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École doctorale de la région parisienne – ED 107

Phase transitions and diffusion in dissipative
classical and quantum systems
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Transitions de phase et diffusion dans des systèmes classiques et
quantiques dissipatifs

Résuḿe

Cette th̀ese est structurée autour de trois chapitres principaux. Dans le premier chapitre,
je pŕesente de nouveaux résultats obtenus pour la théorieφ4 horséquilibre, dont la dynamique
est d́ecrite par une equation de Langevin en présence d’un bruit coloré. Les corŕelations tem-
porelles du bruit d́ecroissent avec une loi de puissance détermińee par un certain exposant que
j’appeleraiα. Il s’avère qu’il y a unαc de transition qui d́epend de la dimensionD du syst̀eme
et qui śepare le plan(α,D) en une ŕegion òu la couleur du bruit modifie le comportement cri-
tique et une autre òu cette couleur est non pertinente. Je discuteégalement le comportement
d’échelle des fonctions de corrélation horséquilibre. Dans le deuxime chapitre de ma thèse
j’introduis un formalisme d’int́egrale de chemin pour décrire le mouvement Brownien hors
équilibre. Je pŕesente de nouveaux résultats qui ont́et́e obtenus pendant mon doctorat sur les
fonctions de corŕelation hors equilibre après une trempe quantique. La troisième partie de ma
thèse est consacréeà la diffusion d’impuret́es dans des liquides quantiques en une dimension,
commuńement appelés des liquides de Luttinger. Après une introduction aux problémes divers
li ésà un tel syst̀eme compośe d’une impuret́e et d’un liquide de Luttinger, je présente une nou-
velle description de la dynamique de l’impureté en pŕesence d’un piège harmonique. La densité
du liquide de Luttinger non-homogène influence fortement la dynamique de l’impureté et m̀ene
à des comportements inédits. De tels systémes physiques sont actuellementétudíes dans des
exṕeriences d’atomes froids.

Abstract

This thesis is structured around three main chapters. In the first chapter Ipresent new re-
sults which have been obtained for the out-of-equilibrium criticalφ4-theory. Its dynamics are
described by a Langevin equation driven by a colored noise. The temporal correlation of this
noise features a power-law decrease which is governed by a certain exponentα. It turns out that
there exists a crossoverαc which depends on the dimensionD of the system and separates the
(α,D)-plane into a region where the color of the noise alters the critical behaviourand a region
where the color is non relevant. I also discuss the scaling bahaviour of thenon equilibrium cor-
relation functions. In the second chapter I introduce a path integral formalism to describe non
equilibrium quantum Brownian motion. I present the results which have beenobtained during
my PhD on the evolution of the non equilibrium correlation functions after a quantum quench.
The third part of my thesis focuses on the impurity diffusion in one-dimensional quantum liq-
uids which are commonly called Luttinger liquids. After an introductory part which covers the
main issues related to such a system, I present a novel description of the impurity dynamics in
the case where an external trapping potential is present. The non-homogeneous density profile
of the Luttinger liquid then strongly influences on the impurity dynamics in a fascinating way.
Such systems are currently being studied in cold atoms experiments.
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CHAPTER 1

Introduction

“Dieu n’avait fait que l’eau, l’homme a fait le vin!”
Victor Hugo

In Mai 1905 Albert Einstein challenged in the last paragraph1 of his celebrated article [1]
experimental physicists all over the world: With a simple microscope – he stated –could one
observe the stochastic motion of (dust) particles suspended in a liquid such as simple water. This
appeal triggered widespread interest in his work; moreover, Robert Brown had already observed
this phenomenon as early as in 1827, but in this ancient world the details of hisdiscovery
had attained Einstein 70 years later in such a fragmented form that he was not able to decide
whether his theory actually explained or rather predicted something. Einstein’s theory, based
on an analysis of the osmotic forces induced by the stochastic motion of the water molecules,
was indeed confirmed only three years later by J. Perrin. This discoveryled immediately to the
final victory of Dalton’s atomistic hypothesis2.

Today, we mostly remember his famous formula (the Stokes-Einstein equation) which es-
tablished that the diffusion coefficientD is proportional to the temperature3 β−1: a sphere with
a radiusr suspended in a liquid with friction coefficientγ undergoes stochastic motion with
D = β−1/(6πγr). The underlying assumption is that classical statistical physics holds. The
number of degrees of freedom of the dust particle-liquid system is enormous such that every
approach based on the calculation of the trajectory of each liquid molecule has to inevitably
fail4. Statistical physics reduces the complexity of the problem by introducing several average
quantities, such as temperature, pressure or volume, which can then be used to characterize the
system. The price to pay is the loss of knowledge of the dynamics of each degree of freedom.

1Möge es bald einem Forscher gelingen, die hier aufgeworfene, für die Theorie der Ẅarme wichtige Frage zu
entscheiden! – I hope that a scientist will soon be able to answer the question I have raised in this work and which
is important for the theory of heat!

2For the sake of a fluid presentation of the historical context I did not mention the contributions of M. Smolu-
chowski and L. Bachelier to the theory of Brownian motion, contributions which are likely as important as Einstein’s.

3Throughout this manuscript I avoid the notationT for the temperature and I rather work withβ = 1/kBT .
4Note that L. Boltzmann always believed in atoms and molecules.
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CHAPTER 1. INTRODUCTION

Hence, equilibrium thermodynamics (rather thermostatics) is based on the theory of thermody-
namic potentials such as the internal energy and the entropy which are linkedwith the mean
quantities such as temperature by static equations of state. While its success is undeniable it
cannot be generalized to dynamical out-of-equilibrium phenomena.

Diffusion is a genuine non-equilibrium phenomenon. If we follow the same lineof argu-
ments which lead to classical statistical physics we can argue that the impact ofeach degree
of freedom of the environment on the main particle is so small and the subsequent impacts so
frequent, that the main particle only feels somestochastic noisewith some well-defined prop-
erties. In conjunction with the central limit theorem one is then guided towards Gaussian noise.
This Gaussian noise exerts a random force on the particle. From now on,two different descrip-
tions of the particle dynamics are possible. Either one directly writes a Newtonian equation of
motion where the noise plays the role of the force and one tries to solve this so calledLangevin
equation[2, 3]. In this case the resulting particle trajectory depends in general onthe noise
history. By averaging over the possible noise configurations one then arrives at mean values
which sufficiently describe the particle dynamics. However, one has also the choice to do the
opposite as long as the noise is uncorrelated in time: One writes down first aFokker-Planck
equation[2, 3] of the probability density for the particle position and searches for asolution of
this generalized diffusion equation. Since all higher-order cumulants areidentically zero for a
Gaussian noise, one can easily convert a Langevin equation into a Fokker-Planck equation and
vice-versa.

The Langevin equation contains only useful information if the noise can be specified. There
are however many cases where no such noise exists. One often encounters situations where a
system changes stochastically its state with some known transition rates. Imaginefor example
a particle on a one-dimensional lattice which jumps one step with some probabilityp to the
left or to the right. Such a process can be conveniently described with amaster equation[2, 3,
4]. Fortunately, in many cases this master equation can again be mapped to a Fokker-Planck
equationvia the Kramers-Moyal expansion[2]. For instance, in the hopping example cited
above the result is a simple Brownian diffusion equation.

Soon after the discovery of diffusion driven by stochastic forces andconveniently described
by classicalLangevin or Fokker-Planck equations, quantum mechanics paced its paththrough
physics. The very first work which pointed towards quantum mechanics was Max Planck’s
analysis of the black body radiation. He showed that a simple trick could cureall undesired
divergences in the formula for the black body radiation density of states which resulted from the
classical statistical analysis of a photon gas. By assuming discrete energyvalues (in contrast to
a continuous energy spectrum) for the quantum harmonic oscillator he derived the correct black
body radiation formula. This raises the important question of the validity of Einstein’s result
at low temperatures, i.e. in the quantum regime. Quantum baths differ greatly from classical
baths. Due to Heisenberg’s uncertainty relation a quantum bath can exchange energy even at
absolute zero. If we forget about any quantum effects for the particle, i.e. if we only measure
its mean displacementQ(t), wheret is the time lag, one can ask whether quantum mechanics
modifies the classical diffusion law. The answer is yes. Einstein’s relationQ(t) ∼ Dt has to be
replaced byQ(t) ∼ log(γt)5. Suchquantum Brownian motioncan be conveniently dealt with
by using a path integral approach. Grabert et al. [5, 6, 7, 8] were thefirst to find the stationary

5These two relations hold for a so-calledOhmicbath. In classical physics such an Ohmic bath leads to uncor-
related noise which drives the stochastic process called “Brownian motion”. Quantum stochastic processes driven
by a non-Ohmic environment are, however, also called “quantum Brownian motion” in contrast to their classical
equivalents where the term “fractional Brownian motion” or “generalized Brownian motion” is prefered.
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CHAPTER 1. INTRODUCTION

quantum Brownian motion correlation functions within such a path integral formalism, without
relying on simplifying assumptions such as an initial decoupling between the particle and the
environment [9]. The second chapter of my thesis will be dedicated to a generalization of their
formalism which works also for non-stationary cases.

One can easily imagine more complicated quantum environments for which the term“bath”
may even seem inappropriate; however I will use it also for the “exotic” quantum baths I shall
describe in what follows. One of the main features of a quantum harmonic oscillator bath is that
it is not entangled on its own: Only the coupling to the particle leads to quantum entanglement
of different oscillators, which are independent from each other without the central coupling to
a particle. A highly entangled bath, on the other hand, is formed by a one-dimensional liquid
of interacting bosons or fermions which, as is well established, forms a so-called Luttinger
liquid [10] which features non Fermi-liquid [11] behaviour, such as collective excitation and
a power-law decrease of correlation functions. In particular, the Landau quasiparticles [12,
11] do not exist anymore and the physics has to be described in terms of density and charge
fluctuations [10]. Moreover, such one-dimensional systems can be realized nowadays with
cold-atom techniques. An impurity immersed in thisLuttinger liquidcan then be considered as
a particle coupled to an exotic quantum bath under certain circumstances, i.e.rather weak intra-
quantum liquid interactions (see the discussion in chapter 5 for more details onthis delicate
issue). The non equilibrium dynamics of these impurities is extremely complex. Inthe third
chapter I will focus on a small aspect of these very rich physics and I willpresent results on
the impurity diffusion in ultracold Bose liquids, which can be obtained without making use of
heavy methods such as Bethe ansatz techniques and sophisticated numerical simulations. The
point of view I will adopt there will place the impurity in the center of our attention. I will
not too much care about its effects on the Luttinger liquid, as I will be mostly interested in the
impurity dynamics.

It is as interesting to adopt the opposite point of view and to ask about the effects the
impurity has on the Luttinger liquid. If the impurity is not mobile, i.e. if it represents afixed
obstacle, quantum tunneling still allows in principle the Luttinger liquid to cross thebarrier. One
is immediately guided towards the question: Is this always the case? The answer is negative
and it depends on the physical properties of the underlying Luttinger liquid.The analysis of
this problem has been performed by, e.g., Kane and Fisher [13] for an isolated impurity and by
Giamarchi and Schulz [14] for an infinite number of impurities, i.e. for disorder, by using a
renormalization group approach. This key word now leads us to another important topic which
will be relevant for the first part of my thesis.

Collective phenomena have always fascinated physicists. A system of many molecules,
electrons, photons or, why not, pedestrians, shows often an intriguing behaviour although the
underlying physical laws which govern the dynamics of each “unit” are very often very simple
(This may be subject to debate for the pedestrians in the – say – subway stations). However,
the fact that many of these units interact with each other renders the physics of the whole
system very complex. When an external parameter is varied one often observes aphase tran-
sition where the system abruptly changes its state (for the pedestrians this parameter may be
the density and the phase transition may be the onset of a collective panic or ajam). At the
critical point the system becomes scale-free; the typical correlation length dominates all the
other microscopic length scales of the system and even diverges at criticality. The system be-
comes self-similar and it is thus often possible to integrate over fast fluctuations to recover an
effective description of the system at large spatial or temporal scales. This is the heart of the
renormalization group approach. It implies in particular that many propertiesof the critical or

3



CHAPTER 1. INTRODUCTION

near-critical system areuniversalin the sense that they only depend on macroscopic quantities
such as dimensionality, topological constraints and the internal symmetries of the system. By
using such techniques the authors cited above showed that the impurity is a relevant barrier for
the Luttinger liquid ifK < 1 whereK [13] is one of the two parameters which fully charac-
terize such a Luttinger liquid. In the case of a Gaussian disorder the criticalvalue isK = 3/2
[14].

We now come back to the starting point of this introduction. In general, the critical point
always separates two equilibrium phases. However, if the system is quenched (e.g. the system is
cooled down from some high temperature to the critical one) it needs time to equilibrate. During
this equilibration time both phases are present and, if the system is infinite and inthe case of
a critical quench, neither of them disappears: In this case the equilibrationtime is infinite and
the system showscritical slow dynamics[15, 16] during which the equilibration dynamics has
universal properties. In order to model such critical dynamics a forceis needed, which drives
the phase transition. Forsubcritical dynamics(i.e. a quench below the critical temperature) the
dynamics are often governed by internal a-thermal forces such as the surface tension between
regions of different low-temperature phases (here I mean the two low-temperature phases which
are two distinct realization, related by a symmetry, of the low-temperature equilibrium phase).
Usually, the two different phases are clearly separated: in, for instance, boiling water moving
vapour bubbles can be distinguished from the surrounding liquid water orin binary alloys the
regions consisting of the substanceA are separated from the regions consisting ofB during the
demixing process through a clear boundary. This phase boundary minimizes its surface tension
and therefore drives the phase transition [17].

At criticality the picture is different. The boundary now has a fractal structure and even
infinitesimal fluctuations in the medium heavily influence on its shape [18, 19, 20]. These
fluctuations can have a thermal or quantum origin and they can enhance orslow down the critical
ordering process. Hence, due to the fractal nature of the boundariesthe kinetic arguments used
for subcritical ordering dynamics are flawed and a renormalization groupapproach is needed.
Since the precise nature of the thermal (quantum) fluctuations is now importantfor the ordering
dynamics, one needs to specify its statistical properties to be able to fully describe the system.
From the central limit theorem we expect that the noise is Gaussian. But its internal spatial and
temporal correlations can be very important. Do such internal correlations, in particular if they
are long-range, influence on the critical properties of the system? It may come as a surprise that
this problem has not been intensely studied in the literature. Thus, in the firstpart of my thesis I
will show that strongly temporally correlated noises change the critical exponents of the phase
transition of ferromagnetic systems, which are conveniently described by the φ4-theory. The
critical dynamics of thisφ4 phase transition are then driven by the internal potential and by the
stochastic noise.

Let me close this introductory chapter by presenting the structure of my thesisin more
details. The first part of my thesis is devoted – as already pointed out above – to the study of the
dynamics of the criticalφ4-theory in presence of heavily temporally correlated thermal noise.
This analysis will go beyond the standard Ornstein-Uhlenbeck case of exponentially correlated
noise by focusing on power-law correlated noise which is extensively studied in the field of
fractional Brownian motion, but which has to date not been applied to the critical φ4-theory.
I will present a renormalization group analysis up to second order in the coupling constants
which yields a quite complete picture of the equilibrium and non-equilibrium dynamics of the
system.

The second part of this work focuses on quantum Brownian motion. Afteran introductory
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CHAPTER 1. INTRODUCTION

chapter I will present new results on out-of-equilibrium quantum Brownian motion. The analy-
sis involves path integral techniques previously used in [8] in this context. In contrast to previ-
ous studies I will not rely on a density matrix formalism, which only yields one-time quantities,
but rather on an approach based on a generating functional from which all non-equilibrium
correlation functions can be obtained.

The third part is about impurity dynamics in ultracold quantum liquids. Quantum Brownian
motion can be directly applied to this problem if one assumes that Luttinger theoryis valid in
the parameter regime in question; however, the outcome is only partially satisfactory. Note that
the Luttinger liquid behaves essentially as a bath of harmonic oscillators since itis a Gaussian
theory and every momentum mode can be identified with one oscillator. However, the coupling
between the Luttinger liquid and the impurity conserves the total momentum. In this case the
coupling is non-linear in the impurity position in strong contrast to standard quantum Brownian
motion. The density-density coupling of the impurity-quantum liquid system leadsto novel
effects, such as an effective mass of the impurity and an enhancement ofthe external poten-
tial. These phenomena have been recently observed in cold-atom experiments and they can be
explained within an approach based on the equations of motion of the system.

Finally, the last part of my thesis concludes the work presented here and compares the
results to very recent studies.

How to read this thesis

The present thesis has three main research parts (chapters 2 to 4 of this manuscript). Chapter 2
is completely independent from chapters 3 and 4. Thus, a reader only interested in quantum
Brownian motion or in impurity dynamics in Luttinger liquids can directly go to chapter3 and 4,
respectively. Each part is meant to be self-consistent. Note however, that chapter 4 makes use
of results and methods presented in chapter 3, in particular concerning theinfluence functional
of quantum Brownian motion which is subsequently used as a starting point for the description
of impurity dynamics. The Sec. 3.3 can be considered as a junction between chapters 3 and 4.

The introductory parts of each chapter are supposed to provide the reader with the necessary
background information in order to be able to understand the following partswhere I present
new results and to be able to put these new results in their respective context. It is however
impossible for these background information to be exhaustive within the scope of the present
thesis. Some techniques such as path integral methods and the renormalizationgroup are not
explained in this thesis.

Note that the results presented in the main body of the thesis (ch. 2 to ch. 4) are almost
never directly followed by a conclusion or any general comments. It is in chapter 5 that I have
decided to comment on the results presented in this thesis. This is also where I compare the
results to slightly different but related approaches in the existing literature.

Published articles

The present thesis is based on three articles which I wrote in collaboration with L. F. Cuglian-
dolo and A. Gambassi [21, 22, 23]. During my writing of the present manuscript I worked on
yet another project on the dissipative phase transition of the spin-bosonmodel. This work is not
included in the present text but can be found in its published form in [24].An article which I
wrote in collaboration with A. Rançon can be found in [25].
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CHAPTER 2

Classical phase transitions and colored noise

“Le hasard est le pseudonyme de Dieu lorsqu’il ne voulait pas signer.”
Anatole France

2.1 Introduction and preliminary remarks

In the first part of the present thesis I focus on the dynamical aspects of classical uniaxial fer-
romagnetic systems close to the Curie point. In this case thermal fluctuations areresponsible
for the critical ordering dynamics and I will neglect all quantal effects in this chapter. While
classical problems are usually easier to solve than their quantum counterparts, classical statis-
tical mechanics does not provide us with a natural dynamics in contrast to quantum mechanics
which determines the fluctuations of the time-dependent order parameter. One way to solve the
problem posed by the absence of a natural dynamics in the classical caseis to impose some
suitably chosen dynamics to the system by hand. For instance, in the classical Ising model the
only dynamic event is a “spin flip” and every dynamic theory is solely governed by its spin flip
probability. Thus, “Glauber dynamics” [26] amounts to setting the spin flip rateof thej-th spin
equal towsj = 1/2− tanh(2βJ)sj [sj−1+ sj+1]/4 with J the ferromagnetic coupling strength
andβ the inverse temperature. These dynamics satisfy detailed balance such thatthe system
remains in equilibrium once it has reached it. One way of testing if a system is in equilibrium
is to compare the time derivative of its correlation function∂sC(t, s) to its linear response (to
an infinitesimal external field)R(t, s). If

R(t, s) = β∂sC(t, s) (2.1)

the system satisfies the fluctuation-dissipation theorem which is a necessarycondition for equi-
librium. However, an infinite system which is at initial time in a generic (non equilibrium) spin
configuration does not necessarily reach equilibrium within a finite time interval. During the
spin ordering process theseordering dynamicsshow universal features which are in general
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different from the equilibrium dynamics. If the system is critical, these ordering dynamics are
commonly calledcritical dynamics.

Before concentrating on critical systems, the reader might appreciate to obtain an overview
of what is known of general ordering dynamics. Dynamical ferromagnetic systems are conve-
niently described in terms of a coarse-grained order parameter field~φ(~x, t) by using the fact
that the correlation length is much larger than the lattice constant of the originalspin system.
We use the short-hand notation~φ for the ensemble ofN fieldsφj which depend on time and
D-dimensional space. The static behaviour of the system is then controlled bya Hamiltonian
of the Ginzburg-Landau type

H[~φ] =

∫

dDx

[

1

2
(~∇~φ)2 + 1

2
r~φ2 +

g

4!
~φ4
]

. (2.2)

g is the strength of the non-linearity that drives the phase transition,r is the control parameter
for it, and the coefficient in front of the elastic term∝ (~∇~φ)2 has been absorbed in the definition
of the field.

Dynamics are now incorporated in a twofold way. First, we expect that (unless one considers
very short times) the friction forceγ∂t~φ exactly balances the potential force~F [H] which is
some functional of the energyH. The diffusive dynamics are thus governed by an equation of
the form

γ
∂

∂t
~φ(~x, t) = ~F [H] (2.3)

as long as thermal fluctuations are absent. However, if the effect of thermal fluctuations is
important Eq. (2.3), has to be complemented by an additional stochastic forceterm~ζ(~x, t) so
that

γ
∂

∂t
~φ(~x, t) = ~F [H] + ~ζ(~x, t) . (2.4)

When do we have to take explictitly into account the stochastic fluctuations, i.e. when is
Eq. (2.3) sufficient to correctly describe the ordering dynamics? Takinginto account the ther-
mal noise is crucial in the case of critical ordering dynamics where the fractal structure of the
phase boundaries is unstable against the weakest fluctuations in the medium. Hence, it turns out
that the noise statistics are irrelevant for most off-critical systems but crucial for critical dynam-
ics. Let me first briefly discuss off-critical dynamics (or sub-critical coarsening) from a simple
kinetic point of view where the phase transition is essentially driven by the surface tension of
the phase boundary.

2.1.1 Subcritical ordering dynamics

If the order parameter field~φ is not conserved the potential force is simply given by

~F (~x, t) = − δH
δ~φ(~x, t)

. (2.5)

According to the widely used classification of Halperin [27, 28] dynamics based on Eq. (2.5)
are known as “model A” dynamics and one can show that they generalize the Glauber dynamics
valid for lattice spin systems to the continuum case.

In conjunction with Eq. (2.3) one can then show [17] that the driving force for the domain
growth during the ordering dynamics is the wall curvature. It then follows that the typical
domain has the shape of a circle inD = 2 dimensions and the form of a hyper-sphere in general
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D dimensions. It is instructive to seek for a spherical solution to Eq. (2.3) for a1-component non
conserved spherically symmetric fieldφ(r, t) with r = |~x|. By using Eq. (2.5) one immediately
obtains

γ
∂φ

∂t
=
∂2φ

∂r2
+
d− 1

r

∂φ

∂r
− 1

3!
φ3 . (2.6)

By assuming that the typical droplet radiusρ is much larger than the interface width one can
make theansatzφ(r, t) = f(r − γ−1ρ(t)). f ′ is assumed to be sharply peaked aroundr = ρ
and to vanish forr → ±∞. Inserting thisansatzinto Eq. (2.6) yields

f ′′ +

[

d− 1

r
+ ρ̇

]

f ′ − 1

3!
f3 = 0 . (2.7)

Multiply Eq. (2.7) byf ′ and integrater from ρ − δ to ρ + δ whereδ is chosen small but large
enough such thatf ′(±δ) → 0. By using the continuity of the functionf the final results reads
ρ̇(t) = (d− 1)/ρ(t) and it can be recast in the form

ρ2(t) = ρ2(0)− 2(d− 1)t . (2.8)

Hence, the isolated bubble vanishes during the ordering dynamics with a collapse time which
scales ast ∼ ρ2(0). This holds true for general curved regions as well [29] which showsthat
time and space scale according to

t ∼ xz (2.9)

with thedynamic exponentz = 2.
In many cases external constraints impose a different growth mechanism than model A.

The Halperin classification ranges from model A to model E but I will only briefly discuss the
so-called model B dynamics which describes a general demixing process of binary alloys or
below the liquid-gas critical point (where the quantity of liquid is approximately conserved). In
all cases one expects the continuity equation has to be satisfied so that the order parameter is
subject to the constraint

∂φ

∂t
+∇ · ~J [H] = 0 , (2.10)

where I focus on the single order parameter case (N = 1) and where~J is someD-dimensional
vector functional ofH. The simplest equation one can write is

~J(~x, t) = −σ∇
[

δH
δφ(~x, t)

]

, (2.11)

with σ a kinetic coefficient related to the mobility. InD = 3 dimensions it can be shown with
similar methods (albeit the analysis is technically more demanding for a conserved order pa-
rameter and after a long controversy the issue had only been settled by D. A. Huse in 1986 [30])
as in the previous section that

ρ3(t) = ρ3(0)− 3σt

2
. (2.12)

The collapse time for the model B dynamics hence scales according tot ∼ ρ(0)3 in contrast
to the result for a non-conserved order parameter Eq. (2.8) for whichz = 2. Accordingly, the
dynamic exponent for a conserved order parameter isz = 3.

After these two warm-up sections I now turn to critical dynamics for which the thermal
noise statistics cannot be neglected anymore. I will first discuss uncorrelated noise and then
ultimately present the new results which where found during my PhD on correlated noise.
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Figure 2.1: Simulation of a two-dimensional gas of a binary mixture of 2 × 5000 hard spheres with
a non-additive radius (r12 = 1.5r11 = 1.5r22): Intra-species scattering events are simualated by the
hard-sphere constraint withr11 (or r22, respectively), whereas inter-species collisions are simulated by
the hard-sphere constraint withr12. Left image: Snapshot after a short relaxation time. Right picture:
Snapshot after a large relaxation time. The simulation corresponds to subcritical ordering dynamics with
a conserved order parameter (here the number of spheres of each species).

2.1.2 Colored noise

In the last I have presented an analysis of subcritical dynamics. Since themain subject of
the present chapter are critical dynamics driven by colored noise let me introduce colored, i.e.
time-correlated, noise in this subsection.

By definition, white noise processes have a vanishing correlation time, whichcan be directly
seen from the correlation function (I do not consider here a spatial dependence to simplify the
presentation)

〈ξ(t)ξ(t′)〉 = 2β−1γwδ(t− t′) = Dδ(t− t′) . (2.13)

Since the correlator only depends on the time differencet− t′ such a process is stationary. The
constantγw measures the amplitude of the noise and it is related to the noise strength coefficient
γw of the previous section byD = 2β−1γw with β the (inverse) temperature of the noise1. Let
this white noise drive a particlevia the Langevin equation

ẋ(t) = ξ(t) , (2.14)

then〈x(t)x(t′)〉 = x(0)2 +Dmin(t, t′) thus leading to

〈(x(t)− x(t′))〉 = D|t− t′| , (2.15)

which is independent of the initial conditionx(0). Our particle hence undergoesBrowian mo-
tion with the diffusion coefficientD. At this point it becomes important to distinguish two kinds

1I will use the convention
∫ t

0
ds δ(t − s)f(s) = f(t)/2 in the following, hence the factor2 in the definition of

D.
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of noises, stationary and non-stationary ones. Obviously, the white noiseis stationary while the
Brownian motion isnot; indeed, the mean displacement function of the Brownian motion rather
than its correlation function is stationary. The termcolored noiserefers throughout the whole
manuscript exclusively tostationarycolored noiseζ(t) with a correlation function

〈ζ(t)ζ(t′)〉 = β−1Γ(t− t′) , (2.16)

with Γ(t−t′) some function other than the Diracδ-function. We denote the EulerΓ-function by
ΓE in the following to avoid confusion with the noise kernel. Such a noise will be considered
in Secs. 2.2 and 2.3 where I will focus onpower-lawcorrelated noise with

Γ(t) ∼ t−α (2.17)

for larget. Examples of such noises occuring in nature will be listed in Sec. 2.1.3.
Let us relate the white noiseξ to the colored noiseζ with a power-law correlator (2.16). If

α > 1 the noise kernel is not intregable and a small-time cutofft0 has to be introduced. By
defining the kernelA(t) = 1/(t0 + |t|)γ , with γ > 1/2, we have

ζ(t) ∝
∫ t

−∞
dt′ A(t− t′)ξ(t′) . (2.18)

Indeed, if we defineζ in this way we find the correlation

〈ζ(t)ζ(t′)〉 =
∫ min(t,s)

0
ds A(t− s)A(t′ − s) ∝ (t0 + |t− t′|)1−2γ . (2.19)

Accordingly, after the identificationγ = 1/2 + α/2 one recovers the form (2.16). This colored
noise can now be used to model a driven stochastic system whose relevant Langevin equation
reads [16, 21] in equilibrium

∫ t

−∞
ds Γ(t− s)ẋ(s) = ζ(t) . (2.20)

Let me introduce the formal inverse functionΓ−1 of Γ, then obviouslyΓ−1(t) ∼ tα−2 for large
times. We thus find formally by standard power counting

x(t) ∼
∫ t

−∞
ds (t− s)H−1/2ξ(s) , (2.21)

where I introduced the so-calledHurst exponent[31, 32]

H =
α

2
. (2.22)

The relation (2.21, although in this manuscript established on a somewhat shallow arguments,
can be put on firmer grounds and it is essentially correct and it leads to thetime power counting
which establishes Eq. (2.22). The physical meaningful analogue of Eq.(2.21) has been exten-
sively studied since the 1950s [31, 32, 33, 34] and is calledfractional Brownian motion. It is a
generalization of the standard Wiener processx(t) =

∫ t
−∞ ds ξ(s) (i.e. the standard Brownian

motion) and B. B. Mandelbrot defines it as [33]

b(t) = b0 +
1

ΓE(H + 1/2)

{∫ 0

−∞
ds ξ(s)

[

(t− s)H−1/2 − (−s)H−1/2
]

+

∫ t

0
ds ξ(s)(t− s)H−1/2

}

. (2.23)
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The introduction ofΓE(H + 1/2) in the denominator has the following motivation: it ensures
that, whenH − 1/2 is an integer, a fractional integral becomes an ordinary integral. Also, the
definition of the fractional Brownian motionx(t) can be made more symmetric by writing it as
the following convergent difference of divergent integrals:

b(t)− b(t′) =
1

ΓE(H + 1/2)

{

∫ t

−∞
ds ξ(s)(t− s)H−1/2 −

∫ t′

−∞
ds ξ(s)(t′ − s)H−1/2

}

.

(2.24)
Very similar to standard Brownian motion, which corresponds toH = 1/2 orα = 1, fractional
Brownian motion is, strictly speaking, not a stationary process while, however, the displacement
x(t) − x(t′) is. From Eq. (2.24) we directly find that fractional Brownian motion has the
correlation function

〈b(t)b(t′)〉 = 1

2

[

|t|2H + |s|2H − |t− s|2H
]

. (2.25)

Again, we see that forH = 1/2 the process is diffusion-like. In this case the process is
Markoviansuch that the probability distribution of the actual increment does not depend on
any past information. However, forH > 1/2 the process is positively correlated and hence
super-diffusive with a variance that grows stronger than linearly in time,

〈b(t)2〉 ∼ t2H , (2.26)

while forH < 1/2 the process is negatively correlated which leads to subdiffusion.
It is well known that Brownian motion has a fractal nature in the sense that itis self-

affine [34]. Its generalization, the fractional Brownian motion, satisfies also self-affinity re-
lations as can be readily seen from Eq. (2.24). Indeed, we have

b(at) ∼ |a|Hb(t) , (2.27)

where the equivalence relation∼ is established with respect to the equivalence of the respective
probability distributions. Sinceb(t) is a Gaussian process this can be proven by the two relations

〈b(at)− b(at′)〉 = 0 = 〈b(t)− b(t′)〉 , (2.28)

〈(b(at)− b(at′))2〉 ∼ |a|2H |t− t′|2H ∼ |a|2H〈(b(t)− b(t′))2〉 . (2.29)

I remind the reader again of the fact that fractional Brownian motion is only aMarkov process2

if H = 1/2.

2.1.3 Fractional noises in nature

Fractional Brownian motion is closely related to stochastic processes in biology [35] and physics [4]
where it can be used to model anomalous diffusion. These findings complement the original
discovery by Hurst on long-range correlations of river flood records [31]. In the interdisci-
plinary overlap between physics, chemistry and biology fractional Brownian motion occurs on
numerous occasions. The following list will not be – in any case – exhaustive; it is rather meant

2A stochastic processbi defined on a discrete timeti = i∆t is called Markovian, if the conditional probability
distribution of future states ofb depends only upon the present state, i.e. if forj′ < j < i arbitrary,P(bi = Bi|bj =
Bj , {bj′ = Bj′}) = P(bi = Bi|bj = Bj), whereP(·|·) is the conditional probability ofb. In the limit ∆t → 0
one thus defines a Markov process on the continuum.
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as a teaser to arouse some interest in this multidisciplinary research field. I will also cite ex-
amples where fractional Brownian motion can be useful in combination with fieldtheoretical
approaches; this will build a bridge to the forthcoming sections which will dealwith critical
dynamics driven by such colored noise.

To begin with rather remote fields of research, fractional Brownian motion has been used
to determine statistical properties of interstellar gas [36], to describe certainarbitrage opportu-
nities in finance [37] and to improve image processing [38]. In solid state physics fractional
Gaussian processes occur for instance when dealing with director fluctuations of nematic or-
dering [39] and when considering structural and flow properties of binary media generated by
fractional Brownian motion models [40]. The authors of [41] have recently studied a fractional
Brownian motion approach to polymer translocation and in [42] elastic membranes and poly-
mers were considered whose stochastic motion yields fractional Brownian noise. Moreover,
in [43] it has been shown that the membrane potential fluctuations of some typeof cells have
fractal properties that can be modeled by using fractional Brownian motion and the authors
of [44] have introduced a new approach to cell mechanisms concerning DNA sequences based
also on fractional Brownian motion. More generally, colored noise occurs in many aspects of
biophysics such as cell membrane fluctuations [45] and DNA dynamics [46]already mentioned
above.

The physical circumstances in which generally temporally correlated noise arises are also
manifold including polymer translocation through a nanopore [47] or the effective description of
a tracer in a glassy medium [48]. A review of the effects of colored noise indynamical systems
is given in [49]. Last but not least, the environment fluctuations in quantumdissipative systems
give rise rather naturally to temporally correlated noises [50]. Indeed, itis well known that the
generalization of the classical influence functional of Brownian motion to quantum dynamics
yields a power-law correlated noise even in the case of an Ohmic bath [see part 3 of the thesis].

Let me now cite one example where field theory approaches play a role. It iswell known
that polymerized membranes undergo a melting transition between a crystalline phase, a hexatic
phase and a fluid phase which can be dealt with by using field theory and renormalization group
techniques [51]. Although the relevant free energy functionals do notcontain the same terms as
the ones I shall consider in the following, a variant of the methods that will bepresented in this
manuscript can be generalized to such melting transitions of membranes. Sincethese cell mem-
branes are immersed in hydrodynamic media, the stochastic properties of such hydrodynamic
environments should greatly influence the critical membrane dynamics. Indeed, recently it has
been shown in [52] by demonstrating that these hydrodynamic correlationslead to a resonant
peak in the power spectral density, that hydrodynamic “memory” translatesinto thermal forces
which have a non-white noise spectrum. In many situations of practical interest a full treatment
of such acolorednoise is therefore necessary. For example, the escape rate of particlescon-
fined within a potential well crucially depends on the statistics of the thermal bath[53, 54, 55] as
observed in the desorption of molecules from a substrate undergoing a second-order phase tran-
sition which effectively provides a colored noise for the stochastic dynamics of the molecules
(this phenomenon is called Hedvall effect and it was studied theoretically in,e.g., [56]). An-
other important instance is the stochastic Burgers modeling of turbulence where the noise is
correlated in both time and space [57]. This equation is, in addition, closely related to the
Kardar-Parisi-Zhang description of surface growth that was analyzed with spatially correlated
noise in, e.g., [58, 59] and references therein.

In the last paragraph of this subsection the so-called “pink noises” should not remain un-
mentioned. Such pink noise has a spectral density which decreases as1/fβ (wheref is the
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frequency) withβ ≈ 1 and it is believed to be stationary. In particular, the1/f noise has been
found on numerous occasions in physical systems: It is omnipresent in solid states [60, 61, 62]
and in general in condensed matter systems [63] where it is often associated to fluctuation of
the electrical resistance [64]. Moreover,1/f -noise has been observed when studying the dy-
namics of granular media [65] and it has been used to characterize the statistical properties of
avalanches and cascades [66] occuring in various contexts, such assandpile dynamics [67], self-
organizing traffic flows [68] and the statistical features of cascades in heartbeats [69]. Further
more,1/f -noise has been experimentally found for the dynamics of some proteins [70] and in
connexion with the evolution of fractal correlations in DNA base sequences [71].

I hope that the reader is now – if he hadn’t been already before – convinced that colored
noise occurs in various contexts in all fields of physics. As pointed out, thephysics of1/f -noise
are rich and complex but they go beyond the scope of this thesis; in the nextchapter I will focus
more on noise with heavy time correlations. Such a noise has a spectral density which growsin
general with the frequency in contrast to the pink noise briefly discussesabove. I will show that
such colored noise qualitatively changes the critical behaviour of the ferromagnetic transition
in spin models, conveniently described by aφ4-theory. This might be expected from a bolt
analogy: Long-range spatial correlations are known to change the critical behaviour of – for
instance – the classical Ising chain [72]. Such spatial correlations are typically static. Temporal
correlations, on the other hand, are usually associated to some statistical environment which
induces noise on the system. The analogy is therefore not totally given. However, we will show
that long-range correlated noises do change the critical ferromagnetic transition dramatically –
as long as they are “sufficiently” correlated.

2.2 Critical dynamics: Introduction

For more than 30 years critical dynamics have been explored with field theoretical methods [73,
74, 75, 76, 77, 78, 79, 80, 81]. A variety of dynamic models were introduced to describe the
collective evolution of systems close to critical points. Among these, the most common ones are
the dynamics of non-conserved or conserved order parameters whichsuccessfully describe the
evolution of uniaxial magnetic systems close to the Curie point or the dynamics ofbinary alloys
close to the demixing transition, respectively. The subcritical dynamics of these systems have
been discussed in Sec. 2.1.1. I insist here, that these problems as well asmany of their gener-
alizations discussed in [76, 77, 79, 81] areclassicalin the sense that their stochastic nature can
be essentially ascribed to thermal fluctuations. Therefore, as in the simpler diffusion processes,
the evolution of the interacting degrees of freedom – described via a fieldφ – is modeled by a
functional Langevin equation in which the coupling to the environment is responsible for both
thermal fluctuations, encoded in a stochastic external noise, and the friction [see Sec. 2.1]. If the
environment, which acts as a thermal bath forφ, is in equilibrium at a certain temperatureβ−1,
the space and time dependence of the friction coefficient and of the correlations of the thermal
fluctuations are related via the fluctuation-dissipation theorem, see Eq. 2.1. The selected model
bath determines then the remaining functional form of the noise-noise correlation and the usual
choice is to take it to be delta-correlated in time which corresponds to white noise.

In cases in which the initial conditions of the system are drawn from an equilibrium Gibbs-
Boltzmann distribution, or the system is allowed to evolve for a sufficiently long timesuch that
this distribution function is reached, the space-time behavior of dynamic quantities is charac-
terized by scaling laws in which the usual static exponents (ν, η etc.) appear but a new critical
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exponentz is needed to relate the space and time dependencies. In the case of subcritical
dynamics we have seen thatz = 2 (z = 3) for an unconserved order parameter (conserved
order parameter, respectively). Besides the analysis of equilibrium dynamics, field-theoretical
methods allow one to study thenon-equilibriumdynamics after a sudden quench from a suit-
ably chosen initial condition to the critical point [82]. A Gaussian distribution of the initial
field configuration with zero average and short-range correlations mimics aquench form the
disordered phase [82]. A distribution with non-zero average but still short-range correlations
describes (in the case of a scalar fieldφ) a quench from the ordered state [83, 84]. In these
non-equilibrium cases a new critical exponent — usually denoted byθ and called the “initial
slip exponent” — characterizes the short-time behavior of the average order parameter as well
as of the correlation and response functions [82] (see, e.g., [85, 86,87] for summaries).

In all the studies mentioned above, the noise is assumed to have a Gaussian distribution with
no temporal correlations, i.e., to be Gaussian andwhite. The first assumptions can be justified
in many cases by the central limit theorem: If one considers a coarse-grained thermal noise,
that is the sumζ(t) = n−1/2

∑n
i=1 ξt+i, with ξi the microscopic random force at instanti, the

probability distribution ofζ(t) locally converges to a Gaussian as long as the mean and the
variance of theξi are finite. Note however that the absence of uniform convergence impliesthat
only the eventsζ(t) of order≤ O(

√
n) are distributed according to a Gaussian; extreme events

are thus excluded from the central limit theorem. The Gaussian distribution does not emerge
uniformly but it rather gradually “eats up” the extreme events situated far away from the bulk.
If these extreme events are rare (for example ifζ(t) is bounded) the bulk distribution dominates
and the central limit theorem is valid for thewhole event space. However, there are well-
known cases where extreme events are frequent enough that they need a special analysis (one
important example are financial markets) although the Gaussian central limit theorem applies
[see also Bouchaud and Potters [88]].

The second hypothesis is yet less justified. Indeed, the very coupling to thermal reservoirs
yields, in general, non-Markovian Langevin equations in which the noise iscorrelated in time
and the friction coefficient has some memory [89, 90, 50]. Although one can argue in some
cases that the typical correlation time of the thermal bath is much smaller than the typical
time scales in the system, it is known that some environments exhibitpower-lawcorrelated
thermal fluctuations which are scalefree: In such cases assuming Markovian statistics isnever
justified a priori. I refer the reader to Sec. 2.1.3 where I present some examples of such scalefree
environments which occur in nature.

In the present manuscript I will essentially focus on critical dynamics of anunconserved
order parameter, i.e. described by [see Eqs. (2.4 and (2.5)]

∫ t

−T
dt′ Γ(t− t′)∂t′~φ(~x, t

′) +
δH

δ~φ(~x, t)
= ~ζ(~x, t), (2.30)

where−T is the initial time of the process and~ζ is a zero-mean Gaussian colored noise with

〈ζi(~x, t)ζj(~x′, t′)〉 = β−1Γ(t− t′)δ(~x− ~x′)δij . (2.31)

Note that the functionΓ determines both the noise-noise correlation [see Eq. (2.31)] and the
time-dependent retarded friction coefficient [see Eq. (2.30)] since wehave assumed the thermal
bath (which is weakly coupled to the system) to be in equilibrium at temperatureβ−1. The
Markovian examples of this dynamics are characterized by aδ-correlated (’white’) noise, i.e.,

Γ(t) = 2γwδ(t) , (2.32)
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whereγw is the friction coefficient. In this case Eq. (2.30) has been extensively studied both
in and out of equilibrium, see, e.g., [75, 82, 86, 91]. SuchOhmicdissipation is the simplest
form of short-range correlatednoise. It can be formally obtained as the limitt0 → 0 of the
exponentially correlated Ornstein-Uhlenbeck (OU) process

ΓOU(t) =
γOU

t0
e−|t|/t0 , (2.33)

where the finite characteristic relaxation timet0 plays the role of an internal scale. Under
renormalization one expects the exponentially correlated noise to become equivalent to a white
(delta-correlated) one, Eq. (2.32), and the critical behavior of the OU process be identical to the
Markovian one. In theabsence of an internal scale, instead, there is no reason to expect a white
noise limit and the critical behavior might be affected. The simplest example with no explicit
time scale is

Γ(t) =
γ

ΓE(1− α)
|t|−α with α > 0 . (2.34)

(ΓE the EulerΓ-function). Forα > 1, i.e., super Ohmic dissipation, expression (2.34) is not
integrable, unless a short-time cut-off and thus an internal scale is introduced. One can show that
under naive scaling (introduced in Sec. 3) the Fourier or Laplace transform of Γ(t) generate a
white noise vertex that dominates over the colored noise part. Hence, the appearance of a cut-off
scale suggests the non relevance of the colored noise forsuper-Ohmicdissipation, i.e.,α > 1.
This statement will be made precise in the following. Instead, forsub-Ohmic dissipation, i.e.,
α < 1, the noise is truly long-range correlated and its influence on the dynamics willturn out to
be non-trivial. The naive cross-over value between these two cases isα = αc = 1, that is white
noise orOhmic dissipation. In the presence of interactions we shall show that this scenario is
slightly modified, with the cross-over valueαc(D,N) depending uponD andN .

A functional-integral representation of the stochastic process, Markovian or not, is better
suited for an analytic treatment of critical dynamics than the Langevin equation(2.30). In
particular, it allows one to express the average〈· · · 〉ζ over the possible realizations of the noise
~ζ in Eq. (2.30) as a functional integral (which will be denoted by〈· · · 〉 in what follows)

〈· · · 〉ζ =
∫

[dφdφ̄] · · · e−S[φ,φ̄] (2.35)

overφ and an auxiliary field̄φ with S = S0 + Sint − lnPIC [73, 74, 75, 92]3,

S0 =

∫

dDx

∫ ∞

−T
dt φi(~x, t)

[∫ t

−T
dt′ Γ(t− t′)∂t′φi(~x, t

′) + (r −∇2)φi(~x, t)

]

− β−1

∫

dDx

∫ ∞

−T
dt

∫ t

−T
dt′ φi(~x, t)Γ(t− t′)φi(~x, t

′) (2.36)

and

Sint =

∫

dDx

∫ ∞

−T
dt

g

3!
φi(~x, t)φi(~x, t)φj(~x, t)φj(~x, t). (2.37)

We used Einstein’s convention of summation over repeated indices. The zero-source func-
tional integral is identical to1 due to the normalization of the noise probability distribution.

3In the presence of colored noise no discretization problems arise, see,e.g., [92].
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PIC [~φ(~x,−T )] is the statistical weight of the initial condition. The auxiliary field~φ 4 is con-
jugated to an external perturbation~h, in such a way that ifH[~φ,~h] = H[~φ] − ~φ · ~h, the linear
response of the order parameter to the field~h is given by

R(~x− ~x′; t, t′)δij =
δ〈φi(~x, t)〉~h
δhj(~x′, t′)

∣

∣

∣

∣

~h=~0

= 〈φi(~x, t)φj(~x′, t′)〉, (2.38)

where〈· · · 〉~h is the average over the stochastic process in the presence of the external pertur-

bation, i.e., Eq. (2.30) withH 7→ H[~φ,~h]. The response function is causal irrespectively of
the noise statistics and the Jacobian of the transformation of variables from~ζ to ~φ which al-
lows us to write the average over the stochastic process as in Eq. (2.35) is also a factor with no
consequences [92]. In addition to the (linear) response function, we shall consider below the
correlation function of the order parameter, defined by

C(~x− ~x′, t, t′)δij = 〈φi(~x, t)φj(~x′, t′)〉 (2.39)

where we assumed translational invariance in space. The actionS0 + Sint is the sum of two
contributions each one made of several terms. The part with densityφ̄iδH/δφi represents the
deterministic dynamics whereas the remaining part is due to the coupling to the bath. The latter
consists of the friction term and the noise-noise correlation and both involvethe kernelΓ. In
this formulation the problem is recast in the form of a field theory inD + 1 dimensions with
two vector fields, the analysis of which can be done via standard field-theoretical tools, such as
the renormalization group (RG) approach that we shall use below.

Since, in general, there is no tractable Fokker-Planck equation for the non-Markov stochas-
tic processes we are presently interested in, the usual and relatively simpleproof of equilibration
explained in, e.g., [19, 20] for the white-noise problem does not apply. However, we recall here
that Eq. (2.30) is an effective description of the dynamics of a classical system with Hamiltonian
H′ which is weakly and linearly coupled to a (large) equilibrium bath of harmonic oscillators
at temperatureβ−1, acting as a source of the stochastic noise~ζ effectively induced by such a
coupling. Indeed, the temperature that characterizes the correlations ofthe noise in Eq. (2.31)
is β−1, whereas the distribution of the frequencies of the harmonic oscillators withinthe bath
determines the functional form ofΓ. In addition,Γ appears in Eq. (2.30) and Eq. (2.31) in
such a way to ensure the fluctuation-dissipation theorem for the bath variables. As a result,
even with this effective non-Markov dynamics the system should still lose memory of its initial
condition and equilibrate with the equilibrium bath of oscillators, resulting in a canonical distri-
butione−βH[~φ]/Z(β) of one-time quantities at sufficiently long times (possibly divergent with
the system size) whereZ(β) is the partition function andH differs fromH′ by a term which
is quadratic in the relevant degrees of freedom (see, e.g., [50, 15] for details). The asymp-
totic critical equilibrium dynamicsis expected to be described by the limitT → ∞ of the
action in which one neglects the specific distributionPIC of the initial conditions that in any
case should be forgotten dynamically. Since we shall be interested in the critical dynamics,
we setβ = βc and we absorb this constant into a redefinition of the fields and of the coupling
constantg. In equilibrium the response and the correlation functions are invariant under time
translations, i.e.,R(~x, t, t′) = R(~x, t − t′) [see Eq. (2.38)] andC(~x, t, t′) = C(~x, t − t′) [see
Eq. (2.39)] , and they are related to each other by the fluctuation-dissipation theorem (FDT)
that readsR(~x, t) = −β∂tC(~x, t)Θ(t), wheret represents the time delay,Θ(t ≤ 0) = 0 and

4~φ is purely imaginary and it is sometimes written asi~φ in the literature.
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Θ(t > 0) = 1 5, and which is completely independent of the specific characteristics of the sys-
tem and the bath apart from its temperature. (A proof of this relation for generic colored noise
Langevin dynamics can be found in [92].) Once the latter has been absorbed in the redefinition
of φi andg the FDT becomes

R(~x, t) = −∂tC(~x, t)Θ(t), (2.40)

and this is the form that we shall use in our calculations. Moreover, the time-dependent corre-
lation is invariant under time-reversal, i.e.,C(~x, t) = C(~x,−t).

Non-equilibrium dynamics, instead, can be studied by leavingT finite and by making the
initial distributionPIC explicit [82, 86]. A typical choice is a Gaussian weight in which caseβc
can still be absorbed into a redefinition of the fields andg. Stationarity is lost out of equilibrium
and correlation and linear response functions depend on all times involvedin their definitions (t
andt′ in Eq. (2.38) and Eq. (2.39). Moreover, the FDT is no longer valid [86, 93, 94].

In addition toR defined in Eq. (2.38) andC defined in Eq. (2.39), one can construct the
quadratic correlator〈φi(~x, t)φj(~x′, t′)〉 which, independently of the color of the noise, vanishes
identically due to causality.

2.2.1 Scaling

In the case of stochastic dynamics with white noise, a systematic RG analysis confirms the
phenomenological scaling behavior of the linear response and correlation functions both for
T → ∞ andT finite corresponding, respectively, to equilibrium and non-equilibrium relax-
ational dynamics. In terms of the equilibrium correlation lengthξeq ≃ |r − rc|−ν , whererc is
the critical value of the parameterr in Eq. (2.2), and of a dynamic growing lengthξ(t) ≃ t1/z,
one expects [82, 86]

R(~p, t, t′) = p−2+η+z [ξ(t)/ξ(t′)]zθ fR(pξeq, ξ(t)/ξeq, ξ(t
′)/ξ(t)) (2.41)

and
C(~p, t, t′) = p−2+η [ξ(t)/ξ(t′)]z(θ−α̂) fC(pξeq, ξ(t)/ξeq, ξ(t

′)/ξ(t)), (2.42)

for the Fourier transform in space ofR(~x, t, t′) andC(~x, t, t′), respectively, with the white
noise valuêα = 1 [82]. In the previous expressions,ν is the standard static critical exponent
associated with the correlation length,z is the dynamic critical exponent which characterizes
the different scaling behavior of space and time, whereasη is the static anomalous dimension
of the fieldφ and it controls the power-law spatial decay of the static correlation function.
θ is the so-called initial-slip exponent [82, 85, 86] that accounts for the effects of the initial
condition in the case of finiteT . It is a novel universal quantity if the relaxation occurs from a
disordered initial state, whereas it is related to known equilibrium exponentsif the initial state
has a non-vanishing average value of the order parameter [83, 84]. In (2.41) and (2.42)fR,C

are scaling functions which become universal after the introduction of proper normalization.
Equilibrium dynamical scaling is recovered in the limiting caseξ(t′) ≃ ξ(t) ≫ ξeq (i.e., in the
limit of long timest, t′ with finite t− t′), whereas aging phenomena are expected to emerge for
ξ(t), ξ(t′) ≪ ξeq and, in particular, right at the critical pointr = rc. In the presence of specific
instances of correlated noise we expect the scaling behavior in (2.41) and (2.42) to be modified

5Note that the It̂o prescription of the Langevin equation Eq. (2.30) impliesΘ(0) = 0 in the stochastic path
integral description [19, 75].
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both as far as the exponents and the scaling functions are concerned. The changes appear at the
level of the Gaussian theory and non-trivial effects survive in the presence of interactions for
certain noise correlations, as we shall explain in the following.

2.2.2 Large-N limit for Ohmic dissipation

The limit where the number of componentsN of ~φ is infinite can be solved exactly for the full
out of equilibrium dynamics driven by white noise Eq. (2.32). First, one replaces the coupling
g by g 7→ g/N in order to obtain a homogeneous scaling inN . Second, one notices that
the stochastic variable

∑N
j=1 φ

2
j (~x, t)/N tends to a Gaussian with mean

∑N
j=1〈φ2j (~x, t)〉/N =

〈φ2i (~x, t)〉 (for all i ∈ {1, ..., N}) and variance ofO(N−1/2). Hence, for largeN , a sensible
approximation is to replace the expression~φ2 in the interaction part (2.30) by its meanC(~x =
~0, t = 0). This is the usual large-N approximation which becomes exact forN → ∞. The
equation of motion (2.30) for Ohmic dissipation then reads

γwφ̇(~x, t) = −[∇2 + I(t)]φ(~x, t) + ζ(~x, t) , (2.43)

whereφ stands for each (now independent) componentφi which are all equivalent for largeN .
We introduced the time-dependent function

I(t) = r + g C(~0, 0) , (2.44)

which has to be determined self-consistently. The scalar Gaussian noiseζ(~x, t) has the correla-
tion

〈ζ(~x, t)ζ(~x′, t′)〉 = β−1γwδ(~x− ~x′)δ(t− t′) . (2.45)

The model (2.43) has to be complemented by information on the initial condition. Wechoose a
completely disordered high-temperature initial condition to mimic a quench to the critical point:

〈~φ(~x, 0)〉 = 0 , (2.46)

〈φi(~x, 0)φj(~x′, 0)〉 =
1

τ0
. (2.47)

This initial condition will be reused in Sec. 2.3.5.
The noise amplitudeγw can be scaled away by settingt 7→ γwt. Then, the formal solution

of Eq. (2.43) can be written in the Fourier domain as

φ(~k, t) = R(~k, t, 0)φ(~k, 0) +

∫ t

0
ds R(~k, t, s)ζ(~k, s) , (2.48)

where

R(~k, t, s) =
Y (s)

Y (t)
e−k2(t−s) (2.49)

is the non-equilibrium response functions (which depends on two timest ands) with Y (s) =
exp

[∫ s
0 dt′ I(t′)

]

. Consequently, solving the Langevin equation (2.43 amounts to determine
Y (s) self-consistently.

From the very definition ofY (t) follows that

∂Y 2(t)

∂t
= 2

[

r + g C(~x = ~0, 0)
]

Y 2(t) . (2.50)
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Now, introduce an ultraviolet cutoff functionχ(~k) to write

C(~x = ~0, 0) =

∫

dDk

(2π)D
C(~k, t)χ(~k) . (2.51)

We are only interested in the long-time dynamics which are expected to be universal and hence
independent of the precise form ofχ(~k). Therefore, we can choose a specificχ(~k) which is
suitable for the calculation:χ(~k) = exp[−k2/Λ2] with Λ some ultraviolet cutoff. By using
Eq. (2.48) we can write

C(~k, t) = R2(~k, t, 0)τ−1 + 2β−1

∫ t

0
ds R2(~k, t, s) , (2.52)

which leads in conjunction with Eq. (2.51) to an integro-differential equationfor Y (t):

∂Y 2(t)

∂t
= 2rY 2(t) + 2gτ−1 h(t+ 1/2Λ2) + 4gβ−1

∫ t

0
ds h(t− s+ 1/2Λ2)Y 2(s) , (2.53)

where we definedh(z) =
∫

dkD

(2π)D
e−2k2z = (8πz)−D/2. By applying a Laplace transform it is

straightforward to find the asymptotic behaviour

Y (t) ∼
{

t−(4−D)/4 for D < 4 ,

const. for D ≥ 4
(2.54)

at the well known critical large-N point defined byr∗ + gT ∗B = 0. B is the standard critical
one-loop bubble of the (regularized)φ4-theory:B(0) =

∫

dDk
(2π)D

χ(~k)/k2. From the general
scaling relation (2.41) one immediately finds for the Ohmic large-N model in the non-mean-
field caseD < 4

z = 2 , (2.55)

θ = (4−D)/4 . (2.56)

The large-N approximation thus gives a qualitative behaviour that confirms (2.41) and (2.42).
In the next section I present a renormalization group analysis for the moredifficult case: The out
of equilibrium dynamics of model A driven by power-law correlated noise.A generalization to
the full colored noise case is not straightforward and has to my knowledgenot been performed,
yet.

2.3 Critical dynamics and colored noise

2.3.1 Equilibrium dynamics

According to the interpretation of the Langevin dynamics in Eq. (2.30) as resulting from the
coupling to an equilibrium thermal bath, after a sufficiently long time the system is expected
to relax towards an equilibrium state characterized by the effective Hamiltonian H, i.e., by the
staticφ4-theory. This relaxation occurs generically and for arbitrary initial conditions as long
as the asymptotic values of the control parameters of the system (r in the case we are concerned
with) imply for H neither a spontaneous symmetry breaking nor criticality, which would indeed
provide instances ofaging(see, e.g., [15]). However, the existence of a wide region of parameter
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space (r > 0) for which equilibration occurs, allows us to conclude that all static properties of
a theory with effective HamiltonianH carry over to the dynamic field-theoretical actionS [see
Eqs. (2.36) and (2.37)] which generates the dynamic correlation functions and therefore the
static ones as a special case. The upper critical dimensionalityDc above which the Gaussian
theory becomes exact is therefore the same as in theφ4 theory, i.e.,Dc = 4 (see, e.g., [19]).
Analogously, the same applies to the static exponentsν andη. In this section we show how
this arises within perturbation theory. In particular, we determine the conditions under which
the critical dynamics is modified by the colored part of the noise with special focus on the
emergence of a cross-over lineαc(D,N) which bounds the region within which the dynamic
exponentz is affected by the color of the noise. We calculate this exponent in the white and
colored noise cases.

2.3.2 Gaussian theory

In the T → ∞ limit the Gaussian part of the actionS0 can be diagonalized via a Fourier
transform of the fields defined in Eq. (2.151). One obtains

S0 =
1

2

∫

dω

2π

dω′

2π

∫

dDp

(2π)D
dDp′

(2π)D
~ϕT (~p, ω)C(~p, ω; ~p′, ω′)~ϕ(~p′, ω′) , (2.57)

where we used a vector notation~ϕ = (~φ(~p, ω) , ~φ(~p, ω))T for the2N -component field~ϕ and
we introduced the correlation matrix

C = δijδ(~p+ ~p′)δ(ω + ω′)

(

0 iωΓiω + (p2 + r)
−iωΓ∗

iω + (p2 + r) −(Γiω + Γ∗
iω)

)

. (2.58)

Here and in what follows we denote a function and its Fourier transform withthe same symbol,
the difference being made clear by their arguments. In Eq. (2.58)Γiω stands for the Fourier
transform ofΘ(t)Γ(t) [theΘ(t) factor is a consequence of the causal structure of Eq. (2.30)].
As usual,∗ denotes the complex conjugate. For the colored noise in Eq. (2.34) one finds

Γiω = γ|ω|α−1 [sin(πα/2)− i sign(ω) cos(πα/2)] + γw. (2.59)

[Note that forα > 1 a short-time cut-off has to be introduced in order to transform Eq. (2.34).
However, the dynamic properties we are presently interested in are determined by the leading
behavior at smallω, which is not affected by the introduction of such a cut-off and is correctly
captured by Eq. (2.59). Accordingly, we shall use this form irrespectively of the value ofα.]
In this expression we have added a supplementarywhite-noise vertexγw for reasons that will
become clear in the following [note that the cut-off that has to be introduced in order to make
Eq. (2.34) integrable forα > 1 effectively leads to this supplementary white-noise vertex]. The
propagators6 are deduced by invertingC:

R0(~p, ω)δij = 〈φi(~p, ω)φj(−~p,−ω)〉 =
1

iωΓiω + p2 + r
δij (2.60)

and

C0(~p, ω)δij = 〈φi(~p, ω)φj(−~p,−ω)〉

=
Γiω + Γ∗

iω

ω2ΓiωΓ∗
iω + iω(p2 + r)(Γiω − Γ∗

iω) + (p2 + r)2
δij . (2.61)

6In what follows we denote the response and correlation function byR andC, respectively. The various propa-
gators and quantities within the Gaussian approximation are denoted by the subscript0.
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By construction they satisfy the FDT [see Eq. (2.40)] that in the frequency domain reads:

2i ImR0(~p, ω) = −iωC0(~p, ω). (2.62)

We recall that we absorbed the temperatureβ−1 in a redefinition of the fields and the coupling
constantg, and thatC0(~p, ω) is a real function.

The static correlation functionC0(~p, t = 0) can be obtained by integrating Eq. (2.61) over
the frequencyω and, as expected, the result agrees with the static Gaussian correlation that
one would infer from the HamiltonianH [see, c.f., the calculation leading to Eq. (2.155)].
Consequently, the static critical exponentsν andη are not modified at this order by the dynamics
and they take the Gaussian valuesν0 = 1/2 andη0 = 0, respectively.

We anticipate here that in Sec. 2.3.5, while discussing the non-equilibrium dynamics of the
present model, we consider the Laplace transform [see Eq. (2.152)] of Eq. (2.30) withg = 0
and the colored noise given in Eq. (2.34) (i.e., withγw = 0). This allows us to determine
the Laplace transform of the response functionR0, formally obtained by replacingiω with λ
in Eq. (2.60); compare Eq. (2.151) and Eq. (2.152). This transform can be inverted to a form
given in terms of the so-called generalized Mittag-Leffler functionsEα,β defined in (2.169) and
provides a closed expression forR0(~p, t):

R0(~p, t) = Θ(t)
tα−1

γ
Eα,α(−Atα/γ), (2.63)

whereA ≡ p2 + r. The equilibrium correlation functionC0 is readily determined from this
expression via the fluctuation-dissipation theorem (2.40) (see, c.f., App.2.4.2 for details):

C0(~p, t) =
1

A
Eα(−A|t|α/γ) (2.64)

whereEα(z) ≡ Eα,1(z). In Fig. 2.2(a) we plotAC0 as a function of the (dimensionless) scaling
variableu ≡ |t|(A/γ)1/α associated with timet. Forα → 1 one recovers the purely exponen-
tial dependencee−u (indicated by the decreasing dashed curve in Fig. 2.2) which characterizes
the case of white noise. Asα decreases, instead, the correlation function displays a faster initial
drop followed by a slower decay at large values ofu. Indeed, taking into account the known
asymptotic behavior of the Mittag-Leffler functions [c.f., Eq. (2.170)], these curves decay alge-
braically as∼ 1/[ΓE(1− α)uα] for u → ∞. In panel (b) of Fig. 2.2 we use a log-log-scale to
compare the curves shown in panel (a) with their corresponding leading asymptotic algebraic
decays, indicated by the straight dashed curves foru & 5. As α → 0 the approximation pro-
vided by the leading term of the asymptotic expansion becomes less accurate inthis time span
and one needs to go to longer times to reach the asymptotic regime. The curves inFig. 2.2
clearly illustrate the crossover between an exponential and an algebraic asymptotic behavior of
the correlation function asα decreases below the valueα = 1.

For the generic case of the noise in Eq. (2.59) withγ, γw 6= 0, the propagatorsR0 andC0

do not have a simple analytic form in the time domain, in contrast to the familiar exponential
relaxation which characterizes the case with white noise (γ = 0, γw 6= 0) briefly recalled in
Eqs. (2.153) and (2.153) and to the purely colored case discussed in theprevious paragraph
(γ 6= 0 andγw = 0). In spite of this difficulty, the Gaussian valuez0 of the dynamic exponent
z can be determined by comparing the scaling of the first two terms in the denominator of R0

for smallω andp since one expectsω ∼ pz from the definition ofz (see, e.g., [19]). First we
note that for smallω, Eq. (2.59) scales asΓiω ∼ |ω|α−1 for α < 1, whereasΓiω ∼ 1 for α > 1:
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Figure 2.2: Scaling functionAC0 of the Gaussian correlationC0 in equilibrium (T → ∞) as a function
of u ≡ |t|(A/γ)1/α for various values ofα, withA = ~p 2+r. (a) The horizontal dashed line corresponds
to the limitα→ 0, whereas the other dashed line points out the purely exponential behaviore−u, which
is recovered forα = 1. The solid lines, instead, correspond toα = 0.2, 0.4, 0.6, and 0.8, from bottom
to top at smallu and in the reverse order at largeu. (b) Log-log plot of the curves shown in panel (a)
compared to their corresponding leading asymptotic algebraic behavior inferred from Eq. (2.170), which
are indicated as (straight) dashed lines.

in the former case the effect of the colored part of the vertex is dominant, whereas in the latter
the contribution of the white noise (∝ γw) dominates. As a result, from the scalingωΓiω ∼ p2

one can read the Gaussian valuez0 of the dynamic exponent:

z0 =

{

z
(col)
0 = 2/α for α < 1 ,

z
(w)
0 = 2 for α ≥ 1 .

(2.65)

A similar effect is observed in diffusion processes with colored noise, theso-called fractional
Brownian motion [see Sec. 2.1.2 and [95]]. The particle’s displacement is stationary and char-
acterized by anα–dependent exponent which is calledHurst exponentin this context.

By rescaling the momentump and frequencyω according top 7→ b−1p andω 7→ b−zω
with b thescaling parameterof the RG flow, one deduces the Gaussian scaling behavior of the
response and the correlation propagator. We infer from Eq. (2.60) and Eq. (2.61) that

b−2R0(b
−1~p, b−z0ω; r, γ, γw) = R0(~p, ω; b

2r, b2−αz0γ, b2−z0γw) , (2.66)

with a similar expression forC0, where the prefactorb−2 on the left-hand side (lhs) is replaced
by b−2−z. As anticipated, one can identify two asymptotically scale-invariant behaviors (the
so-called Gaussian fixed-points in the parameter space) as the Gaussian critical point r = 0 is
approached. They correspond toP ≡ (γw = 0, γ 6= 0) for α < 1 andPw ≡ (γw 6= 0, γ = 0)
for α ≥ 1, i.e., to the cases in which either the colored or the white noise is relevant. The latter
reduces to the standard Model A dynamics [19]. In order forP andPw to be fixed points, it is
necessary that the corresponding non-vanishing coupling strengths,eitherγ or γw, are constant
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under renormalization which, as expected from Eq. (2.65), impliesz = z
(col)
0 = 2/α for α < 1

(P ) andz = z
(w)
0 = 2 for α ≥ 1 (Pw).

In order for the actionS0 to be invariant under the momentum and frequency rescaling
discussed above, one has to rescale the fieldsφi andφi asφi(b−1~p, b−z0ω) 7→ bdφφi(~p, ω)
andφi(b

−1~p, b−z0ω) 7→ bdφφi(~p, ω) wheredφ anddφ are the so-called scaling dimensions of

the fields~φ and~φ, respectively, in the(~p, ω)-domain. (Below we shall introduce the scaling
dimensions of the fields in the time-domain; in order to keep the notation as simple as possible
we do not include an additional subscript to distinguish the two cases but weexplain in the text
which one we use in each case.) The latter take the Gaussian values

dφ,0 = (D + 2)/2 + z0 , (2.67)

dφ,0 = (D + 2)/2 . (2.68)

In the white-noise casez0 = 2 we recover the standard scaling dimensions of Model A critical
dynamics [19]. As far as the transformation properties of the propagators under these rescalings
are concerned we have

b−2dφ+D+z0C0(b
−1~p, b−z0ω; . . .) = C0(~p, ω; . . .) , (2.69)

b−dφ−d
φ
+D+z0 R0(b

−1~p, b−z0ω; . . .) = R0(~p, ω; . . .) , (2.70)

where the factorbD+z0 comes from theδ-function which guarantees the conservation of mo-
menta and frequencies. We have not specified the scaling of the parameters r, γ andγw to
lighten the notation. By comparing with the scaling behavior of the Gaussian response in
Eq. (2.66) and of the correlation function, one confirms the Gaussian values Eq. (2.67) and
Eq. (2.68) for the dimensionsdφ anddφ̄, respectively.

In Eq. (2.59) we added to the colored-noise vertex associated with Eq. (2.34) a white-noise
contribution proportional toγw for the purpose of highlighting the emergence of the two distinct
Gaussian fixed pointsP andPw. As we shall show below such a white-noise contribution is
anyhow generated under the RG flow as soon as one accounts for the effect of non-Gaussian
fluctuations (i.e.,g 6= 0) on the Gaussian fixed-pointP = (γ 6= 0, γw = 0) with colored noise
alone.

2.3.3 The interaction part

The interaction part of the action reads

Sint =

∫

dω

2π

dω′

2π

dω′′

2π

dDp

(2π)D
dDp′

(2π)D
dDp′′

(2π)D
g

3!
φ(−~p− ~p′ − ~p′′,−ω − ω′ − ω′′)

×φ(~p, ω)φ(~p′, ω′)φ( ~p′′, ω′′)

in the frequency and momentum domain. Under the naive scaling with Eqs. (2.65), (2.67), and
(2.68) one easily obtains the scaling of the coupling constant:g → b4−Dg. The upper critical
dimension is thusDc = 4 independently ofα and the effects of fluctuations beyond mean-field
can be accounted for by using a standard perturbative expansion in terms ofǫ = 4−D.

In the presence of the interactionSint, the scaling dimension of the fields and the cou-
pling constants are altered. In addition, we shall show that the crossovervalueαc = 1, which
separates the colored-noise-dominated case from the white-noise-dominated one, acquires a de-
pendence onD, thus dividing the(α,D)-plane (forN fixed) in two distinct regions, each one
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with different scaling properties. Under a RG flow with scaling parameterb > 1 the noise
strengthsγ andγw scale as

γ 7→ b2−αz0+αηγ γ, (2.71)

γw 7→ b2−z0+ηw γw, (2.72)

which generalize the corresponding Gaussian scaling behavior of theseparameters — encoded
in Eq. (2.66) — via the introduction of suitable anomalous dimensionsηγ andηw of γ and
γw, respectively. These anomalous dimensionsηγ and ηw determine the corrections to the
Gaussian valuez0 of the dynamical exponentz and the crossover valueαc which separates the
different regions in the(α,D)-plane. Indeed, letl be a length scale andτ be a time scale.
Dimensional analysis impliest ∼ τ andx ∼ l. From Eq. (2.60) we infer thatγ ∼ τα/l2 and
γw ∼ τ/l2. Consider the case in which the colored noise dominates, which corresponds to
having2 − αz0 + αηγ > 2 − z0 + ηw in terms of the dimensions of the noise strengths [see
(2.71) and (2.72)] withz0 = 2/α. By choosingτα = l2γ we havet ∼ l2/αγ1/α. Therefore,
under an RG flow withl 7→ bl (b > 1) we deduce from (2.71) thatt ∼ b2/α+ηγ l2/αγ1/α. On
the other hand, by noting that the dynamic exponentz is defined throught→ bztwe can readily
identify the dynamic exponentz = 2/α+ ηγ in terms ofηγ . In the white-noise-dominated case
we chooseτ = l2γw and a similar argument yields the white-noise resultz = 2 + ηw. In short,

z =

{

2 + ηw for α > αc(D,N),

2/α+ ηγ for α < αc(D,N) ,
(2.73)

and therefore one needs to calculateηw andηγ in order to determinez.
In the presence of non-Gaussian fluctuations, the scaling dimensionsdφ = d0,φ − z0 − η/2

anddφ = d0,φ−z0−η/2 in the(~p, t)-domain of the fieldsφ andφ̄, respectively, differ from their
Gaussian values by the corresponding anomalous dimensionsη andη (the extra−z0 comes from
the conversion ofd0,φ andd0,φ from the frequency to the time domain). In order to determine
the resulting scaling in the(~p, ω)-domain one has to take into account the integral over time that
carries a dimensionz (which differs from the Gaussian valuez0); therefore

φi(b
−1~p, b−zω) 7→ bdφ+z−z0 φi(~p, ω) = bD/2+1+z−η/2 φi(~p, ω), (2.74)

φi(b
−1~p, b−zω) 7→ bdφ+z−z0 φi(~p, ω) = bD/2+1+z−z0−η/2 φi(~p, ω) . (2.75)

The FDT implies a relation betweenηγ , ηw, η andη, which allows one to expressz in terms
of the latter two. Indeed, the right-hand side (rhs) and the lhs of Eq. (2.40) should have the
same scaling dimensions; thereforez = dφ − dφ in terms of the dimensions of the fields in the
time-domain. Using now the expressions of the field anomalous dimensions provided above,
transforming into the dimensions in the frequency domain, and replacing the Gaussian values
in Eqs. (2.67) and (2.68) one concludes that

z = z0 +
η − η

2
. (2.76)

2.3.4 Perturbative expansion

As we explained above, one does not expect any modification of equal-timecorrelation func-
tions, as they are determined by a static theory with the effective HamiltonianH in Eq. (2.2).
Hence, we focus on the dynamical exponentz, the corrections to which can be obtained on the
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basis of the standard perturbative method consisting in a combined expansion in the coupling
constantg and in the deviationǫ = 4 −D from the upper critical dimensionality of the model
[20, 19, 18, 96]. In performing such an expansion one also takes advantage of the fact thatg
will eventually be set to its fixed-point valueg∗ = O(ǫ). We remind here that the inverse tem-
peratureβ has been eliminated by a suitable redefinition of the fields and the coupling constant
g. In the following we concentrate on the one-particle irreducible vertex functions [19, 96] with
n externalφ-lines andn externalφ-lines, denoted7 by

Vn,n = Vn,n
0 + Vn,n

1 + Vn,n
2 + · · · (2.77)

The subscripts indicate the order in the perturbation series. For example,Vn,n
2 includes all

terms proportional tog2, gǫ and ǫ2. The Feynman rules of this perturbative expansion are
those associated with the statistical weighte−S in Eq. (2.35) and they are the same as in the
white noise case [82, 19], the only difference being in the form of the Gaussian response and
correlation functions. In the diagrammatic representation of the perturbationseries we shall
indicate the relevant propagators and vertices as depicted in Fig. 2.3. Notethat the noise vertex
Γiω + Γ∗

iω [see Fig. 2.3(d)] is diagonal in frequency space (i.e., it amounts to a multiplication
by anω-dependent factor) whereas it is non-local in the time domain. In addition, we point out
the fact that in principle the correlation function can be obtained in the frequency domain as a
multiplication of two response functions by the noise vertex, which corresponds to a convolution
in the time domain.

〈φi(−~p,−ω)φj(~p, ω)〉 〈φi(−~p,−ω)φj(~p, ω)〉
(a) (b)

g Γiω + Γ∗
iω

(c) (d)

Figure 2.3: Diagrammatic elements of the perturbation theory: (a) response propagator, (b) correlation
propagator, (c) interaction vertex and (d) noise vertex. The straight parts of each line are associated to
fieldsφ, whereas wiggled lines correspond toφ fields.

Renormalization of the noise vertex.

Our interest here is to know whether the correlated noise modifies the criticalbehavior of the
model. Within the Gaussian approximationz is given by Eq. (2.65), where we assumed that
a white-noise vertex is generated under renormalization, a fact that yieldstwo distinct fixed
pointsP andPw: the former is characterized by the colored noise and is stable forα < αc ≡ 1,
whereas the latter is characterized by the white noise, is stable forα > αc, and it reduces to the
standard Model A dynamics. We shall show that, on the one hand, expanding aroundP (with

7Our notation differs from the standard one, that isΓn,n for the 1PI-vertex functions, in order to avoid confusion
with the noise kernel.
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γw = 0) renormalization indeed generates a supplementary white noise vertexγw 6= 0 and,
on the other hand, such a vertex becomes relevant at aD- andN -dependent valueαc(D,N),
whereαc(D,N) shows corrections to the Gaussian cross-over occurring atαc = 1 for D < 4.

The first correction to the noise vertexV0,2
2 is given by the second-order diagram depicted

in Fig. 2.4 which can be conveniently written as the Fourier transform of its expression in the

Figure 2.4: Lowest-order perturbative contribution to thenoise vertex.

time and space domain

V0,2
2 (~q, σ) = −g

2(N + 2)

18

∫

dDx

∫ +∞

−∞
dt ei~q·~x−iσt C3

0 (~x, t)

= −g
2(N + 2)

9

∫ ∞

0
dt cos(σt)

∫

dDx ei~q·~x C3
0 (~x, t), (2.78)

where theN -dependent prefactor accounts for the combinatorics of the graph (see, e.g., [19])
andC0 is the Gaussian correlation function withγw = 0. In the last line of this equation we
used the symmetryC(~x, t) = C(~x,−t). Since we are interested in the critical dynamics, we
setr to its critical valuerc = O(g) (determined, e.g., by the value ofr at whichC(~p = ~0, t =
0) diverges [19, 18, 96]). However, at the orderg2 we are presently interested in, one can
neglect the shift of the critical point and setr = 0. The leading behavior of the noise vertex
is completely determined by the small-q and small-σ asymptotics ofV0,2

2 . We can setq = 0
from the outset, while the small-frequency limitσ → 0 has to be considered with care since
the tree-level noise vertexV0,2

0 (σ) = 2ReΓiσ(γw = 0) = 2γ|σ|α−1 sin(πα/2) [see Eq. (2.59)]
diverges in this limit forα < 1. At the end we shall see that no contribution toV0,2

2 proportional
to |σ|α−1 is actually generated. In what follows we only take the limitσ → 0 when it becomes
manifestly possible. In this formulation, divergences arise due to the singularbehavior ofC0 at
small distances and times,|~x| → 0 andt→ 0. In order to regularize the theory, we introduce a
short-distance cut-offℓ, below which the description in the continuum is no longer considered
to be realistic. For example, in lattice models, the cut-offℓ is naturally identified with the lattice
spacing. Analogously, a short-time cut-off is introduced in the convenientform ℓz, which is
motivated by the scaling behavior discussed above. By using, c.f., the scaling form Eq. (2.156)
of the Gaussian correlationC0 influenced by the colored noise (see App. B), the second-order
contribution to the regularized vertex function takes the form

V0,2
2 (~0, σ; ℓ) = −g

2AD(N + 2)

9

∫ ∞

ℓz
dt cos(σt)

∫ ∞

ℓ
dxx5−2Dg3C0

(γx2/tα),

(2.79)

whereAD = 2πD/2/ΓE(D/2) is the solid angle inD dimensions.
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The Wilsonian renormalization scheme. The Wilsonian renormalization scheme (see, e.g.,
[18]) amounts to a resummation of the perturbation series which is performed according to the
following steps:

(I) Effective vertex functions for the ‘slow’ fluctuations are determinedby performing an
integration (averaging) over ’fast’ fluctuations, within a spatial shell betweenℓ andbℓ and at a
temporal scale betweenℓz and(bℓ)z. As a result of this integration the effective vertex functions
— and therefore the coupling constants which characterize them — acquirea dependence on
the scaling parameterb > 1. To be more specific, consider the typical integral which arises in
loop calculations and which can be written in the generic form

I(ℓ) =
∫ ∞

ℓz
dt

∫ ∞

ℓ
dDx F(~x, t),

with some integrandF(~x, t). The contribution of the integration over the fast fluctuations is
then equivalent toI(ℓ)−I(bℓ), an expression which we shall use repeatedly below. In the limit
b→ 1 with b > 1 one hasI(ℓ)− I(bℓ) = − [∂I(ℓ)/∂ ln ℓ] ln b+O(ln2 b).

(II) The effective vertex functions calculated in step (I) depend on a new cut-offbℓ. In order
to recover the original cut-offℓ one rescales the coordinates and fields in the frequency and
momentum domain according to

~q 7→ b−1~q,
σ 7→ b−zσ,

φi 7→ bD/2+1+z−η/2φi,

φi 7→ bD/2+1+z−z0−η/2φi.

(2.80)

The resulting expression is multiplied byb−D−z which accounts for the rescaling of the inte-
gration measure in the Hamiltonian.

(III) In order to study the evolution of the coupling constants under the renormalization
procedure it is convenient to consider the caseb → 1+ which corresponds to an infinitely thin
integration shell. In this case the evolution equations for the coupling constants are coupled
differential equations that depend uponα and the anomalous dimensions introduced by the
rescaling in step (II). The anomalous dimensions are determined by requiring that all coupling
constants have a finite asymptotic value under the RG transformation forb→ ∞.

The flow equation ofz and the crossoverαc. Applying step (I) to the noise vertex function
V0,2
2 we derive Eq. (2.79) with respect toln ℓ and we multiply the result byln b. By defining

[see Eq. (2.175)]

u2E0,2(σ; γ) =
∂V0,2

2 (~0, σ; ℓ)

∂ ln ℓ
(2.81)

with
u = ADg/(2π)

D , (2.82)

we find that the effective noise vertexV0,2(~0, σ → 0; bℓ) for the slow fluctuations with short-
time and -distance cut-offsbℓ and(bℓ)z, respectively, is given by

V0,2(~0, σ → 0; bℓ) = −(Γiσ→0 + Γ∗
iσ→0)− u2E0,2(0; γ) ln b

+O(u2 ln2 b, u3). (2.83)

For details on the calculation ofE0,2(σ; γ) we refer to App. 2.4.3.
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Clearly, the form of the effective noise vertex has changed, as the termE0,2(0; γ) generated
by the non-Gaussian fluctuations has the form of a white-noise contribution,whereas the coeffi-
cientγ of the colored noise is not modified up to this order in perturbation theory. Asa result, it
is convenient to account for the contribution of a white-noise vertex fromthe outset, by replac-
ingΓiσ byΓiσ + γw. This implies that the Gaussian correlation functionC0 that determines the
loop correction still has a scaling form but with a scaling functiongC0 that is now a function of
two variables, see Eq. (2.163). The correctionE0,2 that is generated depends on bothγ andγw,
we denote it byE0,2(0; γ, γw) and we explicitly calculate it in Eq. (2.175).

The effective noise vertex depends on the cut-offbℓ. Following step (II) of the renormal-
ization procedure we rescale the effective noise vertex as specified in Eq. (2.80). The coupling
strengths of the colored and the white noiseγ andγw become running coupling constantsγ(b)
andγw(b) and in the limitb→ 1 they satisfy the set of coupled differential equations

∂γ

∂ ln b
=

[

2− αz0 −
α

2
(η − η)− η

]

γ +O(ǫ3) (2.84)

and
∂γw
∂ ln b

=

[

2− z0 −
η + η

2

]

γw +
z

2
u∗2E0,2(0; γ, γw) +O(ǫ3) , (2.85)

valid at the critical point.u∗ = O(ǫ) is the fixed point value of the coupling constant, i.e.,
the value at which the effective coupling constantu(b) — obtained by applying the procedure
outlined here to the4-point function — flows forb → ∞ andD < 4. ForD > 4, u∗ = 0
and the scenario within the Gaussian approximation presented in Sec. 2.3.2 is not altered by
the interaction. Accordingly we focus below on the caseD < 4. Two additional differential
equations can be written by considering how the coupling constantu in V1,3 and the coefficient
of the term∝ q2 in V1,1(~q, . . .) are modified by the non-Gaussian fluctuations. In particular,
the requirement of an effectiveb-independent coefficient ofq2 fixesη to its well-known static
value [19] (see Sec. 2.3.4 for further details).

In order to determine the critical exponents we demand that the amplitude of the noise vertex
in the effective Hamiltonian be constant as explained in step (III) of the renormalization pro-
cedure. Neglecting for a while the contribution of the non-Gaussian fluctuations to Eqs. (2.84)
and (2.85) (which amounts to settingu∗ and the anomalous dimensions to zero), one can eas-
ily solve them and recover the Gaussian picture which we anticipated in Sec. 2.3.2. Indeed,
γ(b) ∼ b2−αz0 whereasγw(b) ∼ b2−z0 asb → ∞, which impliesγ(b)/γw(b) ∼ b(1−α)z0 .
Independently of the value ofz0 > 0, this ratio tends to zero forα > 1. The associated
fixed point is characterized by a finiteγw(b → ∞) with a vanishingγ(b → ∞), i.e., the fixed
point Pw introduced in Sec. 2.3.2. In order forγw(b) to stay finite, it is necessary to have

z0 = z
(w)
0 = 2 in Eq. (2.85), as expected from our previous discussion. On the contrary, for

α < 1, γ(b)/γw(b) → ∞ for b → ∞ and the associated fixed point has a finiteγ(b → ∞) and
a vanishingγw(b→ ∞), corresponding to the fixed pointP of Sec. 2.3.2. The former condition

requiresz0 = z
(col)
0 = 2/α in Eq. (2.84), consistently with the discussion therein.

Including now the effects of non-Gaussian fluctuations, the colored-noise fixed pointP with
z0 = z

(col)
0 = 2/α andγ(b → ∞) 6= 0 is characterized by a value ofη such that the lhs of

Eq. (2.84) vanishes. This yields

η = η(col) ≡
(

1− 2

α

)

η +O(ǫ3) =

(

1− 2

α

)

N + 2

2(N + 8)2
ǫ2 +O(ǫ3) . (2.86)
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We replacedη by its static value given in [19, 18] since, as we shall show in Sec. 2.3.4, it is
α-independent. The valuez(col) of z at this fixed point is determined via Eq. (2.76)

z = z(col) =
2− η

α
+O(ǫ3) =

2

α

[

1− N + 2

4(N + 8)2
ǫ2
]

+O(ǫ3). (2.87)

The fixed pointP is stable in the(α,D)-plane (region C in Fig. 2.5) as long as the value of

γw(b) determined by Eq. (2.85) at the fixed-pointP with η = η(col) andz0 = z
(col)
0 = 2/α

stays finite forb → ∞. A crossover towards the fixed-pointPw in the (α,D)-plane (region
W in Fig. 2.5) controlled by the white noise occurs as soon asγw(b → ∞) → ∞. In this
limit, E0,2(0; γ, γw → ∞) ≃ γwE0,2

w independently ofγ [as long asγ(b) remains finite, see
Eq. (2.179) for details] where the constantE0,2

w is given in Eq. (2.180) and is such that

u∗2E0,2
w =

N + 2

(N + 8)2
3 ln

4

3
ǫ2 +O(ǫ3) . (2.88)

Thus, the equation which determines the evolution ofγw at the fixed pointP becomes

∂γw
∂ ln b

=

[

2− z
(col)
0 − η(col) + η

2
+
z(col)

2
u∗2E0,2

w

]

γw +O(u∗3) , (2.89)

and the crossover occurs as soon as the the quantity in brackets changes sign. The expression of
the crossover line is readily determined by taking into account the values ofz

(col)
0 , η(col), z(col),

andE0,2
w reported in Eqs. (2.86), (2.87), and (2.88):

αc = 1− 3

2
ln

4

3

N + 2

(N + 8)2
ǫ2 +O(ǫ3) . (2.90)

Forα > αc (region W in Fig. 2.5),γw(b→ ∞) → ∞ and the pointP is no longer a fixed point
of the rescaled effective action, as the white-noise contribution becomes predominant. In order
for it to become constant and therefore to determine the fixed pointPw, η in Eq. (2.85) should
now take the valueη(w) such that∂γw/∂ ln b = 0, with z0 = z

(w)
0 = 2. Assuming that the

coefficientγ(b) of the colored noise vanishes asymptotically forb → ∞, the lhs of Eq. (2.85)
becomes−(η(w) + η)/2 + (z/2)u∗2E0,2

w , where we used the fact thatE0,2(0; γ = 0, γw) =
γwE0,2

w . The condition that the rhs of the same equation vanishes implies

η = η(w) = −η + 2u∗2E0,2
w +O(ǫ3) =

N + 2

(N + 8)2

[

6 ln
4

3
− 1

2

]

ǫ2 +O(ǫ3) (2.91)

and from Eq. (2.76),

z = z(w) = 2 +
N + 2

(N + 8)2

[

3 ln
4

3
− 1

2

]

ǫ2 +O(ǫ3) (2.92)

in agreement with [75, 19]. In order to verify the consistency of the assumptionγ(b) → 0 for
b → ∞ under which Eq. (2.91) has been derived, one can specialize Eq. (2.84) to the white-
noise fixed pointPw, by usingη(w), z(w)

0 = 2, andz(w) [see Eq. (2.92)] as the values ofη, z0,
andz. Accordingly, the term in parenthesis in the rhs can be written as−2(α − αc) + O(ǫ3)
and thereforeγ(b) ∼ b−2(α−αc) indeed vanishes forα > αc asb → ∞. This also proves that
the white-noise fixed pointPw is stable against the perturbation of the colored noise as long as
α > αc, a statement which complements the one presented above about the stability ofP .
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Summarizing, Eq. (2.90) determines the line in the(α,D)-plane which separates region
W from region C: in the former, the white noise dominates andz = z(w) (in agreement with
[75, 19]), whereas in the latter the colored noise dominates andz = z(col) is given by Eq. (2.87).
Figure 2.5 illustrates this scenario forN = 1, 4,∞.

Region C

Region W

1 2 3 4
0.85

0.9

0.95

1

D

Α

Figure 2.5: Boundary between the regions W and C of the (α,D)-plane characterized, respectively, by
white and colored noise. The boundary curveα = αc(D,N) as a function of the spatial dimensionality
D is reported here forN = 1 (solid line, Ising universality class),4 (dashed), and∞ (dotted) where
theO((4 − D)3)-correction in the corresponding perturbative expression(2.90) forD < 4 has been
neglected. The vertical dashed line indicates the lower critical dimensionality of the model forN > 1.
The coefficient of the termO((4−D)2) in Eq. (2.90) takes its maximum value forN = 4 (dashed curve)
and then it decreases monotonically as a function ofN , vanishing forN → ∞. ForD > 4, αc takes the
D-independent Gaussian valueαc,0 = 1 (dotted line). Clearly, the dependence of the boundary curve on
the dimensionalityD is quantitatively rather weak.

Renormalization of the self-energy and FDT.

Figure 2.6: Second-order contribution to the self-energy.

The fluctuation-dissipation theorem (FDT) expressed in Eq. (2.40) is a consequence of a
symmetry of the action in equilibrium [82, 92] and it has to be preserved under renormalization.
Therefore, the noise vertex and the memory kernel have to be related by the FDT even beyond
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the Gaussian approximation, that we analyzed in Sec. 2.3.2. Here we explicitlyshow that this
relation is still valid when non-Gaussian corrections up toO(ǫ2) (or, equivalently,O(g2)) are
accounted for. The first correction to the memory kernel comes from the second-order self-
energy contribution

V1,1
2 (~q, σ) = −g

2(N + 2)

6

∫ ∞

0
dt

∫

dDx ei~q·~x−iσtC2
0 (~x, t)R0(~x, t) (2.93)

represented in Fig. 2.6. Note thatR0 is causal and restricts the time integral to run over positive
values only. The expansion of this expression as a power series inσ and~q allows one to identify
the terms which contribute to the renormalization of the different parameters ofthe Gaussian
vertexV1,1

0 (~q, σ) = iσΓiσ+q
2+r. The terms which are independent of bothσ and~q contribute

to the renormalization of the parameterr (which is also modified by anO(g) term not discussed
here), the terms proportional toσ0q2 contribute to the renormalization of the fields and those
proportional toiσ1q0 to the renormalization of the memory kernelΓ. First of all we observe
that the FDT given in Eq. (2.40) allows us to expressR0 in Eq. (2.93) as−∂tC0. An integration
by parts yields

V1,1
2 (~q, σ) = −g

2(N + 2)

18

∫

dDx ei~q·~x
{

C3
0 (~x, 0)− iσ

∫ ∞

0
dt e−iσtC3

0 (~x, t)

}

.

(2.94)

Hence,

ImV1,1
2 (~q, σ) = σ

g2(N + 2)

18
Re

∫

dDx ei~q·~x
∫ ∞

0
dt e−iσtC3

0 (~x, t)

= −σ
2
V0,2
2 (~q, σ) , (2.95)

where the last equality follows from a comparison with Eq. (2.78) and showsthat the FDT in
the frequency domain [see Eq. (2.62)] is satisfied by the correctionsO(g2). Note that the vertex
V1,1 receives also a correctionV1,1

1 of O(g) given by a tadpole diagram which, however, is a real
constant and does not contribute to the imaginary part. We conclude that upto and including
the second order in the coupling constant2 ImV1,1(~0, σ) = −σV0,2(~0, σ). (This proof can be
readily extended to the corresponding regularized vertex functions, characterized by short- time
and distance cut-offs.)

Renormalization of the self-energy: the anomalous exponentη.

In the same spirit as before we can deduce the first correction to the static exponentη. It is
instructive to see why the dependence uponα does not affect the final result, even though the
regularized expression of Eq. (2.93) does viaC0 andR0. In order to single out the contribution
of V1,1

2 to the coefficient ofq2, one expands Eq. (2.93) — suitably regularized as discussed
above — up to second order in~q, finding

V1,1
2 (~q, σ = 0; ℓ) = 1

2q
2g2N+2

6
AD

D

∫∞
ℓz dt

∫∞
ℓ dx xD+1 C2

0 (~x, t)R0(~x, t) + . . . , (2.96)

where the dots indicate all the terms which do not contribute to the field renormalization, i.e.,
which are not proportional toσ0q2. In Eq. (2.96) we used the fact that, for a generic functionf ,
∫

dDxxixj f(|~x|) = (δij/D)
∫

dDx |~x|2f(|~x|), which is valid also for the regularized integral.
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As in the case of Eq. (2.94) one can take advantage of the FDT, Eq. (2.40), to express the
integrand in Eq. (2.96) as a total derivative, which can be integrated to yield

V1,1
2 (~q, 0; ℓ) = q2g2

AD(N + 2)

36D

∫ ∞

ℓ
dx xD+1 C3

0 (~x, ℓ
z) + . . . (2.97)

We note here that even though the (full) dynamic correlation functionC (and therefore its
Gaussian approximationC0) depends on the value ofα, the static correlation functionC(~x, t =
0) does not. This is explicitly shown forC0 in Eq. (2.155). While the limitℓ → 0 of the rhs
of Eq. (2.97) cannot be explicitly taken due to the short-distance singularityof the integrand,
such a limit can be taken for the correlation function, i.e.,C0(~x, t = ℓz) ≃ C0(~x, t = 0) and
therefore the expression ofV1,1

2 (~q, 0; ℓ → 0) becomes — as expected — independent ofα at
the leading relevant order inℓ. Applying the same renormalization procedure as in Sec. 2.3.4,
Eq. (2.97) can be used to calculate the effective vertexV1,1

2 (~q, 0; bℓ) after having integrated out
the fast fluctuations. Similarly to Eq. (2.81) one defines

q2u2E1,1 + . . . = −∂V
1,1
2 (~q, 0; ℓ)

∂ ln ℓ
, (2.98)

For b→ 1, the resulting effective vertex is

V1,1
2 (~q, 0; bℓ) = q2 + q2u2E1,1 ln b+O(u2 ln2 b, u3) + . . . (2.99)

In order to recover the original cut-offℓ we rescale the fields and coupling constants according
to (2.80) and we takeb → 1. The part ofV1,1

2 (~q, 0; ℓ) that is proportional toσ0q2 satisfies the
evolution equation

∂V1,1
2

∂ ln b
= −q2

[

η − u∗2E1,1
]

+O(u2 ln b, u3) + . . . . (2.100)

By demanding that the amplitude ofV1,1
2 be constant and by using the numerical value ofE1,1

calculated in Eq. (2.182) we find

η = u∗2E1,1 =
N + 2

2(N + 8)2
ǫ2 +O(ǫ3), (2.101)

i.e., η has the sameα-independent value as in the static theory confirming our expectations
alluded to at the beginning of Sec. 2.3.1.

2.3.5 Non-equilibrium dynamics

Preliminary remarks

In this Section we investigate the non-equilibrium dynamics assuming that the model is prepared
in some initial condition at timet = 0 and that it is let relax subsequently at its critical point.
This problem has been studied in detail in the white-noise case [82, 85]. The analysis reveals
the emergence of an interesting scaling behavior of two-time quantities, usuallyreferred to
asaging (see, in this context, [86, 91, 15]). More precisely, the relaxation is studied via the
field-theoretical actionS in Eqs. (2.36) and (2.37) withT = 0, supplemented by a suitable
distributionPIC for the initial condition at timet = T = 0. In particular, a high-temperature
disordered state is modeled by a Gaussian distribution with zero mean:

lnPIC = −
∫

dDx
τ0
2
φ2(~x, t = 0) (2.102)
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The parameterτ0 sets the inverse width of the initial distribution. Within the Gaussian approxi-
mation, the fieldφ has a scaling dimensiondφ,0 given by Eq. (2.65) in momentum and frequency
space, i.e., a dimensiondφ,0 − z0 −D in the space and time domain. Using this dimension for
the initial fieldφ(~x, t = 0) we find thatτ0 → b2τ0 under rescaling. Consequently, the width
of the initial distribution shrinks to zero asb → ∞, leading to a zero effective value of the
initial order parameterφ(~x, t = 0) = 0 and, therefore, to a correlation function with Dirichlet
boundary conditions att = 0. In App. 2.4.4 [see Eqs. (2.187) and (2.164)] we show that the
Laplace transforms of the Gaussian propagators are:

R0(~p;λ, κ) =
1

(λ+ κ)(λΓλ + p2 + r)
, (2.103)

C0(~p;λ, κ) =
Γλ + Γκ

(λ+ κ)(λΓλ + p2 + r)(κΓκ + p2 + r)
, (2.104)

where the Laplace transformed noise isΓλ = γλα−1+ γw with λ ∈ R+. [In order to transform
Eq. (2.34) forα > 1 one should introduce a short-time cut-off. However, as we pointed out
after Eq. (2.59), this modification is not necessary as long as one is interested in the leading
long-time, near critical dynamic behavior of the system. Accordingly, we shall use this form
for Γλ irrespective of the value ofα.] As in the equilibrium case, the propagators have a simple
analytic form in the time domain only forα = 1 or γw = 0. It is easy to show that the response
propagator is the same in and out of equilibrium and, therefore, that it is time-translationally
invariant.

The correlation functionC0 can always be written as the sum of the Gaussian equilibrium
correlationC(e)

0 and the remaining non-equilibrium contribution, which we denote byC
(ne)
0

and which will play an important role in fixing the genuinely non-equilibrium properties of the
relaxation, e.g., the non-equilibrium exponentθ and the effective temperature. The Laplace
transformC(e)

0 (~p, λ) of the equilibrium correlation functionC(e)
0 (~p, t) can be obtained from

Eq. (2.172):

C
(e)
0 (~p, λ) =

1

p2 + r

Γλ

λΓλ + p2 + r
. (2.105)

The full non-equilibrium correlator (2.104) can be expressed as

C0(~p, λ, κ) =
C

(e)
0 (~p, λ) + C

(e)
0 (~p, κ)

λ+ κ
− (p2 + r)C

(e)
0 (~p, λ)C

(e)
0 (~p, κ) , (2.106)

which displays the fact thatC0 is the sum of an equilibrium time-translationally invariant term
and a non-stationary term. Indeed, the Laplace transformL[F ](λ, κ) with respect to botht and
t′ of any (translationally invariant) functionF (|t−t′|) is given byL[F ](λ, κ) = (Fλ+Fκ)/(λ+
κ), which is exactly the form of the first term in Eq. (2.106) [48]. Accordingly, we can identify

the non-equilibrium partC(ne)
0 of C0 asC(ne)

0 (~p, λ, κ) ≡ −(p2 + r)C
(e)
0 (~p, λ)C

(e)
0 (~p, κ) which

translates, by virtue of Eq. (2.172), into the non-stationary expression (t, t′ > 0)

C
(ne)
0 (~p; t, t′) = − 1

p2 + r
Eα(−(p2 + r)tα/γ)Eα(−(p2 + r)t′α/γ) , (2.107)

where we wrote the equilibrium Gaussian correlation function in terms of the Mittag-Leffler
function, anticipated in Eq. (2.64) and discussed in App. 2.4.2.
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General non-equilibrium renormalization group analysis

The addition of the initial condition to the action modifies the scaling of the fields at the bound-
ary t = 0 compared to the one in the ‘time bulk’t > 0 [82]. In addition, to the bulk renormal-
ization a new initial time renormalization is required, which gives rise to contributions ‘located’
at the time surface (that is the hyperplane determined by the conditiont = 0). These can be
absorbed by introducing a new anomalous dimension of the initial fieldφ̄0(~p) ≡ φ(~p, 0) (see
[97] for an application to surface critical phenomena). The general scaling of the initial fields
in the time and momentum domain reads [cf. Eqs. (2.74) and (2.75)]

φ(b−1~p, t = 0) 7→ bD/2+1−η/2 φ(~p, 0),

φ(b−1~p, t = 0) 7→ bD/2+1−z0−η/2−ηin/2 φ(~p, 0),
(2.108)

whereηin is a new exponent, with a Gaussian valueηin,0 = 0. Note that the anomalous dimen-
sion of the initial response fieldφ(~p, 0) is allowed to differ byηin from its bulk value. In [82, 86]
one can find a careful analysis for the white-noise case where it is explained why only the initial
response field has to be renormalized. Here, we make the same assumption and we check its
validity a posteriori. ηin is related to the so-called initial-slip exponentθ [introduced at the end
of Sec. 3.2, see (2.41) and (2.42)] by [82]

θ = −ηin/(2z). (2.109)

The analysis in [82, 86] has to be slightly modified to deal with colored noise. Our starting
point is the general leading scaling behavior of the critical correlation functionsGn,n,n0 of n
bulk fieldsφ, n bulk response fieldsφ andn0 initial response fieldsφ0, evaluated at the set of
points{~p, t} in momentum and time:

Gn,n,n0({~p, t}) ≃ b−δ(n,n,n0)Gn,n,n0({b−1~p, bzt}), (2.110)

whereδ(n, n, n0) = −D + n(D/2 + 1 − η/2) + n(D/2 + 1 − z0 − η/2) + n0(D/2 + 1 −
z0 − η/2 − ηin/2). [In writing Eq. (2.110) and the analogous relations presented below, we
always understand that the correlation functions on the lhs and rhs are characterized by the
different length cut-offsbℓ andℓ, respectively.] This scaling behavior is a consequence of the
scaling dimensions of the fieldsφ, φ andφ0 as functions of time and momentum [compare to
Eqs. (2.74), (2.75) and (2.108)] and the dimension of theδ-function ensuring the total momen-
tum conservation. Note that all correlation functions with an initial fieldφ0 ≡ φ(~p, 0) vanish
[see the discussion at the end of Sec. 2.3.5]. Specifically, the two point correlation and response
functions (G2,0,0 andG1,1,0, respectively) scale as

C(~p; t, t′) ≃ bη−2 C(~p/b; bzt, bzt′), (2.111)

R(~p; t, t′) ≃ bz0−2+η/2+η/2 R(~p/b; bzt, bzt′). (2.112)

By choosingb = (t− t′)−1/z these scaling forms become

C(~p; t, t′) ≃ (t− t′)(2−η)/z F̃C((t− t′)1/z~p, t′/t),
R(~p; t, t′) ≃ (t− t′)(2−z−η)/z F̃R((t− t′)1/z~p, t′/t).

(2.113)

In general the scaling functions̃FC andF̃R are not expected to have a finite, non-vanishing value
for t′ → 0. In order to deduce their behavior for smallt′ we employ a short-distance expansion
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[19] of the fieldsφ(~p, t′) andφ(~p, t′) aroundt′ = 0. However, these are not independent.
Indeed, the full correlation and linear response functions verify the equations [82]

C(~p; t, t′) =
∫ t

0
ds

∫ s

0
ds′ R0(~p; t, s)Ṽ1,1(~p, s, s′)C0(~p; t

′, s′) (2.114)

+

∫ t′

0
ds′

∫ s′

0
ds C0(~p; t, s)Ṽ1,1(~p, s′, s)R0(~p; t

′, s′) (2.115)

+

∫ t

0
ds

∫ t′

0
ds′ R0(~p; t, s)Ṽ0,2(~p, s, s′)R0(~p; t

′, s′) (2.116)

and

R(~p; t, t′) =
∫ t

t′
ds

∫ s

t′
ds′ R0(~p; t, s)Ṽ1,1(~p, s, s′)R0(~p; s

′, t′), (2.117)

whereṼn,n are the (not necessarily one particle irreducible in contrast to the ones introduced
in Sec. 2.3.4) vertex functions withn amputated external field andn amputated external re-
sponse field legs, respectively. In writing these expressions we accounted for the causality of
Ṽ1,1(~p, s, s′) ∝ Θ(s − s′). After taking the derivative of Eq. (2.114) with respect tot′ only
the first term in the rhs survives in the limitt′ → 0 [note thatR0(~p; s, s) = 0 [92]]. By com-
paring the resulting expression with the rhs of Eq. (2.117) one notices thatthe equations differ
only by the last factor in their integrands,∂t′C0(~p; t

′, s′) andR0(~p; s
′, t′), respectively. We

deduce that if a relation between the dimensions of the time-derivative of the initial field and
the initial response field exists within the Gaussian approximation, it should be preserved when
non-Gaussian fluctuations are accounted for. Let us then examine the propagators. We focus on
region C where they satisfy the equation,

∂t′C0(~p; t, t
′ → 0) ≃ t′α−1

∫ t

0
dsΓ(t− s)R0(~p; s, t

′ → 0) (2.118)

[proven in App. 2.4.4, see Eq. (2.190)]. In the earlyt′ limit we formally expand the fields
according to

φ(~p, t′ → 0) ∼ ϕ(t′)φ̇0(~p) and φ(~p, t′ → 0) ∼ ϕ(t′)φ0(~p). (2.119)

φ is proportional toφ̇0(p) andφ is proportional toφ0(p) since the former vanishes while the
latter is allowed to be finite fort′ → 0. We see from Eq. (2.118) that, under the rescaling
t → bzt, s → bzs andp → p/b (leavingt′ unchanged), the scaling dimensionsdφ̇0

anddφ0
of

φ̇0 andφ0, respectively, verify
dφ̇0

= z(1− α) + dφ0
. (2.120)

For α = 1 this reduces to the relation found in [82]. The expansion ofφ in Eq. (2.119) can
be used to calculate the correlation functionG1,1,0(~p; t, t′ → 0) ∼ ϕ(t′)G1,0,1(~p; t) and by
matching the scaling dimensions of the lhs and rhs with the help of Eq. (2.110) weconclude
thatϕ(t′) ∼ t′−θ whereθ is given by Eq. (2.109). Besides, the rescaling oft′ (keepingt and
s unchanged) impliesϕ(t′) ∼ t′α−θ if the scaling dimensions of the lhs and rhs in Eq. (2.118)
are to match. Hence, the small-t′ limit of the response function is

R(~p; t, t′ → 0) ∼ ϕ(t′)〈φ(−~p, t)φ0(~p)〉 ∼ t′−θG1,0,1(~p, t), (2.121)
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where we introduced a short-hand notation for the arguments ofG1,0,1 in which we only write
the non-vanishing timet. The scaling properties ofG1,0,1(~p, t) are given by Eq. (2.110):

G1,0,1(~p, t) ≃ t−(η/2+η/2+ηin/2+z0−2)/z G1,0,1(t1/z~p, 1)

= t(2−η−z)/z+θ G1,0,1(t1/z~p, 1) (2.122)

where we used the relation between anomalous and dynamic exponents, Eq.(2.76), and the
relation betweenθ andηin, Eq. (2.109). Consequently, taking Eqs. (2.113), (2.120) and (2.122)
into account, we conclude that

R(~p; t, t′ → 0) ≃ t(2−z−η)/z

(

t

t′

)θ

FR(t
1/z~p, 0) . (2.123)

A similar analysis of the scaling behavior of the correlation, taking into account Eq. (2.120),
yields

C(~p; t, t′ → 0) ≃ t(2−η)/z

(

t

t′

)θ−α

FC(t
1/z~p, 0) . (2.124)

These results are used to capture the singular behavior of the scaling functions in Eq. (2.113)
by writing:

R(~p; t, t′) ≃ (t− t′)(2−z−η)/z

(

t

t′

)θ

FR((t− t′)1/z~p, t′/t), (2.125)

C(~p; t, t′) ≃ (t− t′)(2−η)/z

(

t

t′

)θ−α̂

FC((t− t′)1/z~p, t′/t), (2.126)

with

α̂ =

{

1 for α ≥ αc(D,N) ,

α for α < αc(D,N) ,
(2.127)

which encompass the white noise resultα̂ = 1 [82] for α ≥ αc. The scaling functionsFC

andFR are regular fort′ → 0 and depend onα. Moreover, in the RG sense they are universal
functions up to an overall amplitude and the normalization of their first argument.

The emergence of̂α 6= 1 for colored noise can be checked within the Gaussian approxima-
tion by looking at the initial-slip behavior of the propagatorsR0 andC0 with α < 1. First of
all, note thatθ takes the valueθ0 = 0 within the Gaussian theory, as one can infer by comparing
the scaling form (2.125) with the expression for the non-equilibrium responseR0 at criticality,
which coincides with the equilibrium one in Eq. (2.63) and is invariant under timetranslations.
Using this valueθ0 of θ one has lim

κ→∞
κC0(~p;λ, κ) ∼ κ−α and lim

κ→∞
κR0(~p;λ, κ) ∼ κ0 from

Eqs. (2.103) and (2.104), respectively.

The initial-slip exponent θ. Out of equilibrium the first correction to the self energy leads to
a modification of the scaling of the initial response field. The response function up to first order
in the perturbative expansion reads, for zero external momentum,

R(~0; t, t′; ℓ) = R0(~0; t, t
′) +

∫ t

t′
ds R0(~0; t, s)Bℓ−1(s)R0(~0; s, t

′). (2.128)
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Bℓ−1(s) stands for the ‘tadpole’ diagram represented in Fig. 2.7, which can be calculated by us-
ing standard Feynman rules in the time domain [73, 74, 79], whereasℓ−1 is the large-momentum
cut-off introduced in order to regularize the otherwise divergent integral definingBℓ−1(s):

Bℓ−1(s) = −g(N + 2)

6

∫

|~p|<ℓ−1

dDp

(2π)D
C0(~p; s, s). (2.129)

The renormalization of the initial response field is due to the non-equilibrium part C(ne)
0 of C0.

Figure 2.7: First order contribution to the non-equilibrium self-energy.

Indeed, the equilibrium partC(e)
0 is characterized by time-translation invariance and therefore

it contributes with a time-independent function of~p to C0(~p; s, s) in Eq. (2.129). In turn, such

a function results in a time-independent contributionB(e)
ℓ−1 to Bℓ−1 , which can be thought of

as due to a shiftr 7→ r − B
(e)
ℓ−1 of the massr in the expression of the response functionsR0

appearing in the rhs of Eq. (2.128), i.e., as a mass renormalization. [We recall thatR0(~p; t, t
′)

actually depends on the two times viat − t′.] One can check that this term yields the correct
first order correction to the critical exponentν which is the same as in the static theory.

In view of the renormalization procedure outlined in Sec. 2.3.4 we need to calculate

ℓ−1∂ℓ−1Bℓ−1(t) = −u(N + 2)

6
ℓ−4 C

(ne)
0 (|~p| = ℓ−1; t, t) (2.130)

in the limit ℓ→ 0, for r = 0 andD = 4. By using the asymptotic expansion of the generalized
Mittag-Leffler functions (2.170) and their definition, (2.169), one finds

Eα(x) = Eα,1(x) =

{

(−x)−1/ΓE(1− α) for x→ −∞
Eα(0) = 1 for |x| ≪ 1

(2.131)

and therefore, using Eq. (2.107),

ℓ−4C
(ne)
0 (ℓ−1; t, t) = −ℓ−2E2

α(−tα/(γℓ2)) =
{

O(ℓ2/t2α) for ℓ−2tα/γ ≫ 1 ,

O(ℓ−2) for ℓ−2tα/γ ≪ 1 .
(2.132)

Accordingly, ℓ−1∂ℓ−1Bℓ−1(t) → 0 in the limit ℓ → 0 for every fixedt > 0. The physical
interpretation of this fact is that only the initial field is renormalized by Eq. (2.128). Indeed the
rhs of Eq. (2.132) for finiteℓ provides an approximation of the delta distribution restricted to
z ∈ R

+, usually denoted byδ+(z):

(γℓ2)−1E2
α(−z/(γℓ2)) −→

d(α)

2
δ+(z) for ℓ→ 0, (2.133)

where the normalization constantd(α) is given by

d(α) = 2

∫ ∞

0
dz E2

α(−z), (2.134)
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and the additional factor1/2 on the rhs of Eq. (2.133) has been introduced for later con-
venience in order to haved(1) = 1. Taking advantage of the closed-form expressions of
the Mittag-Leffler function forα = 1, 1/2, and0, i.e., E1(−z) = exp(−z), E1/2(−z) =

(2/
√
π)

∫∞
z dt ez

2−t2 , andE0(−z) = 1/(1 + z) [98], respectively, it is possible to calculate the
corresponding values of theα-dependent constantd(α). One findsd(1) = 1, d(0) = 2 and,
after some algebra,d(1/2) =

√

2/π ln(3 + 2
√
2) = 1.406 . . .. Hence,

∂Bℓ−1(t)

∂ ln ℓ−1
−→ uγ(N + 2)d(α)

12
δ+(t

α) for ℓ→ 0. (2.135)

Using this expression and the one of the zero-momentum response functionR0(~0; t, s) = (t−
s)α−1/[γΓE(α)] at criticality which follows from Eq. (2.168), the derivative of the tadpole
contribution to the rhs of Eq. (2.128) can be written as

∂

∂ ln ℓ−1

∫ t

s
ds R0(~0; t, s)Bℓ−1(s)R0(~0; s, t

′) = δt′,0
u(N + 2)

12

d(α)

αΓE(α)
R0(~0; t, t

′) (2.136)

whereδt′,0 = 1 for t′ = 0 and0 otherwise, illustrating the fact that only the initial field is
renormalized. In deriving this last equation we used the fact thatδ+(t

α) = δ+(t)/(αt
α−1).

Altogether, the effective response function with cut-offbℓ reads

R(~0; t, t′; bℓ) = R0(~0; t, t
′)

[

1 + δt′,0
u(N + 2)d(α)

12αΓE(α)
ln b

]

. (2.137)

In order to recover the original cut-offℓ we make use of the scaling relation (2.110) witht′ = 0.
By taking into account thatη = η = O(ǫ2) we have

R(~0; t, 0; bℓ) ≃ b−2+z0+ηin/2R(~0; bzt, 0; ℓ) (2.138)

= R0(~0; t, 0) b
ηin/2

[

1 +
u(N + 2)d(α)

12αΓE(α)
ln b

]

(2.139)

= R0(~0; t, 0)

[

1 +
ηin
2

ln b+
u(N + 2)d(α)

12αΓE(α)
ln b

]

. (2.140)

By requiring that the amplitude of the response function be constant at the fixed pointu∗ we
obtain

ηin = − (N + 2)d(α)

(N + 8)αΓE(α)
ǫ+O(ǫ2) (2.141)

whence we find theα-dependent initial slip exponent from Eq. (2.109)

θ = −α
4
ηin =

(N + 2)d(α)

4(N + 8)ΓE(α)
ǫ+O(ǫ2). (2.142)

In the white noise caseα = 1 we obtainθ = (N + 2)ǫ/[4(N + 8)] +O(ǫ2) in agreement with
the first order result reported in [82]. The dependence ofθ onα is shown in Fig. 2.8.θ increases
monotonically fromθ = 0 atα = 0 to θ = θ(1) atα = 1 which is the cross-over value up to
O(ǫ).
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Figure 2.8: Ratioθ/θα=1 between the initial-slip exponentθ in Eq. (2.142) and its white-noise value
θα=1, as a function ofα, within the relevant range0 < α ≤ 1 at the first order in theǫ-expansion. The
dashed horizontal line indicates the valued(1/2)/

√
π = (

√
2/π) ln(3+2

√
2) = 0.793 . . . corresponding

to α = 1/2 (vertical dashed line). The dash-dotted line points out thelinear behaviorθ/θα=1 ≃ 2α
expected forα→ 0.

Fluctuation-dissipation ratio and effective temperature. A system which equilibrates after
a certain finite relaxation time satisfies the FDT. More generally, one defines the fluctuation-
dissipation ratio(FDR) by

X(~p; t, t′) =
β−1R(~p; t, t′)
∂t′C(~p; t, t′)

, (2.143)

whereβ−1 is the temperature of the thermal bath (set to1 in the previous analysis). In glassy
and weakly driven macroscopic systems with slow dynamics — small entropy production limit
— this ratio approaches a constant on asymptotic two-time regimes in which, moreover, it is
independent of the observable used to define the correlation and associated linear response and
admits the interpretation of an effective temperature [99, 100]. For systemswith critical points,
the asymptotic value

X∞ = lim
t′→∞

lim
t→∞

X(~0, t, t′), (2.144)

has been suggested to behave as a universal property [101] and, moreover, as aneffective tem-
perature,

β∞ = βX∞. (2.145)

(Note, however, that beyond the Gaussian approximation such a temperature depends upon
the observable used to define it [102].) In equilibrium one hasX∞ = 1 (which is just a
reformulation of the FDT) andβ∞ = β. Instead,X∞ 6= 1 is a signal of an asymptotic non-
equilibrium dynamics and therefore we shall focus on this quantity for the dynamics we are
presently interested in.

Within the Gaussian approximation discussed in Sec. 2.3.2 the fluctuation-dissipation ratio
X can be easily calculated from the expressions in Eqs. (2.63) and (2.64) [see also Eqs. (2.168)
and (2.172)] for the response and correlation function, respectively, in terms of Mittag-Leffler
functions:
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Figure 2.9: Fluctuation-dissipation ratio for the global order parameter (corresponding to~p = 0) at crit-
icality r = 0 within the Gaussian approximation, as a function of the ratio 0 ≤ t′/t ≤ 1 for various
values ofα. The straight horizontal and diagonal dashed lines correspond toα = 1 andα = 0, respec-
tively. The solid curves, instead, correspond toα = 0.25, 0.5, 0.75, and 0.9 upon moving away from the
diagonal line.

X−1(t, t′) = 1 +

(

t

t′
− 1

)1−α Eα(−Atα/γ)Eα,α(−At′α/γ)
Eα,α(−A(t− t′)α/γ)

, (2.146)

where we assumedt > t′ andA ≡ p2+r. ForA 6= 0 (e.g., far from the critical pointr = 0 or at
criticality with ~p 6= 0) and long and well-separated timest, t′, t−t′ ≫ (γ/A)1/α, one can easily
see from Eq. (2.170) thatX−1 → 1, confirming the expectation that the system equilibrates at
long times, independently of the value ofα > 0. On the other hand, for the fluctuation of the
homogeneous mode~p = 0 at criticality one hasA = 0 and the FDR takes the simple form
(originally derived in Ref. [48] for an anomalously diffusing particle)

X−1
~p=0,crit(t, t

′) = 1 +

(

t

t′
− 1

)1−α

, (2.147)

which is a universal scaling function of the dimensionless scaling variablet′/t, reported in
Fig. 2.9 for various values ofα. In contrast to the white noise caseα = 1, in the presence
of colored noise0 < α < 1, X−1

~p=0,crit(t, t
′) does actually depend ont′/t and it interpolates

continuously between the quasi-equilibrium regimet′ ≃ t, within whichX~p=0,crit ≃ 1, and
the non-equilibrium regime of well separated timest′ ≪ t, for whichX~p=0,crit ≃ 0 as it is
generically observed in the case of coarsening dynamics [93, 94, 103].

Beyond the Gaussian approximation, we can deduce an expression of thetwo-time depen-
dent FDR and its limiting values from the scaling forms in Eqs. (2.125) and (2.126). First of all
we note that fort ≫ t′ and~p = 0 one has∂t′C ≃ t(2−η)/z+θ−α̂(α̂ − θ)t′α̂−θ−1FC(~0, 0) and
R ≃ t(2−η−z)/z(t/t′)θFR(~0, 0). We thus obtain

X∞ =
FR(~0, 0)

(α̂− θ)FC(~0, 0)
lim
t′→∞

lim
t→∞

(

t

t′

)α̂−1

. (2.148)

In the caseα̂ = 1 of dominant white noise this expression renders the well-known result
X∞ = FR(~0, 0)/[(1− θ)FC(~0, 0)]|α=1 ≡ X∞

w [101, 86], i.e.,X∞
w = 1/2 within the Gaussian
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approximation [104, 105, 106]. The contribution of non-Gaussian fluctuations forD < 4 and
up to the second order in theǫ-expansion have been calculated in [91], in rather good agreement
with Monte Carlo simulation (see Ref. [86] for a summary). Instead, if the colored noise dom-
inatesα̂ = α < 1 and therefore the long-time limitX∞ of the FDR in Eq. (2.148) vanishes,
formally corresponding to an infinite effective temperature as observed incoarsening processes.
Note that this result holds at all orders in perturbation theory. Therefore,

X∞ =

{

X∞
w for α > αc(D,N) ,

0 for α < αc(D,N) ,
(2.149)

where both values do not depend on the actual value ofα and thereforeX∞ exhibits a discon-
tinuity as a function ofα upon crossing the lineα = αc(D,N). Within the Gaussian approx-
imation one can easily check the general result (2.149) forX∞, on the basis of Eqs. (2.103)
and (2.104). Indeed the behavior of the correlation and response functions can be determined
by taking limλ→0 λC0(~0;λ, κ) and limλ→0 λR0(~0;λ, κ), respectively, for the propagators at
zero momentum and at criticality. It is then straightforward to obtainX∞

0 = 1/2 within region
W andX∞

0 = limλ→0 Γκ/Γλ = 0 within region C, which confirms our general results. Ap-
parently, this result forX∞

0 contradicts the corresponding oneX∞
0 = 1 for a freely diffusing

particle in a super-Ohmic bath (corresponding toα > 1) found in [48], which our model reduces
to within the Gaussian approximation. However, within the field-theoretical approach discussed
here, it turns out that a super-Ohmic bath, responsible for a noiseΓ with α > 1 in Eq. (2.34),
is eventually controlled by the white-noise vertex and it is therefore unstablewith respect to
the effects of the interaction, which effectively generates such a vertexeven though it was not
present in the original coupling to the bath. Therefore, the white-noise resultX∞

0 = 1/2 does
not only apply to the cross-over lineαc(D,N) but it is valid within the whole region W. On
the same footing, the results discussed here suggest that, at least in higher spatial dimensions,
adding interactions to a system which displays superdiffusion (corresponding toz < 2) results
quite generically in a sub-diffusive behavior (z > 2) as expected in the case of a diffusing
particle (Gaussian approximation) with interactions.

2.4 Appendix A

2.4.1 Fourier and Laplace conventions

Within the present study we define the Fourier transform and its inverse via

F̂ (ω) =

∫ ∞

−∞
dt e−iωt F (t) , (2.150)

and

F (t) =

∫ ∞

−∞

dω

2π
eiωt F̂ (ω) . (2.151)

Instead, for everyλ > 0 the Laplace transform is defined as

F̂λ =

∫ ∞

0
dt e−λt F (t) . (2.152)

In the main text we shall drop the hats, whenever this does not generate confusion.
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2.4.2 The equilibrium propagators

Scaling in real time

For α = 1 (white noise) the equilibrium propagators have a simple analytic form in the time
domain [75, 82, 92]. They can be calculated by applying an inverse Fourier transform to
Eqs. (2.60) and (2.61):

R0(~p, t) = Θ(t)e−(p2+r)t/γw

C0(~p, t) =
1

p2 + r
e−(p2+r)|t|/γw . (2.153)

For generalα dimensional analysis suggests that the critical (r = 0) Gaussian correlation
C0 with γw = 0 should scale as

C0(~p, t) = p−2 fC0(p
2|t|α/γ). (2.154)

Using Eqs. (2.59) and (2.61) the equal-time correlator is given by

C0(~p, t = 0) =

∫

dω

2π
C0(~p, ω)

=

∫

dω

2π

2γ sin(πα/2)|ω|α−1

γ2|ω|2α + 2γ(p2 + r)|ω|α cos(πα/2) + (p2 + r)2

=
1

p2 + r
. (2.155)

Hence, we infer thatfC0(0) = 1. Naturally, we havefC0(∞) = 0 since correlations have to
vanish in the long-time limit. Applying a Fourier transform to Eq. (2.154) it is easyto show that
at criticality (r = 0)

C0(~x, t) =
1

|x|D−2
gC0(γx

2/|t|α), (2.156)

where the functiongC0 reaches the asymptotic valuegC0(∞) = ΓE(D/2− 1)/(4πD/2). In or-
der to deduce the leading behavior forgC0(u) whenu→ 0 we start from the explicit expression
of the noise kernelΓiω given in Eq. (2.59). After some algebra we obtain

gC0(u) =

∫

dDp

(2π)D
dω

2π

2u sin(πα/2)|ω|α−1eiω+i~p·ẑ

u2|ω|2α + 2up2|ω|α cos(πα/2) + p4
, (2.157)

whereu = γx2/tα andẑ is an arbitrary unit vector. Forα ≤ 1 we neglect the contributions of
O(u2) in the denominator and we obtain

gC0(u→ 0) = 2u

∫

dω

2π
|ω|α−1eiω

∫

dDp

(2π)D
sin(πα/2)ei~p·ẑ

(p2 + u|ω|α cos(πα/2))2 . (2.158)

The integral over~p is of O(u ln [u|ω|α cosπα/2]) for D = 4 and the resulting integral con-
verges forα < 1; consequently,

gC0(u→ 0) ∼ O(u lnu). (2.159)

By using FDT we derive

R0(~x, t) =
αγ

xD−4tα+1
g′C0

(γx2/tα)Θ(t). (2.160)
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In the white-noise case, the scaling functiongC0 has the simple form

gC0(u) =
ΓE(D/2− 1)

4πD/2

[

1− ΓE

(

D
2 − 1, u4

)

ΓE

(

D
2 − 1

) +O(ǫ)

]

, (2.161)

with ΓE(s, x) =
∫∞
x dy ys−1e−t, whence we deduce forα = 1 andD = 4

gC0(u→ 0) = O(u). (2.162)

For genericγ andγw the scaling functiongC0 is no longer a function of one variable. It is
easy to show that

C0(~x, t) =
1

|x|D−2
gC0(γ|x|2/|t|α, γw|x|2/|t|). (2.163)

Moreover, by using a similar argument as above one has forD = 4

lim
t→∞

gC0(u, v) = O((u+ v) lnu), (2.164)

whereu = γ|x|2/tα andv = γw|x|2/t vanish withu/v finite. In the opposite short-time limit
in whichu andv diverge withu/v finite,

lim
t→0

gC0(u, v) = ΓE(D/2− 1)/(4πD/2) (2.165)

as for the purely colored problem.
The equilibrium propagators can be written in terms of the generalized Mittag-Leffler func-

tionsEa,b(z), as discussed in App. 2.4.2.

Generalized Mittag-Leffler functions

The Laplace transform ofR0(~p, t) is given by

R0(~p, λ) =
1

λΓλ +A
, (2.166)

where we definedA ≡ p2 + r and, in the case of colored noise,Γλ = γλα−1. We formally
expand this expression for smallA:

R0(~p, λ) =
1

γλα
1

1 +A(γλα)−1
=

1

γλα

∞
∑

k=0

(−A/γ)k
λαk

, (2.167)

where the terms of the form1/λβ (with Re β > 0) are recognized as the Laplace transform of
Θ(t)tβ−1/ΓE(β), so that Eq. (2.167) is identified as the Laplace transform of

R0(~p, t) = Θ(t)
1

γ

∞
∑

k=0

(−A/γ)k tαk+α−1

ΓE(αk + α)

= Θ(t)
tα−1

γ
Eα,α(−Atα/γ), (2.168)

where we have introduced the generalized Mittag-Leffler function

Eα,β(z) ≡
∞
∑

k=0

zk

ΓE(αk + β)
with α, β, z ∈ C, Re{α, β} > 0 . (2.169)
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Note that this function reduces to an exponential forα = β = 1: E1,1(z) = ez, whereas for
z ∈ R [98],

Eα,β(z → −∞) = −
k∗
∑

k=1

1

ΓE(β − αk)

1

zk
+O(z−(k∗+1)) . (2.170)

The corresponding expression for the equilibrium Gaussian correlationfunction can be obtained
from the FDT (2.11). Indeed, after integration Eq. (2.40) takes the form

C0(~p, t) = C0(~p, t = 0)−
∫ |t|

0
dsR0(~p, s) , (2.171)

where we used the fact that, in equilibrium,C(~x, t) = C(~x,−t). Taking into account Eq. (2.155)
and the first line of Eq. (2.168) one readily finds

C0(~p, t) =
1

A
Eα(−A|t|α/γ) , (2.172)

whereEα(z) ≡ Eα,1(z) is the Mittag-Leffler function.
The correlation functionC0(~p, t) in Eq. (2.172) can also be expressed as the inverse Fourier

transform ofC0(~p, ω) reported in Eq. (2.61) [see also Eq. (2.59)]. After some suitable change
of variables one finds the following scaling form

C0(~p, t) =
1

A
fC0(A|t|α/γ) , (2.173)

where

fC0(u) ≡ 2

π

∫ ∞

0
dv cos(u1/αv)

vα−1 sin(πα/2)

v2α + 2vα cos(πα/2) + 1

=
sin(πα/2)

πα/2

∫ ∞

0
dv

cos(u1/αv1/α)

v2 + 2v cos(πα/2) + 1
(2.174)

is the explicit expression for the scaling function introduced in Eq. (2.154).

2.4.3 Calculation ofE0,2
w and E1,1

Starting from Eq. (2.79) we have for genericγ andγw

u2E0,2(σ; γ, γw) = ℓ
g2AD(N + 2)

9

×
{

zℓz−1 cos(σℓz)

∫ ∞

ℓ
dx x5−2D g3C0

(

γx2

ℓαz
,
γwx

2

ℓz

)

+

∫ ∞

ℓz
dt cos(σt) ℓ5−2D g3C0

(

γℓ2

tα
,
γwℓ

2

t

)}

. (2.175)

The result of the integral in the first term in curly brackets is an analytic function of σ that
admits a Taylor expansion in powers ofσ2, i.e.,

c0 + c2σ
2 + c4σ

4 + . . . (2.176)
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with coefficients that, in principle, depend separately onγ, γw andℓ. The integral in the second
term in curly brackets yields, instead, a non-analytic function ofσ that we can still express as a
series:

d0 + d2σ
2 + · · ·+ d3α−1σ

3α−1 + . . . , (2.177)

where the term∝ σ3α−1 is due to the leading behavior ofg3C0
for t → +∞ [see Eq. (2.159)]

which has to be subtracted forα < 1/3 in order to make the integral convergent at larget. If
3α − 1 > 0 the limit σ → 0 can be safely taken and the white-noise vertex is renormalized
by c0 + d0. If, on the contrary,3α − 1 < 0 the contribution proportional toσ3α−1 is anyhow
negligible (forα > 0) with respect to the termγσα−1 which is already present in the tree-level
vertex. Therefore, there is no renormalization of the colored-noise vertex and we can focus on
the limit γw ≫ γ, i.e., on the correction to the white-noise vertex only. Since we calculate
evolution equations up to orderǫ2 we simply need to evaluate Eq. (2.175) inD = 4. We obtain

u2E0,2(0; γ, γw) = ℓ
g2AD(N + 2)

9

×
{

zℓz−1

∫ ∞

ℓ
dx x−3 g3C0

(

γx2

ℓαz
,
γwx

2

ℓz

)

+

∫ ∞

ℓz
dt ℓ−3 g3C0

(

γℓ2

tα
,
γwℓ

2

t

)}

. (2.178)

We are interested in theα → αc limit in which γw → ∞ andz = 2 + O(ǫ2). By first using
x 7→ xℓ/

√
γw andt 7→ γwℓ

2/x2 we transform the two-variable scaling function into the one-
variable white-noise one. Using then Eq. (2.161) andA4 = 2π2 we obtain the second and third
line below.

u2E0,2(0; γ, γw) =
2γwg

2AD(N + 2)

9

[

∫ ∞

√
γw

dx x−3g3C0
(0, x2)

+

∫

√
γw

0
dx x−3g3C0

(0, x2)

]

=
2γwu

2(N + 2)

9

∫ ∞

0
dx

[

1− e−x2/4
]3
/x3

=
γwu

2(N + 2)

12
ln

4

3
. (2.179)

Therefore, at the critical point, using the Wilson-Fisher fixed point valueu∗ = 6ǫ/(N + 8) +
O(ǫ2) [19], we find

u2E0,2(0; γ, γw) → u∗2γwE0,2
w = γw

3(N + 2)

(N + 8)2
ln

4

3
ǫ2 +O(ǫ3) . (2.180)

We now computeE1,1 in D = 4. We start from Eqs. (2.97) and (2.98). Using Eqs. (2.187) and
(2.165) in the limitℓ→ 0 we obtain

u2E1,1(0; γ, γw) =
g2A4(N + 2)π

144

−∂
∂ ln ℓ

∫ ∞

ℓ

dx

x

1

(2π)6

=
u2(N + 2)

72
. (2.181)
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Note that the term coming from the differentiation ofC0(~x, ℓ
z) in Eq. (2.97) with respect toln ℓ

vanishes in the limitℓ→ 0 [use Eq. (2.156)]. At the critical point we obtain

u∗2E1,1 =
u∗2(N + 2)

72
=

N + 2

2(N + 8)2
ǫ2 +O(ǫ3) . (2.182)

2.4.4 Non-equilibrium propagators

Forα = 1 the Gaussian non-equilibrium propagators read in the momentum and time domain

C0(~p; t, s) =
1

p2 + r

[

e−(p2+r)|t−s|/γw − e−(p2+r)(t+s)/γw
]

, (2.183)

R0(~p; t, s) = Θ(t− s)e−(p2+r)(t−s)/γw . (2.184)

For genericα, however, analogously compact expressions are not available and our analysis
proceeds using Laplace transforms. In order to determine the responsefunctionR0 — consis-
tently with the Gaussian approximation — we start with the linearized version of theLangevin
equation (2.3) in the presence of an external perturbation~h:

∫ t

0
dt′ Γ(t− t′)∂t′~φ(~x, t

′) + (r −∇2)~φ(~x, t′) = ~ζ(~x, t) + ~h(~x, t) (2.185)

Calculating the expectation value of both sides with respect to the distribution ofthe noise
eliminates the vanishing average〈~ζ〉. The Laplace transform yields

(λΓλ + p2 + r)〈~φλ(~p)〉h = ~hλ(~p) (2.186)

in momentum space where we used the Dirichlet boundary conditionφ(~x, t = 0) = 0 [see
discussion at the beginning of Sec. 2.3.5]. Note that the expectation value of the order parameter
depends onh. The response propagator in the Laplace domain is given by

R0(~p;λ, κ)δij =
δ〈φi,λ(~p)〉h
δhj,κ

|~h=~0 =
1

λΓλ + p2 + r

δhi,λ
δhj,κ

=
1

(λ+ κ)(λΓλ + p2 + r)
δij . (2.187)

The last equality follows from the fact thatδhi(t)/δhj(s) = δijδ(t − s) as a function of time
translates intoδij/(λ+ κ) in Laplace space, given that

∫∞
0 dtds e−λt−κsδ(t− s) = 1/(λ+ κ).

In order to deduce the correlation propagator we start directly from Eq.(2.185) with~h = 0
and we consider its Laplace transform:

~φλ(~p) =
~ζλ

λΓλ + p2 + r
, (2.188)

which yields

C0(~p;λ, κ)δij = 〈φi,λ(~p)φj,κ(−~p)〉 =
〈ζi,λζj,κ〉

(λΓλ + p2 + r)(κΓκ + p2 + r)

=
Γλ + Γκ

(λ+ κ)(λΓλ + p2 + r)(κΓκ + p2 + r)
δij . (2.189)
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In the last line we used the fact that
∫∞
0 dtds e−λt−κsΓ(t− s) = (Γλ+Γκ)/(λ+κ). The prop-

agators verify an ‘initial time FDT’. We see that forα < 1 limκ→∞ κR0(~p;λ, κ) = R0(~p, λ)
andlimκ→∞ κ2C0(~p;λ, κ) = limk→∞ κ1−αΓλR0(~p, λ), with R0(~p, λ) = 1/(λΓλ + p2 + r).
In the time domain, the second identity reads

∂t′C0(~p; t, t
′ → 0) ∼ t′α−1

∫ t

0
dsΓ(t− s)R0(~p; s, t

′ → 0) . (2.190)

To derive this equation we used the convolution theorem for the Laplace transformL, that is

L
[∫ t

0
dt′ f(t− t′)g(t′)

]

(λ) = L[f ](λ)L[g](λ) . (2.191)

In order to deduce the scaling of Eq. (2.190) with respect tot′ one observes that ifλL[f(t)](λ) ∼
λa for λ→ ∞ thenf(t) ∼ t−a for t→ 0.
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CHAPTER 3

Out of equilibrium quantum Brownian motion

“Well, our friend Dirac, too, has a religion, and its guiding principle is: God does not exist
and Dirac is His prophet.”

Wolfgang Pauli

Quantum Brownian motion has been the starting point for the understanding of more com-
plex dissipative quantum systems [50]. Applications to quantum tunnel junctions [107], dissi-
pative two–state systems [108] and reaction–rate theory [109] are just afew among many. In
its simplest form, as proposed in the founding papers [110, 111, 9], the environment induced
dissipation is modeled by an ensemble of quantum harmonic oscillators linearly coupled to
the particle of interest. So far, in most studies of the dissipative dynamics of aharmonically
confined [111, 112] or a free [8, 113] quantum particle, the quantity ofinterest has been the
reduced density matrix that is obtained by tracing away the bath degrees of freedom in the den-
sity matrix of the coupled system. For generic initial conditions this quantity has been obtained
with the help of functional integral methods [8, 114]. An alternative simpler,though in gen-
eral only approximate, description of the reduced density matrix is given bya master equation.
For factorizing initial conditions [115] and thermalized initial conditions [116]an exact master
equation can be obtained. However, it is also known that there cannot bea master equation – in
the form of a partial differential equation local in time – for arbitrary initial conditions [116].
The alternative quantum Langevin approach [117] extensively used inquantum optics [118]
is not sufficiently powerful either, for quite the same reason: only a few special initial condi-
tions can be successfully treated within this approach and the quantum noisestatistics are not
tractable in the generic case.

In the following I show how to generalize the path integral formalism found in [8] such that
generic Gaussian initial conditions can be treated. With the help of agenerating functionalall
non-equilibrium correlation functions will be derived.
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3.1 What is Quantum Brownian motion?

In the previous chapter I have discussed aspects of critical dynamics in the presence of colored
– time correlated – noise. I have shown that such noise produced by non-Markovian envi-
ronments leads to novel critical dynamics for second-order phase transitions. In general one
may say that the dynamics of a collective variable, i.e. a field, coupled to a thermodynamic
environment has not yielded yet to the efforts of the physicists which wouldlead to a full under-
standing of these dynamics and it is likely that some surprises might still be ahead of us. The
case of a single particle coupled to an environment is on the other hand verywell understood.
The particle’s dynamics are described by a Langevin equation and if this Langevin equation is
solvable without the stochastic term it is usually also solvable in presence of the noise. In this
sense the problem may become more difficult when the bath is present, but nofundamentally
new physics arise. For instance, the onset of deterministic chaos dynamicsdoes not depend
on whether the particle in question is coupled to a bath or not – as long as this coupling is
linear, which is an extremely well approximation for many situations1. Another example is the
escape rate of an activated particle confined to a well potential. Of course, it is known that
the color of the noise has some impact on the well-known Arrhenius formula [54], but still the
noise statistics do not fundamentally change the physics. It goes without saying that I do not
imply here that such systems are not interesting. On the contrary, in order tounderstand many
effects in nature, and in biology in particular, one needs precise formulaewhich reflect a real-
istic description of the stochastic environment. However, even the most ardent fan of classical
one-particle dynamics cannot deny that the thermal quantum world behaves slightly differently.
One of the most striking single particle phenomena is quantum tunneling and the Heisenberg
uncertainty relation. Both of these quantum phenomena lead to far reachingconsequences when
combined with dissipative dynamics. Let me briefly deviate from the main subjectand talk first
about quantum tunneling. A particle confined to a double-well potential cantunnel from one
potential well through the potential barrier to the other one and back. This process relies on
quantum coherence and therefore allows for quantum superpositions of the two single potential
well states such that Rabo oscillations between the two wells are observed. It is essentially a
zero-temperature process and thus fundamentally different from the activated hopping over a
potential barrier. While thermally activated processes are usually enhanced by a growing tem-
perature or an increase of the particle-bath coupling (i.e. by the energy exchange rate between
the particle and the environment), the opposite is true for quantum tunneling processes. Indeed,
at zero temperature the quantum bath can actually totally suppress the quantum tunneling since
it destroys the quantum coherence. This phenomenon has been formulated in many different
ways [121, 122, 123, 9, 108]. If we come back to the particle in a single well the escape rate
due to tunneling drops to zero when the coupling to the bath increases. On theother hand, upon
increasing the temperature the tunneling rate grows [124, 50]. More importantly, the typical
temperature which separates the quantum from the classical regime is lowered by an increasing
coupling to the bath. The environment thus renders the system more classical and eventually
destroys all quantum coherence, i.e. the quantum tunneling at absolute zero.

It is probably true for any introduction to quantum dissipation that it is a sign of lack of
taste if the spin-boson model remains unmentioned in this context. The double-well system is
essentially universal. In the 1980s Leggett et. al. [108] considered theso-called dissipative
two-level system or spin-boson system which arises naturally from the dissipative particle in a

1Note however, that dissipation does not always has a “stabilizing” effect due to damping. In magneto-
hydrodynmics a finite resistance can trigger instabilities [119, 120].
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double-well system in the limit of a small tunneling rate (i.e. a neat separation ofthe two wells).
All the parameters can then be combined into two variables, the tunneling matrix elementh and
the disspative coupling constant to the bath, usually calledα. The two-level system is conve-
niently described by a single spin, thez-component of which is linearly coupled to the quantum
bath. The tunneling rate is described by the termhσx in the Hamiltonian which flips between
the twoz-spin states. In the absence of dissipation the spin undergoes Rabi oscillations between
the twoz-states with a frequencyh. One might guess that these coherent oscillations are grad-
ually destroyed when the spin-bath coupling is switched on. However, notonly is coherence
destroyed, but tunneling itself (in the case of an Ohmic bath), i.e. forα > 1 the spin remains
localized in one of the two states. This well-known localization transition sharesthe features of
the Kosterlitz-Thouless transition and it is closely related to the phase transitions found in the
anisotropic Kondo model [108] and the long-range interacting classical Ising chain [125].

Let me come back to the second genuine quantum feature I mentioned: The Heisenberg
uncertainty relation whose consequences are most far-reaching. When Einstein combined in his
ingenious approach classical thermodynamics with statistical methods, he found what is known
as the Einstein relation, namely that the diffusion is proportional to the temperature. This is
expressed by the classical FDT which links the linear response to the correlation functionvia
the proportionality constantβ−1. Yet another way of stating this (for today’s mind) trivial
fact is the equipartition theorem. If we model the environment by a large set of independent
harmonic oscillators, where each one has a different frequency, equipartition states that each
mode will acquire the same energy on average. In the quantum world equipartition is however
not satisfied. Since the work by M. Planck on the thermal black body radiation another energy
partition arises, characterized by the frequency dependent factorcoth ~βω. This term always
arises for a set of quantum harmonic oscillators at then temperatureβ and we will encounter it
on numerous occasions during the next section. For high temperatures, the quantum partition
reduces to classical equipartition, which isω-independent. However, when the temperature is
lowered, the energy of the bath modes does not tend to zero as one might expect by extrapolating
the classical law; we rather havecoth[~βω/2] → 1 for largeβ. This simple statement leads
to a very important property of a quantum bath: It fluctuates at zero temperature and these
quantum fluctuation can lead to diffusion or suppress – as we have seen –quantum coherence.
Interestingly enough, pure quantum diffusion at zero temperature is muchslower than classical
diffusion, i.e. one can show that the mean squared displacement grows withlog t [see [8] and
next paragraph].

How does one usually model quantum Brownian motion? The environment is almost always
modeled by an ensemble of harmonic oscillators and it is coupled linearly to the particle. How-
ever, important exceptions do exist. In some applications, the fundamental noise is not caused
by phonons but by spins, one then needs a spin bath, which is far more difficult to deal with than
a quantum harmonic oscillator bath, but which leads to richer physics [126]. Also, many arti-
cles deal with baths of two-level systems in order to model decoherence [127, 128, 129]. The
analysis of the physical effects of quantum baths which are more complicated that the standard
quantum harmonic oscillator environment would go beyond the scope of the present chapter. In
chapter 4, however, we will study heavily entangled quantum baths formedby one-dimensional
quantum liquids. Here, let us assume that the bath can be modeled by harmonicoscillators.
Then the fundamental Hamiltonian of quantum Brownian motion readsH = HS+HB+HSB,
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with

HS [q̂, p̂] =
p̂2

2M
+ V (q̂; t) , (3.1)

HB[{x̂n, p̂n}] =
∞
∑

n=1

p̂2n
2mn

+
mnω

2
n

2
x̂2n , (3.2)

HSB[{x̂n}, q̂] = −q̂
∞
∑

n=1

cnx̂n + q̂2
∞
∑

n=1

c2n
2mnω2

n

. (3.3)

One may convince oneself thatH indeed models dissipation. By using the Heisenberg equations
of motion for the particle and the bath one arrives at the reduced equation of motion of the
particle by eliminating the bath’s degrees of freedom. The result can be written in the form of a
quantum Langevin equation

M ¨̂q(t) + ∂tM

∫ t

0
ds γ(t− s)q̂(s) +

dV (q̂, t)

dq̂
= ξ̂(t) , (3.4)

with the damping kernel

γ(t) =
1

M

∑

n

c2n
mnω2

n

cos(ωnt) (3.5)

and the quantum stochastic force operator

ξ̂(t) =
∑

n

cn

[(

q̂(0) +
cn

mnω2
n

x̂n(0)

)

cosωnt+
p̂n(0)

mnωn
sinωnt

]

. (3.6)

The Langevin force becomes stochasticvia its dependence on the initial condition of the bath
andthe particle. It is thus in general necessary to specify the initial state of the full particle-bath
system. To put it in other words: One needs to specify the experimental preparation procedure.
Several possibilities have been studied in the literature. One common initial state isthe so-
called factorized initial state, where the bath and the particle are initially uncorrelated. While
such an initial state leads to many simplifications in concrete calculations, its physical content
is not so clear. In many experiments it is most uncommon to “decouple” the particle from its
environment at some time. Moreover, when instantly coupled to the particle att > 0 the system
undergoes a quench since the total energy increases due to the supplement interaction energy.
From a physical point of view the factorizing initial state is hence most unusual.

On the other hand, equilibrium can be described by setting the initial state of theparticle-
bath system to its canonical Boltzmann weighte−βH. Again, I insist that such an initial state is
different from the factorizing “equilibrium” statee−βHS ⊗e−βHB which has a lower energy and
entropy. From now on I will set the potentialV (q, t) equal to the harmonic oscillator potential
MΩ2q2/2 for pedagogical reasons. The canonical equilibrium initial state is a mixed state and
it is therefore described by a density matrixρ̂0. For an equilibrium preparation̂ρ0 is given by

ρ̂0 = exp

[

−β p̂
2(0)

2M
− β

M

2
Ω2q̂2(0)− β

∞
∑

n=1

p̂2n
2mn

− β
mnω

2
n

2

(

x̂n − cn
mnω2

n

q̂(0)

)2
]

,

(3.7)
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where I completed the square with the counterterm. The statistical properties of the random
force ξ̂(t) then follow immediately:̂ξ(t) is a stationary operator valued Gaussian random vari-
able with〈ξ̂(t)〉 = 0 and

〈1
2

[

ξ̂(t)ξ̂(s) + ξ̂(s)ξ̂(t)
]

〉 = ~

2

∑

n

c2n
mnωn

cosωn(t− s) coth[~ωnβ/2] . (3.8)

Note the appearance of the typicalcoth[~ωβ/2] characteristic for an oscillator bath. One should
bear in mind thatξ is operator-valued; it has thus a non vanishing commutator:

[ξ̂(t), ξ̂(s)] = −i~
∑

n

c2n
mnωn

sinωn(t− s) . (3.9)

The quantum Langevin equation is an operator equation which acts on the full Hilbert space
spanned by the bath and the particle states. The dynamics thus lead always toan entanglement
between the particle and the oscillators. By using the equation of motion 3.4 one can show
together with the above noise commutator thatq̂(t) andp̂(t) satisfy at all times the Heisenberg
uncertainty relation, as required. This point is crucial: If one sets the commutator (3.9) to
zero the Heisenberg uncertainty relation – however fundamental – would be violated for the
particle (and moreover, for the bath, too). Consequently, the quantum bath is not only a matter
of statistics. Onecannotreplaceξ̂(t) by ac-valued Gaussian noise with the same statistics as
ξ̂, since an approximation of this type clearly would not satisfy the commutator properties of
position and conjugate momentum. As a corollary it would violate the uncertainty relation and
thus fundamental quantum mechanics.

Let us now briefly discuss the equilibrium static properties that come with Eq. (3.4). The
usual strategy in order to find the reduced dynamics for the particle is to integrate (trace) out the
bath degrees of freedom in the initial density matrixρ̂0. When the theory is Gaussian and when
one is interested only in static properties, it is however easier to first introduce the variances
〈q̂2〉 and〈p̂2〉. The reduced initial density matrix then takes necessarily the following form in
the position basis:

ρR(x, y) =
1

√

2π〈q̂2〉
exp

[

−(x+ y)2

8〈q̂2〉 − 〈p̂2〉
2~2

(x− y)2
]

. (3.10)

There is indeed a very elegant way of deriving Eq. (3.10). Let us start from the average

〈e−iyp̂(t)eirq̂(t)〉 = Tr
[

e−iyp̂eirq̂ρ̂(t)
]

=

∫

dx′ρ(x′ + y, x′)eirx
′

, (3.11)

whereρ(x′ + y, x′) is the matrix element of̂ρ in position space. With the help of the Baker-
Campbell-Hausdorff formula we find

ρy,x(t) =

∫

dr e−
i
2
r(x+y)〈e−i(y−x)p̂(t)+irq̂(t)〉. (3.12)

On the other hand, we can evaluate the rhs of (3.12) in the path integral formalism where the
operatorŝq andp̂ are replaced by c–numbersq andp. Moreover, we know thatq andp are – as
soon as the initial condition is Gaussian – Gaussian random variables for allt so that

ρy,x(t) =

∫

dr e−
i
2
r(x+y)〈e−i(y−x)p̂(t)+irq̂(t)〉

=

∫

dr e−
i
2
r(x+y)e−

1
2
(y−x)2〈p̂2(t)〉− 1

2
r2〈q̂2(t)〉+r(y−x)〈[q̂(t),p̂(t)]+〉, (3.13)
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where〈[q̂(t), p̂(t)]+〉 = 〈[q̂(t)p̂(t)+ p̂(t)q̂(t)]〉/2 is the symmetrized position-momentum equal
time correlator and we have〈[q̂(t), p̂(t)]+〉 = 0 due to symmetry reasons [8]. For simplicity we
assumed〈q̂〉 = 0 and〈p̂〉 = 0, but everything that follows can be easily generalized to the case
whereq̂ andp̂ are not centered at zero. The final integral overr then gives back Eq. (3.10).

From the Langevin equation (3.4) we find in the Laplace domain

Mq̃(z) =
ξ̃(z)

z2 + zγ̃(z) + Ω2
, (3.14)

so that the linear response function reads

R̃(z) =
M−1

z2 + zγ̃(z) + Ω2
. (3.15)

We now use the quantum mechanical version of the fluctuation-dissipation theorem,

C1eq(ω) = ~ coth[~ωβ/2] ImR(ω) , (3.16)

with C1eq(ω) the one-time stationary equilibrium correlation function in the Fourier domain.
The trick is now to use the causality of the response function which impliesR̃(z) = R(iω).
Together with the formula

∑

k ω/(ω
2 + ν2k) = (β~/2) coth[~ωβ/2] with νk = 2πk/~β the

bosonic Matsubara frequencies I can recast the correlator as

C1eq(ω) =
1

β

∑

k

iω

ω2 + ν2k

[

R̃(iω)− R̃(−iω)
]

. (3.17)

By using an appropriate contour integration one finally finds the equal-time correlator, which in
the case of thermal equilibrium does not depend on time at all,

〈q̂2〉 = 1

Mβ

∑

k

1

ν2k + |νk|γ̃(|νk|) + Ω2
. (3.18)

By the same method we get

〈p̂2〉 = M

β

∑

k

ω2
0 + |νk|γ̃(|νk|)

ν2k + |νk|γ̃(|νk|) + Ω2
. (3.19)

Let us go back to the density matrix (3.10). Note that in the general non-equilibrium case the
equal-time correlators are time dependent. As in the case of a non-dissipativesingle harmonic
oscillator one can now make use of Mehler’s formula for the Hermite polynomials. It is conve-
nient to define the real variable

A = 〈p̂2(t)〉 − 1

〈q̂2(t)〉

(

1

4
+ 〈[q̂(t), p̂(t)]+〉2

)

(3.20)

and the complex variable

B = 〈p̂2(t)〉+ 1

〈q̂2(t)〉

(

1

2
− i〈[q̂(t), p̂(t)]+〉

)2

, (3.21)
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(Again, note that we assume a more general initial condition for whichCxp 6= 0 possibly) then
the reduced density matrix can be recast as

ρx,y(t) =
1

√

2π〈q̂2(t)〉
eAxy−B

2
x2−B∗

2
y2 . (3.22)

By virtue of Mehler’s formula we find

ρx,y(t) =

√
1− u2

2v′〈q̂2(t)〉

∞
∑

0

unφn(x)φ
∗
n(y), (3.23)

with the “eigenstates”

φn(x) =
v′1/4

√

2nn!
√
π
Hn(

√
v′x)e−vx2/2 . (3.24)

Hn(z) is then–th Hermite polynomial,

A =
2u

1− u2
v′, (3.25)

v = B − 2u2

1− u2
v′ (3.26)

andv′ = Re v. Note thatv is complex whileu is real. The solution to (3.25) and (3.26) are
found to be

u =

√
B′ +A−

√
B′ −A√

B′ +A+
√
B′ −A

and v′ =
√

B′2 −A2, (3.27)

whereB′ = ReB is the real part ofB. This representation of the reduced density matrix has
been used in [25].

3.1.1 Some equilibrium results for Ohmic dissipation

Let me rewrite the formulae (3.18) and (3.19) for Ohmic dissipation. It is important to specify
the cutoff procedure in order to remove unphysical divergences. For instance, in the Drude
model the damping kernel has s short-time memory such thatγ(t) = γωDe

−ωDt. With this
regularized theory we havẽγ(z) = ωD/(ωD + z) and therefore in equilibrium

〈q̂2〉 = 1

Mβ

∑ 1

ν2n + |νn|ωD/(ωD + |νn|) + Ω2
, (3.28)

and

〈p̂2〉 = M

β

∑

k

Ω2 + γ|νn|ωD/(ωD + |νn|)
ν2n + |νn|ωD/(ωD + |νn|) + Ω2

. (3.29)

There are two interesting questions related to the equilibrium widths (3.28) and(3.29). First
one can study their dependence on the bath temperature. This is plotted in Fig.3.1. It is
interesting to note that the position width decreases with increasing particle-bath couplingγ
while the position width increases such that Heisenberg’s uncertainty relation is ensured. In the
next figure (Fig. 3.2) I plot the product4〈q̂2〉〈p̂2〉/~2, which grows with increasingγ. Note that
4〈q̂2〉〈p̂2〉/~2 is exactly equal to one for zero temperature and zero particle-bath coupling.
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Figure 3.1: Temperature dependence of the position and momentum correlations.2MΩ〈q̂2〉/~ (left) and
2〈p̂2〉/(MΩ~) (right) is plotted for the Drude model, withωD/Ω = 1.0, versus1/β~Ω. The dashed line
corresponds toγ/Ω = 1.0 whereas the solid line corresponds toγ/Ω = 0.1.

While the Heisenberg uncertainty relation forbids that4〈q̂2〉〈p̂2〉/~2 < 1, the environment
is perfectly allowed to excite the particle such that the width product increases. Indeed, if we
reason naively in terms of the undamped oscillator eigenstates, a zero temperature behaviour
as depicted in Fig. 3.2 implies that the particle is not only in its ground state but hasa finite
probability to be in its excited state. Let us put this reasoning on a more quantitative basis.
In the last subsection I have shown that the reduced density matrix of the damped harmonic
oscillator can be diagonalized in terms of stretched Hermite functions [see (3.23) and (3.24)].
Standard thermodynamics always assumes that the interaction energy between the system and
its environment has to go to zero if the system is expected to be described by the canonical
density matrix. Obviously this is not the case, here. Indeed, forβ → ∞ andγ = 0 we have
u = 0 as expected; however forγ/Ω = 0.1 we find by using〈q̂(t)p̂(t) + p̂(t)q̂(t)〉(t) =
0 [8] u ≈ 0.00166 and forγ/Ω = 1.0 we find u ≈ 0.287. Therefore, there exists a non-
zero probability to find the particle in an excited state. Such a behaviour is caused by the
entanglement between the bath and the particle which does not vanish even at zero temperature.
Due to the entanglement the naive reasoning in terms of pure particle eigenfunctions breaks
down: The particle is not in its groundstate because it does not have any groundstate itself; only
an entangled state depending on bath degrees of freedom can be the groundstate of the whole
particle-bath system.

The diagonal representation of the reduced density matrix (3.23) is very useful when quan-
tities such as the purity or the van Neumann entropy ofρ̂ are searched for. To cite an example,
it is straightforward to monitor the decoherence of a superposition of two displaced Gaussians
with this formula. It is also interesting to study the decoherence intensity as a function of bath
characteristics.

At last, let me briefly discuss the subdiffusive behaviour of an untrapped Brownian particle.
The equilibrium position correlation function is given in Eq. (3.170) or in [8]. When the external
potential is switched off, i.e.Ω → 0, the particle undergoes free quantum Brownian motion.
One of the fundamental questions one may ask concerns its diffusion behaviour when quantum
effects dominate, i.e. when temperature is very low. As has been shown [8]for an Ohmic
bath by performing a large-time analysis of Eq. (3.170) that the displacementfunction at zero

56



CHAPTER 3. OUT OF EQUILIBRIUM QUANTUM BROWNIAN MOTION

0 2 4 6 8
1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Γ�W

4X
q2 \
X
p2 \
��

2

Figure 3.2:4〈q̂2〉〈p̂2〉/~2 versusγ/Ω for the Drude model withωD/Ω = 1.0 at zero temperature.

temperature has the behaviour

QF (t) ≡ 〈(q̂(t)− q̂(0))2〉 ≃ 2~

πMγ
log(γt) (3.30)

for γt→ ∞. Note that the correlation function is formally infinite since free Brownian motion
is not bounded. Only when the mean displacement is considered can one obtain a finite quantity
which describes the diffusion law of the particle. For super-Ohmic and sub-Ohmic baths, too,
behaviours which differ from the classical (fractional) diffusion laws are observed. For sub-
Ohmic baths with a spectral density [see Eq. 3.133]S(ω) ≃ ωα with α < 1 the displacement
function is bounded (at zero temperature) since the friction force exceeds the stochastic accel-
erating force of the bath. The particle is thus “trapped” in this case. The Ohmic α = 1 case is
discussed above. For1 < α < 3, α 6= 2 the diplacement function behaves asQF (t) ∼ tα−1.
For the special caseα = 2 one hasQF (t) ∼ t/ log2(t). The caseα = 3 corresponds to a three
dimensional (Ohmic) phonon bath such that the zero-temperature quantum diffusion for α = 3
andα = 1 are alike. The derivation of these diffusion laws can be found in [130].

The denominator of Eq. (3.30) shows the same viscosity coefficientMγ as the high tem-
perature classical case which is governed by the standard diffusion coefficientD = β−1/Mγ.
While thermal fluctuations have an effect on the particle displacement which linearly scales with
temperature, the same “accelerating” effect of a pure quantum bath (i.e.β → ∞) is strongly
suppressed (since at scales as the logarithm of the bath strength).

3.1.2 Other important dissipative quantum systems

Throughout this manuscript I will not talk anymore about quantum tunneling and dissipation.
Due to the great importance of this topic I would like to present some basic notions of the
dissipative effects on tunneling in this short subsection. The analysis of particle in a double-
well and coupled to a bosonic quantum bath has been studied in [122, 123,9, 108, 124]. All
these studies concluded that coherence is gradually destroyed by the quantum bath. Hence,
above a certain threshold value quantum coherence is totally suppressedand tunneling does
not occur anymore. In this case, the particle is localized in one of the two potential wells.
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As shown in [108] the double-well problem can be well approximated by theso called spin-
boson Hamiltonian, where the particle position can only take two values,±1, depending on
whether it is found in the right or the left potential well. Within this approximation,the particle
thus behaves as an effective two-state system and it can be described by a quantum spin~s =
1
2(σ

x, σy, σz). The tunneling is directly introducedvia a tunneling matrix elementh. The
spin-boson Hamiltonian then reads

ĤSB =
ǫ

2
σz +

h

2
σx +

∑

i

λi(a
†
i + ai)σ

z +
∑

i

~ωia
†
iai . (3.31)

The two potential wells have an energy difference modeled by the detuning parameterǫ. The
spin-boson model is probably the paradigm model of quantum dissipation, very much as the
Ising model for statistical physics or the Hubbard model in condensed matterphysics. In the best
tradition of its “brothers”, the spin-boson Hamiltonian cannot be integrated for a general bath
spectral density, despite its apparent simplicity. There are in general two ways of approaching
the problem. Either one considers Eq. (3.31) as a well-defined approximation of the double-well
problem; in this case one can carry over results obtained in the latter formalismto the former and
vise-versa. However, since the review by Legget et al. [108] the spin-boson problem has been
considered as an independent problem. In this context the close relationship between Eq. (3.31)
and the anisotropic Kondo problem [108] and the long-range classical Ising chain [125, 72, 131,
132] has been realized and extensively studied. The mapping to the classical long-range Ising
chain led to renormalization group equations of the spin-boson system whichcomplemented the
non-interacting-blip-approximation [108] used for describing its dynamics. All these studies
concluded that a localization transition takes place if the spin is coupled to an Ohmic bath.

However, many aspects of the spin-boson model are not yet understood. Most of the re-
cent studies focus on the quantum phase transition of the spin boson modelfor sub-Ohmic
bath spectral densities. It has been argued that the sub-Ohmic spin-boson model violates the
quantum-classical mapping[132], a claim which could not be upheld afterwards [133]. How-
ever, it seems certain that the system undergoes a second order phasetransition at some critical
bath strength which depends onh and the bath cutoff frequency. Recently this picture has been
confirmed by using a variational ansatz [134] for the groundstate wavefunction.

3.2 The Hamiltonian of a quantum Brownian particle

We study the evolution of a particle of massM evolving in a (possibly time-dependent) potential
V (q̂; t) whereq̂ is the position operator. The Brownian motion stems from its interaction with
a quantum heat bath which is usually modeled by an infinite set of harmonic oscillators linearly
coupled to the position operatorq̂. The full system is then described by the HamiltonianĤ =
ĤS + ĤB + ĤSB, with

ĤS [q̂, p̂] =
p̂2

2M
+ V (q̂; t)−H(t)q̂ , (3.32)

ĤB[{x̂n, p̂n}] =
∞
∑

n=1

p̂2n
2mn

+
mnω

2
n

2
x̂2n , (3.33)

ĤSB[{x̂n}, q̂] = −q̂
∞
∑

n=1

cnx̂n + q̂2
∞
∑

n=1

c2n
2mnω2

n

. (3.34)
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p̂ is the momentum operator of the particle. In contrast to Eq. (3.1) we introduced in the rhs
of Eq. (3.32) a time-dependent sourceH(t), a c-number, that couples linearly to the particle’s
positionq̂. This source term will be important for the derivation of the generating functional in
the following. x̂n and p̂n are the position and momentum operators of then–th harmonic os-
cillator, with mass and frequencymn andωn, respectively.cn is the coupling strength between
the particle and then-th oscillator’s position. The last term in Eq. (3.34) compensates for the
bath-induced renormalization of the potential. Indeed, the sum of Eqs. (3.33) and (3.34) can be
rewritten as

ĤB + ĤSB =
∞
∑

n=1

p̂2n
2mn

+
mnω

2
n

2
[x̂n − cn

mnω2
n

q̂]2 , (3.35)

which shows the absence of any drift force induced by the bath and ensures thatV (q̂, t) corre-
sponds to the physical potential right from the start. The model Hamiltonian Eqs. (3.33)-(3.34)
has been widely used in the literature as a generic model for the dissipative dynamics of a
quantum particle [9, 8, 50].

In the Heisenberg representation the time evolution of all possible observablesÂ is governed
by

Â(t) =

[

T̂ exp

(

− i

~

∫ t

0
dt′ Ĥ(t′)

)]†
Â

×
[

T̂ exp

(

− i

~

∫ t

0
dt′ Ĥ(t′)

)]

, (3.36)

with T̂ the time-ordering operator. By introducing the density matrix of the initial stateρ̂0 the
N -time average of a set{Âi} of N operators, is

〈ÂN (tN )ÂN−1(tN−1) · · · Â1(t1)〉 =

Tr
[

ÂN (tN ) · · · Â1(t1)ρ̂0

]

, (3.37)

where we took the product of thêAis to be time ordered (withtN ≥ tN−1 ≥ . . . ≥ t1) so that
we can more easily make the connection between Eq. (3.37) and its path integral representation.
We assumed that Trρ̂0 is normalized to one. Note that for a generic initial matrixρ̂0 this, as well
as any other, correlation function is not necessarily stationary, i.e., it may depend on theN
times explicitly.

In all cases the model has to be supplemented by information on the initial condition of the
coupled system. These are incorporated in the initial density matrixρ̂0. Equilibrium dynamics
can be studied by choosinĝρ0 to be the Boltzmann weight, that is

ρ̂0 = exp(−βĤ) , (3.38)

whereĤ is thefull coupledHamiltonian and the normalization constant has been ignored. This
truly equilibrium density matrix has to be distinguished fromρ̂0 = e−βĤS ⊗ e−βĤB , a case in
which each component of the “universe” (the whole particle–bath system)is in equilibrium on
its own at the same temperature. This subtle point is often overlooked in the literature.

Non equilibrium dynamicscan be studied whenever the initial density matrix is not of the
form in Eq. (3.38). The simplest choice is an initial product state for which the initial density
matrix factorizes into two contributionŝρS0 andρ̂B0 which solely depend on particle and bath
variables, respectively:

ρ̂0 = ρ̂S0 ⊗ ρ̂B0 . (3.39)
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Brownian motion [135, 50] as well as the dynamics of more complex macroscopic systems [136,
137, 138, 139, 140, 141, 142, 92, 143] with a factorized initial density matrix have been studied
in a variety of physical situations. However, in many cases it is not appropriate to assume
Eq. (3.39) since one has no command over the bath and it is impossible to “switchit on and off”
at will. In addition, with recent developments in cold atom experiments (see chapter 4), new
classes of initial conditions become of relevance.

The first one covers all situations in which the particle is in equilibrium in a potential and
either it is released or the potential is suddenly modified att = 0. In this case Eq. (3.38) holds
with Ĥ replaced byĤ0 ( 6= Ĥ) describing the initial state.

The second class concerns all situations in which the position of the free particle is measured
at t = 0. This procedure projects the initial density matrix onto the quantum states of the
measurement outcome. We focus on the case where no quantum quench is performed in addition
to the position measurement so thatĤ0 = Ĥ. If the position is exactly determined att = 0 the
initial density matrix is

ρ̂0 = Π̂(q)e−βĤΠ̂(q) with Π̂(q) = |q〉〈q| (3.40)

the projection operator onto the state|q〉. If, instead, we take the measured position of the
particle to be Gaussian distributed aroundqm the projection operator takes the form

Π̂(qm) =

∫

dq e−
(q−qm)2

4∆2 |q〉〈q| , (3.41)

where∆ measures the uncertainty of the particle’s position att = 0. Once again we neglected
the irrelevant normalization factor.

A third important class of initial conditions are the factorized density operators, see Eq. (3.39),
in which the initial state of the system is a pure state. Since any state can be expanded in terms
of displaced Gaussians (orcoherent states) it suffices to consider initial states of the form

ρ̂S0 = |ψ〉〈ϕ| , (3.42)

where

ψ(q) = e−
(q−qm)2

4∆2 and ϕ(q′) = e−
(q′−q′m)2

4∆2 , (3.43)

to cover the whole class of initially factorized pure states.
In this article we derive a generating functional that allows us to obtain theN -time correla-

tors for these types of initial conditions. We are mainly interested in the evolutionand averages
of theparticle’s position observablesfor which Â = A[q̂] with some functionA depending on
the positionq̂ of the particle. Note that due to the coupling of the bath to the particle’s posi-
tion the momentum dynamics follow from the Heisenberg equationM∂tq̂ = p̂. Therefore, by
focusing on the particle position operator we simultaneously describe the dynamics of the par-
ticle’s momentum. While in [8] the authors derived an explicit expression for the equilibrium
correlation functions the generating functional will allow us to go beyond theequilibrium case.

3.3 The non-equilibrium generating functional

This part of my thesis is central since many of its results and formulae will be reused in part 4
which focuses on impurity dynamics. It can be read as a junction section which belongs both to
part 3 and to part 4.
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This section will generalize the path integral formalism in [8] to the language ofgenerat-
ing functionalscommonly used in quantum field theory. We will use the Schwinger-Keldysh
formalism [111, 144] which is particularly well suited for our purposes. Asimple alternative
approach based on the quantum Langevin equation has been discussedin the introductory sec-
tion 3.1. From the generating functional we will easily deduce thenon-equilibrium correlation
functionsfor generic non-factorizing Gaussian initial conditions (for a stochastic description of
open quantum systemsvia a generating functional, see [145]) thatcannotbe obtained within
the density matrix formalism. We will use this technique to treat two problems: the relaxation
dynamics of a particle confined in a harmonic potential after a position measurement performed
at the “initial time” and the relaxation dynamics of a particle after an abrupt change in the
parameters of the confining potential.

More precisely, this chapter is organized as follows. In Sec. 3.3 we employpath integral
methods to derive the generating functional of out of equilibrium correlations. Our results
cover both factorized and non-factorized Gaussian initial conditions as well as the effects of an
initial position measurement performed on the particle. In Sec. 3.4 we study theequilibration
processes after an initial position measurement and after a quench in the harmonic potential and
we derive the equilibration times for low and high bath temperatures.

Note that my work goes beyond the analysis in [8] where explicit expressions for equi-
librium correlation functions were given. More precisely, I will derive afunctional of two
time-dependent sourcesJ [F,G] such that the two-time correlation is given by

〈q̂(t)q̂(t′)〉 = ~

i

δ

δG(t)

~

i

[

δ

δG(t′)
+

δ

2δF (t′)

]

eJ [F,G]

∣

∣

∣

∣

F,G≡0

(3.44)

and similarly for higher order correlations.
Then I will obtain the path integral formulation of the generating functional bymaking

use of the coherent states of the bath variables|{ξn,f}〉 which are defined in App. 3.5.1. The
ensuing functional integration includes paths over particle and bath variables. Since we are
not interested in the degrees of freedom of the bath, we average over all bath variables to find
a “reduced action” that only depends on the particle variables. In the special cases discussed
below (e.g., harmonic potential) the remaining path-integrals can also be performed and the
functionalJ can be fully determined. In this section we sketch all steps in the derivation.
Further technical details are reported in App. 3.5.1. The reader who is not interested in these
technical details can jump directly to Eq. (3.87) where its rather lengthy final expression is
given.

As a preview let be briefly discuss in what way the results in this section on non equilibrium
correlation functions in quantum Brownian motion will be of use in part 4: Nonequilibrium
correlation functions have been recently observed in cold atoms experiments on the dynamics
of an impurity atom moving in a one dimensional (1D) quantum liquid [146, 147, 148]. Both
the impurity and the quantum liquid are confined in an optical harmonic trap so that the im-
purity motion resembles the dynamics of a damped quantum harmonic oscillator. InSec. 4.4
I apply the formalism developed here to impurity motion in a1D quantum gas described by
the Luttinger theory. In Sec. 4.4 a simplified modeling of the experiment in which polaronic
effects [149, 150] as well as the possible renormalization of the externalpotential [146] are ne-
glected. These subtle effects will be analyzed in the subsequent Section 4.6. The Luttinger liq-
uid will turn out to behave as an exotic quantum bath of harmonic oscillators witha highlynon
Ohmic spectral densityand non-linearly coupled to the particle, see also Peotta et al. [151, 151].
This is shown to lead to the curious behavior that the oscillator frequency canincreaseupon
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increasing the coupling constant between the “bath” and the impurity in strongcontrast to the
behavior of an Ohmic damped oscillator.

3.3.1 The density matrix

In the following we will use the product states|q, {ξn}〉 ≡ |q〉|{ξn}〉 between the particle and
the bath eigenstates.|q〉 is the particle position eigenstate and|{ξn}〉 is a coherent state of the
oscillators. If we define the oscillator creation and annihilation operators through

â†n =

√

mnωn

2~

[

q̂n − i

mnωn
p̂n

]

, (3.45)

ân =

√

mnωn

2~

[

q̂n +
i

mnωn
p̂n

]

, (3.46)

we have by definition̂an|{ξn}〉 = ξn|{ξn}〉. In terms of these product states the matrix elements
of the time evolution operator read

K(qf , {ξn,f};qi, {ξn,i}; t) ≡
〈qf , {ξn,f}|T̂ e−

i
~

∫ t

0 dt′ Ĥ(t′)|qi, {ξn,i}〉 (3.47)

and of its Hermitian conjugate

K∗(q′f , {ξ′n,f}; q′i, {ξ′n,i}; t) ≡
〈q′i, {ξ′n,i}|T̂ †e

i
~

∫ t

0 dt′ Ĥ(t′)|q′f , {ξ′n,f}〉 . (3.48)

T̂ † is the anti-chronological time ordering operator. The elements of the time-dependent density
matrix, ρ̂(t) ≡ Kρ̂0K∗, are given by

W(qf , {ξn,f}; q′f , {ξ′n,f}; t) ≡ 〈qf , {ξn,f}| ρ̂(t) |q′f , {ξ′n,f}〉

=

∫

dqidq
′
idξidξ

′
i K(qf , {ξn,f}; qi, {ξn,i}; t)

×W(qi, {ξn,i}; q′i, {ξ′n,i}) K∗(q′f , {ξ′n,f}; q′i, {ξ′n,i}; t) , (3.49)

where the matrix elements of the initial density matrix have been denoted by

W(qi, {ξn,i}; q′i, {ξ′n,i}) = 〈qi, {ξn,i}| ρ̂0 |q′i, {ξ′n,i}〉 (3.50)

and we used the short-hand notation

dξi =
∞
∏

n=1

e−ξ∗n,iξn,idξ∗n,idξn,i . (3.51)

The path integral representations ofK andK∗ are

K(qf , {ξn,f}; qi, {ξn,i}; t) =
∫

Dq+Dξ+e i
~
S[q+,{ξ+n }] ,

K∗(q′f , {ξ′n,f}; q′i, {ξ′n,i}; t) =
∫

Dq−Dξ−e− i
~
S∗[q−,{ξ−n }] ,

where we made clear with the superscripts+ and− which paths belong toK andK∗, respec-
tively. The functional integration measures are defined in App. 3.5.1.
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3.3.2 Reduced density matrix for a system initially coupledto an equilibrium
bath

The time-dependent density matrix in Eq. (3.49) still contains information aboutthe degrees of
freedom of the bath which we are not interested in. Therefore, we average (trace) over all the
bath variables to find a reduced density matrix that depends only on the particle variables and
the external sources.

We are interested in a system that is initially coupled to an equilibrium bath. Therefore,

ĤB0 = ĤB , ĤSB0 = ĤSB , (3.52)

where all initial Hamiltonians are labeled with a subscript0. At this point it is not necessary to
makeĤS0 explicit since this term involves only particle variables that are not affectedby the
trace over the bath variables. The matrix element of the initial density operatorEq. (3.50) in
Eq. (3.49) can be represented by an imaginary time path integral

W(qi, {ξn,i}; q′i, {ξ′n,i}) =
∫

Dq0Dξ0 e− 1
~
S0[q0,{ξ0n}] ,

where the initial actionS0 is in general different fromS reflecting the fact that̂H0 6= Ĥ. The
reduced density matrix can now be recast as

W(qf ; q
′
f ; t) ≡

∫

dqidq
′
iDq0Dq+Dq−

× e
i
~
SS [q

+]− i
~
SS [q

−]− 1
~
SS0[q

0] F [q+, q−, q0] ,

whereF [q+, q−, q0] is the “influence functional” that depends only on the particle variables, as
also doSS andSS0. The path integral runs over all paths with

q+(t) = qf , q+(0) = qi , q−(t) = q′f ,

q−(0) = q′i , q0(β~) = q−(0) , q0(0) = q+(0) ,

which is the reason for the name “closed-time path integral”. It is convenientto introduce the
linear combinations

x = (q+ + q−)/2 and x̄ = q+ − q− . (3.53)

The calculation ofF can be found in App. 3.5.1 or in [8]; the result reads

F [x, x̄, q0] = e
i
~
Φ[x,x̄,q0] , (3.54)

with

Φ[x, x̄, q0] =
i

2

∫ β~

0
dτdσ k(τ − σ)q0(τ)q0(σ)

+

∫ β~

0
dτ

∫ t

0
ds K∗(s− iτ)q0(τ)x̄(s)

− i

2

∫ t

0
dsdu KR(s− u)x̄(s)x̄(u)

−M
∫ t

0
ds x̄(s)

d

ds

∫ s

0
du γ(s− u)x(u) . (3.55)
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The kernelsK(θ), γ(t) andk(t) are defined in Eqs. (3.134), (3.145) and (3.146), respectively.
KR denotes the real part ofK. Note thatΦ[x, x̄, q0] depends on the fixed “end-points”t and
β~ of the closed-time path.

Expected values evaluated at different times are now expressed in terms of a path-integral
overq0, x andx̄ with an effective actionΣ,

〈. . . 〉 =
∫

dxfdxidx̄i

∫ ′
DxDx̄Dq0 . . . e i

~
Σ[x,x̄,q0] , (3.56)

whereΣ[x, x̄, q0] is given by

Σ[x, x̄, q0] =

Φ[x, x̄, q0] + iSS0[q
0] + SS [x+ x̄/2]− SS [x− x̄/2]

= Φ[x, x̄, q0] + i

∫ β~

0
dτ

[

M0

2
(q̇0)2 + V0(q

0)

]

+

∫ t

0
ds

[

M ˙̄xẋ− VH

(

x+
x̄

2
; s
)

+ VH′

(

x− x̄

2
; s
)]

. (3.57)

We introduced the initial massM0 of the particle and the initial potentialV0 that are in general
different from the “bulk” massM and potentialV . This allows for quenches in these parame-
ters. Note that the case in which the initial state is a pure state [e.g. Eq. (3.42)]can be easily
recovered by settingM0 = 0 andV0 = 0 or, equivalently, by noting that the pathq0 shrinks
identically to zero (since there is no initial Hamiltonian for this simple type of initial condition).

The superscripts in the path integral in Eq. (3.56) remind us of the constraint that the paths
are subject to. One has

x(0) = xi, x̄(0) = x̄i,

x(t) = xf , q0(0) = q+(0) = xi +
x̄i
2
, (3.58)

x̄(t) = 0, q0(β~) = q−(0) = xi −
x̄i
2
.

Note that due to the periodic boundary conditions of the tracex̄f = q+(t)− q−(t) = 0.

3.3.3 Generic Gaussian initial conditions

It is very easy to include the change ofΦ[x, x̄, q0] induced by the initial position measurement
in Eq. (3.40). By using the explicit Gaussian form of the projectorΠ̂(qm) [see Eq. (3.41)]
the dependence on the initial measurement can be simply incorporated inΣ[x, x̄, q0] by an
additional term of the form

i~

4∆2

[

(xi +
x̄i
2

− qm)2 + (xi −
x̄i
2

− qm)2
]

=
i~

2∆2

[

(xi − qm)2 +
x̄2i
4

]

. (3.59)

In the limit of strong uncertainty∆ → ∞ the effect of the initial measurement is blurred.
In order to recover the case where the initial state of the system is pure anddecouples from

the environment [which corresponds to the factorized initial density matrix withρ̂S0 given by
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Eq. (3.42)] the action in Eq. (3.57) has to be supplemented by

i~

4∆2

[

(xi +
x̄i
2

− qm)2 + (xi −
x̄i
2

− q′m)2
]

=
i~

2∆2

[

x2i +
x̄2i
4

+ x2m +
x̄2m
4

− 2xmxi −
1

2
x̄mx̄i

]

,

(3.60)

with the notation

xm = (qm + q′m)/2 and x̄m = (qm − q′m) . (3.61)

Since Eq. (3.59) is a special case of Eq. (3.60) corresponding toqm = q′m (or xm = qm and
x̄m = 0) we will work with the latter in the following. The relevant cases can then be selected
by taking simple limits.

In the following expressions we will write only the terms that depend onxi or x̄i since the
ones depending onxm andx̄m contribute only to an overall constant.

3.3.4 The sources

The source term appears as
∫

dt′H(t′)q+(t′) in K [see Eq. (3.47)] and as−
∫

dt′H(t′)q−(t′)
in K∗ [see Eq. (3.48)]. For convenience, we distinguished the function existing on the positive
running branch of the closed time contour, which we still callH(t), from the one existing on
the negative running branch of the same contour, which we callH ′(t). This implies that the
potentials in Eq. (3.57) are given byVH(y) = V (y)−Hy andVH′(y) = V (y)−H ′y.

After the transformation of variables in Eq. (3.53) we obtain two external time-dependent
sourcesF (s) = [H(s) + H ′(s)]/2 andG(s) = [H(s) − H ′(s)] which couple linearly to
the variables̄x(s) andx(s), respectively. All correlation functions can be computed from the
generating functionalJ [F,G] as derivatives ofJ with respect toF or G evaluated atF =
G = 0. A physical force is represented byH(s) = H ′(s), that is byF (s) 6= 0 andG(s) = 0.
Therefore, the linear response of the mean value Eq. (3.56) to an external force can be obtained
for F (s) 6= 0.

The generating functional, that is to say, the trace over the reduced density matrix in the
presence of the external sources reads

eJ [F,G] ∼
∫

dxidx̄idxf
∫ ′DxDx̄Dq0 e i

~
Σ[x,x̄,q0,xi,xf ,x̄i] ,

where the path integral is subject to the constraints in Eqs. (3.58). The overall normalization
factor depends ont, β and all parameters in the model but not on the fields. We can now write

〈q̂(t)〉 = ~

i

δ

δG(t)
eJ [F,G]

∣

∣

∣

F≡0,G≡0
(3.62)

and

〈q̂(t)q̂(t′)〉 = ~

i

δ

δG(t)

~

i

[

δ

δG(t′)
+

δ

2δF (t′)

]

eJ [F,G]
∣

∣

∣

F,G≡0
(3.63)

and all other correlation functions can be obtained in a similar way by noting that q+(t) = qf =
xf andq+(t′) = x(t)+x̄(t)/2. At this point it has become obvious why two sources are needed
in order to obtain all non-equilibrium correlation functions.
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3.3.5 The harmonic case

To go further we restrict ourselves to the study of a quantum Brownian particle in a harmonic
potential for which

−V (x+ x̄/2; s) + V (x− x̄/2; s) = −MΩ2xx̄ (3.64)

and

V0(q
0) =

1

2
M0Ω

2
0(q

0)2 . (3.65)

The choice of a quadratic potential renders the problem analytically solvable. The generating
functional can be calculated by simply evaluating the action on its minimal action path(over
the initial condition branch and the time-dependent branches) as Gaussianfluctuations yield
only pre-factors that are independent of the sources and can be determined at the end of the
calculation from the normalization of the density matrix. Note that, although both initial and
bulk potentials are harmonic, they are not necessarily the same thus allowing for the study of
quantum quenches.

3.3.6 Integration over the initial condition

We first treat the contribution of the initial condition pathq0 in Eq. (3.57). The equation of
motion forq0 can be easily obtained from Eq. (3.57):

M0q̈
0(τ)−

∫ β~

0
dσ k(τ − σ)q0(σ)−M0Ω

2
0q

0(τ)

= −i
∫ t

0
ds K∗(s− iτ)x̄(s) , (3.66)

with the fixed end-pointsq0(0) = q+i andq0(β~) = q−i . As theq0 path is part of the whole
closed-time path it implicitly depends on the fixed end-timet as well. In [8] one can find a
detailed analysis of this equation of motion which uses a Fourier expansion ofthe pathq0(τ)
on the interval[0, β~]. By using the results found therein we obtain

Σ[x, x̄, xi, xf , x̄i] =
i

2M0

∫ t

0
dsdu R′(s, u)x̄(s)x̄(u) + iM0

[

1

2Λ
x2i +

Ξ

2
x̄2i

]

+
i~

2∆2

[

x2i +
x̄2i
4

− 2xmxi −
1

2
x̄mx̄i

]

+

∫ t

0
ds M

[

˙̄xẋ− Ω2x̄x+
1

M
F̄ (s)x̄(s)+ (3.67)

1

M
G(s)x(s)− x̄(s)

d

ds

∫ s

0
duγ(s− u)x(u)

]

.

We introduced the complex “force”

F̄ (s) = F (s) + xiC1(s)− ix̄iC2(s) , (3.68)
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with the functionsC1 andC2

C1(s) =
1

β~Λ

∞
∑

k=−∞
ukgk(s) ,

C2(s) =
1

β~

∞
∑

k=−∞
ukνkfk(s) . (3.69)

The constantsΛ andΞ are given by

Λ =
1

β~

∞
∑

k=−∞
uk and Ξ =

1

β~

∞
∑

k=−∞
uk(Ω

2
0 + ζk) , (3.70)

with uk = (Ω2
0 + ν2k + ζk)

−1, νk = 2πk/β~, ζk = [Mγ(0)− gk(0)]/M0 [for the definition of
γ(t) see Eq. (3.75) below] and

gk(s) =

∫ ∞

0

dω

π
S(ω)

2ω

ω2 + ν2k
cos(ωs) , (3.71)

fk(s) =

∫ ∞

0

dω

π
S(ω)

2νk
ω2 + ν2k

sin(ωs) , (3.72)

whereS(ω) is the spectral density of the bath. The two-time functionR′ reads

R′(s, u) = R(s, u) +M0KR(s− u) ,

R(s, u) = −ΛC1(s)C1(u) +
1

β~

∞
∑

k=−∞
uk [gk(s)gk(u)− fk(s)fk(u)] , (3.73)

with

KR(s− u) =
1

β~

∑

k

gk(s− u) (3.74)

the real part of the kernelK. The time-dependent bath kernelγ(s) is given by [see Eq. (3.145)]

γ(s) =
2

M

∫ ∞

0

dω

π

S(ω)

ω
cos(ωs) . (3.75)

The functionsC1 andC2 as well as the kernelR(s, u) are not to be confused with the correlation
functions and the linear response function that will be denoted byC andR, respectively.

3.3.7 Real time minimal action paths with external sources

The equations of motion forx(s) andx̄(s) read

ẍ(s) +
d

ds

∫ s

0
du γ(s− u)x(u) + Ω2x(s)

=
F̄ (s)

M
+

i

MM0

∫ t

0
du R′(s, u)x̄(u) , (3.76)

¨̄x(s)− d

ds

∫ t

s
du γ(u− s)x̄(u) + Ω2x̄(s) =

G(s)

M
. (3.77)
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The actionΣ evaluated along the minimal action paths can be determined by inserting the solu-
tions to Eqs. (3.76) and (3.77) into Eq. (3.67). However, the authors of [8] noted a simplification
of the calculation which can be generalized to our case where the sourceG(s) is also present
(in [8] no external source for̄x was used). The idea is the following. After a partial integration
in the second line of Eq. (3.67) the actionΣ takes the form

Σ[x, x̄, xi, xf , x̄i] =

−Mx̄iẋi −
i

2M0

∫ t

0
dsdu R′(s, u)x̄(s)x̄(u)

+

∫ t

0
ds G(s)x(s) + border(xi, xf , x̄i) (3.78)

when evaluated along the minimal action paths determined by Eqs. (3.76) and (3.77), where we
used the boundary condition̄xf = 0. Here,border(xi, xf , x̄i) stands for all border terms in
Eq. (3.67).

On the other hand, one can split the force Eq. (3.68) into its real and imaginary partsF̄ (s) =
F̄R(s) + iF̄I(s). Then, the minimal action pathx(s) splits intox(s) = xR(s) + ixI(s), where
xI(s) satisfies the boundary conditionsxI(0) = xI(t) = 0. The trick is to show now that
one can simply focus on the real partxR(s) of the minimal action path in order to obtain the
complete stationary phase action. Indeed, if we evaluate the action Eq. (3.67) only along the
minimalxR(s) andx̄(s) we obtain

Σ[xR, x̄, xi, xf , xi] = −Mx̄iẋR,i +

∫ t

0
ds G(s)xR(s)

+

∫ t

0
ds x̄(s)

[

F̄I(s) +
i

2M0

∫ t

0
du R′(s, u)x̄(u)

]

+border(xi, xf , x̄i) , (3.79)

where we used the fact thatxR(s) satisfies the real part of Eq. (3.76). We now want to show
that Eqs. (3.79) and (3.78) are indeed equal. With the help of the imaginary part of Eq. (3.76)
and the equation of motion (3.77) we can easily prove by integration by parts that

∫ t

0
dsx̄(s)

[

F̄I(s) +
1

M0

∫ t

0
du R′(s, u)x̄(u)

]

= −Mx̄iẋI,i +

∫ t

0
ds G(s)xI(s) ,

and by using this identity in Eq. (3.79) we recover Eq. (3.78). Therefore, the right-hand-side
(rhs) of Eq. (3.78) and the rhs of Eq. (3.79) coincide. It is sufficientto evaluate the action
Eq. (3.67) along the real componentxR(s) that satisfies a much simpler equation thanx(s).

In terms of the end pointsxi, xf and x̄i, the solutions to the real parts of Eqs. (3.76)
and (3.77) read

xR(s) =
G+(s)

G+(t)
xf +

[

Ġ+(s)−
G+(s)

G+(t)
Ġ+(t)

]

xi

+
1

M

∫ s

0
du G+(s− u)F̄R(u)

− 1

M

G+(s)

G+(t)

∫ t

0
du G+(t− u)F̄R(u) (3.80)
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and

x̄(s) =
G+(t− s)

G+(t)
x̄i +

1

M

∫ t

s
du G+(u− s)G(u)

− 1

M

G+(t− s)

G+(t)

∫ t

0
du G+(u)G(u) , (3.81)

whereG+(t) is a propagator that in Laplace-transform reads

G̃+(λ) =
1

λ2 + λγ̃(λ) + Ω2
. (3.82)

From Eq. (3.80) we immediately find, by using the boundary conditionsG+(0) = 0, Ġ+(0) = 1
andG̈+(0) = 0,

ẋR,i =
1

G+(t)
xf − Ġ+(t)

G+(t)
xi

− 1

G+(t)

1

M

∫ t

0
du G+(t− u)F̄R(u) . (3.83)

Inserting the solutions to Eqs. (3.80) and (3.81), and Eq. (3.83) into Eq. (3.79) we find an
effective actionΣ[xi, xf , x̄i] that depends only on the end-points,xi, xf andx̄i, and the external
sourcesF andG:

Σ[xi, xf , x̄i] =

− iM0

ǫ2
xixm − iM0

4ǫ2
x̄ix̄m −Mx̄ixf

1

G+(t)
+Mx̄ixi

Ġ+(t)

G+(t)
+

x̄i
G+(t)

∫ t

0
du G+(t− u)F̄R(u)

− ix̄i

∫ t

0
ds C2(s)x̄(s) +

iM0

2

(

x2i
Λ′ + Ξ′x̄2i

)

+
i

2M0

∫ t

0
dsdu R′(s, u)x̄(s)x̄(u)

+ xf

∫ t

0
ds

G+(s)

G+(t)
G(s)

+ xi

∫ t

0
ds G(s)

[

Ġ+(s)−
G+(s)

G+(t)
Ġ+(t)

]

+
1

M

∫ t

0
ds

∫ s

0
du G+(s− u)G(s)F̄R(u)

− 1

M

∫ t

0
dsdu

G+(t− u)

G+(t)
G+(s)G(s)F̄R(u) , (3.84)

with

1

Λ′ ≡
1

Λ
+

1

ǫ2
, Ξ′ ≡ Ξ +

1

4ǫ2
and ǫ2 ≡ M0∆

2

~
. (3.85)

For the sake of a clear presentation we have not replacedx̄(s) andF̄R by their corresponding
expressions in terms of the end-points yet.

3.3.8 Integration over the end-points

In order to find the final expression forJ [F,G] we still have to integrate over the end-points
xi, xf andx̄i. Since the exponentΣ[xi, xf , x̄i] is linear inxf the integration over this variable
generates aδ–function of the form

δ

[

x̄i −
1

M

∫ t

0
ds G+(s)G(s)

]

, (3.86)
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up to a factor not depending on the end-points which, in combination with the integration over
x̄i, enforces a substitution of̄xi by 1

M

∫ t
0 ds G+(s)G(s) andx̄(s) by 1

M

∫ t
s du G+(u − s)G(u)

[the first and the third terms of the rhs of Eq. (3.81) cancel]. Moreover,after the integration over
x̄i the fifth and the last terms of the rhs of Eq. (3.84) cancel, too. Finally, the Gaussian integral
overxi yields

J [F,G] =

− Λ′

2~M0

(∫ t

0
ds G(s)Ġ+(s)

)2

+
M0

4~ǫ2M
x̄m

∫ t

0
ds G+(s)G(s)

− Λ′

~MM0

∫ t

0
ds G(s)Ġ+(s)

∫ t

0
ds′

∫ s′

0
du′G+(s

′ − u′)C1(u
′)G(s′)

− Ξ′M0

2~M2

(∫ t

0
ds G(s)G+(s)

)2

+
i

~M

∫ t

0
ds

∫ s

0
du G+(s− u)G(s)F (u)

+
1

~M2

∫ t

0
ds G+(s)G(s)

∫ t

0
ds′

∫ t

s′
du′G+(u

′ − s′)C2(s
′)G(u′)

+
iΛ′

~ǫ2
xm

[∫ t

0
ds G(s)Ġ+(s) +

1

M

∫ t

0
ds

∫ s

0
du G+(s− u)G(s)C1(u)

]

− 1

2~M2M0

∫ t

0
ds

∫ t

0
ds′

∫ t

s
du

∫ t

s′
du′G+(u− s)R′′(s, s′)G+(u

′ − s′)G(u)G(u′) .

(3.87)

Here we introduced the kernel

R′′(s, s′) = Λ′C1(s)C1(s
′) +R′(s, s′) , (3.88)

where we used Eq. (3.139). Equation (3.87) is the central result of the first part of this paper.
It allows us to derive all non-equilibrium correlation functions in a systematicway. Direct
applications of this method will be presented in Secs. 3.4 and 4.4.

3.3.9 The correlation function

The two-time correlation function Eq. (3.63) has two contributions,

〈q̂(t)q̂(t′)〉 = 1

2
〈[q̂(t), q̂(t′)]+〉+

1

2
〈[q̂(t), q̂(t′)]−〉

= C(t, t′) + iA(t− t′) . (3.89)

The first term, the average of the anti-commutator or symmetrized contribution, isreal and
the second one, the average of the commutator or anti-symmetrized contribution, is imaginary
and proportional to the linear response function,R(t, t′), as shown by the Kubo formula. For
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generic Gaussian initial conditions, Eq. (3.41), one finds

C(t, t′) =
Λ′
~

M0

[

Ġ+(t)Ġ+(t
′) +

Ġ+(t)

M

∫ t′

0
du G+(t

′ − u)C1(u) +
1

M
Ġ+(t

′)
∫ t

0
du G+(t− u)C1(u)

]

+
~Ξ′M0

M2
G+(t)G+(t

′)− ~

M2

[

G+(t)

∫ t′

0
G+(t

′ − u)C2(u) + G+(t
′)
∫ t

0
G+(t− u)C2(u)

]

+
Λ′2

ǫ4
x2m

[

Ġ+(t) +
1

M

∫ t

0
du G+(t− u)C1(u)

]

[

Ġ+(t
′) +

1

M

∫ t′

0
du G+(t

′ − u)C1(u)

]

− M2
0

16ǫ4M2
x̄2mG+(t)G+(t

′) +
~

M2M0

∫ t

0
du

∫ t′

0
du′ G+(t− u)R′′(u, u′)G+(t

′ − u′) .

(3.90)

To represent a pure initial condition that is initially decoupled from the bath, as in Eq. (3.42),
we setM = M0, Λ′ = ǫ2 andΞ′ = 1/4ǫ2 as well asC1(s) = 0, C2(s) = 0 andR′′(u, u′) =
MK(u − u′). A non-factorized initial state with – say – an initial position measurement of
“width” ǫ is obtained withxm = qm and x̄m = 0. In the classical case the non equilibrium
correlator of a Brownian particle is given by Eq. (3.153).

3.4 Non equilibrium dynamics after quantum quenches.

Quenches from a high temperature initial state have been extensively studied in the literature.
They correspond to the case of a factorizing density matrix as in Eq. (3.39). In this section we
will study the non-equilibrium dynamics of a quantum Brownian particle after quenches from
different initial states. As already mentioned in the introduction, there are twoexperimental
scenarios that are of interest to us. In the first one the initial position of a Brownian particle
trapped by a harmonic potential is measured att = 0. We will study this case in the first part
of this section by focusing on the two-time correlation function. The second scenario consists
in a quench of the trapping potential, which in the case of a harmonic potential corresponds to
an abrupt change in the trapping frequency. Such a quench will be studied in the second part of
this section. In both cases, we will derive the asymptotic equilibration behavior of the system
in the presence of Ohmic dissipation.

3.4.1 A particle in a harmonic potential with an initial position measurement

The general results in Sec. 3.3 are here specialized to the case of a particle trapped in a harmonic
potential, on which a position measurement is performed att = 0. As we work with the same
particle initially and subsequently,M0 = M , whileΩ0 = Ω > 0. At t = 0 a measurement of
the particle position is performed with outcomeqm = 0 and uncertainty∆. The initial density
matrix is given by Eq. (3.40). Note that the particle is permanently coupled to thebath, hence
the initial density matrix does not factorize. Thus, our starting point is the general expression
Eq. (3.90) withM =M0, Ω = Ω0 andxm = x̄m = 0. The Laplace transform of the correlator
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reads

C̃(λ, κ) = ~

M
G̃+(λ)G̃+(κ)

{

Λ′λκ+
Λ′

M
λC̃1(κ) +

Λ′

M
κC̃1(λ) +

Ξ′M2
0

M2

− 1

M
C̃2(λ)−

1

M
C̃2(κ) +

1

M2
R̃′′(λ, κ)

}

, (3.91)

an expression that can be simplified by using the method explained in App. 3.5.3.
Introducing the functioñhk(λ) = g̃k(λ)/M + λ, Eq. (3.91) can be written as

C̃(λ, κ) = ~

M
G̃+(λ)G̃+(κ)

(Λ′ − Λ)

(β~Λ)2

∑

k,k′

ukuk′ h̃k(λ)h̃k′(κ)

+
~

4Mǫ2
G̃+(λ)G̃+(κ) +

C̃1eq(λ) + C̃1eq(κ)

λ+ κ
, (3.92)

with the equilibrium correlation functioñC1eq(λ) in the Laplace domain defined in Eq. (3.170).
In App. 3.5.3 it is shown that̃hk(λ) can be written in terms of̃G−1

+ (λ) and G̃−1
+ (|νk|) [see

Eq. (3.169)]. ForΩ = Ω0 we use the fact thatuk = G̃+(|νk|) and we find from the definition of
the equilibrium correlator

C̃1eq(λ) =
1

βM

∑

k

λ

ν2k − λ2

[

G̃+(λ)− G̃+(|νk|)
]

, (3.93)

which is derived in App. 3.5.3 [see Eq. (3.170)], that the desired non equilibrium correlation
function of a quantum Brownian particle with initial position measurement reads

C̃(λ, κ) =
M

~

Λ′ − Λ

Λ2
C̃1eq(λ)C̃1eq(κ) +

~

4Mǫ2
G̃+(λ)G̃+(κ)

+
C̃1eq(λ) + C̃1eq(κ)

λ+ κ
. (3.94)

The classical correlator for an initial position measurement with outcomeq0 = 0 and un-
certainty∆ can be obtained from Eq. (3.158) by replacing〈q02〉 by ∆2. The initial mo-
mentum is not measured and it is therefore distributed according to the Boltzmann–law with
〈v20〉 = (βM)−1. In the limit of a sharp position measurement (∆ → 0) the classical corre-
lator of an equilibrium particle reads̃Ceq(λ, κ) − βMΩ2 C̃1eq(λ)C̃1eq(κ). As to the quantum
correlator, we note thatΛ′ = 0 for ∆ → 0 and the sum of the first and the third term in the
rhs of Eq. (3.94) yields̃Ceq(λ, κ)−M/(~Λ) C̃1eq(λ)C̃1eq(κ) which already has the form of its
classical counterpart. It is easy to show that in the high temperature limitβ~ ≪ |Ω2 − γ2/4|
the two expressions coincide exactly. The role of the second term in the rhsof Eq. (3.94)
remains to be discussed: it describes the initial momentum due to Heisenberg’suncertainty re-
lation. Consequently, it diverges when the initial position measurement becomes sharp unless
one considers that~/(Mǫ2) = ~

2/(M2∆2) → 0 even though∆ → 0. More precisely, when
β~|Ω2 − γ2/4|1/2 ≪ 1 we haveC1eq ∼ 1/(βMΩ2) andG+ ∼ 1/Ω. In order for the second
term of the rhs of Eq. (3.94) to be small compared to the other terms the condition∆ ≫ λT
must hold, withλT =

√

β~2/(2πM) the thermal de Broglie–wavelengthof the particle. Only
then can one speak of a classical particle: the conditionβ~|Ω2 − γ2/4|1/2 ≪ 1 that properly
defines thehigh temperature regimeis not sufficient. One also has to take themacroscopic
measurement limitdefined through∆ ≫ λT .
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In the real time domain the quantum correlation function is

C(t, t′) =
M

~

Λ′ − Λ

Λ2
C1eq(t′)C1eq(t′)

+
~

4Mǫ2
G+(t)G+(t

′) + C1eq(|t− t′|) , (3.95)

whereC1eq(t) is the real time equilibrium correlation function. This result applies to any kind
of spectral density of the bath. We will use the correlation function Eq. (3.95) in Sec. 4.4 to
study the non equilibrium dynamics of an impurity in a Luttinger liquid bath for whicha specific
spectral density of the bath applies.

We are interested in the equilibration behavior of Eq. (3.95) in the presenceof Ohmic dis-
sipation for which the spectral density behaves asS(ω) ∼ γω for smallω, with γ playing the
role of a friction coefficient [for more details see App. 3.5.4]. It is of special interest to study
the strong quantum regimeβ~ ≫ |Ω2 − γ2/4|−1/2. By using the long–time limits Eq. (3.179)
and Eq. (3.180) presented in App. 3.5.4 valid fort≫ γ−1 we find that the propagatorG+(t) ex-
ponentially approaches zero whereas the equilibrium correlation functionC1eq(t) relaxes with
a power law∼ t−2 for t → ∞. In the long–time limit the correlator Eq. (3.95) thus relaxes as
fast as the squared equilibrium correlation function. Therefore, forβ~ ≫ |Ω2 − γ2/4|−1/2 :

C(t, t′) = C1eq(|t− t′|) +O
[

(tt′)−2
]

(3.96)

when t, t′ ≫ γ−1, and the equilibrium functionC1eq(|t − t′|) = Ceq(t, t′) is asymptotically
approached during the algebraic relaxation of the non–equilibrium terms. Consequently, care
has to be taken in experiments when an equilibrium system is desired at very low temperatures
after an initial position measurement. The relaxation of the system is slow independently of the
dissipation strengthγ. At high temperaturesβ~ ≪ |Ω2 − γ2/4|−1/2 the relaxation is of order
O(e−γt) [see the discussion in App. 3.5.4] and therefore exponential as in the classical limit.

3.4.2 Quantum quench in the confining potential.

In this section we desire to gain insight into the equilibration process of a quantum Brownian
particle after an abrupt change in the trapping frequency. Att < 0 the particle is confined in a
harmonic potential with frequencyΩ0 > 0. At t = 0 the experimentalist abruptly changes the
strength of the harmonic potential resulting in a higher or lower trapping frequency. We do not
consider an initial position measurement since we assume that the particle is already localized
by the initial harmonic trap. Hence we setΛ′ = Λ, Ξ′ = Ξ, xm = x̄m = 0 andǫ → ∞. By
starting from Eq. (3.91) and by using Eq. (3.73) it is straightforward to show with the methods
employed in App. 3.5.3 that the correlator in the Laplace domain reads

C̃(λ, κ) = ~

M

G̃+(λ)G̃+(κ)

G̃0
+(λ)G̃0

+(κ)

1

λ+ κ

[

C̃1eq
0 (λ) + C̃1eq

0 (κ)
]

, (3.97)

whereG̃0
+(λ) = 1/[λ2 + λγ̃(λ) + Ω2

0] is the propagator with initial frequencyΩ0, and

C̃1eq
0 (λ) =

1

βM

∑

k

λ

ν2k − λ2

[

G̃0
+(λ)− G̃0

+(|νk|)
]

(3.98)

is the equilibrium correlation function of a particle in a harmonic potential with frequencyΩ0

[see Eq. (3.170)]. The structure of Eq. (3.97) is very different from the classical counterpart
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Eq. (3.157). Still, by using the high temperature approximationC̃1eq
0 (λ) ≃ −

[

G̃+(λ)− 1/Ω2
0

]

/λ

[see the end of the discussion in App. 3.5.4] one recovers the classical expression Eq. (3.153).
The equilibration time for Ohmic dissipation in the strong quantum regimeβ~ ≫ |Ω2 −

γ2/4|−1/2 can be found in the following way. Note first that wheñC1eq
0 (λ) is multiplied by

G̃+(λ)/G̃0
+(λ) one obtains a new function that we callC̃′:

C̃′(λ) =
1

βM

∑

k

λ

ν2k − λ2

[

G̃+(λ)−
G̃+(λ)G̃0

+(|νk|)
G̃0
+(λ)G̃+(|νk|)

G̃+(|νk|)
]

. (3.99)

Second, we observe that the Laplace transform of(∂t+∂t′)f(t, t
′) is equal to(λ+κ)f̃(λ, κ)−

f̃(t = 0;κ) − f̃(λ; t′ = 0) where f̃(λ, κ) is the Laplace transform of the generic function
f(t, t′) with respect to botht andt′ while f̃(λ; t′ = 0) [f̃(t = 0;κ)] is the Laplace transform
of f(t, t′ = 0) [f(t = 0, t′)] with respect tot (t′). Now, by choosingf(t, t′) = C(t, t′) we find
for the correlation function Eq. (3.97) in the time domain

(∂t + ∂t′)C(t, t′) = C′(t)
[

1 + (Ω2 − Ω2
0)G+(t

′)
]

+ C′(t′)
[

1 + (Ω2 − Ω2
0)G+(t)

]

− C(t, 0)− C(0, t′) . (3.100)

From Eq. (3.97) we easily find the expression of the Laplace transform of C(t, t′ = 0) by
multiplying C̃(λ, κ) by κ and by taking the limitk → ∞:

C̃(λ; t′ = 0) = C̃1eq
0 (λ)

[

1 + (Ω2 − Ω2
0)G̃+(λ)

]

= C̃′(λ) . (3.101)

Accordingly, Eq. (3.100) simplifies to

(∂t + ∂t′)C(t, t′) = C′(t)(Ω2 − Ω2
0)G+(t

′) + C′(t′)(Ω2 − Ω2
0)G+(t) . (3.102)

Finally, it is clear that(∂t + ∂t′)C(t, t′) = 0 whenC(t, t′) = Ceq(t, t′) = C1eq(|t − t′|) so that
the terms of the rhs of Eq. (3.102) can be understood as the derivative of the non equilibrium
part ofC(t, t′). In combination with the results of the discussion in App. 3.5.4 the equilibration
behavior of the correlator at low temperatures after a quench in the trapping potential can be
summarized as follows [by noting that the asymptotic long–time behavior ofC′(t) andC1eq(t)
are identical]:

C(t, t′) = C1eq(|t− t′|) +O
[

e−γt/2/t′ + e−γt′/2/t
]

(3.103)

for t, t′ ≫ γ−1. Consequently, the non equilibrium contributions are exponentially suppressed
which leads to a faster equilibration than the one found after an initial position measurement.

At high temperatures the relaxation ofC′(t) andC1eq(t) are both exponential ofO(e−γt/2)

so that in the high temperature regimeC(t, t′) = C1eq(|t−t′|)+O
[

e−γ(t+t′)/2
]

in sharp contrast

with the algebraic relaxation found in Sec. 3.4.1.

3.5 Appendix B

3.5.1 Coherent state path integral formulation

In this Appendix we detail the derivation of a path-integral representationof the generating
functional of the multi-time correlation functions of a quantum particle in contactwith a generic
quantum bath made of an ensemble of harmonic oscillators.
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The terms in the Hamiltonian of the dissipative quantum Brownian particle that depend on
the bath variables, Eqs. (3.33) and (3.34), can be rewritten in terms of creation and annihilation
operators of the bath oscillators in view of a later use of coherent states. One defines the creator
and the annihilator of then-th oscillator mode by

â†n =

√

mnωn

2~

[

x̂n − i

mnωn
p̂n

]

, (3.104)

ân =

√

mnωn

2~

[

x̂n +
i

mnωn
p̂n

]

. (3.105)

The operatorŝan and â+n satisfy the bosonic commutation relations[â+n , âm] = δn,m and
[â+n , â

+
m] = [ân, âm] = 0. Equations (3.33) and (3.34) read in terms of theâ+n andân

ĤB =
∞
∑

n=1

~ωnâ
+
n ân , (3.106)

ĤSB =
∞
∑

n=1

gnq̂(â
+
n + ân) . (3.107)

Here we introduced the notationgn ≡
√

~c2n/2mnωn.
We introduce the coherent states of the harmonic oscillators, which are particularly suitable

when dealing with the bosonic ladder operators in Eq. (3.104),

|ξ〉 = eξâ
+ |0〉, 〈ξ| = 〈0|eξ∗â , (3.108)

whereξ is a complex number andξ∗ its complex conjugate.̂a+ and â stand for the creation
and annihilation operator of each harmonic oscillator. The coherent statesare eigenstates of the
annihilation operator, that is

â|ξ〉 = ξ|ξ〉 , 〈ξ|â+ = 〈ξ|ξ∗ , (3.109)

with the properties

〈ξ|ζ〉 = eξ
∗ζ and 1

′ =
∫

dξ∗dξ e−ξ∗ξ|ξ〉〈ξ| , (3.110)

where1′ denotes the unity matrix of one oscillator. Hence, the unity matrix of the whole
particle–bath system1 can be written in terms of the product states|q, {ξn}〉 as

1 =

∫

dq

∫

∏

n

{

dξ∗ndξn e
−ξ∗nξn

}

|q, {ξn}〉〈q, {ξn}| . (3.111)

The trace of any observablêB that depends on the particle and the bath operators can be ex-
pressed as

TrB̂ =

∫

dq

∫

∏

n

{

dξ∗ndξn e
−ξ∗nξn

}

〈q, {ξn}|B̂|q, {ξn}〉 . (3.112)

The generating functional can now be obtained by supplementing the potential V (q̂; s) in
Eq. (3.32) by a linear term−H(s)q̂ whereH(s) is a c-number function that plays the role
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of an external source. To be more explicit, we introduce two distinct sourcesH(s) andH ′(s)
in the potentialV for the time evolution operator

K(qf , {ξn,f};qi, {ξn,i}; t) ≡
〈qf , {ξn,f}|T̂ e−

i
~

∫ t

0dt
′ H(t′)|qi, {ξn,i}〉 (3.113)

and its Hermitian conjugate

K∗(q′f , {ξ′n,f};q′i, {ξ′n,i}; t) ≡
〈q′i, {ξ′n,i}|T̂ †e

i
~

∫ t

0dt
′H(t′)|q′f , {ξ′n,f}〉 , (3.114)

respectively. T̂ † is the anti-chronological time ordering operator. In the following we will
use the shorthand notationdξi =

∏∞
n=1 e−ξ∗n,iξn,idξ∗n,idξn,i . All correlation functions of the

position q̂ can be obtained by taking the corresponding variations of the trace of thetime-
dependentdensity matrixρ̂(t) ≡ K̂ρ̂0K̂∗, Eq. (3.49), with respect toH(s) andH ′(s). The
matrix elements of̂ρ(t) ≡ K̂ρ̂0K̂∗ are given by

W(qf , {ξn,f}; q′f , {ξ′n,f}; t) = 〈qf , {ξn,f}| ρ̂(t) |q′f , {ξ′n,f}〉 , (3.115)

W(qi, {ξn,i}; q′i, {ξ′n,i}) = 〈qi, {ξn,i}| ρ̂0 |q′i, {ξ′n,i}〉 . (3.116)

The path integral representation ofK andK∗ are found by using standard methods:

K(qf , {ξn,f}; qi, {ξn,i}; t) =
∫

Dq+Dξ+

× exp

(

i

~
S[q+, {ξ+n }]

)

(3.117)

K∗(q′f , {ξ′n,f}; q′i, {ξ′n,i}; t′) =
∫

Dq−Dξ−

× exp

(

− i

~
S∗[q−, {ξ−n }]

)

, (3.118)

where we make clear by the superscripts+ and− which path belongs toK and which toK∗,
respectively. The real time interval[0, t] has been discretized intoT ∈ N steps of length
∆t with t = ∆tT . The functional integration measures are defined asDq =

∏T−1
j=1 dqj with

qj ≡ q(jt/T ). The terms contributing to the total action,S[q, ξn] = SS [q]+SB[ξn]+SSB[q, ξn]
introduced in Eqs. (3.117) and (3.118), read in discretized form

SS [q] =
T
∑

j=1

∆t

[

M

2

(

qj − qj−1

∆t

)2

− V (qj ; j∆t)

+H(j∆t)qj ] , (3.119)

SB[ξn] + SSB[q, ξn] = i~
T−1
∑

j=1

ξ∗n,j(ξn,j − ξn,j−1)

+ ∆t
T
∑

j=1

[

~ωξ∗n,jξn,j−1 + gnqj(ξ
∗
n,j + ξn,j−1)

]

. (3.120)
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The reduced density matrix depends only on the particle variables and the external sources,

W(qf ; q
′
f ; t) ≡

∫

dqidq
′
idξidξ

′
idξf K(qf , {ξn,f}; qi, {ξn,i}; t)

×W(qi, {ξn,i}; q′i, {ξ′n,i})K∗(q′f , {ξn,f}; q′i, {ξ′n,i}; t) . (3.121)

In Eqs. (3.117) and (3.118) we omitted normalization factors that do not depend on the bath nor
on the particle variables. Note that the integral runs only over bath and particle variables with
an index between1 andT − 1 sinceq0 = qi, qT = qf (and analogously for the bath variables)
are fixed forK andq0 = q′f , qT = q′i (and analogously for the bath variables) are fixed forK∗.

The path integral description of̂ρ0 is obtained by dividing the imaginary time interval[0, β~]

into T time steps. Consequently, by usingρ̂ = e−βĤ0 we find

W(q′i, {ξ′n,i};qi, {ξn,i}) =
∫

Dq0
∏

n

{

Dξ0n exp

(

−1

~
S0[q

0, ξ0n]

)}

, (3.122)

whereS0[q, ξn] = S0S [q] + S0B[ξn] + S0SB[q, ξn] with

S0B[ξn] + S0SB[q, ξn] = ~

T−1
∑

j=1

ξ∗n,j(ξn,j − ξn,j−1)

+ ∆t′
T
∑

j=1

[

~ωξ∗n,jξn,j−1 + gnqj(ξ
∗
n,j + ξn,j−1)

]

. (3.123)

We introduced the imaginary time path step∆t′ = β~/T .

Integration over the bath variables

The influence functional in discretized form reads

F [{qj}] =
∏

n

∫ 3T
∏

j=1

dξn,jdξ
∗
n,j e

−∑3T
j,j′=1 ξ

∗

n,jK
−1(j,j′)ξn,j′

e
i
~
gn

∑T
j=1 ∆tqj(ξn,j+ξ∗n,j)

× e−
1
~
gn

∑2T
j=T+1 ∆t′qj(ξn,j+ξ∗n,j)− i

~
gn

∑3T
j=2T+1 ∆tqj(ξn,j+ξ∗n,j) , (3.124)

which depends on the correlation matrix

K−1 =



















1 0 0 · · · −k1
−k2 1 0 · · · 0
0 −k3 1 · · · 0
0 0 −k4 1 · · · 0
...
0 0 · · · −k3T 1



















, (3.125)
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with kj = 1+ i∆tω for j ≤ T , kj = 1− i∆tω for j ≥ 2T andkj = 1−∆t′ω for T < j ≤ 2T .
Note that in this notation there are3T time steps in Eq. (3.124) andqj = q+j for j ≤ T , qj = q0j
for T < j ≤ 2T andqj = q−j for j > 2T is understood with an analogous notation for theξn,j .

The part of the action that depends only on the particle variablesSS can be found by com-
bining the relevant contributions in Eqs. (3.117), (3.118) and (3.122),

i

~
S̃S({qj}) =

i

~
SS({qj}Tj=1)−

i

~
SS({qj}3Tj=2T+1)

− i

~
S0S({qj}2Tj=T+1) . (3.126)

Note that the exponential factors that stem from the bath integration measureEq. (3.51) exactly
combine with the sums in the actions (3.119) and (3.123). The elementsK(j, j′) of the matrix
K are easily found:

K(j, j′) =
1

1− k1 · · · k3T











1 for j = j′
∏j

l=j′+1 kl for j > j′
k1···k3T∏j′

l=j+1 kl
for j < j′ .

(3.127)

The Gaussian integral in Eq. (3.124) is now readily done. Explicit expressions of Eq. (3.127) in
the continuum limitT → ∞ are easily obtained: for instance, whenj, j′ < T ,K(j, j′) couples
to two q+ fields and is given by

K(j, j′) =
1

1− e−β~ω

{

eiω∆t(j−j′) for j′ < j ≤ T

e−β~ω+iω∆t(j−j′) for j < j′ ≤ T .
(3.128)

Note that under the sum overj andj′ only its symmetrized version occurs. By reintroducing
the fieldsq+, q− andq0 we find [8]

F [q+, q−, q0] = exp

(

−1

~
Φ[q+, q−, q0]

)

, (3.129)

where the exponent reads

Φ[q+, q−, q0] =

−
∫ β~

0
dτ

∫ τ

0
dσ K(−iτ + iσ)q0(τ)q0(σ) +

∫ β~

0
dτ
µ

2
q0

2
(τ)

− i

∫ β~

0
dτ

∫ t

0
ds K∗(s− iτ)q0(τ)

[

q+(s)− q−(s)
]

(3.130)

+

∫ t

0
dt

∫ s

0
du

[

q+(s)− q−(s)
] [

K(s− u)q+(u)

−K∗(s− u)q−(u)
]

+ i

∫ t

0
ds
µ

2

[

q+
2
(s)− q−

2
(s)

]

.

The kernelK reads for complex timesθ = s− iτ , 0 ≤ τ ≤ β~

K(θ) =

∞
∑

n

gn
2

~

cosh[ωn(β~/2− iθ)]

sinh[ωnβ~/2]
, (3.131)
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and the constantµ is given by

µ = 2
∞
∑

n

gn
2

~ωn
. (3.132)

Note that for a fermionic bath the only difference lies in the boundary conditions enforced by
the trace operation: for fermions anti-periodic boundary conditions applyin contrast to periodic
boundary conditions for bosons. This difference is incorporated by replacing−k1 by k1 in
Eq. (3.125). The analysis for bosons can then be repeated, leading to afermionic bath kernel
where thesinh in the denominator of Eq. (3.131) is replaced by acosh. Note that the numerator
does not change since two minus signs arrise, one due to the anticommutation relation of the
fields when passing from a

∫ β~
0 dτdσ-integral to a

∫ β~
0 dτ

∫ τ
0 dσ-integral, and a second one due

to k1 7→ −k1.
The environment can be regarded as a proper heat bath only if the spectrum of the harmonic

oscillators becomes quasi-continuous. Accordingly, we introduce the spectral density of the
bath through (thepi is a mere convention)

S(ω) = π
∑

n

gn
2

~
δ(ω − ωn) = π

∑

n

c2n
2mnωn

δ(ω − ωn) . (3.133)

Then the kernelK(θ) and the constantµ are rewritten in terms of the spectral density

K(θ) =

∫ ∞

0

dω

π
S(ω)

cosh[ω(β~/2− iθ)]

sinh[ωβ~/2]
(3.134)

and

µ = 2

∫ ∞

0

dω

π

S(ω)

ω
. (3.135)

The real and the imaginary parts of the kernelK(θ) = KR(θ) + iKI(θ) are found to be

KR(s− iτ) =

∫ ∞

0

dω

π
S(ω)

cosh[ω(β~/2− τ)]

sinh[ωβ~/2]
cos(ωs) (3.136)

KI(s− iτ) = −
∫ ∞

0

dω

π
S(ω)

sinh[ω(β~/2− τ)]

sinh[ωβ~/2]
sin(ωs) . (3.137)

The imaginary time argumentτ varies in the interval[0, β~] so that it is convenient to introduce
the Fourier series ofK(s− iτ) with respect toτ . Introducing the Matsubara frequencies

νk =
2πk

β~
(3.138)

we find

KR(s− iτ) =
1

β~

∞
∑

k=−∞
gk(s)e

iνkτ (3.139)

and

KI(s− iτ) =
i

β~

∞
∑

k=−∞
fk(s)e

iνkτ , (3.140)
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where the functionsgk andfk are defined through

gk(s) =

∫ ∞

0

dω

π
S(ω)

2ω

ω2 + ν2k
cos(ωs) (3.141)

and

fk(s) =

∫ ∞

0

dω

π
S(ω)

2νk
ω2 + ν2k

sin(ωs) . (3.142)

In the following we will express most quantities in terms of the functionsgk andfk. For real
times the real and the imaginary parts of the kernel (3.134) read [see Eqs.(3.139) and (3.140)]

KR(s) =

∫ ∞

0

dω

π
S(ω) coth(β~ω/2) cos(ωs) (3.143)

and

KI(s) = −
∫ ∞

0

dω

π
S(ω) sin(ωs) . (3.144)

We now eliminate the local terms in Eq. (3.130). We define the two new kernels

γ(s) =
2

M

∫ ∞

0

dω

π

S(ω)

ω
cos(ωs) (3.145)

and

k(τ) =
M0

β~

∞
∑

k=−∞
ζke

iνkτ , (3.146)

whereζk is defined by

ζk =
1

M0
[µ− gk(0)]

=
1

M0

∫ ∞

0

dω

π

S(ω)

ω

2ν2k
ω2 + ν2k

. (3.147)

The latter kernel is related toKR(−iτ) via

−
∫

~β

0
dτ

∫ τ

0
dσKR(−iτ + iσ)f(τ, σ) = (3.148)

− µ

2

∫

~β

0
dτf(τ, τ) +

1

2

∫

~β

0
dτdσk(τ − σ)f(τ, σ) ,

with a generic functionf . In terms of the kernelsγ(s), k(τ), K∗(s − iτ), KR(s − u) and the
linear combinations

x = (q+ + q−)/2 and x̄ = q+ − q− (3.149)
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the exponent of the influence functional reads

Φ[x, x̄, q0] =
1

2

∫ β~

0
dτdσ k(τ − σ)q0(τ)q0(σ)

−i
∫ β~

0
dτ

∫ t

0
ds K∗(s− iτ)q0(τ)x̄(s)

+
1

2

∫ t

0
dsdu KR(s− u)x̄(s)x̄(u) (3.150)

+iM

∫ t

0
ds x̄(s)

d

ds

∫ s

0
du γ(s− u)ẋ(u) .

Details of the derivation of Eq. (3.150) can be found in the thorough analysis in [8].

3.5.2 Classical Brownian particle in a harmonic potential: Initial position mea-
surement and quenches in the trapping potential

This part is meant to be a reminder on classical stochastic motion induced by generic baths.
None of the results presented herein are new but they are useful to be confronted with the
quantum results discussed in the body of the paper.

The classical Brownian motion of a particle confined in a harmonic potential can be de-
scribed by theLangevin equation

q̈(t) +

∫ t

0
ds γ(t− s)q̇(s) + Ω2q(t) = ξ(t) , (3.151)

whereξ is a zero mean Gaussian noise2 with correlation〈ξ(t)ξ(s)〉 = 1
Mβγ(|t − s|) and with

γ(t) given in Eq. (3.75) [50]. In the Laplace transform formulation, the solution to Eq. (3.151)
reads

q̃(λ) = G̃+(λ)
[

ξ̃(λ) + v0 + (λ+ γ̃(λ))q0
]

, (3.152)

where we used̃G+ defined in Eq. (3.82) and we introduced the initial conditionsq(0) = q0 and
q̇(0) = v0. The correlation function is now easily computed and it reads

C̃(λ, κ) = 〈q̃(λ)q̃(κ)〉 = 1

βM

γ̃(λ) + γ̃(κ)

λ+ κ
G̃+(λ)G̃+(κ)

+ G̃+(λ)G̃+(κ)
[

v20 + (λ+ γ̃(λ))(κ+ γ̃(κ))q0
2
]

+ G̃+(λ)G̃+(κ) v0q
0 [λ+ γ̃(λ) + κ+ γ̃(κ)] , (3.153)

where we used the fact that the Laplace transform ofγ(|t− s|) with respect tot ands is given
by [γ̃(λ)+ γ̃(κ)]/(λ+κ). The initial valuesq0 andv0 can be sharp or drawn from a probability
distribution which is typically of the Maxwell-Boltzmann type, that is

P [q0, v0] =
βM0Ω0

2π
exp

[

−β
(

M0

2
v20 +

M0

2
Ω2
0q

02
)]

, (3.154)

2The underlying probability distribution is of the (Gaussian) Boltzmann-Gibbstypeexp(−βH) with H the full
coupledHamiltonian of the particle–bath system. Equation (3.151) thus describes the case where the harmonic
oscillator bath and the particle are initiallycoupledas in the quantum case studied in the present work. This subtle
point is often overlooked. For more details see p. 21-23 in [50].
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whereΩ0 is the frequency of the initial trapping potential andM0 is the initial mass. From
Eq. (3.154) we easily derive

〈q02〉 = (βM0Ω
2
0)

−1 and 〈v20〉 = (βM0)
−1 . (3.155)

As long asΩ0 = Ω andM =M0 the correlation function can be rewritten as

C̃eq(λ, κ) =
C̃1eq(λ) + C̃1eq(κ)

λ+ κ
with

C1eq(λ) ≡ 1

βMΩ2

γ̃(λ) + λ

λ2 + γ̃(λ) + Ω2
, (3.156)

which is the equilibrium correlation function.
The non equilibrium correlation can be recast in the form

C̃(λ, κ) =
C̃1eq(λ) + C̃1eq(κ)

λ+ κ
+ G̃+(λ)G̃+(κ)

[

v20 −
1

βM

]

+ βMΩ2 C̃1eq(λ)C̃1eq(κ)
[

βMΩ2q0
2 − 1

]

+ G̃+(λ)G̃+(κ) v0q
0 [λ+ γ̃(λ) + κ+ γ̃(κ)] . (3.157)

In many casesq0 andv0 are uncorrelated random variables. Then Eq. (3.157) transforms into

C̃(λ, κ) = C̃1eq(λ) + C̃1eq(κ)

λ+ κ
+ G̃+(λ)G̃+(κ)

[

〈v20〉 −
1

βM

]

+ βMΩ2 C̃1eq(λ)C̃1eq(κ)
[

βMΩ2〈q02〉 − 1
]

. (3.158)

3.5.3 The equilibrium initial condition

In this Appendix we use Eq. (3.87) in the particular case of an equilibrium initial condition and
a subsequent evolution still in equilibrium. We show how to derive the equilibrium correla-
tion function and we prove that the fluctuation-dissipation theorem (FDT) is satisfied without
imposing time-translational invariance (TTI) as has been done before in theliterature [8].

The fluctuation-dissipation theorem

The linear response is easily found by noting that the external sourceF (s) represents a physical
drift force. Therefore, by calculating

〈q̂(t)〉 = ~

i

δ

δG(t)
exp (J [F,G]) |G≡0 =

∫ t

0
dsR(t− s)F (s) (3.159)

for F 6= 0 one finds the response functionR(t) with respect to the external forceF (t). We set
ǫ → ∞ which corresponds to the absence of any initial measurement. By using Eq.(3.87) we
obtain

R(t) =
1

M
G+(t) and R̃(λ) =

1

M

1

Ω2 + λγ̃(λ) + λ2
, (3.160)

in the time and Laplace transform domains, respectively. These expressions are independent
of the initial condition. Therefore, the response function is the same in and out of equilibrium.
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Moreover, it is equal to the response function of a classical Brownian particle [21] if it is coupled
to a bath with the same friction kernelγ.

We will confirm the validity of the FDT when the system is in equilibrium. We choosethe
initial Hamiltonian to be equal to the “bulk” one, that is

Ω = Ω0 and M =M0 , (3.161)

so that the initial density matrix is equal to the Boltzmann weightexp(−βH) with the terms
contributing toH given in Eqs. (3.32), (3.33) and (3.34). The initial state is not perturbedby
any measurement, so we takeǫ → ∞ which impliesΛ′ = Λ andΞ′ = Ξ. From Eq. (3.90) we
find the equilibrium correlation functionCeq(t, t′) which in the Laplace transform version reads

C̃eq(λ, κ) =
~

M
G̃+(λ)G̃+(κ)

{

Λλκ+
Λ

M
λC̃1(κ)

+
Λ

M
κC̃1(λ) + Ξ− 1

M
C̃2(λ)−

1

M
C̃2(κ) +

1

M2
R̃′′(λ, κ)

}

. (3.162)

This expression can be greatly simplified. We first note that from the definitions ofgk andfk in
Eqs. (3.141) and (3.142) it follows that

ḟk(s) = νkgk(s) , f̃k(λ) =
νk
λ
g̃k(λ) , (3.163)

where we usedfk(0) = 0. The Laplace transform of the kernel

R′′(s, s′) =
1

β~

∑

k

uk[gk(s)gk(s
′)

− fk(s)fk(s
′)] +M0KR(s− s′) (3.164)

[see Eq. (3.88) and (3.73) forΛ = Λ′] can now be written as

R̃′′(λ, κ) =
1

β~

∑

k

uk

(

1− ν2k
λκ

)

g̃k(λ)g̃k(κ)

+
M

β~

∑

k

g̃k(λ) + g̃k(κ)

λ+ κ
(3.165)

and by defining̃hk(λ) = g̃k(λ)/M + λ we find that the expression in the curly brackets in the
rhs of Eq. (3.162) can be recast as

1

β~

∑

k

uk

(

1− ν2k
λκ

)

h̃k(λ)h̃k(κ) +
1

β~

∑

k

h̃k(λ) + h̃k(κ)

λ+ κ
, (3.166)

where we used Eqs. (3.69) and (3.70). By combining the expression forthe Laplace transform
of the cosine

∫∞
0 dt e−λt cos(ωt) = λ/(λ2 + ω2) with Eqs. (3.145) and (3.141) we obtain

1

M
g̃k(λ) =

λ

ν2k − λ2
(|νk|γ̃(|νk|)− λγ̃(λ)) . (3.167)

By using instead Eqs. (3.145) and (3.147) we derive

ζk = |νk|γ̃(|νk|) . (3.168)
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The kernel̃γ can be eliminated in favor of̃G+ through Eq. (3.82) which yields

h̃k(λ) =
λ

ν2k − λ2

[

G̃−1
+ (|νk|)− G̃−1

+ (λ)
]

. (3.169)

This expression can now be inserted via Eq. (3.166) into Eq. (3.162) to find the equilibrium
correlator. Note that, forΩ0 = Ω we haveG̃+(|νk|) = uk. With the help of the one variable
function

C̃1eq(λ) =
1

βM

∑

k

λ

ν2k − λ2

[

G̃+(λ)− G̃+(|νk|)
]

(3.170)

the equilibrium correlation function becomes

C̃eq(λ, κ) =
C1eq(λ) + C1eq(κ)

λ+ κ
, (3.171)

which clearly displays time translational invariance (TTI). Indeed, the Laplace transform with
respect tot andt′ of a generic functionf(|t − t′|) that depends only on the time difference is
equal to[f̃(λ)+ f̃(κ)]/(λ+κ), wheref̃(λ) denotes the Laplace transform off(t) with respect
to t. Hence, we haveCeq(t, t′) = C1eq(|t − t′|) with the explicit Laplace representation of
C1eq in Eq. (3.170). The equilibrium correlation function is thus found without imposing TTI.
By imposing TTI Eq. (3.170) can be directly found from Eq. (3.90) by setting t′ = 0 which
simplifies the expression considerably. Remember thatĠ+(t = 0) = 1 andG+(t = 0) = 0. By
taking the Laplace transform of the result with respect tot and by using Eq. (3.167) one easily
recovers Eq. (3.170).

It is now straightforward to establish the relation betweenC1eq(t) andR(t). Firstly, we note
that sinceC1eq(t) is an even function oft its Fourier transformC1eq(ω) is related to its Laplace
transform through

C1eq(ω) = C̃1eq(iω) + C̃1eq(−iω) . (3.172)

Thus, by using Eqs. (3.160) and (3.170) we have

C1eq(ω) =
1

β

∑

k

iω

ω2 + ν2k

[

R̃(iω)− R̃(−iω)
]

. (3.173)

Now, since the Fourier transform of the response function,R(ω), is related to its Laplace trans-
form viaR(ω) = R̃(iω) due to causality we obtain the quantum FDT in the form

C1eq(ω) = ~ coth[ωβ~/2] ImR(ω) , (3.174)

where we used the formula
∑

k ω/(ω
2 + ν2k) = (β~/2) coth[ωβ~/2]. This result is completely

general, in the sense that it applies to any bath, as it should.

3.5.4 Asymptotic behavior ofG+(t) and C1eq(t) for Ohmic dissipation

In the case ofOhmic dissipationthe spectral function has the form

S(ω) = γω for ω → 0 . (3.175)

84



CHAPTER 3. OUT OF EQUILIBRIUM QUANTUM BROWNIAN MOTION

For large frequencies one typically introduces a high frequency cutofffunction (since the ultra-
violet divergence is unphysical) that we choose to be of the Drude–typeω2

D/(ω
2
D + ω2) where

ωD ≫ ω is the high frequency cut-off. The bath kernel

γ(t) = γωDe
−ωDt (3.176)

then has a finite memory and a simple form in the Laplace domain, namely

γ̃(λ) = γ
ωD

ωD + λ
. (3.177)

We are interested in the equilibration behavior of the correlation function Eq.(3.95) when quan-
tum effects dominate. In order to find the long–time behavior ofC̃1eq(t) andG+(t) we study
their small–λ behavior. In the very low temperature limit the sum over the Matsubara frequen-
cies in Eq. (3.170) can be replaced by an integral. Forλ→ 0 one finds

C̃1eq(λ) ≃
∫ ∞

0

dν

π

λ

ν2 − λ2

[

G̃+(λ)− G̃+(ν)
]

≃ 1

π

∫ λ−1

0

dν

ν2 − 1

λ2(ν2 − 1) + λ(νγ̃(λν)− γ)

Ω4
(3.178)

+
λ

π

∫ ∞

1

dν

ν2
ν2 + νγ̃(ν)

Ω2(ν2 + νγ̃(ν) + Ω2)
+ ... ,

where the ellipsis stands for higher orders inλ. Now, by observing the ultraviolet behavior
of Eq. (3.177) one easily argues that all the terms in the rhs of Eq. (3.178)are of order∼
λ. Therefore, the long time behavior of the Ohmic equilibrium correlation function at zero
temperature is

C1eq ∼ 1

t2
for t→ ∞ and β~ ≫ |Ω2 − γ2/4|−1/2 . (3.179)

It is straightforward to show by direct inversion of the Laplace transform that the propagator
G+(t) is exponentiallysuppressed for large times (and for Ohmic dissipation) on a typical time
scaleγ/2, hence we have

G+(t) ∼ e−γt/2 for t→ ∞ . (3.180)

Equation (3.180) holds for all temperatures. In the high temperature regime one hasνk →
∞ so thatC1eq(λ) ≃ −

[

G̃+(λ)− 1/Ω2
]

/(βMλ). Translated into real time this states that

G+(t) is proportional to the derivative ofC1eq(t) which is nothing else than the classical FDT.
Accordingly, we find

C1eq ∼ e−γt/2 for t→ ∞ and β~ ≪ |Ω2 − γ2/4|−1/2 . (3.181)
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CHAPTER 4

Dissipative impurity dynamics in a 1D quantum liquid

“Indeed, what could be more rational than the suppression of individuality [...] ?”
Herbert Marcuse in “The one-dimensional man”

4.1 Introduction to Luttinger liquid theory

One dimensional (1D) quantum liquids are fundamentally different from Fermi liquids. In-
deed, Fermi liquid theory predicts individual long-lived excitations, the so-called Landauquasi-
particles, which are essentially free particles: They have a vanishing scattering cross-section in
the perturbative limit of small interactions. Within this theory the interactions only renormalize
the effective mass and the effective weight of the spectral function of these quasi-particles. The
Matsubara formalism [12] then allows to calculate the effective spectral function from which
all interesting equilibrium quantities can be deduced1.

Already on the qualitative level one realizes that the notion of individual excitations must
be contradictory in 1D. If – say – an electron moves in a 1D liquid of other electrons it has
to push a macroscopic number of electrons away in order to be able to advance. Hence, a
perturbation in a 1D liquid does not create an individual excitation but rather a collective one
and as a consequence, Fermi liquid theory breaks down in 1D. This qualitative picture can be
made more precise of course. When constructing a perturbative theory inorder to determine the
spectral function weight and the effective mass of the electron in the 1D liquid one encounters
divergences which are hardly interpretable [10]. The reason is that –as already pointed out –
there is no such thing as an effective mass or a spectral function in 1D since the very notion of
an individual excitation is fundamentally flawed.

Fortunately, there exists a very beautiful substitute to Fermi liquid theory in 1D, which has
been developed from the 1960s onwards [152, 153, 154]. This so-called Luttinger theoryis

1Luttinger theory has been first developed for fermions. In the followingwe will see that the same formalism
can be used to describe 1D bosons. See in particular the next subsectionon the phenomenological bosonization.
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essentially Gaussian for the low energy excitations (which are now collective ones)regardless
of the strength of the interaction. Thus, even strongly interacting 1D liquids can be elegantly
described by Luttinger theory. The heard of this theory is the following observation. Assume for
a moment that we deal with fermions. Then the Fermi energyEF is typically finite and the term
“low energy excitation ” makes sense: Hence, we can concentrate on particle-hole excitations
whose energy is small compared toEF . In this case, the (a priori unknown) exact spectrum
of the quadratic part of the generic Hamiltonian describing the 1D liquid can be expanded
aroundEF for small energies. The result is a Hamiltonian with alinear spectrum, the so called
Tomonaga-Luttinger Hamiltonian

Ĥ0 =
∑

k,r=±
vF (rk − kF )ĉ

†
k,r ĉk,r . (4.1)

Here,vF (kF ) is the Fermi velocity (momentum) andr denotes right-moving (r = +) and
left-movingr = − particles with creation and annihilation operatorsĉ†k,r, ĉk,r. Note that in 1D
particles can only move forward or backwards which forces us to introduce two species of these
particles, the right movers and the left movers.

Introducing a linear spectrum amounts to assuming a constant density of states, a common
approximation for fermions (the density of states is essentially the derivativeof the spectrum
times the solid angle element which is equal to one in 1D). The particle-hole excitations now
have a well defined energyEr,q = vF (rk + q)− vF rk = vF q and a well defined momentumq
independent fromk.

Let us now focus on the interaction term, which is in general present in a realistic theory.
In most cases the interaction is quartic in the fermionic operators. Since we expect collective
excitations to be the relevant variables we can try a new basis of ladder operators which are
quadratic in thêck,r,

ρ̂†q,r =
∑

k

: ĉ†k+q,r ĉk,r : , (4.2)

and which consequently mimic density fluctuations. We defined the density in termsof the
normal ordered product defined as: ÂB̂ := ÂB̂ − 〈0|ÂB̂|0〉 for two operatorsÂ and B̂.
Indeed, because of the filled Fermi sea the average ofĉ†k+q,r ĉk,r is formally infinite and has to
be removed from the Hamiltonian to yield a finite zero-energy level.

Now, a quartic action isquadratic in the ρ̂†, ρ̂-basis and is therefore trivial to diagonalize.
This is expected from the very construction of theρ̂q,r and is not very surprising. The more
important observation is that

[ρ̂†q,r, ρ̂
†
−q′,r′ ] = −rqL

2π
δr,r′δq,q′ , (4.3)

which is found by correctly using the normal ordered products [10]. Here,L is the length of the
system. Also, the Fermi level trivially verifieŝρ†q>0,−|0〉 = 0 andρ̂†q<0,+|0〉 = 0 such that we
can define the two operators forq 6= 0

b̂†q =

√

2π

L|q|
∑

r

Θ(rq)ρ†q,r , (4.4)

b̂q =

√

2π

L|q|
∑

r

Θ(rq)ρ†−q,r , (4.5)
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which satisfybosoniccommutation relations[b̂†q, b̂q′ ] = δq,q′ . Finally, one finds that[b̂q, Ĥ0] =

vF qb̂q, a remarkable identity, since it tells us thatĤ0 is quadraticin the bosonic density opera-
tors although is has been also quadratic in the original fermionic operators.Hence, the free part
of the Hamiltonian can also be written as

Ĥ0 =
∑

q 6=0

vF |q|b̂†q b̂q , (4.6)

where we explicitly used the assumption of a linear spectrum. In conjunction with the obser-
vation that a quartic interaction is quadratic in theb̂†, b̂ we conclude that the linear Tomonaga-
Luttinger Hamiltonian with a supplement quartic term is exactly diagonalisablevia the nonlin-
ear relation (4.2).

Of course, real systems do not have an exactly linear spectrum. However, as long as the
spectrum is linear around the Fermi surface up to first order in the excitation energies, the
low-energy properties can be exactly calculated with Luttinger liquid theory.Moreover, these
low-energy excitations share common universal features which I will present in the next sec-
tion. Luttinger theory can hence be considered as a universal theory towhich many 1D systems
“flow” in the renormalization group sense. All interesting quantities, such ascorrelation func-
tions or spectral densities, can in principle be calculated within Luttinger theory as long as one
is interested in the long-range properties of these quantities. The short-range behaviour of the
physical systems in question are not accessible within Luttinger theory sincethey do in general
not share any common universal features.

To conclude this introductory part I want to emphasize that there are still notable cases
where the spectrum has no such linear part since the first order approximation around the Fermi
energy vanishes. In these cases Luttinger theory is simply useless. To citeonly one example
here I mention spin waves in the ferromagnetic phase, which have a quadratic dispersion at low
energies [147].

4.1.1 Phenomenological bosonization

The mapping between the fermionic operators and the bosonic density fluctuation operators
is commonly referred to asbosonization. In this section I present a rather intuitive way of
deriving the effective Luttinger Hamiltonian, without directly using the exactrelations (4.2)
and (4.4) which translate between the two kinds of operators. Moreover,we will see that the
bosonization scheme also works for 1D bosons. The notation and concepts which are introduced
in this presentation will be used on many occasions in the following. I follow rather closely
the pedagogical line which can be found in the well-known reviews on this subject [see, e.g.,
[10, 155, 156, 157, 158]].

In the previous section we have seen that the collective excitations of a 1D Fermi liquid can
be considered as density wave excitations. Hence, it is natural to start from the representation
of the density in space,

ρ̂(x) =
∑

i

δ(x− x̂i) , (4.7)

where thex̂i are the position operators of the particles which form the 1D liquid. It is more
useful to work with the integrated density represented by a certain monotonicanalytical field
φ̂l(x) which we require to take the valueŝφl(xi) = 2πi at the position of thei-th particle
and which is a smooth function everywhere else.φ̂l(x) interpolates between the fixed values
φ̂l(xi) = 2πi and can hence admit fluctuations. These fluctuations will be governed by a
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Hamiltonian which we introduce further below. Note also that here the unidimensionality of
the underlying system enters in a crucial way: For the fieldφ̂l(x) to be well-defined the single
particles have to be labeled in a unique way. This can only be achieved in 1D.

With the help ofφ̂l(x) the density can be recast as

ρ̂(x) =
∑

i

δ(x− x̂i) =
∑

n

|φ̂′l(x)|δ(φ̂l(x)− 2πn) , (4.8)

by using the standard formulaδ(f(x)) =
∑

n |f ′(xn)|−1δ(x−xn) (with xn the zeros off(x)).
The Poisson summation formula then yields

ρ̂(x) =
φ̂′l(x)

2π

∑

p int

eipφ̂l(x) , (4.9)

where the sum runs over all integerp. In order to make the notion of density fluctuations more
visible in our presentation we introduce the fieldφ̂(x) which is defined relative to a perfect
crystalline solution, where thei-th particles is fixed atai: One hasφ̂l(x) = 2πρ0x − 2φ̂(x)
with a the lattice spacing andρ0 the unperturbed classical (average) density, such thatφ̂(x)
describes the very density waves. The final result reads

ρ̂(x) =

[

ρ0 −
1

π
∇φ̂(x)

]

∑

p

e2p(πρ0x−φ̂(x)) . (4.10)

The integerp can be regarded as a parameter which introduces fluctuations with shorterand
shorter wavelengths. Indeed, thep = 0 term corresponds to the coarse-grained density where
all high frequency fluctuations are smoothed out. Thesmeared density

ρq≃0(x) ≃ ρ0 −
1

π
∇φ̂(x) (4.11)

valid for small wave vectorsq ≃ 0 is sometimes sufficiently accurate for real applications. In
virtual all other cases, including the first harmonic term is then sufficient toobtain accurate
results. The expression

ρq≃0(x) ≃ ρ0 −
1

π
∇φ̂(x) + 2ρ0 cos[2πρ0x− 2φ̂(x)] , (4.12)

obtained from Eq. (4.10) by including thep = −1, 1 harmonic terms, is therefore widely used
in the literature. Note that during a typical coarse-graining procedure theharmonics cancel
each other out when long distances are considered as long as there areno constraints that forbid
such a cancellation, such that higher harmonics become relevant even onlong-range scales. An
important example of a system for which higher harmonics have to be taken intoaccount is the
Ising spin chain defined (by definition) on a lattice. As is well known [159] the Ising quantum
chain in a transverse fieldh can be exactly diagonalizedvia the Jordan-Wigner transformation
to yield a theory of free fermionŝH =

∑

k ǫkĉ
†
k ĉk with energiesǫk = J cos ak (J is the

ferromagnetic coupling) forh = 0. The Fermi velocity is readily found to bevF = Ja sin kFa
and the low-energy properties are described by Luttinger theory. In theabsence of an external
magnetic field the magnetization is zero,〈Sz〉 = 〈ĉ†(x)ĉ(x)〉 − 1/2 = 0, and the ground state
is the half-filled fermionic band. What I want to point out here is the fact that in this case
e2pπρ0x = e2ipπ(1/2a)ja = eiπpj = (−1)pj (note thatx = aj on the lattice). Hence, forp
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even, the higher harmonics give contributions that do not cancel for largex since they no longer
depend onx anymore. This simple example demonstrates that for models defined on lattices it
is in general necessary to keep the relevant harmonics and thus to go beyond the coarse-grained
approximation Eq. (4.11).

Starting from the representation of the density (4.10) one can define the field ψ̂(x) as the
“square root” of the density,

ψ̂†(x) =
√

ρ̂(x)e−iθ̂(x) , (4.13)

where θ̂(x) is some operator describing the phase. Since we have by constructionρ̂(x) =
ψ̂†(x)ψ̂(x), ψ̂† is therefore a single particle creation operator which can be either bosonsor
fermions. In the following I will writeψ̂†

B for the boson creator and̂ψ†
F for the fermion creation

operator. We now want to analyze the constraints imposed on the fieldsφ̂(x) and θ̂(x) by
requiring that thêψ†, ψ̂ be proper bosonic or fermionic ladder operators.

In order for theψ̂†
B, ψ̂B (ψ̂†

F , ψ̂F ) to verify the bosonic (fermionic) creation and annihilation
operator algebra we have to impose the conditions

[ψ̂B(x), ψ̂B(x
′)] = δ(x− x′) , (4.14)

{ψ̂F (x), ψ̂F (x
′)} = δ(x− x′) . (4.15)

Let us first focus on the bosonic field. For Eq. (4.14) to be satisfied oneneeds to have

[ρ̂(x), e−iθ̂(x′)] = δ(x− x′)e−iθ̂(x) , (4.16)

if one makes the rather natural assumption that[θ̂(x), θ̂(x′)] = 0. We can proceed by first
inserting the smeared density (4.11) in order to get the right commutation relationat least for
large wave lengths. The above relation is then satisfied if

[

1

π
∇φ̂(x), θ̂(x′)

]

= −iδ(x− x′) . (4.17)

So far we have taken into account only large wave-lengths. What aboutthe shorter wave-lengths
fluctuations described by the higher harmonics? The higher harmonic terms inEq. (4.10) lead
in the density-density commutator to expressions of the form

[e−2piφ̂(x), e−iθ̂(x′)] = e−2piφ̂(x)e−iθ̂(x′)(1− eiπp sign(x−x′)) . (4.18)

We make the conventionsign(0) = 0. Then the commutator (4.18) vanishes exactly forx = x′,
while for x 6= x′ terms remain for oddp. As I have explained in the previous paragraph such
odd p terms usually cancel when coarse-grained, even if the system is definedon a lattice:
Remember that it is typically the evenp terms which give rise to non trivial contributions.

If we assume that all assumptions I have enounced up to this point are met, Eq. (4.17) is the
right commutation relation for the two fieldŝφ andθ̂. By applying an integration by parts one
deduces that

Π̂(x) ≡ 1

π
∇θ̂(x) (4.19)

is the conjugate momentum ofφ̂(x). φ̂ and∇θ̂ are thus canonical fields the action of which can
be easily written down [see next section].
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The bosonic single particle operator is now easily found by putting all resultstogether and
by observing that the square root of a delta function is itself a delta function(up to a normaliza-
tion). Hence, we have

ψ̂†
B =

[

ρ0 −
1

π
∇φ̂(x)

]1/2
∑

p

ei2p(πρ0x−φ̂(x))e−iθ̂(x) . (4.20)

What about the fermion operator̂ψ†
F? The only difference with the bosonic operator is that

they have to satisfy anticommutation relations instead of commutation relations. We thus have
to introduce some supplement factor that generates the proper minus sign to transform a com-
mutation relation into an anticommutation relation. The answer is easy to guess by using the
relation (4.18) withp = 1 which can be viewed as the proper anticommutation relation. The
final answer is simply

ψ̂†
F (x) = ψ̂†

B(x)e
iφ̂l(x)/2 , (4.21)

so that

ψ̂†
F =

[

ρ0 −
1

π
∇φ̂(x)

]1/2
∑

p

ei(2p+1)(πρ0x−φ̂(x))e−iθ̂(x) . (4.22)

This transformation from commuting fields into anticommuting fields is also used (although in
a different form) in the Jordan-Wigner transformation which transforms spin operatorsσ+i , σ

−
i ,

that commute in different sites, into Fermi operatorsĉ†i , ĉi that anticommute, by attaching the
proper nonlinear “string” to the spin operators to generate the required minus sign [159].

4.1.2 The Tomonaga-Luttinger Hamiltonian

We now write down the Hamiltonian of our 1D system which should only depend on the two
conjugate fieldŝφ andθ̂. Let us first focus on the kinetic part of the Hamiltonian. Such a term
derives from the kinetic energy (here for the bosonic case)

Ĥkin =

∫

dx
~

2m
(∇ψ̂†(x))(∇ψ(x)) ≃ ρ0

2m
(∇θ̂)2 + 1

8mρ0
(∇ρ̂)2 + · · · , (4.23)

where the dots stand for higher derivative terms. Note that all cross termsbetweenθ̂ and φ̂
have to vanish. Indeed, for a system with an inversion symmetry one hasρ̂(x) = ρ̂(−x) which
can only be fulfilled ifφ̂(−x) = −φ̂(x). In conjunction with the invariance of the one-particle
operatorψ̂(−x) = ψ̂(x) one also obtainŝθ(−x) = θ̂(x); as a consequence (quadratic) mixed
terms between̂ψ andθ̂ cannot appear.

A typical interaction is bilinear in the density operator,

Ĥint =
~wL

2

∫

dx ρ̂(x)ρ̂(x) ≃ ~wL

2π2
(∇φ̂)2 + · · · , (4.24)

which reconfirms explicitly at this level that the first terms in a gradient expansion of the Hamil-
tonian contain only quadratic terms in the fields although the underlying theory isinteracting.
On large scales it is obvious that higher gradient terms are less relevant than the terms explicitly
listed above. Hence, the low energy properties (large space scale properties) are governed by
the quadratic Tomonaga-Luttinger Hamiltonian

ĤL =
~

2π

∫

dx

[

u

K
(∇φ̂)2 + uK

~2
(∇θ̂)2

]

+ · · · . (4.25)
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The dimensionless Luttinger parameterK and the sound velocityu parametrize this Hamil-
tonian and they depend on the parameters of the microscopic theory and in particular on the
interaction strength~wL. Note however that the exact relationship betweenu, K andwL is in
general not known and has to be determined with complementary methods such as numerical
simulations. The ellipsis stands for all irrelevant operators (in the renormalization group sense),
which are subdominant on large scales.

Let us for a moment come back to the expansions (4.23) and (4.24). By converting them to
the momentum domain we obtain the spectrum

E(k) =

√

~3k2wLρ0
m

+

(

h2k2

2m

)2

, (4.26)

which is nothing else than the Bogoliubov spectrum of an interacting bosonic liquid [158]. In
particular, this spectrum islinear for smallk which confirms the underlying assumptions of Lut-
tinger theory that the low energy excitations have a linear spectrum. Interestingly enough, for
bosons the non-interacting casewL → 0 is singular and Luttinger liquid theory breaks down.
Intuitively this is expected since a non-interacting Bose liquid forms a true BEC(at zero tem-
perature) while each finite interacting destabilizes this condensate (for translationally invariant
systems. Trapped Bose liquids may of course condense even if they are weakly interacting).
More formally, one can consider – in the bosonic case – the product~wLρ0 as the equivalent of
the Fermi energy.

The Luttinger Hamiltonian (4.25) is also found if one starts from a Fermi gas withψ̂†
F , ψ̂F

given in Eq. (4.22). However, for a given interaction strengthwL and background densityρ0
the parametersu andK are different in the fermionic case from the ones one would find for
bosons. Obviously, the non-interacting Fermi gas gives rise toK = 1. It can be shown that,
K > 1 corresponds to fermions with attractive interactions whileK < 1 to fermions with
repulsive interactions. Since non-interacting fermions are equivalent toimpenetrable bosons
[160] (bosons with repulsive contact interaction andwL → ∞) one hasK = 1 for impenetrable
bosons, as well. Non-interacting bosons on the other hand are described byK → ∞. K < 1
can only be attained for bosons that are subject to long range repulsiveinteractions.

Practically all 1D systems which exhibit a linear spectrum at low energies aredescribed by
Eq. (4.25). The very form of Eq. (4.25) already specifies most of the outcome of the theory
even without knowing the numerical values ofu andK. In order to completely describe the
low-energy properties of the system it is however necessary to know theexact expressions for
u andK, which cannot be found within the framework of Luttinger theory. Luttingertheory
has thus to be combined with other methods to yield a full description of the specific model in
question. However, once the two parametersu andK are known, the low energy properties of
the model are correctly described by Eq. (4.25). In the subsection 4.1.4 Iwill briefly show how
u andK can be extracted from simulations in the case of a translationally invariant system.

It is also possible to give an expression of the total momentum operator (or functional) in
terms of the two fieldŝφ and θ̂ by essentially proceeding in the same way as before when we
have derivedĤL. One has

P̂L =
~

π

∫

dx

[

ρ0 −
1

π
∇φ̂

]

∇θ̂ + · · · , (4.27)

where the ellipsis stands – again – for irrelevant terms which only modify the sub-leading be-
haviour of universal quantities.
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4.1.3 The interaction between an impurity and a Luttinger liquid

Let me introduce in this subsection the interaction Hamiltonian which models the potential be-
tween the impurity and the Luttinger liquid. The formulae of this subsection will be extensively
used in the following of this thesis. In its general form the impurity-Luttinger liquid interaction
reads

ĤIL =

∫

dxdy U(x− y)ρ̂(y)δ(x− q̂) , (4.28)

whereU(x − y) is an interaction potential,̂ρ(y) the density of the Luttinger liquid given in
Eq. (4.10) and̂q the position operator of the impurity.

In many applications the atoms behave almost as hard spheres and one can approximate the
true interaction by a contact interaction potential

U(x− y) = ~wδ(x− y) , (4.29)

so that Eq. (4.28) can be recast as

ĤIL =

∫

dx ~wρ̂(x)δ(x− q̂) . (4.30)

As shown in formula (4.10) the density has two parts: The coarse-graineddensity (4.11) and
the higher harmonics. If I insert only thep = 0 summand of the rhs of Eq. (4.10) into the
above equation I find the so-calledforward scatteringpart of the interaction which does not flip
the momentum of the Luttinger liquid atoms during a scattering event with the impurity. The
higher harmonics lead on the other hand to the so-calledbackscatteringpart which reverses the
momentum of the Luttinger liquid atoms and thus converts left-movers into right-movers and
vice versa. In this thesis I will mostly work with the forward scattering interaction Hamiltonian

ĤIL =

∫

dx ~w

[

ρ0 −
1

π
∇φ̂(x)

]

δ(x− q̂) , (4.31)

which leads, when added to the free Luttinger Hamiltonian (4.25) to a quadraticaction in the
fields φ̂ and θ̂. The backscattering potential can be analyzed by using Bethe-ansatz meth-
ods [161] and renormalization group techniques [13].

The forward scattering Hamiltonian (4.31) can be rewritten (after droppinga constant term)
in the Fourier domain as

ĤIL =
∑

k

ikUkφ̂ke
−ikq̂ , (4.32)

where I introduced ak-dependent potentialUk which has the main purpose of introducing a
cutoff scalekc for the Luttinger momentum modes. I will use in particular the choice

Uk = ~we−|k|/kc . (4.33)

4.1.4 The Lieb-Liniger gas as a Luttinger liquid

Let us in this subsection in more detail an important application of Luttinger theory: We are
interested in the properties of 1D bosons which interact with a contact potential. This system is
described by the so-calledLieb-LinigerHamiltonian

Ĥ =
N
∑

i=1

p̂2i
2m

+ ~wL

N
∑

i<j=1

δ(x̂i − x̂j) . (4.34)
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Note that Eq. (4.34) is integrable [162]. Since we have seen in the previous subsection that the
low energy properties of Eq. (4.34) are also described by the Tomonaga-Luttinger Hamiltonian,
one can use Eq. (4.34) as a benchmark for Luttinger theory. The integrability of the Lieb-
Liniger model allows in particular to find numerical values ofK andu. Let me demonstrate
how to determineu andK in practice (I closely follow the analysis presented in [158]):

The model (4.34) is translationally invariant. This symmetry imposes an additionalrestric-
tion on the two Luttinger parameters. To be more explicit, consider the center ofmass position
X̂ = 1

N

∫

dx xρ̂(x) = − 1
Nπ

∫

dx xφ̂′(x) + · · · , where we used Eq. (4.11).̂X obeys the
equation of motion

∂tX̂ =
i

~
[ĤL, X̂ ] =

P̂
Nm

. (4.35)

Now use the commutator (4.17) in order to compute the second term of Eq. (4.35) and compare
it to Eq. (4.27): The final result reads

uK =
hπρ0
m

. (4.36)

For translationally invariant systems there is hence onlyoneparameter which has to be deter-
mined: The ratiou/K. Actually, it can be related to the inverse of the macroscopic compress-
ibility at zero temperatureκ−1

s [10]:

κ−1
s = ρ0N

∂2EGS(N)

∂N2
= ~πρ20

u

K
, (4.37)

withEGS(N) the groundstate energy for a system withN particles. The advantage of Eq. (4.37)
is that the stiffness parameterκs can be obtained in numerical simulation or by exploiting
additional analytic information on the system, such as integrability. By relatingu andK to
“physically observable” quantities, it is thus possible to find numerical values for the Luttinger
parameters.

In the case of the Lieb-Liniger gas Eq. (4.36) and Eq. (4.37) can be calculated analytically
by using the exact Bethe-Ansatz solution of the ground state energy [162] from which the
compressibilityκs can be derived. It can be shown that the the Luttinger theory then depends
only on one dimensionless parameter,γ = mwL/~ρ0, theLieb-Liniger parameter. From the
exact solution the Luttinger parameterK = K(γ) and the velocityu = u(γ) can be obtained.
Although analytical expressions are not available for generalγ it is sufficient in most practical
situations to know the asymptotic behaviour [163, 158]

K(γ) ≃ 1 +
4

γ2
+O(γ−3) , for γ ≫ 1 , (4.38)

K(γ) ≃ π√
γ

(

1−
√
γ

2π

)−1/2

, for γ ≪ 1 . (4.39)

Note that the asymptotics ofu then follows from Eq. (4.36). We will make use of these relations
in Sec. 4.6. Combined with additional information, Luttinger theory predicts the correct low-
energy properties of the Lieb-Liniger gas. Since only one parameterγ is needed in order to
obtain a full characterization of this Lieb-Liniger gas (note that for lattice systems which violate
the translation symmetry the two parametersu andK have to be determined independently)
Luttinger theory radically simplifies the problem. As soon asγ(wL) is known the long-range
behaviour of all interesting quantities can be easily determined. To cite one example, it can
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be shown [10] that the Matsubara density-density correlation function has to behave within the
Luttinger framework in general as

〈ρ̂(x, 0)ρ̂(0, 0)〉 = − K

2π2x2
+

2

(2πα+)2

(α+

x

)2K
, (4.40)

whereα+ is a small parameter which is usually related to the initial lattice spacing or, in the
continuum limit, which represents a short-range cutoff. The universal properties of the physical
system do not depend onα+.

While the1/x2-decay of the first summand is typical for a Fermi liquid, the second sum-
mand shows a characteristic1/x2K-decay which points to the non-Fermi liquid behaviour of
the underlying system. Analogous formulae exist, e.g., for the spin-spin correlation inXXZ-
chains, which again show, that Luttinger liquid theory yields the right – non Fermi-liquid like –
long-range behaviour.

4.2 Drag force and critical velocities in a 1D quantum liquid

In this section I review some ideas about superfluidity in interaction 1D liquids.If the quantum
liquid forms a perfect condensate (i.e. for non-interacting Bose liquids) the drag force on a
mobile impurity vanishes. In the opposite Tonks-Girardeau limit of impenetrable bosons (or
equivalently non-interacting fermions) the drag force grows linearly with the impurity velocity
as long as the impurity moves subsonically. For supersonic impurities the drag force is inde-
pendent of the velocity. We will also see that an external potential changes this picture. The
so-called forward-scattering part of the impurity-liquid interaction becomesimportant in this
case.

In Sec. 4.2.1 I will follow the line of arguments found in [164] to derive a formula for the
drag force in a Luttinger liquid. The approach makes use of Fermi’s golden rule which allows
us to calculate the energy dissipated of the impurity during its motion in the limit of a smallin-
teraction between the impurity and the Luttinger liquid. It turns out that one hasto distinguish
heavy impurities [165] from light impurities which can move through the surrounding quantum
liquid without dissipation [166, 167] even though the Luttinger liquid does notform a super-
fluid. The reason for this lies in the difference between the dispersion relations of a light and an
infinite mass impurity. The excitation spectrum of a 1D Lieb-Liniger gas shows acharacteristic
gap between zero momentum and the Fermi momentum (see Fig. 4.1). Such a gapdoes not
exist in higher dimensions. When the impurity dispersion lies within this gap no dissipation can
take place (at first order in the interaction).

In Sec. 4.2.2 I show that the forward scattering part of the interaction term(4.31) becomes
important if the impurity is accelerated. The effect has very much in common with standard
electromagnetic bremsstrahlung which is emitted when a charge carrier is accelerated.

4.2.1 First order dissipation rate: Fermi’s golden rule approach

As already announced in the introduction we study the dissipation rate for animpurity in a 1D
quantum liquid by using Fermi’s golden rule. At zero temperature the quantumliquid is in the
ground state|0〉. On the other hand, the impurity initially carries some energy and we assume
that it is in some initial state|M〉 which is an eigenvector of the impurity Hamiltonian

ĤI =
p̂2

2MI
+ V (q̂) , (4.41)
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whereMI is the impurity mass,̂p and q̂ the impurity momentum and position operators and
V (q̂) some position dependent external potential. The combined initial impurity-LL state is
thus|M, 0〉. We are interested in the transition rate from|M, 0〉 to some final state|N,n〉:

TN,M ;n,0 =
2π

~
|〈N,n|ĤIL|M, 0〉|2δ(En + EN − EM ) , (4.42)

whereEn is the energy of the wave excitation corresponding to the quantum numbern andEN

(EM ) is the energy of the impurityN -state (M -state). The energy dissipation per time unit is
then given by

Ė = −
∑

n

∑

N

(EM − EN )TN,M ;n,0 , (4.43)

which is related to the drag forcef(v) by Ė = −fv with v the impurity velocity. Note that the
drag force depends itself on the impurity velocity2

In absence of an external potential the impurity energy states are characterized by its mo-
mentum states|p〉 and Eq. (4.43) simplifies to

Ė = −2π

~

∫

dk |Uk|2
(

~k − ~
2k2

2mI

)

S

(

k, ~k − ~
2k2

2mI

)

, (4.44)

where we used the explicit form of the interaction (4.32) and where we introduced the dynamical
structure factor

S(k, ω) ≡
∑

n

|〈n|δρ̂k|0〉|2δ(~ω − En) . (4.45)

S(q, ω) can be calculated exactly in the Tonks-Girardeau and the Bogoliubov limit andfor a
Lieb-Liniger gas with intermediate interactions it is known with arbitrary numerical precision.
Its form is depicted in Fig. 4.1 forγ = 20. The light shaded region represents the domain
in the (q, ω)-plane whereS(q, ω) is zero. The region whereS(q, ω) is finite is delimited by
the upper dispersionω+(k) (dashed line) and the lower dispersionω−(k). Within Luttinger
theory the dispersionsω±(k) are expanded around the forward scattering point (k = 0) and
the backscattering pointk = 2kF up to linear order: Luttinger theory assumesω±(k) = u|k|
aroundk = 0 andω− = u|k− 2kF | aroundk = 2kF . Consequently, Luttinger theory correctly
describes the interaction between a heavy impurity and a 1D liquids only when the impurity
velocity is small. However, whenmI is finite Luttinger theory can be employed in many cases
even for supersonic impurities: The impurity dispersion crossesω− if

mI(v + u)2 ≥ 4~kFu . (4.46)

As long as the typical momentum~k0 = mI(v + u) lies in the linear part of the Bogoliubov
spectrum of the 1D liquid,S(k0, ~k0−~

2k20/2mI) is well described by Luttinger theory: More
specifically, this is the case whenevermI(u+ v)2 ≪ ~wLρ0.

As pointed out before, the impurity emits excitons whenever its dispersion crosses the region
where the DST is nonzero. It is thus clear that an impurity with infinite mass dissipates energy
at all velocities due to the backscattering part ofS(k, ω). It can be shown that the drag force
scales in this case as

f ∼ v2K−1 (4.47)

2It is important to understand that the above formula doesnot imply that the dynamics are Markovian. Here, the
constant velocity of the impurity is imposed by hand and therefore not a dynamical quantity. A classical particle
moving with constant velocityv and linearly coupled to a harmonic oscillator bath dissipates energy withf(v) ∼ v
regardless of the bath characteristics.
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Figure 4.1: Dynamical structure factor (DSF) for a Lieb-Liniger gas withγ = 20. The solid lines
represent the dispersion relations for a heavy impurity (black) and a light impurity (white) whereas the
dashed line represents the upper dispersionω+(k) of the Lieb-Liniger gas and the dotted line its lower
dispersionω−.

for small impurity velocitiesv. On the other hand, a light impurity emits excitons only if
Eq. (4.46) is fulfilled, which thus defines the region in the(mI , v)-plane where an impurity
can move at a constant velocitywithout friction. We insist that this result is only valid if the
impurity is not subject to any potential energy. As we will show in the next section an impurity
trapped in a harmonic potential always dissipates energy.

If v > u the dispersion of a light impurity crosses twice theforward scatteringpart of
S(k, ω). But since within Luttinger theoryS(q, ω) shrinks to a line aroundk = 0 the forward
scattering part does not contribute to the drag forcef and for a general Lieb-Liniger gas this
contribution is negligible whenever Luttinger theory can be applied. In many applications where
a static impurity is considered, the forward scattering part of the interaction can be in practice
absorbed into a redefinition of the fieldφ [10].

4.2.2 Forward scattering Bremsstrahlung of accelerated impurities

We begin with the full Hamiltonian with a forward scattering term [see Eqs. (4.25), (4.31)
and (4.41)] of an untrapped impurity-Luttinger liquid system. After transforming the resulting
Hamiltonian into momentum space it is straightforward to show that

Ĥ =
u

2

∑

k

[

Π̂kΠ̂−k + k2φ̂kφ̂−k

]

+

√

K

π~

∑

k

ikUkφ̂ke
−ikq̂ +

p̂2

MI
. (4.48)

Note that I rescaled the fields according toφ̂k 7→
√

(πK/~)φ̂k andΠ̂k 7→
√

(~/πK)Π̂k.
I now analyze the equations of motion obtained from the Hamiltonian (4.48). Theidea

is that one can solve these equations if the trajectory ofq̂(t) is imposed by hand. One thus
demandsthat the impurity moves according to a certain evolution prescription in order to find
the force which the surrounding fluid exerts on the impurity .
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The equations of motion read the momentum domain:

¨̂
φk(t) + u2k2φ̂k(t) = iuk

√

K

π~
U∗
ke

ikq̂(t) , (4.49)

MI
¨̂q(t) + κq̂(t) = −

√

K

π~

∑

k

k2Uke
−ikq̂(t)φ̂k(t) . (4.50)

If the impurity is not accelerated, then

q̂(t) = q̂(0) + v̂t , (4.51)

with v̂ = p̂(0)/MI . Hence, for an impurity with constant velocity the solution to Eq. (4.49)
reads

φ̂k(t) = Âk(t; v̂)e
ikv̂t + ĝke

iukt + ĥke
−iukt , (4.52)

with the coefficients

Âk(t; v̂) = iuk U∗
k

√

K

π~

eikq̂(0)+i~k2t/2MI

u2k2 − v̂2k2
, (4.53)

ĝk =
1

2

[

φ̂k(0) +
1

iuk
˙̂
φk(0)− Âk(0; v̂)− Âk(0; v̂)

v̂

u

]

,

ĥk =
1

2

[

φ̂k(0)−
1

iuk
˙̂
φk(0)− Âk(0; v̂) + Âk(0; v̂)

v̂

u

]

.

The first term on the right-hand-side of Eq. (4.52) describes a density cloud that moves together
with the impurity creating a local density hole around the impurity, while the two last terms
describe the very wave excitation with sound velocityu. For instance, in the limitωc → ∞ we
have for a mobile impurity withconstantvelocity

ρ̂(x, t) ∼
∑

k

ikÂk(t; v̂)e
ikv̂t−ikx ∼ δ(x− q̂(t)) , (4.54)

meaning that the LL density profile follows the impurity, thus creating adressedlocal impurity.
Such a constantly moving density cloud does not have any back-effect on the impurity as can be
seen by inserting the first term of the rhs of Eq. (4.52) into Eq. (4.50). Wethus confirm directly
that no dissipation takes place at zero temperature if only the forward scattering is retained. As
pointed out before this approximation becomes exact for light impurities [seeEq. (4.46)].

However, if the impurity is accelerated with a constant accelerationa the picture drastically
changes. The density cloud part of the solution to the EOM (4.49) reads byusingq̂−q̂(0) = at2:

φ̂(x, t) =
1

2u

∫ t

0
dt′

∫ x+u(t−t′)

x−u(t−t′)
dx′

√

K

π~
Uδ′(x′ − at′2) (4.55)

=

√

K

π~

U

2u

∫ t

0
dt′

{

δ(x+ u(t− t′)− 1

2
at′2)− δ(x− u(t− t′)− at′2)

}

.

For t < u/a we find the solution [see Fig. 4.2]

φ̂(x, t) =

√

K

π~

U

2u











(

u2 + 2ax+ 2aut
)−1/2

, −ut < x < at2

−
(

u2 + 2ax− 2aut
)−1/2

, at2 < x < ut

0 else .

(4.56)
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t
-ut

a t2

0

ut

t ’

x

Figure 4.2: The functionf±(t′) = at′
2
/2± u(t− t′) (see main text for details).

The classical energy associated to Eq. (4.56) is then found to be

∆E =
KU2au

8π~

{

1

(u2 + 2a2t2 − 2aut)2
− 1

(u2 + 2a2t2 + 2aut)2

}

. (4.57)

For t = u/a the rhs of Eq. (4.57) diverges, which is when the impurity velocityv = at has
attained the Luttinger speed of soundu. In this case the Bremsstrahlung becomes infinite and the
assumptions of a constant acceleration breaks down. However, for small times Eq. (4.57) makes
sense and it shows that an accelerated impurity emits phonons much as an accelerated charge
emits electromagnetic radiation. It is therefore clear that Eq. (4.57) describes the analogue of
the Bremsstrahlung phenomenon. Note that Eq. (4.57) was derived by only considering the
forward scattering potential which is the dominant part for a light impurity. Eq. (4.57) is thus
only valid in the casemI(v + u)2 ≪ 4~kFu.

4.2.3 Backscattering: Renormalization group approach

In the last subsections we focused on light impurities for which backscattering effects can be
neglected to a large extent. The full problem of describing a moving impurity in aLuttinger
liquid subject to forward and backscattering effects is not analytically solvable. Nonetheless,
by combing analytical expressions based on the Bethe ansatz with heavy numerical methods
Mathy et al. [161] were able to access the regime of high energy impurities strongly interacting
with the surrounding liquid. More specifically, they considered an impurity which is injected
into the Luttinger liquid. When the impurity has an initial velocity which exceeds the Lut-
tinger liquid sound velocity, the impurity velocity sharply drops beneath the sound speed and
subsequently shows damped oscillations around some average velocity (smaller than the sound
speed). This intriguing behaviour has been explained by an entangled state between the impu-
rity and particle-hole excitations in the Luttinger liquid. Indeed, they showed within a simple
approach that the superposition of an “exciton state” (the Fermi see plus the impurity and a
hole) and a “polaron state” (Fermi see plus the impurity and a particle-hole pair excitation)
was sufficient to describe the oscillating behaviour of the wave function. Note also that since
the final impurity velocity does not drop to zero the entangled state between theimpurity and
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the surrounding liquid does not lead to an energy flow directed from the impurity to the quan-
tum liquid. This intriguing behaviour – which is in sharp contrast to the Fermi’s golden rule
approach – has to my knowledge not been explained, yet.

The simpler case of a static impurity can be tackled by considering the renormalization
group equation of the backscattering amplitude. It was Kane and Fisher [13] who first solved
this problem. The main ingredient is the observation that the free action of a Luttinger liquid
can be written in two different ways,

SL =
1

2πK

∫

dxdt

[

1

u
φ̇2 + u(∇φ)2

]

=
K

2π

∫

dxdt

[

1

u
θ̇2 + u(∇θ)2

]

. (4.58)

This duality relation between the two conjugate fieldsφ andθ will be very useful in the follow-
ing.

Consider first a weak barrier in a Luttinger liquid modeled by the interaction Hamiltonian

Ĥint =

∫

dx U(x)ρ̂(x) , (4.59)

whereU(x) = ~wδ(x). By using the decomposition of the density the forward scattering part
reads−(1/π)∇φ(x = 0). It can be absorbed in a redefinition of the field (since the impu-
rity is immobile) according tõφ(x) = φ(x) − K

u

∫ x
0 dx′U(x′) in the action. The interesting

physics comes rather from the backscattering part of the densityUback ∼ cos[2φ(x = 0)].
By decomposing the fieldφ(x) into φ<(x), which consists solely of slow momentum modes,
and intoφ>(x) which regroups the high momentum modes, the Wilson renormalization group
scheme amounts to averaging over the high momentum modes: We are thus interested in
〈cos(2φ(0))〉> = cos(2φ<(0)) exp[−〈φ>(0)2〉>/2], where the subscript> indicates that the
average with respect toe−SL is only taken over the high momentum modes. By using Eq. (4.58)
we find〈cos(2φ(0))〉> = e−Kdℓ cos(2φ<(0)) with dℓ a small parameter. The resulting renor-
malization equation for the backscattering partUback of the couplingwL

3 is then found to
be

∂ℓUback = (1−K)Uback . (4.60)

Here,ℓ is the renormalization scale parameter. When the potential reaches the strongcoupling
regime one can use an intuitive picture to devise a strong-coupling perturbation theory. Ifw
was infinite it would cut the Luttinger liquid into two independent halfs. However, for large but
finite w tunneling processes may occur which make some bosons (or fermions) hopfrom one
side to the other. A reasonable candidate for a strong-coupling Hamiltonian isthus [13]

Ĥ = Ĥ1 + Ĥ2 + Utun[ψ̂
†
1(0)ψ̂2(0) + h.c.] , (4.61)

whereUtun is a small tunneling element and where the two subscripts1 and 2 denote the
two half-chains. By going back to Eq. (4.20) it is clear thatUtun[ψ̂

†
1(0)ψ̂2(0) + h.c.] ∼

Utun cos 2θ̂(0). The above renormalization group argument can now be repeated by simply
using the dual representation of the action (4.58). The final result reads:

∂ℓUtun = (1−K−1)Utun . (4.62)

3Note that the unrenormalized forward scattering and backscattering have the same coupling constantw. How-
ever, they do not not renormalize in the same way such that it becomes necessary to introduce a new couplingUback

which stands for the backscattering, only.
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This second renormalization equation beautifully connects to Eq. (4.60): Indeed, ifK < 1 the
barrier potentialUback grows until perturbation theory breaks down and the strong-coupling
regime takes over. The tunneling element subsequently decreases which indicates thatUback

further increases beyond the weak-coupling regime. The inverse is of course true as well.
ForK > 1 the tunneling elementUtun increases until the renormalization flow ofUback re-
sumes. Hence, it is natural to assume that the renormalization equation (4.60)[or alternatively
Eq. (4.62)] describe the right physics over the whole parameter space.

4.2.4 Drag force and quantum stirring in a Luttinger liquid

Another approach to measuring the drag force in quantum liquids is quantumstirring [see [168]
for the details]. For one-dimensional gases such a quantum stirring can be set up by “pulling”
a laser through the quantum liquid. The fraction of stirred particles can thenbe taken as a
measure for the superfluid behaviour. Note that a moving laser corresponds to a moving barrier,
i.e. to a moving impurity with infinite mass. Let us considerN bosons confined to a ring of
circumferenceL. Due to Galilean invariance we haveuK = π~ρ0/m [see Eq. (4.36)]. The
barrier moves with constant velocityV which can be modeled by the time-dependent potential
U(x, t) = U0δ(x− V t). The interaction Hamiltonian reads

Ĥint =

∫

dx U(x, t)ρ̂(x) ≃ ~w

[

ρ0 −
1

π
∇φ̂(V t) + 2ρ0 cos(2πρ0V t− 2φ̂(V t))

]

, (4.63)

where we used only the most relevant harmonics to model the Luttinger densityρ0. The forward
scattering term proportional to∇φ̂ represents a slowly varying chemical potential and can be
absorbed inĤ by a redefinition of the field̂φ 7→ φ̂ − (K/u)

∫ x
dx′ U(x′). The last term in

Eq. (4.63) represents the backward scattering whose renormalization I have presented in the
previous subsection.

We are interested in the fraction of stirred particlesNst/N which is related to the total
particle current througĥNst = 1

2π

∫ t
0 dt

′ Î(t′). In the weak barrier limit one can perform the
following perturbation analysis: By using the standard formulae for the particle densities of
right (left) movers [10],ρ̂R(L) = ρ0/2 ± ∇θ̂ − ∇φ̂, we find the stirred current operator up to
first order

Î =
i

~
[N̂L, Ĥint] , (4.64)

with N̂L =
∫

dx ρ̂L(x). By using the bosonized expressions for the density and the stirring
Hamiltonian the authors of [168] find

Î = i~wLρ0e
i2φ̂(V t)e2πiρ0V t . (4.65)

Linear response theory now yields the average backscattering current

I ≃ i

∫ t

−∞
dt′ 〈[Î(t), Ĥ∫ (t′)]〉S0 =

(2π)2K−1(~wL)
2

ΓE(2K)(~u)2

(

V

u

)2K−2

2πρ0V , (4.66)

where we took the thermodynamic limit,N,K → ∞ with N/L = ρ0, in the last step. The
fraction of stirred particles is then given bŷNst/N = I/(2πρ̂V ). Note that Luttinger liquid
theory is only valid for small stirring energies, i.e. forV ≪ u. Let us take some limits of
Eq. (4.66). First, the non-interacting boson limit is attained forK → ∞. In this caseI = 0
(note thatV < u) as it should: Indeed, the non-interacting bosons form a condensate which
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behaves as a superfluid forV < u (superfluidity abruptly breaks down atV = u). The Tonks-
Girardeau limit of impenetrable bosons is equivalent toK = 1. In this caseNst/N = (wL/u)

2

independently ofV . The drag force is then proportional toV and thus behaves adiabatically (or
Ohmic).

Interestingly enough, one can find a similar formula in the large barrier limit. Thefunda-
mental reason lies in the dualitŷφ↔ θ̂ of the action (4.58) which allows a weak-coupling an a
strong-coupling perturbation theory. Indeed, the large barrier cuts thering into two pieces and
the bosons can hop from one side to the othervia a small tunneling elementUtun which can be
treated as a small perturbation. It can be shown that the resulting interactionHamiltonian reads
Ĥint = Utun cos(2πθ̂(V t)) [168]. By repeating the above analysis we find

I =
(2π)2/K−1U2

tun

(ρ0~u)2ΓE(2/K)

(

V

u

)2/K−2

2πρ0V . (4.67)

How does the strong coupling equation (4.67) relate to the weak coupling formula (4.66)? We
have seen in Sec. 4.2.3 that the backscattering barrierUback scales under renormalization as
∂ℓUback = (1 − K)Uback. Uback becomes thus irrelevant as soon asK > 1: By noting that
V represents the true velocity scale the factor(V/u)K−1 in Eq. (4.66) is nothing else than the
renormalization factor of the bare couplingw. If K < 1 the interactionw is relevant. Upon
decreasingV the renormalizedwren = w(V/u)K−1 grows until perturbation breaks down, i.e.
whenV ∼ u(w/u)1/(1−K). The behaviour beyond this point is then described by the strong
coupling perturbation theory described above. Accordingly, the formulae (4.66) and (4.67) are
consistent with the renormalization group approach by Kane and Fisher [see Sec. 4.2.3].

4.3 Trapped Luttinger liquids

In this pedagogical chapter I will focus on trapped bosonic Luttinger liquids. This part of the
thesis is meant as a pedagogical bridge to Sec. 4.6 where I present new theoretical results that
have been obtained for a particular experimental configuration of an impurity immersed in a
trapped ultracold 1D gas. Thus, let me briefly discuss the experimental techniques which allow
for the creation of such ultracold vapors of bosonic atoms. Trapped atomsare typically confined
in 3D geometries in real experiments. However, by tuning the external potential to render it
very anisotropic it is possible to obtain quasi-1D condensates [169, 170,171, 172]. Another
possibility is to use 2D arrays of effective 1D optical tubes [173, 146] oratom chips [174], a
technique which I will not discuss at all here.

The most important trapping technique of atoms is the so-called “optical trapping”. Ul-
tracold atoms are trapped in a configuration of standing light waves which can be generated
by using interference of external laser sources. More precisely, if we assume that the atom is
equivalent to a two-level system (the Alkali atoms such as87Rb come closest to this simplified
view) a red-detunedlaser (i.e. one whose frequency is slightly below the characteristic tran-
sition frequency of the atom in question) creates a attractive force whereasblue-detunedlaser
(the opposite of red-detuned laser) acts as a repulsive force. Indeed, within the simplest model,
the Heisenberg energy uncertainty relation allows the atom to absorb photons with a frequency
slightly detuned. Since the subsequent emission process is isotropic, the momentum and the
kinetic energy of the atom are changed on average. If the laser is red-detuned, the atoms thus
accumulate in regions of high light intensity while they are attracted to regions oflow light in-
tensity if the laser is blue-detuned. One simple application of this trapping method are 2D arrays
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Figure 4.3: Sketch of a 2D array of 1D optical tubes. Taken from [146], which reports on the experiment
that I will analyze in more detail in the following.

of standing waves. They are such that the atoms are confined to the “trenches” thus creating a
system of many effective 1D systems which are separated by a “transverse” potential wall. The
various 1D tubes itself are subject to a residual “longitudinal” potential which is much weaker.
The system remains effectively one-dimensional as long as the thermal energy of the atoms is
small compared to the transverse potential strength. We show a sketch of a typical experimental
situation in Fig. 4.3. Let us now turn to the theoretical description of such trapped 1D liquids.
Hereafter, Sec. 4.6 will deal with impurity dynamics in such a trapped Luttingerliquid.

4.3.1 Ground state of a trapped Lieb-Liniger gas: Thomas-Fermiapproximation
and Tonks-Girardeau regime

A longitudinal trapping potential breaks the translation invariance of the quantum gas. As
we have seen already in Sec. 4.1.4, all parameters of a translationally invariant Lieb-Liniger
liquids depend only on the Lieb-Liniger parameterγ, the presence of the external potential thus
fundamentally changes the properties of the quantum gas. Moreover, it isobvious on intuitive
grounds that the trap leads to an inhomogeneous density profile of the 1D gas, thus leading
in principle to a breakdown of Luttinger theory itself. Fortunately, it is possible to develop a
static and even a dynamic theory which makes use of the same hydrodynamic-like collective
excitations as observed in a standard Luttinger liquid. As one can easily imagine, in view of
developing a theory of such collective excitations it is necessary to first gain an insight into
the groundstate properties of a trapped Lieb-Liniger gas, or more precisely its zero-temperature
density profile. As we have seen in Sec. 4.1.4 the physics of the untrappedLieb-Liniger gas are
determined byγ = mwL/~ρ0. In the presence of a harmonic external potential (I only consider
harmonic potentials throughout this chapter) another dimensionless quantity can be formed,

αho =
mwLℓho

~
, (4.68)

whereℓho =
√

~/mΩ is the typical quantum oscillator length scale. The parameterαho can be
regarded as the ratio betweenℓho and the typical interaction lengthℓint = ~

2/mg and it fully
characterizes the strength of the external potential. Indeed,αho ≫ 1 corresponds to a weak
external potential whereasαho ≪ 1 corresponds to the regime where the potential determines
the particle motion rather than the interaction.

In the regime of weak interactions, i.e.γ ≪ 1, we can regard the 1D liquid as a quasi-
BEC for which the Gross-Pitaevskii equation holds. For a weakly interacting Bose system
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Gross [175] and Pitaevskii [176] found an evolution equation for the dynamical condensate
wave function by using a mean-field like approach. It takes in general theform of a non-
linear Schr̈odinger equation. By applying this equation [see also Eq. (4.76)] to our problem one
derives the static density profile [158]

ρ0(x) =
µ

g

[

1− x2

r2TF

]

. (4.69)

I have introduced the Thomas-Fermi radiusRTF =
√

2µ/(mΩ2). The chemical potentialµ
can be found by requiring that

∫ rTF

−rTF
dx ρ0(x) = N , with N the number of particles, from

which we find

µ = µTF = ~Ω

(

3Nαho√
32

)2/3

. (4.70)

This is the so-called Thomas-Fermi approximation which is valid as long asγ ≪ 1. In the
inhomogeneous caseρ0 is the mean density defined byρ0 ≃ N/rTF. By using this identity one
hasγ = αhorTF/Nℓho which gives in conjunction with Eq. (4.70) and the definition ofrTF:

γ ∼ (α2
ho/N)2/3 . (4.71)

Hence, the Thomas-Fermi regime is attained if(α2
ho/N)2/3 ≪ 1, i.e. either ifαho ≪ 1 for any

N or if N ≫ α2
ho. It is intuitive clear that the weak coupling regime requires large number of

particles as reflected by the last equation.
Let us now focus on the opposite limitαho ≫ 1 andN ≪ α2

ho. This case corresponds to
the Tonks-Girardeau regime of impenetrable bosons. By virtue of the exact mapping between
these bosons and free fermions [160] the Hamiltonian of the full system reads

HTG =
∑

n

Enc
†
ncn , (4.72)

whereEn = ~Ωn + 1/2 are the energy levels of the harmonic oscillator. At zero temperature
all energy levels are occupied up to the Fermi energyEF = ~ΩN + 1/2 and the ground state
is a factorizing state of eigenstate of the harmonic oscillator. It is not difficultto find the final
density distribution:

ρ0 =
mΩrTF

π~

[

1− x2

r2TF

]1/2

, (4.73)

and the chemical potentialµTG = N~Ω.
Finally, the non-interacting regime is attained whenµ ≪ ~Ω. In this case interactions are

so weak that the trapped gas forms a true BEC condensate. At zero temperature the density
profile is thus equal to the one of the harmonic oscillator, i.e. a Gaussianρ0 ∼ e−x2/ℓ2ho .

Both Eqs. (4.69) and (4.73) can be found within are more general approach by using an
energy functional. Let us assume that the ground state energy of a given density profileρ0 can
be written as an integralE[ρ0] =

∫

dx e[ρ0(x)] wheree[ρ0] is the energy density of a uniform
interacting Bose gas with densityρ0. The above approach thus makes sense if the density does
not vary too much and it is therefore sometimes called thelocal density approximation. We now
add the external potentialVe(x) and a Lagrange multiplierλ so that the total energy reads

Etot[ρ0] =

∫

dx e[ρ0(x)] + (Ve(x)− λ)ρ0(x) . (4.74)
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By fixing the particle number one has to determineλ self-consistently. The difficulty lies in the
fact that the energy densitye[ρ0] is in general unknown. However, in the weakly interacting
limit we havee[ρ0] = gρ20/2 which follows directly from mean-field arguments. In the opposite
Tonks-Girardeau limit the relevant energy scale is the Fermi energy. In order to find the energy
density we consider a small interval aroundx where the density is quasi constant. Consider
only the fermions left from our interval: They already occupy some states.The supplementary
Fermi energy due to the additional small interval scales as the squared of the number particles,
i.e. ρ0(x)2, and the total energy of the gas up tox thus scales asρ(x)30. Accordingly, we have
E[ρ0] ∼

∫

dx ρ30(x) for the Tonks-Girardeau gas.
By varyingEtot with respect toρ0(x) and by usingVe(x) = κx2 one can now find an

equation for the local densityρ0(x). In the weak-interacting limit and in the Tonks-Girdardeau
regime Eq. (4.69) and Eq. (4.73) are then recovered once the Lagrange multiplier is eliminated.
The space dependent chemical potential is found by assuming that the density ρ0(x) varies so
slowly that the gas in a small finite interval aroundx can be assumed to be in equilibrium. The
whole liquid can then be divided into segments, each of which is in quasi-equilibrium. Standard
thermodynamics yields in this case the very useful relation

µ(ρ0) =

(

∂e[ρ0]

∂ρ0

)

ρ0=ρ0(x)

, (4.75)

valid within the local density approximation. If an analytic expression ofµ as a function ofρ0
is given, equation (4.75) allows one to findρ(x) by combining it with the solution of Eq. (4.74).

4.3.2 Hydrodynamic excitations in a trapped Luttinger liquid

Let us now discuss the properties of trapped 1D gases at finite temperatures. As in a standard
Luttinger liquid, the excitations are collective and a systematic “hydrodynamic”theory can be
developed in the Thomas-Fermi regime for these excitations. I closely follow the pedagogical
line of [169, 177, 158] in this section. Let me first focus on the non-interacting case. As
demonstrated in the experiment by Ketterle [178] a sharp crossover froma classical gas to a
BEC takes place when the temperature is lowered.

It is generally believed that this sharp crossover stems from the discrete nature of the energy
spectrum. A direct consequence of this observation is the fact that interactions will destroy
such a sharp crossover by smearing out the energy spectrum. Indeed, in the presence of low
momentum collective fluctuations the spectrum becomes quasi continuous. Therefore, we can
formulate a heuristic criterion for the presence of the sharp crossover which is characteristic
for the classical-BEC transition. The interaction energy per particle has to be much smaller
than the level spacing~Ω (we assume as before that the gas is trapped in a harmonic potential).
At low temperatures the gas is in its ground state such that the average interaction per particle
reads~wLN(mΩ/~)1/2. By using Eq. (4.68) the criterion for a sharp crossover translates into
αho ≪ 1/N . If this condition is not met the Thomas-Fermi regime dominates. The crossover
is not sharp anymore and collective excitations dominate the low energy spectrum. How would
one proceed in 2D or 3D to find the excitations of a weakly interacting quantumgas?

Let us begin with the Gross-Pitaevskii equation [175, 176] for a weakly interacting Bose
gas with interaction potentialV (x − x′) = ~wLδ(x − x′), chemical potentialµ, atomic mass
m and wave functionΨ(~x, t):

i~∂tΨ(~x, t) =

[

− ~
2

2m
− µ+

∫

dx′V (x− x′)|Ψ(~x, t)|2
]

Ψ(~x, t) . (4.76)
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Let us now setΨ(~x, t) =
√

ρ(~x, t)eiθ(~x,t), then we find from Eq. (4.76) the two equations [179]

∂tρ +
~

m
∇ · (ρ∇θ) = 0 , (4.77)

∂tθ +

[

~

2m
(∇θ)2 + wLρ−

~

2m

∇2√ρ
√
ρ

]

= 0 . (4.78)

The first equation is nothing else than the continuity equation, while the secondequation de-
scribes the evolution of the phase fieldθ. Furthermore, these equations are valid forsuperflu-
ids of arbitrary dimensions and internal interactions (their range of validity extends beyond the
realm of the Gross-Pitaevskii regime). If one assumes a slowly varying density profile the above
equations simplify to the standard (classical) Euler equations for the flow of anon-viscous fluid.
In other words, the hydrodynamics approach described by the Eqs. (4.77) and (4.78) governs
(beyond other systems) the dynamics of a 1D gas in the Thomas-Fermi regime [158]. However,
if one leaves this weakly interacting regime it is nota priori clear how to adapt the hydrody-
namic approach.

One can circumvent this difficulty by directly using the phenomenological bosonization ap-
proach in Sec. 4.1.1, with the only difference that the background densityρ0(x) is not constant.
The Hamiltonian then reads

∫

dx

[

~
2ρ0(x)

2m
(∇θ̂)2 + ~

2(∇δρ̂)2
8mρ0(x)

+
~wL

2
(δρ̂)2

]

+ · · · , (4.79)

with δρ = ρ̂− ρ0 the density fluctuation. The ellipsis stands for higher order fluctuation terms.
I also used the same symmetry arguments as before to show that no term linear inδρ̂ can arise.
I now give a short review of the arguments developed in [169] which allowto analyze the
different regimes Eq. (4.79) gives rise to. First of all, at high temperatures we can treat the
fluctuations ofδρ̂ and θ̂ as classical variables. Since Eq. (4.79) is quadratic, we can compute
the correlation functions〈(ρ(x)− ρ(x′))2〉 and〈(θ(x)− θ(x′))2〉 if we make the simplification
ρ0(x) = ρ0 = const in Eq. (4.79). The result for the density correlations at temperatureβ−1

reads:

〈(ρ(x)− ρ(x′))2〉 = β−1

√

8mρ0
~3wL

[

1− e−
√
8mgρ0|x−x′|/~

]

. (4.80)

By using the relation (4.70) for the chemical potential, Eq. (4.68) and the typical length scale
RTF =

√

2µ/(mΩ2), valid for the trapped Bose gas in the Thomas–Fermi regime, we find

〈(ρ(x)− ρ(x′))2〉/ρ20 ∼ β−1 1

~ΩN
. (4.81)

Hence, the relative density fluctuation is negligible provided

β−1 < β−1
d = ~ΩN . (4.82)

Below the crossover temperatureβ−1
d the Bose gas behaves as a weakly interacting gas with the

density profile (4.69). Aboveβ−1
d the gas is essentially classical. By a similar calculation for

the phase [169] one arrives at a second crossover temperatureβ−1
ph = ~Ωβ−1

d /µ below which
both phase and density fluctuations are negligible; the gas then forms a true BEC, and above
which only phase fluctuations are present. The gas is then called aquasi-condensate. The phase
diagram is given in Fig 4.4. Having identified the different regimes of the trapped Bose gas let us
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Figure 4.4: Different regimes of a 1D Bose gas [169, 158]. Above the degeneracy temperatureβ−1

d the
gas essentially behaves classical whereas it forms a true BEC belowβ−1

ph . In between the number of
particles discriminates between the weak-interacting (Thomas-Fermi) regime and the strong interacting
(Tonks-Girardeau) regime.

now discuss the collective interactions. One way to describe these fluctuations is to generalize
the standard Tomonaga-Luttinger Hamiltonian to a non-uniform backgrounddensity. Evidence
that such a generalization can be performed has been found by, e.g., Citro et al. [180, 181, 182].
The inhomogeneous Tomonaga-Luttinger Hamiltonian is given by

ĤL,inh =
~

2π

∫ R

−R
dx

[

u(x)K(x)

~2
(∇θ̂)2 + u(x)

K(x)
(∇φ̂)2

]

, (4.83)

and it describes well the excitation spectrum of an inhomogeneous Luttingerliquid as long
as the local density approximation holds. Note that Eq. (4.83) is the direct generalization of
Eq. (4.25) for inhomogeneous background densities. The unperturbed density profileρ0(x) is
an external information which is complementary to the Hamiltonian (4.25) which describes the
thermal excitations. It can be derived from the methods presented in the previous subsection.
The Luttinger parameters can be expressed in terms of the background density ρ0(x) and the
chemical potentialµ(x) which are assumed to be known. One has

u(x)K(x) =
~πρ0(x)

m
(4.84)

and
u(x)

K(x)
=
∂ρ0µ[ρ0(x)]

π
, (4.85)

which resembles a lot the relation (4.36) for a translationally invariant systemalthough this
symmetry is broken here [180].

Let us pursue our analysis by focusing on the equations of motion which derive from the
path integral built upon Eq. (4.83). We find that

~
2φ̇(x, t) = u(x)K(x)θ(x, t) , (4.86)

θ̇(x, t) = ~
2∇

[

u(x)

K(x)
∇φ(x, t)

]

. (4.87)
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If we introduce the density fluctuation operatorδρ̂ = −∇φ̂/π and the “velocity” operator
v = ~∇θ̂/m we see that Eqs. (4.86) and (4.87) are equivalent to the linearized version of the
hydrodynamic equations (4.77) and (4.78) [see [158, 179]]. Combiningthese two equations and
using the boundary condition

φ(R, t) = φ1 and φ(−R, t) = φ0 , (4.88)

we arrive at a single equation forφ:

φ̈(x, t) = u(x)K(x)∇
[

u(x)

K(x)
∇φ(x, t)

]

. (4.89)

The Fourier decomposition of Eq. (4.89) leads to

−ω2
nφn = u(x)K(x)∇

[

u(x)

K(x)
∇φ(x, t)

]

, (4.90)

where the boundary conditions translate intoφn(±R) = 0, and where the orthogonality relation
∫

dx
φn(x)φn′(x)

u(x)K(x)
= δn,n′ (4.91)

holds. Citro et al. [182] found the expansion of the field operators in termsof bosonic creation
and annihilation operatorsb†n, bn:

φ̂(x) = φ0 − π

∫ x
−R dx′ K(x′)/u(x′)
∫ R
−R dx′ K(x′)/u(x′)

N̂ +
∑

n

π

2ωn
[b̂†n + b̂n]φ̂n(x) , (4.92)

Π̂(x) ≡ ∇θ̂(x)/π~2 =
∑

n

√
ωn2π

φn(x)

iu(x)K(x)
[b̂†n − b̂n] . (4.93)

N̂ is the operators of the number of particles. The fieldsΠ̂(x) andφ̂(x) satisfy the canonical
commutation relation. The Hamiltonian (4.83) can be rewritten in terms of theb̂†n, b̂n as

ĤL,inh =
πN2

2
∫ R
−R dx′ K(x′)/u(x′)

+
∑

n

ωnb̂
†
nb̂n . (4.94)

The solution of the eigenvalue problem (4.90) gives access to the eigenmodes of the trapped
Luttinger liquid. Let us assume the gas is trapped in a harmonic potential with frequencyΩ – as
is the standard situation in this manuscript. By using Eq. (4.85) in conjunction with Eq. (4.90)
we find

ρ0(x)∇
[

∂ρ0µ(x)∇φ̂n(x)
]

= −ω2
nφ̂n(x) (4.95)

One solution is given bŷφ(x) = Aρ0(x) with some proportionality constantA. Indeed, in this
case∂ρ0µ(x)∇φ̂(x) = Adµ(x)/dx = −AmΩ2x by definition. Thus, the differential equation
is satisfied forω = Ω. This solution describes the center-of-mass oscillations of the gas cloud
in the harmonic trap (the so-called “Kohn mode”) [182].

An exact solution for the eigenvalue equation (4.95) is found by making the assumption
that u(x) = u0

√

1− x2/R2 andK(x) = K0

√

1− x2/R2 for α > −1/2. Such profiles
are obtained for instance in the caseµ(ρ0) ∼ ργ0 with α = 1/γ − 1/2. From Eq. (4.84) it
immediately follows that the Thomas-Fermi gas is described byα = 1/2 and the Tonks gas by
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α = 0. For generalα the eigenmodes are obtained in terms of ultraspherical polynomials while
the eigenfrequencies have the form

ω2
n =

u20
R2

(n+ 1)(n+ 2α+ 1) . (4.96)

In the Tonks limit the eigenfunctions can be expressed in terms of the simpler Chebychev poly-
nomials while in the opposite Thomas-Fermi limit they can be written in terms of Legendre
polynomials. Their explicit form – which I will not give here – can be foundin [182].

4.4 A Luttinger liquid as a quantum bath

The evolution of impurities in a Luttinger liquid (LL) has attracted much attention in recent
years [147, 183, 151, 184] since this problem can be explicitly realized with cold atom systems.
In particular, modern techniques allow one to tune the interspecies interactionstrength [185,
186, 187] so that it has become possible to study the diffusion of a minority species within an
ensemble of majority atoms, as a function of the interaction and the trapping potential [146].

In this part of our work we apply the non equilibrium formalism developed in the chap-
ter 3 to such an impurity–LL system. In particular, we seek to mimic the experimentalprocess
described in [146] with our theoretical description. In this experiment the impurity atom is
trapped in a 1D harmonic potential together with an ensemble of a different kind of atoms that
form the LL. The impurity is initially localized at the center of the confining potential by a laser
blade. When the whole impurity–LL system reaches equilibrium the impurity is released. The
equal-times position correlation function of the impurity,C(t, t), then shows damped oscilla-
tions which strongly suggest that the impurity isde factoa quantum Brownian particle moving
in a quantum liquid bath.

In the following we will present a precise description of the impurity motion in the LL from
the quantum Brownian motion point of view. The LL itself will play the role of an exotic quan-
tum bath that we here characterize. While this quantum Brownian motion approach has limited
success it serves as an excellent starting point for the more sophisticatedanalysis presented in
Sec. 4.6.

4.4.1 The impurity model

The impurity and the atoms constituting the bath are all confined in a harmonic potential. We
therefore take the Hamiltonian of the impurity,ĤS , to be of the standard form Eq. (3.32) without
external force (H = 0) and with the harmonic potentialV (q̂) = MΩ2

2 q̂2. We assume that the
interaction Hamiltonian between the position operatorq̂ of the impurity and the density of the
boson liquid is of the form

ĤSB =

∫

dxdy U(x− y)ρ̂(y)δ(x− q̂) , (4.97)

with the density operator̂ρ(x) of the LL approximately described by

ρ̂(x) ≃ ρ0(x)−
1

π
∇φ̂(x) , (4.98)
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whereρ0(x) is the unperturbed density of the fluid in the 1D trap andφ̂(x) is the density
variation. The Hamiltonian of the free LL reads

ĤB =
~

2π

∫

dx

[

uK

~2
(πΠ̂(x))2 +

u

K
(∇φ̂(x))2

]

, (4.99)

whereΠ̂(x) andφ̂(x) are conjugate operator fields. Equation (4.99) describes the low-energy
properties of a Lieb-Liniger gas [188] with a contact interaction potential~wLδ(x). The pa-
rametersu (with the dimension of a velocity) andK (dimensionless) have to be determined
numerically for generalwL. In order to reduce the complexity of the problem we will assume
the background densityρ0 to be constant in the following. Accordingly, we define

ρ0 ≡
1

L

∫

dx ρ0(x) , (4.100)

whereL is a length scale of the order of the length of the trap. Note that in this modeling we
have not added the quadratic confining potential to the LL.

Since the Bose gas is confined in a space of lengthL, the wave vectors are quantized with
valueskn = πn/L with n an integer. The Fourier representation of Eq. (4.97) is

ĤSB =
1√
L

∑

n

Ũkn e
iknq̂

[

− ikn
π
φ̃(kn)

]

, (4.101)

where we usedδ(x−x′) = (1/L)
∑

n e
ikn(x−x′) and we neglected a constant contribution. We

assume that the potentialU has the form

Ũk = ~we−|k|/kc , (4.102)

with some finite cutoffkc that depends on the microscopic properties of the interaction. The
parameterv has the dimension of a velocity and it determines the strength of the impurity–bath
interaction potential.

After redefining the fields according to

φ̂(x) 7→
√

(πK/~) φ̂(x) (4.103)

and

Π̂(x) 7→
√

(~/πK) Π̂(x) , (4.104)

one introduces the bosonic ladder operators

b̂k =

√

|k|
2~

(

φ̃(k) +
i

|k|Π̃(k)
)

(4.105)

and

b̂†−k =

√

|k|
2~

(

φ̃(k)− i

|k|Π̃(k)
)

, (4.106)
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which describe bosonic density wave excitations with sound velocityu [10]. The full Hamilto-
nian now takes the form of the Fröhlich polaron Hamiltonian, which in the second quantization
language reads

Ĥ =
∑

k∈{kn}
~u|k|b̂†k b̂k +

p̂2

2M
+
MΩ2

2
q̂2

− 1√
L

∑

k

(

K

2π|k|

)1/2

Ũk

[

(ikeikq̂) b̂†k + (ikeikq̂)∗ b̂k
]

. (4.107)

For eachk mode the coupling between the operatoreikq̂ and the bath operatorŝb†k andb̂k is bi-
linear, so we can use the general results derived in Sec. 3.3.2 by considering thateikq̂ represents
a different operator for eachk that is coupled to one harmonic oscillator. The resulting influ-
ence functional is hence a sum of one-particle–one-oscillator influencefunctionals. By using
Eq. (3.130) we thus find

Φ[q+,q−, q0] = −
∑

k

{∫ β~

0
dτ

∫ τ

0
dσ Kk(−iτ + iσ)eikq

0(τ)e−ikq(σ)

+ i

∫ β~

0
dτ

∫ t

0
ds K∗

−k(s− iτ)eikq
0(τ)

[

e−ikq+(s) − e−ikq−(s)
]

−
∫ t

0
ds

∫ s

0
du

[

eikq
+(s) − eikq

−(s)
] [

K−k(s− u)e−ikq+(u) −K∗
−k(s− u)e−ikq−(u)

]

}

.

(4.108)

Note that, since in the initial Hamiltonian there is no counter-term the counter-termsin Eq. (3.130)
are absent in Eq. (4.108). Thek-dependent kernel reads

Kk(θ) =
1

L

K|k|
2π~

|Ũk|2
cosh[u|k|β~/2− iθu|k|]

sinh[u|k|β~/2] . (4.109)

A well known feature of the Fr̈ohlich polaron Hamiltonian (4.107) is its polaronic mass
shift which leads to an effective impurity massM∗ > M greater than the “bare mass” [50].
Another process described by this Hamiltonian is that during a collision between the impurity
and an LL atom the former loses momentum~k by creating a density wave excitationb†k in
the LL. However, the LL is itself confined in a harmonic potential and one may expect to have
some momentum transfer absorbed (or provided) from the LL to the optical trap. We will in this
section simply assume that the spring constant of the optical potential is renormalized by such
a process in such a way that it balances the polaronic mass shift and we willhenceforth work
with the bare Hamiltonian (4.107) before turning to the more sophisticated analysis presented
in Sec. 4.6.

If the oscillations are small (if the impurity potential is sufficiently steep) we can expand
theeikq̂ in Eq. (4.108) to second order ink. Note that the linear order vanishes in Eq. (4.108)
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due to the symmetryk 7→ −k. Ignoring the zero-th order ink we can make the replacements

eikq
0(τ)e−ikq0(σ) 7→ −k

2

2

[

q0(τ)− q0(σ)
]2
,

eikq
0(τ)

[

e−ikq+(s) − e−ikq−(s)
]

7→ k2q0(τ)
[

q+(s)− q−(s)
]

− k2

2

[

q+(s)2 − q−(s)2
]

,
[

eikq
+(s) − eikq

−(s)
]

×
[

K−k(s− u)e−ikq+(u) −K∗
−k(s− u)e−ikq−(u)

]

7→ k2
[

q+(s)− q−(s)
] [

Kk(s− u)q+(u)−K∗
k(s− u)q−(u)

]

− k2

2

[

q+(s)2 − q−(s)2
]

(Kk(s− u)−K∗
k(s− u)) . (4.110)

4.4.2 Steep potential: The Luttinger bath and the initial condition

If the external potential is steep we expect the Gaussian approximation of the Fr̈ohlich Hamilto-
nian (4.110) to be valid. Up to this order ink eachk–mode plays the role of one bath harmonic
oscillator. Accordingly, forL→ ∞ we define the spectral density as

S(ω) =
π

L

∑

k∈{kn}

K|k|3
2π~

|Ũk|2 δ(ω − u|k|)

≃ Kω3
~v2

πu4
e−ω/ωc =

πµ

4

(

ω

ωc

)3

e−ω/ωc , (4.111)

with ωc = u|kc|/2 and

µ =
4~Kw2ω3

c

π2u4
. (4.112)

Hence, the bath inducessuper–Ohmicdissipation with a power law behaviorS(ω) ∼ ω3 for
smallω. This is the main difference from the analysis presented in Sec. 3.3.

In terms of the fundamental kernel [c.f. Eq. (3.131)]

K(θ) =

∫ ∞

0

dω

π
S(ω)

cosh[ω(β~/2− iθ)]

sinh[ωβ~/2]
(4.113)

and with
∫ β~
0 dτK∗(s − iτ) = Mγ(s) and

∫ s
0 du [K(s− u)−K∗(s− u)] = −iMγ(0) +

iMγ(s), whereγ(s) is defined in Eq. (3.145), we obtain

Φ[q+, q−, q0] =
1

4

∫ β~

0
dτdσ K(−iτ + iσ)

[

q0(τ)− q0(σ)
]2

− i

∫ β~

0
dτ

∫ t

0
ds K∗(s− iτ)q0(τ)

[

q+(s)− q−(s)
]

+

∫ t

0
ds

∫ s

0
du

[

q+(s)− q−(s)
] [

K(s− u)q+(u)−K∗(s− u)q−(u)
]

+
iMγ(0)

2

∫ t

0
ds

[

q+(s)2 − q−(s)2
]

. (4.114)

The first line in Eq. (4.114) shows that only the non-local part ofK(−iτ + iσ) contributes.
Hence we can replace the first line by12

∫ β~
0 dτdσ k(−iτ + iσ)q0(τ)q0(σ). Furthermore, we
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see that the last line in Eq. (4.114) exactly represents the counter-term proportional toµ. By
rewriting Eq. (4.114) in terms of the kernelsKR andγ [see Eqs. (3.136) and (3.145)] and using
the transformed variablesx = (q+ + q−)/2 andx̄ = q+ − q− the action becomes

Σ[x, x̄, q0, xi, xf , x̄i]

= i

∫ β~

0
dτ

[

M

2
q̇0(τ)

2
+
MΩ2

2
q0(τ)

2
+

1

2

∫ β~

0
dσ k(τ − σ)q0(τ)q0(σ)

]

+

∫ β~

0
dτ

∫ t

0
ds K∗(s− iτ)q0(τ)x̄(s)

+

∫ t

0
ds

[

M ˙̄x(s)ẋ(s)−MΩ2x̄(s)x(s)−Mx̄(s)
d

ds

∫ s

0
du γ(s− u)x(u)

]

+
i

2

∫ t

0
ds

∫ t

0
du KR(s− u)x̄(s)x(u) +

i~

2∆2

[

x2i +
x̄2i
4

]

. (4.115)

We remind the reader of the main approximations used so far. First, we used the Gaussian
approximation (4.110) of the Fröhlich Hamiltonian. Second, in order for the action (4.115) to
make sense we assumedΩ to be large enough, so that non Gaussian effects are not too impor-
tant. Note, that the mass and the potential renormalization can modify the oscillationamplitude
and the final width of the impurity position. Finally, we interpreted the laser bladethat initially
localizes the impurity at the center of the quantum liquid as an initial position measurement
with outcomeqm = 0 and uncertainty∆. The effect of the initial position measurement is
incorporated into the action via the last term of the rhs of Eq. (4.115). If thelocalization is per-
formed itself by a very steep trapping potential with frequencyΩ0 the particle is in its harmonic
oscillator (with respect toΩ0) ground state at initial time. We then have

ǫ−2 = 2Ω0 . (4.116)

This approximation is disputable since one could also consider the initial localization of the
impurity as stemming from an initial trapping potential. The subsequent release of the impurity
would then rather be described by a quench in the harmonic potential [see Sec. 3.4.2]. However,
in real experiments the “high temperature” regime~βΩ ≪ 1 prevails. From the discussion in
Secs. 3.4.1 and 3.4.2 we know that in this case the difference between the particle motion after
an initial position measurement and the one after an initial localization due to an initial trapping
potential (followed by a quench in the potential) is blurred. Since it is technically easier to deal
with a position measurement we prefer this method to a quench in the trapping potential. Note
that the “high temperature” regime is not equivalent to the classical regime, as we pointed out
in Sec. 3.4.1 as it does not fulfill the “macroscopic measurement” condition∆ ≫ λT with λT
the thermal de Broglie– wavelength of the impurity. For more details go back to thediscussion
in Sec. 3.4.1.

4.4.3 Signature of a Luttinger liquid bath

A typical experimental scenario consists in holding the impurity in the center of the trap at
t < 0 and switching off the localizing potential att = 0 to let the impurity move in the residual
harmonic potential. Let us for a moment forget about the potential renormalization and the mass
shift. By using the results found in Sec. 3.4.1 we find in the limitǫ → 0 (which corresponds to
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an almost perfect localization of the impurity att = 0)

C̃(λ, κ) ≃ ~

4Mǫ2
G̃+(λ)G̃+(κ)−

M

~Λ
C̃1eq(λ)C̃1eq(κ)

+
1

λ+ κ

[

C̃1eq(λ) + C̃1eq(κ)
]

. (4.117)

In the time domain the correlation function reads

C(t, t′) ≃ ~

4Mǫ2
G+(t)G+(t

′)− M

~Λ
C1eq(t)C1eq(t′)

+C1eq(|t− t|) . (4.118)

For the moment, experimental measurements focus on the equal-time correlation (which corre-
sponds to the time-dependent variance of the position)

C(t, t) ≃ ~

4Mǫ2
G2
+(t)−

M

~Λ
C1eq(t)2 + C1eq(0) . (4.119)

The formula Eq. (4.119) is valid for all kinds of baths and for very small polaronic effects and
potential renormalization.

In order to gain further insight into the dynamics of the impurity we need to understand the
contribution of each of the three terms in Eq. (4.119).

We start from the analysis of the propagatorG+(t). To determine its time-dependence we
need the specific form of the spectral density of the LL bath (4.111). In terms of the function

g(z) =
1

2

∫ ∞

0
dζ ζ2 e−ζ z2

ζ2 + z2

=
z2

2
− z4

2

∫ ∞

0
dζ

e−ζ

ζ2 + z2
(4.120)

the Laplace transform of the damping kernelγ̃(λ) [see Eqs. (3.145)] can be recast as

λγ̃(λ) =
µ

M
g(λ/ωc) (4.121)

and the propagator (which is proportional to the linear response function) reads

G̃+(λ) =
1

λ2 + µ
M g(λ/ωc) + Ω2

. (4.122)

Our objective is to find the oscillation frequency and the damping of the impurity motion in the
small coupling limit. Thus, we need the inverse Laplace transform of Eq. (4.122) which can be
expressed in terms of the Bromwich integral,

G+(t) =
1

2πi

∫ c+i∞

c−i∞
dλ eλt G̃+(λ) , (4.123)

where the real numberc is greater than the real part of all poles ofG̃+(λ). The integral in
Eq. (4.123) can be solved by displacing the complex contour towards the left and by evaluating
the encountered residues. Hence, we seek for the complex points at which the denominator of
Eq. (4.122) vanishes, that isz2 + µ′g(z) + Ω2/ω2

c = 0 with

z = iσ − Γ, where
Γ

σ
≪ 1 and µ′ =

µ

Mω2
c

. (4.124)
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Note thatz, σ, Γ andµ′ are dimensionless andσ andΓ real. From Eq. (4.123) it is clear thatΓ
corresponds to the exponential damping (measured in units ofωc) of the propagator and hence
Γ has to be positive (whereasσ is the oscillating frequency measured in units ofωc and can
be positive or negative). Thus, the first singularities encountered when displacing the contour
towards the left are the imaginary axis for whichg(z) is obviously singular whenRe z = 0. In
other words, we have to account for the differenceg(iσ + 0+) − g(iσ − 0+) when displacing
the integration contour past the imaginary axis. We will come back to this point in just a few
lines. The integral in the second term of the rhs of Eq. (4.120) can be recast as

I(−Γ, σ) ≡
∫ ∞

0
dζ

e−ζ

ζ2 + z2

≃ 1

|σ|

∫ ∞

0
dζ

e−|σ|ζ

ζ2 − 1− 2iΓ/σ

≃ 1

|σ|

[

A(|σ|) + sign

[

Γ

σ

]

iπ

2
e−|σ|

]

+
|Γ|
σ2

[

π

2
(1 + |σ|)e−|σ| + i sign

[

Γ

σ

]

B(|σ|)
]

,

where we expanded the denominator of the integrand to first order inΓ/σ and we defined

A(σ) = sinhσChiσ − coshσ Shiσ ,

B(σ) = σ [coshσChiσ − sinhσ Shiσ]

+ coshσ Shiσ − sinhσChiσ ,

whereShi andChi are the hyperbolic sine and cosine integrals, respectively. The contribution
from the crossing of the imaginary axis is now easily obtained:∆I ≡ I(0+, σ)− I(−0+, σ) =
−iπe−|σ|/σ. After adding−z4∆I/2 to g(z) we thus obtain forRe z < 0

g(z) ≃ −σ
2

2
+
iπσ3

4
e−|σ| − σ3

2
A(σ)

− πΓσ2

4
(1 + |σ|)e−|σ| − πΓσ2e−|σ| , (4.125)

where we neglected all real terms ofO((Γ/σ)2) and all imaginary terms ofO(Γ/σ).
At the poles, the real and the imaginary part of the denominatorz2 + µ′g(z) + (Ω/ωc)

2

vanish simultaneously. By using the form ofg(z) just derived we see that this can be achieved
with the choices

Γ =
πµ′

8
σ2e−|σ| , (4.126)

Ω2

ω2
c

= σ2 +
µ′

2

[

σ3A(σ) + σ2
]

+ 2Γ2(5 + |σ|) . (4.127)

Note the symmetryσ 7→ −σ in Eq. (4.127). Equations (4.126) and (4.127) determine the
oscillating behavior ofG+(t): Γ corresponds to the damping andσ to the frequency of the
oscillation (both quantities measured in units ofωc). We assumed the dampingΓ to be small
compared toσ which by virtue of Eq. (4.126) translates into

µ′ ≪ 4

πσ
eσ ≥ 4e

π
≈ 3.461 . (4.128)
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The behavior of the oscillating frequencyσ (measured in units ofωc) strongly depends on the
trapping frequencyΩ/ωc. Figure 4.5 shows the dependence of|σ| on µ′ = µ/(Mω2

c ) and on
Γ for the caseΩ/ωc = 3.0. When~βΩ ≪ 1 (as in [146]) the properties of the oscillations
of G+(t) coincide with the ones forC1eq(t) [see App. 3.5.2]. Then, by observing Eq. (4.119)
one deduces that the actual oscillation frequency ofC(t, t) and its damping are rather2σ and
2Γ, respectively. As can be seen for moderate to high trapping frequencies there is anincrease
of the oscillator frequency followed by a decrease induced by the bath [see Fig. 4.5]. Such
a behavior is not observed for small frequencies (compared toωc). The experimental results
in [146] confirm such a “peak” although very few data-points are shown in this paper and the
error bars are quite large so it is hard to draw firm conclusions on the actual experimental
behavior at this stage. The “peak” in the curve of the oscillation frequencycan be used in
further experiments to determine whether the bath is actually described by a LLor not since
it is a direct consequence of the non-Ohmic spectral density (4.111). InFig. 4.6 we show the

0.01 0.1 1.0
Μ’

2.98

3.00

3.02

Σ

0.001 0.01 0.1 0.2
G

2.98

3.00

3.02

Σ

Figure 4.5: Dependence of the oscillator frequencyσ on the impurity-bath couplingµ′ = µ/(Mω2
c ) (left

image) and on the dampingΓ [see Eq. (4.126)] (right image) forΩ/ωc = 3.0 obtained from Eq. (4.127).
A logarithmic scale has been used.

correlator Eq. (4.119) for values of the impurity–bath coupling (µ′ = 0.5 andµ′ = 0.2) in the
“high temperature” regimeβ~Ω ≪ 1 typical for experiments. The parameters were chosen to
be1/(4ǫ2ωc) = 10 in both images for the thick lines,Ω/ωc = 1.0 in the upper andΩ/ωc = 3.0
in the lower image. The thin line in the upper image has been obtained with1/(4ǫ2ωc) = 50.
The curves qualitatively agree with the experimental data [146]. One clearly recognizes the
increase of the oscillation frequencyinduced by an increase in the couplingµ′ for Ω/ωc = 3.0.
See however Sec. 4.6 for more details and a critical comparison of this effect with the ones
induced by the frequency renormalization due to the non-homogeneity of theLuttinger liquid
and the polaronic mass shift. The typical oscillation width in experiments is about15µm with a
frequency ofσ ≃ 550s−1. The final position width of a (high temperature) quantum Brownian
particle is given by1/(βMΩ2) [8]. With the massM of the 41K atoms used as an impurity
and the bath temperatureT ≈ 350nK in [146] this yields

√

C(t, t) ≈ 15µm which is even
quantitatively the right value. Hence, quantum Brownian motion captures many main features
of the impurity dynamics observed in [146]. The limits of the present approach will be discussed
in the conclusion and Sec. 4.6.
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Figure 4.6: Theoretical results for the variance of the impurity positionC(t, t) after its quantum Brown-
ian motion induced by a LL bath in the “high temperature”–regime which is experimentally available. We
chose1/(4ǫ2ωc) = 10 for the thick lines in both images, andΩ/ωc = 1.0 in the upper andΩ/ωc = 3.0 in
the lower image. The impurity–quantum liquid couplings areµ′ = 0.5 (thick straight lines) andµ′ = 0.2
(thick dotted lines), respectively. In the upper image the thin line has been obtained with1/(4ǫ2ωc) = 50
andµ′ = 0.5.

4.5 Some notions about polaron theory

At this point it becomes important to provide the reader with some backgroundinformation on
polarons. The polaron concept will be used in Sec. 4.6 which presents the main novel results of
the present chapter.

In lattices where the characteristic phonon frequencies are sufficiently low, an electron
which passes by the atomic ions deforms the background lattice in such a way that an effective
potential for the electron is created. Holstein, Fröhlich and Lieb [189, 190, 191] studied these
phenomenon, by approximating the background lattice by a continuous polarizable medium. In
this case one calls the moving charge carrier a large polaron. If the motion is sufficiently slow,
the reaction of the polaron on the medium can follow the polaron as an ionizationcloud, thus
creating a free quasiparticle with an enhanced mass.

When the polaron binding energy exceeds the half-bandwidth of the electron band in the
system, all states are “dressed” by phonons. This is the so-called strong-coupling regime where
the finite bandwidth becomes important so that the continuum limit can not be applied. In this
case the polarons are calledsmall polaronsand they have been studied in, e.g. [192, 193], to
cite just a few.

In the next subsection we will discuss the case where the medium is not polarizable by
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an electric charge carrier, but rather deformable by a mobile localized moving density, i.e.,
an impurity. This physical difference, however, does not need any specific approach and the
impurity-Luttinger liquid system can be considered as a polaron-lattice systemwith a modified
interaction potential. Since we are interested in continuum systems the large polaron, or weak-
coupling, regime is relevant for us.

The so-called Fr̈ohlich polaron model is defined by the Hamiltonian

Ĥ =
p̂2

2M
+
∑

~q

U~qe
i~q·~r

[

b̂†~q + b̂−~q

]

+
∑

~q

~ωpb̂
†
~q b̂~q , (4.129)

wherep̂ andM are the momentum operator and the mass of the polaron, andb̂†~q, b̂~q phonon
creation and annihilation operators. The Fourier transformed potentialU~q is given by

U~q = i

√

4πα

V

(

~

2Mωp

)1/4
~ωp

|~q| , (4.130)

whereωp is the longitudinal optical phonon frequency,V the volume of the crystal andα the
so-called Fr̈ohlich coupling constant:

α =
e2

~c

(

mc2

2~ωp

)1/2 [
1

E∞
− 1

E0

]

. (4.131)

Here,e is the charge of the electron andE0 andE∞ are the static and high-frequency dielectric
constants. Since these coupling constants are model dependent I will notuse them anymore. It
is only important to note thatV~q ∼ 1/|~q|.

We are interested in the groundstate of Eq. (4.129). If the interaction between the polaron
and the phonons can be neglected the system is in the unperturbed groundstate

|~k, 0〉 = ei
~k·~r|0〉 , (4.132)

whereei~k·~r is the polaron plane wave and|0〉 the phonon vacuum. We can now apply perturba-
tion theory by assuming that the coupling is weak. By using standard Schrödinger perturbation
theory the first order energy correction is given by the diagonal elements of the interaction term,

∑

~q

U~qe
i~q·~r

[

b̂†~q + b̂−~q

]

, (4.133)

which vanish identically, obviously. The interaction (4.133) conserves thetotal momentum at
each scattering event. Hence, the second order perturbation leads to

δE~k
= −

∑

~q

|V~q|2

(~k − ~q)2/2M + ωp − ~k2/2M
. (4.134)

By transforming the momentum sum into an integral one finds the result:

E~k
≡

~k2

2M
+ δE~k

=
~k2

2M
−
α(2Mω3

p)
1/2

|~k|
arcsin

[

|~k|/
√

2Mωp

]

, (4.135)
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which in the limit of a slow polaron motion simplifies to

E~k
=

~k2

2M∗ − αωp . (4.136)

The second term of the rhs of the above equation is a constant~k-independent energy shift which
does not contribute to the dispersion relation of the polaron. However, in the first term I defined

M∗ =
M

1− α/6
> M , (4.137)

which we call henceforth theeffective massof the polaron. Thus, we found that the mass of the
polaron is enhanced by the photon cloud which leads to a dressed polaron.

This lowest order perturbation method can be largely improved. Feynman had 1955 the
idea to transform the polaron Hamiltonian (4.129) into an action in which the photon degrees
of freedom are integrated out [190]. One then finds an influence functional very similar to the
ones already encountered in this thesis. The effective polaron action is given by

S =

∫

~β

0
dτ
ẋ2(τ)

2
− α

23/2

∫

~β

0
dτ

∫

~β

0
dσ

e−|τ−σ|

|x(τ)− x(σ)| , (4.138)

where I restrict this analysis to a one-dimensional problem so that the polaron coordinatex is
a scalar. The action (4.138) has a very appealing form. Indeed, the interaction term describes
a particle which interacts with itselfvia a retardedCoulomb interaction. The retardation is
mediated by thee−|τ−σ|-term in the numerator. Eq. (4.138) is non Gaussian and therefore not
integrable. However, in [190] Feynman replaced the Coulomb-potential bya squared potential
and performed a variational calculus by minimizing the non specified coupling constant. More
precisely, let us do the replacement

α

23/2
e−|τ−σ|

|x(τ)− x(σ)| 7→ Ce−w|τ−σ|(x(τ)− x(σ))2 . (4.139)

C andw are constants which have to be determined by minimizing the ground state energyE
by the well-known upper bound variational calculus which leads to

E = E0 − lim
β→∞

1

β
〈S − S0〉0 , (4.140)

with E0 the free energy andS0 the trial action (i.e. the one withC andw). The average is taken
with respect toS0. It can be shown that the weak coupling expansion of Eq. (4.140) leadsafter
a short calculation to

M∗/M ≃ 1 +
α

6
+ 0.025α2 + · · · . (4.141)

Eq. (4.141) generalizes Eq. (4.137) beyond the first order inα. In [146] the authors presented
results for the effective mass of an impurity in a1D liquid by using a similar Feynman varia-
tional ansatz as described above, albeit with a density-density coupling rather than a Coulomb
potential. Note that such an impurity is coupledvia a similar polaronic-like interaction to the
surrounding liquid, although the potential is different in the impurity case [see Sec. 4.6].

Apart from the effective mass the mobility and the effective polaron radiushave also at-
tracted interest [149]. I will not go into detail, here, nor will I discuss moresophisticated
methods to tackle the polaron problem such as the diagrammatic Monte Carlo algorithm [194].
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Devreese et al. [195] introduced another approach to find Eq. (4.137) [beyond other results].
They used the Hamiltonian (4.129) directly to write the Heisenberg equations ofmotion. By
imposing a constant velocity of the polaron the equations become solvable andone finds again
the first-order result Eq. (4.129). This approach neglects the back-reaction of the phonons on
themselvesvia the particle interaction. It is hence equivalent to a linear response theorywhere
such back-reactions are commonly neglected. Since the approach I present in Sec. 4.6 is also
based on equations of motion I will not present the approach by Devreese et al. which is very
similar to the one in Sec. 4.6.

4.6 An impurity in a trapped 1D gas: Dynamical linear response
theory

“Make things as simple as possible, but not simpler.”
Albert Einstein

In this section I present results which were obtained [23] during by PhD on the motion of
impurities in trapped 1D Bose liquids. Diffusion in such low dimensional quantumliquids has
been a major field of research in the last decade [165, 196, 197, 198, 166, 167, 199, 164, 200,
10, 146]. In one-dimensional (1D) liquids of interacting bosons a moving impurity is subject to
a drag force [199] and dissipates energy for all velocities even at zero temperature [200] as we
have also seen in Sec. 4.2.1. The experimental design of artificial 1D impurity–quantum liquid
systems has now become possible by confining cold atoms in optical nanotubes. Using these
techniques, the diffusion of impurity atoms in contact with a Luttinger liquid (LL) withtunable
impurity-LL interaction has been recently studied [146] by making use of a Feshbach resonance
which allows for controlling the interaction strength [185]. The experimentalscenario is thus
the following:

Both the Luttinger liquid and the impurity are confined in an effective 1D opticaltube
with thesameresidual longitudinal potential. This longitudinal potential will be assumed to be
harmonic. For timest < 0 the impurity is localized in the center of the nanotube. Att = 0 it is
released and it starts its mostly stochastic diffusion motion in the Luttinger liquid. Bymeasuring
several quantities such as the mean position width of the impurity one can characterize these
dynamics. Note that due to the external trapping potential the minority atoms undergo damped
oscillations which directly confirm that dissipation takes place in this system.

In Ref. [183] the authors attempted to describe the impurity dynamics within the Gross-
Pitaevskii approach at zero temperature. Such a Gross-Pitaevskii approach has also been em-
ployed in [201] where the authors found a strange “atome blockade” which leads to a self-
trapping of thea priori untrapped impurities in the non-homogeneous Luttinger liquid. Peotta
et al. [151, 184] recently studied the trapped impurity-Luttinger liquid systemwith a dynam-
ical numerical renormalization group method (albeit their trapping potential is not harmonic).
In the original paper [22] [see Sec. 4.4] we followed an alternative wayby applying quantum
Brownian motion theory to the impurity problem. In this section I will pursue an alternative ap-
proach by considering the impurity atom as a quantum Brownian particle. Thequantum liquid
then plays the role of an exotic quantum bath and it can be dealt with using Luttinger theory
[see Sec. 4.4]. Also, as already pointed out in [146, 22, 183] the impurityatom acquires an
effective mass due to its interaction with the LL which can be related to the well-known polaron

121



CHAPTER 4. DISSIPATIVE IMPURITY DYNAMICS IN A 1D QUANTUM LIQUID

paradigm where a charge carrier acquires an effective mass (which exceeds his bare mass) when
passing past a charged lattice [see [191, 192, 193, 202] and Sec. 4.5]. I will not go into details
since this polaronic mass shift is not the main focus of this study. I will only makeuse of the
linear response approach using the equations of motions of the impurity whichhad also been
successfully applied by [195].

In the conclusion chapter 5 I will compare the different results obtained in these papers with
the results I shall present in the following.

Quite obviously, the external trapping potential leads to an inhomogeneous density profile
of the LL with non-trivial effects on the impurity motion. In this section I combine several in-
dependent ideas that will allow us to: (a) estimate the mass shift of the impurity, (b) evaluate the
effect of the non-homogeneous density profile of the LL as well as, to a first approximation, the
renormalization of the confining potential, (c) use the non-equilibrium formalism of quantum
Brownian motion developed in [22] to reproduce the data in [146]quantitatively.

I repeat here the free Hamiltonian of an impurity with massMI , in an optical trap modeled
by a harmonic potential with spring constantκ, which reads

ĤI =
p̂2

2MI
+
κ

2
q̂2 , (4.142)

with p̂ andq̂ the momentum and position operators.
The impurity interacts with an LL which is confined by the same potential [146]. For the

sake of simplicity we will incorporate the effects of the trap on the LL later. Thelow en-
ergy excitations of an unconfined 1D quantum liquid are described by the Tomonaga-Luttinger
Hamiltonian

ĤL =
~

2π

∫

dx

[

uK

~2
(πΠ̂(x))2 +

u

K
(∇φ̂(x))2

]

=
∑

k 6=0

~u|k|b̂†k b̂k , (4.143)

with the two canonically conjugate bosonic fieldsΠ̂(x) andφ̂(x) [10, 158]. φ̂ is related to the
LL particle density througĥρ(x) = ρ0 − (1/π)φ̂′(x). In the second quantization language the
Hamiltonian can be equally expressed in terms of bosonic operatorsb̂†k andb̂k which we define
below. The dimensionless coefficientK and the sound velocityu totally characterize the low
energy properties of such a 1D system. For translationally invariant cases they only depend on
the Lieb-Liniger parameterγ =MLwL/~ρ0, withML the mass of the bosons,~wL the strength
of the interaction andρ0 the density of the LL [158].

We model the impurity-LL interaction through

ĤIL =

∫

dxdy U(x− y)ρ̂(y)δ(x− q̂) , (4.144)

with U(x) the interaction potential,̂ρ(x) the LL density and̂q the impurity position operator.
In Fourier space we definêφ(x) = L−1/2

∑

k e
−ikxφ̂k with k = 2πn/L andn ∈ Z. The full

Hamiltonian is thenĤ = ĤL + ĤIL + ĤI , with ĤI defined in Eq. (4.142) and

ĤL =
u

2

∑

k

[

Π̂kΠ̂−k + k2φ̂kφ̂−k

]

, (4.145)

ĤIL =

√

K

π~

∑

k

ikUkφ̂ke
−ikq̂ . (4.146)
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Note that we rescaled the fields according toφ̂k 7→
√

(πK/~)φ̂k andΠ̂k 7→
√

(~/πK)Π̂k.
In terms of b̂†k, b̂k the (rescaled) field readŝφk =

√

~/2|k|(b†−k + bk). We chooseUk =

~w/
√
L e−u|k|/2ωc with some cutoff wave vectorωc/u depending on the microscopic properties

of the coupling. Equation (4.146) considers only the so-called forward impurity-LL scattering.
The backward scattering potentialUback is not relevant in our case since we consider light
impurities [see Sec. 4.2.1 and [200, 166, 167]].

4.6.1 The experimental evidence

In [146] the impurities are initially localized at the center of the potential tubes witha laser
blade that creates another harmonic potential well with spring constantκ0 > κ. After their sub-
sequent release they undergo stochastic dynamics that resemble the onesof a damped harmonic
oscillator. Cataniet al. measured the equal-time correlation functionC(t, t) and they drew the
following conclusions:

(I) The oscillation frequencyΩI is virtually not affected by the value of the impurity-LL
interaction~w.

(II) Equations (4.142)-(4.146) resemble the well-known Fröhlich polaron Hamiltonian that
should result in the impurity mass renormalization,MI 7→ M∗

I , as a function of the interaction
~w. Point (I) then indicates that in parallel to the mass renormalization the potentialspring
constant should be renormalized as well,κ→ κ∗, in such a way thatΩ∗

I ≡
√

κ∗/M∗
I remained

equal toΩI .
(III) The initial kinetic energy of the impurity can be estimated from the high temperature

equipartition theorem to be∼ 1/β (note that~β
√

κ0/MI ≈ 0.1 in [146]) by assuming that
the impurity has equilibrated with the LL before its release. The amplitude after one oscillation
qa should therefore scale as∼ 1/

√
κ∗ when neglecting dissipation such thatκ∗q2a ∼ 1/β due

to energy conservation. Furthermore,
√

κ/κ∗ ∼
√

MI/M∗
I due to point (I). The increase of

κ∗ ∼ M∗
I is clearly observed when~w is ramped up (see Fig. 4.7). Note that forw/wL & 5

the 1D regime is not ensured any longer which explains the “saturation” ofκ∗ for large values
of w (not described by the effective 1D theory).

(IV) The final (equilibrium) width of the impurity cloud is independent of~w.
We notice that (IV) is at odds with (II). From the theory of quantum Brownian motion we

know that limt→∞ C(t, t) ≃ 1/(βκ∗) for a harmonic potential with spring constantκ∗ [8];
therefore, the dependence ofκ∗ on ~w should entail a dependence of the cloud width with the
same parameter. Accordingly, a more thorough analysis of the coupled systems is needed to
correctly interpret the experimental evidence. In the following I examine thepoints (I)-(IV) in
detail and I propose a way out thisconundrum.

4.6.2 The dynamical mass shift

It is well-known that a charged particle acquires an effective mass whenit interacts with lat-
tice vibrations through a Coulomb potential [191, 192, 193, 202]. Equations (4.145)-(4.146)
describe such a polaron with the only difference that the interaction is not Coulomb-like. In the
following we estimate the polaronic mass shift in our problem by using the equations of motion
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(EOM) for φ̂k(t) andq̂(t) (see [195] for the use of EOM in this context):

¨̂
φk(t) + u2k2φ̂k(t) = iuk

√

K

π~
U∗
ke

ikq̂(t) , (4.147)

MI
¨̂q(t) + κq̂(t) = −

√

K

π~

∑

k

k2Uke
−ikq̂(t)φ̂k(t) . (4.148)

Suppose that the impurity is not accelerated during a small time interval, then we can make
the Ansatz

q̂(t) = q̂(0) + v̂t (4.149)

with v̂ = p̂(0)/MI and[q̂(t), φ̂k(t)] ≈ 0. The solution to Eq. (4.147) for smallt reads

φ̂k(t) = Âk(t; v̂)e
ikv̂t + ĝke

iukt + ĥke
−iukt , (4.150)

with the coefficients

Âk(t; v̂) = iuk U∗
k

√

K

π~

eikq̂(0)+i~k2t/2MI

u2k2 − v̂2k2
, (4.151)

ĝk =
1

2

[

φ̂k(0) +
1

iuk
˙̂
φk(0)− Âk(0; v̂)− Âk(0; v̂)

v̂

u

]

,

ĥk =
1

2

[

φ̂k(0)−
1

iuk
˙̂
φk(0)− Âk(0; v̂) + Âk(0; v̂)

v̂

u

]

.

The first term on the right-hand-side of Eq. (4.150) represents a density cloud that moves to-
gether with the impurity, while the two last terms describe the very wave excitation.For in-
stance, in the limitωc → ∞ we have for a mobile impurity withconstantvelocity

ρ̂(x, t) ∼
∑

k

ikÂk(t; v̂)e
ikv̂t−ikx ∼ δ(x− q̂(t)) , (4.152)

meaning that the LL density profile follows the impurity, thus creating adressedlocal impurity.
It is important to note that this simple picture has to be altered when the impurity is accelerated.
We will come back to this point later.

The combined system of the impurity and the density cloud has an effective mass which
exceeds the bare impurity mass. As an illustration, we consider the initial conditions φ̂k(0) =

Âk(0; 0) and ˙̂
φk(0) = 0. If the impurity is immobile [i.e.q̂(t) = q̂(0)] these initial conditions

lead to the static solution̂φk(t) = Âk(0; 0) which describes a static density cloud without wave
excitations. Suppose now that the impurity is instantaneously accelerated to some constant
velocity v̂, then we obtain from Eq. (4.150)̂φk = Âk(t, v̂)e

ikv̂t − iÂk(0; 0)
v̂
u sinukt. Hence,

upon acceleration energy is carried away by a wave excitation, such thatthe kinetic energy of
the impurity is less than the external energy provided. To be more specific, by using Eq. (4.145)
the average energy of such a wave excitation is found to beEk = uk2

2 (v/u)2Ak(0; 0)A−k(0; 0)
with v2 = 〈v̂2〉. We define the dynamical effective impurity mass through

M∗
I = (1 + µ)MI , (4.153)

with the interaction-dependent correctionµ = 2~w2Kωc/(π
2MIu

4). Then, by instantaneously
providing an amount of energyE, the impurity acquires after acceleration a (mean) velocity
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Figure 4.7:

√

κ/κ∗ versus the impurity-LL couplingw/wL. Lines obtained from Eq. (4.153) with (from
left to right)γ = 0.25, γ = 0.35 andγ = 0.5. Experimental data points are taken from [146]. Triangular
points: Result from Feynman’s variational theory [146].

given byE =M∗
I v

2/2. It is straightforward to generalize this calculation to the case where the
impurity has already a velocitŷv0 before the acceleration: One simply replacesµ by

µ(v0) =
µ

(1− v20/u
2)2

, (4.154)

where we used the classical mean valuev20 instead of̂v20. In the following we considerM∗
I as

the true impurity mass. Note, that our definition of the dynamical effective massdiffers from
the effective mass usually defined via the impurity self-energy diagram.

4.6.3 The potential renormalization

Ref. [146] indicates that the spring constant of the optical trap is renormalized as well. We will
show here that the effect of the external potential on the LL indeed leadsto a renormalization
of the potential felt by the impurity. In the same spirit as in the previous paragraph we study
the effects of the external potential, which we previously neglected,via its action on the density
cloud. The force exerted by the external harmonic potential on the densitycloud is given by

F̂ = −
∫ L/2

−L/2
dx κxρ̂(x) = κq̂

uK

π~(u2 − v̂2)

√
LU∗

0 , (4.155)

where we used Eq. (4.150) to expressρ̂(t). By considering the combined impurity and the
density cloud system as one entity,F̂ acts in the end on the impurity itself. Interestingly enough,
F̂ changes sign when̂v exceeds the sound speedu such that the subsonic and supersonic regimes
are quantitatively different. In [146] the impurity moves with supersonic speed (

√

〈v̂2〉 ≈
8.5mm/s while u ≈ 3mm/s typically) so thatF̂ leads to anincreaseof the effective external
potential. In the following we approximatêv2 by its mean valuev2 ≡ 〈v̂2〉.

The idea behind this approximation if the following: If we take the mean of Eq. (4.155) with
respect to the impurity wavefuntion (written in the momentum domain) divergences appear as
soon asv approachesu. But in this case the formula (4.155) is certainly wrong. Indeed, one
has to bear the meaning of the approximation so far made in the mind. By imposing a constant

125



CHAPTER 4. DISSIPATIVE IMPURITY DYNAMICS IN A 1D QUANTUM LIQUID

 5

 10

 15

 20

w
id

th
 [µ

m
]

 5

 10

 15

 20

 0  2  4  6  8  10  12  14  16  18  20

w
id

th
 [µ

m
]

time [ms]

Figure 4.8:
√

C(t, t) for ΩI/ωc = 2.5, γ = 0.45 andw/wL = 1(4) in the upper (lower) image. Points:
Experimental data from [146]. Lines: Solution to Eq. (4.164) with Ω∗

I = ΩI .

impurity velocity one actually assumes that the acceleration of the impurity is small within
the time interval one considers. However, in Sec. 4.2.2 we have learned that the dissipation
of an accelerated impurity diverges when the impurity velocity approaches the sound velocity.
Therefore, even the tiniest deviation from the linear relation (4.149) produces a huge dissipation
in the vicinity of the sound speed and the time interval within which the ansatz (4.149) remains
valid shrinks to zero.

Accordingly, it is difficult to take the average of̂F with respect to a wavefunction if this
wavefunction allows for arbitrary momenta. In order to stay in the range of validity of Eq. (4.155)
it is therefore necessary to directly averagev̂2 and to require that̂v2 not too close tou.

Intuitively, the potential renormalization can be easily understood. When theimpurity cre-
ates a density exciton it has to push the LL atoms up the optical potential to be ableto create
the density cloud. Therefore it loses more energy than what the density wave would cost. The
inverse is true as well. By absorbing an exciton the impurity gains more energythan the exciton
provides since potential energy is freed during the absorption process. Equation (4.155) leads
to the effective spring constant

κ∗ = (1 + µ̃(v))κ , (4.156)

whereµ̃(v) = Kw
π u/(v2−u2). In conjunction with Eq. (4.154) we thus obtain for the effective

potential frequency

(Ω∗
I)

2 =
1 + µ̃(v)

1 + µ(v)
Ω2
I . (4.157)

In Fig. 4.7 we compare the prediction in Eq. (4.156) to the experimental data [146]. The best
curves are obtained forγ ≈ 0.25 − 0.35. Note that all the constants are determined by the
experimental setup. However, since it is difficult to defineγ for a non-homogeneous density we
plotted results forγ = 0.5 andγ = 0.35 andγ = 0.25 for illustration. If the non-homogeneous
density profile is approximated by an homogeneous one the parameters usedin the experimental
setup in [146] lead toγ ≈ 0.45.
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4.6.4 Long time dynamics

In the previous two paragraphs we studied the potential renormalization andthe impurity mass
shift by assuming that the impurity velocity was constant. Only then is the impurity cloud
perfectly localized around the impurity position. It is clear that such an approximation can only
hold for short times in the system we consider. For instance, while Eq. (4.156) can still be
considered as a realistic approximation up to the first oscillation maximum of the impurity, it
certainly fails to describe the correct physics fort→ ∞. The general solution to Eq. (4.150) is

φ̂k(t) =

∫ t

0
ds

sinuk(t− s)

uk
eikq̂(s) +wave excitations , (4.158)

which leads to a density cloud of the form̂ρ(x, t) ∼
∫ t
0 ds δ[x − q̂(s) − u(t − s)] − δ[x −

q̂(s) + u(t− s)]. In the case of an exponentially damped oscillating impurity this density cloud
depends only on past values ofq̂ whent is large and hence, fort→ ∞, the influence of̂q(t) on
ρ̂(x, t) becomes negligible.

To put it in other words, fort → ∞ the density cloud is independent of the impurity such
that its dynamics decouple from those ofq̂(t): The LL has no dynamical effects on the impurity
and one concludes that the LL neither renormalizes the impurity mass nor the external potential.
Accordingly, the final width of the impurity reads

C(t, t) ≃ 1

βκ
for t→ ∞ (4.159)

and not1/βκ∗. We have thus found that dynamical quantities depend on the renormalized
valuesκ∗ andM∗

I while final equilibrium quantities have to be computed with the bare values
κ andMI . We insist on the fact that this behaviour has been observed by [146] where the final
impurity position width is not renormalized in contrast to the potential renormalization that is
observed at short times (see Fig. 4.7).

4.6.5 The impurity influence functional

We now use the Keldysh formalism to derive an effective out of equilibriumaction for the
dynamical impurity position. The action of the free oscillator (described byHI with the param-
etersM∗

I andκ∗) is complemented by

Sinf [q
+, q−, q0] =

∑

k

{

−i
∫ β~

0
dτ

∫ τ

0
dσ Γk(−iτ + iσ)eikq0(τ)−ikq0(σ)

+

∫ β~

0
dτ

∫ t

0
ds Γ∗

k(s− iτ)eikq0(τ)
[

e−ikq+(s) − e−ikq−(s)
]

+i

∫ t

0
ds

∫ s

0
du

[

eikq
+(s) − eikq

−(s)
] [

Γ−k(s− u)e−ikq+(u) − Γ∗
−k(s− u)e−ikq−(u)

]

}

+
~βκ0
4

[

q2i + q′i
2
]

, (4.160)

whereq+(s), q−(s) are the dynamical Keldysh branches withq+(0) = qi andq−(0) = q′i,
andq0(τ) is the path over the initial condition (with imaginary timeτ ) [22]. The last line in
the right-hand-side of Eq. (4.160) describes the initial localization due to thelaser blade which
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we interpreted as an initial position measurement with width1/κ0β. Damping stems from the
impurity-bath coupling which induces the kernel [8]:

Γk(θ) =
K|k||Uk|2

2π~

cosh[u|k|(β~/2− iθ)]

sinh[u|k|β~/2] , (4.161)

with θ = s − iτ . In order to understand the effects induced by the non linear impurity-LL
coupling in Eq. (4.146) we expand Eq. (4.160) to second order inq. The result can be found in
chapter 3 and [22] and the correlation function can be calculated:

C(t, t) ≃ ~
2βκ0
4

R2(t)− κ∗β Ceq(t)2 +
1

κ∗β
, (4.162)

Here,R(t) andCeq(t) are the response and equilibrium correlation functions in the high tem-
perature limit~βΩI ≪ 1 which prevails in the experiment. In the Laplace domain they read
R̃(z) = (1/M∗

I )[z
2+zωcα̃(z)+(Ω∗

I)
2]−1 andC̃eq(z) = (1/βz)[1/κ∗−R̃(z)]. Linear response

and correlator depend only on the “damping kernel”

α(t) =

∫ ∞

0
dω

µMI

M∗
I

(

ω

ωc

)2

e−ω/ωc cosωt . (4.163)

As we pointed out, the final equilibrium value should be rather1/κβ [22] than 1/κ∗β
that would follow from Eq. (4.162). We conclude that, while the Gaussian approximation of
Eq. (4.160) [see [22] for details] yields a realistic description of the impuritydynamics for short
times, it cannot deliver the right correlation function for large times, wherea crossover from
the effective constantsκ∗ andM∗

I to bare quantities takes place. Since our approach does not
provide us with an explicit expression ofκ(t) andΩI(t) we directly construct an approximate
correlator

C(t, t) ≈ ~
2βκ0
4

R2(t)− κ∗β Ceq(t)2 +
1

κ∗β

+
(

1− e−ΓΩI t
)

(

1

κβ
− 1

κ∗β

)

, (4.164)

which interpolates between the two asymptotic expressions (4.162) and (4.159). Here,Γ is the
effective damping induced by the Luttinger bath. For small to moderate dampingit is given by
Γ ≃ π

8µ(ΩI/ωc)e
−ΩI/ωc [see (4.126)]. We expect Eq. (4.164) to be a realistic approximation

of the impurity position width.

4.6.6 Discussion of the results

In [146] 41K atoms play the role of the impurities moving in optical 1D tubes through a Lut-
tinger liquid made of87Rb atoms. Both the41K and the87Rb are confined in the same lon-
gitudinal optical potential with the (bare) potential frequencyΩI = 550s−1 (390s−1) for 41K
(87Rb). We interpret the initial localization (withκ0 ≈ 150κ) of the impurities as a position
measurement. The experimental temperature is such that~ΩIβ ≃ 10−2 which ensures the high
temperature regime. The mean squared velocity is obtained to be

√
v2 ≈ 8.5 mm/s which

exceeds the typical sound velocityu ≈ 3 mm/s so that the impurity moves in the supersonic
regime.
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As pointed out before, the mass has to be renormalized in such a way thatΩ∗
I remains

approximately constant over a wide range ofw/wL. This can be achieved by a suitable choice
of ωc, the only free parameter in our theory. Forγ = 0.35 the choiceωc/ΩI = 40 − 50 leads
to a variation of10 % for Ω∗

I in the range0 < w/wL < 5. However, since the mass and
potential shifts decrease during equilibration the oscillation frequency canslightly change in
time. Thus, for large timesΩ∗

I approachesΩI in any case. Hence, in order to experimentally
observe theΩ∗

I predicted by Eq. (4.157) one cannot average over many periods as was done
in [146]. It is therefore not straightforward to make a direct precise quantitative comparison
between Eq. (4.157) and the experimental findings, although we think that the evidence in [146]
clearly indicates that the mass renormalization counteracts the potential shift toa large extent.

Finally, we compare Eq. (4.164) to experimental data in Fig. 4.8. In [146]
√

C(t, t) has an
offset of about5µm which we add to our theoretical results. Moreover, for small interactions
(w/wL . 1) there is a residual damping in the experiment due to inter-impurity collisions in
tubes with several impurity atoms [146] which is of course not covered by our theory. We
therefore use the data from [146] for the damping constant (Γ ≈ 0.03 for w/wL = 1) in
α(t). As pointed out beforeΩ∗

I can slightly vary during the equilibration process. However,
this effect is not expected to be observable within the experimental error bars and therefore we
approximateΩ∗

I byΩI for all times. The match between the experimental data and our theoretic
curves is quite impressive.

In Sec. 4.4 I argued that non-trivial effects onΩI , produced by the super-Ohmic spectral
density in the damping kernel (4.163), could be observed forωc ≈ 0.3ΩI . Here, a second
effect, which is potentially more important, has been described. I think that in the experiment
described hereωc is much larger such that the effects of the polaronic mass shift and the poten-
tial renormalization (which were previously neglected in Sec. 4.4 largely dominate the influence
of the non-Ohmic spectral density.

In summary we gained a thorough theoretical understanding of the experimental data in
[146]. We calculated the effective potential spring constant with an EOM approach, which
is expected to be correct for short times, and we obtained a result withoutany undetermined
parameter [see Fig. 4.7]. We argued that due to memory effects neither a potential nor a mass
renormalization can take place in the long time limit. One question not resolved yet concerns
the precise mechanism that links the mass and potential shifts which I hope will be revealed by
future experiments. Finally, using the analytic results developed in Sec. 4.4 for the Brownian
motion of a particle coupled to an exotic environment, after an initial position measurement,
and with a phenomenological correction to the asymptotic limit, we described the experimental
data forC(t, t) very accurately.
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CHAPTER 5

Conclusion and Outlook

“Even if I knew that tomorrow the world would go to pieces, I would still plantmy apple tree.”
Martin Luther

In this thesis I presented the main aspects of the research I conducted during my PhD at the
LPTHE at Pierre-et-Marie Curie university in Paris. The thesis consists of three main research
chapters. Let me here summarize the main achievements and compare our results to other
approaches in the literature.

5.1 Critical dynamics driven by colored noise

In chapter 2 I thoroughly studied the purely dissipative critical dynamics ofa model with an
N -component order parameter inD spatial dimensions, coupled to anequilibriumthermal bath
which provides a colored thermal noise. We argued that the upper criticaldimensionality of the
model isDc = 4 and we used the framework of the field-theoreticalǫ-expansion to account for
the effects of non-Gaussian fluctuations in4− ǫ spatial dimensions.

Within the Gaussian approximation – valid forD > Dc – the equilibrium dynamic exponent
z which controls the different scaling of space and time takes the values

z0 =

{

z
(col)
0 = 2/α for α < 1,

z
(w)
0 = 2 for α ≥ 1 ,

(5.1)

whereα characterizes thealgebraic long-time decay of the two-time correlation function of
the noise, see Eq. (2.4). Forα = 1 one recovers the white-noise resultz(w)

0 = 2. The non-
equilibrium ‘initial slip exponent’θ, instead, vanishes. Depending upon the value ofα the
asymptotic long-time dynamics is effectively equivalent to one driven by whitenoise (Ohmic
bath) forα > αc, whereas the effect of the colored noise is relevant forα < αc. Within the
Gaussian approximationαc = 1, as demonstrated by the change in behavior ofz0 given in
Eq. (5.1).
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In dimensionsD < 4 the critical behavior is modified due to the relevance of the interaction
term and of the non-Gaussian fluctuations. The valueαc which controls the cross-over between
the white-noise and the colored-noise dominated behaviors is modified byN -dependent correc-
tions of orderǫ2 and it therefore separates the two corresponding regions in the parameter space
(α,D,N), named W and C in Fig. 2.5, respectively. The dynamical critical exponentz is given
by

z =







z(col) ≡ 2
α + ηγ = 2

α

[

1− N+2
4(N+8)2

ǫ2
]

+O(ǫ3) within region C ,

z(w) ≡ 2 + ηw = 2 + N+2
(N+8)2

[

3 ln 4
3 − 1

2

]

ǫ2 +O(ǫ3) within region W .
(5.2)

TheN -dependent curve Eq. (2.90) which separates regions W and C in the(α,D)-plane is
illustrated in Fig. 2.5 forN = 1, 4,∞. Some comments are in order:

(i) Upon decreasingD, the region W within which the Ohmic result is recovered extends
beyond the Gaussian valueαc = 1.

(ii) The correction to the Gaussian valuez0 is positive within region W (z0 = 2) and negative
within region C (z0 = 2/α).

(iii) The exponentz is a continuous function ofǫ andα: At the transition line between regions
W and C one hasz(w) = z(col), as can be easily verified by using Eq. (2.90).

(iv) In the large-N limit the ǫ2 correction vanishes and the dynamic exponentz andαc take
their Gaussian valuesz0 andαc = 1, respectively. This is also consistent with the large-N
result reported in Sec. 2.2.2

For random initial conditions, i.e., with vanishing correlations and average order parameter,
we determined the general scaling forms of the dynamic correlation functions. Within region
C, such scaling forms differ from the ones valid in the presence of white noise only, studied in
Ref. [82] and recovered within region W. We determined the corresponding initial-slip exponent
θ up to orderO(ǫ) in the presence of colored noise. It is given by

θ =
(N + 2)

4(N + 8)
d(α)ΓE(α)ǫ+O(ǫ2), (5.3)

and the plot of the ratio between this valueθ and the referenceθα=1 for the white noise is
reported in Fig. 2.8. Note that in the white-noise limitα = 1 we recover the large-N result
θα=1 = ǫ/4 [see Sec. 2.2.2].

In non-equilibrium conditions we also calculated the long-time limitX∞ of the FDR for
generalα andN . The value ofX∞ in the presence of white noise is known analytically up
to O(ǫ2) [91] and numerically via Monte Carlo simulations in various dimensions for models
belonging to the universality class of theO(N) model with dissipative dynamics (see, e.g.,
[86] for a review). We proved that this result is recovered within regionW. Instead, if the
colored noise is dominant [α < αc(D,N)], i.e., within region C, we showed thatX∞ = 0.
Therefore, the associated effective temperature is infinite, analogouslyto what is found in sub-
critical coarsening [93, 94]. Our result forX∞ within the Gaussian approximation is only
in partial agreement with the corresponding one derived in [48] for an anomalously diffusing
particle — i.e., of a fractional Brownian motion — which our model reduces to within such
an approximation. Indeed, in the presence of a super-Ohmic noiseα > αc = 1, one finds
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X∞ = 1 [48] and super-diffusionz < 2 for the fractional Brownian motion, while we argue
thatX∞ = X∞

0 = 1/2 and normal diffusionz = z
(w)
0 = 2 in our field theoretical model. This

is due to the fact that even in the absence of a white-noise effective vertex in the original model,
non-Gaussian fluctuations (induced by the interactions) generate it and turn it into the dominant
one forα > αc ≤ 1 such that the white-noise result is recovered.

In conclusion, noises correlated in time may affect significantly the equilibriumand non-
equilibrium dynamical properties of systems close to critical points. In this respect it is impor-
tant to note that the distinction between super-Ohmic (α > 1) and sub-Ohmic (α < 1) thermal
baths does not fully correspond to having irrelevant (white) and relevant (colored) long-time
correlations of the noise, respectively. Indeed, as shown in Fig. 2.5, even a weakly sub-Ohmic
noise withαc(D,N) < α < 1 is actually equivalent (in the RG sense) to an Ohmic (white)
noise in the physical dimensionsD = 3 andD = 2 as far as the dynamical properties in the
long-time limit are concerned. In addition, in the presence of interactions, a super-Ohmic bath
does not result in a super-diffusive behavior (z < 2) but rather in the anomalous diffusion in-
duced by the equivalent white noise, in contrast to what happens for thefree fractional Brownian
motion.

The field-theoretical predictions for the relaxational Markov critical dynamics of systems
belonging to the universality class considered here have been put to the numerical test both
via Monte Carlo simulations and by solving the Langevin equations with a variety of different
methods (see, e.g., [87] and references therein). An instance of non-Markovian dynamics of
theφ4-theory with a noise exponentially correlated in time was investigated in [203]. However,
in this case one does not expect the long-time dynamics of the system to be affected by the
finite memory of the noise. Dealing numerically with power-law correlated Gaussian noise is a
significantly harder problem which remains basically open due to the difficulties in generating
such kind of random process, see, e.g., [47, 204] and referencestherein.

5.2 Out-of-equilibrium quantum Brownian motion

After the study of classical critical out-of-equilibrium systems I focused on dissipative quantum
systems, in particular on quantum Brownian motion. The chapter 3 is devoted tothe study of
such non equilibrium dynamics of a quantum Brownian particle coupled to a quantum ther-
mal bath of harmonic oscillators for generic Gaussian initial conditions. We found a closed
expression for the non equilibrium correlation function, which we showedto be easy to derive
from variations of a generating functional Eq. (3.87). We used the analysis in [8] as a starting
point to obtain this generating functional by employing path integral methods. Wethen showed
that factorizing initial conditions (where the bath and the particle are initially uncoupled) are
a special case of the non–factorizing initial conditions on which a position measurement has
been performed. We demonstrated the correctness of our approach byderiving the equilibrium
correlation function without imposing time–translational invariance (presented in App. 3.5.3).

We applied this general formalism to the study of three physical situations. First, we stud-
ied the equilibration process of a trapped particle after an initial position measurement. In this
case we considered Ohmic dissipation. While the classical (high temperature)correlator re-
laxes exponentially on a time scaleγ−1, the low temperature correlatorC(t, t′) in the strongly
quantum regime shows an algebraic relaxation of the form1/(tt′)2 which is independent of the
dissipation strengthγ. Therefore, the information that an initial measurement on the system has
been performed persists for a very long time. We then showed that the equilibration process is
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Figure 5.1: Figure from Palzer et. al [148]. The majority atoms (blue atoms are trappedvia an optical
potential. At initial time the trapping is switched off for the impurities (red atoms) which subsequently
are pulled downwards (here: to the left) by gravity.

different if, instead of a position measurement, a sudden quench in the trapping potential is per-
formed at the initial time. We showed that in this case the relaxation is exponentialin time even
in the quantum regime with the slight difference that at very low temperatures the relaxation
time is of order2γ−1 rather thanγ−1 for high temperatures. Accordingly, the relaxation due to
quantum fluctuations is almost as effective as thermal relaxation in this case.

5.3 Impurity dynamics in 1D Bose liquids

Sec. 3.3 (which is a part of chapter 3) provided us with useful formulae for the study of impurity
dynamics in trapped Luttinger liquids. We showed that the quantum Brownian influence func-
tional is a good starting point for these impurity dynamics in 1D quantum liquids. In particular,
quantum Brownian motion leads to damped oscillations for the impurity and to the correct final
position width. On the other hand, we pointed out that this approach has manylimitations.
Indeed, the polaronic effects and the potential renormalization cannot bedescribed by standard
quantum Brownian motion since the impurity-Luttinger liquid coupling is a density-density
coupling and therefore nonlinear in the impurity position coordinate: Note thatstandard quan-
tum Brownian motion is modeledvia a linear impurity-bath coupling. In Sec. 4.6 we showed
how it is possible to understand the mass shift and the potential renormalizationby using a sim-
ple approach based on the equations of motion of the impurity and the coupled quantum liquid.
As we have pointed out, the external potential is enhancedvia the surroundingtrappedquantum
liquid bath for sufficiently fast impurities. This has dramatic consequences.Recently Palzer et
al. [148] experimentally studied an impurity-Luttinger liquid system with a verticalgeometry.
The external optical potential has to be such that it retains the impurity against gravity in the
center of the surrounding cloud of majority atoms (the Luttinger liquid). This process is shown
in Fig. 5.1. When the external potential is switched off for the impurities (but not for the Lut-
tinger liquid) the impurities are pulled out of the majority atom cloud by gravity as one would
expect intuitively.

However, this system has recently also been simulated by using the Gross-Pitaevskii equa-
tions. In 1D one can construct an approach which is valid for weakand strong internal inter-
actions within the quantum liquid, since strongly interacting bosons are equivalent to weakly
interacting fermions in 1D. In [201] the authors showed that – after switching off the external
potential for the impurities only – the impurity atoms are trapped in the Luttinger liquid for a
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Figure 5.2: Figure from Rutherford et. al [201]. The minority atoms (red) are pulled out of the cloud of
majority atoms (gray) by gravity. The system has been simulated within a Gross-Pitaevskii approach.

sufficiently great coupling strength, although they do not feel the external potential anymore.
To be more precise, while the majority atoms were still subject to the external optical trap,
the external potential was switched off for the minority atoms (the impurities) very much as
in the experiment. As in the experiment by Palzer et. al one would expect thatgravity pulls
them immediately out of the majority cloud. This is indeed the case for small to moderate cou-
pling strengths [see Fig. 5.2]. But, as shown in [201] there is a quite sharpthreshold value of
the atom interaction strength (the interspecies interaction is equal the impurity-Luttinger liquid
interaction in this particular article) beyond which the impurities are “blocked” within the ma-
jority cloud. See Fig. 5.3 for a visual representation of the phenomenon. Such an intriguing

Figure 5.3: Figure from Rutherford et. al [201] showing the fraction of impurity atoms which remain
within the atom cloud of majority atoms (despite gravity)versusthe interaction strength (herew = wL)
measured in units of10−36Jm. A quite sharp crossover can be observed forw ≈ 1.4 · 10−36Jm.

behaviour can be well explained by the results found in Sec. 4.6. Indeed, thetrappedLuttinger
liquid has a non homogeneous density which leads to aneffective potentialfor the impurities
(characterized by the potential constantκimp) even if they are indifferent towards the external
optical potential. This happens according to the formula

κimp = µ̃(v)κ , (5.4)
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with

µ̃(v) =
Kw

π
u/(v2 − u2) , (5.5)

where I used the results in Sec. 4.6. Above some threshold value ofw this effective potential ex-
ceeds gravity and the impurities cannot “drop on the floor” anymore, according to our formula.
Hence, Eq. (5.4) predicts a sharp transition valuewc beyond which the impurities cannot leave
the surrounding cloud anymore (at least for short time intervals for whichEq. (5.4) is valid).

At last, let me discuss the formula (5.5) whenv2 < u2. First of all, I insist again on
the fact that Eq. (5.5) is not valid whenv2 ≈ u2. However, one can imagine cases where
v2 is much smaller thanu2. For instance, when the interaction between the impurity and the
Luttinger liquid becomes very weak, we can argue that – for zero temperature – the typical
impurity velocity is determined by its ground state momentum with respect to the harmonic
oscillator potential. If we take the numerical values found in [146] we can deduce thatv2/u2 ≈
0.1 in this case. The effective potential is thus lowered forw/wL → 0 andβ → ∞. At
first glance such an effect is very surprising. Note however that, in thelimiting case where
v2 vanishes, it might be quite intuitive to expect an impurity to be expelled from the region
in the quantum liquid of higher density towards the ones with a lower density, i.e.from the
center of the liquid outwards. In our analysis we replaced the inhomogeneous density profile
of the quantum liquid by a homogeneous one while including the potential energy of the wave
excitations. This is supposed to preserve the effects of the inhomogeneous background density.
For an impurity immersed in a Bose-Einstein condensate such an expulsion hasindeed been
investigated in [205]. It is however beyond the scope of this thesis to compare our results to the
ones in [205] or to decide if any comparison can be done. In summary, I hope very much that
a future research project will shed more light on this fascinating effect and in particular on the
formula (5.5).

An impurity-Bose liquid system has also been recently simulated by a time-dependent den-
sity matrix renormalization group (TDMRG) method by Peotta et. al [151, 184].The TDMRG
has to be performed on discrete lattices (with sites labeled byi) and the author chose the Hamil-
tonian

ĤL = −J1
∑

i

[

b̂†i b̂i+1 + h.c.
]

+ U1

∑

i

(b̂†i b̂i)
2 +

∑

i

Wib̂
†
i b̂i , (5.6)

ĤI = −J2
∑

i

[

â†i âi+1 + h.c.
]

+ V2(t)
∑

i

(i− i0)
2 â†i âi , (5.7)

ĤIL = U12

∑

i

b̂†i b̂i â
†
i âi . (5.8)

The b̂†i , b̂i model the background Bose liquid whilêa†i , âi are the impurity operators. The terms
proportional toJ1 andJ2 represent the kinetic hopping term of the Bose liquid and of the
impurity, respectively. Note that the majority (b̂†, b̂)-bosons are simply described by the Bose-
Hubbard model and their number is fixed in this problem. TheV2(t)(i − i0)

2-term describes
a harmonic potential for the impurity with a time-varying amplitude. This allows to mimic
the initial trapping of the impurity (with a strongV2) and its subsequent release after which
the impurity feels only a weak longitudinal potential (a weakV2). Up to this point the system
described by Eq. (5.6) is exactly the descretized version of the system studied in this thesis.

However, the author of [151] chose for the Bose liquid an external trappingWi which is
essentially zero in a wide range of the bulk and raises smoothly at the edges.This notable
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difference with the harmonic trapping potential of the Luttinger liquid studied in Sec. 4.6 leads
to remarkable differences for the impurity dynamics which I will discuss further below. Let me
first discuss the most remarakable result by Peotta et al. who found that Luttinger theory is only
applicable in a small range of parameters. This raises questions about the validity of our own
analysis which heavliy relies on Luttinger theory.

Peotta et al. pointed out that the system in question could lie outside the realm ofLuttinger
liquid theory. They found, to be more precise, a non symmetric damping constant when the
impurity-Luttinger liquid coupling is reversed,w 7→ −w, which is in conflict with our formula
[see the definition ofµ right after Eq. (4.153)]. However, it should be pointed out that the Lieb-
Liniger parameter in the system we studied is rather small (γ ≈ 0.25−0.5) while γ & 10 in the
simulation by Peotta et. al. The weakest intra-bath interaction strength which they considered
is U1/J2 = 0.1 corresponding toγ ≈ 1. In this case Luttinger theory seems to be reliable for
U12/J2 ≤ 0.1 which corresponds tow/wL ≤ 1 in our notations. Unfortunately, the authors did
not consider smaller Lieb-Liniger parameters in [151, 184] so that it is notpossible todirectly
verify if a system withγ ≈ 0.25 − 0.5 can be described by Luttinger theory whenw is large
so that it lies in a range which relevantly stretches beyondw/wL = 1. Fortunately, we can
confirm the validity of our approachindirectly, because the results in [151, 184] indicate that
the range of validity of Luttinger theory strongly increases whenU1/J2 is further decreased.
Therefore, we can deduce from the results in [151, 184] that Luttingertheory is applicable
markedly beyondw/wL = 1 in our case and it is highly probable that this is also true in the
whole range0 < w/wL . 5 which we consider in this work. It is thus possible to apply
Luttinger theory in our problem.

Let us now discuss the major difference between the simulation in [151] and the experi-
ment [146]. Indeed, as wished by the author of [151] the Bose liquid hasan almost homoge-
neous density profile in their simulations within a wide range around the center of the cloud. If
we go back to Sec. 4.6 we should therefore expect that the effective potential renormalization
κ 7→ κ∗ > κ disappears or is at least diminished (since the Bose gas is still confined in [151]
and not translationally invariant which leads intuitively to a decreased, albeit non-zero, potential
renormalization). If we go back to the discussion in Sec. 4.6 these circumstances have two con-
sequences. First of all, the amplitude of the first oscillation maximum should notdramatically
increase upon ramping up the impurity-Luttinger liquid coupling~w. Second, the final width
of the impurity cloud should be equal to the mean width during the first amplitudes.Indeed, as
I have pointed out, the potential renormalization only works for small times; at large times the
potential renormalization disappears. Therefore, if the potential is enhanced by the surrounding
Luttinger liquid, a difference between the mean impurity cloud width at small times and at large
times, respectively, has to appear. As can be seen in Fig. 5.4 the simulation results confirm this
picture. First, compare Fig. 5.4 to Fig. 4.8. The simulation by Peotta et. al clearlyindicates that
the average impurity width does not change during equilibration. As discussed above such a
behaviour hints to a vanishing potential renormalization. Compare now Fig. 5.4to Fig. 4.7. For
great values ofγ (here,γ ≈ 10) the curve in Fig. 4.7 is greatly shifted to the left. Therefore,
upon changingw/wL from 0.2 to 0.6 we expect an amplitude decrease of about50% which
is clearly not observed in Fig. 5.4. Note however, that the simulation performed in [151, 184]
focuses on a regime which lies beyond the Luttinger paradigm. A comparison between our
results and the findings of Peotta et al. is therefore always built on somewhat shaky grounds.

To summarize, the numerical results by Peotta et al. confirm our approach (or at least they
do not refute it) in the sense that Peotta et al. do not find a strong potential renormalization
although such a potential shift is measured in the experiment [146]. Our theory is thus vali-
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Figure 5.4: Figure from Peotta et. al [151, 184] depicting the impurity position width versus time
for two different couplings between the impurity and the Bose liquid, u12 = w/wL in our notations.
The Lieb-Liniger parameter can be found by usingγ = U1/(2J1〈b†i bi〉) [151] from which we find
γ = 1/〈b†i bi〉 ≈ 10 with U1/J2 = 1, J2 = 2J1 and〈b†i bi〉 ≈ 0.1 in [184].

dated self-consistently since if it can be applied to the regime considered by Peotta et al., the
only difference between the two physical systems studied in the simulation [184] and the ex-
periment [146], respectively, lies in the different trapping of the bosons. It is then clear that
the non-homogeneity of the boson density profile – strongly present in the experiment but only
weakly in the simulation – induces the potential shift. Finally, this interpretation beautifully
overlaps with the results in Sec. 4.6.

In summary, our results have been independently confirmed by several other studies, al-
though these studies did not directly investigate the potential renormalization. We are confident
that a future numerical or experimental study of this issue will confirm our intuition of the in-
terplay between a non-homogeneous density profile and the impurity potentialshift by directly
addressing this fascinating phenomenon.

5.4 Outlook

The RG methods introduced in chapter 2 can probably be applied to critical membrane dynamics
with colored noise. Although the relevant Ginzburg-Landau functional has a form different
from the standardφ4-functional, the idea to construct an RG flow and to analyze separately the
white-noise and the colored-noise vertices is certainly a good starting pointfor the analysis of
the effects of colored noise on this critical systems found in biochemistry.

More theoretically, we worked on the critical large-N approximation of theφ4-theory driven
by colored noise in order to generalize the analysis by Janssen [see [82] and Sec. 2.2.2]. I hope
to find soon results which confirm our RG analysis. Among other possible extensions of the
present work, I also mention the problem of understanding the effects ofcolored noise on sub-
critical coarsening. The dynamic scaling hypothesis states that the late-stage phase ordering
kinetics is governed by a length scaleL(t) that, in models with no quenched disorder, typically
grows in time as a power-lawL(t) ≃ λ(T )t1/zd . The dynamic exponentzd (generically differ-
ent for the dynamic exponentz at criticality) depends upon the kind of order parameter and the
conservation laws [17] while the prefactorλ(T ) typically depends only weakly upon tempera-
tureT , is non-universal, and it vanishes upon approaching a critical point. (The matching with
the critical growth is explained in [206].) In presence of colored noise thisgrowth law might be
modified, since heavily correlated thermal noise might have an aggregate effect strong enough
to alter the domain growth, which is usually exclusively driven by the surface curvature: Note
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that for white noise one typically expects thermal fluctuations not to affect the domain growth
law [17].

Quantum Brownian motion has still many unexplored research fields to offer. From deco-
herence to exotic baths, such as spin baths [126], many questions and problems have not been
investigated, yet. I will not go into details here and I refer the reader to the extremely vast litera-
ture on the subject. Let me however point out two things. I have introducedthe formulae (3.23)
and (3.24) which allow for an exact diagonalized form of the reduced density matrix of a Gaus-
sian quantum Brownian particle. From its diagonal nature quantities such asthe purity and the
von Neumann entropy are easily calculated. The discussion around (3.24) can thus be extended
to study decoherence effects. Note that these formulae can be applied aslong as the initial
condition can be expanded on Gaussian functions. This is in particular truefor Schr̈odinger
cat states consisting, e.g., of two displaced superposed Gaussian wave packets. In this context
another type of Brownian motion can be explored. Indeed, there are two ways of coupling a
quantum harmonic oscillator to a quantum bath. The possibility, which has not been analyzed
in the present study, consists in introducing aa†bi + ab†i -coupling withb†i , bi the bath operators
anda†, a the creation and annihilation operators of the quantum harmonic oscillator which –
due to the coupling described above – is damped. Such a coupling conserves the total number
of excitations and the dynamics are therefore not ergodic in the sense thatthe total Hilbert space
factorizes into invariant subspaces each characterized by the total number of excitations. Since
this Hilbert space is “smaller” than the one of standard quantum Brownian motion one expects
that decoherence is weaker. I hope to address this question in a future study.

Let me comment now the results of chapter 4. I think it is very important that future ex-
periments give us a deeper empirical understanding of how impurities behave in 1D quantum
liquids. The effective potential imposed on the impurity, which stems from the interaction of
a trappedLuttinger liquid with the impurity, is an intriguing phenomenon. Numerical simu-
lations have shown that such an effective potential can even lead to a complete “blocking” of
the impurities within the cloud of trapped majority atoms, which is strong enough to counteract
gravity [201]. Unfortunately, to date no experiments have examined this question. The depen-
dence of the oscillation frequency on the interaction strength is rather easyto measure. Also,
in a vertical geometry where gravity can fully exerts its influence, or in a tilted optical poten-
tial, it is well within reach to experimentally reproduce the self-trapping of impurities and to
measure the threshold interaction strength which in turn gives information about the effective
potential. From a theoretical point of view, the results of the linear response theory presented in
Sec. 4.6 should be reproducible by methods such as the local density approximation. It would
be most satisfactory to build a bridge between the formulae found in Sec. 4.6 and more con-
ventional methods, possibly with some support from numerical simulations. Also, the influence
of the back-scattering potential on the results derived in Sec. 4.6 is still quitemysterious. Un-
fortunately, studying dynamical phenomena of impurities in 1D quantum liquids beyond the
weak-coupling regime (weak interactions as well as slow impurities) by taking into account the
full Hamiltonian with the backscattering terms is very difficult and involves generally Bethe-
ansatz methods combined with massively paralleled computation. Recently, Mathyet al. [161]
found an intriguing behaviour of an impurity in such numerical simulations of a strongly cou-
pled impurity after it is shot into a 1D liquid with supersonic speed. Accordingly, impurity
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dynamics in 1D liquids show utterly unexpected phenomena as soon as the background liquid
and/or the impurity are in regimes notoriously difficult for a theoretical analysis, such as strong
coupling or external trapping.

This has been probably a difficult manuscript for the reader. I presented many different
aspects of today’s non-equilibrium physics which are not always related one to another. While
it was passionate during my PhD to gain an insight into so many different fieldsof physics, I
considered as a challenge to write this finale manuscript in a comprehensible way. As the reader
has certainly realized, the present thesis is structured around the three main research chapters. I
have decided to keep this threefold structure also in the last chapter 5 of my thesis. I very much
hope that, despite this way of presenting the results, the reader was able to enjoy the parts of the
thesis he found interesting.
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CHAPTER 6

Bibliography and index of most important symbols

“102 + 112 + 122 = 132 + 142 ”
famous proverb

rhs right hand side of an equation
lhs left hand side of an equation
β inverse temperatureβ = 1/kBT
D dimensionality; sometimes the diffusion constant
R(t, s) two-time classical non equilibrium position response function
C(t, s) two-time classical non equilibrium position correlation function
Q(t) Mean displacement in classical Brownian motion
QF (t) Mean displacement in free quantum Brownian motion
g coupling constant in chapter 2
H General symbol for the Hamiltonian
S General symbol for the action
γ Chapter 2: Colored-noise vertex. Chapter 3: Coupling strength of the

bath. Chapter 4: Lieb-Liniger parameter which totally characterizes a
1D gas with contact interactions

Γ(t− s) Noise memory kernel in chapter 2
ΓE(x) Euler’s Gamma function
α Characteristic exponent of the colored noise:Γ(t) ∼ t−α

ǫ equal to4 −D in chapter 2; measures the width of the initial Gaussian
wave function in chapter 3

z Dynamic exponent governing the scaling relation between space and
time t ∼ xz

η static anomalous dimension of the fieldφ in chapter 2
θ non-equilibrium initial slip exponent in chapter 2
θ̂(x) Field describing the phase in Luttinger theory
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γw White-noise vertex
φ̄(x) Response field
Vn,n̄ One-particle irreducible vertex functions withn externalφ-lines andn̄

externalφ̄-lines
αc(D,N) crossoverα beyond which the colored noise becomes relevant
Eα,β(x) Mittag-Leffler function
X(~p; t, t′) Fluctuation-dissipation ratio
X∞ large time zero-momentum fluctuation-dissipation ratio
β∞ Effective temperature for coarsening
p̂, p̂n Momentum operators
q̂, q̂n Position operators
Ω Frequency of the external potential for the quantum Brownian particle

or impurity
M Mass of the quantum Brownian particle or impurity
γ(t) Damping kernel in quantum Brownian motion
ρ̂0(t) Initial density matrix
ρ̂R(t) Reduced density matrix
R(t, t′) Response function in quantum Brownian motion
C(t, t′) Position correlation function in quantum Brownian motion
G+(t) “Propagator” in quantum Brownian motion, related to the response

function
νk Matsubara frequencies
Π̂(q) Projection operator on some state centered aroundq
F (t), G(t) External sources in quantum Brownian motion ch. 3
J [F,G] Generating functional of all non equilibrium correlation functions of the

damped quantum harmonic oscillator
â†, â Harmonic oscillator creation and annihilation operators
b̂†, b̂ Bosonic particle creation and annihilation operators
ĉ†, ĉ Fermionic particle creation and annihilation operators
EF , vF , kF Fermi energy, Fermi velocity and Fermi momentum
Π̂(x) Conjugate momentum field in Luttinger theory
ĤIL Interaction Hamiltonian between the impurity and the Luttinger liquid
u Sound velocity in a Luttinger liquid
K Luttinger parameter:K = 1 corresponds to non-interacting fermions or

impenetrable bosons
w Coupling strength between the atoms in the 1D quantum liquid
U(x), Uk Potential (in Fourier space) between the impurity and the 1D quantum

liquid
wL Coupling strength between the impurity and the Luttinger liquid
ρ̂(x) density operator of the Luttinger liquid
ρ0 Background density of the Luttinger liquid
S(ω) Spectral density of the bath
rTF Thomas-Fermi radius
αho Dimensionless quantity which measures the strength of the external po-

tential
µ Chemical potential; redefined coupling constant in Sec. 4.6.
M∗ Effective mass
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κ∗, κ (Effective) external potential spring constant

143



Bibliography

[1] A. E INSTEIN, Annalen der Physik17, 549 (1905).

[2] N. G. VAN KAMPEN, Stochastic processes in physics and chemistry, Elsevier, 2007.

[3] C. GARDINER, Stochastic Methods. A Handbook for Natural and Social Sciences, Springer,
2009.

[4] J. P. BOUCHAUD and A. GEORGES, Physics Reports195, 127 (1990).

[5] P. SCHRAMM and H. GRABERT, Phys. Rev. A34, 4515 (1986).

[6] H. GRABERT, P. SCHRAMM, and G.-L. INGOLD, Phys. Rev. Lett.58, 1285 (1987).

[7] P. SCHRAMM and H. GRABERT, J. Stat. Phys.49, 767 (1987).

[8] H. GRABERT, P. SCHRAMM, and G.-L. INGOLD, Phys. Rep.168, 115 (1988).

[9] A. CALDEIRA and A. LEGGETT, Annals of Physics374, 149 (1983).

[10] T. GIAMARCHI , Quantum Physics in One Dimension, Clarendon Press, Oxford, 2003.

[11] E. M. LIFSHITZ, L. P. PITAEVSKII , and L. D. LANDAU , Course of Theoretical Physics: Physical
Kinetics, Pergamon press, 1980.

[12] J. W. NEGELE and H. ORLAND, Quantum Many-Particle Systems, Westview Press, 1998.

[13] C. L. KANE and M. P. A. FISHER, Phys. Rev. B46, 15233 (1992).

[14] T. GIAMARCHI and H. J. SCHULZ, Phys. Rev. B37, 325 (1988).

[15] L. F. CUGLIANDOLO, Course 7: Dynamics of Glassy Systems, inSlow Relaxations and nonequi-
librium dynamics in condensed matter, edited by J.-L. BARRAT, M. FEIGELMAN, J. KURCHAN,
and J. DALIBARD , volume 77 ofLes Houches, pp. 161–171, Springer Berlin/Heidelberg, 2003.

[16] L. F. CUGLIANDOLO, Out of equilibrium dynamics in classical and quantum systems, Beg Rohu
Summer School, 2009.

[17] A. J. BRAY, Adv. in Phys.43, 357 (1994).

[18] S. K. MA, Modern Theory of critical phenomena, Benjamin Reading, 1976.

[19] J. ZINN-JUSTIN, Quantum Field Theory and Critical Phenomena, Clarendon Press, Oxford,
1996.

[20] G. PARISI, Statistical Field Theory, Addison Wesley, New York, 1988.

[21] J. BONART, L. F. CUGLIANDOLO, and A. GAMBASSI, J. Stat. Mech., P01014 (2012).

144



BIBLIOGRAPHY

[22] J. BONART and L. F. CUGLIANDOLO, Phys. Rev. A86, 023636 (2012).

[23] J. BONART and L. F. CUGLIANDOLO, Europhys. Lett.101, 16003 (2013).

[24] J. BONART, arXiv , arXiv:1307.3378 (2013).
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