experiment by Palzer et. al one would expeagridnzty pulls
them immediately out of the majority cloud. This is indeed the case for small to ntedsma:
pling strengths [see Fig. 5.2]. But, as shown in [201] there is a quite shegphold value of
the atom interaction strength (the interspecies interaction is equal the imputttgger liquid
interaction in this particular article) beyond which the impurities are “blockeittiivthe ma-
jority cloud. See Fig. 5.3 for a visual representation of the phenomenach & intriguing
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Figure 5.3: Figure from Rutherford et. al [201] showing thacfion of impurity atoms which remain
within the atom cloud of majority atoms (despite gravitgyrsusthe interaction strength (hete = wy)
measured in units afo—3%Jm. A quite sharp crossover can be observeddor 1.4 - 1036 Jm.

behaviour can be well explained by the results found in Sec. 4.6. IntestdappedLuttinger
liquid has a non homogeneous density which leads teffattive potentiafor the impurities
(characterized by the potential constant,;,) even if they are indifferent towards the external
optical potential. This happens according to the formula

Fimp = fi(0)r (5.4)
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with K

o) = —u/(v* — ), (5.5)
where | used the results in Sec. 4.6. Above some threshold valuéhi$ effective potential ex-
ceeds gravity and the impurities cannot “drop on the floor” anymore rdicgpto our formula.
Hence, Eq. (5.4) predicts a sharp transition valydeyond which the impurities cannot leave
the surrounding cloud anymore (at least for short time intervals for wibigh5.4) is valid).

At last, let me discuss the formula (5.5) wheh < «2. First of all, | insist again on
the fact that Eq. (5.5) is not valid whartf ~ u?. However, one can imagine cases where
v? is much smaller tham?. For instance, when the interaction between the impurity and the
Luttinger liquid becomes very weak, we can argue that — for zero temperattire typical
impurity velocity is determined by its ground state momentum with respect to the h@rmon
oscillator potential. If we take the numerical values found in [146] we calicethab? /u? ~
0.1 in this case. The effective potential is thus lowereddotw;, — 0 andf — oco. At
first glance such an effect is very surprising. Note however that, idiigng case where
v? vanishes, it might be quite intuitive to expect an impurity to be expelled fromebi@m
in the quantum liquid of higher density towards the ones with a lower densityfroen the
center of the liquid outwards. In our analysis we replaced the inhomogerdsmsity profile
of the quantum liquid by a homogeneous one while including the potentialyenéthe wave
excitations. This is supposed to preserve the effects of the inhomogebackground density.
For an impurity immersed in a Bose-Einstein condensate such an expulsiamdeas been
investigated in [205]. It is however beyond the scope of this thesis to aenop@ results to the
ones in [205] or to decide if any comparison can be done. In summarypd Yery much that
a future research project will shed more light on this fascinating effediraparticular on the
formula (5.5).

An impurity-Bose liquid system has also been recently simulated by a time-demtetteh-
sity matrix renormalization group (TDMRG) method by Peotta et. al [151, TB4¢. TDMRG
has to be performed on discrete lattices (with sites label&yldnyd the author chose the Hamil-
tonian

Hp=-n> [bTbLJrl-i-hc} +UIZ (biby) +ZWb b | (5.6)
Hr=-DY [ Tai41 + h c} +Va(t) > (i - z'o)2 ala; (5.7)
Hip=Un Y blb; ala; . (5.8)

TheB . b; model the background Bose liquid wh'ﬁé a; are the impurity operators. The terms
proportlonal toJ; and J> represent the kinetic hopping term of the Bose liquid and of the
impurity, respectively. Note that the majorlt&T(b) bosons are simply described by the Bose-
Hubbard model and their number is fixed in this problem. Th&)(i — io)2-term describes
a harmonic potential for the impurity with a time-varying amplitude. This allows to mimic
the initial trapping of the impurity (with a stronfz) and its subsequent release after which
the impurity feels only a weak longitudinal potential (a wéa. Up to this point the system
described by Eq. (5.6) is exactly the descretized version of the systdimdin this thesis.
However, the author of [151] chose for the Bose liquid an externapingd?’; which is
essentially zero in a wide range of the bulk and raises smoothly at the etdipesnotable
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difference with the harmonic trapping potential of the Luttinger liquid studieckin 8.6 leads
to remarkable differences for the impurity dynamics which | will discuss &rrtielow. Let me
first discuss the most remarakable result by Peotta et al. who foundutieider theory is only
applicable in a small range of parameters. This raises questions abouatithiy wf our own
analysis which heavliy relies on Luttinger theory.

Peotta et al. pointed out that the system in question could lie outside the rehirntin§er
liquid theory. They found, to be more precise, a non symmetric damping covegteen the
impurity-Luttinger liquid coupling is reversed; — —w, which is in conflict with our formula
[see the definition of: right after Eq. (4.153)]. However, it should be pointed out that the Lieb-
Liniger parameter in the system we studied is rather sma# (.25 — 0.5) while v = 10 in the
simulation by Peotta et. al. The weakest intra-bath interaction strength whickdheidered
isU1/J2 = 0.1 corresponding tey ~ 1. In this case Luttinger theory seems to be reliable for
Ui2/J2 < 0.1 which corresponds te/w;, < 1in our notations. Unfortunately, the authors did
not consider smaller Lieb-Liniger parameters in [151, 184] so that it ipassible tadirectly
verify if a system withry ~ 0.25 — 0.5 can be described by Luttinger theory wheris large
so that it lies in a range which relevantly stretches beyarid; = 1. Fortunately, we can
confirm the validity of our approacimdirectly, because the results in [151, 184] indicate that
the range of validity of Luttinger theory strongly increases whgn.J; is further decreased.
Therefore, we can deduce from the results in [151, 184] that Luttitiggory is applicable
markedly beyondv/w;, = 1 in our case and it is highly probable that this is also true in the
whole ranged < w/wy < 5 which we consider in this work. It is thus possible to apply
Luttinger theory in our problem.

Let us now discuss the major difference between the simulation in [151] &nexiberi-
ment [146]. Indeed, as wished by the author of [151] the Bose liquichhaamost homoge-
neous density profile in their simulations within a wide range around the cefrttex oloud. If
we go back to Sec. 4.6 we should therefore expect that the effectieati@ renormalization
Kk — k* > K disappears or is at least diminished (since the Bose gas is still confinedllij [1
and not translationally invariant which leads intuitively to a decreasedit allre zero, potential
renormalization). If we go back to the discussion in Sec. 4.6 these circuresthave two con-
sequences. First of all, the amplitude of the first oscillation maximum shouldraotatically
increase upon ramping up the impurity-Luttinger liquid coupling Second, the final width
of the impurity cloud should be equal to the mean width during the first amplituésed, as
| have pointed out, the potential renormalization only works for small timesrge limes the
potential renormalization disappears. Therefore, if the potential is eeldy the surrounding
Luttinger liquid, a difference between the mean impurity cloud width at small timéagarge
times, respectively, has to appear. As can be seen in Fig. 5.4 the simulatidis confirm this
picture. First, compare Fig. 5.4 to Fig. 4.8. The simulation by Peotta et. al claditates that
the average impurity width does not change during equilibration. As disdussove such a
behaviour hints to a vanishing potential renormalization. Compare now Fitp 5ig. 4.7. For
great values ofy (here,y ~ 10) the curve in Fig. 4.7 is greatly shifted to the left. Therefore,
upon changingv/wy, from 0.2 to 0.6 we expect an amplitude decrease of ab#$t which
is clearly not observed in Fig. 5.4. Note however, that the simulation peefdin [151, 184]
focuses on a regime which lies beyond the Luttinger paradigm. A compari@reén our
results and the findings of Peotta et al. is therefore always built on soaeWwaky grounds.

To summarize, the numerical results by Peotta et al. confirm our approaahléast they
do not refute it) in the sense that Peotta et al. do not find a strong potesri@innalization
although such a potential shift is measured in the experiment [146]. Oarytligethus vali-
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Figure 5.4: Figure from Peotta et. al [151, 184] depicting tmpurity position width versus time
for two different couplings between the impurity and the 8diguid, u;2 = w/wy, in our notations.

The Lieb-Liniger parameter can be found by using= Ul/(2J1<blTbi>) [151] from which we find

v =1/(blb;) = 10 with U, /Jo = 1, Jo = 2.J; and(b!b;) ~ 0.1 in [184].

dated self-consistently since if it can be applied to the regime consideredditafet al., the
only difference between the two physical systems studied in the simulatioh gb84the ex-
periment [146], respectively, lies in the different trapping of the besdhis then clear that
the non-homogeneity of the boson density profile — strongly present ixfieiment but only
weakly in the simulation — induces the potential shift. Finally, this interpretationtiely
overlaps with the results in Sec. 4.6.

In summary, our results have been independently confirmed by sevkesl studies, al-
though these studies did not directly investigate the potential renormalizatmar&/\tonfident
that a future numerical or experimental study of this issue will confirm awition of the in-
terplay between a non-homogeneous density profile and the impurity poshiftddy directly
addressing this fascinating phenomenon.

5.4 Outlook

The RG methods introduced in chapter 2 can probably be applied to critical raeentynamics
with colored noise. Although the relevant Ginzburg-Landau functioaal & form different
from the standarg*-functional, the idea to construct an RG flow and to analyze separately the
white-noise and the colored-noise vertices is certainly a good startingfpoitfie analysis of
the effects of colored noise on this critical systems found in biochemistry.

More theoretically, we worked on the critical largéapproximation of they*-theory driven
by colored noise in order to generalize the analysis by Janssen [dem{B3ec. 2.2.2]. | hope
to find soon results which confirm our RG analysis. Among other possildéasions of the
present work, | also mention the problem of understanding the effectsafed noise on sub-
critical coarsening. The dynamic scaling hypothesis states that the latefdtage ordering
kinetics is governed by a length scdl¢t) that, in models with no quenched disorder, typically
grows in time as a power-law(t) ~ )\(T)tl/zd. The dynamic exponent; (generically differ-
ent for the dynamic exponentat criticality) depends upon the kind of order parameter and the
conservation laws [17] while the prefactdfI’) typically depends only weakly upon tempera-
tureT’, is non-universal, and it vanishes upon approaching a critical pdihe fnatching with
the critical growth is explained in [206].) In presence of colored noisagitagth law might be
modified, since heavily correlated thermal noise might have an aggrefmtestfong enough
to alter the domain growth, which is usually exclusively driven by the sartarvature: Note
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that for white noise one typically expects thermal fluctuations not to affeatitimain growth
law [17].

Quantum Brownian motion has still many unexplored research fields to &ffem deco-
herence to exotic baths, such as spin baths [126], many questionscduheinps have not been
investigated, yet. | will not go into details here and | refer the reader toxinereely vast litera-
ture on the subject. Let me however point out two things. | have introdilnesfdrmulae (3.23)
and (3.24) which allow for an exact diagonalized form of the reduceditjematrix of a Gaus-
sian quantum Brownian particle. From its diagonal nature quantities suble asirity and the
von Neumann entropy are easily calculated. The discussion around ¢ar2thus be extended
to study decoherence effects. Note that these formulae can be applietgass the initial
condition can be expanded on Gaussian functions. This is in particulafar@&hibdinger
cat states consisting, e.g., of two displaced superposed Gaussianaeaesgsp In this context
another type of Brownian motion can be explored. Indeed, there are &ys @f coupling a
guantum harmonic oscillator to a quantum bath. The possibility, which haseeot dnalyzed
in the present study, consists in introducing'a; + abz-coupling withb;f, b; the bath operators
anda', a the creation and annihilation operators of the quantum harmonic oscillatoh whic
due to the coupling described above — is damped. Such a coupling cesdeevtotal number
of excitations and the dynamics are therefore not ergodic in the sensledhiatal Hilbert space
factorizes into invariant subspaces each characterized by the totaénofrdxcitations. Since
this Hilbert space is “smaller” than the one of standard quantum Brownian matie expects
that decoherence is weaker. | hope to address this question in a fuudye s

Let me comment now the results of chapter 4. | think it is very important thatefuex-
periments give us a deeper empirical understanding of how impurities @&hdb quantum
liquids. The effective potential imposed on the impurity, which stems from theaiction of
a trappedLuttinger liquid with the impurity, is an intriguing phenomenon. Numerical simu-
lations have shown that such an effective potential can even lead to detertfigocking” of
the impurities within the cloud of trapped majority atoms, which is strong enoughutttemct
gravity [201]. Unfortunately, to date no experiments have examined thigique The depen-
dence of the oscillation frequency on the interaction strength is rathet@asgasure. Also,
in a vertical geometry where gravity can fully exerts its influence, or in a tilctal poten-
tial, it is well within reach to experimentally reproduce the self-trapping of intiggrand to
measure the threshold interaction strength which in turn gives informatiaut #im effective
potential. From a theoretical point of view, the results of the linear regpihre®ry presented in
Sec. 4.6 should be reproducible by methods such as the local densioxiapgtion. It would
be most satisfactory to build a bridge between the formulae found in Secnd.tare con-
ventional methods, possibly with some support from numerical simulations, this influence
of the back-scattering potential on the results derived in Sec. 4.6 is stillmyseerious. Un-
fortunately, studying dynamical phenomena of impurities in 1D quantum liquigsnigethe
weak-coupling regime (weak interactions as well as slow impurities) by takingotount the
full Hamiltonian with the backscattering terms is very difficult and involves gaheBethe-
ansatz methods combined with massively paralleled computation. Recently, &athy161]
found an intriguing behaviour of an impurity in such numerical simulations tfcangly cou-
pled impurity after it is shot into a 1D liquid with supersonic speed. Accordjrighpurity
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dynamics in 1D liquids show utterly unexpected phenomena as soon as Kgedwad liquid
and/or the impurity are in regimes notoriously difficult for a theoretical amglgsich as strong
coupling or external trapping.

This has been probably a difficult manuscript for the reader. | ptedemany different
aspects of today’s non-equilibrium physics which are not always tetate to another. While
it was passionate during my PhD to gain an insight into so many different fi¢lgBysics, |
considered as a challenge to write this finale manuscript in a comprehenaibldsithe reader
has certainly realized, the present thesis is structured around the threeesearch chapters. |
have decided to keep this threefold structure also in the last chapter 5 oesig.thvery much
hope that, despite this way of presenting the results, the reader was ahjeytthe parts of the
thesis he found interesting.
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Bibliography and index of most important symbols

“102 4+ 112 + 122 = 132 + 1427
famous proverb

right hand side of an equation

left hand side of an equation

inverse temperature = 1/kgT

dimensionality; sometimes the diffusion constant

two-time classical non equilibrium position response function

two-time classical non equilibrium position correlation function

Mean displacement in classical Brownian motion

Mean displacement in free quantum Brownian motion

coupling constant in chapter 2

General symbol for the Hamiltonian

General symbol for the action

Chapter 2: Colored-noise vertex. Chapter 3: Coupling strength of the
bath. Chapter 4: Lieb-Liniger parameter which totally characterizes a
1D gas with contact interactions

Noise memory kernel in chapter 2

Euler's Gamma function

Characteristic exponent of the colored noiBét) ~ ¢

equal to4 — D in chapter 2; measures the width of the initial Gaussian
wave function in chapter 3

Dynamic exponent governing the scaling relation between space and
timet ~ x*

static anomalous dimension of the fieldn chapter 2

non-equilibrium initial slip exponent in chapter 2

Field describing the phase in Luttinger theory
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S E

(x)aUk:

wr,
pz)
£o
S(w)
T'TF
Qho

White-noise vertex

Response field

One-particle irreducible vertex functions withexternalg-lines andn
externalp-lines

crossovekx beyond which the colored noise becomes relevant
Mittag-Leffler function

Fluctuation-dissipation ratio

large time zero-momentum fluctuation-dissipation ratio

Effective temperature for coarsening

Momentum operators

Position operators

Frequency of the external potential for the quantum Brownian particle
or impurity

Mass of the quantum Brownian particle or impurity

Damping kernel in quantum Brownian motion

Initial density matrix

Reduced density matrix

Response function in quantum Brownian motion

Position correlation function in quantum Brownian motion
“Propagator” in quantum Brownian motion, related to the response
function

Matsubara frequencies

Projection operator on some state centered arqund

External sources in quantum Brownian motion ch. 3

Generating functional of all non equilibrium correlation functions of the
damped quantum harmonic oscillator

Harmonic oscillator creation and annihilation operators

Bosonic particle creation and annihilation operators

Fermionic particle creation and annihilation operators

Fermi energy, Fermi velocity and Fermi momentum

Conjugate momentum field in Luttinger theory

Interaction Hamiltonian between the impurity and the Luttinger liquid
Sound velocity in a Luttinger liquid

Luttinger parameterk’ = 1 corresponds to non-interacting fermions or
impenetrable bosons

Coupling strength between the atoms in the 1D quantum liquid
Potential (in Fourier space) between the impurity and the 1D quantum
liquid

Coupling strength between the impurity and the Luttinger liquid
density operator of the Luttinger liquid

Background density of the Luttinger liquid

Spectral density of the bath

Thomas-Fermi radius

Dimensionless quantity which measures the strength of the external po-
tential

Chemical potential; redefined coupling constant in Sec. 4.6.

Effective mass

142



CHAPTER 6. BIBLIOGRAPHY AND INDEX OF MOST IMPORTANT SYMBOLS

K", K (Effective) external potential spring constant
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