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CHAPTER

|

Introduction

:Introduction‘

In a broad class of condensed-matter systems, the tendency to local ordering is hampered by
constraints. This leads to frustration, with the impossibility of satisfying all competing forces
simultaneously. Hard local constraints lead to a rich variety of collective behaviours such as
the splitting of phase space into different topological sectors and the exI}{g(gelnecnet gg O“lt8pological
phases", which cannot be described with conventional order parameters [13]]. In geometrically
frustrated mggnets, the local minimisation of tlﬁ ()iggegg(e:trigg energy ona frustrateq 1.1nit %g%%relgg 1905  Liebl967b
a macroscopic degeneracy of the ground state 1§71, unconvenfiona] phyase tppsitions WAAIGAL, . o rey2002
long-range correlations in the “Coulomb" phase [277,1114] and slow dynamics [94,164] in both 2d

and 3d systems.

Thy G;:)Lra(l)&otbyéali%%example is water ice for which this zero point entropy has been measured in

the 3087[]—02 . Pauling explained this feature with a model in which the O atoms occupy the vertices

of a coordination {our lattiﬁ%. 'gwo H atoms are near while the other two H atoms are shifted away
Paulin 3 . .

from each vertex [[214]. Fhts is encoded in the so-called ice-rules. The large degeneracy of such

locally electro-neutral ground states gives rise to the zero point entropy. 1007
Harris
A residual entropy has also been measured in frustrated magnets such as HosTioO7 ﬁ

In the €8] ig(—)igfcga;nples, magnetic ions form a tetrahedral structure in 3d, i.e. a pyrochlore
latticej[zﬂl . is is the case, for instance, of the DyJr3 ions in the Dy TisO7 compound. Their
f-electron spins are large and can be taken as classical variables at, say, 7' < 10 K. They behave
as Ising doublets, forced to point along the axes joining the centres of the tetrahedra shared by the
considered spin. Geometric frustration arises from the non-collinear Ising-like anisotropy and the
effective exchange and long-range coupling betw ggrtglfsslpgi%. In a simplified description, only
short-range ferromagnetic exchanges are retained [[112]. Frustration is due to the different Ising
axes of the spins on the unit cell. The configurations that minimise the energy of each tetrahedron
are the six states with two-in and two-out pointing spins.

The system is more easily visualised by realising that each tetrahedron in 3d space can be
considered as a vertex taking one out of six possible configurations in a coordination four lattice.
With this mapping the magnetic problem just described becomes the analog of the earlier model of
water ice. In this context, the entropy of the ground state satisfying the ice-rules, with all vertices
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taken as statistically equivalent, was estimated by Pauling with a simple counting argument E)Zal%lm o
Glauquel9d36

The result is very close to the earlier measurements performed by Giauque and Stout }[IUZ]goni

wate%air%ﬁ 3?{19509 the ground-state entropy of the magnetic spin-ice sample measured in the late

90s [223].” Experimentally, the Boltzmann weights of the vertices can be tuned by applying pres-

sure or magnetic fields along different crystallographic axes. Indeed, the extensio%sl aog ePralu;;Irig’s

ice model to describe more general ferroelectric systems lead to ‘ice-type models’ [242].

The local constraint leads to many peculiar features that have been studied experimentally
and analytically. The total spin surrounding a lattice point is conserved and constrained to van-
ish according to the two-in — two-out Irlsl}_&og{}% Igct has been interpreted as a zero-divergence
condition on an emergent vector field ﬁmﬂﬁﬁare interpreted as fluxes and, quite naturally,
an effective fluctuating electromagnetism emerges with each equilibrium configuration made of
closed loop Y%fugugl(;l;%if 938110alogy can be used to derive power-law decaying spatial correlations
of the spins [277], with a parﬁgg%%rlg%%qdent exponent, that were recently observed experimen-
tally with neuFron s.catterl.ng @M]ﬁ?ty of the dlsordered.or spln-l.lquld phas.e IF}J(LQS%% .
first observed in a simulation [246]], and it has been more recently disc I%Seenqlen %%ral in [I21]. A
detailed description of this also called Coulomb phase can be found in [[114].

Thermal (or other) fluctuations are expected to generate defects, in the form of vertices break-
ing the ice rules. In the electromagnetic analogy a defect corresponds to a charge, defined as
the number of outgoing minus ingoing arrows. As such, a tetrahedra with three-out and one-in
spins contains a positive charge ¢, and the reversed configuration a positive charge —¢q of the same
magnitude. The four-out units carry a charge 2q and the four-in ones a charge —2¢q. Such vertices
should be present in the samples under adequate conditions. The possibility of observing magnetic
moEggct)}ee rl%nd %gge strings as being associated to defects has beel}F%rnoIPeOIszgo%% ,%asteln

Vo . orris %%S{BramwelletalZOOE
al. [57] and investigated experimentally by a number of other groups [93} 197, 43].

Spin ice can be projected onto 2d Kagome planes by applying specially chosen magnetic %%ggz 006
Recently, interest in 2d spin-ice physics has been boosted by the advent of artificial samples [263]
on square lattices that are stable at room temperature. These artificial materials have magnetic
moments that are large enough to be easily observed in the lab, giving access to the micro-states
which can be directly visualised using microscopy.

Following the same line of reasoning exposed in the previous paragraphs, such 2d ice-type
systems shouFig% P%%c}elled by a sixteen-vertex model on a square lattice. The exact solution of
the ice model m]@ﬁgi ggrf}g{ag%sﬁﬁon of it in which a different statistical weight is given to the
six allowed vertices }[ZZWJWegmby Lieb and Sutherland using the Bethe Ansatz. A f%vg years o,
later, Baxter developed a more powerful method to treat the generic eight- vertex models [2I] and
founded in this way the modern theory of integrable systems (in the eight-vertex model vertices
with four in-going or four out-going arrows are allowed).

The presence of a hard constraint in the problem makes 2d vertex models and 3d spin-ice
share several important physical properties. For instance, the ice rules lead to A azgg(%—gzof'%gntropy
measured in the 3d spin-ice material Dy, TioO7 (Sg‘gp ~ 1.86 mol~! K1) E which is very
close Eoig%el gxact value computed for the 2d ice-model on a square lattice (S2¢,., ~ 1.79 mol !
K1 ﬁmwatex models then appear as good candidates to study spin-ice systems.

Much less is known about the static and dynamic properties of the unconstrained sixteen-vertex
model in two and three dimensions. As the experimental interest in classical frustrated magnets
of spin-ice type is now cantered on the understanding of defects and their effects on the samples’
macroscopic properties, it seems timely to complete the analysis of the generic model. The special
experimental simplicity of two dimensional samples suggests starting from the 2d case. Moreover,
it seems worth trying to extend at least part of the very powerful analytic machinery to the models
with defects.



Bi-dimensional Ising-like ice-models had no experimental counterpart until recently when
it became possible to manufacture artificial samples made of arrays of elongated ferromagnetic
nano-islands. The beauty of artificial spin-ice (ASI) is that the interaction parameters can be pre-
cisely controlled - by tuning the distance between islands or applying exte qulaa;1 (1;1%%56— and the state
of a single degree of freedom can be directly visualised by microscopy [263]." The system sets
into different pl%qagffec}fe%edmging on the island length [, the lattice constant ag, and the height h
between layers [[I89]. The main drawback of these materials had been the lack of thermal fluc-
tuations and the ensuing difficulty to observe the ex el%tg?i%rg%lg state. Lately, these problems
have been ov%%%%]f:ibs}é 81? 2atpplying an external drive [[203]], (i1) using materials with a 1 wer aCI%lzrbel 1
temperature ﬁmmmmalising the system during the slow growth of the samples [196]]. The
study of the equilibrium phases and critical behaviour of ASI has thus become possible on rather
large samples with up to 10° vertices.

In this thesis we show that the sixteen-vertex model, a simplified version of the more realistic
dipolar spin-ice model in 2d, is an accurate model for the collective behaviour of artificial spin-ice
samples. During the past thirty years a gr at g{lceog]g Qgﬁ been put into the study of the mathematical
properties of constrained vertex models [24].  The here proven relevance of more generic ver-
tex models for ASI and the intriguingceagctitef)lt%%% ggggrties of spin-ice (emergence of magnetic
monopoles and attached Dirac strings hﬂ]ﬁlﬁmurage their study from a novel and more
phenomenological perspective. The work done during this thesis goes in this direction.

In recent years, research in this field has been boosted by the exciting proposal that topological
defects, in the form,of magnetic monopples and fhejr attached, Dirag syinas, could be obseryed o000, mengoct
in spin-ice samples [7, 131,143} 58, 197/, [I'//]. Spin-ilips due to thermal fluctuations are respon-
sible for the emergence of these defects. The presence of frustration gives rise to unusually large
equilibration time scales in real spin-ice materials. Moreover, 2d artificial spin ice samples are
a-thermal, hence fundamentally out-of-equilibrium. For these reasons, the study of the leading
dynamical mechanisms are of prior importance in order to understand spin-ice’s collective be-
haviour. Reaction-diffusion arguments have lEcegltg %c(i) o Zeg%nate the time-dependent density of
defects in the disordered phase of 3d spin ice [[38]. Also, the dynamics induced by the presence of
a time-dependent magneti B%%lgﬁr} arrays of large ferromagnetic islands has been studied recently
by a mean field approach [50]. As far as we know, no studies of dynamics towards the ordered
phases nor beyond these simple modelling has yet been performed.

Here we choose a different approach to address the dynamics of spin-ice models. For the
sake of simplicity we focus on thermal quenches in the 2d square lattice spin iceBrgggglréa&i)]J;[ as
a stochastic extension of the celebrated six-vertex model of %taagggggl_ I%%%g%nig% L[%ZF]._WWG: a
rejection-free continuous-time Monte Carlo (MC) algorithm [[T6]], with Tocal spin-fiip updates and
non-conserved order parameter, that allows thermally-activated creation of defects. This allows us
to identify the equilibrium phase diagram and to analyse different dynamic regimes.

In this thesis we study both the equilibrium and out-of-equilibrium properties of 2d spin-ice.
In order to do so we consider a sixteen-vertex model defined on an L x L square lattice. Each

edge is occupied by an arrow modelled as a binary variable S = +1. Then we assign a olt_z?%a\l,ner}: ex
weight wy, o< e P to each of the k = 1,...,2* vertex configurations shown in Fig [.I[and we

assume symmetry under spin-reversal. We set the energies of all ve ice:s 1\)&%}(151 rtpg:ge—in and one-out
arrows (and their spin reversed) to be equal. As depicted in Fig. lii these assumptions leave us
with five different statistical weights (or fugacities) a, b, ¢, d and e: the parameters in the model.
In experimental samples, interactions between arrows favour vertices verifying the ice-rule, then:
min(a, b,c) >e > d.
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TV TV - ~ TV TV -
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Figure I.1: The sixteen possible vertex configurations in the square lattice.

The manuscript is organised as follows:

lch :Experiments X . .
Chapter [l starts by a general introduction on geometrically frustrated magnets to then move to

spin-ice in particular. We briefly review the main experimental realisations of spin-ice like sys-
tems in order to motivate the introduction of our model. We stress, when possible, the relationship
between different frustrated systems with a macroscopic degeneracy of the ground state. Some
theoretical models used to compute their thermodynamic quantities are presented and compared
with the relevant experimental results.

In chapter ﬁﬁ%%plrcessent some useful concepts from the theory of phase transitions and critical
phenomena: modern classification of phase transitions, scaling and universality. Then, we de-
scribe the numerical methods used in order to investigate the collective behaviour of the system
(Monte Carlo, finite size scaling, non-equilibrium relaxation method). This chapter has been in-
cluded for clarity and completeness. If readers are quite familiar with phase transitions and the
numerical methods used to tackle them, they may skip this chapter and proceed to the next.

:VertexModels

In chapter ﬁmavailable exact results on 2d vertex models. Although this is not a
thesis in mathematical physics, since we are dealing with extensions of the six- and eight-vertex
models, some comments about the notion of integrability should be done. The exact phase dia-
gram of the six- and eight-vertex models is presented. We discuss the quantum representations of
vertex models and the relationship between Quantum Monte Carlo and loop algorithms for clas-
sical constrained models. We introduce the unifying concept of height function for the six-vertex
model and hardly constrained models in general. This leads us to a general definition of topologi-
cal sectors in this context.

lch:Equilibrium U . i .
In chapter [V| we obtain the equilibrium phases and critical properties of the symmetric sixteen-

vertex model.We proceed in two directions. On the one hand, we study the static properties of
the sixteen vertex model on a square lattice with Monte Carlo simulations. We establish the phase
diagram and critical properties, that we compare to the ones of the integrable cases. On the other
hand, we adapt the cavity (Bethe-Peierls) method to treat the same problem on a well-chosen tree
and we thus access all the expected phases in the model. We discuss the range of validity of this
approximation. We compare the results obtained analytically to the numerical ones for the finite
dimensional system. We then apply the same strategy to the model for a special choice of the pa-
rameters closer to the experimental set-up. We compare the predictions of our vertex model with
the measurements and find quantitative agreement away from the critical point. Our results prove
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the relevance of the vertex model as a simple model system for the study of ASI samples, and more
generally 2d spin-ice. After giving the few exact results available for the sixteen-vertex model, we
present our attempts to generalise the height function framework and the quantum mapping into a
spin chain to our unconstrained generic model. The work presented in this section has been done
in collaboration with Laura Foini and Marco Tarzia.

:D i
Finally, in chapter wenaaﬁrél?sse the out-of-equilibrium dynamics of the model following differ-

ent kind of quenches: from a fully disordered initial condition (equilibrium at infinite temperature)
into its disordered, ferromagnetic and anti- ferromagnetic phases. We analyse the evolution of the
density of topological defects and we identify the leading mechanisms for the growth of domains
in the ordered phases. We compare our results with known facts of the gélxyfgl}iocf 2of spin ice sam-
ples. Part of the results presented in this chapter have been reported in ﬁﬁgﬁ
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1:Experiments ‘

II . . es
Experimental realisations:

Frustrated magnets and artificial
spin-ice

II.1 Geometrical frustration

In systems with a large number of interacting degrees of freedom the tendency to order locally
cannot always be fully satisfied. The impossibility to simultaneously minimize the interaction
energy at each point of the system is called frustration, a concept which covers a broad class of
very different situations in condensed matter physics. Frustration arises when there is a compe-
tition between different interactions and/or when the lattice structure prevents the simultaneous
minimization of the local interaction energy.

II.1.1 Definitions and ground-state manifold

There are two main sources of frustration in condensed matter systems: (i) the presence of
strong disorder or (ii) the geometry of the lattice combined with the specific nature of the interac-
tions (usually antiferromagnetic). In this section, we first discuss briefly the main features related
to frustration to then discuss in more detail its origin in spin-ice. We present some representative
examples of frustrated systems to illustrate general concepts and motivate their study, with no
attempt to give a review on thi vast IgfésreRaa{%l%rdeozr?gb% For a recent general 1ntr0duct10n an Otlz}e
sub]ect the reader may consult mm@ rev1evi of the ﬁ%ld is given in ﬁ% or a
re sPeC1q(‘9 gewew dedicated to frustrated Ising systems see }[IBEJ—W% the interested reader

Ram

to [225] for an experimental review.

I1.1.1.1 Disordered systems

In the context of disordered systems frustration arises from the randomness of the interactions
between the different degrees of freedom. One can introduce disorder in the O(n) model by
considering a random exchange interaction .J;; between two nearest-neighbours (NN) spins on
sites ¢ and j of a d—dimensional lattice. This class of models is described by the following
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Hamiltonian
H=-> J;Si8; (IL1)
(4,5)

where {J;;} is a set of independent "quenched’ random variables (time independent) with mean
(Jij) = 0; S; are n-component vectors such that S? = 1, V4. For n = 1 this model corresponds
to the canonical spin-glass model: the d-dimensional Edwards-Anderson model. It models the
presence of magnetic impurities located randomly in ’dirty’ materials. Since the interaction be-
tween them is well captured by the RKKY mechanism the strength and orientation of the exchange
coupling is randomly Elljs_g%%gtr?gém frustration

As shown in Fig. [[I.T(a) the spin Iocated on site ¢ cannot simultaneously satisfy the antifer-
romagnetic bond J;; > 0 and the ferromagnetic one J; a?igérI{IPég’i g}igségmodel is expected to
undergo a spin-glass transition at a finite temperature 77, [[L69]. The Tow temperature glassy phase
is characterized by a vanishing magnetization and an extremely slowing down of the dynamics.
The ground state of the Edwards-Anderson model is not only characterised by the symmetry of
the Hamiltonian, on the contrary to its non-frustrated counterpart, the Ising model. Therefore, the
nature of the low temperature phase is radically modified by the inclusion of frustrated interac-
tions. Despite the existence of several mean field models which reproduce some characteristic
features of ’real’ elzzl%s]}/dggsrtfgll%itpgsg%%ggocif the glass transiti'o.n in' finite dimensions i.s .still a
matter of debate [I83]]. The question of whether the glass transition is a true phase transition or
just a non-equilibrium effect is far from being solved. This is a formidable theoretical problem
which will not be treated in the following pages. Instead, we will focus on the effects of frustration
in the absence of disorder.

(©

Figure II.1: Frustrated units with Ising spins. (a) The Edwards-Anderson’s model on the square
lattice. The dashed bond corresponds to AF exchange and plane bonds correspond to FM ex-
change. (b) The AF Ising model on an equilateral triangular lattice. (c) The AF Ising model on a
lattice of corner-sharing tetrahedra.

1_frustration

II.1.1.2 Clean systems

In a large class of condensed-matter systems without disorder the tendency to order is ham-
pered by constraints. These are due to the nature of the interactions and the geometry (or topology)
of the space where the relevant degrees of freedom are defined. The combination of these two el-
ements gives rise to the so-called geometrical frustration.

In order to illustrate the latter definition we consider the antiferromagnetic (AF) Ising model
dfeﬁ %gln%getpf:gggi trlanguri%ultac_gtlcee.l l"ggl s model was orlglne'll'ly 1ntr0d1'med in 1950 b.y Wan-
nier [264] and Houtappel [117/] who computed the exact partition function and recognized the
absence of long range order at any tempe.rature. It h?ls been largely.stu(.he% sm:Céaa}llgi%rIln aggulé%sr stion
become the text-book example of geometrical frustration. As shown in Fig. II.T[(b) the three an-

tiferromagnetic bonds around a triangle cannot be satisfied simultaneously. The third spin sitting
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on site ¢ can be equivalently "up’ or ’down’ such that each plaquette contains at least one pair
of parallel spins. This limitation is due to the particular geometry of the lattice. Hence, all the
configurations verifying

D> Si=+1 (I1.2)

€T
on each triangular plaquette 7 are energetically equivalent. Meaning that there is a ’frustrated’
bond of par 111\?1 spins per triangle, even thought the interaction is antiferromagnetic. The latter
equation can be seen as a local constraint defining the ground state of the system. Among
the 2 x 2 x 2 = 8 possible configurations for an elementary triangle there are six verifying the
constraint, leading to an extensive degeneracy of the ground-state which diveri%es in the thermo-
dynamic limit. The phase space submanifold defined by the constraint eq. will be called the
ground-state manifold of the model. %ggnfilxeag 9vg%u% g{ttge %Sf?g%ted ground state entropy was
computed by Wannier and Houtappel ﬁm, 117 Itis given by

Soq B 3 /6
=2 /0 In(2cos ) du ~ 0.323 (IL3)

where N is the number of spins in the system. This calculation shows that the system is disogiere

’eq:WannierEnt

tephensonl970

even at 7' = 0. The calculation of the pair correlation function C(r) confirms this scenario [243].
Indeed, it has been shown that, for 7" — 0 the correlations decay algebraically as

Cr) ~r~1/? (I1.4)

where 7 is the distance between two spins in the lattice. The above constraints impose long-
range correlations between the spins. In analogy with molecular liquids this kind of collective
paramagnets are called classical spin-liquids.

For reasons that will become clear in the following section, lets copsider the 3. version of the
preViA%%se?ls%crl%lé the AF Ising model on a pyrochlore lattice (see Fig ié llﬁi infroduced by Ander-

son [7] six years after the work of Wannier and Houtappel. Similarly to the Eﬁlﬁaﬁgh gg gogggs%ration

macroscopic degeneracy of the ground state on a 3d lattice. As shown in Fig. [[I.T[(c), the number
of satisfied bonds on an elementary tetrahedron cannot be larger than two. All the configurations
{Sz'}fL with two spins up and two spins down per tetrahedron are equivalent and constitute the
ground state of the system. In a more formal way, the ground state manifold G is defined by the
local constraint

G={{S}:Y. 8=0 vT} (IL5)
ieT
where here the elementary frustrated unit T is a tetrahedron.

The models we have discussed above include only NN interalgtjl;gr:ll% grlllgg mthg% Sggga}glg Ig)f the
lattice can be seen as a two-body interaction (a bond). From Fig. [II. T[one can be easily convinced
that, since the AF order is staggered, the interacting spins must be defined on a bipartite lattice in
order to be able to accommodate into its Néel ground state and avoid geometrical frustration. In 1d
systems, further neighbours interactions are needed in order to have frustration. Indeed, geomet-

rical frustration comes from the presence of closed loops of an odd number of degrees Tfoflrleiedom

’eq:GSAndersor

ousel977

with antiferromegnetic interactions. This can be summarised by Toulouse’s criterion [258]: the
plaquette or unit 7 is frustrated if the parameter YV defined as

Jii
= I1.6
wr= 11 i (IL.6)
(i,)€T

’eq:loopProd
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/ 010]

Figure I1.2: The pyrochlore lattice made by corner-sharing tetrahedra. The cube represents a unit
cell. The three crystallographic directions [001], [010] and [001] are shown together with the [111]
direction. The spacing between nearest neighbours is denoted by r¢ (shown in red).

is equal to —1. The product in the equation above runs over all the NN pairs around an elementary
frustrated unit 7. Since this criterion can be generalised to a product over all the bonds along any
closed loop we will call it loop product. To illustrate this concept let us consider the AF Ising
model on the triangular lattice. Since all the pl ue:[tz_g:FsIaerefggdfs: of three bonds, elementary loops
are made of a o.dd: Eg%b%rogf ‘Qonds (see Fig. a)). Therefore Wy = —1 for any loop 7. As
shown in Fig. , this does not apply to the AF Ising model on the Kagome lattice. It this
system all the triangles are frustrated but not all loop products give a negative result because of the
presence of hexagonal plaquettes. The latter remarks lead us to a concise definition of geometrical
frustration:

A system is geometrically frustrated if a negative loop-product exists.

The existence of a ground state manifold with an extensive number of states (diverging in the
thermodynamic limit) is a central feature of geometrical frustration but not all frustrated systems
display this property. For continuous spins (n > 1) placed on the vertices of frustrated lattices the
ground state is usually long-range ordered but no longer made by parallel or antiparallel spins. This
is the so-called non-collinear order. The canonical example if}{) tllée %}Y model on a triangular
lattice whose ground states give rise to the ‘ 120 ° structure’ [[83]. In the ground state, the spins
accommodate such that their orientations form an angle of 27r/3, or equivalently, the sum of the
three spins around an elementary plaquette is zero.

So far, we have only considered lattice systems with interacting spin variables. Even though
it usually appears in the context of magnetic systems, geometrical frustration play & g%%qaglglgntal
role in the understanding of the structural aspects of solids and complex media [232]. In such
systems, the tendency to grow a local ordered structure with some symmetry is hampered by the
topology of Ttgg s&aggBthJQH (e.g. the 3D Euclidean space cannot be filled by tetrahedral packing
of spheres) }[257?7
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(a) (b)

Figure I1.3: Examples of 2d frustrated lattices and their corresponding loop products. (a) The
triangular lattice. The loop product C7; = (—1)3 around a single frustrated unit 7; made by 3
bonds shown in red and C7, = (—1)" around the loop 72 made by five plaquettes and 7 bonds
shown in blue. (b) The Kagome lattice made by corner sharing triangles has a negative loop
product around a triangular plaquette (shown in red).

.g:AFIM_loops

At this stage one should try to answer the following question: Is the lack of long range order ro-
bust to small perturbations? Strictly speaking, the above arguments leading to the macroscopic de-
generacy of the ground state were based on: (i) the equivalence of all the bonds around a fru%rc%%g
unit (ii) the la}ck of therm &gyggﬁafti%nﬂl')reakmg the .constcrﬁuer}]tl ;%166 inclusion of amsotropy 1177,
range of the interactions [[I80] and Iattice deformations ﬁ()‘gm the first before mentioned ar-
gument and order becomes possible in a frustrated system. The second argument breaks down at
any non zero temperature. Then, defects breaking the constraint defining the ground state manifold
must be cons_idered. Thermal Buacltlelgtti(s)% Pa frust.rated magnets can giYe r'sg dtgr’ Segg{igé gf‘xcit:«zltions
such as fractional excitations [[13]] or unconventional superconductivity [[8]. It might explain the
enthusiasm of condensed matter physicists in studying these systems.

el1950

A subtle ground SF‘E j?gllenc{igoglomechanism occurring in strongly frustrated systems was iden-
tified by Villain et al. [[261]]. The authors considered a frustrated Ising system (the domino model)
without long range order at zero temperature. They showed that thermal fluctuations order the
system at any finite temperature below 7,.. At T, the system undergoes a continuous phase tran-
sition to a disordered phase. This intriguing phenomenon was hence termed ‘order as an effect of
disorder’. Similarly, it has been shown in the Kagome and triangular Sggﬁgggg{% QF models that
quantum fluctuations at zero temperature can also select a ground state [231]]. In its usual form, the
third law of thermodynamics is violated in geometrically frustrated systems with a hard constraint
and discrete degrees of freedom. Strictly speaking, one must take into account the presence of
quantum fluctuations at low temperature. It is not clear how these could affect the ground state
degeneracy of water ice. The interplay bet;{gggg quaptym fluctuations and geometrical %g%tg%tsigg 1973, Andersonl 98
leads to the so-called quantum spin liquids [13]]. Theories like resonance valence bonds [/, 18] pre-

dict the existence of ’exotic’ excitations in connection with high temperature superconductivity,

explaining tl?Leelelg%% glni\lﬁlé%tu 91; %%eor}{tlvg(a) lésn }:ns Elbel gleld. For recent reviews in the subject I would

recommend [[157, 185, [13]] .

II.1.2 Water Ice

Back in the thirties, physicists and chemists where confronted for the first time to the unex-
pected consequences of frustration when studying ordinary water ice. Even though the concept of
frustration was not used yet, everyday’s water ice is indeed the prototypical example of geometri-
cal frustration. This section is devoted to a brief review on this system.
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II.1.2.1 Zero-point entropy

The emergence of a macroscopic degeneracy of the ground state is the main characteristic of
geometrically frustrated systems. Even down to zero temperature, the entropy does not vanish and
the system fluctuates, in apparent contradiction with the third law of thermodynamics. As a result,
there is an absence of long-range order at 7' = 0 and the corresponding zero-point entr Py, or

auquel936

residual entropy can be measured. This was done for water ice in 1936 by Giauque and Stout [[I02]].
The authors performed heat capacity measurements on water from 273 K down to 10 K. They
computed the entropy. betwgen 10 K and 273 K by integrating the heat capacity measurements

shown in Fig. ﬁllﬁ [hey %ouna

273

AS = CpdInT = 9.081 cal.mol K. (IL.7)
10

The entropy of ihet l%vizgr [temperature regime, between 0 K and 10 K, was extrapolated using
Debye’s model [140]. Then, by adding the latent heat contributions, accurately measured in
the past, they found AS; = 44.28 4 0.05 cal.mol~!.K~!. This measurement was compared
with the entropg CalclljléaAtgglb ggguque and Ashley using spectroscopic data Sorz ~ 45.10
cal.mol 1. K~! }[IUS]EL'I'hls—va%,lﬁlarger than the one obtained by calorimetric measurements.
The discrepancy between these two values gives an experimental evidence of a zero-point entropy
of S35 = S(273) — AS; = 0.82 £ 0.05 cal.mol L.K™! (=~ 3.4 J.Lmol " 1L.K™1), By, 1ntr01c£1§c5ing a
simple model, Pauling explained and gave an excellent estimation of this value kmFL
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Figure I1.4: Heat capacity of water 1ce easured by Giauque and Stout (from hOZ e structure
of water ice Iy, is shown in Fig. ‘él1 5[

GiauqueStout

II.1.2.2 Pauling’s Ice model

Giauquel936
The following quote from Giauque and Stout’s seminal paper }[TUZ presents in a concise way

the essence of Pauling’s model:

During the course of the present investigation, Pauling offered an alternative expla-
nation based on the random orientation of hydrogen bonds in ice. [...] The spec-
troscopic value is 45.10 leading to a discrepancy of 0.82 cal./deg./mole. This is in
excellent agreement with the theoretical discrepancy 0.806 calculated by Pauling on
the assumption of random orientation of hydrogen bond directions in ice.
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. }faulin 1935 . . .
Pauling’s model [214] predicts the before mentioned zero-point entropy as arising from the

intrinsic disorder of hydrogen ions (H") in water ice. Oxygen ions (O?~) occupy the vertices of
a coordination number four lattice and protons are located on its edges. At each oxygen-oxygen
link there is only one proton with two possible equivalent positions: close or distant to an oxygen
ion (covalent or hydrogen bond respectively). Water molecules are polar, hence each edge of
the lattice carries an electric dipole moment (ji = O?~ — H™). The two possible positions for the
proton correspond to a dipole pointing towards one of its two adjacent vertices. This is summarized
in the so called Bernal-Fowler’s ice-rules deﬁnin% etlrlg agﬁoy?g state of the model: at each vertex
two dipoles must point inward and two outward FQEFT}W rules are equivalent to the discrete

local constraint,

Vifi =0, Vi (IL.8)
where the index 7 denotes a site (i.e. vertex) of the lattice. All the configurations verifying that
constraint are energetically equivalent. Even though Pauling’s model was originally proposed to
study 3d water ice, it can be defined in any coordination four lattice. As the reader will remark,
all the discussions and results that follow in this section are independent of the dimensionality
of the lattice as soon as a the relevant unit is a vertex with four equivalent edges attached to it.
On a square lattic .si):< 6(&/onﬁgurations among the 2* = 16 possible local arrangements verify the
ice-rule (see Fig. . The system is geometrically frustrated: each frustrated unit (made by a
vertex and its four edges) carries a degeneracy of six, leading to the extensive degeneracy of the
ground state measured by Giauque and Stout.

Pauling computed approximately the number of configurations verifying the ice-rules. Con-
sider a lattice with NV vertices (O atoms) and 2N edges (H atoms). There are 2 possible configura-
tions for each edge, which gives Qg = 22V possible configurations. This gives the entropy of the
model if the ice-rules are omitted. The number of configurations must then be reduced. In order
to do so, Pauling considered each vertex as an independent object. Then the number of allowed
configurations is reduced by multiplying by N factors 6/16. These factors are the probability that
the vertices verify the ice-rule (six allowed configurations among the sixteen possible ones). One
should note that the hypothesis of independence between vertices is a huge approximation (of the
’mean-field’ kind) and has, a priori, no reason to give accurate results. The number of ground
state configurations is therefore Qo = 22V (6/16)" = (3/2)" and the residual entropy

A‘f};’; =1In(3/2) =~ 0.405 . (IL9)
This value is remarkably close to the experimental value S3; = 0.82 4+ 0.05 cal.mol'.K~!
(= 0.41R ~ 3.4 J.mol ' K~!, where R ~ 8.314 J.mol !.K~! is the gas constant). This ap-
proximation can be applied to any model where the extensive degeneracy of the ground state
comes from a local constraint. For the AF triangular Ising model the probability to find a triangle
in its ground state [i.e. verifying eq. is 6/8. Since there are two triangles per spin, one finds
Qoo = 2V(6/8)*, where N is the number of spins in the system. Hence,

Soo

—— =1n(9/8) =~ 0.118. I.10

Yo = In(O3) 1.10)
Pauling’s approximation gives neither an upper nor a lower bound of th zerg a%(r)lipet gntropy. The
exact value of the zero point entropy of the model was given in eq. :Iil’._s‘) [his result shows

th tlgqrE%lgréF Ising model on the triangular lattice, Pauling’s method is unsatisfactory (see Table
Iﬂli ). However, for the AF Kagome lattice and the ice problem this approximation turns out to
be extr.emely accurate. Mz.lgnetlc Fggggiecz 51&% measurements show the agreement between the
theoretical result and experiments [224].

eqg:Pauling
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The energy of the ice model is minimised when all the vertices verify the ice rule. Protons can
only be in two different positions per bond, which is equivalent to a binary variable attached to each
edge. The model is then defined by giving the same energy to all the configurations verifying the
ice-rule and an infinite one to all the other ones. The exact ollgg%l 6o7f the ice model on the square
lattice was given by Lieb using transfer matrix techniques [[164]. The ground state degeneracy is
given by the so-called Lieb’s square ice constant W and the residual entropy is

3
4\2 83 .
Sgd =N kB an, W = <3) = T . (IIll) Eg:Lieb

Its numerical value is Sy4 ~ 0.43 R. The ice problem is closely related to many other problems in
mathematical physics and Lieb’s constant is now extensively used in combinatorics.

%> 4? ﬁ& *VF 4:« <>

Figure I1.5: The six vertex configurations verifying the ice rule in the square lattice.

II.1.3 Generalised ’ice-type’ models

The extension of Pauling’s ice model to include more general ferroelectric systems led to the
so called ’ice-type models’ and then ’vertex models’. Vertex models consist in some degree of
freedom (Ising spins, g-valued variables, etc.) sitting on the edges of a lattice where interactions
are defined on the vertices (contrary to ’edge’ models, as O(n) models, where interactions are
explicitly written in terms of variables on the edges). The many-body interaction between the
variables sharing a vertex is then encoded by t ¢ energy _pf a local configuration.

. The theolret'lcal so.lutlo'n of the ice quel m],ﬂd. SO Eiggggrgl_}hzasthotrhse(r){ 6}% In 9\g;11ch a
different statistical weight is given to the six allowed vertices [162, 247] were given by Lieb and
Sutherland in the late 60s using the transfer matrix technique with the Bethe Ansatz. Soon gtaePri,terBook
Baxter developed a more powerful method to treat the generic six- and eight-vertex model [24.
and founded in this way the theory of integrable systems. The eight-vertex model is an extension
of the six-vertex model. It includes all the vertices with an odd number of 'n.cozr%i\?g and outgoing
arrows on each vertex, leading to the eight configurations shown in Fig. eir equilibrium
phase diagrams are very rich: depending on the weight of the vertices the system sets into a quasi
long-range ordered spin liquid phase (SL) and several ferromagnetic (FM) and antiferromagnetic
(AF) phases separated by different types of transition lines. In the six vertex case the SL phase is
critical in a similar way to what is observed in 3d spin-ice.

In these models a local cor}gggri)qtv ren]ggg}si D/tlggrerigntegrable, meaning that theYang-Baxter equa-
tions are verified (see Chapter [77), and many of its equilibrium properties can be derived exactly.
Fr(?m a theoretical perspectiYe integrabl§ vertex models. are of partiFJlleaé viqu}tBeggit. The %gtel% PIOD: Jacobsen19o:
erties can bfe mapped ont(% spin fggg}els Wlt'h. maq%/il%(r)lq% Interactions @m&%@e}s {[204, 124.J,
thrf:lfz:_icnor}%l&l&%%%lgg%s mma%j%% grhlna%s d%&/%], su'riace' grow.th ﬁZS , alternated sign IIl'atrl—
ces [[281] and quantum spin chains mmex%é\é% iiéscussmn of some of these mappings
will be made in the text, mainly in Chapter [[V]

The critical properties and the nature of the phase transitions in frustrated spin systems are dif-
ficult to treat with the standard methods of modern statistical mechanics. Although largely studied,
the collective behaviour of frustrated systems is still a matter of debate. Renormalisation group
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studies of Helsenb%glfgg%ggte%do&%%%eltg Iggpgg%ghe existence of scaling laws with contlnuou%lyVertexMo dels

varying exponents [[53]81]], similarly to what happens in the eight-vertex model (see chapter [[V).
Well established approaches must be improved in order to capture the essence of these new phe-
nomena. It is then of great interest to develop simple theoretical models to describe these systems.
Frustrated spin models, and vertex models in particular, seem to be a good playground to start

with.
A A A A
)if> <%/—< <—l—< )—Tf> >—P< <—If> <+> )%(
v v v v
\ . 4 N o \ . 7 \ . 4
TV TV TV TV
a=wi=w3 b=w3z=w4 C=Ws5=Weg d=w7=wsg
Figure I1.6: Vertex configurations of the eight vertex model on the square lattice.

The latter remarks make the study of frustrated systems interesting by itself from the theoreti-
cal point of view. Experimentally, frustrated magnetic materials can be engineered and studied in
the laboratory using a large variety of different techniques. The control of magnetic materials has
been crucial for technological issues during the last decades and we could expect that frustrated
magnetism will also become a source of new technological development. As shown all along
the coming sections, spin ice in 2d is a good candidate both for the theoretical understanding of
geometrical frustration and for potential technological applications. In particular, the ability to
manipulate magnetic monopoles in spin ice would lead to magnetic analogs to electric circuits.

II.2 Spin-ice materials

II.2.1 Rare-earth pyrochlores with residual entropy

This section is devoted to spin ice, a classical frustrated spin system realised in a family of
rare-earth pyroc%lgg ?ﬁ@% such as Ho2TisO7 or Dy2TisO7. Since the pioneering work of Harris
and co-workers [[112] spin ice has been the subject of a great deal of work and has become one
of the most studied frustrated systems. This has been driven by the remarkable and unexpected
properties observed in these materials. Spin-ice belongs to the more general family of pyrochlore
ox.ide's of the ty.pe AsBo éar%%re% ¥ 'eynvwcelﬁﬁi}gcgg?{d to magr?eti.c pyroc'hlore oxides in generz.il e}nd
spin-ice in particular see [101]] and [42]], respectively. In spin-ice A’ is a rare-earth magnetic ion
(such as Ho?t or Dy?*) and ’B’ is a non-magnetic ion (such as Ti*t).

The only magnetic ions in spin-ice come from rare-hearth elements (Ho3t or Dy?*t). They
carry a large magnetic moment located on the sites of a lattice made by corner-sharing tetrahedra
forming a pyrochlore lattice. The surrounding crystal field acting on the magnetic ions gives rise
to a strong single ion anisotropy that forces the magnetic moments to be aligned along tlEj_rq!%%arloch lore
(111) direction connecting the centres of their two corner-sharing tetrahedra (see Fig. JIT.2). At
low temperature, the magnetic moments are well described by classical Ising spins with a large
magnetic moment (= 10up), in such a way that they can only point inward or outward from the

centre of a tetrahedron. Each tetrahedronE can Pgei%e‘;le%% a vertex in a 3d lattice taking one out of

sixteen possible configurations (see Fig.

As suggested by its name, spin ice is the magnetic analog of water ice. Magnetic moments in
spin ice play an equivalent role to that of the proton position, i.e. dipolar moment, in water ice. In
ordinary ice I, the oxygens are located at the centre of the tetrahedra forming a pyrochlore lattice
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g lce
as shown in Fig. ﬁ_ﬁﬁcmc dipoles are then located on the sites of a pyrochlore lattice !, such
that the correspondence between a water ice configuration and a spin ice one is straightforward:
when there is only one proton per edge, one can identify an electric dipole with a spin.

Figure I1.7: Equivalence between the crystalline structure I;, of water ice and spin-ice on a py-
rochlore lattice. The oxygens form a diamond lattice, the coordination number four lattice made
by the centers of the tetrahedra. The middle points of the edges where the arrows sit form a py-
rochlore lattice, the dual of the diamond lattice. A spin (black arrows) pointing inside a tetrahedron

occupied by an oxygen corresponds to a hydrogen closer to it.

A few years after Harris et al. reported the absence of long-range order in Hoa TioO7, Ramirez
and collab%aartnolrrselg]legggred a residual entropy close to the one predicted by Pauling now using
DysTizO7 [223]. Similarly to what Giauque and Stout did sixty years before, these authors ex-
tracted the entropy at v 19§vartneirgggrature from hea& gggggirtg measurements between 7" =0.2 K
and 7' =12 K (see Fig. . As shown in Table ﬁ_ﬂm%ement is remarkably close to the
entropy of water ice and, interestingly, to analytical calculations in 2d and making use of the Paul-
ing approximation (mean-field like models). From this observation one would like to conclude
that spin ice is geometrically frustrated and that, at low enough temperatures, it verifies some kind
of hard constraint such as the ice-rules.

| | Sewp | Sa | So |
Water ice 0.41R 102 A3R(I64] | 0.40R
Spin ice 0.46R 1223 |~ 043R | 040R

Kagome AF || 0.5018R[224] | 1134] T 0.5014R
Ising AF 0.36 R [20T] T

950

03I3RI64 | 0.118R

D
b
b
s

Table I1.1: Zero point entropy. First column Sc,,: experimental results with the corresponding
references for different frustrated materials. Second column Ss4: exact computations in 2d lattice
models. Third column S.: approximate results applying Pauling’s method. Where R ~ 8.314
J.mol~1. K~ is the gas constant.

‘able:Entropy

1. The diamond and the pyrochlore lattice are dual.
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Figure I1.8: Specific heat and entropy measurement in DysTizO7 from hUSI. (a) Heat capacity

divided by temperature of DysTioOr in an external field H = 0 and H = 0.5 T. The dashed line
is a Monte Carlo simulation of the dipolar spin-ice model in a finite lattice made by 8 x 8 x 8
tetrahedra at zero field. The inset shows the inverse susceptibility of Dy2TioO~ in an external field
h = 0.02 T. (b) Entropy of Dy,TizO~ in an external field H = 0 and H = 0.5 T. The entropy of a
random arrangement of spins R In 2 and the one computed by Pauling R(In2 — (1/2) In(3/2)).

I1.2.2 Dipolar spin-ice model

In order to further understand the analogies between water and spin ice behaviour one should
first understand the origin of frustration in spin ice. In these materials the exchange coupling be-
tween rare-earth ions (= 1 K) is weaker that in an usual ferromagnet (= 300 K for Co). Moreover,
the magnetic moments carri gal%}f/ ltlsl? 91§1g.gnetic ions are large (= 10up) such that dipolar inter-
actions cannot be neglected [[IT1]. Dipolar and exchange interactions are of the same order of
magnitude in spin ice materials. T € Pﬁﬁ asgittr?gnl}lg%rloscopic model to describe spin ice is the so

called dipolar spin ice (DSI) model [239]. Tts Hamiltonian is given by

Hpsi=—J Y SiS;+Dr§ 3 (S"‘Sj 3(Si‘rij)(sj'rij)> (IL.12)

oy iz \I7g P 1735 1°

where the magnetic moments S; = S;Z; are Ising spin variables (S; = +1) along the local (111)
axis Z; 2. The separation between spins is given by 73; = T; — 75 and P denotes the set of sites
of the pyrochlore lattice. The first sum runs over all the edges (ij) of P. The exchange coupling
J > 0 is ferromagnetic and the dipole strength D = pou?/4mi; where r( is the distance between
two nearest-neighbours, 1 the net magnetic moment carried by magnetic ions and pg the magnetic

2. In the crystallographic basis {[100], [010], [001]} the four local directions of a tetrehedra are
1

%(1,171)7 (1,-1,-1), (-1,1,-1), (-1,-1,1)

Sl
Sl -

€
V3

’ eqg:DSIHamiltc
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permeability of vacuum 3.

Let us focus first on the local interaction energy coming from Hpg;. Consider two nearest-
neighbours spins located on sites ¢ and j. We introduce a new set of binary variables o; on each
site where o; = =+1 if the spin points into or out of the center of a considered tetrahedron. The

scalar product S;.S; = —%aiaj and (S;.75;) (S;.755) = —%oiajrg. At the nearest-neighbour
(NN) level approximation the DSI Hamiltonian reads
Hpsi ~ Hyn = Jegp Y 005 (I1.13)
(ij)eP
where PR
Jeff:§+? > 0. (II1.14)

One obtains a short range antiferr(ggl;llg\r]letic model where only nearest neighbours (NN) (i7) in-

teract. The NN Hamiltonian eq. ([I.I3)is & uivgleélt to the 3d AF Ising model in the pyrochlore
) . K .4 +IcePyroAnderson K . |

lattice introduced earlier (see Fig. [II.9). As already mentioned, this system is geometrically frus-

trated, the ground-state corresponds to all the configurations with two ¢ = 1 and two 0 = —1

per tetrahedron. It corresponds to two spins pointing in and two pointing out of each tetrahedron

(2 in — 2 out rule). Meaning that spin ice obeys the same ice rules as water ice in terms of
spins instead of dipole moments. The centre of each tetrahedron in spin-ice can be considered as

a vertex sitting on the dual lattice (i.e. %léee gie%%?gd lattice) taking one out of the sixteen possible
Iﬁlli()[; all'th

configurations. As shown in Fig. ¢ vertices verifying the ice rule are degenerate. The
ground state manifold of the system can then be formally written
G={{S} : > oi=0, ¥T} (IL15)
€T

where the sum is over the four spins which belong to the same tetrahedron 7. The interactions
split the sixteen vertices into three categories labelled a, e and d. The reasons for this labelling
will become clear in the following sections, after projecting spin ice in the 2d plane and making
the link with vertex models.

The interaction energy is minimised when the number of satisfied bonds on each tetrahedra
is maximal under the constraint imposed by the lattice geometry. This mapping between the
ferromagnetic interactions in terms of S; in spin-ice and the antiferromagnetic interactions in
terms of ¢; in the AF Ising mod%l aspgiwsslglge;lrly why spin-ice is frustrated at the nearest-neighbour
level. As pointed out originally [TT2], frustration in spin ice arises through the combination of the
ferromagnetic character of the interactions and the local easy-axis anisotropy on the pyrochlore
lattice, being the first example of frustrated ferromagnetism.

The NN model explains the emergence of the ice rules in spin ice and the agreement between
calorimetric measurements and Pauling’s calculation. However, it does not explain why the inclu-
sion of long range interactions does not break the ground-state degeneracy imposed by ice-rules.
We should emphasize that this is a very non-trivial feature of spin-ice: for other frustrated systems
it has been s%ggv% E%%t%: iRnecll%(seilgg]l gg f'ngearfl%gg% Ol%egfond nearest neighbours selects a unique
ground state [[180; 227, 213]. The reason why DSI obeys the ice rules comes from the self screen-
ing of the dipolar long range interactions, hence needed in order to investigate the phases and ex-
citations in spin ice. The relevance of the full long-range dipglragmfwlgﬁgt%l{aen became uncontested
after the experimental work of Bramwell and collaborators ﬁIS]foTmencal simulations using
both the DSI and the NN model, they showed that DSI reproduces correctly neutron scattering
data in Ho,TioO7 while the NN model fails. Dipolar interactions are crucial for the understanding
of the phase diagram and the nature of the excitations in spin ice.

3. With ro ~ 3 A and p = 10up we get D ~ 1.5 K. This value is of the same order of magnitude as the Curie
temperature measured in spin ice materials.

’eq:Anderson
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(a) (b) B ()

" +

Figure 11.9: Equivalent representations of spin ice. (a) Arrangement of oxygens (red) and hydro-
gens (white) in water ice. (b) Corresponding configuration in spin ice in term of spins pointing
inwards or outwards the center of the tethrahedron. (c) Corresponding configuration in the AF
Ising model.

ePyroAnderson‘

€a = —2Jepy +

€. =0 4

Figure 11.10: Energy levels in spin ice. The sixteen possible configurations of a tetrahedron with
their corresponding energy.

fig:IceLevels‘

I1.2.3 Phase diagram

The strength of the dipolar interaction at a NN level is denoted D,,,,. Depending on the relative
strength of dipolar D,,,, = 5D/3 and exchange .J,, = J/3 interactions, spin ice can set into
different ordered thermodynamic 2%1%52 5 l}lese have been studied in detail by means on numerical
simulations of the DSI model in [I74]. In this F(r){el%’ktehfzgglzole long range dipolar interaction is

simulated using the Ewald summation method [[77]. Their results are summarised in the phase
diagram shown in Fig. %WJM /Dy < 0 small enough compared to 7'/ D,,, the system

sets into a staggered lon -rangge(ggggﬁg d-AF phase domi tec_lDPeyl]giavertices, i.e. 4 in or 4 out
configurations (see Fig. %m_dﬁoted g = 0in Fig.%_At_fow temperatures there is a
region of the phase diagram where the ice-rules are verified. By lowering the temperature within
this region the system undergoes a first order phase transition into a long-range ordered phase
denoted ¢ = (0,0, 27 /a). This phase verifies the ice rules an (i%slilé%roa&erised by a striped order:
all the spins located in the same (001) layer are parallel (see [[174] for further details). A ground
state without zero point entropy is then found in DSI.

External magnetic fields in different di .Cti_olncse%%% eclosuple with the Ising spins and lift the
degeneracy between states depicted in Fig. ‘il1 i U[ ['he phase diagram of spin ice in the presence
of fields is very rich and a full discussion goes beyond the sc }g)leeoié gl&scgyesis. We refer the
interested reader to Bramwell, Gingras and Holdsworth’s reviewj[ﬂ]ip—wmld, however, say a



fig:Melko

eticMonopoles‘
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few words about the particular field direction [111]. The effect of a strong field in this direction is
to effectively project the system onto 2d Kagome layers. The spins pointing in the [111] direction
are oriented with the field direction while the three others do not interact enough with the field
to order. Each tetrahedron should verify the ice rules at low temperature and the direction of
the spins along the [111] direction is fixed. For some range of temperature and magnetic field
strength, an ige ru'le like constraint arises on 'the Igggggller;l%eorgz each triangular p}aquette has
one spin pointing in and two out or the opposite le. As the reader may have noticed this so-
called Kagome ice is isomorphic to the AF Ising model on the Kagome lattice mentioned in the
previous s%(ition Ata}}(igg (%Ei)’ugch magPetic @%161 the Kaggﬂeﬂal&pes order across a first order phase

. gashin ast&lnovo 8a,Fen
transition [[I15] 7,92

101 | T T T T T T ‘ T T T { T T T |
E AF Jnn ‘ FM Jnn E
4 1
P = -

0 g "
104 o E
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] o ]
g . |
> 1 B ]
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-1 4
Y oo 3
1 (q=0) o ]
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1k02004
Figure I1.11: Phase diagram of DSI in zero field from %@72[ |? Open circles denote a second order

phase transition between the ordered AF phase (4 in - 4 out staggered order ¢ = 0 ) and the
disordered paramagnet. Open squares denote a cross over between the disordered paramagnet and
the collective paramagnet (SL) verifying the ice-rules. The line of open diamonds represents the
first order phase transition between the SL and the ¢ = (0,0, 27/a) ordered phase. The region in
between the black dotted lines displays hysteresis as Jy,,, /Dy, is varied at fixed temperature.

I1.2.4 Magnetic monopoles

Four years ago, Castelnovo, Moessner and Sondhi EI‘OSpOSfd an %‘[ggnative picture to explain
kK i . astelnovo a ]
the emergence of the ice-rules in spin-ice compounds [?].” In this "dumbbell picture’,

ins_are
1g:Dumbbell
thought as two separated and oppositely charged magnetic monopoles. As shown in Fig. i;il iz (@,

there are four charges at the center of each tetrahedron. The ice-rules are then equivalent to a local

magnetic charge neujg!ityb éﬂ%%reultg temperature, spin fluctuations create pairs of defects breaking

the ice-rule [see Fig. . They carry a net magnetic charge defined by

1
¢=3 > oi € {0,£1,£2}. (I1.16)

€T



I1.2. SPIN-ICE MATERIALS 27

Two types of defects are possible: tetrahedra breaking the ice-rule once - with three spins pointing
inwards or outwards (3 in — 1 out or 1 ¢n — 3 out) - or twice - with all the spins pointing inwards
or outwards (4 in or 4 out). Deﬁécts: greate a default or an excess of magnetic charges on the sites
of the diamond lattice (see Fig.

. — . . . :DSTHamiltonian
We can push forward this picture and rewrite the DSI Hamiltonian eq. in terms O

interacting monopoles and write

Hpsi= Y, V(a,pB)+0(r;") 11.17)
(e, B)EP*

where the sum here runs over all the pairs of sites («, ) of the diamond lattice denoted by P*, the
dual of the pyrochlore lattice. Since spins interact through a dipolar term, their magnetic charges
interact via a Coulomb potential. From any distribution of charges creating a field which strength
decays as 72, one can perform a multipole expansion. The spins in this picture are equivalent to
dipole moments d= ¢;7;. The multipole expansion assumes that dipoles are far from each other.
It then gives the same potential as the DSI model with corrections O(r~?). In order to be able to
take into account the nearest neighbour exchange in Hpg; one must add a self interaction term
which gives

V(o) = { By o

I1.18
lvg Q? otherwise ( )

where the charges are Q, = qnpt/aq4, aq the nearest-neighbours dlstance on thei lgé%mzoglodg lattice
and vg a function of the parameters of the system u, pg, 79, J and D {[ ’J In this picture the
ice-rules emerge naturally from locally neutral configurations. Flipping a single spin in the ice-
rule manifold generates a 3 in — 1 out and a 1 in — 3 out defect. Then these two defects can
be moved apart from each other by flipping one spin among the three ones responsible of the
ice-rule breaking. By repeating this procedur N lﬂ%g cr%)g?poles separate leaving behind a string
connecting them, reminiscent of a Dirac string [84]. Since all the configurations verifying the ice
rule are equivalent, the string carries no tension and monopoles can move with the only energy
cost coming from the 1/r Coulomb interaction. In this regime monopoles are deconfined and spin
ice behaves as an effective Coulomb gas.

The equilibrium phases of this ionic gas model explains nicely the first order phase transition
observed in spin ice compounds in the presence of an external magnetic field Hyq1) in the [111]
direction. As already mentioned, applying such a field selects a single configuration of the spins
along the [111] direction. At H[jjy) = H, the system undergoes a first order phase transition
between the Kagome ice phase (at Hjj11) < H,) and the ordered phase (at Hyy11) > H. ) made by
3in—1 out (or 1 in — 3 out ) vertices. In the magnetic monopoles language, this transition corre-
sponds to a liquid-gas transition where the magnetic field plays the role of the chemical potential
and the magnetisation plays the role of the density of monopoles. This transition terminates in a
critical point like the liquid-gas transition. The dumbbell picture gives a very useful understand-
ing of the low temperature behaviour of spin ice (when a small density gf nglon%%lfs ese

’ eq:DumbbellP«

}_[ ¢ Ta1 erf8909 Morris2009
Moreover, several recent experiments have given support to this picture [[243] 1311 197,43 104].

Magnetic monopoles are predicted by Grand Unified Theories tempting to descr}be elgg&r -
weak interactions and strong nuclear forces by a single unified quantum field theory
Despite the efforts to reveal their existence, no gﬁ%%%%t&% bTéonopoles have been observed yet (the
reader will find a recent review on the subject in hmmclosest realisation of magnetic charges
might be in spin-ice materials.

A Dirac string is a line of singularities of the vector potential linking two oppositely charged
magnetic monopoles. The choice of this branch cut is arbitrary and cannot therefore be measur-
able. In spin ice, a string can be defined by identifying the reversed spins in relation to some initial

&74 Polyakov1974
2541218
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configuration verifying the ice rules. By forcing the system to be in a polarised initial configuration
aligned with a %tggr%%éjg%]ﬁ field, strings of reversed moments can be observed by magnetic neu-
tron scattering [[197]. When the field is turned off spin flips create pairs of monopoles connected
by Dirac-like strings. The neutron scattering data is well reproduced if one considers strings as 2d
random walks 7(z, y,t) in the (z,y) = (001) plane where the third [001] direction acts like time.

A few years ago, Bramvséf%%, g]}élﬁgtaglldz 88]91ab8£%t?£§1 %)Hied the theory of electrolytes to the

m

study of spin-ice materials hﬂfmrmﬁm measurements by applying small
magnetic fields to the spin ice material Dy, Ti2O7. They addressed for the first time "the question
of whether such magnetic (%lreg%%se f.lilg ttg%rozbsgsociated—’magnetric'}%’ggag Pfglglgasured directly in
experiment" (quoted from [43]]). Onsager’s theory of electrolytes 208]9?1@11565 transport prop-
erties of ionic systems in the presence of a small electric field E. It gives the dissociation constant
of the ions K (E) perturbatively in b o< e3E/(kgT)?. The elementary charge e can then be de-
termined by measuring the conductivity of the material. Bramwell and collaborators applied these
ideas to spin-ice to measure the charge of a single magnetic monopole (). This was done by mea-
suring the demagnetisation on the samples with muon spin rotation. The experimental value turns
out to be in agreement with the dumbbell model in the range of temperatures 0.3 < 7' < 0.07K
where the Onsager’s arguments are justified. Quasi-stationary currents of magnetic monopoles
have been measured recently and show the ’sy G%Er%/r’l 2boeltheen electrolytes and magnetolytes’
made by oppositely charged magnetic charges [104]. Therefore, the description of spin ice in
terms of magnetic monopoles is specially well suited for the investigation of transport and dynam-
ical phenomena. An exceptional Sig\clléeears%O%f4 the magnetic relaxation times at low temperatures
has been observed in Dy;TioOr [[243]]. A phenomenological Arren‘r%}g% k;c"lel‘%%:l%eongt based on the
presence of thermally activated monopoles reproduces this behaviour [131].

The emergence of magnetic monopoles in spin-ice has attracted a great deal of attention since
it is the first example of 3d fractionalisation in condensed matter. This phenomenon gives its
name to its most mentioned and studied example where fractionalisation plays a central role:
the fractional quantum Hall effect. In these systems the excitations are non integer parts of the
constituents of the systems, here electrons, and carry a fraction of the elementary charge e. In
spin-ice thermal fluctuations breaking the ice rule give rise to fractional excitations, magnetic
monopoles. Classical spins can be though of as an ordinary dipole made by two opposite charges
at its extremities. Magnetic monopoles are then ’one half” of a spin, the ’real’ constituent of the
system.

Figure I1.12: The dumbbell picture. Each magnetic moment is replaced by a negative (blue) and a
positive (red) magnetic charge. (a) The ice rules are obeyed and the tetrahedron is neutral. (b) After
flipping a spin (green) we break the ice rule and create a pair of oppositely charged monopoles.
The positive monopole is represented by the dotted circle at the center of the tetrahedron.
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I1.3 Artificial spin-ice samples

For many decades, condensed matter systems have been, and still are, built by combining
different chemical compounds. Thanks to the expertise of chemists and material scientists, the
interacting constituents of condensed matter systems can be manipulated. Then materials can be
designed in order to fulfil the requirements that are expected to lead to some interesting behaviour.
A large variety of collective phenomena such as the above mentioned zero point entropy in rare-
earth pyrochlores has been discovered in such a way.

Frustration can be responsible for a large degeneracy of the ground state, associated with
long _raj[lgft%(}rg%](%goncsh%%q: at{]g% presence of' dy'namical obstructions which can give rise to glassy
physics [228/164]. The study of thermal excitations and defects are then crucial for the understand-
ing of frustrated systems. Local probes are needed to characterise these objects, which is clearly
a difficult task to achieve in real materials. A way to solve this problem is to manufacture a frus-
trated system which allows the direct observation of a single constituent. This can be achieved in
nano-arrays of ferromagnetic islands and, as briefly presented at the end of the following section,
in colloidal systems. Using well established tools from nanotechnology, it has become possible to
control magnetic degrees of freedom in a very precise way. The lattice geometry and the interac-
tion strength between constituents become adjustable parameters and the magnetic configurations

can be imgged directly, by, different migrosgopic (echnigygs such as MEM (magnetic foree misy, oo 55011
croscopy) 263112065 [205] mmﬁmﬁmﬁctron microscopy) [[176, T77]—Tﬁfs—q—
allows the ’artificial’ realisation of microscopic models of frustration with the possibility of read-

ing directly its micro-states. In particular, two-dimensional analogues of pyrochlore spin-ices can

now be produced in the laboratory. These ’artificial spin-ice’ (ASI) systems constitute an ideal

playground to investigate the excitations and the local dynamics of highly frustrated systems and

2d vertex-models in particular.

II.3.1 Experimental set-up

Wang2006
In 2006, using electron beam lithography, Wang, Nisoli and collaborators }[Z%l'agl constructed

an artificial analog of spin-ice on a 2d square lattice made by elongated ferromagnetic (made by
permalloy) islands. Each island carries an intrinsic single-domain magnetic moment collinear to
its long axis. In this set up, the size of the islands is fixed to 80 x 220 x 25 nm? in such a way
that the moment of each island is s ~ 107 Bohr magnetons. The strong shape anisotropy and
the large magnetic moment carried by the islands makes them behave as classical Ising spins.
The arrays are made by ~ 10 islands separated by a lattice parameter o ranging from 320 nm
to 880 nm. Therefore, the energy barrier to flip a spin is too high to be overcome by thermal
fluctuations (typically equivalent to temperatures ~ 10 —10° K). The system is then a-thermal and
fundamentally ué%otfé%%%iklibrium, which in some sense reminds a usual situation in the context of

granular matter [[T73]. VE;tfil g%issl%paQ{Of(e:h individual islands can be directly visualised by MFM or

PEEM as shown in Fig e size and the shape of the nano-arrays just described are rather
typical and do not differ significantly between different realisations *.

In order to understand the similarities between these artificial square ices , real spin-ice mate-
rials and general vertex models, it is convenient to focus on the vertices where four islands meet.

Since each is nd.issr%lé)adrgllfg as an Ising spin, there are 2* = 16 possible vertex configurations
shown in Fig n the artificial spin-ice literature, the vertices are divided into four categories

I-IV of increasing interaction energy. _Igsc%rsdf‘g:nr1 t?emake the link with the theory of integrable ver-
tex models, we also show in Fig iii; i 3a diiferent classification for the vertices divided into five

"

torgan20Tt B 3 . .
4. In Morgan et gl s mitg%gqmalloy islands are 85 x 280 x 26 nm* and a lattice spacing ro = 400 nm.

In Mengotti et al. ’s [I77] the permalioy islands are 160 x 470 x 20 nm® and a lattice spacing 7o = 500 nm.
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Figure II.13é 0"1506p: MFM image from Wang et al.’s realisation of artificial spin ice in the square
lattice %._Eﬁch island in the lattice carries a single magnetic moment. Black and white dots
correspond to its positive and negative poles. The color lines indicate a vertex of type I (pink), II
(blue) and III (green). Vertices of type IV are extremely rare and are not shown in this picture.
Bottom: The sixteen possible vertex configurations. Ferromagnetic islands are represented by
an arrow. The configurations are labeled LILIII and IV in the artificial spin-ice literature. The
corresponding Boltzmann weights of each configuration a, b, ¢, d and e are also shown.

"ig:ASISample ‘

categories labeled by its Boltzmann weights a, b, ¢, d and e. In artificial square ice samples a = b,
such that the vertices are indeed divided into four different types with different energy. Although

it has not been realised yet, it should be possible to construct artificial samples suggetp% & #*b
by introducing a height offset between islands pointing in different directions . 1s will

become clearer after the following discussion.

In these samples, the interactions between magnetic islands are dipolar, hence described by



"ig:ASIlevels
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the Hamiltonian

H=Dr§ Y. <|S"‘Sj 3(81"%)(5]”%)) (IL.19)

2 TP I

where §; = 5,7 are Ising spins, i.e. .S; = =£1, along the orthogonal principal axes of the lattice
(1,0) and (0, 1) of the island located at 7. The vector 75; = ; — 7’; denotes the spacing between
moments, 7g is the lattice constant and D the dipole strength proportional to the intrinsic moment
o of the islagflgérﬁqtteoglfg rghis Hamiltonian becomes identical to the 3d dipolar spin-ice Hamil-
tonian liil [ ii by removing the exchange term and replacing the sum over the pyrochlore lattice
by a sum over the square lattice. Therefore, dipoles in artificial spin ice are 3d objects embedded
in a 2d lattice. We will show the importance of this remark when discussing the nature of the
excitations (magnetic monopoles) in the coming section. Following the same strategy we used
to deduce a short range antiferromagnetic Hamiltonian for pyrochlore spin-ice, we consider the
variables o; = +1 dependi Qns\}/hgg}rlr?lrltggnqlaagnetic dipole points inwards or outwards a given
vertex. The Hamiltonian (i%;l‘gn_i gives an effective antiferromagnetic (AF) interaction between
the variables o; sharing a vertex. We note the nearest-neighbour and the next-nearest-neighbour
contribution J; and J respectively with Jy, Jo > 0.

A prior goal of these systems is to reproduce the ice-rules and mimic the prototypical example
of geometrical frustration, i.e. the ice model. However, contrarly to its 3d counterpart, the ground
state of these artificial arrays is not the ice-rule manifold. The six bonds around a vertex are not
equivalent since the distances between spins adjacent to the same vertex are not equal: orthogonal
spins sharing a vertex are at a distance ro/+/2 whereas collinear ones are separated by 7. The

typical AF nearest-neighbour interaction str thA b{beelxwheten orthogonal spins is larger than the
next-to-nearest-neighbour one .Jo (see Fig. li;lli_ﬁi [he six vertices verifying the ice rules split

’eq:ASI_Hamilt

into two different categories. Among them, c-vertices (or type-I) are energetically favourE%. Tlﬁ%lleve 1s

energy of each vertex in terms of these two inequivalent bonds J; and Js is shown in Fig.

€. = —4J1 +2J5

€a,b = —2J5 -+

ee:O ——

<
>
<
>
> <

€q =4J1 +2Jy

g%

Figure I1.14: The sixteen possible vertex configurations classified by their energy in terms of the
first and second-neigbour interaction strength.

satisfied and the system is 'weakly’ frustrated. From Fig. 1t 1s clear that the degree of
frustration depends on the ratio J5/J;. All the vertices verifying the ice-rule are degenerate when
J1 = J2. Based on this observation, Moller and Moe%s&e{ gg@)&ged a slight modification of the
experimental set up to restore the ice-rules degeneracy [[189]. One can fix the horizontal islands on

Although c-vertices are favoured, all the bonds around E vertex. cannot be simultaneously
ASTlevels
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a square array which is slightly above the array of vertical islands. By including a height difference
h between the layers where the horizontal and vertical spins lie, we change the original distance
between the spins around a vertex. Therefore, the ratio Jo/J; can be tuned and set equal to one
by choosing the appropriate height offset denoted h.>. Then the interaction parameters can be
controlled by the lattice constant ¢, the length of the ferromagnetic islands [ and the height shift
between layers h.

Figure I1.15: Interactions between spins around a vertex. Left: In the original set-up with no
height shift (h = 0) J; > Js. Right: The relative strength of J; and J; is modified by the height
shift. The ice-rules degeneracy can be recovered by a suitable choice of h.

"ig:ASIHeight

The possibility to tune the vertex weights by introducing this extra control parameter » makes
this set-up very appealing. However, the experimental realisation becomes rather involved and,
as far as we know, it has not been achieved yet. Another possible route to investigate the physics
related with an 1ce—ru1c? 111.<e constrained fgr(?un% state is }2 %%n&fe%gtgrtet a %gffr%%%%ﬁ}%cfﬁl geom-
etry, the so-called artificial Kagome spin-ice , 1S3, Similarly to artificial square ice,

these s l.eAsS§rKean%ar1ndee by elongated ferromagnetic islands in an hexagonal lattice ® as shown
in Fig. ﬁll E §I Tn this geometry the interactions between the three moments around a vertex are

equivalent. There are only two type of energetically different vertices among the 23 = 8 possible
configurations. In this lattice a modified ice-rule defines the ground state: all the configurations
with two spins pointing in and one out (or the opposite) are degenerate.

Recent experiments Fg%ifgg gn colloidal systems offer an alternative approach to realise artifi-
cial frustrated materials [IT0].” Numerical simulations with Brownian dynamics have shown that
artiﬁcliLallbsﬂg 3%% cgn ibc %egrgggovﬂth charged colloids on a square apd h.exagon.al lattice (?f 0 ticz.llASICO l1oid
traps [[161L 226] . A vertex consist of four orthogonal traps meeting in a point (see Fig. ﬁlli 7)
The repulsive Coulomb interactions of the colloids trapped in a double-well favour vertices with
four arrows pointing out of it, but this local minimisation of the energy cannot be satisfied by its
neighbouring vertex. The collective arrangement of colloids should be considered. The ice rules
can arise as a collective effect and the vertex weights can be tuned by the charge of the colloids,
the lattice spacing and the screening length.

5

I1.3.2 Monopoles and strings

In the dumbbell picture, thermal excitations breaking the ice rules are associated with effective
magnetic monopoles in 3d dipolar spin-ice. Similarly, in 2d spin ice in the square lattice, flipping

R T Foller2006
5. In Wang’s el al. realisation {/ro = 0.7 giving h/ro ~ 0.2 [T89].

6. The Kagome lattice is the medial graph of the hexagonal lattice: the ferromagnetic islands sit on the sites of the
Kagome lattice which are identical to the mid points of the edges of the hexagonal lattice.
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(b)

Figure I1.16: Artificial Kagome ice (a) X-ray ma ngtt:itcicggczllilar dichroism (XMCD) images of the

lithographic array of permalloy islands (from i ; f fl). ['he contrast associated with each island in

the hexagonal lattice indicates that they analog to the Ising spins represented by the white arrows.

“ig:ASIKagome ‘

The colour in the image is a measure of the orientation of the spin. (b) The hexagonal lattice.

Figure 11.17: Aﬁtlﬁclﬁalll spén 218% made by charged colloidal particles confined in a double well

potential (from ne among the six possible vertices occurring in the square lattice
verifying the ice rules. (b) One among the eight vertices occurring in artificial Kagome ice. The
ice rules here corresponds to two particles close to the vertex and one further, or the opposite. (c)

g:ASIColloid Artificial square ice ground state.

a single spin in an ice-rule configuration la%ds. %oegéec tc__:rsf:éagion of a pair of defects with a non-zero

opposite charge in adjacent sites (see Fig [IL.T8). As Tor 1ts 3d counterpart, the charge of a vertex
is defined by
Z o; € {0,£1,+2}. (11.20)
ZE’U

where the sum runs over the four spins sharing a vertex v in the square lattice. Defects are divided
into two categories depending on the absolute value of their charge: d-vertices (Type-IV) carrying
a double charge g4 = 42 and e-vertices (Type-III) with a single charge g. = *1. In artificial spin
ice, and spin ice-like systems in general, vertices breaking the ice rule are much more energetic

than the six 2-in—2-out ones (hence called defects).

Interactions between defects in 2d are not simply given by a 1/r Coulomb interaction by exten-

sion of what happens in 3d pyrochlores. This comes from the fact that not all the configur
verifying the ice-rules are equivalent in the square lattice as dictated by the Hamiltonian
Although as in 3d defects can be separated without creating any extra defects, they can

thIlS . .
SI_Hamiltonian

create
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excitations verifying the ice-rules, i.e. a- and b-vertices. Besides the 1/r Coulomb energy coming
from the dipolar interactions, the strings carry a tension associated with the creation of a- and
b-vertices. Numerical simulations of the dipolar g(li%gb Blbeg square lattice have shown evidences
for a string tension proportional to its length X [I88]]. In this work, the energy computed for
different configurations seems consistent with an interaction between defects of the form

Vir)= —% +rX(r)+C (I.21)

where 7 is given in units of the lattice spacing, x > 0 is the effective strain of the string and () and
C are adjustable parameters ’. The interaction between monopoles has been evaluated numerically
at zero temperature by computing the energy of different configurations with two defects at a given
distance attached by a string of spins with a given shape. The energy cost of a pair of defects is
given by the sum of a 3d Coulomb interaction and a potential X (r) which diverges with the
length of a string and the monopoles remain confined. Magnetic monopoles in 2d artificial spin
ice are ’3d objects’ embedded in a lattice. It is a particularity of dipolar interactions in 3d spin ice
that both electrostatic and entropic interactions are 1/7.

A
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Figure II1.18: (a) Initial configuration verifying the ice-rules. (b) Creation of two oppositely
charged defects (open and black circles) by flipping the spin shown in red. (c) Displacement
of the positively charged defect by flipping one among its three outgoing spins. (d) Configuration
after six spin-flips without creation of an extra defect. The positively charged defect has moved
apart leaving behind a string of red spins.

So far, we have only considered artificial spin ice at zero temperature. At finite temperature,
effective entropic 2d Coulomb interactions & 7' In r must be added to the previous potential. The
free energy of the system made by two monopoles distant of r is F' (r) = V(r) —TS(r). The
energy is given by eq. ﬁla_ndm%mpy associated to the number of ways of connecting two
monopoles by a string of length X is approximated by

S(r) ~ kpln (3X (’”>) . (I1.22)

This result is obtained by considering the strings as self-avoiding random walks in the 2d square
lattice. Then, the string’s contribution to the free energy Fs(r) = X (r) — kT In(3)X(r) in-
cludes a confining term o< kT X (r). At high temperatures the configurational entropy of the
string makes the string tension vanish, and at low temperatures the entropic inﬂg{)ascttieornl :l?gtz\yggrzla

monopoles confines them. Making use of an argument a la Kosterlitz-Thouless [[I48]], one would
expect a transition to occur at kg7, = x/In(3). Although the above ‘heuristic’ argument is ap-
pealing, it only considers the free energy cost of an isolated string and do not take into account

7. The value of @ extracted from the fitting of the numerical data should be compared with £9 52

g ¢* and C should
be associated with an ’ionization’ energy of a pair of defects.

’ eq:SilvaEnerc
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the effective interactions between defects, neither the energy associated with a single defect. It is
however not clear whether there is a deconfinement transition in artificial spin ice coming from
the competition between these effects. A more careful analysis is needed to describe the situa-
tion at high enough temperatures, when the string losses its tension. A non negligible density of
defects will then populate the system and intersections between strings make the definition of X
ambiguous. Subtle many-body effects as self-screening can take place in the system.

A modified artificial square ice system with aiheiz%bt shiftl? cap remove the inconveniences
. K Moller 6,Moller . .
caused by the emergence of the string tension ?[T89, 190]. If A is chosen in such a way that the ice
rule degeneracy is restored, the strings carry no tension and the interaction energy between defects
would be simply given by a 3d Coulomb potential.

A statistical approach has been Ssgilvl%yz &llva et al. in order to link oppositely charged defects
and define an effective string length [241]]. Tn this approach, the strings are defined by identifying,
among all the possible ways to link n positive charges to n negative charges, the one which min-
imises the total distances between them. The average distance between defects is maximum at a
given temperature T;; where the specific heat exhibits a logarithmic divergence. It has been argued
that this temperature corresponds to a transition temperature between a confined and a deconfined
phase of magnetic monopoles in artificial spin ice.

Recently, Morgan and co-workers have identified and classified defect M%nr% g%l}%% 1excitaﬁons
in artificial spin ice on square arrays of elongated ferromagnetic islands [[196]. They have ob-
served that the excitations should be classified by the number of a- and b-vertices and the number
of defects involved. More recently, magnetic monopoles motion wit% (EQ&‘ grrg%?rfltion of attached
strings have been visualized in artificial square ice by microscopy [217]. Similarly to what was
done for 3d spin ices, the samples were initially prepared in a polarized configuration by ap-
plying a strong magnetic field in the [11] direction, then switched to the opposite orientation.
Strings of flipped spins are then identified from their background with the corresponding motion
of monopoles induced by the field reversal.

Most of the work in artificial spin-ices focus on the square and hexagonal arrangements. The
interest on the square geometry finds its roots in the physics of spin-ice and 2d vertex models. In
the honeycomb lattice, also known as artificial Kagome ice, the zero divergence constraint cannot
be satisfied. Instead, the minimisation of the local charge on each site yi Ids.%)sz_;[ Ir(go%iniiieed ice rule:
on each vertex two arrows point in and one out, or the opposite (see Fig. ié lL i § ). The kagome lattice
is then highly frustrated and has two main advantages over the square geometry: (i) all the bonds
around a vertex are equivalent; (ii) defects dynamics are induced naturally by the presenc Moefﬁg 462010
external field since all the vertices carry a non negative charge ¢ = » ;. 0; = £1, £3 [I75].

Kagome arficil sop,iee aeplins, (e i yle dopancraey fap besp pplsed by lithographic
techniques [176; 222 1520 177, [69]. Although an ordere 1s expected to occur in dipolar

L MELRo2UU4 . .
Kagome spin ice }L[I /4], none experiment has been able to accesses it.

Strings associated with the moti%r;l &fk%%ffgtsm eihe.ogggt;%elslwith q = =£3, have been directly
observed by PEEM in these systems [[I152}1//]. This has been done by preparing the samples in a
polarised state align with an external magnetic field H. Then the field is reversed, creating strings
of spins in a background of opposite orientation. Below a certain critical field H. the defects
are free to move. Instead, they become trapped for higher fields. The orientation and strength
of an external magnetic field applied to these samples alters considerably the configuration and
the dynamics of the system. The possibility to control defects’ motion and manipulate states in
Kagome spin ice motivates its study for potential applications in spintronics and computer science.
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I1.3.3 Ordering protocols

Artificial spin ices built by nano-lithography are a-thermal. A usual method one would like
to apply is to thermally anneal the system to its ground state by heating and cooling the material.
This, however, is not possible in spin ice since the energy barriers involved are of the order of
10*-105K (the system would melt during the procedure). We discuss in the following lines the
alternative protocols which have been proposed to overcome this difficulty.

11.3.3.1 External drive

Several orks Blgge Iﬁ?;’n c[rg-‘:tdf }13% Jse o£ tb%le var%l&% external ﬁgﬂs 10 lolrder artificial spin

Rougema e
ice samples 263 176, 1222, 1138} 229]. The expected ground state in artificial spin ice is non

magnetized. A way to demagnetlse the system is to rotate the sam[}%lgri(enz% Otgme—dependent mag-
netic field, a method which was already used in nano-technology [122]. The sample rotates at
a frequency of 27 /At while the magnetic field H (¢) decreases by a step H after each period
At. In Wang et al.’ s realisation the magnetic field also changes its polarity at each step, i.e.
H(nAt) = (—1)"(H, — nHs). The initial value of the magnetic field H, should be chosen much
larger than the coercive field of the ferromagnetic islands. Then, vertex populations are measured
after the demagnetisation protocol, when H (t fi,,q1) = 0 and the islands are in a frozen configura-
tion. As we will show in the next section, an effective s} tlstllcal gmelﬁbslg ldl %Tgn% tge oufcomes
of this demagnetisation procedure can be constructed [[206; 205] (see Section ndeed, the
demagnetisation protocol descritiﬁldsglﬂ)\é% lVgiall lower energy states but does not reach the stag-
gered ground state of the system

11.3.3.2 Material selection

In order to achieve thermal ordering, an alternative approach is to reduce the energy barriers
between different configurations. One can select a material to build the nano-islands in such a
way that the energy cost for a single spin flip is reduced enough to I%%o;}z fl}g%% activation. This
can be achieved by using a material with lower Curie temperature }[TBS].—T[WIécted material is
made of d-doped Pd(Fe) thin films instead of permalloy. It has the important advantage that the
Curie temperature and the magnetisation can be tuned by the thickness of the Fe layer. The energy
barrier to reverse the magnetisation of an island is now strongly temperature dependent 8. Thermal
fluctuations in the sample become relevant if not too small compared with the Curie temperature
of the islands. The equilibrium thermodynamics of artificial spin ice can then be investigated. By
increasing the temperature from a magnetised state, the samples loose their magnetisation. The
mechanisms taking place in this realisation and leading to such ordering are, however, difficult to
analyse. One should be able to "decouple’ what comes from the artificial spin ice problem and can
give us some insights on spin ice like systems, and what comes from the internal behaviour of the
islands.

I1.3.3.3 Thermal annealing during fabrication

Two years ago, Jason P. Mor an ggg 2Cé)%]leagues reported for the first time the role of real ther-
modynamics in artificial spin ice [[196]. In this experiment, spin configurations are visualised at the

8. The energy barrier to flip the magnetisation of the island depends on temperature in Wang et al.’s realisation as
well. However, the magnetisation of the permalloy islands is not very sensitive to temperature changes in this range
and can be considered constant.
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end of a sample preparation process in which the thickness of the magnetic islands grows by depo-
sition onto pre-patterned substrates. During a limited time, the permalloy islands are small enough
to reverse they magnetic moment by thermal fluctuations during the growth process. However, as
the time scales for these moves increase with the growing size of the islands, once a certain thick-
ness is reached the flipping times become too large and the effective spins freeze. Therefore, the
blocked configurations are reached by thermal annealing. Using this different a r%archa%hey find
large domains of staggered order regions containing c-vertices only (see Fig. %%Tﬁﬁallowed
the visualisation of artificial spin ice very close to its ground state. Frozen thermal excitations as
domain walls and charged defects can be visualised after the growing process. No information
about the actual thermal dynamics occurring during the annealing is available, only the frozen
states at the end of the experiment can be analysed. These authors also measured the frequency of
occurrence for a large number of local excitations and they find that they can be reproduced by a
Boltzmann distribution.

.o
e

s talR| | dyes

Figure 11.19: Extacted from Morgan et al. ’s publication %%FM Image of a frozen con-
figuration displaying large domains of ground-state order. The domains are separated by domain
walls made by a- and b-vertices. Localised excitations are shown in the inset. (b) Different ar-
rangements of islands with their corresponding vertex configuration. The flipped spins are shown
in grey. (c) Visualisation of different local excitations. A mnemonic labelling based on the shape
and size of the excitations has been introduced.

I1.3.4 Statistical mechanics of a-thermal systems

The methods of statistical mechanics to study a large number of "individuals’ differ fundamen-
tally if these individuals are microscopic or macroscopic. By microscopic individuals we mean
physical degrees of freedom which are subject to thermal noise (e.g.: particles, spins, etc.). Sys-
tems of this kind are the object of classical equilibrium statistical physics and thermodynamics.
On the contrary, by macroscopic individuals we mean physical bodies which are large enough to
avoid thermal fluctuations and hence canonical equilibration (e.g.: grains, ferromagnetic nano-
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islands, etc.). Artificial spin ice on arrays of elongated ffﬂgom%%riet%c nago—is&ands fall in the
K i Edwar 989, EdwardsBook

category of a-thermal systems. Following Edwards’ ideas [[86] [87/], a micro-canonical ensemble

can be constructed for such systems under some assumptions. These notions can then be applied

to the artificial spin ice problem.

I1.3.4.1 Edward’s measure in granular matter

The fundamental quantity that makes the connection between the statistical micro-canonical
ensemble and thermodynamics is the entropy S. In order to give a thermodynamic meaning to
an a-thermal system qulgh%%%léikﬁggteog ra}]9 §1gﬁne its entropy. For convenience we focus here
on granular materials [[173] T%Tf(ﬁqln—ch—tlﬁs approach was first introduced to then move our
attention to artificial spin ice.

In order to allow a statistical description, the number /N of individuals in the system must me
large. The fundamental postulate of statistical mechanics asserts that all the accessible config-
urations of an isolated system in a volume V' and energy F have equal probability. The set of
micro—stat}ff{:s a%itl]% d%1'1§/f:n E,V and N (called external parameters) constitute the micro-canonical

ensemble [118]. This implies a uniform probability in the ensemble:

0 otherwise (I1.23)

QE,V,N)™" if E<H(u) <E+AE
Pl) = { ( ) (1)
where 1 denotes a micro-state of the system and Q(E, V, N) the volume of the phase space oc-
cupied by the micro-canonical ensemble: Q(E,V,N) = " u OB, H(u)» -6 the number of states
with an energy between F and E + AFE (with AE < F). The entropy S and temperature T" are
defined by

S(E,V,N) = kglnQ(E,V,N), % - 8S(]?;,EV,N). (I1.24)

The construction of a statistical ensemble can be viewed as an optimisation problem under
some constraints. The microcanonical distribution can be derived by maximising the entropy
S = —kp 3>, P(p) In P(u) under the constraint 3°, P(u) = 1. We present this method for the
construction of the canonical ensemble with a Botzmann-Gibbs measure. Consider a Lagrange
multiplier A; associated to the constraint 3, P°(u) H (p) = E and a second one A associated to
the normalisation of the probability distribution }>, P(u) = 1. Then we should extremise the
entropy S = —kp >, P°(p) In P¢() under these constraints, i.e. we need to solve

J . ) ) B
5P°() (S[{P (1)} = )\1[;P (u)H(p) — E] — )\2[;]3 (1) — 1]> —0, (11.25)

which leads to
Ao A1

P(u) = e FEe tm (“), V. (I1.26)
H(p)

M
Then we impose the normalization of P°(u) and we define Z = - e "5

canonical distribution

to obtain the

e~ H(w)/kpT
Z

where we have identified 7 = A;'. Note that this is consistent with the previous definition of
the temperature since Ay = 0S/0E. The second Lagrange multiplier is associated with Z =
exp (1 4+ A\o/kp). The same method will be applied to construct an effective temperature for
artificial spin ice samples.

Pe(p) = (I1.27)
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In granular matter, the energy does not characterize configurations with different macroscopic
arrangements and the temperature can be ignored (effectively 7' = 0). The volume though depends
on the configuration and suggests that it is the relevant variable to describe granular matter. The
starting point to construct a statistical mechanics description is the fundamental postulate: all the
blocked configurations with the same number of grains formed by manipulations which do not act
on individual grains (shearing, shaking, compressing, etc.) and occupying the same volume V' are
equally probable. An important assumption has been done here: we consider that an enormous
number of configurations are available to the grains and that the system is ergodic. Under this
assumptions the probability density is

_ v NTH AV SW(W) SV AV
= { 0 otherwise (I1.28)

We have introduced a function W which gives the occupied volume of a given configuration. The
log of Q(V, N) gives the ’Edwards’s entropy” Sk of grain configurations with given volume and

satisfying stability conditions. The configurational entropy is sometimes called ’co gll%)(alit ’aij}%}glg%hier 5011
context of glassy systems. For a recent review on the subjects I refer the reader to [[61] and [30].
From this central quantity an effective thermodynamics can be constructed.
The volume plays here the same role as the energy for a thermal system where the function
W is analog to the Hamiltonian H. We should also introduce an ’indicating’ function ) which
is equal to one or zero weather the configuration is stable or not. The function () imposes an
extra condition in the phase space volume of this Edwards’ micro-canonical ensemble. In this
construction, a mechanically stable configuration of macroscopic objects is the analog of a micro-
state in usual thermal statistical mechanics. We introduce the new variable X defined by

1 _95s(V.N) (11.29)

X ov
X is the analog of the temperature and it is called ’compactivity’. For X = 0 the system is
compact’ (analog to a frozen state at 7' = 0) and for X — oo the system is ’loose’ (analog to a
random state at 7" — c0). It measures the ability of the system to be more or less ’compact’ in a
way analog of what temperature measures in terms of energy. As the temperature, the variable X
controls the equilibrium between different subsystems. We can also introduce the thermodynamic
potential Y(X, N) = V — XSg(V, N), the analog of the free energy F'(T,V, N) in statistical
mechanics which extends this construction into the canonical ensemble. In order to study the
packing and the effective thermodynamics of grains one has to start by defining the W and @) of
the model, as one usually does in statistical mechanics via the Hamiltonian of the system. Note
that, in the previous discussion we considered two external parameters V' and [V and we derived an
analog of the temperature in terms of entropic variation with V. We can pursue the same strategy
and define a ’configurational’ temperature Tr defined by the derivative of the Edward’s entropy
as a function of the energy. Depending on the system we are dealing with, one can define ’two
different temperatures’, X and T'g, the Lagrange multipliers associated with volume and energy
conservation in the Edwards’ ensemble. None of them is equivalent to the ’thermal’ temperature
T of the environment.

Edward’s measure has become a systematic tool to study glassy dynamics. One has to decide
which configurations are considered as being blocked and belonging to the Edwards’s ensemble.
In particular, it is quite natural to define blocked confi u{@%g;ﬁl% 6% 3the context of kinetically con-
strained lattice models displaying glassy-like behaviour [228]. In has been shown that an Edwards’
entropy can be defined in a systematic way for these systems éladrgeaptrggblfes different dynamical
observables in the aging regime of the Kob-Andersen model [I7]. It has also been proposed to
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extendBEch\gﬁ(lsO’ 5 1constmction to general glassy systems in finite dimensions with thermal fluctu-
ations }[36 .
Several studies have demonstrated the usefulness of Edwards’ construction. fAn ei‘ffect&V? tej%
Cugliandolo 7

perature can be extracted fﬁ%rilivzig;%%gs of the fluctuation-dissipation theorem [[76] in a granular
system under compaction [71]. This dynamical effective temperature 7¢ s turns out to coincide
with the Edwards’ compactivity X. The introduction of a dynamical effective temperature is theo-
retically justified for mean-field models but beyond the situation is less clear. Similarly, numerical
simulations on slowly sheared grains have extracte a kdggnza%'ﬁcal effective temperature T¢7r in
agreement with the configurational temperature T [163]. It is however a very difficult task to
sample the blocked configurations experimentally. It is far from being clear whether a perturba-
tion or procedure is appropriate in order to generate configurations in the blocked manifold in an
ergodic way.

11.3.4.2 Configurational temperature in artificial spin-ice

.Edwar ﬁi égie}sz 51'613;6 rﬁgesrclH)lf })éefélagppli'ed to artificial spi'n ice sample's under a rot.ating'ma'g—
netic field [206, 205]. Similarly to grains in granular materials, magnetic moments in artificial
spin ice are frozen. There are mainly two experimental procedures to dr'Vg:stglfi%sltgran into a
lower energy state: (i) by rotating the sampl (i)Illf Ca}a(l;le:zcolr??Sing magnetic field [205[; (ii) by thermal
annealing during the growth of the islands [[196]. The first procedure is analog to shearing and
shaking in granular matter language. The second procedure is somehow similar to compaction: if
we identify a grain with a dipole the annealing procedure corresponds to start by a microscopic
particle, subject to thermal fluctuations, and make it grow until it freezes.

In order to construct an Edwards’ measure for artificial spin ice one should identify the blocked
configurations of a given volume/energy and assume their are equiprobable. The micro-state of
the samples can be directly visualise such that one can extract the number of vertices of each
type. One needs an experimental control function, as an applied oscillatory field H (w, H). Then
one should assume that, once this function has been fixed, the ’ergodic’ hypothesis of Edwards’
construction is fulfilled. Meaning that all the possible blocked configurations of the system are
generated by applying the demagnetisation protocol H (w, H) in an equiprobable manner. Then
the set of blocked configurations reached in this way can be described by a canonical ensemble
with a configurational temperature T'r. This temperature would a priori depend on the control
parameters H; and w. For a given choice of H, _arEld w one can run the experiment, count the
number of vertices, and extract 7T} Nf{ggll eq. (@’and then plot how the temperature depends
on the external drive (see Fig}{ﬂ%ﬁisoli2oo7 Nisoli2010a

Nisoli and collaborators [263], 2006 mm&:scribe their samples. The
interaction energy per vertex can be approximated by:

16
=Y en; (11.30)
=1

where n; is the density of vertices of type ¢ (see Fig. %%%Teeir corresponding energies.
In this description, we are only considering the interactions occurring around a vertex, i.e. the
nearest and next-nearest neighbour interactions. This model is an unconstrained sixteen-vertex
model with

€l =€ =€ =€4 =€) = €]]

€5 — €6 — €c — €]

€8 = €9 = €q = €]V

€9 = ... = €16 = €c = €JIT (I1.31)
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. . i . ig:ASTISample
We use the notations: © = 1...16 ora = I, 11, I11,1V to label the vertices according to Fig. Iﬁl1 i 3[

Of the vertex ¢ g%igg can be computed using the dumbbell picture introduced in section
. (IL.I3) 1n the square Iattice. If one considers the interactions between the charges around
a vertex one gets: €./e. ~ 0.453. QnSeIc%gIH%iﬂtsgn?lgrlfe a next-to-nearest neighbours approxima-
tion of the dipolar Hamiltonian ([I.19). Meaning that only the spins around a vertex are considered
and longer range interactions are neglected. This yields to €./¢e. =~ 0.692.

Initially the samples are prepared in a completely polarised state made exclusively by a- or
b-vertices. This can be achieved by applying a strong magnetic field in the [11] direction. In a
background of one type of polarised vertices, lets say vy, the rotating magnetic field will create all
other kinds of vertices. The density of vertices different from vy is given by p = D /N where D is
the total number of vertices that are different from the initial one created during the protocol and
N the total number of vertices in the sample. The density of vertices of type ¢ # 1 relative to the

density of non-polarised vertices created during this process is denoted v; and reads

v = (I1.32)
P

for the vertex types which were absent in the initial configuration. For v; vertices we have
n=1—p (I1.33)

which accounts for the density of vertices which remain identical after the demagnetisation proto-
col.

In order to compute a configurational entropy Nisoli and collaborators assumed that vertices
are independent. Thus, the volume of the phase space (e, V) is simply the number of ways of
choosing D objects among N divided into four categories o = I,I1,I11,IV (c, a(b), e and d
respectiveley), and within each category the objects are considered indistinguishable. Hence,

1 N

Q(e,N) = N (V- D) (I1.34)

where, in order to make the link with the usual conventions,

NI/N:n5+n6 =ny

Ni1/N =ny+ng+ng +ng = nyy

Ni1r/N = ng +n10 + ... + 116 = nyrr

Niv /N =n7 +ng =njy. (I1.35)

The configurational entropy is given by S(e, N) = kpIn (e, N) which for N large enough it is
well approximated by
S(e,N)
Nkp

:—pZVilnyi—(l—p)ln(l—p)—plnp. (I1.36)

In order to define a configurational temperature we look for extremes of this function under

the energy constraint
e= €n;i=cqp=ct. (IL37)

(2

The energy € can be measured after running the demagnetisation protocol from a completely
polarised sample. The main experimental obTﬁ:{\S/%tjcl)g gbl%tifying the Edwards’ construction is that
this energy constraint is verified after a cycle [206]], i.e. the external drive does not reduce the total
energy (similarly to shearing and shaking grains in a fixed container conserves the volume). This

’eq:EnergyCons
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immediately implies that the ground state of the system cannot be reached using this procedure.
The demagnetised field creates different type of vertices, some of them more or less energetic than
a- and b-vertices, and experimentally the energetic contribution of the new vertices created during
the demagnetization compensate each other.

We introduce the Lagrange multiplier A associated to it. The optimisation equation reads

4] (pz vilny; — (1= p)In(l — p) — plnp — )\(PZQ‘V@' — 5)) =0. (I1.38)
i i
Once solved we obtain the canonical distribution for vertices i # 1
exp (—ﬁEei)
Vi=———7"— (IL.39)
' Z(BE)

where S = \/kp is equivalent to an inverse temperature in the canonical formalism and Z(8g) =
> exp(—LBEge€;) to the partition function. This configurational temperature can be extracted from
measurements by counting vertices of each kind and averaging over all the configurations obtained
with the same procedure. Then, the predictions of the canonical measure can be compared with
the experiments. In particular

4(V5 + 1/6)
(Vg +vig+ ...+ 1/16)

nrrr

In =In Be(ec — €c) (I1.40)
ig:Nisoli

allows [ to be determined. As shown in Fig. @Wﬁe experimental data of is well repro-

duced by this canonical distribution. Moreover, the configurational temp ature idgg]ilvied above can

be controlled during the demagnetisation via Hg. As also shown in Fig. Iﬂ]lﬁ%) (b), Nisoli and col-

laborators found a linear dependence of Sg in the magnetic step size, meaning that the rotating

magnetic field behaves as an effective thermal bath. Note that negative temperatures are possible

when 4n; < nyrr. These are highly energetic states with a very low entropy.
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Nisoli2010a
Figure 11.20: Experimental data extracted from ﬁZOS . (a) Density of vertices from arrays with

different lattice COEStantlsS@Pg&% in {lé% fey) and magnetic step H (in Oersted). Dotted lines are

obtained from eq. e configurafional inverse temperature Sg is given in units of €.. (b)

Dependence of S in the magnetic step H, confronted to a linear decay S = v — kK H.

Note that the same group studied in detail the effect of di erent Oc&emagnetisation protocols on
the correlations between islands and the energy of the system [I38]. In this paper, they show that

’ eqg:NisoliCanc
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the correlations and energy of the system are dependent of H;. Although for a given step size
the total energy can remain roughly constant during the procedure, its not equal to €, in general.
It is not very clear whether the constraint € = cte actually holds or under which experimental
conditions.

I1.3.5 Artificial spin ice and computer science

Artificial arrays of nano-scale ferromagnetic materials can be produced industrially produced
by nanolitographic techniques. Apart from the fundamental physics interngb utl}% Lo ti&%% 0
promising Fc%r%q(gg%taezso fo ’im rgggogge’ pggg)gg%rb%es of data storage devices [[70, 280] and data
processing [74, 122, 12].

A ferromagnetic islands have typically an elongated shape that make them behave as a large
Ising spin. Usual nowadays data storage technology is based on the manipulation of magnetic
domains trying to remove or avoid the effect of the interactions between them, which is not con-
trolled. One magnetic domain (an Ising variable) is used to store a single bit of information. The
control of the interactions in these materials and the associated excitations opens the possibility
of taking advantage of these features to push forward the limits of data storage and conceive elec-
tronic devices with greater processing capacity. Modern nanotechnology allows us to write and
read the state of a nano-array. Therefore, the work on artificial spin ice is also motivated by the
hope of being able to manipulate precisely the spins such that we can use them to perform calcu-
lations. Some work has b%%% 9}9%: Jyery recentléloifloartiﬁci% gglzno]lcze in this direction by Branford,

0, Fammert Bran

e
Ladak and collaborators hSZfTSSf% who have found a possible way to precisely manipulate
states in artificial Kagome ice by applying magnetic fields.







CHAPTER

ch:Basics

1

Some concepts about phase tran-
sitions

Matter appears to us in a rich variety of different thermodynamic states called phases. When
dealing with systems with a large number of degrees of freedom (infinite for practical purposes),
a thermodynamic state is the set of points of the phase space which share some extended physical
quantity (e.g. the global magnetisation of an usual ferromagnet). Statistical mechanics makes
the connection between these macroscopic phases and the microscopic constituents of the system.
Different phases arise from some particular collective arrangement of the elementary building
blocks of the macroscopic system. A system in contact with an environment can display different
phases depending on the thermodynamic conditions of the latter (also called external parameters
such as the temperature, the pressure, an external field, etc.). A familiar example is given by the
different phases of water.

The phenomenon of transformation that takes brutally a system from one phase to another
is called a phase transition, such as melting and condensation in water. In order to get a deeper
understanding of the system under study, one should characterise quantitatively its different phases
as a function of the external parameters, i.e. establish the phase diagram, and identify the location
and the prf)perties of the different phase t.ransitions taki%%1 Pg%%%kfo(r; &gle(ggeq%t&i)lgg discussion
on the subject I refer to reader to the classical textbooks [78, [106].

Ideally, one would like to start from the fundamental interactions between the elementary
building blocks of the system and *zoom out’ to deduce the collective behaviour of the system (e.g.
given the atomic interactions between water molecules in the continuum, deduce the quantitative
behaviour of water). This is however an impossible task and a different theoretical route has to
be taken. The first step is to construct a model system wFichluﬁetpzr?gélﬁ:es the behaviour of a ’real’
physical one. Since the introduction of the Ising model [234]], the study of simple lattice models
which keep what is thought to be the 'main ingredients’ of a physical problem has proven to be a
very fruitful approach.

We shall use the Ising model, the simpler system with a phase transition, to illustrate the
general concepts presented here. The model is defined by a set of NV spin variables o; = +1
(Cup’ or ’"down’) sitting on the sites ¢ of a d-dimensional lattice G and interacting via the following



ot :Ehrenfest
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Hamiltonian:

N
H({o})=-J> oio;—h) o (IIL.1)
(i.3) i=1

where the first sum runs over all the edges (i, j) of the lattice G, J > 0 favours the alignment
between the spins and h is an external field.

A phase transition is characterised by a singular behaviour of the free energy at the thermody-
namic limit. They are usually classified by the nature of the singularities of the free energy. Phase
transitions pertaining to different categories can exhibit very different collective behaviour and
their study demands the introduction of specific methods. In the coming sections a brief descrip-
tion of the different kind of transitions we encounter in the study of spin ice is presented, together
with the methods we used for their investigation.

III.1 Continuous phase transitions

III.1.1 Second order phase transitions

Phase transitions can change the symmetry of the thermodynamic state. Consider the mag-
netisation m(7") as a function of temperature in the Ising model. At fixed 7', lower h until zero.
If the system remains magnetised it is said to have a spontaneous magnetisation. At low tempera-
ture, the model exhibits a non-zero spontaneous magnetisation. The interaction energy aligns the
spins and the system develops large domains of parallel spins. Since the system is invariant under
global spin reversal, one has to apply an external field & in order to select a given magnetisation
in one among the two degenerate orientations. This is called a ferromagnetic (FM) phase. Above
a critical temperature 7., the entropic tendency to randomly distribute the spins dominates over
the tendency to align them, such that the system is not magnetised when the field is switched to
zero. This is called a paramagnetic (PM) phase. At T, the system experiences a phase transition
between an equilibrium state which does not respect the Zo symmetry of the Hamiltonian (FM
phase) and a PM phase which does. Below T, the symmetry is said to be spontaneously broken
and m is used as an order parameter which labels the phases by their symmetry or degree of order.

For h = 0, the spontaneous magnetisation is a continuous function of 7". The transition is
therefore said to be continuous or second order'. But one should ask the following question:
where does the singular behaviour of the free energy comes from? Let us consider the spin-spin
connected correlation function

G(riy) = (oioj) — (i) (0y) (II1.2)

where r;; denotes the lattice distance between sites 7 and j. At high temperature, thermal fluctua-
tions ensures the de-correlation of distant spins. One finds that G decreases exponentially at large
distances:

lim G(r) ~ exp(—r/&(T)). (1IL.3)

T—00
Here we introduced a characteristic correlation length £(T') which quantifies the typical size of

clusters made by strongly correlated spins. For temperatures 7" < T, the connected correlation
function also falls off exponentially. A phase with a finite correlation length is called disordered if

1. The name ’second-order’ comes from the old-fashioned Ehrenfest’s classification of phase transitions }[TZ‘S T the
second derivative of the free-energy displays a singular point at 7Tr.. The concept of continuity of the transition is more
general since it also refers to higher-order transitions in Ehrenfest’s scheme and, in particular, to the Kosterlitz-Thouless
phase transitions. The scaling theory developed three decades later suggests to adopt a more modern terminology and
divide phase transitions into two categories: ’continuous’ and ’first-order’.

’eq:CorrExpDec

Jeager1998
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the magnetisation is zero and long range ordered if the magnetisation is non-zero (corresponding
here to the high and low temperature regime respectively). The most interesting situation occurs
at T, where the correlations decay algebraically:

lim G(r) ! (I11.4)

~
r—00 rd—2+n

where 7 is a critical exponent. The correlation function varies witho]tfq:%lgg]rj%tggg], and in order
to connect this form with the one found away from 7 in eq. (II.3)) one must set {(7,) = oo.
Precisely at the critical point the system has long-range correlations. The FM-PM transition point
in the Ising model is a critical point, defined by a divergent correlation length. A phase with
an infinite correlation length is said to be quasi long-range ordered. A thermodynamic phase
should be characterised by its symmetry, leading to both the value of an order parameter and the
nature of the correlations. By the fluctuation-dissipation theorem the correlation function must be
proportional to the susceptibility:

1 aQF(T’h)] . (IIL5)
h=0

kgTx(T) = ZG(%’), xX(T) = N l Oh2
J

At the crlgcal. point the system ha§ lopg—range correlatloniﬁgléetn: X rdelx(%regsets, meaning that the
second derivative of the free energy is singular (see footnote [I)).

III.1.2  Universality of equilibrium critical phenomena

At a critical point, clusters made of parallel spins of any size are present and the system looks
statistically identical on all length scales. This means that the critical point is scale invariant. A
scale transformation should then leave the free energy invariant, meaning that its singular part,
denoted f, defines a generalised homo neous 9fg?ction. This is usually called the ’scaling hy-
pothesis’ introduced by Widom in 1964 [267]. Using this single statement one can show that the
associated thermodynamic quantities at the vicinity of a critical point are characterised by a set of
critical exponents «, 5 and -y defined by:

Ct) ~t™ @ (IIL.6)
m(t) ~ t° (I11.7)
x(t) ~t77 (I11.8)

BaxterBook

where t = (T — T,)/T goes to zero. The exponent o can be also be defined as }[ZZF :

fs(t) ~ 27 ast — 0. (I11.9)
The definition of « in eq. 0] 15, Eo%lg:matlc when the specific heat has a jump or a logarith-
mic discontinuity. Instead, eq. lill?l; allows for a non ambiguous determination of a. When the
discontinuity of C' manifests through a divergence below and above T, both definitions are equiv-
alent. In a ferromagnet at the critical point the behaviour of the magnetisation in the presence of a
small external field h defines a critical exponent J:

m(t =0,h) ~h'/9. (111.10)

The correlation function G is a generalised homogeneous function at the vicinity of a scale

invariant point as well. The divergence of the spati 103(}}'&1%%%%5 can then be characterised by two
other exponents, 7 (already introduced in eq. (l%;lf)) and v defined by:

G(r) ~ p~(d=2+n) (IIL11)
Et) ~t (I1L.12)

’eq:CorrAlgDec

eqg:Calpha

’eq:chigamma‘

eg:alpha

’eq:ScalingH

’eq:ScalingXi
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From the homogeneity form of the correlation function G and the free energy f at the vicinity of
a critical point, one can show the following scaling relations between critical exponents:

a+28+vy=2 (IIL.13)

vy=v(2—-n) (IIL.14)

dv=2—« (I11.15)
d+2—n

0=—— I1.16
d—2+4n ( )

nly. two éncgependent critical exponents, for instance n and v. Equations
. 7} are usually referred to as hyperscaling relations since they link singu-
lar1tles in the global thermodynamic quantities with singularities related to the spatial correlations.
Note that, however, the scaling hypothesis on the correlation function is only valid if the dimension
the system is smaller than a certain value called the upper critical dimension d.. Above d. spatial
correlations become irrelevant (mean-field like) and the system’s dimension d becomes meaning-
less. The values of all the critical exponents are independent of d for d > d.. The scaling relatFkl)rSlIg1
can be precisely proven from the scale invariance by a renormalisation group (RG) approach bS .

Critical phenomena display a remarkable fact: a wide class of different physical systems have
the same critical exponents ( Egg 38 nthgf ;Egstgrical’ identification of the liquid-gas critical point and

the ferromagnetic transition Hgmﬁf cri.tica%e onents é% Iso caléel:% gzuniversality class
verifying the universal scaling relations eq dﬁﬁrﬁ%ﬁﬁﬁﬂﬁfﬁ%ﬁ critical behaviour
of macroscopic systems seems then to be independent on the microscopic details of system. This
phenomenon is extremely appealing from the theoretical point of view: one can describe a physical
problem by a simple mathematical model belonging to the same universality class and forget about
the microscopic complexity of the 'real world’. One should ask the following question: What are
the main ingredients that make different systems belong to the same universality class? The answer
is given by the renormalisation group theory. Suppose we have two different systems described
in the continuum by two different statistical field theories. If the action of these two theories is
the same up to some irrelevant terms, it will be described by the same fixed points and then the
same critical behaviour. The universality hypothesis asserts that different systems with the same
symmetry, dimensionality and range of the interactions should belong to the same universality
class. o
:Ver brium

However, as we will see in chapter [[V[an vertex models appear as counterexamples of
this claim. The exact solution of the eight-vertex model [21]] showed that the value of the criti-
cal exponents depend continuously on the microscopic interaction parameters. This observation
shows that a deeper understanding of the theories used until then to describe critical phenomena
was needed. In particular, a rigorous renormalisation grou c%nsltrugité%l;} halvslat%%er% an%lﬁ’gzté’the
eight-vertex model reformulated as a fermionic field theory [[234.] WTTWW\WX
models as a field theory is already quite subtle. Then, in such cases, the fermionic interactions can
be marginal in the RG sense and the RG transformation has a line of fixed points with different
critical exponents associated to each of them. Non-universal exponents are thought to come from

eq:ScRel

’eq:HyperScl‘

’eq:HyperScZ‘

’eq:HyperSc3‘

er1998

the emergence of "hidden” symmetries and marginal terms which fe not apparent in, in the original
astrofietro2004
for ulgtlon offl%e model in terms of Ising spins or vertex variables 26 7 l 1. Kaaanoff and %Veg—

ner [[132] pointed out that the eight-vertex model presents more symmetries that the just the Zy
symmetry of the Ising model. Then they argued that the presence of four-spin interactions around
a plaquette can explain the continuous variation of cr‘&&cea&w%xrplo&e%lts verifying scaling. A few
years after Kadanoff and Wagner’s work van Leeuwen [259] proposed a real-space RG procedure
in order to show the emergence of a marginal scaling field indicating the existence of a line of
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fixed points along which the exponents vary. However, the exact value of the exponents found by
Baxter were not reproduced.

II1.1.3 Landau’s classification

The main idea behind Landau theory is that an effective thermodynamic potential F can be
constructed in order to describe phase transitions, on the unique basis of symmetry considerations.
This potential is expressed as an analytic function of the order parameter m which must respect
the symmetry of the problem. Equilibrium thermodynamic states are then given by the minimi-
sation of F. The theory is constructed under some important assumptions: thermal and spatial
fluctuations of the order parameter are negligible and the parameters in F are analytic functions
of the microscopic parameters of the system (e.g. J, T  and h for the Ising model). For a system
with the Zy symmetry of the Ising model, the Landau potential has the general form:

F(m,g) = %cn(g)m2

1 1
" =ct+ —a(g)m? + Zb(g)m4 +O(mP) . (IIL.17)
n>0

2

where g denotes a set of external parameters (e.g. g = (¢, J, h)). This model considers a global
non-fluctuating order parameter and then it is of the mean-field kind. With this model Landau
suggested that the phenomenon of spontaneous symmetry breaking is the crucial ingredient for the
understanding of phase transition. However, the theory neglects another central point of critical
phenomena: fluctuations. Therefore it does not give a correct description of critical phenomena at
low dimensions. For dimensions above the upper critical dimension d. fluctuations can indeed be
neglected.

The extension of Landau’s symmetry arguments to include fluctuations in a systematic way is
known as the Ginzburg-Landau-Wilson theory. It is a field theory where the spatial fluctuations
of a local order parameter are included in the action and departures from the mean field behaviour
can be evaluated 2. Together with the RG and other field theoretical techniques, it constitutes the

‘canonical’ approach to study crir'lddcaa& Iphenomena.
The function in eq. &Wesoribe a variety of different situations depending on the

nature of the order parameter (scalar, tensor, etc.) and the expression of the functions a, b, etc.
Although a more careful treatment has to be done to study the critical properties of a system,
Landau theory allows for a simple phenomenological description of multi-critical points and first-
order phase transitions. We introduced it here for this reason.

III.1.4 Kosterlitz-Thouless phase transition

So far, we were only ¢ n?é:rerﬁrll%q %iéh phase transitions with a discrete symmetry breaking. The
Mermin-Wagner theorem [[1779] states that in a system with continuous symmetry in a space of
dimension d < 2, fluctuations are strong enough to avoid the establishment of a long-range order
at any temperature. However, the theorem does not prevent the emergence of phase transitions.
Indeed, this interesting situation occurs in the case of a planar model (e.g. O(2) or XY model) in
d = 2. This system experiences a phase transition qgg o Zthe q{nbl?gﬂ% 0{ gglggéolgiigczz{g%e’cts: the

1NSK1 1

eq:LandauF

Kosterlitz1974

so-called Kosterlitz-Thouless phase transition (KT) [28,149][14/].” Although the “order parameter
m 1is identically zero at all temperatures, the behaviour of the spatial correlation function changes
abruptly from an exponential decay at high temperature (disordered phase) to an algebraic decay
at low temperature (quasi-long range ordered phase).

+LandauF
2. For the Ising model one replaces m by a local field m(x) in eq. @Wﬁludfss terms in even powers of
Vm(x).
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The prototypical example displaying a KT transition is the classical XY model described by
the following Hamiltonian

H{0} =—J> 8iSj=—J cos(b; — 0;) (I11.18)
(i.3) (i.3)

where the sum runs over all the links of a square lattice and 6; is an angle defined by: S; =
(cosb;,sin ;). At very low temperature, one can approximate this Hamiltonian by a quadratic
form: H ~ —J/237; (6 — 0;)2. This leads to a Gaussian field theory in the continuum . The
thermodynamics of the Gaussian model are obtained from the action:

Sswlb] = %K / dr [VO(7))? (IIL.19)

where K = (3J is sometimes called the stiffness of the field. In the context of magnetic systems,
this theory is usually referred to as spin-wave approximation. The equilibrium configurations are
given by the extrema of the action, i.e. solutions of the Poisson equation V20 = 0. The function
6 is 2m-periodic such that the solutions of the Poisson equation can be written as

]{ VO(7).dl = 2mq, q € Z (1IL.20)
I

where the integration is done along a closed path I'. Configurations with g # 0 are called vortices.
Along any close loop surrounding a vortex, 6 goes from some value 6(7) to a different value
6(7) + 2mq, meaning that the function 6 is multivalued. In order to define ¢ in the presence of
vortices, one should fix a branch cut starting at a singularity and going to infinity, or ending at
a different vortex. Vortices are an example of topological defects indexed by an integer number
called vorticity or winding number or topological charge. A topological defect is a singularity
of the field, @ here, characterised by, as the name suggests, the topology of the order parameter
manifold. Topological defects cannot be destroyed by continuous deformations of the system:
they are said to be fopologically stable. Homotopy theory is the natural language to describe
these objects. One can classify the possible stable topological defects of a system by looking at
the homotopy groups of the order parameter manifold. Vortices in the XY model are the easiest
non-trivial example: the order parameter manifold is the 1d sphere S* and its unique non-trivial
homotopy group is the set of i fegers ?9(7%16 winding numbers). For a detailed and pedagogical
introduction on the subject see [[178].

The Gaussian approximation allows for the calculation of the correlation functions. One finds
the following asymptotic behaviour:

1

G(r) = (S(r)S(0)) = expl—(9(0) = g(r)) ~ (7)™ for il =r >0 qan

r

where g is the Green function of the Gaussian field theory

o) = 0Oz, 5t (5) - (111.22)
The correlation function decays as a power law with a critical exponent 7 = 1/(27K). It depends
explicitly on the external parameters and is hence non-universal. The low temperature phase is
then critical, which is the extreme situation allowed by the Mermin-Wagner theorem.

This simple low temperature approximation suggests that the model has two different phases:
a quasi-long range ordered phase and a disordered one. A simple heuristic argument was provided

’eq:GaussianFi

’eq:GreenGaus:
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Kosterlitz1972a
by Kosterlitz and Thouless ([148] to justify the existence of a rather special phase transition be-

tween these two phases. Then, using the Gaussian theory, one can determine the energy carried by
avortex: By, = TKq?In(R/a), where R is the linear dimension of the 2d lattice and a the lattice
spacing. One can estimate the importance of these excitations as a function of the temperature by
considering the free energy associated to a single vortex. A free vortex can be in (R/a)? different
states (i.e. the number of sites in the lattice). Then, the free energy of a single vortex is:

Fi, = (nJ —2kgT) In (f) . (111.23)
The competition between the tendency to order and the entropy indicates a critical value 7, =
mwJ/2kp. At low temperature the creation of vertices is suppressed. At high temperature F;,, < 0
and vortices are created spontaneously. Once vertices are created the above arguments based on
small perturbations over a uniform field configuration are not justified.

In the Gaussian theory, one can compute the interaction energy between two vortices of vor-
ticity ¢ and ¢ located at 7, and 75:

Ep=EY + E® —2nJg1g51n ('”;”’) . (11.24)

A pair of isolated vortices interact via an effective 2d Coulomb potential arising as a many body
effect. At low enough density of vortices one can describe the system by the effective action:

5[0, p] = Sewl6] + Su[p] (I11.25)

Sylp] = —wK//drd’r p(T (‘—, ’) p(7) + BEC/deZ(F) (II1.26)

where p is the vorticity density and F. is the energy needed to create a vortex. This theory is a
2d Coulomb gas of positive and negative charges with a spin-wave term. The emergence of such
long-range interaction between defects is a Su%%%?g%ﬁ %ng ong should study more carefully with
an RG approach. This was done by Kosterlitz [T47], who used the Coulomb gas representation of
the model. He showed that a screening length is generated along the RG flow and vortices cannot
be considered as independent excitations. In the high temperature phase vortices are free to move:
it corresponds to a conducting phase. Below 7. vortices of opposite charge are bound together: it
corresponds to a dielectric phase.

Using RG arguments Kosterlitz found the following critical singularities associated with the
KT transition:

G(r)y~rT", n=1/4 (IL.27)
£(t) ~ exp(a/Vt), t>0 (I11.28)
fs(t) ~E72 t>0 (I11.29)
X(t) ~ 5 >0 (I11.30)

Below the critical temperature the correlation length and hence the susceptibility are infinite. The
correlation length has an essential singularity at ¢ = 0, meaning that, in the Ehrenfest classi-
fication, it corresponds to an infinite order Kphase fran%%l In this case, a new set of critical
exponents &, B and # should be introduced hmrmdeﬁned in terms of the divergence of
the correlation length at the KT transition point:

Cned, matP, el (I.31)

’eq:KTlvortex

’ eg:vortexInte
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They are related to the usual critical exponents previously defined by:

A 2 — A
G279 4= 5-0_9_y p=-"F (II.32)
v v v v
The scaling relations are obeyed by these exponents. Their numerical values are:
b=2,4=7/4, f=1/8, n=1/4, (111.33)

which defines the KT universality class.

III.1.5 Topological defects

Topological defects are the key ingredient of the KT transition. They also play a central role
in the theory of melting in solids. The field 6 in the XY model can represent a large variety
of different physical systems. For example, § might represent the phase of the macroscopic wave
function in liquid helium. The KT ordering is in this context a transition into superfluid phase. The
XY model in its Coulomb gas representation is dual to the Gaussian approximation of the absolute
solid-on-solid model (ASOS). The angular variable 6 can then be mapped onto a height function
h describing a solid-fluid interface or the shape of a growing crystal. The duality transformation
maps the low temperature behaviour of the XY model into the hight temperature behaviour of the
surface model (and viceversa). The transition point can then be located by identifying the ﬁxed
point of such transformation and the critical singularities of both models are the same. In

VertexModels

context, the KT transition corresponds to a roughening transition. As we will show in chapterLl,
this duality property and the roughening transition are closely related to the critical properties of
spin-ice. The six-vertex model in its antiferromagnetic regime (i.e. the F model) can be one-to-one
mapped anto a SOS model. We should postpone this discussion to the section devoted to hardly
constrained models. Nelsonl979, Youngl979

Halperin, Nelson and Young }[202,7276 proposed a generalisation of the Kosterlitz-Thouless
theory in order to describe melting in 2d solids. In this so-called dislocation mediated melting
in 2d, usually referred to as Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) transition, the
displacement field u plays the role of . The Burgers vector b is the topological charge character-
ising a dislocation, a VCCE}OI‘lal aBnalog g?ethge\g%%%lqg number (if a Vortex in the XY model. In the

theory of dislocations ([198 142156] the Burgers Vector s dehned by

j{ Yu(7 = (kp ky)a, ko, by €2 (II1.34)

The vector b is a measure of the strgng%l% of the dislocation. Just as § around a vertex, it is
a natural consequence of eq. @ﬁﬁ the displacement field is a multivalued function. In
order to give a meaning to this function one should arbitrarily fix a branch cut going from the
singularity to infinity (or to an other singularity) and defining the dislocation line. The problem of
definiteness of a field and the need for a branch cut is a general fact associated with the presence
of a topological defect. In electrodynamics, the presence of a Dirac monopole of charge q:m%kg%sl
the vector potential singular, and the Dirac string is the branch cut associated to it [[84].
circulation of the vector potential around a monopole is given by its charge:

j'{ A(P).dl = 4rq . (I11.35)
r

Therefore, a Dirac string can be thought of as a ‘dislocation’ of the electromagnetic field.
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Using similar arguments that the ones used by Kosterlitz and Thouless, one can show Eha{ ton 1979
interaction between dislocations leads to the following contribution to the effective action [202]:

Sald] = —;ﬂK/dF/dF’ {d(f‘) -d(#) In (V;WI)
@) =Tl 8 (7 Tﬂ)]] + BE. / di’ d2(7) (IIL.36)

|7 — 7|2
. . . . . . :vortexInteraction
where d is the density of dislocations. This sh Nuel951%6n Bcggﬁpared with eq. dﬁﬁm
KTHNY theory can be found in Nelson’s book [203]]. Note that a 2d dipolar interaction emerges
as a many-body effect. A detailed discussion on the KT trans1t10n 1n tlblnL )gerrpg}gel 1q{2ﬁ fglllgertBook
and liquid helium can be found in Chaikin and Lubensky’s book ([05] and Kleinert’s book [[142]

III.2 Discontinuous phase transitions

IIL.2.1 First order phase transitions

In this section we describe briefly, on the basis on Landau mean field theory, the main features
of the ‘usual’ first order phase transitions which differ from the ones of the ‘unusual’ discontinuous
FM transition of the six-vertex model. A much detailed and precise presentation giggsetﬁrélg
phase transitions beyond mean field arguments can be found in the review by Binder [34].

Landau theory predicts a first-order phase transition dlf the symmetry of the system 1mpos%s the 51993
presence of a cubic term in the expansion eq. @RM in the context of liquid crystals h79D7
Consider

1 1 1
F(m,T,h) =ctf s (T —T.) m® — Z—ay m® + ~bm? (IM.37) |eq:LandauFir:

3

FirstOrder
where a1, as and b are all positive constants. As shown in Fig. @Tm might have two
minima of different nature depending on the range of temperature. The thermodynamic state is
given by the minimisation of F which leads to a second order equation in m. The solutions depend
on the sign of the parameter A = a2 — 4a(T — T,)b. This leads to three different regimes:

— High temperature regime:

ForT' > T, > T the function F has a single global minimum at my = 0.

— Metastable regime:

(i) For I'y > T > T the function F has a global minimum at my = 0 and a local minimum
at mg = my # 0. The limit temperature 7', separating a pure phase and a mixed phase is
thus the limit of metastability of the disordered state. It is identified by an inflexion point:
(0>°F /Om?)r, = 0. Local minima of the Landau potential are interpreted as metastable
states. Such that, in this regime, ordered and disordered regions coexist.

(ii) For T, > T > T_ the function F has a global minimum at m, and a local minimum
at mo = 0. Both phases coexist until the temperature 7__ is reached when cooling. The
minimum associated to the ordered phase is deeper than the one associated with the disor-
dered one. When cooling, regions of non-negative order parameter grow until the limit of
metastability 7_ is reached.

— Low temperature regime:

For T' < T_ the function JF has a single global minima at my = m and the ordered phase
is stable.
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m
T>T, T, T. T T<T
m
mlf‘,_/l (a) T T. Ty T (b)

Figure III.1: (a) Landau potential with a cubic term in m for different temperatures. The limits of
metastability are indicated. For clarity we only show here the positive m-axis. (b) Order parameter
as a function of temperature. Depending on the cooling (blue) or heating (red) procedure, the
system can avoid the transition at ;. and set in a supercooled of superheated phase between the
metastability limits. Metastable states coexisting with the equilibrium stable phase are present
between the blue and the red lines.

At T, the two minima my = 0 and my = m are equally deep. The concavity of F changes
abruptly at that point, leading to a discontinuous phase transition: the spontaneous magnetisation
given by the deeper minima jumps from a strictly positive value m to zero. The emergence of
metastable states is responsible for the hysteresis phenomenon. Starting from a high temperature
state one can ’supercool’ the system and obtain a metastable disordered state below the critical
temperatyre. TFIPrssrtlgef(Ciise lgooling procedures faster than the microscopic kinetics of the system
(see Fig. ‘ili(i ). The phenomena of hysteresis and phase coexistence characterising a first-order
phase transition might be familiar from everyday’s observation of boiling water: the formation of
bubbles of vapour coexisting with liquid water above 100°C.

Some important remarks should be done about the meaning of metastability. Usually, one
refers implicitly to the dynamical properties of the system when discussing metastability and hys-
teresis (which depends on the cooling rate and it is hence a non-equilibrium phenomenon). The
minima of F is related to the probability of finding an equilibrium configuration with a given value
of m. In this mean field picture we neglected fluctuations, which turn out to be crucial for a precise
characterisation of coexistence phases. When one includes fluctuations all possible configurations
can be observed with a given probability. One can think of a metastable state as being a state,
among all the possible ones, where the system spends a long macroscopic time. In an ordered
phase, such as the FM phase of the Ising model, the same argument applies. The system spends a
huge time ~ exp N close to one of its two valleys m = +myg and a very little time far from them.
Fluctuations and dynamics should be taken into account in order to get a complete understanding
of first (.)rde.:r p{Dlg%ee rtlreacrlles%tég%o i[‘ h§ existence 9f long-lived. metastable stat.e.s (su.ch as in super-
cooled liquids [80]) and the dynamical mechanisms responsible for the equilibration of a system
close to a first order phase transition are interesting but rather complicated issues which are not
completely understood yet. First-order phase transitions constitute a difficult situation to handle
theoretically even though it is a phenomenon we encounter more usually than critical phenomena.

II1.2.2 Multi-criticality

:LandauF
The stability of the equilibrium solutions of the Landau theory eq. dﬁﬂ%}fmlrameed by the
positivity of the parameter b. The Ising second-order transition in this theory is due to the change of
sign of a(g) = a1 (T —T,) at T,. If one includes the next term c(g)m? in the development of F the
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Figure II1.2: Landau potential at a critical point corresponding to p = 2 (in blue) and at a multi-
critical point of order p = 4 and p = 12.

lultiCritical

stability condition is ¢(g) > 0, i.e. the positivity of the factor in front of the term with the largest
power. The transition comes from the change of sign of the terms with lower power. If b(g) > 0
there is a "lambda line’ of second order phase transitions at (g,) = 0 (the name lambda line gomes,
from the phase diagram of liquid helium where this kind of behaviour was first observed }[TO’Uﬁ
If b(g) < 0 the system experiences a first order phase transition a(g.) = 0. At b(g,) = a(g;) =0
the system is said to be on a tricritical point. The system responds in a qualitatively different
manner to changes along different directions in the parameter space. Depending on the relative
sign of a(g) and b(g) the system undergoes a first order or second order phase transition. At a
multi-critical point, the system has more than one relevant external parameters.

In general, one can consider a Landau potential including all the even powers of the order
parameter:

1
F(m.g) =3 5-con(g)m™ . (IIL.38) [eq:LandauMult
n>0

A multi-critical point of order p is defined by: (i) the stability condition: c,(g) > 0, Vg (higher
order terms are neglected), (ii) the 'meeting’ point of all the critical surfaces: c;%(gt)vm:l Qi Uy
Note that g must be, at least, a (p — 1)-dimensional vector. As shown in Fig. [[I1.2[the mean-field
probability of an equilibrium state becomes flatter as p increases.

II1.2.3 The ‘Frozen-to-Critical’ KDP transition

So far, we distinguished transitions for which: (i) the order parameter is continuous, there is a
diverging correlation length at the critical point and a set of exponents characterising the singular-
ity; (ii) the order parameter is discontinuous, there is no divergent length scale in the system at the
transition point and no critical exponents associated to it. This classification into first and second
order is mainly based on general arguments coming from Landau’s ideas and the more precise
Ginzburg-Landau-Wilson formulation. The conjectures made by field theo}g}é }g@gfrggg@es should
pe confronte.d with the few exact res %{tg Sa%gilél\l?l dn 1st%ta1§tt1gﬁlemnelcglg ics }[ﬂ]fmact.soh.l—
tion It: ltg% ldélg]%r model by Kasteleyn [[136, T37i ; and the solution of the KDP model by Lieb in
1967 [[162] show that this classification is not exhaustive. As we will show in a second, these sim-
ple lattice models cannot be described by the Ginzburg-Landau-Wilson framework. Constrained
models, and in particular vertex models, exhibit phase transitions that do nit fit into the standard

3. Although the solution of the dimer model is commonly attributed to Kasteleyn Q% l%orbi% vas ST[%ved almgst

emperley1961
simultaneously in 1961 by two other ’big names’ of statistical physics, namely Fisher [[96] and Temperley [255]-
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classification.

The dimer model is meant to describe the absorption of a diatomic gas on a substrate. Each
diatomic molecule is modelled as a rigid dimer (or domino) occ ﬁng% two neighbouring sites of
a lattice. A recent review on dimer models in 2d can be found in [Z68]]. Here we focus on perfect
matchings, i.e. configurations where all the sites are occupied by exactly one dimer. These models
defined on general bipartite graphs are largely studied in mathematics as well, where there are
known as domino tilings. But let us focus here on the interesting collective phenomena arising
in these systems and leave the discussion of more formal aspects to the next chapter. Consider
dimers on an hexagonal lattice and give a Boltzmann weight to the three possible configurations
of a dimer (the three orientations of the hexagonal lattice) denoted z; = e Per 2y = ePe2 gpd
23 = e~ P The partition function of the model is

Z(z1,22,23) = > g(N1,No, Ng)zp ' 252258 (II1.39)
Ni1,N2,N3

where g(N7, No, N3) is a combinatorial factor which counts the number of dimer coverings using
Ni, No and N3 dimers along the three directions of the hexagon. This model experiences a phase
transition when one of the weights is equal to the sum of the other two, for example 21 = 29 + 23.
In the ordered phase z; > 2o + 23 and Z(21,22,23) = /2L Meann% et}l{laat the only allowed
configuration is the one where all the dimers are z; (see Fig. e system shows a perfect
order in this phase. The only excitations that could introduce some orientational disorder in the
system involve an extensive number of dimers and are hence suppressed in the thermodynamic
limit. This ordered phase is said to be frozen.

o T,

Figure II1.3: The dimer model on the hexagonal lattice. (a) A particular isotropic dimer cover-
ing. (b) Ground state of the system when dimers in the vertical direction are favoured. Below T,
the system is frozen in this configuration.

A phenomenological plg}ure of th1§I et}‘{%nSItIOP mechanism arises as follows. Consider the
ground state shown in Fig. [[IL3] (b)J and, tor simplicity, let us fix e; = 0 and e = €3 = € > 0.
In order to excite the system one would try to shift a vertical dimer into one among the two non-
vertical positions. By doing so, one creates a pair of topological defects called monomers at an
energy cost e. Monomers are strictly forbici&en n tlgger]rflggg}( ;md ope must then shift dimers in
order to eliminate them. As shown in Fig. one must shiff an extensive number of vertical
dimers forming a string in order to avoid the presence of monomers. This can be done at an energy
cost of Le. Since there are two possible choices for the shift of a dimer during the construction of
the string , the free energy of one ’string excitation’ is

Fiy=L(e— kgTIn2). (I11.40)
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Then, a simple argument a la Kosterlitz-Thouless (see eq. W the transition tem-
perature at kg7, = €/In2. It turns out that this simple estimation gives the exact transition
temperature: z; = z2 + z3. At T > T, string excitations populate the system. At 7T < T the
system freezes since thermal fluctuations are not strong enough to create a string.

T,

(a) (b)

K,

(c) (d)

Figure II1.4: Excitations in the hexagonal dimer model. (a) Ground state configuration. (b)
Configuration after switching the blue dimer in (a) into the dimer shown in red. So doing, one
creates a pair of monomers of opposite topological charge shown by white and black circles. (c)
Configuration after switching the blue dimer in (b) into the dimer shown in red. The switching of
the dimer induces the motion of the black monomer. (d) Configuration obtained by repetition of
the same procedure. The pair of monomers finally disappear if one switches all the dimers along
the string shown in red which ends at the boundaries of the lattice.

Note that this is not a usual phase transition as the continuous and first-order transitions de-
scribed before. It takes the system from a critical phase with long range correlations into a frozen
state. It is also very asymmetric since the free energy is constant in the ordered phase and a contin-
uous function of the parameters in the quasi-ordered phase characterised by a dive g%g]ggrrelation
length. These observations suggested Nagle to call it ‘3/2-order transition’ ]Zt)%% . From the low
temperature side the thermodynamics are consistent with a first-order transition but, in the high-
temperature side, there are large fluctuations at the vicinity of the transition proper of a continuous
phase transition with the associated critical exponent: v = 1/2. Hence the name 3/2-order tran-
sition, as an ‘average’ between the first-order and second order like behaviour from one side to
the oder of the transition. In 1973, Nagle identiﬁe% thg e%%%e% gxfiet%i%% of the dimer model
with hydrocarbon chains present in biomembranes . The model predicts the qualitative
behaviour of the phase transition occurring in lipid bilayers between a frozen trans-phase and a

disordered gauche-phase. I% ga% Paeggasgloe\xelq %]ggt this unusual kind of transition can also occur in

dimer models in 3d lattices . Using transfer matrix techniques, a logarithmic divergence of the
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heat capacity (o« = 0) has been found when approaching the transition point from above.
The KDP madel {74315 defined as the special casc of the si del introduced i
e > model 421 15 define as the special case of t §81xteen—verte).c model introduce in
the Introduction [I[[for which'e = d = 0 and a > b = c. This model exhibits a very asymmetric
transition of the same kind. It is defined on a square lattice, in which the energy of a pair of

ferromagnetic (or ferroelectric) vertices is set to zerg and all other ones are equal anq po%&igg
) . ] s KDP . Lie ’’c, BaxterBook
ie.a=1>b=c= e P as shown in Flg.%—rﬁe exact solution of the model [[163] 24]

shows that a transition takes place at a = b + ¢, i.e. kT, = €¢/In2. Below T, the system is
frozen in an ordered phase where all the vertices are of type a. The free energy is constant in this
regime. Above T, the free energy becomes a continuous function of the parameters and thermal
fluctuations in the form of small loops of spins pointing along the loop are present. At T the free
energy is singular with a critical exponent o = 1. The first derivative of the free energy shows a
step discontinuity at the transition. In the canonical classification this would correspond to a first-
order phase transition. However, contrary to what happens in usual first-order transitions, critical
exponents can be defined. Note that the transition temperature kg7, = ¢/In 2 can be obtained
from the same arguments used for the dimer model. Indeed, this ‘frozen-to-critical’ transition is
of the same kind as the one discussed a few lines above: it is due to the presence of tended
excitations in the form of strings of collinear arrows spanning the whole lattice (see Fig. %
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Figure IIL.5: Excitations in the KDP model. (a) A particular hight temperature configuration. A
typical loop fluctuation is shown in red. (b) Low temperature configuration. The system is frozen
into its ground state below 7T;. A typical fluctuation in the form of an extended string is shown in
red. (c) Six vertex configurations and their associated statistical weights a and b = e~?¢ where

€ > 0. The first two vertices are favoured.

In order to further understand the equivalence between these two transitions and fix our ter-
minology we should make a few remarks. An order parameter can be defined in the KDP model:
the magnetisation M. It is defined as the average orientation of the arrows along the two di-
rections of the square lattice. In the absence of an external field this order parameter exhibits a
jump-discontinuity at 7, = ¢/kpIn2: M = 0atT < T, and M = +1 at T < T,. Because of
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its peculiarities, we will call it KDP. transition Howeveli, \@/gen an external field is included, the
o . BaxterBook,Watsonl9 . . . .
magnetisation becomes continuous }[27[ 765]. Wu showed that the six-vertex model in an infinite
exterwﬁllglggd can be mapped onto the dimer problem on an hexagonal lattice studied by Kaste-
leyn [269]. Several authors, in particular in the field of frustrated magnetism, call this transition
occurring in the six-vertex model in presence of a field Kastelyn transition, in honour of the work

of Kasteleyn on the hexagonal dimer problem.

NF%%tr{(e)Elszc&l&t}aring experiments have found evidence for a Kasteleyn transition in this sys-
tem ﬁglrmould not come as a surprise us since the Kagome Ice problem is equivalent to
the dimer model in the hexagonal lattice. Kagome Ice is obtained in the laboratory by applying a
[111] field to pyroclhore spin-ice materials. The Kasteleyn transition is induced by a field along

to the Kagome planes.

Theoretical studies in the T(_qll\Iubsgrirtl—zigs 8model on the 3d pyrochlore lattice in a [100] field
predict a Kasteleyn transition [[129]. 1S is again expected since the NN spin-ice model is a
six-vertex model on the 'dl%q}gggalﬁgg%% 5 EFxglegéq]f%%%studles on spin-ice @aterlals in a [100]
field have been reported in TU(g,u% .ang! \gztﬁe freezing temperature, experimental samples are

though to be J%tu%fe %%%iéi&rium 100], avoiding a conclusive observation of the transition predicted
theoretically Em .

A KDP transition is also expected to occur in spin ice model when an anisotropy favouring a
pair of ferromagnetic vertices is introduced. This can e éig?goi;l the laboratory by applying uni-
axial pressure in a particular crystallographic direction [[L86]. In that way, bond distortion is intro-
duced in the system which splits the degeneracy of the ice-ruled manifold. Ja lerﬁjeet lgtlzgt%iied the
effect of bond distortion on the NN spin-ice model on the pyroclhore lattice [[130]. Using a mean
field approach supported by Monte Carlo simulations and transfer matrix techniques, they argued
that the special features of the KDP transition are due to the flatness of the probability distribution
of the magnetisation at the transition. Hence, they claimed that the KDP transition corresponds to

a multi-critical point of infinite order. Such a multi-critical poi was rel\l/ir%lésﬂ studied by means
of the Landau’s mean field theory presented in section 27T. ;%m theor

predicts.a jump
. .. . . - A ) ;MultiCritical

discontinuity of the order parameter at the multi-critical point. As shown in Fig. ﬁ l i Szt the potential
F(m), giving the probability of a configuration with magnetisation m, becomes flatter and flatter
as p increases. The flatness of the Landau’s potential makes the KDP transition radically different
from the mean field picture of a first prder nh&l;g Nitﬁlgsiition with metastable states and hysteresis.
Using the mean field potential in eq. (ii I I 'g‘g E, one finds the following associated critical exponents
when approaching the critical temperature from above: § =0, =1/2,y =1l and v = 1/2.

The main property which explains the emergence of such unconventional collective behaviour
in these systems is the presence of a hard constraint: the ice-rule for the KDP and spin-ice model,
the ‘tessellation’ condition for dimers (i.e. there is no overlaps and no gaps in the dimer packing).
In order to preserve the constraint, the only possible fluctuations in these systems are of the form
of closed loops of dimers or spins. If we impose periodic boundary conditions, the hard constraint
splits the phase space of the system into different topological sectors. These are characterised by
the number of winding loops closing at the borders of the lattice thanks to PBC. In the condensed
matter literature, such a frozen phase due to the presence of a hard constraint is usually said to be
topologically ordered. The intriguing effects arising from the imposition of a hard local constraint
will be discussed in much more detail in the coming chapter.
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II1.3 Finite-size effects

The concept of phase transition only makes sense in the thermodynamic limit. This is a the-
oretical idealisation of real physical systems made by a finite number of elements. Although this
number can be inconceivably large, a detailed analysis of the effects arising from the finiteness of
the system should be done, in particular in view of the analysis of the data obtained by numerical
simulations.

IIL.3.1 Around a second order phase transition

The collective behaviour in finite-size systems is smooth, no divergencies can take place since
the partition function is a sum over a finite number of reals. The theory of critical phenomena is
based on the scale invariance of the critical point. A finite system breaks the scale invariance and
the length scale £ can, at most, be of the order of the linear size of the system L. The divergencies
associated with an infinite correlation length are then ’smoothed’ by the bound imposed by L.
Nevertheless, it is possible to define a transition temperature 7.(L) for a finite system as the
"rounded peak" corresponding to the divergence of some quantity in the thermodynamic limit
(e.g. the second order moment of the probability distribution of the order parameter). Relevant
finite size effects are expected to appear when & ~ L.

The renormalisation group approach to critical phenomena showed that the singular part of the
free energy density is a generalised homogeneous function for p scaling variables ..., i.e.

Fo(@r, o my) = X" fo(ANM 2y, . A%2,), VA ER. (IL.41)

When L < ¢ finite-size effects can be taken into account by including L~! as an extra scaling
field*. As a result

fo(x1y ooy zp, LY = X" fe (AN 21, .o, A2, ALTY), VA € R. (I11.42)

Using this finite size scaling hypothesis one can 9d7educe the S?ah%geform of the (C)lther tpermody—
namic quantities for a finite system sizeW[W]’FcWewew see [[14,154]. ’

Consider a second order phase transition described by an order parameter m. In order to
illustrate these concepts let us consider again the Ising model d-dimensional lattice for which;

m = IFdQ:iL:d1 s;), where the brackets denote an ensemble average. When £ ~ L the system

looks ordered. This defines a size dependent critical temperature 1. Lg’liinn )félgeral smaller than
the infinite size prediction T,.(cc). Using the scaling relation eq. one can write

To(L) — To(c0) o« L™V (II1.43)

O™ s (Ty(L) — To(00)) ™ ~ LV | ™9 o (TL(L) — To(00)) ™Y ~ LYV . (IIL44)

The critical exponents can be determined using the following scaling relations:

Ct, L) ~ L% @C(tL%) (I11.45)
X(t, LY ~ LY ®, (tLV) (I1L46)
m(t, L7 ~ L—wm(tL%) (LIL47)

4. For an anisotropic system in two dimensions we must consider two correlation lengths £, and £ which might
diverge with different critical exponents.
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where the ®,’s are the scaling glirl}l%té(%li% g?f the quantities indicated on the subscript. A useful
quantity is the Binder cumulant }[33 . Itis the reduced forth order cumulant of the order parameter
defined by

(m*)
K, =1 ) 111.48
The finite size scaling analysis of this quantity gives:
Kp(t, L™ ~ &g, (tL%). (111.49)

Therefore, it tends to three different fixed points: at T' = 0, 7' = oo and T' = T,. It grows
monotonically from K (7T — oo) = 0to K(T' = 0) = 2/3 and gives a value K*, independent
of L, at the critical point. This allows for the location of the latter: the point where the Binder
cumulants for different system sizes intersect gives an estimation of the critical point.

The arguments given above are not extremely precise since we are using the scaling forms
obtained in the thermodynamic limit to study ﬁniﬂec g%zde(] %ffects. More PBrggikse arguments based on

. K . K ook, Barbe
RG calculations in finite systems can be found in [[54; 14].

II1.3.2 Around a first order phase transition

The scaling arguments presented above are valid close to a critical point, where the correlation
length diverges. This is no longer the cpse, fot.2.fist order phass transitiop apd o different fipite-
size scaling analysis is needed [220;35/165 262].

In a second order phase transition, the shift of the transition temperature because of the finite-
ness of the system was characterised by the exponent 1/v. Such exponent is not defined for a first
order phase transition and the shift of the transition is only due to the volume of the system. For a
first order phase transition one can write

T.(L) — Tu(oo) x L4, C™=@ ~ L7, (I11.50)

The reduced fourth orde 8??}&1&?5 Jggz(tv L~1) shows a very different behaviour depending
on the order of the transition [262]]. Indeed, it develops a pronounced minimum at (L) = cte L4,
close to the transition temperature and can take negative values. The basic assumption needed to
deduce this results is that for a first-order phase transition one has a coexistence of ordered and
disordered phases. A probability distribution for observing metastable states is constructed and
used to compute thermodynamic quantities. Note that this theory has no reason to work out for a
KDP transition.

III.4 Numerical methods

II1.4.1 Monte Carlo dynamics

Monte Carlo methods stands for a class of numerical techniques used for solving physical
problems. The goal of a Monte Carlo simulation in statistical mechanics can be: (i) the estimation
of the ensemble average of some thermodynamic observable at equilibrium; (ii) the estimation of
time-dependent quantities and the study of the dynamics of the system under consideration. Both
are related and do not need independent approaches. The microscopic dynamics are encoded in the
updating rules used by Monte Carlo algorithm and equilibrium measurements can be done after
the equilibration of the system. In this thesis Monte Carlo simulations have been used for both
equilibrium and out-of -equilibrium studies of 2d spin-ice. There are many books which cover the
applications of Monte Carlo methods to statistical mechanics and condensed matters problems.
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Here I briefly presqnt tEe l?aa_m% vg)nt; JQGB%u?er%(C&ll r{]ﬁthois used during the thesis and I refer the
interested reader to [[16] [150].

A Monte Carlo simulation of a lattice model must generate configurations accordingly to the
Boltzmann distribution. From a state ;4(0) of a L x L lattice system the agorithm generates via a
Markov process a new state (1). The transition probability of this stochastic process is denoted
W (u(0) — p(1)). This procedure must guarantee that any state of the system can be generated
using a finite number of steps. This is called the ergodicity condition. The stochastic process of
generation of new states can be though as the microscopic evolution of the system. The probability

P(u, t) of finding the system in the state x(t) at time ¢ is described by a master equation:

OP(u,t)

or S Pt)W (= v) =P, t)W (v — p)] . (IIL.51)

v
Suppose that this Markov process is able to reach an equilibrium state 11© as ¢t — co. The dynamics
are encoded in the updating rules used by the algorithm to get a new configuration p(¢ + 1) from
a previous one p(t). Different dynamics can be implemented in the algorithm depending on the
physical situation one wants to simulate. All of them must ensure that, at equilibrium, states are
generated accordingly to the Boltzmann distribution. A way to ensure that is to impose detailed
balance

W(p— v)e PEW = W — p)e PEW) (I1.52)

together with the ergodicity condition. Nevertheless, these two requirements do not determine
completely the transition rates. A simple and widely used choice is given by the Metropolis algo-
rithm:

Wp—v)=gp—v)A(p —v) (IIL.53)

where we have split the transition probabilities into an edge-selection probability

g(p —v)=1/L* v (I11.54)
and a flip-acceptance probability
A(M — I/) — exp{—,B(E(l/) - E(:U’))} le(V) - E(:U’) >0 ) (HISS)
1 otherwise

The transition probabilities defining the dynamics of the system can now be written as

1
W (s — v) = £ymin (1, e—5<E<V>—E<M>>) . (I11.56)

The specification of the transition probabilities together with the updating rules used to generate
new configurations define a Monte Carlo algorithm. During the simulations we update the time
variable by one after we have performed L? times the two steps of the algorithm: (i) select a spin,
(i1) flip it with the acceptance probability. This is called a Monte Carlo step and it is the unit of
time in the simulations.

II1.4.2 The Continuous-Time algorithm

For frustrated magnets showing a macroscopic degeneracy of the ground state - such as spin ice
- the usual Metropolis algorithm, from now on called Fixed Step Monte Carlo algorithm (FSMC),
is very inefficient. For systems at low temperature and, in general, displaying slow dynamics
most of the updates proposed by the FSMC algorithm will be rejected. We have implemented an
algorithm which overcomes this difficulty, the Continuous Time Monte Carlo algorithm (CTMC).

’Master equat:




II1.4. NUMERICAL METHODS 63

In this section we present this technique for a general grobkegeghch%ncrete implementation for
the study of 2d spin ice can be found in the Appendix I’ . Bort21975
The CTMC algorithm is also known with different names: Bortz-Kalos-Lebowitz }[ZLU],TfGl—d
way or kinetic Monte Carlo. The basic aim of this algorithm is to get rid of the time wasted due
to a large number of rejections when the physics of the problem imposes a very small acceptance
ratio. It is extremely useful for the study of the long time behaviour of systems with complicated
energy landscapes and a large number of metastable states. The main idea behind this method is
to sample stochastically the time needed to update the system and then do it without rejections.
We can easily predict the time interval needed to update the system. Suppose that the system

is at state p at time tg. The exact probability of leaving the state 1 after At trials is

A A A
(W (= @)™ (L= W(a = ) = (W= )™ = (W (a— w0
In order to estimate for this quantity we have to generate a random number £ uniformly distributed
between 0 and 1. The latter corresponds to At trials if 0 < & < (W)™ — (W) then

At+1 < lnl{}é S < At. It follows that the number of steps needed to flip an arrow should be
computed by

At = Int Iné 41, (I11.57)
ln (1 — Z#/;é'u W (/J, — IU,/))

with the transition probabilities given by the Metropolis scheme:
T . _ n_
W (s — p') = £ymin (1, e PEW) E(W) : (I11.58)

These transition probabilities are the same as for the FSMC algorithm, but we should notice that
in this case the aim is to compute the time we have to wait before we do an update of the system.

’ eq:TimeUpdate

Using this time-step update, the output data of a CTMC calculation should be identical E§ th% TMSYSFSMC

output of the usual F.ISnlé/{]Cdggies has been checked in our simulations of 2d spin-ice (see Fig.
Equation @Th@%ﬁm we need to know the transition probabilities for all possible up-

dates at each step. This is the main difficulty for the implementation of the CTMC algorithm since
this number can grow exponentially with the system’s size. However, for systems with only short
range interactions one can only consider the neighbourhood of a site and the number of possible
changes is fixed to n (hence the name n-fold way). There is then a finite number of such possible
processes (and then a finite number of possible transition probabilities) independent of the system
size.

For an Ising model on a square lattice with single-spin flip updates, all the possible changes one
can generate in one step can be labelled by the change on the number of satisfied bonds (n,, —n,)
before and after the spin flip. For this problem the CTMC algorithm is a 5-fold way since the
change on the ngmber of satisfied bonds can take five different values n,, — n, = £4,42,0 (see
Flg.“%fwgﬁﬁn say that a spin has 5 energetic states.

Let us rewrite the transition probabilities W is the following enlightening form:

1
Py = 75 min (1 e 351) (I1.59)
where ¢; is the energy difference after flipping an arrow in state /. In this form one observes taht
the transition probabilities are completely determined by the state of a given site. One can compute
At by counting the number of arrows occupying each one of the different possible states at each

step:
2N

5
Y Wu—=p)=) aP (I11.60)
W #Ep =
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where g; is the number of spins in state /. One needs to keep record of the state of every spin on a
list at each step. After each step the list must be updated.

t

ﬁ‘_
-
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—

— —
—
—
—
—
e
—
<«

\
1

n, =0 ny =4 n, =1 Ny =3 ny, =2 Ny =2

Figure I11.6: Different possible states of a spin down in the 2d Ising model classified by the number
of satisfied bonds n,,. After flipping the central down spin, the number of satisfied bonds becomes
n,. The difference n,, —n, = [ = 0, £2, &4 determines the energetic state of the selected spin.
By counting the number of spins g; in the same state [ one is able to compute needed to flip a spin.

102 10" 10° 10" 102 103 10*
t (in MCS)

Figure II1.7: Time evolution of the horizontal magnetisation in the sixteen-vertex model with:
L =50,a=24,b=c=1andd = e = 0.1. The simulation starts from an ordered initial
configuration where all the arrows point to the right. This data was obtained after averaging over
100 independent simulations. The results obtained with the FSMC and CTMC algorithm are in
good agreement. The straight line in the CTMC plot is just due to the fact that we used linepoints
and there is no data in between those points far away in time.

I11.4.3 Equilibrium analysis of the simulation data
I11.4.3.1 Equilibration

The computation of any thermodynamic average must be done only when the system is at
equilibrium. Starting from an initial configuration one must run the simulation long enough, until
the system has reached thermal equilibrium. This period is the equilibration time t.4. It can depend
on the initial configuration and it is difficult to predict in general. In order to check equilibration
we proceed as follows:
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(i) We compute the evolution of some quantity A from different initial conditions. Typically, for
a ferromagnet we compute (m(¢)) from a completely ordered FM and AF initial configurations.
The brackets denote a statistical average performed over different independent realisations of the
dynamics. In practice, one repeats the simulations for a different sequence of pseudo-random
numbers. Usually, equilibrium is identified by a plateau in the evolution of this quantity (usually
the energy). This emergence of a dynamical plateau in the simulated time window can be due to
a metastable state and not the equilibrium one. This is the reason why we also introduce the next
point.

(ii) We compute two-point correlations of the type C'(t,t,,) = (A(t) A(tw)) — (A(t))(A(tw)). At
equilibrium, the system is time-translational invariant such that C(t, t,,) = C®/(t—t,,). Moreover,
C must decay decay to zero for t —t,, = t.,. For the models studied in this thesis the combination
of these two measurements gives a criterium for the equilibration of our simulated samples.

111.4.3.2 Measurements

Once the equilibration has been checked, one can start doing thermal measurements. Indepen-
dent equilibrium configurations can be generated in two ways:

(i) Let the system evolve from an initial configuration until equilibrium is reached. Repeat that for
n different initial configuration uniformly distributed. The n configurations obtained are indepen-
dent and thermal.

(>i1) Let the system evolve from an equilibrium configuration. After a time period ¢, the system
has decorrelated from its initial configuration. This time is defined by the exponential decay of the
equilibrium correlation function:

C(t — teq) o €xP (t_ttq) (11L.61)
d

where ¢ > 4. The time period 4 is the so-called correlation time. Then, by waiting periods of ¢4
one generates independent configurations from the initial equilibrium one. Let the system evolve
from ¢ = 0. Keep the configurations at times ¢,, = t.q, + nty. The n configurations obtained in
this way are independent and thermally distributed. This second method is expected to be faster
than (i) since, usually, 2.4 > 4.

Suppose we realise n independent measurements of some thermodynamic quantity A and
denote ay, ..., a,, the values of such measurements. Then we estimate the thermal average (A) by

1 n
Al =~ ; a; . (IL.62)

This is what one measures in Monte Carlo simulations.

There are two sources of errors for such numerical measurements: i) statistical (from thermal
fluctuations) and ii) systematic (from mistakes in the procedure we apply to compute the observ-
ables), just as for real experiments in a laboratory. Once we have checked the conditions needed
to compute the observable we are interested in (e.g. equilibration), we can state that there are no
systematic errors in our simulation data. Since we cannot get rid of statistical errors inherent to
Monte Carlo techniques we must be able to carefully estimate them.

We denote by Ay, ..., A, different random realisations of the fluctuating quantity A. The
statistical estimator of (A) is defined by

A = - ;AZ (I11.63)
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and is a random variable. This estimation is unbiased since

(A*) = (A) and 02(,4*):@. (I11.64)

n

A naive estimation of the dispersion 02(A) = ((A — (A))?) would be

[o(A4)] = \/ % > (a;i — [A])2. (11L.65)

7

Unfortunately, this estimation is biased and causes the propagation of systematic errors. A faithful
estimation of the standard deviation giving a measure of the statistical error on A is given by

1
n—1

e(A) =

D (ai = [A])? (I11.66)

To perform an estimation of the deviation of another quantity B = f(Ay, .., A;,), which is a
function of a set of fluctuating quantities, we proceed as follows. The numerical estimator of (B)
is

1 n
[B] = - ; b . (I11.67)

In the limit of small deviations the dispersion of B can be approximated by

m - 2
o (B) ~ J > o02(A) (af (4) ) . (I11.68)

i OA; |Ai=<A;>

Then we estimate this quantity by replacing (A;) and o2(A;) by our estimators.

II1.4.3.3 Finite-size scaling analysis

Phase transition can.l%ﬁ::L gtPéiég(li ;)éf Monte Carlo simulations using the finite size scaling results
presented in section II [ ISE[ In frustrated systems the phase diagrams can be very rich and the phase

transitions taking place can, in principle, be of different kind. Our analysis must be able to distin-
guish between different types of phase transitions, determine the associated critical exponents and
characterise the nature of the equilibrium configurations. One can proceed as follows:

1. Compute the Binder cumulant K (¢, L~!) for different system sizes L. If the transition is
continuous the Binder cumulant must be monotonic from K(T > 0,L7!) = 0to K(T =
0,L~1') = 2/3. At a critical point all the curves intersect. Hence, in a quasi-long range
phase, all the data points for different system sizes collapse on top of each other. This
makes the estimation of a KT transition point very difficult. If the transition is first order the
transition temperature 7,(L) is identified from the minimum of the K.

:Binder
2. If the transition is continuous, use the scaling relation eq. %ﬁtimate the exponent v.
This is done by plotting K as a function of ¢.L'/ for different system sizes. Then we vary
the value of 1/v until the data collapses into a single curve close to the transition.

3. Compute the maximum of the specific heat C"™* for different sizes. If the transition is
first order it scales as C™%® ~ L2 If instead it is continuous, it scales as ™% ~ Lo/v,
Using the estimation of the critical temperature and the exponent v the exponent o can be
estimated by data collapse. Check the consistency of this value of o with the value of v
previously determined by plotting C.L=/¥ as a function of t.L'/".
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4. Compute the order parameter m and the susceptibility x for different system sizes. If the
transition is continuous the exponents /3 and -y can be estimated from m(T,.(L)) ~ L~P/¥
and x""% ~ LY/

:ScRel : Sc2
5. Check the scaling laws eq. @%d eq. @&

In this form, finite-size scaling analysis is unable to distinguish between a continuous phase transi-
tions for which £ — oo and a first order transition for which £ is finite but larger than the maximum
size of the system available in simulations. In order to give support to our results on 2d spin ice
we also used a different numerical technique: the Non-Equilibrium Relaxation Method (NERM).

II1.4.4 Non-equilibrium relaxation method

The numerical investigation of phase transitions usually exploits directly equilibrium results,
by first sampling the canonical ensemble of a finite system and then performing a finite size analy-
sis of the data. The NERM exploits the dynamical behaviour of the system to deduce equilibrium
properties. This is done by letting the system relax towards equilibrium from a non-equilibrium
initial condition. Using this method one avoids the difﬁcultiEOszreakigfé%g ﬂoca%rgglél&on lenght ¢ > L
but finite. A precise review on this method can be found in [210] and [3].

II1.4.4.1 Short-time critical dynamics

Classical spin models do not have any intrinsic dynamics. To study the evolution of such
a system we must begin by defining a priori updating rules. In the following we consider the
relaxation of a spin model in contact with a thermal bath, exchanging energy with it. Therefore,
the dynamical rules do not conserve energy and are stochastic. For this problem a natural choice
is to introduce a local single-spin-flip kinetic rule - e.g. of the Monte Carlo type - without any
conserved order parameter.

The choice of the microscopic dynamics is part of the modelling of the physical situation one
is interels{tcf):}(lieiQ .e]r)epgeygin% on 513103 4choice, the system sets into different dynam{'cal universa.lity
classes ﬁm W%Wﬁmdynamical critical phenomena extends the ideas of scaling
and universality of equilibrium critical phenomena to the time-evolution properties of statistical
models. In the vicinity of a critical point the correlation length diverges. Therefore, the system
has to establish correlations between spins over an infinite range in order to reach equilibrium, a
process which takes a diverging period of time 7. This is the so-called critical slowing down. The
dynamical scaling hypothesis (which is less well founded that its equilibrium analog) asserts that
the divergence of 7 is characterised by a power law which defines the dynamical critical exponent
z:

T~ &% (11.69)

Dynamical scaling extends the crucial notion of scale invariance in equilibrium critical phenomena
for the time dependence of thermodynamic quantities. This exponent is strongly affected by the
dynamical rules chosen in the simulations. During the evolution towards the critical point, the size
of the correlated regions given the time-dependent correlation length £(¢) grows accordingly to
this exponent:

E(t) ~tt/7 (111.70)

A field theoretic approach was proposed by Janssen et. al to describe the dynamical scaling
behaviour of thermodynamic quantities Jeg%\élgl%fgrggl an initial condition with a given magnetisa-
tion m(0) and short range correlations ﬁmrByWRG analysis of a field theory with stochastic
non-conserved order parameter dynamics (in the same universality class as the single-spin flip
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evolution in spin models), he showed that the evolution of the order parameter at the critical point
is given by
m(t) ~ t= P2 po/2m(0)) (IIL71)

with z the dynamic critical exponent, g a new exponent which depends on the initial configuration
and F' a scaling function which verifies: F'(x) ~ z for x < 1 and F(z) — ct for x — oco. In
finite size simulations, this scaling form should be correct for ‘short times’. By short times we
mean here periods of time which are longer than some microscopic time ¢, but short enough to
guarantee £(¢) < L. This condition reduces finite size effects and avoids the need for the proper
equilibration of the samples.

Suppose that one starts the evolution from a disordered initial state: m(0) < 1. Then we
adjust the external parameters in order to be at a critical point (i.e. we perform a quench to the
critical point). For times short enough such that %/ *m(0) < 1 the magnetisation is given by

m(t) ~ ¢/ r/v ~gf - molzm 0) <« 1 (I11.72)

where 6 > 0 is the so-called initial flip exponent. The order parameter initially grows. For longer
times ¢*0/ *m(0) > 1 the magnetisation decreases algebraically:

m(t) ~ t7/W2) - gml2m0) > 1, (I11.73)

which allows for a determination of 3/(vz).
Suppose now that one starts the C\g)ﬂlalgggsferggbg completely ordered configuration: mg = 1.
The time-evolution of m is given by ESZ

m(t) ~ =8/ w2) (I11.74)

Together with the scaling eq. ﬁ%@%ﬁ%xnact important informations about the equilibrium
properties of the system. For instance, the critical point. It can be determined by letting the system
relax from an initial configuration (with m(0) < 1 or m(0) = 1) towards different points of
the phase space. A critical point is characterised by a power law evolution of the order parameter,
whereas it decays exponentially fast to its equilibrium value for a non-critical point. The departures
from critical dynamics are very sensitive to small modifications of the parameters which allows
for a precise location of the critical point.

Tl%eZ é‘ﬁ]iai((%]é)gl behaviour of the order parameter is also valuable for the study KT transi-
tions [212]. The study of this transition by equilibrium measurements is hard because of the
correlation length increases exponentially when approaching the transition and makes the equili-
bration times of the samples very long. In the XY model, the whole low temperature phase is
critical. Therefore, for all T' < T'xr the relaxation of the order parameter from an ordered initial
state must decay algebraically. From this simple observation one can deduce if a phase is critical
or not and if a KT transition catn. occur. From the d}{namical scalin Z%t;(ghzeogealgxgtzig&tg%% ope
can also determine the KT transition temperature precisely. I refer to [212;210] for further details
about relaxation studies for the KT transition.

1I1.4.4.2 NERM for a first-order phase transition

Finite-size scaling analysis of the simulation data is unable to distinguish between a second-
order phase transition and a weak first order transition. By weak first order transition we mean here
first order transitions with a finite but large, typically larger than the size of the system, correlation
length. The NERM exploits the hysteresis phenomenon to determine the transition point and,
more importantl%{%aunsd 2t80%ilvgzgkclritggi3um to distinguish between weak first order and second
order transitions [[2, 2T1].

| eq: NERMF romP!

] eq:NERMfromFl
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Consider the relaxation of the system from a disordered (high temperature) initial configu-
ration: m(0) < 1. By repeating the process at different temperatures, we get an estimation of
the transition temperature 7™ from power law time-dependence of m. The temperature TJ.*ﬁi_icSy_;aE‘ irstorder
measure of the limit of metastability 7" of the ordered phase (T~ < T as shown in Fig. [[ILT).
At this point the disordered phase becomes stable and large (but finite) fluctuations are present.
For a finite size system, it is equivalent to a critical point. One can repeat the same procedure
from an ordered initial configuration: m(0) = 1 and get a different estimation of the transition
temperature 7**. This value is a measure of the limit of metastability T > T of the disordered
phase. This approach has been supported by numerical studies on 3‘5&9’2% 1§/aI13})eS gg:(;%lg 9where

the limit of metastability can be rigorously defined and computed [2T1,[167]. At a second order
phase transition 7% = T** = T,.
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IV

Hard constraints and 2d vertex
models

Onsagerl1944

Before Onsager’s solution of the 2d Ising model in 1944 ﬁzcrg , the definition of a phase tran-
sition from fundamental statistical mechanics was a matter of debate. Mean field results and other
approximations were already available but though to be too artificial to capture the real essence of
phase transitions in real physical systems. The Ising model is probably the most simple model with
a thermal phase transition and its precise study set the grounds of the theory of critical phenomena.

Twenty years later, the development of the renormalisation group (RG) theory clarified the
concept of universality which theoretically explains the observation that, very different physical
systems share the same critical exponents. In the context of 2D spin systems, models with dif-
ferent and unexpected universality classes were constructed. An example is the six-vertex model.
The exact solution of particular cases of this model (ice, KDP and F model, see below) was ac-
complished by Lieb in 1967. He applied the Bethe Ansatz and exploited the formal equivalence
betw en ntgl? 9s(jié—vertex model and the XXZ spin chain solved a few months before by Yang and
Yang [273].

The exact solution of the six-vertex model shows that the critical exponents depend on the
precise values of the microscopic parameters. This model appeared then as a counterexample of
the universality ideas coming from the RG theory. The theoretical physics community did not
paid much attenti n to etkrlilsggelsults until the exact solution of the eight-vertex model by Baxter
came out in 1971 [21]." The non-universality of the six-vertex model was though to result from
the pathological definition of the model through ‘hard constraints’ (here the ice rules). However
this variation of critical exponents was confirmed by the exact solution of the less pathological
eight-vertex model: its exponents also change continuously and lead atnhcgl%i%&?vertex model ones
by taking the appropriate limit. In order to do so, Baxter (and Yang [272]) introduced the Yang-
Baxter equation which, as we will discuss in this section was a capital contribution to the theory
of quantum integrability.

In this chapter we review some exact results on constrained vertex models in order to discuss
the role of a local constraint in the collective behaviour of the system. A detailed discussion on the
equilibr'&n} é%rgpﬂggi L%fl the completely unconstrained sixteen-vertex models is let for the next
chapter [V]
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IV.1 Exactly solvable lattice models

For sake of completeness, we include in this section we add some rapid comments on integra-
bility issues for ‘non-mathematical physicists’. A more precise exposition on this vast subject can
be found in the references given in the text.

IV.1.1 The Yang-Baxter equation

Consider a statistical model on a square lattice!. A degree of freedom, an Ising spin for

simplicity, is attached to each edge of the lattice. One associates to ch.lri{br/llg tor'f it!(le lattice a vector
space V}, ,, indexed by h (as horizontal) and v a%&/ggt%(&l) (see Fig. %Tmocus on a vertex
where two lines intersect as shown in Fig. i; _Yl I[ I'he Boltzmann weight of a configuration of four
edges meeting at a vertex is encoded by a linear operator acting on the tensor product V;, @ V,:

the R-matrix. For Ising problems on a square lattice the V},, ~ C? and the R-matrix is a 4 x 4
matrix which gives the weight of the 2* possible configurations:

(++|R|++) (++|R+-) (++|R—4+) (++|Rl—-)
R — | IR =R (= |RI= ) (=R ) |
a (—+|Rl++) (—+[Rl+-) (—+[R[—+) (—+|R—--)
(== IR[++) (——IR[+=) (——|Rl-+) (——IR—-)
O‘g+1
A
wii.f) = e3> i = (0] R0, )

Figure IV.1: Graphical representation of the weight of a vertex with the edge variables o and p.
The arrows denote the abstract direction induced by the action of R (from bottom left to top right).
The subscripts ¢ denote a line of the lattice and the superscripts j a column.

The R-matrix is the central object to consider when one is interested in the integrability of the
model. The model is said to be integrable provided its R-matrix satisfies:

1. The Yang-Baxter equation:

Ri2R13R23 = RozR12R13 (Iv.2)

2. and the identity equation:
R12R21 XX 1d‘

. . . . ig:YangBaxter
These two equations are usually represented graphically as shown in Fig. ﬁ ?2[

Iv.3)

IV.1.2 Classical and quantum integrability

In classical lz_r\l}%%lla&lcs a Hagglllg%%lggksystem is said to be integrable if it satisfies Liou-

ook, Ba g . .
ville’s theorem [10, [I1]]. Consider a dynamical system with /N degrees of freedom definig a

1. Note that the following concepts can be extended to more general planar graphs with connectivity 4

’eq:YangBaxteJ

’eq:IdentityEc




.g:YangBaxter

IV.1. EXACTLY SOLVABLE LATTICE MODELS

73

1><><_—>1
2 — > 2

—_——

Ri2R21 la
3 3
1><“—>2 1
2 L >1 2
~—— S~——

2
1
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Figure IV.2: Digrammatic representation of the integrability conditions. Top: Identity equation.

Bottom: Yang-Baxter equation.

2N-dimensional phase space I'. Then, a system is Liouville’s integrable if it has /N function-

ally independent 2 integrals of motion { F; };—1 n in mutual involution, i.e.

{H.F;} =0, {F,F}}=0, Vij=1.N .

(Iv.6) ’ eqg:Liouville

So that the evolution of the system takes place on a compact and connected sub-manifold M C I"
defined by some constant value of the integrals of motion. The solution of the equations of motion
are periodic trajectories on M such that ergodicity is lost. Hence, integrable and non-integrable

systems have very distinct dynamical properties.

One could be tempted to generalise this notion to quantum systems using the canonical quan-
tisation prescription and replace Poisson brackets by commutators times i/h. However, when
trying to extend Liouville’s theorem to hermitian operators acting on a Hilbert space, the notion
of functional independence is lost. This definition of quant im iigéﬁ%rf‘%gty does not provide a
correspondence between classical and quantum integrability [266]]. At this day, there is still no
unique and well accepted definition of quantum integrability. The correspondence between the
non-ergodicity arising from classical integrability and the relaxation properties of quantum many-
body syste Ds fﬁ far g%g 2boef8g clear and motivates a large number of current investigations (for a

ovn

review see [[216]). The relationship between the available definitions of quantum integrability and
the out-of-equilibrium behaviour observed in quantum systems is still a matter debate. A recent
review o atll}}ei 2(%iﬁerent definitions of quantum integrability encountered in the literature can be

found in [[60].

Back to lattice models in classical sﬁatistical mechanics, the notion of int grabilit comes
: YangBaxter : entityEquation
. Let us explain

quickly why. The operator R is assumed to depend on the difference of two spectral parameters A
and u. These are related to the Boltzmann weights given by the Hamiltonian of the model via an

from the Yang-Baxter equation 1ﬁ fZ) together with the identity relation eq.

2. A set of N real functions of M variables
F,-(xl, ...:5") 5 1= 1, M
is functionally independent if and only if

U[F,...Fu]=0= ¥ =0.

IV.4)

avs)

It is a generalisation of the notion of linear independence. Hence, analytic functions of the Hamiltonian H are trivial
integrals of motion but do not fulfil Liouville’s conditions. Note that this definition of independence cannot be extended

to hermitian operators acting on a Hilbert space.
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appropriate parametrisation. The entries of the R-matrix, for instance (+ — | R| + —), are replaced
by some function of A e The transfer matrix 7" can then be written as a product R-matrices along
a line (see eq. :I% § l 7 ) for an explicit example). The R-matrix can be seen as the contribution of a
vertex to the partition function. By the successive action of the operator R the partition function
of whole lattice can then be constructed.

. . . . .- . .. . YangBaxter
Ia the_[Z-matrix_of our lattice model verifies the integrability (sufficient)conditions eq. llﬁ §2)
JdentitvEquation

and (TV.3), then transfer matrices 7'(\) with different spectral parameters A\ form an infinite set
of commuting linear operators. All these operators can then be diagonalised simultaneously (for
instance by using the Bethe Ansatz). Moreover, the transfer matrix of a 2d model describes the
evolution of a 1d quantum system defined by the Hamiltonian:

d
H=—T(}) [0 - (IV.7)

The commutativity of the transfer matrices allows to construct an infinite set of conserved quanti-
ties (); defined by

di
Qi = N InT(A) [x=0 , (IV.8)
and verifying
[H,Qi] =0, [Qi,Q;]=0, Vi,jeN. (IV.9)

:Liouville
We obtain in this way a quantu an%oig of Liouville’s theorem eq. (Ii §'§_b a 2d statistical lattice

. syangB efitityEquation .
model verifying eq. @ﬁ(ﬂ% is said to be quantum integrable.

IV.2 Vertex models: general definition

In this Section we recall the definition and main equilibrium properties of bi-dimensional
Ising-like vertex models defined on a square lattice. We focus on an I x L square lattice }V with
periodic boundary conditions. We label the coordinates of the lattice sites by («, 3). This lattice
is bipartite, that is, it can be partitioned in two sub-lattices A and B of even « + 5 and odd o + 3
sites such that each edge connects a site in A to one in B. The degrees of freedom sit on the links,
in other words, on sites of the ‘medial’ lattice V' that are placed on the midpoints of the bonds of
the original lattice. The midpoints are hence labeled (a+1/2, 3) and (v, 3+ 1/2) 3. We consider
models in which the degrees of freedom are arrows aligned along the edges ,thpvse(y%aer&lglggcig% o
that can be naturally mapped onto Ising spins, say Sq.1/2,3 = *+1 (see Fig. . We choose a
convention such that the positive value corresponds to an arrow pointing in the right or up direction,
and conversely for negative spin: .S = 1 if the arrow on the corresponding edge points along

or iy, and S = —1 otherwise. Then, instead of defining the system’s Hamiltonian by an explicit
interaction term between the Ising variables we assign a Boltzmann weight wy = exp(—/feg) to Levert ices
each of the k = 1, ..., 2% four-arrow configurations that may occur at vertex («, 3) (see Fig. ;

The Hamiltonian of the general vertex model in the square lattice is then simply defined by the
sum of the vertex energies

16
H = Z €(a,f) = Z €L (IV.10) ’Hamiltonianl(
(e,B) k=1

where ny, is the number of vertices of type k.

3. The lattice made by all the Ising variables is the medial graph of the original L x L square lattice where each
site is occupied by a vertex.
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A charge can be attributed to each single vertex configuration. Its definition is simply the
number of in-coming minus the number of out-going arrows. We recall the definition of a charge

given by

1
q=§Z<ji € {0,+1,+2}. Iv.in ’eq:MagneticC}
1€V

where 0 = £1 if the arrow points into or out to the vertex v under consideration.

el
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—
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Figure IV.3: The square lattice of vertices V is represented in grey. Its medial lattice V made by
the centre of each edge occupied by an arrow is shown in red.
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g:lévertices ‘ Figure IV.4: The sixteen vertex configurations of the square lattice.

IV.3 The six-vertex model

IV.3.1 Definition

.In the six vertex model_arrows or .Ismg spins s.1t on the edges of B(ecrol(l)g}%gor}? g(&lirl)nsc%%rg
lattice and they are constrained to satisfy the two-in two-out ice rule [29; 214]. In consequence,

each node on the lattice has four spins attached to it with two possible directions, in the form
. . ;six-vertex : neticCharge K
shown in Fig. ccordingly to eq. , the six-vertex model vertices have zero charge.
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(Note that the charge is not .t\lllgrstuer}rilT(gfe éhe spins attached to a vertex, such a fotal spin will be
defined and used in sec. [V.4})

1 V2 V3 V4 (s Vg
A A A
>—l»> <%—< <J/L—< >—Yf> %—< <%>
v v \4
A\ _/ o _/ A\ J/
TV TV TV
a=wi1=ws b=w3z=wy C=Ws5=Wwe

Figure IV.5: The six possible vertex configurations in the six vertex model with their associated
weights.

g:six-vertex

Although in the initial modelling of ice all such vertices were equivalent, the model was gener-
alised to describe ferroelectric systems by giving different statistical weights to different vertices:
wy = exp(—LPe) with ¢ the energy of each of the k = 1,...,6 vertices. Spin reversal sym-
metry naturally imposes w; = wy = a for the first pair of ferromagnetic vertices, ws = wy = b
for the s ,on% P;%i—rv (e)£ gggomagnetic vertices, and ws = wg = c for the anti-ferromagnetic ones,
see Fig. ‘I %5[ Note that since the vertices vs5 and vg act as sources and sinks of vertical and hor-
izontal arrows, we must have the same number of them on each row and column if we impose
periodic boundary conditions (PBC) and one has ws = wg = ¢ without symmetry assumptions.
The conventional parameter names a, b, ¢ have been introduced here. In the theoretical literature
it is customary to parametrize the phase diagram and equilibrium properties in terms of a/c and
b/c. This is the choice we also make here. Particular cases of the six-vertex model include:

— the F model of anti-ferroelectrics: the energy of the antiferromagnetic g—vvsefgiggs is set to

zero and all other ones are taken to be equal and positive, i.e. ¢ > a =10 }[ .
— the KDP model of ferroelectrics : the energy of a pair of ferroma gfgge%'l% P—Vertices is
set to zero and all other ones are equal and positive, e.g. a > b = cl 2552 57

— the Ice model: the energy of all vertices are equal, i.e. a = b = ch

It is important to note, however, that in the context of experiments in artificial spin-ice type
samples vertex energies are fixed and the control parameter ;]sissc%lg%ing used to prepare different
configurations. Then, it is associated to a temperature. In ﬁ]ﬁO]Wused this Ilqtlegr(lﬁtli\é% ngar&lggrié Cprivate
sation and we compared the model predictions to experimental observations ZOSTT%FW
present these results in the next chapter.

IV.3.2 Transfer matrix formulation

ransferMatrix‘

The net arrow flux in the vertical (or horizontal) direction is conserved from row to row (re-
spectively column) as a consequence of the ice-rules. From the flux conservation, the six-vertex
model can be represented by non-crossing paths or strings going 'north-east® (NE). Edges with
arrows pointing.u 'Pobgpgg}}t are marked while edges with arrows down or left are rl]l{lénéllfralgij(_il as
shown in Fig. I: ié (this convention follows from the one we used in section or the spectra
parameters). One can interpret these paths as trajectories of particles where time evolution is along
the vertical direction. There can be several arrangements of horizontal bonds in between to rows
of vertical edges. As shown below, the row-to-row fransfer matrix T' is obtained after summing
over all these possible arrangements of horizontal arrows. Then T encodes this ‘vertical’ time
evolution. It is a linear operator acting on a row |¢;) (a 27 dimensional vector) which generates
the next one |¢;+1). With PBC, the initial and final state are identical, hence the partition function
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Z is a ‘discrete path integral’ along a closed loop:

Z =Y An|T|¢r-1)...(¢2|T|p1) = Tr T* IVv.12)
1) [#L)

which in the thermodynamic limit is given by the largest eigenvalue of 7" denoted Ag.

Because of the ice-rules, open paths are forbidden, hence the number of vertical ‘red’ edges is
conserved from row-to-row. In the particle picture, it means that the transfer matrix must conserve
the number of particles n. Thus T splits into L + 1 diagonal blocks: T = @L_ 7. Each
block 7™ is called a topological sector defined by n, the number of particles or strings in the
system. A sector is left invariant by 7'. They are said to be topologically protected since no smooth
deformation of the strings, hence no thermal fluctuation below the critical point, can change the
number n. This number is a topological property of a given configuration which cannot be changed
by updating a finite number of arrows (this point might become clearer after the discussion of the
phase diagram). Then, in order to find the largest eigenvalue of 1" one can apply the Bethe Ansatz
and solve the Bethe equations for each sector.

The ‘coordinate’-Bethe Ansatz consist on trying a particular form for the eigenvector with
largest eigenvalue of each block 7). The so-called Bethe many-body wave function (this ter-
minology comes from Bethe’s work on the XXX quantum spin chain) is an completely anti-
symmetric product of one-body wave functions. Back to the six-vertex model, the eigenvalue
problem writes:

ST (x,y)(y) = Mnd(x) (IV.13) [eq:Teigenval
y

where X = (21, ..., x,) gives the location of the coloured vertical bonds. The vector x specifies a
configuration of the system after summation over the intermediate horizontal arrows. The Bethe
Ansatz then tries the form:

(x) = ZAP17-~~7pn‘P(xl)p1---So(xn)pn (Iv.14)
{r}

where the sum runs over all the permutations P .eyPn), Ap, ... p, are constants to be deter-
mined and gp(x)Z are solut19n§ of eq. (I% ? I g) i ]gtﬁx% one Op%rtlcle sector n = 1. The calculations are 1i1libriuméy
long and carried on in detail in Baxter’s book [[24]. Nlost of the results presented in section

come from these calculations.

<
~

Figure IV.6: A particular configuration of the six-vertex model and its NE path representation
shown in red lines. The number of strings in a row of vertical edges (here n = 2) is conserved.

The reason why one can actually find the largest eigenvalue of 7, i.e. solve the model, is
because it is integrable. In order to show that, let us write the partition function of the six-vertex
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model as
L L
Z=> T[Tl (IV.15)
leC i=1j=1

where w'(i, j) is the Boltzmann weight of the vertex at site (i, j) for a configuration [ € C. For
convenience, we denote by ¢ the P%%r% ]}/ﬁr{iables defined on the horizontal edges of the lattice and
1 the vertical ones (see Fig. IE _Yl i ). The vertex weight is given by the R-matrix:

w(i, §) = (o, pl |Rladyy, ™) (IV.16)

where 04{ = =£1 denotes the spin linked to the yertex gz}e j) from below and ui‘ = =1 denotes the
spin linked from the left (as shown in Fig. ll i i )

The transfer matrix can be constructed by adding vertex contributions and can hence be written
as a product of R-matrices:

(@|Tlas) = > o > [Ied, tl|Rled ™) AV.17)

pi=%1  pb=x1J

igs TMatrix
The variable ;1} appears in both extremities, so this sum is a trace over it represented in Fig. |I _Yl 5[
The R-matrix of the six vertex model is given by

a(u) 0 0 0
R(u) = 8 ZC’EZ; ZEZ% 8 (IV.18)
0 0 0 a(u)

. 4 . . . +YangBaxt +IdentityEquation
where we have introduce the spectral parameter u *. This matrix verifies eq. and eq. ([V.3):
the six-vertex model is quantum integrable, its transfer matrix 7" can be identified with the evolu-

tion operator of the XXZ quantum spin chain. We will ‘tl)).':(lglzi to the equivalence between vertex
models and quantum spin chains later on in sectionv%i

1 2 L—-1 _L
Qip1 O Qi1 O
. > ceeo e T T = <Ozi+1’T’Oéi>
pl=+1 M g i i
a  of ap~t af

fig:TMatrix ‘ Figure IV.7: Graphical representation of the transfer matrix of the six-vertex model.

IV.3.3 Equilibrium phase diagram

>quilibriumé6V ‘

The free-energy density of the six vertex model with a = b = ¢ and periodic boundary
conditions was computed by Lieb in the late 60s with the transfer matrix technique and the Bethe

4. The dependence of R on the spectral parameters appears in the parametrisation of the weights. In the PM phase,
it is convenient to parametrize the weights by:

a=sin(y—u), b=sin(u),c=siny, A=cosy (0<y<7/2). (IV.19)
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Liepl967
Ansatz to solve the eigenvalue probleng Jl 6 e mjthodl\g%% then extended to calculate the free-

energy density of the the F model }[Eg]—i(?eﬁrig}l dq 91 163[, models with generic a, b, c valugs w ﬂélor 1995
periodic boundary conditions (PBC) }[ ]@Wg&e general case with antlsymmetrlcuL["’]Wi
domain wall boundary conditions (DWBC) [[145]. The effect of the boundary condi%iglrlg i% filI}%%eOd

very subtle in these systems as some thermodynamic properties depend upon them ﬁmzr confrary

to what happens in conventional statistical physics models. An order parameter that allows one to
characterise the different phases is the total direct and staggered magnetisation per spin

1
5 ({Imd]) + (mi)) (IV.20)

with the horizontal and vertical fluctuating components given by

(My) =

LPmf= 3" Satijps £ D Sarijes (Iv.21)
(o,B)€A (a,B)EB

Lmi= 3 Sagrip® D Saprie- (IV.22)
(o,B)€A (,B)EB

The angular brackets (. . .) denote here and in the following the statistical average.
The equilibrium phases are classified by the anisotropy parameter

a? + b — 2
D=7 (IV.23)
a

and they are the following.

a-Ferromagnetic (a-FM) phase: Ag > 1;1.e. a > b+ c. Vertices v; and vy are favoured. The
lowest energy state 1n 6thg full FM phase is doubly degenerate: either all arrows point up and right
(shown in Fig. __I__V__:‘_ or down and left [ie. My = 1, with M, the magnetisation density
defined in eq. V.30)[. In this phase the system is frozen as the only possible excitations involve
strings made by a number of degrees of f?[gaeggg% §£ Ot}(le order of L. All over this phase the exact
free energy per vertex is flat and given by [24:

frm = €1 . (IV.24)

Ata = b+c (Ag = 1) the system experiences a discontinuous phase transition between the frozen
ferromagnet and a disordered (D) or spin liquid (SL) phase that we discuss below.

b-Ferromagnetic (b-FM) phase: Ag > 1;1i.e. b > a + c. This phase is equivalent to the previous
one by replacing a- by b-vertices. The free-energy is fry = €3.

Spin liquid (SL) phase: —1 < Ag < 1;i.e. a < b+ ¢, b < a+ cand ¢ < a + b. In this phase the
averaged magnetization is zero, (M) = 0, and one could expect the system to be a conventional
paramagnet. However, the ice constraints are stringent enough to prevent the full decorrelation
of the spins all over the lattice, even at infinite temperature. The system is in a quasi long-range
ordered phase with an infinite correlation length. At ¢ = a + b there is a Kosterlitz-Thouless
phase transition between this critical phase and an anti-ferromagnetic phase with staggered order
that is discussed below. The exact solution found by Baxter yieldE3 g)l{% efg%eo—gﬁlergy density as a
function of the parameters through a number of integral equations [24]. In the following section
we evaluate it numerically and we compare it to the outcome of the Bethe approximation. Close
to the FM transition the singular part of the free-energy can be approximated by

b+c

1 1
}(ﬂi& ~ max(€1, €3) — ikBT ( — 1) = max(€1, €3) — §kBT 2o (IV.25) ’eq: free-enerc
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with ¢ the reduced distance to criticality, t = (b + ¢)/a — 1, and « an exponent that plays the role
of the one of the heat-capacity and takes the value o = 1 here. The first derivative of fg;, with
respect to the distance from the transition ¢ shows a step discontinuity at the SL-FM transition
correspo d'ngctgi% Qggﬁ%rgi%ous phase transition but with a well defined set of critical exponen o
(see Figﬁ ?H i ). Accordingly to the frozen-to-critical transition scenario discussed in sectionﬁ I l gzg
Some special points in parameter space belonging to the SL phase deserve a few comments.

Such as the ice point a = b = ¢ for which Ag = 1/2. At th'Lsise%elcgi% point the ground state is
macroscopically degenerate giving rise to the residual entropy &ml

S/N =3/2 1n4/3 . (IV.26) ’eq:entropy—s;

Another special set of points is defined by the free-fermion> condition a® 4 b? = ¢? (Ag = 0).
If this relation between the parameters is verified, the integral equations simplify and the model
can be solved using Pfaffians. It 13%57 S)een found that the correlations of the F model in the free
Baxter a
fermion line decay as r~ E

Antiferromagnetic (AF) phase: Ag < —1;1i.e. ¢ > a + b. Vertices vs and vg are favoured. The
ground state is doubly degenerate, corresponding to the configurations M_ = +1. The staggered
orC%er. is not frozen, thermal excuanons' involving only a finite number. of spins populate tths ap})(l%aesreI 9704, Baxterl973:
This is confirmed by the exact expression of the staggered magnetisation found by Baxter [19}[23].

The free energy has an essential singularity at the critical line (towards the SL phase)

N eiCt/\/E , av.27) ’ eq:free—enerc

with ct a constant and ¢ = (a + b)/c — 1 the distance to criticality, characteristic of an infinite
order phase transition.
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Figure IV.8: Equilibrium phases of the six-vertex model. The NE paths are represented by thick
black lines. Typical fluctuations are shown by red lines. (a) a-FM ordered configurations. The
only possible excitations of the system are extended strings spanning the whole lattice. (b) SL
configuration. Excitations in the form of local loops are possible. (c) Saturated c-AF order. Ele-
mentary loops involving the four spins around a square plaquette are the lowest energy excitations

fig:6VPhases ‘ populating the system in this phase.

The transition lines are straight lines 1g%iven bg Ag =_1 for the SL-FM and Ag = —1 for the
K ) : se-diagram-8vertex . .
SL-AF) and they are shown in Fig. with solid (red) Tines. The dashed line along the diagonal
fsec:8vXYZ
5. As explained in more detail in section @'ﬂ%tﬁme comes from the mapping to the XXZ quantum spin chain.

The fermionic representation of the XXZ model via the Jordan-Wigner transformation shows the equivalence with a
free-fermion problem in 1d.
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is the range of variation of the parameters in the F model. The horizontal dashed line is the one
of the KDP model. The intersection of this two lines corresponds to the ice-model. Although the
transitions are nat ¢ f scecgggc%rldergrltlcal exponents have been defined and are given in the first

ent o is taken from the expansion of the free-energy close to the

§=q/v, B=B/v, 6=(2-a)/v (IV.28)
follow from the flusgu%fi%% gdivergEnt in t%e( TSL phase) correlation length ¢ instead of ¢ as the

scaling va iabl.eE ,22%9t| gsreteeiection . As explained when we treat the eight-vertex model
in section II f%[ these exponents generalise the concept of universality. Interestingly enough, the

values of 4, 3 and gb are constant along the two transition lines and, moreover, they coincide w;thcrltlca LExO6Y

the ones of the 2d Ising model and the 2d XY model recalled in the last two columns of Table
They also satisfy the usual scaling relations. The exponents 3, v and v are extrapolated from the
eight-vertex model ones in the form explained in the next section.

y | SL-FM | SL-AF | 2d Ising | 2d XY |

Vv =4 774 | 7/4 7/4 7/4
Blv=_p 1/8 1/8 1/8 1/8
2-a)v=¢| 2 2 2 2
1 /4 | 1/4 1/4 1/1

0 15 15 15 15

«a 1 00 0 o0

Ié] 1/16 00 1/8 00

v 7/8 00 7/4 00

v 1/2 00 1 00

Table IV.1: Critical exponents of the SL-FM and SL-AF transition lines of the six-vertex model
compared to the ones of the 2d Ising model and the 2d XY model. The ‘hat’ exponents have been
defined by using £ as the parameter measuring the deviation from the critical point instead of ¢.

“riticalExp6V ‘

IV.3.4 Height representation

;ec:Ch4Height‘

In the study of crystal growth, solid-on-solid (SOS) models are theoretical simplifications
introduced for the investigation of the roughening transition and the equilibrium shapes of inter-
phases. In general, a SOS model is a constrained model for crystal growth where vacancies are
forbidden. In the casE3 g}c ae?%glx-gceytred cubic crystal (BC) , the SOS model can be mapped on to
the six vertex model [25]. Since the equilibrium phase diagram of the latter is known exactly, this
mapping allows for an exact description of the roughening transition.

The body-centred SOS model (BCSOS) is a constrained version of the BC Ising model with
a nearest-neighbours (NN) coupling Jy and next-to- -nearest nelghbours lSNNN) coupling J;, J,
and J, along the three cartesian axes (shown in Fig. [IV.9] (b)J We > 1Impose (¢ to all the spins in
the bottom to be up (occupied sites represented in black {fnarlf and all't e spms in the top
to be down (vacancies represented in white in Fig. on solid constraint consists
in fixing Jo < Jg 4. and J,, Jy, J, constant. Therefore a vacancy cannot be found below an
occupied site. This constraint ensures the existence of a single domain wall or surface separating
occupied sites from empty regions. One can specify in a unique way a configuration of the model
by giving the shape of this domain wall. The coordinates (z,y, h(z,y)) of the occupied sites on
the surface define a height configuration h describing a surface. The height difference between
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Figure IV.9: Body-Centered Solid-On-Solid model (BCSOS). (a) A particular configuration of
the BCSOS for a small system made by four unit cells. Black and white dots represent occupied
and empty sites respectively. (b) The interactions occuring in a unit cell. The NN interaction Jy is
represented in blue. The NNN ones in red. (c) The configuration in (a) observed along the z-axis.
The height difference from site to site cannot be larger than a half of the lattice spacing. (d) The
vertex configuration corresponding to the four occupied sites on the surface shown with a red ring.

y:vanBeil jeren

two nearest neighbour sites is constrained to be either 1 or —1 (in units of ly/2, where [ is the
lattice parameter). One can identify theI gfgﬁ\gauggggﬁle%g gour sites in the BCSOS with a vertex of
the six-vertex model as shown in Fig. [IV.9[(d)]. This exact mapping is completed by giving the
following relations:

61262:Jy—Jx, 63264:J$—Jy, 65:66:—Jw—Jy. (IV.29)

Then both models share the same partition function.

The ice-rules make possible to represent the six-vertex model in the square lattice by a height
function h. A height variable h; is assigned to each site of the dual lattice (i.e. each square
plaquette). One can construct a configuration of heights from a six-vertex model configuration in
the following way. Fix some reference height, for instance h = 0 at the plaquette located in the
northwest corner of the lattice. The height is increased by one if, when traveling from the left

to the right, or from the top to the bottom, we cross a spin pointing up L i1ri t%%ugggilcl)%ight is
decreased by one otherwise. This construction is illustrated in Fig. iE _Yl E (%; Accordingly to these
ruleii one can %%s&giate to each vertex a unique (up to a constant) set of four integers as shown in

Fig. ne can summarise these mapping by the equation:

hiv1 = h; + (’17@'71'_;_1 X gi,i—i—l) T (IV.30) ’eq:heightfun(

The vector 5’;»72-4_1 gives the direction of the arrow sitting on the edge between the two plaquettes ¢
and i + 1; ¥ ;41 gives the direction followed during the construction of the heights. Since we are
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dealing with a square lattice : (U 41 X 5’;7“1) -, = +1. Tt should be clear from this equation
that one must assign arbitrarily the height hg of some plaquette bef re cgrtl%tlggg%iggnh by recursion.
Once this gauge hg has been fixed we can deduce from eq. @%ﬁﬁ?ﬁlﬁﬁhe height h; at
any site by recursion:

i—1
h; = ho + Z (1_)’1'7141 X gi,i+1) Uy (Iv.31) ’eq:HeightFlu)
j=0, jec

where the sum is done all along an arbitrary path C from O to ¢. The height function is well defined
since the value h; is independent of the path chosen to compute it. Equivalently, the circulation of

the height difference along any clo ecli act%llclllegoted I' is zero. We define the connection A; ;1 =
(hit1 — hi) Ui i41. Then, eq. (Iﬁ ?35 i equivalent to

S Aign -l =0 = § Ad=0 (IV.32)
r

jer

where l_;,iﬂ is the displacement vector from site ¢ to site ¢ + 1. From this equation if becomes
clear that, when the gauge has been fixed, the uniqueness of the height function comes from the
fact that there are no defects in the system.

Siit1
’%_‘_.A i1 hi/|\hi+1 hiYhi—l
Vs it1
} —K&
hi +1 h; —1

Figure IV.10: Height representation of the six-vertex model. The vector ; ;11 is represented
by an horizontal red arrow. It links two nearest neighbours of the dual lattice. The spin variable
§i7i+1 equals i, if the black arrow points right or left and 1, if it points up or down. The four
possible height increments are shown.

0OA1 0v—1 OA1 Ov—-1l 0A1 0 v—1
>*ﬂ\:> <:\F4< <Ilk4< >»¥I> >*k4< <:£:>
1 2 —1v—=2 —1A0 1vDO0 1v0o —-1A0

Figure IV.11: The six-vertices allowed by the ice-rules and the corresponding height configura-
tions.

>ightFunction

fig:HeightoVv

ig: ight 6V
From Fig. wsv_leqﬂ&iﬁce that a flat a configuration of the BCSOS corresponds to an anti-
ferromagnetic state in the six-vertex model. The roughening transition corresponds to the AF-SL
transition of the F model. This transition is known to be of the KT type. From the Villain’s rep-
resentation of the XY model, we know that a duality transformatio? }rlela]t(es thebdis0£ete %zfiussian
. . . . ChaikinlLubenskyBo A
model, which is the simplest surface model, with the XY model [63]. From duality, the high
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temperature phase of the BCSOS model (rough) is mapped into the low temperature state of the
F model (ordered AF), and the low temperature phase of the SOS model (flat) is mapped into the
hight temperature phase of the F model, which is critical.

IV.3.5 Topological sectors and boundary conditions

i . TransferMatrix i .
In section Iﬁ fgi we introduced the concept of topological sector from the block diagonal
decomposition of the transfer matrix. Then, in the discussion of the phase diagram we insist in the

frozen-to-critical character of the FM transition due to the non-local nature of the excitations. In
modern condensed matter terminology, the SL phase would be said to be a topologically ordered
phase.

In the six-vertex model, strings fall into distinct homotopy classes, depending on whether or
not they can be deformed into each other by smooth transformations (without intermediate in-
tersections). The ice-rules divide the phase space into disconnected sectors characterised by the
number of winding loops. Only transformations involving an extensive number of constituents of
the system can make us visit all the configurations. If oggsotnelifn%l\l]%\% O19&&1 updates can take the
system from one state to another, ergodicity is broken }[%rmglfbe responsible of some

kind of glassy dynamics. Recently, some authors have St%l'ﬁeai Jtrh%slow %f&lﬁllr%ics dliengovg}% &(zl?g—e 0as2012

aborty aste

logical ergodicity breaking in hardly constrained models [[64]159]162].

Consider the height representation of the six-vertex model on an L x L square lattice with
PBC. At the boundaries the height function verifies: (i) h(z, L) = h(x,0) — n, + (L? — n,),
where n,. denotes the number of arrows pointing to the right one crosses when going from the bot-
tom of the lattice towards the top; (i) h(L, y) = h(0,y) + n, — (L? — n,,), where n,, denotes the
number of arrows pointing up one crosses when going from the left of the lattice towards the right.

The ValEes of Ny agd n, define a topological sector. The connection with the definition given in
s LrahsferMatrix

section is straightforward: is E@ﬂg;\é%lent to the number of marked lines (particles) in the
NE path representation (see Fig. %._By_ﬂ’lpping local loops of arrows one can deform these

paths and generate new configurations in the same sector. The difference between the height of
the plaquettes in the horizontal and vertical boundaries is left identical. The value of the magneti-
sation in the horizontal and vertical direction is given by: m% = n, — L? and mi =n, — L%
Hence, the magnetisation is left invariant under local transformations within a sector such that one
can also characterise a sector by the value of the magnetisation.

In order to have winding loops and topological sectors one needs to ‘close’ the lattice from the
boundaries, for instance using PBC. If we define the same model in a lattice with fixed boundary
conditions string excitations of the FM phase do not belong anymore to a different homotopy class
than the ones in the PM and AF phases and the system becomes ‘ergodic’. Thus, we expect that
different boundary conditions can notably E%fe::%t tnhgmq¥1§amical properties of the system. Dynami-
cal properties will be discussed in chapter ¢ dependence of the phaT[Hea%aocleOstructure of the
six-vertex model under different boundary conditions has been studied in [[I09].

The choice of the boundary conditions must satisfy the constraint. A particular choice of
fixed boundary conditions which has Eg(gtrrgcgergil g great deal of attention is the so-called Domain
Wall B%Lg%%%riyn f%zgllitégg% lq)u\é’o%(;% 41715 . € six-vertex moc.lf_:l with DWBC can be'e.xa'ctly
solved [144], 39], showing that the choice of the boundary conditions can affect the equilibrium
thermodynamic properties of the system as well. The DWBC consist on fixing all the arrows in
boundary lines of the latticg to poviq%‘& into the bulk and all the arrows in the boundary columns to
point out, as shown in Fig. @—Fﬁe phase diagram of the model is not altered by the boundary
conditions. However, a complete order cannot be established with DWBC.
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The six-vertex model with this particular choice of boundary conditions is closely related to
important problems in combinatorics:

(i) There is a bijection between the six-vertex model with DWBC and alternating sign matrices
(ASM). An ASM is a square lattice made of Os, 1s and —1s such that the sum of each row and
column is equal to 1 and the nonzero entries alternate sign in each row and column. The combi-
nato_rllal proble'm of coun.tlng the number of such matrlces of size n is qullVE.lle It to computing 6the
partition function of the ice model (Ag = 1/2) with DWBC on a n x n lattice [I31].

(i1) The six—v.ertex model With DWBQ in Et{lg}fggft:g%r%o% £1Oigrtq 2((%% = Q) is equivalent to the
dimer model in the Aztec diamond lattice ﬁ88, 139]. Reknown mathematicians (such as the 2006
Fields Medal, Andrei Okounkov) have been interested into this problem. They studied the the
height function associated to this problem and found the limit shape separating different thermo-
dynamic states. The emergence of an interface between a disordered and an ordered regions is
the so-called Arctic circle phenomenon. In the six-vertex model at Ag = 0 the limit shape is a
circle which delimits a FM region close to the boundaries and a SL region in the bulk. The SL
region inside the circle is larger than the ordered phase. The ratio between the SL and FM phase
is constant such, th; tm%lcextensive FM region is still present in the thermodynamic limit. This is
shown in Fig. ﬁ] § | 2[ Numerical simulati?spvsll%\ges g}l\é%% Elllggﬁ?gtsg%rztdlo%existence of limit shapes
away from the free-fermion point as well [252;16].

vV VvV Vv YV
A A A A

Figure IV.12: Left: Domain Wal Sl%}qgr&(;%rgnggggitions in a 4 x 4 square lattice. Right: Numerical
results for a 64 x 64 lattice from [252]. Greyscale plot of the horizontal local magnetisation (from
—1 in black to 41 in white) for a = b and Ag = 0. The grey disk is a SL region, clearly separated

from FM regions of opposite magnetisation.

IV.4 The eight-vertex model

::EightVertex‘

IV.4.1 Definition

The eight-vertex model is a generalisation of the six-vertex model introduced to remove its
very unconventional properties d Seut&thr ;%%Blpocgg%%%%7(grozen FM state, quasi long-range

e

order at infinite temperature, etc.) [248/91]. In this model the allowed local configurations are the
ones with an even number of ATOWS Jpointing in or out of each vertex, adding the two vertices with

ight d sh in Fi ot te_o ee]:: texFi ' .Slgztlvsergcsgtéolved by Baxter in the zero-field
weigh dshown i Fig 0 the s i AV y
case (i.e., with Zo symmetry) [Z1[122].

Using the same NE convention as for the six-vertex model, the eight vertex model can l%e

. . . . A ) K :eight-vertexPaths

represented by non-intersecting loops as well. A typical configuration is shown in Fig. e

number of coloured links (bonds) incident at a vertex is always even, such that the NE paths form
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U1 U2 U3 Vg Vs Vg v7 Uy
A A A A
)%> <%< <%( )%> )+< <%> <+> )%(
TV TV TV TV
a=wi=wsy b=w3=wy C=Ws=Wsg d=wr=wsg

Figure 1V.13: The eight vertex configurations with an even number of incoming and outgoing

eight-vertex arrows.

closed loops. Note however that the particle interpretation is no long valid in this case. The number
of bonds is not conserved from row to row and the arrows along the loops do not define orientated
paths. The solution of the eight-vertex model problem turns out to be much more inVolv}gg{ixtt}lea%?)OOk
the six-vertex such that we refer the interested reader to Baxter’s book for further details }[27[]_[?

the following we present some results of importance for the present work.

l A4

< | < <
v \7

—J < < —
vV vV Vv v

>—

\

Figure IV.14: Path representation of the eight vertex model. The partition function of the eight-
vertex model is equivalent to the weighted enumeration of closed polygons.

—vertexPaths ‘

IV.4.2 Exact solution

The phase diagram of the eight-vertex model is characterized by the anisotropy parameter

a? + b2 — 2 — 2
A s
8 2(ab + cd) (IV:33) | eq: Lambda

6
which becomes the six-vertex one when d = 0 (see eq.@%ﬁ This model sets into the following
five phases depending on the weight of the vertices:

Ferromagnetic phase 1 (a-FM): Ag > 1 (a > b+ ¢ + d). This ordered phase is no longer frozen
and M, < 1 is a continuous function of the parameters. Topological order is broken by the
introduction of v7 and vg, i.e. by the relaxation of the ice-rules.

Ferromagnetic phase 11 (b-FM): Ag > 1 (b > a + ¢ + d). Fluctuations also exist in this ordered
phase, equivalent to the previous one by replacing a-vertices by b-vertices; M, < 1.

Paramagnetic phase (PM): —1 > Ag > 1 [a,b,¢,d < (a+ b+ c+ d)/2]. As soon as d > 0 this
phase is truly disordered, with a finite correlation length. The magnetisation vanishes M4 = 0.
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b/c

Figure IV.15: The phase diagram of the six- (red solid lines) and eight- (dashed lines) vertex
models. In the case of the latter, the projection on the d = 0 plane is shown. Only for d = 0 the
‘ PM region becomes a SL phase.

1gram—-8vertex

Antiferromagnetic phase 1 (c-AF): Ag < —1 (¢ > a + b+ d). The configurations are dominated
by c-vertices with an alternating pattern of vertices of type 5 and 6 with defects; M_ < 1.

Antiferromagnetic phase 11 (d-AF): Ag < —1 (d > a + b+ ¢). The configurations are dominated
by d-vertices, with an alternating pattern of vertices 7 and 8 with defects. M_ is also different
from zero in this phase; this order parameter does not allow one to distinguish this phase from the
c-AFR.

The transition lines are given by Ag = 1 for the PM-FM transitions and Ag = —1 for the PM-
AF ones. The projection of the critical surfaces on the d = 0 plane yields straight lines translated

by d/c Wlth'respect to the oqes (?f the, six-vertex O]{l}gderlé in §9% rd%reexctlon of enlarging the PM phase,
as shown with dashed lines in Fig.

The effect of the d-vertices on the order of the different phase transitions is very important.
As soon as one quits the d = 0 plane, the KT line between the c-AF and the SL phases becomes
‘stronger’ and the intersection between this and the ¢ = 0 or b = 0 planes are of the KDP type
(following our classification described in section %On the contrary, the KDP transition lines
between the FMs and SL phases become ‘softer’ when entering the d > 0 space and they become
KT lines on the ¢ = 0 and b = 0 planes. Finally, the separation between the d-AF and disordered
pt.lases is s.econd ord&rhf:oErq%,i ﬁbdrfu IQ and i.t is of KT type on the a = 0 and b = 0 planes. As we
will show in chapter [V], this 1s consistent with our numerical results.

The critical exponents can be found from the analysis of the free-energy density close to the
transition planes. Close to the ¢ = a + b+ d surface the singular part of the free energy behaves as

fs~t[*I|t| for p=n/n,neN, (IV.34)
fo ~ [t]T/# otherwise (IV.35)
where
‘ (a—ac)(b—b)(c—ce)(d—d.) (IV36)
16abed
. .. .. . . . . Baxterl971
is the deviation from the critical point and p is a function of the vertex weights defined by ﬁ

tan(u/2) = \/cd/ab . (IV.37)
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The singular behaviour of all the other transitions occurring i Bg%{etrenroBdoeolkcan be deduced from this
one. This can be done by using the symmetries of the model [[247]:

Zgy(a,b,c,d) = Zgy(b,a,d,c) = Zgy(b,a,c,d) = Zgy(c,d,a,b) . (IV.38)

Therefore, the critical exponents depen expgicitl on the %ights of the vertices via u. They are
. . e 8Vexponents—t
given in the second column of Table
On the d — 0 plane of the phase diagram, where i goes to 0, the A -PMctgazlLI%sii(t:igPEixs inifite
order and the six-vertex exponents given in the second column of Table are recovered. The
six-vertex model exponents associated with the FM-SL are also found by taking the limit d — 0
when the parameter y — .

In the b — 0 and @ — 0 manifolds, where y goes to 7, the AF-PM tran iig{lgi&egisgggrtlitné_th
uous. This can be easily check from the critical exponents given in Table ﬁ ?%} For = U we
get "a = —o0" and o = 1 for u = m, accordingly with the six-vertex model exponents. The
critical exponents of the six- and eight vertex models are strongly dependent on the weight given
to each vertex. This apparently Violalt%§l ;l%& PP;g%rsality principle. In order to restore a ’kind of
universality’ Suzuki proposed in 1974 }[m]méﬁne new critical exponents using ¢ as the scaling
variable insﬁ%%csltoefrtiitholtg}Qat the same ap%roap% was used by Kosterlitz the same year for the
XY model [147] (as menfioned in section . Following this idea we define a new set of
exponents 4, & and B by

X~ &7, M~§‘B, C~Ex. (IV.39)

Then 3 = 3 /v = 1/8, independently of the details of the microscopic interactions. If one applies
the scaling relations the other exponents 7 and J are identical to the ones of the 2d Ising model
and XY model:

§=15 n=-. (IV.40)

Moreover, these new exponents verify the scaling relations. They are fixed by the value of the
magnetic exponent d and the dimension d of the model:

ﬁ:dgﬁ, 6:511, b=d, 77:2—dg+1. (IV.41)
’ ‘ eight-vertex ‘ 2d Ising ‘ 2d XY ‘
v/v =4 7/4 7/4 7/4
Blv =20 1/8 1/8 1/8
2—-—a)/lv=20¢ 2 2 2

n 1/4 1/4 1/4
) 15 15 15
a 2—7/u 0 00
B A6 | 18 | oo
g 7 /(8) 7/4 00
v 7/ (2u) 1 00

Table IV.2: Exact critical exponents of the six- and eight-vertex model with tan(u/2) = /cd/ab.
(The way in which the values for the six-vertex model are derived is explained in the text.) The
critical exponents of 2d Ising model are recalled in the third column for comparison.

Jexponents-th ‘
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IV.4.3 Ising representation in the dual lattice

E;l;lé% gggfhfti\é%r{ex model on a square lattice V is equivalent to an Ising model on its dual lattice
p* }[T?)Z].—TWTS a one-to-one correspondence between A d\éenrct)%c_:%gﬁgleg%t\i]on and a configuration
of its four adjacent Ising spins as depicted in Fig. Iﬂ] _Yl i gf An upward and rightward pointing arrow
(a "+" spin located on an edge of V) attached to a vertex corresponds to a pair of parallel Ising
spins located at the center of the adjacent plaquettes (sites of V*). This representation is invariant
by global spin reversal, meaning that there are 2* /2 = 8 different configurations as expected. In
this way an Ising variable o;; = +1 is attached to each site of V*. In order to complete the Ising
representation of the vertex model one must establish the deduce the interactions between spins
from the vertex weights. In the general eight-vertex model there are six interaction parameters:
w1, wa, w3, w4, ¢ and d. This is due to the fact that v5 6 7 g act as sources and sinks of arrows flux
and must then be in equal number if one imposes PBC. Then, without loss of generality one can
fix ws = wg = c and wy; = wg = d. The simplest Hamiltonian with interactions between the spins
around a vertex (nearest and next-nearest neighbours spins), satifying the symmetry of the model
and with the same number of parameters is

H=—Jo— Y Y (J{oioijs1 + J{oij0i11

(]
+ 12031101415 + 3000015401 + K030 j410i41,j0i41,541)- (IV.42)
This generalised Ising model includes two body and four body interactions without an external
field. Anisotropic interactions between nearest neighbour spins are given by J{ and J7, between
next-nearest nelghbour spins by J2 and J, apd the four. Spin i eraction I?gf%g WeTIrll% interactions
between four spins surrounding a vertex are illustrated in Fig. t 1s important to note here

that the eight vertex model constraint cv;;cv; 1 jf4ij i j+1 = 1 is verified.
+a+ —¥+ —A— +¥— +A+ —v+ At Fy—
>—k> < <i—< > >{—< <> <+>
Fat Fv— At Fv— v— +E+ —vt+ At
Figure IV.16: Equivalence between the eight-vertex configurations and the Ising spin arrangements

in the dual lattice.

The correspondence between the coupling between spins and vertex weights is now straightfor-
ward. Consider each vertex configuration and compute the contribution of the Ising Hamiltonian.
We obtain

wi =exp[—B(Jo+ JT + J} + Jo + Jy + K)]
we = exp[—B(Jo — J¥ — J{ + Ja+ J5 + K)]
w3 = exp[—B(Jo + Ji — J{ = J2 — J5 + K)]
wy =exp[—B(Jo —JT + J{ — Jo + Jy + K)]
ws = wg = c = exp|—B(Jo + Jo — J, — K)]

eXp[—,B(JQ —Jo+ Jé — K)]

The par. r{lggf:ira%% ési Ii}rrg%}evant for energetic considerations but must be added to the Hamiltonian
Iﬁ ?7_@ in order to have an invertible set of linear equations between the vertex energies and the

interaction parameters. One can invert the linear set of equations obtained by taking the log of

Iv43)

’ eqg:Hamiltoniz
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:weight_exchange8V
eq. and write

Jo=—1/8(€e1 + €2 + €3 + €4 + 2€5 + 2¢€7)

JE=1/4(—€1 + €2 — €3+ €4)

J{ =1/4(—€1 + €2+ €3 — €4)

Jo = 1/8(—€1 — €2 + €3 + €4 — 2¢€5 + 2¢€7)

Jy =1/8(—€1 — €2+ €3 + €4 + 2€e5 — 2¢7)

K =1/8(—€1 — €2 — €3 — €4 + 2¢5 + 2¢7). (Iv.44)

We can normalize the vertex ener ieis iucche }t{léarl;ta% e:8\]0 and forget about the contribution coming
from the constant term in eq. ii ??é[ fhe symmetric zero-field eight-vertex model a = w; = wo,
b = w3 = wy corresponds to an Ising model with

Ji=J/=0

= 1/4(—61 + €3 — €5 +67)
Jé =1/4(—€1 + €3+ €5 — €7)

K =1/4(—€1 — €3+ €5 + €7). (Iv.45)
and equivalently
a = exp[—B(Ja + J5 + K)]
b=exp[—p(—J2 — JQ + K)]
¢ =exp[—p(J2 — J3 — K)
d = exp[—B(—Jz + JQ K)| (IV.46)
The critical exponents are given by tan(u/2) = 2—% = e 2K Therefore, the four-body in-

teraction is responsible for the variation of critical exponents. The nearest-neighbour interactions
vanish in the absence of an external field. The six-vertex model limit d — 0 is not well defined
in this representation since it corresponds to a non-trivial way of taking infinite interaction param-
eters. The eight-vertex model is equivalent to two interpenetrating Ising models coupled by the
four spin interaction K. In the particular case K = 0 these two Ising models are independent
and the thermodynamics of the eight-vertex problem become identical to the ones of the usual 2d
Ising model. In particular, the free energy density of the eight vertex model is identical to the one
computed by Onsager ®:

f8 = [Ising (IV.47)
:exchange wight8Vzerofield, .
From eq. li ??SE the Tour spin inferaction vanishes in the so-called free fermion point
€1+ €3 =¢€5+€7. (IV.48)
From this condition we get J, = J5 and
A+ =2+d>, Ag=0. (IV.49)

The fre ferml%l 6°0nda1%10§ Was originally introduced to express the solvability of generalised Ising
modelsT[ tis well known 6t}ilat the 2d Ising model solved by Onsager is equivalent to a 1d
chain of free fermions ﬁm| Similarly, the eight vertex model at the free fermion point turns out

to be equivalent to a chain of free fermions, hence ‘easily’ solvable.

6. In the Ising case where K = 0 then ;o = /2 and one finds the Ising exponents. For instance, 3 = w/16pu = 1/8
when p = /2.

’ eqg:excahnge_uv

’ eqg:exchange_uv

’ eqg:weight_exc
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7\
7\
7\

7N
4\
\l/

7N
\l/
\l/

/N
\lL
\lL

JY JY J2 J4 K

Figure IV.17: The eight vertex model square lattice shown in black with each vertex denoted by a
dot and the corresponding sites of the dual lattice (in red) where the Ising spins are defined shown
by crosses.

-vertex-Ising

In view of the non-integrable sixteen-vertex problem, it is important to note here in what extent
the equivalence with this Ising model is particular of the eight-vertex model. Let’s define binary
variables on the links of the original lattice V. For all the vertices w(i, j) we define two binary
variables a;; and «; 1 ; for vertical bonds and two for horizontal bonds denoted by ; ; and f4; ;1.
For the eight vertex model they are defined in the Ising representation by

Qij = 0ij0ij+1
Hij = 00415 (IV.50)

This definition implies that, for all (i, j), the eight vertex model constraint is verified since

Qg i i1 = 1 (IV.51)
X . :HamiltonianIsing8V .
The Hamiltonian Ii @ii can now be rewritten in terms of these new variables. We get
H == (Jaij + J{pij + Jacuijpij + Joais jpi + Kaijoiy j) (IV.52)

ij

This Ising representation of the model in the dual lattice can not be extended to the general sixteen-
vertex problem. A different approach will be used in the next section.

As already mentioned, the exact solution of the eight-vertex model shows that the critical
exponents are continuous functions of the interaction parameters. This contradicts a priori the
universality hypothesis. The Ising model representation of the problem gives light into the source
of this pathological behaviour. It was introduced by Kadanoff and Wegner to understand the origin
of this apparent violation of universality. They argue that the four spin %ralg;arggtg?lli 9g]iYeS rise to a
marginal operator conjugate to K which gives K-dependent exponents }[TB’Z .
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IV.4.4 The Heisenberg XYZ spin chain

The transfer matrix of a classical two-dimensional statistical model can be thought of as an op-
erator acting on the Hilbert space of a one-dimensional quantum many-body system. The partition
function of the eight-vertex model in a square lattice VV = L X L can be written as

L L
Z=> T[Tl (IV.53)
leC i=0j=0

where w'(4, 7) is the Boltzmann weight of the vertex at site (4, 7) for a configuration I € C. The
vertex weight can be re-written by introducing the R-matrix:

lis j+1
w'(i, §) = (o, 1] IRl y, 1] ) (IV.54)
where o) = +1 denotes the spin linked to the vertex (i, j) from below an e% denotes the
spin hnked from the left. Here we use the same notations as in section II f?ﬁ For the elgﬁf-vertex

model the R-matrix is given by’

w1 0 0 wr
0 w3 We 0
0 w5 W4 0

ws 0 0 w2

R— (IV.55)

The partition function then reads

Z=3%"3 11 (. ddIRlelyy, ™) = > TTHe I T{aira}) =Tr T (V.56)

la) [w) (.5)€V la) @

The 2.2 x 2.2 row-to-row transfer matrix 7" is given by

ol T} = > o > Tllad wlRlady, ™) (IV.57)

pi=£1  pl=x1 7

For convenience we note

T(,i+1)= Y .. Y HmlyR ™Y = Try (Ry.Ry...Rz) (IV.58)

where the trace is taken over the 2 x 2 matrix where each entry is an operator on a row of L spins.
We defined the linear operator [?; acting on a row of horizontal edges such as

(u|Rilp'y = (ci, p| Rlaiy, 1) (IV.59)

which is the 2.2F x 2.2 matrix:

(s ul BRI+, 1)+, plRl—, 1)
R; = . 2o V.60
( (— B+ ) (= pl Bl ) ) (V60

Each entry in this array corresponds to a 27 x 2% matrix since each row |u) is a 2% —dimensional
vector. For the eight-vertex model one gets

R; =

1 ( (w1 +w)l+ (w1 —wa)67  2ws8; +wrdy) ) (IV.61)

2 2(‘*’65‘? + (.Ugﬁ;r) (WQ + w;),)I — (CUQ — OJ3)6Z»Z

7. In the Z2-symmetric case solved by Baxter: wi = w2 = a, w3 = w4 = b, ws = we = cand wy = wg = d.
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The Pauli operators for the i-th spin on the chain 6; = 13 ® ... ® 0; ® ...12 act on the Hilbert space
of a quantum spin-1/2 chain of length L, where the o; are the usual 2 x 2 Pauli matrices. Let us
focus on the symmetric model where

R; =

1( (a+0)1+(a—b)57  2(co;" +db7) ) (IV.62)

2 2(c6; + dé}) (a+b)I—(a—0)57

Now let us try to find a commuting Hamiltonian with only nearest neighbours interactions

L
H = Z hijiv1 (IV.63)
i=1

where h; ;41 involves only variables on sites ¢ and 7 + 1. We shall impose periodic boundary
conditions (which will be shown to be necessary since the partition function is computed from a
trace). We replace H by H ® 15, then the commutator [T, H|] can be written

[T,H] =Try Y [RiRo...RiRiy1..Rp, hijy1] (IV.64)

= Try Z{Rl--Rifl([Riy hiiv1)Riv1 + Ri[Riv1, hijiv1])Rivo. R} (IV.65)

Only two commutators should ]é)% t%aelg%aggq:wwi, hii1] and [Ri41, hii+1]. The convenient
choice was found by Sutherland }[ZZISI and corresponds to the XY Z Heisenberg Hamiltonian

L
H =Y (J°6767 + JV816Y,, + J°6767,1) (IV.66)
i=1
- A
="+ I <&j&i+1 +6; 6+ (668, +6, 6.4+ 5 &f&f+1> . (V.67
i=1

The next step is to find J*, JY and J, as functions of the vertex weights. This Hamiltonian
commutes with 7" if

2J7 a?+b*—c? —d? Jr = JY

= = in
Jr + J? 2(ab+cd) JT 4+ Jy

A = cd. Iv.68)

From this result we conclude that if we can find the spectrum of ' then we can also find the quan-
tum eigenstates and eigenvalues of Hxyz. The largest eigenvalue of 7', i.e. the thermal state,
corresponds to the ground state of the quantum problem. The six-vertex model corresponds to the
case d = 0. From the latter equation: I' = 0 hence J* = .JY. Note that non-global properties,
such as two-point functions, cannot be compute% Ergén Pﬁ? g'bgenvector with the largest eigenvalue.
Further refinements are needed for this purpose

IV.5 The loop algorithm

Single-spin flip updates break the six- and eight- vertex model constraints and cannot be used
to generate different configurations in these cases. Instead, as each spin configuration can be

viewed as a non-intersecting (six vertex) or intersecting (eight vertex) IOORB%%%ﬁe%gﬁagg%n’SSt?(];%%Ss_en 2004

tic non-local updates of the loops have been used to sample phase space [13] 252]. By imposing
the correct probabilities all along the construction of non-local moves cluster algorithms can be
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Figure IV.18: Short Loop algorithm. Starting from an ice-rule configuration (a) the algorithm
constructs the path shown in red by adding spins one by one until it forms a closed loop (c). All
the spins in the loop are flipped with probability P o< min[l, e?*F] where AE is the energy
difference between the configuration (d) and (a). Defects of opposite charge are shown by black

ig:ShortLoop and white circles.

d dfvlwuaqen2004 Evertz1993 he off b d di h b | di
emgne f;tas OOI}lt Yﬁl ISSlé%S S the eftect o oundary con itions have been explored 1in

this way 232,16 =8

Loop—algonthms, as usually presented in the context of Quantum Monte Carlo metho SO
ploit the world-line representa io)?Yof the partition function of a given quantum lattice model [25T
As explained in section II ?%% the 2d six- and eight-vertex moglelrsl%rn dfi%qlvalent to, 51196:7 glelsen—
berg XXZ and XYZ quantum spin-1/2 chains, respectively ([248 250]. Tt is then not surprising to
find the same kind of loop-algorithms in the vertex models literature. A configuration in terms of
bosonic world lines of the quantum spin chain in imaginary time can be one-to-one mapped into
a vertex configuration in the square lattice, such as the same loop algorithm samples equivalently
the configurations of both models.

In this section we describe the loop algorithm broadly used to simulate constrained systems.
The relationship between classical vertex models and quantum spin chains is also discussed from
this point of view.

IV.5.1 Monte Carlo updates for the six- and eight-vertex models

In order so sample configurations in a constrained manifold, as the 2in-2out configurations of
spin-ice, one has to think about updates which do not create defects. This is the purpose of the loop
algorithm. In the six-vertex model, the divergence free co g(i}%%% %1% %egsgerved by updating loops of
arrows whic }PO(¥Q£ (i)rcl)to the same direction along the loop [[15]]. The steps of this algorithm shown
in Fig. ﬁ é ig] are:

— Choose a seed spin Sy randomly among all the spins in the lattice. We denote by vy the

vertex where it points to.

— Choose randomly a spin among the two outgoing ones attached to vy.

— Continue this procedure keeping track of the cluster/path of spins we have chosen until the

path encounters a vertex which already belongs to it, creating a closed loop.

— Reverse all the spins along the loop with a Metropolis rule.

Kandel1991
The creation of loops can be done & /a Kandel and Domany km ie. 1mppse. detailgegaalEaxl}ggt 21993

during the construction of the loop where the spins a e ! sluccessw%% gilpped [00; 89]. The same
ideas have also been applied to the eight vertex model [Z53]]. One can interpret this process as the
creation of two defects of charge ¢ = +1 moving from site to site until they recombine. Loops
are the natural excitations in vertex models and can be though of as the creation and annihilation
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v 7
i

Figure IV.19: World-line representation of tl%% %{)Z(Z chain. World-lines for the quantum spins
are shown in red. The weights w in eq. which contribute to the partition function are only
for the dashed plaquettes shown in the picture. In the classical representation, each on these grey
plaquettes is a vertex verifying the ice-rule. Time evolution is represented by red arrows along the
world lines.

of two defects. This remark will be important when discussing dynamics.
The loop algorithm is used to sample the equilibrium configurations of hard constrained mod-
els in general. In these systems loops made by the relevant degtreesl 8@ greedaf)xm in tglﬁf system con-
stitute the simplest possible updates. In colouring models ([18 20] loops’ ate made by a sequence
of two colo Irs and tng are updated by switching its colours. The 3-colouring modelhog th% (l)lg)t(ag 002, Castelnovo20!
onal lattice T8| has been studied by Monte Carlo simulations using loop updates ([04 59]. In this
model, one can choose at random a site of colour A and a neighbour of colour B. Then construct a
closed loop ABABAB...BA for site to site. Then switch the colours AB...BA — BA.. f418 W %5 Candvik2006
a Metropoli rull% 2801612111ar updates have been used for the simulation of dimer models [4} 233],

and spin ice [174].

IV.5.2 World-line representation of quantum spin-1/2 chains

1 8VXYZ
In section ﬁmhowed the relationship between the six- and eight-vertex with the XXZ
and XYZ quantum spin chains by inspection of the transfer matrix. Here we adopt a different route
for the same scope. We start from the quantum Hamiltonian of the XXZ model and, by makil%‘g1 use .. oo,
of the Suzuki-Trotter decomposition, we show the equivalence with the six-vertex problem
The Hamiltonian of the XXZ spin half chain is

N N
HXXZ =N (J*SESE + JUSYSY  + J*S7S7,) =Y h(i,i+1) (IV.69)
i=1 i=1
and we introduce the anisotropy parameter describing its phase diagram Ax xz = J*/J* Su"lz“eii 1976
partition function of the model can be sliced into M factors using the Suzuki-Trotter formula }[ZSUI:

Zas = Telfexp(— o) exp(— D HOMY . 2 = za . avao)
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where we have split the Hamiltonian H = Hs + H; into anodd H; = }_,,_oh(2n + 1,2n) and
an even part Ho = Y, _; h(2n,2n + 1). By introducing the state of N spins |Si)x=1...as for each
one of the M factors one gets:

=3 (Sile AR S y) . (SoleTATHI(Sy ) (IV.71)
IS1)  [Sar)

where the index k is the ‘imaginary time’ coordinate in units of A7 = (/M. The partition
function is the sum of the weight of each possible trajectory (the so-called world lines) obtained
by application of the evolution operators e ~27H1 and e~27H2_ The representation of the partition
function as a sum over path contributions is the discrete version of the path integral formulation of
quantum mechanics. The fact that the world lines are closed is imposed by the PBC. The first step
of the evolution is given by

(Sole™ ™81y = T (s(4,2)s(i + 1,2)| exp[—ATh(i,i + 1)]|s(i, 1)s(i + 1,1))  (IV.72)
i, odd

where {|s(i, k))} are the eigenvectors of the spin operator S7 with eigenvalue s(i, k) = %1 and
¢ is an odd number. The quantum system has been mapped into a classical model defined by the
spin variables s(7, k) sitting on the site of a N x M lattice with coordinates (4, k). The lattice can
be divided into two sub-lattices A and B. The partition function can then be written as a sum over
configurations of this classical model as

S I wiik) (IV.73)

{s(i,k)} (i,k)€A

where w(i, k) denotes the weight of a plaquette made by the four sites of coordinates {(, k), (i +
1,k),(i+ 1,k +1),(i,k + 1)}. The product runs over the sites for which is 7 + k even (i.e. the
A sub-lattice). Only the shaded plaquettes shown in Fig. confribute fo the partition function

with the weight w(i, k). The latter is given by the elements of the 4 x 4 matrix:

w(i k) = (s(i, k4 1)s(i + 1,k + 1)|e 20D s (i k)s(i + 1, k)) (IV.74)
e T 0 0 0
M]Z AT | 7T Ar gz . AT | 12
wli, k) = 0 e;y C?Sh(AQTUxD e;ﬁ smh(A2T|Jx|) 0 (V.75)
0 e+ sinh(SF|J7|) e+ cosh(SF|J7|) A0
0 0 0 e~
If one identifies the matrix elements above as following
(++ |emATh |++> (— — |e=ATh(e \ -) =wi=wr=a
(+ wﬂm N+ ) = <+wmh M=) —w=w=b QYT
(+ = e BTN — ) = (= 4 |e BTN 4 o) =ws=wg=c

L HXXZ
the matrix eq. %f the XXZ chain becomes identical to the R-matrix of the six-vertex model
eq. . The only six matrix elements which do not vanish conserve the magnetization in
the z-direction. This conservation law is equivalent to the bond conservation in the NE gath
. . . vertexWelght sXX7
representation of the six-vertex model, hence to the ice-rule. From eq. 1ii § 75), a, b and ¢ depend
on the couplings J%, J# and on A7. In order to apply Suzuki-Trottrer theorem, one has to take the
limit A7 — O for all of this to make sense. One obtains the important result:
a?+b?> -2 J?

Ao T e R T Axxz (V.77

eq:PartXXz

eq:WXXZ

’eq:vertexWeig
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Figure IV.20: Equivalence between the XXZ and the six-vertex model. One-to-one correspon-
dence between the six possible vertex configurations on a dashed plaquette and world-lines in the
XXZ quantum chain.

1itumPlaquette

The partition function of the XXZ and the six-vertex model are equal in the thermodynamic
limit with PBC: ZXXZ = Z6V  The phase diagram is hence identical and characterised by
the same anisotropy parameter. 821;5?3%8 ugg%%%lia%sggltigg world lines and vertex
configurations is shown in Fig. [V.I9[and e quantum equivalent of the frozen FM
phase in the KDP model is a gapped phase. The gap energy correspond to the energy associated
with a string excitation.

In order to perform a Monte Carlo simulation of the XXZ chain one has to generate different
world-lines configurations with the appropriate statistical weight. This can be done by deforming
locally the world lines and updating the system accordingly to a Metropolis rule. An allowed
deformation of a world line which preserves the conservation of the ma rllleat%sggincl)ﬁlcalong z can be
generated by the loop algorithm described before. As shown in Flgii ?12 : E a different configuration
is generated by flipping all the arrows along a closed loop.

It is quite straightforward to generalise the mapping and show the equivalence between the
XY Z and eight-vertex model. The Hamiltonian in this case is

N N
HXYZ =N (J*SEST 4+ JYSYSY  + 78787 ) =Y h(i,i+1) (IV.78)
i=1 =1

which gives the following plaquette weights:

(4 + [eATh(itD)| 44y = (— — |emAThGiHD) | _ ) =y =wy =a
(+— ‘e—Arh(z’,1+1)| + )= (—+ ‘e—Arh(z’,Hl)‘ 4 =wy=wi=b |
(4 — [eAThGATD| Z 4y = (= 4 e AThGAD | L 1) = = g = ¢ (IV.79) ]eq:vertexWelg
(+ + |8—Arh(i7i+1)| — )= (== |6—A7h(i,i+1)| +4) mwr=ws=d

verifying

li =
Ar50 2(ab + cd) 2J% 7

The inclusion of 4in and 4out vertex configurations does not break the ‘closeness’ of the world
lines and the loop algorithm can be applied. The extra anisotr ?%/P{z = tJt ?je introduces the pos-
sibility to world lines to go backwards as shown in Fig. E %22% For the XYZ model there is no
need to construct oriented loops since any closed loop update preserves the parity of the number
of incoming and outgoing arrows at each vertex.

As=Axyy. (IV.80)

8. One can replace the operator S; by a bosonic creator operator n;. Since world lines do not cross the model turns
out to describe hard core bosons in 1d.
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(a) (b)

Figure IV.21: Loop update in the XXZ model. (a) Initial world line configuration. The yellow
dotted lines denote a loop of arrows in the vertex representation. (b) Configuration obtained from
(a) by switching all the arrows allong the yellow loop. The modification induced by this update is

1 g:QuantumMC | shown in blue.

IV.6 General remarks about hardly constrained systems

IV.6.1 Emergent gauge structure and Coulomb phase

:Ch4Height
The definition of the height representation of the six-vertex model given in section Iﬂ §3'§ fora

continuous formulation of the model. In the continuum the height confi giao%%l} g)ggomes a smooth
function. One can introduce a coarse-grained field M defined by Iﬁi f [

M(:B,y) = <—§h(az,y), %h(x,y)) . (Iv.81) |eq:CoarseGraj

The coarse- gralned field M (z,y) is the local average of the magnetisation around 7 = (z,y):
(F’) N > eeD- S. where D; denotes a subdomain of the lattice around the point 7. The

w w

XYZPlaquette Figure IV.22: World line representation of the 4-in and 4-out plaquettes allowed in the X YZ model.
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correlations of this are ruled by the divergence free constraint

—

V- M(ac,y) =0, VY(z,y)ecR? (Iv.82)

which is the continuum version of the ice-rules. In the absence of singularities, this co str_a'ng seGrain
allows the existence of a ’scalar vector potential’ h. This was already apparent from eq. li% §S| i,

which can be written symbolically as:
M(z,y) =V x h(z,y), Y (z,y)c R (IV.83)

where h(z,y) = h(z,y)u.. The ice-rules make rise quite naturally to a U(1) gauge structure. In
the rough phase the effective action is supposed to be Gaussian:

S[h] = % / M?dz dy = % / [Vh)%dz dy . (IV.84)

The probability distribution of a field configuration can be written as

Plh] = ; *ﬂKfMdedyH(s V.M) . (IV.85)

By analogy with electrodynamics, the set of %e@lglceo%%rations distributed accordingly with P is
sometimes referred to as the Coulomb phase [T14].
IV.6.2 Dipolar long range correlations

The computation of two-point correlation function in this theory only involves gaussian inte-
grals and can be carried out analytically. In d-dimensions one gets the asymptotic correlations:

o k BT d ( 1 rHr? ) ]
I v —d—
(MM (D)) = ; [5 )+ a0 — 4 )| - (IV.86)
If we relax the divergence-free condition we get
(M (7) M7 (0) ) = kf&”é( ") . (IV.87)

It is explicit from this simple model that the constraint is responsible for the emergence of critical
correlations. In d = 2 it gives:

(M F M () = ’“ZT <5d( )+ :2(1—20052 g0)> for p—u (IV.88)
(M¥(#)M(0)) = keT <5d(*) _ Zsinpcosy Sln@cos“’) for p#v. (IV.89)

Many interesting aspects of the collective behaviour arising in the six-vertex model are due to
the ice-rule constraint and can be also found in other constrained lattice models. A specFl% cle% 11
and unifying concept of constrained models is t e ex1st§>6188 of a height representation [T13].
4-state %lrf 1;8% rgodel in the triangular lattice [[194], the 3-colouring model on the hexagonal
lattice }[W]Tt}ﬁdimer model on the Qf’%‘g%ggg lattice (which is equivalent to the ground state
of the AF Ising in the triangular lattice) hﬁ]ﬁﬂﬁfor a hei ht regresenta}(ion The height function
formulation is closely related to the Coulfnllb gas, Eﬁet?gﬁi y Went way to compute the
critical exponents of constrained systems [[38}143].
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IV.7 The sixteen-vertex model

sec:l6Vertex‘

IV.7.1 Definition

The most general model obtained by the relaxation of the ice-rules is the sixteen-vertex model,
in which no restriction is imposed on the value of the binary variables attached on each edge
of the lattice, and 2 = 16 vertex configurations can occur. The three-in one-oyt, and it)l{ltr:ee%—gy\tlertex
one-in vertices that are added to the ones already discussed are shown in Fig. %ﬁ_ln—orderi
to preserve the Z5 symmetry, and with no external magnetic field applied that would break the
rotation symmetry, all these ‘defects’ with charge 1 and —1 are given the same statistical weight
that we call e. In the figure, vertices are ordered in pairs of spin-reversed couples (v1g is the spin

reversed of vg and so on and so forth) and the difference with the following couples is a rotation
by /2 (v11 is equal to vg apart from a 7 /2-rotation and so on and so forth).

U1 (%) V3 (W Vs Ve (Vird (]
A A A A
)i»> <<T—< <—l—< )—T—> )+< <—I—> <<~>> )—I—(
a=Ww1=w2 b=w3z=w4 C=Ws5=wsg d=wr=wsg
(%) V10 V11 V12 V13 V14 V15 V16
A A A A
)—If> <<~—< )i—( <%> <—I—< >+> )%—( <<k>
R \' v v v ,
€ = Woy,.. 16

Figure IV.23: The sixteen configurations of the sixteen-vertex model. The eight three-in one-out
(with charge +1) or three-out one-in (with charge —1) vertices are added. We give them equal
weight e.

theenfvertex‘

The new vertices naturally entail the existence of new phases. One can envisage the existence
of a critical SL phase fora = b = ¢ = d = 0 and e > 0 as this new eight-vertex model is
equivalent to the dimer model solved by Kasteleyn. It is quite easy to see that e-AF stripe order
is also possible. For instance, one can build an ordered configuration with alternating lines of
vg and vpg vertices, or another one with alternating columns of v1; and vio vertices. Phases of
this kind should appear if one favours one pair of spin-reversed related vertices by giving them
a higher weight. The phase transitions to this phase are expected to be continuous since, for
a =b=c=d=0andw;>g > 0 local updates are in form of loops of spins around a plaquette
are possible. The critical properties of such eight-vertex model are unknown.

IV.7.2 Ising representation in the medial lattice

In this section we show the equivalence between the symmetric sixteen-vertex model with Z5
%%%k%%%goaknd an Ising model with two-spin and four-spin interactions and without external field
165]. We consider the case.wher.e a=w = woy, b T W3 = W ¢ = W5 = W, d = w7 = wg and
e = w;>g. A more general dicussion can be found in hl?ﬁ .

There is an obvious bijection between a vertex configurations on V and a four Ising spins
configuration on S: we assign a spin up(down) on S if the corresponding arrow on ) points up
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-vertex—-Ising

Figure IV.24: The four spin variables sitting on the sites of the medial lattice around a vertex. The
red lines represent the interactions between them. This representation allows for a one-to-one map

‘ between a vertex configuration and an arrangement of four spins 0.4, 4.

(down) or right (left). The identification of the interactions between spins leading to the sixteen-
vertex Hamiltonian defined above is much less obvious. One can identify the energy of each vertex
to the energy with its four spins. The Hamiltonian for each square plaquette made of four spins
surrounding a vertex reads

H, = —Jo — Ji(oyo, + 0,04) — J| (0w, + 0104)
— Jo(oyoq + or0;) — Koyogo,0 (IV.90)

eq:H16Ising ‘ where the spbgggiéart% U, glj é A correspond to the four edges attached to a single vertex as illustrated
in Fig. e total laffice Hamiltonian H is then given by summing H, all over the square

lattice V. The vertex energies can then be rewritten

€1 = €3 = €4 = —J0—2J1—2J{—2J2—K
es=€1=¢€,= —Jo+2J1 +2J] —2Jo — K
€5 =€ =¢€= —Jog—2J1 +2J] +2Jo — K
er=€g=¢€q= —Jg+2Jy —2J] +2J5 — K

€g=..=€g=¢€= —Jg+ K
av.an
The constant Jy guarantees the set of linear equations can be inverted leading to
Jo = 1/16(—2¢4 — 2¢€, — 2€, — 2€4 — 8¢€¢)
J1 = 1/16(—2¢4 + 2¢p — 2€. + 2¢4)
Ji = 1/16(—2¢, + 265 + 2¢. — 2¢4)
Jo = 1/16(—26a — 2€p + 2€. + 26d)
K = 1/16(—2¢, — 26, — 2€. — 2e4 + 8¢¢). (Iv.92)

The eight-vertex model corresponds to the particular case K = .Jy. The six-vertex model corre-
sponds to an anisotropic Ising model with two body and four body interactions:

Ji=1/8(—€q+ € —€)

J =1/8(—¢€q + €+ €)

Jo =1/16(—€q — €, + €¢)

K =—1/8(eq + €+ €c). (IV.93)
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This Ising model becomes isotropic when €, — %{]s o J7).
The model defined by the Hamiltonian reduces to an Ising model with only two body
exchange interactions if K = 0, i.e.

dég =€q+ 6 +e.+eqg < et =abed. (IV.94)

When this condition is satisfied some equilibrium properties of the model can be computed. The
coming section is devoted to them.

IV.7.3 Some exact results

The sixteen-vertex model loses the integrability properties. However, some exact results are
available for a few special sets of parameters when the equivalent class1cal Is&n}g glodel q{nl% }%aRsL 1969
nearest and next-nearest neighbor two-body interactions, i.e. when e* = abed 270]—'—

In the c-AF sector this condition leads to the generalized F model definedbyc =1, = b < 1,

d = a" and e = a", with the constraint 4v = u + 2. The model has been solved for the special

cases:

(i)v=1and u =2 (i.e. e = a and d = a?), the associated spin model simplifies into an antifer-
romagnetic Ising model with only nearest neighbor interactions. This model is known to exhibit
a second-order phase transition at ¢/kgT, = 21In(v/2 + 1) with a logarithmic divergence of the
specific heat (av = 0).

(ii)v - ocoandu = 2 (i.e. e = 0 and d = a?) the system also exhibits a second-order phase
transition in the same universality class as (i). Note that the exactly solved F model is recovered
in the limit v — oo and u — oo (d = e = 0).
WuPRL197

In the same way, in the a-FM sector this leads to the generalised KDP model }[ZTITbyisttmg
a=1,b=c<1l,d=0b"e="0"andagaindv = u+ 2. Forv=1and u = 2 (i.e. ¢ = a and
d = a?) the system exhibits a second-order phase transition with the same properties of its c-AF
analog discussed above. Forv —+ ocoandu =2 (i.e.e =0and d = a?) the system also exhibits a
second-order phase transition in the same universality class as the previous case.
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The equilibrium phases of 2d
spin-ice

1:Equilibrium ‘

V.1 Parametrisation of the sixteen-vertex model

;ec:Derertex‘

In this chapter, we consider the equilibrium pro e(t'ieesv(e)i; two different particular cases of the
general sixteen-vertex model introduced in section %—Wﬁh_aﬂ'ﬂx these two different parametri-

sations before discussing their phase diagram. For clarity, let us recall the deﬁl_lgitiizqq 85 etlgg is(i;étseen
possible vertex configurations with their corresponding weight shown in Fig. |V. 1}'

U1 V2 (%] (% (%) (3 U7 (%3]

DL SR SR SN DR SO S
RN A VA VN !

TV TV TV TV
a=wi=wsy b=ws3=wy C=W5=Weg d=wr=wsg

Vg V10 V11 V12 V13 V14 V15 V16
>

Al Sl Ay il A s

(. J
-

€ = W9, . 16

g:l6vertices ‘ Figure V.1: The sixteen vertices of the model with their Boltzmann weights w;—1._1¢.

V.1.1 The symmetric sixteen-vertex model

We define the symmetric sixteen-vertex model by setting

wi=wy=a, wy=ws=0b wy=wg=c=1 (V.1)

wr=wg=d, wg=..=wig=¢€.



106 CHAPTER V. THE EQUILIBRIUM PHASES OF 2d SPIN-ICE

The model is defined by four independent parameters a, b, d, e, and, for the sake of simplicity, we
usually set d = e. In order to define a temperature from w; = e %% one has to fix three among the
four before-mentioned parameters. Depending on the weight given to the vertices the model ex-
hibits antiferromagnetic (AF) and ferromagnetic (FM) order. This parametrisation of the general
sixteen-vertex model is an extension of the symmetric eight-vertex model where we give the same
weight to all the defects breaking the parity constraint (i.e. with an odd number of incoming or
outgoing arrows). The theoretical motivation to study this model is to try to extend the knowledge
on integrable vertex models to non-integrable ones, and in particular, to understand the conse-
quences of the ‘integrability breaking’ in the collective behaviour of vertex models. Although all
the 3in-lout lin-3out defects are equivalent, the model is very general. .
. K . A :Numerics :VertexTree
The res ﬂgsv(lﬂg%%d for this Caq}c!&l ab?é:l presented in sectlonlsfé and sechonl%% have'lead to a

publication [[159] and a preprint [99].

V.1.2 The 2d spin-ice model

sec:ASIModel‘

A particular choice of the vertex weights should be done in order to compare the predictions
of the model with concrete experimental realisations. In 2d artificial spin-ice samples, one expects
the interactions between the nano-islands to be dipolar. In order to fix the energy of the v ﬂiggﬁi 20104
some approximation has to be done. We adopt here the the values used by Nisoli et al.
It uses of the ‘dumbbell’ picture where each dipole is considered as a pair of oppositely charged
monopoles sitting on the vertices. Then, by considering only the Coulomb interactions among the
monopoles around a vertex we find (after an appropriate normalisation of the energy units):

=€ =ea=c6=(2-1)/(vV2-1/2), a=b=-exp(—PFe)

€5 =€ =0, c=1 (V.2) ’eq:vertexEneJ
er = ez = 4V2/(2v2 — 1), d = exp(—PBer)
€g — ... = €16 — 1, € = exp(—BEQ)

This allows us to define the temperature of the system by, for instance, kg7 = —¢1/In(a). One

could choose different vertex Qg%%ifg'p M\(j)g%%n and collaborators, use a point-dipole approach to
set the energy of the vertices [[I95]. If one considers the dipole-dipole interaction between the
four islands meeting at a vertex (and neglects the interaction with further neighbours) one gets:
es = 0,e9 =1, €1 = 0.69 and e; =~ 2.1. One should check the relevance of these parameters
by comparing the theoretical results obtained with the vertex model with numerical simulations of
the dipolar model or experimental measurements.
. . . . . .vertexkEner .
The e uzlzl%lé)ﬂuer{ltggopertles O{L éb/llss%ci%eal with the parameters in eq. (FY‘Z) are presenteﬁ in
I%g and Tead .

section ead to a preprint

V.2 The cavity method

In chapter 4 we presented several exact results for 2d statistical models closely related to spin
ice. There are however a very few interacting models which can be solved exactly and 2d spin
ice in the presence of defects cannot be realistically modelled by an integrable theory. In 3d exact
solutions are even rarer and approximate methods should be developed to tackle interacting sys-
tems in general. Depending on the features one is interested in and the model under investigation,
different approaches are more suitable. Mean-field theory is the simplest approximation one can
do to get some insight into the collective behaviour of a system. It is often used as a preliminarily
study when trying to understand a complicated problem with many interacting degrees of free-
dom. After a short presentation of the standard mean field approximation an improvement over
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this method is presented: the cavity method. It is a mor Bsec%gléisgiggted mean-field method based
on the Bethe-Peierls approximation introduced in 1935 B*I]._;wﬂfnaﬂ% 8’ ga&ietgal}lgthod’ comes

ez7ar

ParisiVirasoroBook

from the extension of the method to the study of spin glasses [182, 183 and has become since
then a standard method in disordered systems. Other contexts in which the Bethe-Peierls (BP)
approximation has been used the name given to this approach differs, but all of them are based
upon the same basic assumptions.

The BP approximation and its generalisations have been used in a broad c%gsa 8§ gléf:fg(r)%r}{t’s&u—

alupal97s8

ations. The bond percolation model can be exactly solved in the Bethe lattice [244]166]. The com-
putation ng (glge Pgﬁolation threshold using the BP approximation is due to the early work by Flory
in 1941 }[98 . He 1dentified the gelation problem of polymer physics with the percolating transi-

tion. The Bethe lattice approach turns out to be accurate since polymers tend to avoid tl}%%g%stegfg 84

of loops. Since then this method has been used in several works on polymer physics

108]. Dif-

ferent problems where the BE approxumatiop, a shgwn to be very fiyitful inglyde. Andersans ) o,

localisation [I} 282 141, lmE%mrggdeé% %1& multi-spin 1nterac%%%sig%o j51], sandpiles [82],

quantum many-body syytems 36, computer sojence problomss L2220 0, T ippytanty o
us, frustrated magnets %67,7T9’2| and, 1n particular, spin ice 275, 129]. Further comments about

these works and the extensions made to study geometrically frustrated lattice models will be given
at the end of this section. Then, we adapt the Bethe-Peierls approximation (or cavity method) in
order to investigate the whole phase diagram of generic vertex models.

V.2.1 A prelude: Mean field approximation

There are many formulations of mean-field theory. The one presented here is a molecular
field approximatiorBlragld 1:Lt9133 4based on the same grounds as the original formulation of Bragg and
Williams in 1934 }[ZFI . This choice has been done in order to make a clear connection with the
cavity method and its improvements over this standard mean-field approach.

In any interacting statistical model each degree of freedom interacts with its neighbours up
to some range and, eventually, with an external field. For pedagogical reasons, we consider the
textbook example, the Ising model defined by IV interacting spins accordingly to the Hamiltonian

H({c})=—-J Z oi0j V.3)
(4,3)

where the sum runs over all the links of a lattice of coordination number ¢ (the number of links
per vertex). In a mean field model the interaction of a given spin with its surrounding its replaced
by an average over all the spins in the system which create an effective molecular field acting on
it. To illustrate the nature of the approximation we focus upon a single spin located on site ¢. The
local Hamiltonian for this spin is

Hi = — 0y (JZO’j) (V'4)
Jj=1

where we sum only over the ¢ nearest-neighbours of . The mean field approximation assumes
that one can replace the fluctuating variable in this sum by an homogeneous mean value which
will be determined self-consistently: 25:1 oj ~ c(o). The neighbouring spins are replaced by an
effective molecular field:

heff = CJ(O’) . (V.5)

The goal of a mean field calculation is to compute this effective field induced by the presence of the
sourrounding spins. This approximation decouples the spins and the approximated Hamiltonian

eq:heffMF
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reduces to the one of a single body problem, i.e.

Huyp = —hesr Y 0. (V.6)

Using this approximation, the free energy can be written explicitly as a function of the magnetisa-
tion m = (o) I:

N 1+ 1+ 1 1
ﬁFMF[m]:—J%m2+ len( Qm)+ 2mln< 2m> (V.8)

;he fMF
From eq. (I?Si,etﬁe mean field felt by a spin is completely determined by the magnetisation,
leading to the self-consistent equation

m = tanh (cK'm) (V.9)

where K = [J. The self-consistent equation can be solved graphically. The approximation
neglects the presence of spatial correlations between neighbours 2. After rescaling the coupling
constant by the number of spins, it can be easily shown that mean field theory is equivalent to an
’infinite dimension” approximation (since all the vertices of the lattice are coupled equally ). It is
then equivalent to do a mean field calculation and an exact calculation on a fully ¢ neg&eFdB gltrz&h
where the vertices are occupied by the interacting degrees of freedom (see Fig. %ﬁ'ﬂwrﬁs
no notion of distance in the theory and the exponents associated with the spatial structure of the
system, i.e. v and 7, are not well defined (see Chapter 3). One would then expect that the mean
field approximation becomes accurate in the limit of ¢ very large.

Using this approximation one can compute the thermodynamic quantities of the system and
the associated critical exponents. We briefly present here the main results in zero field h = 0
which will be compared with the more elaborate mﬁ%%%(} we develop in the coming section. The
stable solutions of the self-consistent equation (I%?h 1S

m(T) = 0, for 5Jc <1 (V.13)
| Emo(T), for BJe>1 .

1. The expansion of Fisr for small m gives the Landau free energy and shows the connection between Landau’s
theory and the standard mean field approach on a lattice model. For small m one can write

Faielm] = ct + %a(J)(T — T)m? + bm? + O(m®) v7)

where a and b are positive real number. In Landau’s theory its is constructed a priori by symmetry requirements.
2. This can be shown explicitly by rewriting

oio; =m® +m(o; —m) +m(o; —m) + (0; — m)(o; —m) (V.10)

. . . . :MFHamiltonian )
which gives the mean-field Hamiltonian (V.6) up to a constant if we neglect the last term (o; — m)(o; — m), i.e. the

spatial correlations.

3. The dimensionality of a lattice can be defined as the following. Consider a site ¢ and count the number of sites
attached to it at a given ’distance’ r. By distance between two sites ¢ and j we mean here the minimal number of edges
that one must visit in order to get from ¢ to j. For a d-dimensional lattice and r large, the number of sites attached to ¢
scales as . More formally, the number of sites at distance  from a given site is given by

Cr=3 gn (V.11)
n=0
where g,, is the number of n-th nearest neighbours of a site. The dimension of the lattice is then given by
ln Cr . d

d= lim

r—oo INT

(V.12)

s e Croyoo ~ 1.

’ eqg:MFHamiltor
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(a) (b) (c)

Figure V.2: (a) Original square lattice. (b) Fully connected lattice, i.e. mean field approximation
of (a). (c) Cayley tree of connectivity ¢ = 4 and L = 2 shells, i.e. Bethe-Peierls approximation

‘ of (a).

Therefore, SJc = 1 gives the critical temperature 7T, of the model. The solutions mg(t) # 0
give the spontaneous magnetisation of the system characterising the ordered phase. The thermo-
dynamic quantities show a i:fbf/%rent qualitative behaviour if T' > T, or T' < T.. The main results
are summarised in Table Il—? ] where we have introduced the deviation from the critical temperature
t =1 —T./T. The free energy and the magnetic susceptibility are continuous at the transition
point, the heat capacity has a jump discontinuity.

T>T1T, T<1T, T~T.,
nm |0 (1) VB~ il 5 =172
BFT) | —m2 | —iln (ﬁ)—l—%g(l—ﬁjc) “In2+ 32 ~ |27, 0 =0
X(T) | (eI T ~ Iy =1

Table V.1: Thermodynamic quantities and critical behaviour of the Ising mean field theory. The

deviation from the critical point ¢ = 1 — T;./T has been introduced.

BethePeierls

This set of critical exponents defines the mean field Ising universality class. All approxima-
tion methods dealing with infinite dimensional models neglecting spatial correlations fall into this
class. Indeed, there are several ways to implement such an approximation and most of them are so
important in their respective fields of application that they even have their own name: saddle-point
approximation, Bogoliubov approximation, Bragg-Williams approximation, Flory approximation,
etc. All of them can predict correct qualitative behaviour except near the critical point.

V.2.2 The Bethe-Peirls approximation

n élnslglﬂglggg that in the absence of a given site, the
remaining neighbouring sites are uncorrelated [83]. Like the mean-field model, it approximates
the model by defining the interactin \éaxrti%l%lggoi}{l an infinite dimensional lattice better suited for
exact calculations, the Bethe lattice [24]. The main improvement over the mean field approxi-
mation is that, in the Bethe-Peierls approach (BP), correlations between nearest-neighbours are
taken into account and the connectivity of the original model is preserved. It takes into account
the interactions of the neighbours of a given site with the other spins of the lattice by a 'mean

The Bethe-Peierls approximation consists i;;
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molecular field’. Loops of links connecting spins are absent, and hence long-range correlations
are not taken into account. The BP approximation will hence be accurate for any interacting graph
where loops are irrelevant. An important example is given by regular random graphs for which
loops do not affect the thermodynamic behaviour of the problem. Random graphs include loops
of typical length ~ In IV and hence are locally equivalent to a Bethe lattice at the thermodynamic
limit, for which the BP method is exact.

The Bethe lattice is a connected graph with no loops, where each site is connected to ¢ nearest
neighbours. It can be constructed recursively in the following way: start from a central point, or
seed, i¢p and attach c links connecting ¢g with its ¢ neighbours. The set of these ¢ points is called
the first shell n = 1 denoted Jig. From now on we should use 0i to denote the set of vertices
adjacent to the vertex 7. The next shell n = 2 is constructed by attaching (¢ — 1) vertices to each
vertex of the previous shell in order to preserve the connectivity c of the graph. The shell n+1 > 2
is constructed by adding (¢ — 1) vertices to each vertex i he]%/lp}éergﬁ% shells 0, 1, 2 of the graph
constructed in such a way with ¢ = 4 are shown in Fig. E@"Eﬂ.—ﬂﬁre are N,, = c(c — 1)"!
sites in shell n and therefore the total number in the graph is

L -1l -1
J\f—z_:lz\fn—c((cc_)2 ) (V.14)

The L-th shell corresponds to the boundary of the graph. In this form, the finite graph we have
constructed is a Cayley tree. The Bethe lattice is a Cayley tree which ignores the boundary sites
and considers only properties of sites ‘deep’ in the bulk in the thermodynamic limit. Typically,
one focuses on the central site. Then, by assuming translational invariance, the results obtained
for the central site can be extended to the full Bethe lattice.

In order to illustrate the Bethe-Peierls approach let us consider the Ising model on a Bethe
lattice of coordination number c in the absence of any external field. The probability of a given
configuration of spins, denoted {o} = (0y, ..., on_1), is given by

P({o}) = %exp (K > aiaj) , Z=> exp (K > aiaj) (V.15)

(i, {o} (i,3)

where the sum is over all the edges of the Bethe lattice and KX = §J. It is useful to define the
marginal probability of a spin o by

ploo) = Y P({o}), (V.16)
{o}\o0o

where {0 }\ o denotes the configurations for which the spin o has been removed. The sum above

runs over all the spins but 0. We will also uie the %tandard rlotation 0i\j for the sites in the
Jerfmargina

neighbourhood of ¢ different from j. Equation can be written in terms of the ¢ neighbours
of the central spin {o; };ca0 as

1
p(oo) = P Z pe(oo|oty .oy 0c) H exp(Kopoj) V.17)
0 {oi}icao JEOO

where p.(og|o1, ...,0.) is the joint probability of {o;};ca0 in the absence of oy and zy a nor-
malisation factor. The Bethe-Peierls approximation assumes the statistical independence of each
neighbour of oy in its absence, i.e

BP

1 C
p(ao)/z\z— Z pe(oolo)...pe(ooloe) H exp(Kogoj) . (V.18)
0 {o;}5e00 jedo

’ eqg:partitiont

’eq:Defmargine

’eq:marginal
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04

Figure V.3: Cayley tree with ¢ = 4 and L = 2. When the central site 0 is removed (in white), the
graph splits into ¢ disconnected rooted sub-trees.

Lg:RootedTree‘

If we rem?e the cen&rlal sgin o in the O-th shell the lattice splits into ¢ disconnected rooted trees
:RootedTre

(see Fig. . Therefore, it is equivalent to do a Bethe-Peierls approximation of a model on a
finite dimensional lattice and solve it on a Bethe lattice. In a similar way that it is equivalent to
apply a mean field approximation to a finite dimensional problem and to solve it exactly on a fully
connected graph.

The fundamental quantity to compute self-consistently in this approach is the "cavity" prob-
ability p.(op|oj). We assume translational invariance in the bulk of the lattice: then we define
the cavity probabilities j1(0j) = pc(o0|o;) = pe(oiloj), i.e. the marginal probability of ¢ in the
modified lattice where one of its neighbours ¢ € d;j has been removed. Note that there is no more
a central site when imposing tran%lagiogral %r&@iance and the same reasoning applies to any site in

the bulk of the lattice. Equation can be rewritten as
1 C
p(o;) = z—s H Z p(o;) exp(Ko;o;) (V.19) ’eq:marginalBE
JEODI {O'j}

with the normalisation factor:

Ze =Y (H > o) eXp(KUin)) (V.20)

oi \j€di{o;}

which can be though of as the partial partition function of a site.

In order to establish the self-consistent equation let us consider the cavity probability 1i(o;)
and take advantage of the natural recursive structure of the tree. When a neighbouring spin o; has
been removed, j € 0i has ¢ — 1 neighbours: {0 }sc (aj\i}- The self-consistent equation for the
cavity probabilities p then is

1 c—1
p(oj) = — H Z p(or) exp(Kojoy) V.21) ’eq: selfcons

¢ ke{oj\i} {on}

where z. is the normalisation factor:

c—1
o= ( I > u(ak)exp(KUjok)) : (V.22)

95 \k€{0j\i} {ox}
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In the thermodynamic limit all the sites are assumed to be equivalent and one can then write the
self-consistent equation in the following compact form

c—1 c—1
[Z u(o') exp(Koo )] , Z (Zu exp(Koo )) . (V.23)

{o'}

In order to obtain thermodynamic quantities from this equation it is useful to parametrize u by
a ‘cavity field’ h. and the marginal probability p by an effective field hyy:

exp(Bh.o) exp(Bhesro)
— = el V.24
#) 2 cosh(Bh.) ’ (o) 2 cosh(Bheyy) (V.24
leg:BPsel flegsmarginalBP
Then, using eqs. 'M' and (V.19) one can write a self-consistent equations for the fields *
c—1 Cosh(ﬂhc—i-K)} c—1
he = 1 = tanh[tanh(K') tanh(Bh.)] , V.25
o n[cosh(ﬂhc—K) arctanh[tanh(K) tanh(3h,) (V.25)
c cosh(Bhers + K) c
herr = —1 = —arctanh[tanh(K) tanh(Sh, . V.26 theff
5= o5 [COSh(ﬁheff_K) garctanh{tanh(K) tanh(Bhes ) (V-26)

. . . . :heff
These equations can be solved graphically. The slope of the right-hand-side of eq. @T
hefs = 0is s = (¢ — 1) tanh(K). For s < 1, the only solution is hcs¢ = 0. If s > 1 there are
three solutions: herr = 0, £ho(T") # 0. The critical point is then determined by

(c—1)tanh(B.J) =1. (V.27)

After solving the self-consistent equation the thermodynamic quantities can be computed. The

magnetisation is given by
m = Zap(a) = tanh(Bhess) , (V.28)
e

the partition function by

N
7 = (le/2> : ZZM o) exp(Koo') = =2 | (V.29)

Zc

and the Bethe free-energy by

. fo=—kgTlnzs, fi=—kpTlnz. (V.30)

F/N:fs_2

The Bethe free-energy is written as the sum over %ite and link contributions. Note that eq. W
is identical to the mean field result eq. (@TfoTh? rf=cJm.

In the square lattice, the BP approximation gives a critical temperaturE ks% é/ { i 2.885
which is much closer to the exact value kp7,./J = arcsinh(1)/2 ~ 2.269 [209] than the mean
field prediction kpT./J = 4. Note that, for the Ising chain (¢ = 2) the BP calculation is exact
(since a one dimensional lattice is a Cayley tree) whereas the mean field approximation fails to
describe its qualitative behaviour.

The BP approximation is of the mean field kind since correlations beyond nearest neighbours
are neglected. It is an infinite dimensional approach, and hence it belongs to the mean field uni-
versalit c}%\ast: the critical exponents have the same values as those of the mean field model (see
Table %Tﬂowever, the description of the qualitative behaviour away from the critical point is

4. Using the relation: arctanh(z) = 3 In [Hx]

1—xz]"
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¢
(o) pjsi(og)el i
Hi\oi),
.---E--)o,-----. = 11X —0O+—0O
1 J jEOdi 0y ! /
O
k k
. Kyjoro;
jsi(0;) I Hioi(k)e
O— = Orsaner
) 7 ke{dj\i} or i i

. . . . . +RecMan :RecCav
Figure V.4: Schematic representations of the BP recursion relations eq. (ﬁ an .

y:RecursionBP

improved compared to the mean field approach: for instance, the critical temperature is closer to
the exact one, the heat capacity does not vanish for 7' > T.

In the simple example of the Ising model on a Bethe lattice all the sites were equivalent (homo-
geneous model). The Bethe-Peierls approximation presented above can be extended to the study
of non-homogeneous systems on a general graph G where all the sites are not equivalent and the
interactions between sites {.J;; } can depend on }hrenglr%li.na 1pp

Then, the marginal probability p(c) eq. (V.I9) depends on the site which has been removed.
We denote the marginal probability of the modified system where the site ¢ has been removed

by pi(oi). The BP approximation consist in assuming that G is locally a tree. Then, ysin DNew ..o
:Ileiig) and

notations gvl}%iggnlgake appear explicitly the inhomogeneity between different sites, eq.
eq. ecome

1 C
o) = L T3 ot exp(ac ) v
% jedi {o;)
1 c—1

IT > tsilow) exp(Kijoros) (V32)

ST ke{0\i} {on}

respectively, Wt%er:eRé(é&rii §n %1@ A diagrammatic representation of these recursion relations is

tj—i(0j) =

shown in Fig.
From what we presented in the previous section it is straightforward to find the self-consistent
equation
1
hjsi(oj) = = Z arctanh[tanh(K};) tanh(Shy_ ;)] (V.33)
B kedj\i

for the cavity fields defined by

exp(Bhj-io;)

2cosh(Bh;—;) (V.34

ti—i(og) =

In this form, the cavity method can be applied to very general models by choosing the appropriate
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Figure V.5: Representation of the messages arriving at the site shown in white of a generic net-
work. The BP approximation on a generic graph consist in neglecting the correlations due to the
link between the nodes marked in blue.

>fPropagation

lattice structure and interacting Hamiltonian On a ‘}generic graph with loops the existence of
solutions of the recursion equatlons § 5 it I%t%g; 1s far from being obvious. TF§ aVltX Vaglables

Propagation
tj—i(o;) can be though of as “messages’ between the nodes of a network (Fig T'he problem
of finding a fixed point of the recursion relations is equivalent to an inference problem: find the
optimal solution considering all the statistical dependencies b ptgfgflg]geg nodes of the network.
This technique was introduced in artificial intelligence by Pearl [215] where it is known under the
name of ’Belief Propagation’. Modern techniques of statistical mechanics, and disordered systems
in particular, have been largely applied to optimisation problems in the last decades. Indeed,
several important satisfiability problems can be reformulated in terms of spin models. The quest
of a solution of a logical problem subject to some constraints turns out to be equivalent to finding
the grouqd state % & ngIll %%sosn%l}llt%%lggr dﬁgg @ag%vrula\év op the subject I refer the interested
reader to \[274 191 181

The BP approach presented above considers exactly the pair interactions in an elementary
‘cluster’ made by a site and its ¢ links. The Bethe lattice is then constructed b orgg%sg%)n from
this cluster. There have been many attempts to improve this approximation (see [[83] Tor a review
on the subject). An important one is due to Kikuchi and is usually referred to as cluster variation
method. In this approximation a finite number of different kinds of clusters of are systematically
constructed and taken into account in the computation of thermodynamic quantities. It contains
the mean-filed and BP approximations as special cases.

In order to describe four-spin interactions (as occurs in vertex model ,orzlgaschcol}lsld replace
edges linking two sites by a plaquette made by four sites as shown in Fig. ‘%ﬁ Connecting such
structures results on a Cactus tree (sometimes called Husimi tree)>. A Varl%ggal reformulation

of thE BP gggrommatlon on cactus trees has also been introduced ﬁm ['he lattice shown in

Fig. ¢)] can be constructed easily by replacing each site of Bethe lattice with coordination
number ¢ = 4 by a square plaquette made of four spins (each one sitting on the vertices of
the squares). It has been shown that approximate Ising models with multi-spin interactions by a
cact so%rgghlggeldicts the correct qualitative behaviour where a direct mean field approximations
fails [[193]]. These lattices present a recursive structure and recursion relations can be established in
the same way as in a Bethe lattice. The only difference between a calculation on a Bethe lattice and
on a cactus is the number of terms in the recursion relations: it grows exponentially with the size

5. In graph theory, a cactus is a connected graph in which any two loops have, at most, one site in common. Every
edge in such a graph belongs to at most one loop. In the following we will discuss ‘regular’ cacti for which all the loops
are identical
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Figure V.6: (a) The elementary unit of the Bethe lattice. (b) Minimal elementary unit taking
needed to into account four-spin interactions. (c) Cactus tree with ¢ = 4 and L = 3. A Cayley

tree with ¢ = 4 and L = 3 is shown in dotted lines.

of an elementary plaquette. Hence, a balance between accuracy and computational complexity
should be found.

In order to apply the BP approximation to a geometrically frustrated system, the introduction
of cactus trees is needed. As pointed out in chapter 2, the central object one must gqu?Poids the
elementary local frustrated loop with a negative loop product as defined by eq. W&:S of
a Bet.he l.atti.ce Ec%na Eg Egglgaﬁ:d by the relevant frus'trated unit. 'Thi§/I gg}g(r)%)iiég%tion has beer} applied
to spin liquids [[67], the AF Ising mode on %l}edgri%%%ulggégglr%ezt & | and the nearest-neighbours
spin-ice model on the pyrochlore lattice [275,129]. Although the critical properties of the physical
system are lost, by defining the appropriate cactus trgegé;[fl)cig }nglggheod predicts a qualitatively correct

phase diagram for these systems. In section l%i we apply the BP approximation to the six-,

eight- and sixteen—verteY Cr)rslgtil%lgz A Pe?a%%%r%it%ggrtex models on a Bethe lattice of vertices, we
reproduce the results of ;[(275,729 . We go further by defining an ‘orientated’ tree which allows for
the.investigation of ?.11 km}c{lo(éiggg%l%% og(ai% se(%%%%rg%ng in the system (%n particular the AF ones
which were not studied in [275, 129]). We improve these results by defining the model on a cactus
made by plaquettes of four vertices. This allows us to include the relevant low energy excitations

of spin-ice.

V.3 Numerical simulations of the sixteen-vertex model

> :Numericsl6\/‘

The 2d sixteen-verte X %%%%lBigoiﬁomorphic to the Ising model on the checkerboard lattice with
many-body interactions [165].” While this model is integrable for a special set of parameters for
which the equivalent Ising model has two-body interactions only, none of these special cases cor-
responds to our choice of parameters. We used two numerical methods to explore the equilibrium
properties of the generic moc%%lé the Cont’nuo:ucsTtl\%rCne Monte Carlo (CTMC) method that that we
briefly explain in Sec.rﬁm in A Eg'zi%d_thfeNon-equilibrium relaxation method (NERM)
that we equally explained in Sec. %7
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V.3.1 Methods
V.3.1.1 Monte-Carlo algorithm

The numerical analysis of the equilibrium properties of 2d vertex modelislé%s. Eggn Arfs‘[oricted,
SF) far, to the'study of the six and eight \;[ggtrfiﬁ(e%%slegg éASS ex luaalrslgg Ip sgction 72,1 ese models are
simulated using non-local loop updates [[15} 252]. .By imposing the c.:orrecF SRYPPEEEH% 51!11, %lx%lﬁz 1993
Fhe construction of non-local moves (-:luster algorithms can be.: des.lgned /L%/Sl 2. 1891 21\10827%]1‘%15 0n2005
issues as the effect of boundary conditions have been explored in this way [252]16].

The loop algorithms could be modi%e& to g%ll}lde t]%ree-iiloﬁ Qone-out and one-in — three-out

L. Jaubert
defects for the study of spin-ice systems

m:mrLHWer,thTsimultaneous inclusion of four-
in and four-out defects makes this algorithm inefficient compared to a Monte Carlo algorithm with
local updates. For this reason, we will use local moves in our numerical studies, implemented by
the Continuous-Time Monte Carlo algorithm (CTMC).

V.3.1.2 Non-equilibrium relaxation method

Janssenl989
The fact that dynamic scaling applies during relaxation at a critical point ﬁll /[ suggested to

use short—ﬁ}gggEcgg%@l%l%lg%%%roeﬁegts to extract equilibrium critical quantltles. with nugnencal
methods [128] 3. Magnetized, M} = My (t = 0) = +1, and non-magnetized, M = 0,
configurations can be used as starting conditions and the critical relaxation

Moy (t) ~ t=B/W2) pgmolzpg0) (V.35)

with z the dynamic critical exponent, and F'(x) ~ x for x < 1 and F'(x) — ct for z — oo, can be
used to extract either the critical parameters or the critical exponents. This expression is expected
to hold for t'/# < L and t'/* < €eq With &4 the equilibrium correlation length.

V.3.1.3 Observables

We used the following strategy to stugz ftv\llleer%ig{erent phase transitions. We recall for clarity
the definitions introduced in section [V.I; We chose the relevant order parameter, (M) or (M_),

to study FM or AF phases. These are the total direct and staggered magnetisation per spin

(M) = (I ) + (L) (V36)

with the horizontal and vertical fluctuating components given by

L*mi = Z Sat1/2,8 £ Z Sat1/2,8 5 (V.37)
(a,8)€A (a,8)€EB

Pmi= > Spprip £ D>, Sapiiyz- (V.38)
(a,B)EA (a,B)EB

The angular brackets (. ..) denote here and in the fglelg\\}\/eigget)l(le statistical average. The notations

follow the ones already introduced in section ﬁ;ﬂmfes (a, B) are the coordinates of each

vertex and ((2a+1)/2), 8) and (v, (28+1)/2) locate the mid-points of the right- and up- pointing

bonds. In the expressions for m we divided the lattice into two sub-lattices A and B such that a+ 3

is even and odd, respectively. The 4 signs allow one to distinguish between FM and AF order.
From the scaling analysis of the corresponding fourth-order reduced Binder’s cumulant

(M)

Ko = 1= 37 = Ow (L) 39
+
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with ¢ the distance to the critical point, we extracted v. From the maximum of the magnetic
susceptibility
Xa = L2 [(M}) — (ML)?] ~ L7, (¢L1/7) (V.40)

we extracted /v, then «y as v was already known. From the maximum of the specific heat
Cp = L72[(B%) — (B)?] ~ 1" @o(tL'/") (VAD)

we extracted «/v, therefore a. Here, E = Y ;. nyex with ny the number of vertices of type k
and ¢, their energy. The direct measurement of (3 is difficult, we thus deduced it from the scaling
relation § = %(2 — a.—y). Finally, we checked hyper-scaling, i.¢. Wlhee.tlﬁgrrn dy = I21e—nozsis satisfied

. . @_I_nﬁm—% onent ..
by the exponent values obtained, that we summarize in Table or the - transition

and two choices of parameters.

V.3.1.4 Equilibration
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Figure V.7: Test of the equilibration of I = 100 samples fora = b = landd = e = 107".
The data shown has been averaged over 300 independent runs. Top: Evolution of the density of
vertices 1 .4 from a completely magnetised initial configuration with n, = 1 (plain lines) and
from a random initial configuration (dotted lines). Bottom: Two-time self correlation function of
the system at different times (shown in the key) from a random initial configuration (i.e. a = b =
¢ = d = e = 1). The correlations are not time translational invariant until later times ¢ > 10'2
MCs.
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In order to estimate the thermal average of some thermodynamic quantity we must ensure the
equilibration of the samples before performing any measurement. This is done by verifying that
(i) the density of vertices stabilises at long times at the same value starting the evolution from very
Fhfferent (unco.rrelate.:d) 1n.1t1a1 c01.1ﬁgura.t1ons; (11).the .SPTELal%clq%cia}it&:OﬁlP%% correlation function
is time translational invariant. This test is shown in Fig. [V./[Tor a special set of parameters.

V.3.2 Phase transitions and critical singularities

In this subsection we present a selected set of results from our simulations by describing the
kind of phases and critical properties found. All our results are for a square lattice with linear size
L and periodic boundary conditions.

V.3.2.1 The PM-FM transition

In order to diminish the number of parameters in the problem we studied the PM-FM transition
for the special choice d = e. I

As the direct magnetization density (M) defined in eqs. (V-36)-(V.38)) 1s the order parameter
for the PM-FM transition in the six vertex model, w, stlgcel% &lllilsi%lﬁ%%ty to investigate the fate of
the FM phase in the sixteen vertex model. In Fig. [V.8[(a) we show (M) for b = 0.5 and two
values of d as a function of a, L = 10,...,40 and we averaged over 10% — 10* samples. The
variation of the magnetization as a function of a shows a sharp jump at ¢ = 1.5 for b = 0.5 and
d = 0, as one would expected for a first order phase transition. For d > 0 the curve takes a
sigmoid form that gets wider (less step-like) for increasing d. The intersection point appears at
larger values of a for larger values of d. These features suggest that the transition to the FM phase
is continuous, occurs at larger values of a, and that there are fluctuations in the ordered state, T.heeq

magaeg -magn

uilibrium

crossing of Ky, atheight 1 /3 (dotted horizontal line) for several values of L shown in Fig.|V.8 ()
determines the transition point a. (b, d). Consistently with a second-order phase transition, Ky,
remains positive for all L.
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Figure V.8: Study of the FM transition. (a) Magnetization per spin (M) and (b) magnetization
cumulant Ky, as a function of a for b = 0.5, d = 107> (the group of curves on the left) and
d = 0.1 (the ones on the right), and several L given in the key. The crossing points of K/,
determine a.(b, d). The vertical dotted (black) lines are the critical values predicted by |A1g| = 1.
The horizontal dotted level is 1/3.

ig:magn—-PM-FM
In Fig. @WC show (M) as a function of a for b = 0.5 and three values of the parameter
d = e (all normalised by c). The data for the 2d model (shown with coloured points) demonstrate
that the presence of defects tends to disorder the system and, therefore, the extent of the PM phase
is enlarged for increasing values of d = e. Moreover, the variation of the curves gets smoother for
increasing values of d = e suggesting that the transitions are of second order (instead of first order)
with defects. The data displayed with black points for the same parameters are the result of the
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. . . . :VertexTree
analysis of the model defined on a tree and we postpone its discussion to Sec. l%i[ ['he numerical
results suggest that the equilibrium phases of the sixteen vertex model could be characterised by a
generalisation of the anisotropy parameter of the eight-vertex model:

a2 +b% —c — (d + 3e)?

Ag =
16 2[ab + c(d + 3¢)]

(V.42) |Deltal6_2d_m

In the same way as in the integrable cases, the proposal is that the PM phase corresponds to the

region of the parameters’ space where |A1| < 1, the FM phases corresponds to Ajg > 1 (and

the AF ones to A1g < —1). It follows that the projection of the FM-transition hyper-planes onto

the (a/c, b/c) plane should be parallel to the ones of the six and eight vertex m dels and given by

ac. = b+ c+ d+ 3e (or equivalently b. = a + ¢ + d + 3e). As shown in Fig. @mﬁm&

results are close to this assumption but they do not justify it completely either (We will compare .
the trend of the transition lines with d = e as obtained with the cavity method in Sec. W
we will explain in detail in the following section, our BP approximations predicts a similar shift

of the transition lines given by a, = b + ¢ + d + 2e. This is characterised by the parameter

w G+ —c—d®+2(a+b—c—de
2(cd+ab+e(la+b+c+d+ 2e))

.. , A :VertexTree L. . s
for the ‘single vertex’ model (see section I%% for details). For the more sophisticated ‘plaquette
model the transition lines are not parallel to the ones of the six and eight vertex models and an

analytic from of the anisotropy parameter has not been found. However, the predicted tgansitign
. . X . K X :phase diagram-lévertex
lines can be computed numerically and lead to the phase diagram depicted in Fig.
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Figure V.9: Equilibrium magnetisation density, (M), of the sixteen vertex model with d = e

taking three values given in the key and b = 0.5 as a function of a (parameters normalised by c).

The coloured data points are the result of the numerical simulations of the 2d model for L. = 40

while the black dots have been ob%ained with the analytic solution of the model defined on the tree,
. K :VertexTree

as explained in Sec.

g:magn-PM-FM

Further evidence for the transition ‘t)'ec_oélel'glg S ongiK%(%/Ie_rFD%omes from the analysis of the
fourth-order cumulant defined in eq. (V.39). In Fig. I%ii) we display raw data for d = e = 107

(a) and scaled data for d = e = 0.1 (b) as a function of ¢ = (a — a.)/a.. In both cases b = 0.5
and, as above, we normalise all parameters by c. From the analysis of the scaling properties we
extract a. = 1.5 ford = e = 107° and a, = 1.93 for d = e = 0.1. Sets of data for linear system
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Figure V.10: Analysis of the Binder fourth-order cumulant defined in eq. dﬁmss the FM-
PM transition in the sixteen vertex model. (a) Raw data for d = e = 10~°. (b) Scaling plot for
d = e =0.1. One extracts 1/v = 1.65 4+ 0.05 in case (a) and 1/v = 1 £ 0.1 in case (b) from this

analysis.

sizes L = 10, 20, 30, 40, 50 are scaled quite satisfactorily by using 1/v = 1.65 £ 0.05 for the
small d and 1/v = 1 £ 0.1 for the large value of d.

In order to complete the analysis of this transition we studied the magneti
associated to the direct magnetization M and its finite size scaling. Figure
e =10"°(a)and d = e = 0.1 (b), and five linear sizes, L = 10, 20, 30, 40, 50. The

b=05,d=

ibili . suscp-magn
‘i%“ﬁs?%ﬁ?-%&%w

isplays x4+ for

data collapse is very accurate and it allows us to extract the exponent /v ~ 1.75 + 0.02 in both
cases. The study of the maximum of x displayed in the insets confirms this estimate for 7 /v.
We repeated this analysis for other values of d = e and we found that in all cases critical scaling
is rather well obeyed and, interestingly enough, +/v is, within numerical accuracy, independe o 8Vexponent s—t1
of d = e. This is similar to what happens in the eight-vertex model since, as shown in Table i& ‘!?%i
this ratio is independent of the parameters.

The ratio a/v is obtained from the finite size analysis of the specific heat (not shown) that
is consistent with O™ ~ [o/v (instead of LY for a first order phase transition). We found

a/v =~ 1.30 & 0.06 for these values of band d = e =1

heat capacity, i.e. a/v
numerically.

The numerical exponents at the second order phase transition with d = e and both diffe ent

~ 0 ford = e = 0.1 (cf. Table

mn=exp

0-5 alnd a logarlthmlc dlvergence of the

l(:/ 2)), although this 1s dlfﬁcult to assert

e:num—-exponents

from zero are compared to the ones of the six vertex model and the 2d Ising model in Table V.2 Tt
is interesting to note that for very small value of d = e the exponents are rather close to the ones of
the six-vertex model while for large value of d = e they approach the ones of the 2d Ising model.

The numerical critical exponents we obtained depend on thg parame

M-expo

nts

eter d = G a8 suggested from

the theory of the eight vertex model. As shown in Table |V.2] the ratios of critical exponents ¥, ,8
and qﬁ do not depend on the choice of the external parameters. As one could expect, the values we
obtained for these generalized critical exponents are equal to the ones of the eight vertex model
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and the 2d Ising model, since these two latter models are special cases of the sixteen vertex model.

120 T T T 0.3 T T T T
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Figure V.11: The magnetic susceptibility across the PM-FM transition for b = 0.5, d = ¢ = 107°
(a) and d = e = 0.1 (b). Where t is the distance to the critical point measured as t = (a — a.)/a.
with a, = 1.5 (a) and a. = 1.93 (b). From the finite size scaling of the maximum shown in the
insets one extracts /v ~ 1.75 £ 0.02 in both cases.

| | six-vertex | MC(d=e=10") | MC(d =e =0.1) | 2d Ising |

v/v =% 7/4 1.75+0.02 1.75+0.02 7/4
Blv =20 1/8 0.125+ 0.05 ~ 0.125 1/8
2-—a)/v=0¢ 2 2.00£0.15 ~~ 2 2
« 1 0.84 +0.23 ~0 0
15} 1/16 0.050 +0.014 ~ 0.125 1/8
vy 7/8 1.06 + 0.03 1.75+0.18 7/4
v 1/2 0.60 +0.02 1.0+ 0.1 1
2v0=2—a? yes yes yes yes

Table V.2: Numerical values of the critical exponents at the FM-PM transition in the sixteen vertex
model as compared to the ones in the six vertex model (first column) and 2d Ising model (fourth
column). The parameter p, tan(u/2) = \/cd/ab, has been chosen to take the same value in
the two MC columns, ¢4 = 7. We did not include error bars for B gg « and ( in the column
corresponding to d = e = 0.1 as our determination of « is not precise enough to distinguish
between o = 0 (the value used to extract the remaining exponents) and a very small but non-
vanishing value.

V.3.2.2 The PM-AF transition

We now focus on the transition between the c-AF and PM phases. For the six-vertex model
this is a KT transition while for the eight-vertex model it is of second order as soon as d > 0. In
this case we chose to work with d = 107° # ¢ = 1072 and with d = e = 107°. We present data
obtained with tthNERM.

Figure shows the relaxation of the staggered averaged magnetization at b = ¢ = 1 and
different values of a given in the caption. The power-law relaxation, typical of the critical point, is
clearly identifiable from the figure. We extract a critical weight a. = 0.46 £0.01 for the c-AF-PM
phase transition. Moreover, the data allow us to prove that the PM phase is not of SL-type as soon
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Figure V.12: Non-equilibrium relaxation of the staggered magnetization from a fully ordered ini-
tial condition M® = 1 at different values of @ = b, forc = 1, e = 1073 and d = 107°. After a
short transient the relaxation at the critical point follows a power law t~? with p = 3/(vz). We
identify such critical relaxation at a, = 0.46 4= 0.01. A precise estimation of the exponent z needs
longer simulations and here the NERM has only been used here to estimate the transition point.

as a finite density of defects is allowed. Indeed, the relaxation of M_ does not follow a power law
within this phase; instead, for @ > a, the decay is exponential.

he séangjard gnalysis of the c-AF-PM transition is not as clean as for the FM-PM one. Fig-
:Binder—AF
ure l% ig (a) sh

a) shows the scaling plot of the Binder cumulant of the staggered magnetization for
b = 0.5 and, in this case, d = e = 107°. From it one extracts 1/v = 0.4 £ 0.05. The suscepti-
bility fluctuates too much to draw certain conclusions about the exponent . The analysis of the
specific heat (not shown) suggests a logarithmic divergence o ~ 0.
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Figure V.13: Study of the c-AF-PM transition for b = 0.5 and d = e = 107°. (a) The averaged
staggered magnetization as a function of a for several system sizes given in the key. (b) Scaling
plots across the c-AF-PM transition of the Binder cumulant of the staggered magnetization.  is
the distance from the critical point t = (a — a.)/a. with a. = 0.5. The best scaling of data is
obtained for 1 /v = 0.4 £ 0.05.
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V.4 Vertex models on Bethe lattices

In this Section we study the properties of the six-, eight- and sixteen-vertex models defined
on the Bethe lattice by using the cavity method. Aiming at capturing the properties of the two-
dimensional squared lattice problem we will first consider a standard Bethe lattice of uniform
connectivity ¢ = 4, and then, we will improve such approximation by taking into account small
loops by applying the same method to plaquettes of 2 x 2 vertices connected in a tree-like way.
As shown in the following, such approach, compared to the exact and the numerical results in two
dimensions turns out to be remarkably good.

V.4.1 The oriented tree of vertices

The definition of the vertices requires the selection of a particular orientation of the edges
adjacent to a given site. Thus, we will define “horizontal" and “vertical" edges. Each one can
get two possible orientations. This procedure allows us to associate a statistical weight to the
configuration of each vertex, even in such non-Euclidean geometry. In the recursive equation this
partition will translate into four possible species of rooted trees, depending on the position of the
missing neighbour.

We focus on a regular tree with no loops and fixed connectivity ¢ = 4 for all the sites (vertices)
in the bulk, thus conserving the local connectivity of the square lattice geometry. The sites on the
boundary, also called the leaves, have only one neighbour.

The evaluation of the physical quantities using this geometry is based on th|e de.terel{%%%%%% of
the properties of the site at the root of the rooted tree. As discussed in section |[V.2. m
is a tree in which all the sites have the same connectivity ¢ = k + 1 apart from the root (and the
leaves) which has only k£ neighbours. The Bethe lattice (or Cayley tree) is obtained by connecting
k + 1 rooted trees with a central site.

In the models we are interested in, each site is a vertex and its coordination, which is fixed,
is the number of vertices connected to it. In order to distinguish one vertex from another one and
later identify all possible ordered phases we define the analogue of the two orthogonal directions
that characterise the Euclidean squared lattice. With this purpose, we construct the rooted tree in
the following way. Given that the connectivity of the graph is equal to four, each vertex has four
terminals that we call “up” (u), “down" (d), “left" (1) and “right" (r). So far, the vertices were
labeled by their positions. Here, for the sake of clarity, we label the vertices with a single latin
index, say i and j for two neighbouring ones. Vertices are connected through edges (i%;?) and
(i'57) that link respectively the “up" extremity of a vertex i with the “down" terminal of a second
vertex j, or the “left" end of 7 with the “right" end of j. The symbols (i';") and (i*;¢) denote
undirected edges, so that (i'j") = (j74!) and (i*5%) = (j%"). In this way, one creates a bipartition
of the edges into “horizontal" (left-right (i'5")) and “vertical" (up-down (i%;?)) edges.

We now characterise the variables, interpreted as arrows or spins, in these terms. Each edge is
occupied by an arrow shared by two vertices i and j. An arrow defined on the (i'j") edge is the left
arrow for the 7 vertex, and therefore the right arrow for the neighbouring j vertex, and similarly
for the (i%;%) edges. Each arrow, as any binary variable, can be identified with a spin degree of
freedom, taking values in {—1, 1}. In this construction there are two kinds of spins, those living
on horizontal edges, s;;, and those sitting on vertical edges, su 4. In the following we will

assume that s ;u;ay = +1 if the arrow points frq dp&\g} to up gf a given vertex, i.e. if it points

towards the vertex ¢ (see the left panel of Fig. I%} i%i, and S(;ujay = —1 otherwise. Similarly,

sy = +1if th ArroW %)osingsngrom left to right, i.e. if it points towards the vertex j (see the
and S/

right panel of Fig. ;) = —1 otherwise. This is the analog of the convention used for
the spin sign assignment used in the 2d model. The labels assigned to the terminals of the vertices
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naturally determine the directions and in this way the value of the spin is uniquely defined. Clearly,
these definitions are not unique and one may introduce other ones if found more convenient.

u

—@—
da=+1
A <i'jS
u S.l.r=+1 u

1 r <] 1>

O —@— r

d d d

ig:def_spins ‘ Figure V.14: Two spins living on a vertical and horizontal edge both taking value +-1.

The local arrow configuration defines the state of the corresponding vertex. In the eight-vertex

. . . . 8 . .
m.odE;.ea:c&yleerrtg)i Lcan be in eight possible states, x; € {v1, v2, v3,v4, Vs, Vs, V7, Us }, depicted in

Fig. ssuming arrow reversal symmetry we can group such states ing ,fm&r&lgg%ﬁsﬁeesach one
two-fold degenerate, with statistical weights a, b, c and d as shown in Fig I% i{( Jne can also assign

a total spin .S; to each vertex i, and define it as the sum of the spins attached to it, S; = > ;ca; S(ij)-
With the spin convention introduced above six out of the eight vertices have vanishing total spin,
ie. S; = 0 for the a, b and c vertices, while the two d vertices have non-vanishing total spin,
S; = 4.

This argument generalises to the sixteen-vertex model, where all possible states determined
by the configuration of the arrows are allowed. Each vertex takes values in an extended ‘“alpha-
bet" of sixteen states Y1, € i{g‘],é.r . .i,cvelg} where we have introduced the 3in-lout and 3out-lin
configurations (see Fig.?ﬁf’[mpin S; equals £2.

Consider now a site (vertex) ¢ at the root of a rooted tree. There are four possible distinct kinds
of rooted trees depending on whether the missing vertex j that should be attached to the root be the
one on its left, right, up or down direction. By analogy with the two dimensional case, one could
interpret these rooted trees as the result of the integration of a transfer matrix approach applied in
four possible directions. This can be emphasised by taking into account the particular direction of
the missing edge at the root that we will indicate as follows: ¥ — j9, with p,q € {u,d,l,r}. For
instance, an “up rooted tree" is the one where the root ¢ lacks the c.onnetctié)n to the up terminal of
the vertex j, i.e. the link i — j* is absent. As shown in Fig.%%he_ar_g%ted tree is obtained
by merging a left, an up and a right rooted tree (with root vertices [, h and k respectively) with the
addition of a new vertex 4 through the links I” — i', h® — %, k! — 4" (pictorially the transfer
matrix is moving “down"). Similarly a “left rooted tree" is obtained by merging a down, a left and
an up rooted tree, and so on. The Bethe lattice is finally recovered by joining an up, a left, a down
and a right rooted tree with the insertion of the new vertex. Equivalently, given a tree, one creates
rooted (cavity) trees removing an edge.

V.4.2 The tree of plaquettes

As we will show, the results obtained by using the tree constructed above turn out to be remark-
ably accurate in the reproduction of the 2D phase diagram that, in many respects, is also exact. In
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Figure V.15: Construction of an “up rooted tree" from the merging of a left, up, right and down
rooted tree.

order to further improve the comparis w_it‘g-t% élée ﬁflailteugitr%lgnsional case we used a similar Bethe
lattice made of “plaquettes” (see Fig. %}fﬂﬁ%ﬁﬂﬁt the basic unit is not a single vertex
but a square of 2 x 2 vertices and the tree is constructed by connecting one of these plaquettes to
other four, without forming loops of plaquettes. As we will see, in some cases, the presence of
local loops of spins within the plaquette can result in qualitative different results, that go in the
direction of the two-dimensional behaviour.

In the following we will refer to the first simpler geometry as the “single vertex problem" and
to the second one as the “plaquette model".

"ig:rooted_up

V.4.2.1 Discussion

LscussionTree‘

The refy%%%?ﬁé%{}%%&%%% Slo%ethe lattice made of vertices, generalise some of the calculations
derived in [275] and [[I29] as a mean-field approximation to}lalgl}))é@(t)gl&looge spin-ice system. In fact,
the approximation that we use here is the same adopted in ﬁm]my the a-FM phase. Even if
in that context the original motivation is that of studying the pyrochlore lattice, one nevertheless
ends up with a tree-like structure of vertices with connectivity four and spins (arrows) shared by
two neighbouring vertices. Our approach, keeping track of four different directions, allows us to
simultaneously study all possible phases of the general sixteen-vertex model. We also mention
that within such approach it is quite straightforward to remove the degeneracy of the vertices by
introducing for instance external fields.

A tree without loop; yields a very gqoq ap Yrgﬁfpﬁizo&]oﬁo Bha% rggg 500% towards the frozen FM
phase (KDP problem) in pyrochlore spin-ice [275, [129]. This is due to the absence of loops in
the frozen FM phase. Such an approximation is not, however, precise enough to describe the un-
frozen staggered AF order, since this phase is populated by loop fluctuations at finite temperature.
Therefore, it is crucial to be able to include finite loops in the approximation in order to try to
describe ASI. We did that by defining the model on a Bethe lattice made by elementary loops and
prove its efficiency to describe the AF transition occurring in the sixteen-vertex model and, more
concretely, in ASI samples.

We also note that the study on the Bethe lattice of the particularcase a =b=c=d >e > 0

is closely related to the well studied problem at finite temperature of a spin model on sparse
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Figure V.16: The main panel shows how to construct a Bethe lattice of individual units that can
be chosen at wish. In the right panel we show four different choices of such units. The image in
(b) represents a single vertex that once inserted in (a) builds the simplest Bethe lattice of vertices,
discussed in the text. The tetrahedron in (c) can be equally t ogng]lg gf asa rglémar vertex, as the one
in Fig. (b). We discuss such representation in sectionl?fﬁgzg [ Finally panel (d) shows a plaquette

‘ of four vertices that is the unit also considered in the text.

ee_plaquette

graphs with p = 4-body ferromagnetic interactions and with spin connectivity ¢ = 2. The case
e = 0, i.e. the infinite temperature limit of the eight vertex model, on the same geometry, instead,
corresponds to the zero temperature limit of the same spin H\Perggec&lo\ggghn gjfllagggkinteractions,
whose ground state is known to be exponentially degenerate [I81]]. Similar analogies with other
well-known optimisation problems which describe frustrated spin models on random tree-like
graphs can ac%ll\é/}&lé/ be extended also to other particular cases, as for the six vertex model in its

spin-ice point [279].

V.4.3 The six and eight-vertex model on the single vertex tree
V.4.3.1 Self consistent equations

For the sake of simplicity let us focus for the moment on the six- and the eight-vertex models
and consider the tree of single vertices. We define v, 77", with o € x® and p, ¢ € {u,d, 1,7}, the
probability that the root vertex ¢ — in a rooted tree where (i”j7) is the missing edge — is of type a.
Such probabilities must satisfy the normalisation condition

Syt =1, (i) . (V.44)

aexg

In the recurrence procedure we will be only concerned with the state of the arrow on the
missing edge. Therefore, considering a root vertex ¢+ with a missing edge ¥ — j9, we define
P = " 77"(+1) as being the probability that the arrow that lies on the missing edge (i?;)
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takes the value s;»jqy = +1. Then,

U

Y= O AT T
Y= %ﬁf R S
wl wz T gt W Tt W T4 W —jt (V.45) ’eq:def_prob‘
U= T T

and

(1) = 1= () = 1 - (V.46)

Note that other parameterisations are possible for these probabilities. For instance, one could
use an effective field acting on the spin s(;»jqy, i.e. 1] = el /(eh? + ), and the recurrent
equations could be equivalently written for the ﬁelds hi.

The operation of merging rooted trees allows us to define the set of probabilities associated
to the new root in terms of those belonging to the previous generation. In the bulk of the tree
one does not expect sucq% g%itiegot}g) depend on the precise site. Then, the explicit reference to
the particular vertex in can be dropped, and one self-consistent equations for the “cavity"
probabilities are obtained.

In the BP approximation, the strategy is to write down the self-consistent equations due to the
site independence of the behaviour in the bulk. Then, one should find the solutions, i.e. fixed points

of these equationT As.sklg\ilien]gctihcee%tatistical weights to be symmetric under the arrow reversal and

defined as in Fig. ¢ self-consistent equations reads:

Pt = Wa, by, d gt gyt = gt (a, b, e dy gt g gl ) 2

= vt b (-t (1 - ) e ()-8 4 d (- ) (1w
W = Wa,b, e, d, gt gt o ]

=~ autetyt 45 (1 - g1 - ) + et — g1 - ) +d (- (1 - o]
O = Wa,b, e, d, gt 9 W Y]

= ;ld[ ot b (1=t =) ewr (1= (1 - ) +d (1= 7)1 - o]
W = Ua, by e, d, gl g

= et b (= o) + et ()1 — 9+ d (1= )1 - 9]

(V47)’p51U 8vertex

where 2 are normalisation constants which guarantee that ¢/’ is the probability that a spin takes
the value (41):

Zp = gi(a7 ba c, d7 ¢ua ¢d7 wlv @Z}T) + gi(aa b7 C, da 1- ﬂ)u7 1- wdv 1- wlv 1-— UJT) (V48)

the first term in this sum is for th uri—né)lrmalised contribution for a spin ‘(+1)’ spin and the second
term for a spin ‘(—1)” from eq.

V.4.3.2 Fixed points and free energy

FP_8vertex

In order to allow for a fixed poin sglutlon associated to antiferromagnetic order (both c-AF and
d-AF) we study the equations (% on a bipartite graph. We partition the graph into two distinct




128 CHAPTER V. THE EQUILIBRIUM PHASES OF 2d SPIN-ICE

sub-lattices A1 and Ao, such that each vertex belonging to A; is connected to vertices belonging to
A, and vice-versa. This amounts to double the “fields" {¥", 9§ } 4=v,1.r.4, One for the sub-lattice
of vertex A; and the other for Ao, and to solve the following set of coupled equations:

U = U%a,b,c,d, 8,95, ¥y, ] (V.49)

¢§X = \i’a[av b7 ¢, da Wfa @bii’wlp d)ﬂ a =1u, l,T, d.

The ferromagnetic and paramagnetic phases are characterised by ¥{* = 1§, while the antiferro-
magnetic phases by ¥ =1 — ¢5".

Considering only the solution associated to the sub-lattice A; the fixed points are the follow-
ing:

Paramagnet Yp=@t=3pl=L1y =3 yl=1)

a-Ferromagnet o = (P =1, = 1,97 = 1,97 =1)

b-Ferromagnet v = (¢u _ 17¢l =0,9" = Oﬂf)d — 1) (V.50) ’Fixed_points
c-Antiferromagnet Year = (P = 1,9 = 0,9" = 1,49 = 0)

d-Antiferromagnet Yaar = (V¢ = 1,9l = 1,4" = 0,9% = 0)

Moreover, the overall arrow reversal symmetry allows for the solution v’ = 1 — 1), which for
the AF phase is nothing but he excghane of ¥ with ¢§. By inserting these values of 9 in to
the self-consistent equations Qﬂb (IV.49), one easily checks that these are indeed self-consistent

solutions. Investigating numerically by iteration the same set of equations, one can also realise
that these solutions are unique.

In order to do compute the free energy of the system, it is useful to consider the partial con-
tributions to the partition function coming from a vertex, an horizontal edge and a vertical edge.
These quantities are defined as follows:

Zo[t, ", ) =a[¢lw“¢%d+(1—¢“)(1—¢)( — ") (1 -7

b [(1 =1 — )+ (1 — gy (1 — )]
(V.51
e [pH(1 = )1 — 7 )ed + (1 — gy (1 — )]

d (1= w1 = gy + gyl —vr)(1 - vd)

and

Zry [05, 05] = 0§ + (1= 9}) (1 — ¢F) (V.52)
Zay [0} 9] = e + (1 =) (1 —4f) (V.53)

The first term Z, represents the shift in the partition function brought by the introduction of a
new vertex which is connected with four rooted trees. The other terms Z;, and Z, 4y represent
the shift in the partition function induced by the connection of two rooted trees (respectively one
left and one right or one up and one down) through a link. In terms of these quantities one can
compute the intensive free energy (where here and in the following we normalize by the number
of vertices) which characterises the bulk properties of the tree in the thermodynamic limit:

ﬁf[avb)ca da 11b1)¢2] = _%(IHZU[’(/H] +1nZv[¢2] +

(V.54) ’ free—energy—(

—1n Zp) [0, 5] — I Z [0, 7] — In Zpuy [0 0] — In Zugy [0, 0]
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—energy-Cavit . ixed points
The free energy evaluated 1n the fixed points reads as follows:

Paramagnet Bfp = Bfla,b,c,d,pp] = —In (CH—Z)_;CHZ)
a-Ferromagnet Bfarm = Bfla,b,c,d, Popm| = —Ina
b-Ferromagnet Bform = Bfla,b, e, d,pppm] = —Inb (V.55) ’ free-energy-

c-Antiferromagnet S fear = Bf[a,b,c,d, Pear] = —Inc
d-Antiferromagnet Bfaar = Bfla,b,c,d, Ygar] = —Ind

V.4.3.3 Stability of the solutions

Before entering into the analysis of the fixed points characterising the phases of the system,
we discuss the approach used to study their stability. In particular, we focus on the stability of
the paramagnetic solution p, i.e. ¥! = " = ¢ = ¢y* = L. Consider the following Jacobian

atrjx g\/[ iy that describes the derivative of the vector functlon U= (‘i’“ T ol \ild) defined in
%mea to the fields {¢®}, evaluated in the paramagnetic solution:

r atb—c—d a—b+c—d —a+b+c—d 0 7
a+b+c+d a+b+c+d a+b+c+d
R a—b+c—d a+b—c—d 0 —a+b+c—d
AV a+b+c+d a+b+c+d a+b+c+d
YL s
d¢ Yp —a+btc—d 0 a+b—c—d a—btc—d
a+b+c+d a+b+c+d a+b+c+d

0 —a+b+c—d a—b+c—d a+b—c—d
L a+b+c+d a+b+c+d a+b+c+d

The eigenvalues of the stability matrix M are:

_3a—b—c—d
a+b+c+d
—a+3b—c—d
a+b+c+d
a+b—3c+d
a+b+c+d
a+b+c—3d
 a+b+c+d

(V.57) ’ Eig_stab_sv

In the basis (81", 647, 09!, 61p%) the corresponding eigenvectors can be written: v; = (1,1,1,1),
ve = (1,-1,-1,1), v3 = (—1,1,-1,1) and vy = (—1,—1,1,1). In general (Va,b,c,d), the
eigenvalue E; regulates the stability towards the ferromagnet of type a, E» the ferromagnet of
type b, E'3 the antiferromagnet of type c, and F, towards the d-antiferromagnet.

The stability of the paramagnetic solution is controlled by the eigenvector of maximal ej en- . b oy
value F,,q., and in particular the solution becomes unstable when |E,,4,| > 1. From Eq. %—
it is clear that the stability of the ferromagnetic phases is characterized by positive values of £,
while for antiferromagnetic solutions the critical point corresponds to £, = —1. One can recog-
nise that altogether the stability of the solutions can be stated in terms of the condition

(1+ E3)(1+ Ey) — (1 - E1)(1 — E»)
(14 E3)(1+ E4) + (1 — E1)(1 — Ey)

<1, (V.58)
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which in terms of a, b, ¢, d reads

a?4+ b2 —c2—d?

e |- |Ag| < 1. (V.59)

The study of the stability matrix gives the ex ct_loc%ggg 8of the PM phase and hence the location of
the transition lines found by Baxter (see eq. %TTHS is the correct criterium that identifies the
presence of a phase transition associated to a diverging susceptibility y. Indeed, the susceptibility
is given by:

1 1 o
xzfi ~ ¢ X S (shsh) (V.60)
N N it o,8=(ud),(Ir) T=1P(r)

where in the last equality we used the homogeneity of the solution. The symbol P(r) indicates
that the sum runs over all the paths that connect a given spin on an edge of type «, supposed to
be the centre (site denoted by 0) of the tree, to all the remaining spins that live on edges of type /3
and are located at a distance r from O (in terms of the number of edges that make the path). As the
tree has no loops, such paths are uniquely defined. The above formula can be simplified by using
the fluctuation-dissipation relation

8
(sisty, = Ler) (vV.61)

where h{ is a field conjugated to si. The above expression can be evaluated by using the chain
rule
d(sf)  ddm = AP d(sP)

= V.62
dhg Ay -5 diprizr dyprr— (V.62)

where the particular values taken by {v;} € {u,d, [, r} depend on the path followed. Each deriva-

tive is finally evaluated in the paramagnetic solution. Then, defining the vectors |v,) such that
_ dus
g — dy©

and |w,,) such that wﬁ =3 W one obtains

= Y ST )

a,f=(ud),(ir) r=1P(r)

-y yxd

dbm = Q@ d(sP)
H depri-1 doprr-1

(V.63)

a,B=(ud),(lr) r=1P(r) g i=2
x Z Z (V| MT™2|wg) ~ ZTrM’".
o, = (ud),(lr) r=1 r=1

As long as the abslote value of the eigenvalues remain smaller than one, i.e. |Enq.| < 1, the
series converges, giving a finite value for the susceptibility. The same procedure can be used to
investigate the stability of the other solutions.

V.4.3.4 Order parameters

magn
Accordingly to the definitions in eq. Wﬁe characterise the phases by direct and staggered
magnetizations. In particular, we define the following order parameters, each one associated with
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a particular phase °:

1
masm = - a (W — (1= 9 (1= o) (1= 9N —u)]
1
marn = o |b (1= ¢ (1 =97 = ' (1= o)y (1 - v
1“ (V.64)
mear = e (V'L =) (L —w ! — (1= ¢t (1 - oY)
1
maar = [0 =) (1= et =gt (19— )]
where Z, is the contribution of a vertex to the partition function defined in eq. dﬁ’

V.4.3.5 The phase diagram

For the six-vertex model we found four different fixed points. These characterise the possible
equilibrium phases: (i) a-FM phase, (ii) b-FM phase, (iii) c-AF phase, (iv) a, b, c-PM phase (we
want to distinguish the PM phase found with this method that differs from the actual SL phase in
d = 2 in ways that we will describe below). As in the two dimensional model, t

d = 0; or studying the stability matrix M, whose eigenvalues are equal to one for Ag = 1.

Some remarks are in order here:

(i) For d = 0, the eigenvalue 4 = 1,V a, b, c. The PM phase in the six-vertex model is therefore
in the limit of stability. This is reminiscent of the critical properties of the spin-liquid phase in 2
dimensions.

(i1) Similarly, for a = O the eigenvalue £y = —1 Vb, ¢, d.

(>iii) The same holds for the other vertices: for b = 0 then Ey; = —1, Va,c,d; for c = 0 then
E3=1,Va,b,d.

These remarks are in agreement with the exact solution of the eight vertex model: as soon as one
among the four vertex weights is zero, the system is critical.

The transition between the paramagnetic and the ordered solutions (both FM and AF) is dis-
continuous. This can be seen at the level of the fixed point 1/ or by the inspection of the singularity
in the free energy. Still, it is characterized by the absence of metastability and hysteresis and a
diverging susceptibility.

Let us first discuss the PM-FM transition lines. In fact, approaching the transition line from
the two sides, both the paramagnetic and the ferromagnetic solutions become unstable. This kiEpd
of transitign corresponds to the ‘“frozen-to-critical” KDP transition discussed in section and

ote that if one focuses on the transition point, plugs into the equations the critical value
a = a. = b+ ¢, and assumes the homogeneity of the solution ¥ = 1 Va, the remaining equation
has the trivial form ¢» = . This means that all the values of ¢ are valid. One can actually see
that, the free energy for the same critical value of a = a., does not depend on v and thus it is
uniformly minimised by all values of the magnetisation. This is the mechanism through which
such discontinuous transition displays a line of instability.

.. . .. . . Hnagn o, .
6. Note that this is an extension of the definition given in eq. (!%e‘ded in order to make the difference between
FM orders dominated by a or b vertices, as well as AF orders dominated by c or d.
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At the level of the calculation of the tree made of single vertices the antiferromagnetic transi-
tion is completely equivalent to the ferromagnetic ones. It is characterised by a completely frozen
order, where no defects are allowed. The transition shares the same properties of the other KDP
transitions towards the ferromagnets.

The addition of the vertex of type d does not change the properties of the a-FM, b-FM and
c-AF transitions. As a function of the strength of the statistical weight d it appears a second anti-
ferromagnetic transition (denoted d-AF) towards an ordered phase of 4in and 4out vertices. The
transition is also discontinuous in this case towards a completely frozen phase. Still, as for the
six vertex model at the transition point, both the ferromagnetic and the paramagnetic solutions
become unstable. When all the statistical weights are different from zero, a, b, ¢, d # 0, the four
eigenvalues of the stability matrix within the paramagnetic phase are all smaller than one. The
transition lines are altogether characterised by the condition |Ag| = 1, as for the two dimensional
model.

In summary, the location of transition lines of the 2d model are reproduced exactly in the
tree of single vertices. However, its critical properties in presence of d vertices are different from
the ones of the 2d model. The absence of loops ‘freezes’ the ordered phases and makes all the
transitions discontinuous.

V.4.4 The six- and eight-vertex model on the tree of plaquettes
V.4.4.1 Self-consistent equations

The computations involving the tree of plaquettes proceeds along the same line as the one for
the single vertex. The calculations, though, became rather involved as the number of configura-
tions allowed on a plaquette is already quite large.

Each rooted tree now has two missing edges, which means that one has to write appropriate
self-consistent equations for the joint probability of the two arrows lying on those edges. The
analogue of ¢®, which in the previous section described the marginal probability of the arrow to
point “up" or “right", depending on the type of edge it lives on, now becomes a probability vector
with four components. The marginal probability to find a pair of arrows with value “4+, —+,
+—, ——" will be denoted by ¥ = {y¢ ,¢* ¢ _,4*_,}. The superscript o« = u,d,l,r
denotes, just as before, whether the pair of arrows are on the missing edges of an “up”, “down”,
“left”, “right” rootect tree (ggw qlgdge(%ft%laquettes of four vertices instead of a single vertex). This
is illustrated in Fig. n this definition the spins take positive values if the arrows point from
down to up or from left to right, as before. Moreover, we assume that the first symbol indicates
the state of the arrow that is on the left, for the vertical edges, and on the top, for the horizontal
ones. Consequently, the second symbol refers to the value taken by the spin sitting on the right or
the bottom edge, for vertical and horizontal edges respectively.

In order to allow all possible ordered phases we preserve the distinction between the different
direction u, 7, [ and d, which amounts to study a set of 4 x 4 self consistent equations. Let us write
the vertex weights as follows:

1
Wi, 59,53,84 (@5 b, ¢, d) = 1 [a/(l +51528384) +b (5183 +8954) +¢ (5184 +5283) +d' (5152 +3334)}

o - vertex weight (V.65) ’ vertex_weight
where s1, ..., s4 are taken as in Fig. an

1 1
a'zi(a—i—b—l—c—l—d) b'zi(a—i-b—c—d)

(V.66) ’ change_weight

1 1
c’:i(a—b—i-c—d) d’:g(a—b—c—i-d).
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fig:figurel

d

u

u,d u,d u,d u,d
v, vooov, VO

bsi_plaquette

zertex_weight‘

‘fig:figure2‘

Figure V.17: Definitions of {¢),,v% ¢ _, 9% _}a—uirq used in the recurrent equations for
the plaquette model. Left: )¢ where the first index + denotes the value of the spin on the left
and second index denotes the spin on the right. Right: /"¢ where the first index 4 denotes the
value of the spin on the top and second index denotes the spin on the bottom.
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Figure V.18: Left panel; liqeg)rgsentation of the variables {s;} used in the definition of the yertex
ex _wel vertex

welgEtrT d. (I?éé iéquylngE ap(%lgtl:t Enurnberlng assigned to the spin/arrow variables in egs.

. We denote by Sp = {s1, S2, S3, S4, S5, S6, S7, S8, t1, t2, t4} the set of spin variables on

and (V.77
a plaquette.

Similarly, we also introduce a parameterization for the probability vector:

Vsise = %{(1 + 8132)% + (s1+ 52)%
+(1 - 5152)% +(s1 — 32)%

1
4

where we have introduced the set of variables

[1 + 5182 8% + (51 + 52) p™ + (51 — 52) qa}

% =(p, 5% ¢%) = (W —¥2 Y+ -9, -yt YT -2, ),

‘gﬁ ﬁSi plagquette

(V.67)

(V.68)
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which exploits the fact that, due to the normalisation conditions, for each direction only three
variables have to be determined. For the sake of completeness we also report the inverse mapping:

1
Vi = 1(1 + 5% 4 2p%)

1
U= 11— s 427

4
(03 1 (63 (6%
¢7+:Z(1_5 —2q%)
1 (64 (63
Yoo = (45 =20

(LT3

(v69)

The self-consistent equations for the probability vector describing “up",* left", “right" and “down"

rooted trees made of square plaquettes read:

Y =T la,b,c d Yl g, 4

l u T
X E : wSl7527t27t1wtl7537347t3wt47t3755756w587t17t4757¢8881 ¢3756¢35s4

Sp\{s1,52}

e, =9 la,b,e,d, Pl g )

d l u
X E : Wsy,s2,t2,t1 wtl733134;t3wt47t3755156w587t17t4737w8283w8851 '¢5756

Sp\{s5,56}

Yl =0 la,b,c,d, Py, )

l d T
X E , wsl752»1‘/27751wtl7537547t3wt47t3:35’36w587t17t4757¢5881¢5283¢8584

Sp\{s6,s7}

Wl =W la,b, e d bt T, )

u r d
X E : Wsy,s2,t2,t1 wtl733,547t3wt47t3755,56w387t17t4737¢S756'¢S584¢5283

Sp\{ss,s1}

and the normalization constant is given by 2® =} . 8 Vsis;-
k)

(V.70) ’ Eq_psi_plaque

We found more convenient to focus on the variables ¢% = (¢f.,.¢% gba) odpse s q“) for
which one can readily derive a set of self-consistent equations from :

P = &¢a,b,c,d, ¢, ¢l ", P = Y — T

s = ®[a,b,c,d, ¢, ¢!, @7, ¢ = Y, + T2 — T, — TG

qa = @g[(% ba C, d7 ¢u7 ¢l7¢7"’ ¢d] = \iig+ - ‘il?f»— )

(V.71) ’ Eq_psqg_plaqus

with o = u, [, r,d and where the ar ur‘pglt of the functions in the rightest hand side is given in
terms of the transformations (Ié%ﬁi ['he solutions describing the ordered phases and the corre-
sponding phase transitions are diverse for different values of the parameters a, b, ¢, d. They
are however characterised in general by the spontaneous symmetry breaking associated to ferro-
magnetic p® # 0 or the antiferromagnetic ¢® # 0 order. In the paramagnetic phase there is no
symmetry breaking and hence p® = ¢* = 0. In the following we will focus on the different

solutions of such system of equations.
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V.4.4.2 Fixed points and free energy

The paramagnetic solution. The paramagnetic solution is of the form ¢pp = ¢} = qblP =
Op = ¢C}D = (pp = 0,sp,qp = 0). Therefore, our study should focus on the variable sp. The

sel consmten{ eqluatlon we are interested in for the paramagnetic phase is the second equation
in n order to study the paramagnetic solution we introduce the following quantities:

a—2> c—d a+b—c—d
_ - e S - - = V.72
v a+b+c+d’ 4 a+b+c+d’ ¥ a+b+c+d ( )

The previous equations can be easily inverted as follows:

a 1 b 1

N . | 9 v _Z
i brerd gl tEt, o=l

c 1 d
¢ t(1—z42
aibrerd a2,

14+ 2z—2zx),
) (V.73)
— =—-(1-2-2
atbtord a1 TFTW)
The latter equation allows us to write the vertex weights as linear functions of x, y and 2z up to an
irrelevant factor (@ +b+c+d)~!

The self-consistent equation for sp takes the following form:

T+1 T+1
(a+b+c+d) (@ —y)(1+27)[1+2 T2 *'s%—éqzo, (V.74)
T-1 T-1
with ) ) )
dz*+2° =1 (a+b)(c+d)—(a—0b)
T(a,b,c,d) = = . V.75
(@bed) = 1~ (s b) et d) = (c—d) (V.75)
Apart from the ‘trivial’ solutions sp = 1, —1, the paramagnetic solution is given by:
1—+v7T
VI (V.76)

SPZW.

. ara8_plaquette . . X X
Equation suggests that the paramagnetic solution depends effectively on a single parameter,
and it remains unchanged if the vertex weights a, b, ¢, d are modified in such a way to preserve the

value of Y. Note that the limit of infinite temperature for the eight vertex model, i.e. a = b =
¢ = d, corresponds to the solution sp = 0 which implies ¥¢, = ¢ = ¢¢_ = y*, = 1/4,
Va € {u,l,r,d}. We anticipate that this result is also obtained for the sixteen-vertex model. On
the contrary, the limit of infinite temperature for the six vertex model @ = b = c and d = 0 (or
more generally when one out of the four vertices is absent) corresponds to a non-trivial solution
for sp which implies ¢, = ¢®_ # YT =2 .

The free energy per vertex can by generically written as:

gflab.e.d g = [ 3wl o] v [ 3l e

51,82 51,52
V.T7)
—In w w w w z/Jl 1[1
81,82,t2,t1 Wit1,83,84,t3 Wia,t3,85,56 Vss,t1,t4,57 Vsgsq 5756 5554 253
Sp

where eventually one can use the variable ¢ to express ).
By inserting the paramagnetic solution in the previous expression one obtains:
(2° — y?)* (=3 + 22% + 2y° — 2%
(—1 4 222 + 2y% + 22)

1
B frla,bc,d) = In2—In(a+b+ctd)—; In [1+ } . (V.78)

’change_xyzt

’ eq_paral8_plac

’sol_para_SveJ

’ Eg_free_enerc
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e _xyzt
where z, y and z are given in terms of vertex weights in Eq. Wﬁnction is clearly invari-
ant under the exchange of a with b and ¢ with d together with the simultaneous exchange of the
weights of the ferromagnetic vertices with the antiferromagnetic ones.

Ferromagnetic solutions. In order to study the other phases of the model we introduce the
following functions of four variables (which will be the four vertex weights):

2 2 2
wy — ws — (w3 + wy)
vV\wi,wy, w3, Wy ) =
( ? ) ) ) w%_wg_(wg_w4)2

(V.79)

1 w? — w2 — w? — w?
Y(wy, wo; ws, wy) = =1 1L -2 =3 4 V.80
ot ) = 30 g o+ auod —wf g =)

and

(wf — w3 — (w3 — wg)*) (Wi — wi — (w3 + wy)?)

(w3 —w§ —w} —w})y/(w} — w§ —w} —w})? — 4w}

p(wi, wo; w3, wy) =

(V.81)
(2wiwi + wi(w? — wj — wi — wi))wi

2(p,2 2 2 2,,2

X )
(w%(wl(wl — ws — w5 — wi) + 2w§wi) — w3w4(—w% — w% + w% + wﬁ))

Note that v, 3 and p are symmetric under the exchange of ws and wy. In the following we will
describe only one solution among the two possible ones allowed by symmetry. Clearly, for any
ordered solution, an extra solution generated by arrow reversal also exists.

The ferromagnetic solution of type a is homogeneous along all the directions (meaning that

Garm = Glpy = g = Dhpy = PLpy) and it is given by:
aFM = PaFM = (pFl =/v(a,b;c,d), sp1 = 1,qr1 = 0) Vo =u,l,r.d. (V.82)

It implies ¥ = 1_; = 0 and spontaneous symmetry breaking since ¥4+ # t__. The
associated free energy and magnetization read:

6 fa-FM(aa b7 c, d) = E((L, b7 c, d)

marm(a, b, c,d) = p(a,b;c,d) .

(V.83)

The extension of these results to the other phases is rather straightforward. The ferromagnetic
phase of type b is characterized by the same functions, with the exchange of b and a. Moreover

for the solution along the horizontal edges one finds ¢é’_}M = (pF2 = —/v(b,a;c,d),spy =

1,qr2 :0>.

Antiferromagnetic solutions. Antifer omag etic orde ed Rglases can also be characterised by
the functions v, 3 and p defined by eqs. (V. . .81)). In particular, for the c-AF phase,

the solution of the self-consistent equations is given by:

g.AF - ¢C—AF — (pAl — Oa SA1 = _]-a qalr = V(Cv da a, b)) ) VOZ — U,l,’l",d . (V84)

It implies ¢4+ = ¥__ = 0 and a staggered order with ¢, # _,. The free energy and
staggered magnetisation read:

5 fC—AF(aa b7 c, d) = 2(67 da a, b)

mC—AF(a7 b) c, d) = ,U'(Ca da a, b)

(V.85)

nu_plaqg

mu_plaqg

’sol_Fl_plaq

’f_m_solFl_ple

eq:solAF
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The solution dominated by vertex of type d is of the same form as that of vertex ¢, by exchanging
of the vertex wefght c and d. The solutlon of the self-consistent equations corresponding to AF
order eq. l@ms qd;F = qc Ap- Meaning that the c-AF and d-AF solutions only differ by
a sing along the horizontal edges. This corresponds to our expectations since a d vertex can be
obtained from a c one by reversing its horizontal arrows.

V.4.4.3 Stability of the solutions

Similarly to what was done in the previous section, we investigate the stability of the solutions
by studying numerically the stability matrix

B _ déf‘
.7 d¢jﬁ

o, B=ul,dr i,j=123. (V.86)

The elements of this 12 x 12 Jacobian should be evaluated at the fixed point of the recursion
equations of interest. We recall that: & = p®, &3 = s and ¢ = ¢®. Then, the points of the
phase space where the maximum eigenvalue of the matrix is equal to one, should be compared
with the results obtained from the study of the free energy.

V.4.4.4 The phase diagram of the six-vertex model

. . ara_8vertex . .
The solution presented in eq. {I% 7§i for d = U, describes the paramagnetic phase of the six
vertex model. In this case the fixed point is characterised by a value of sp which lies in the interval

—1 < sp < 0 while takes the values —1 or O at the transition. Interestingly enough, the study of
the stability in the Pl\il Qléacsa?bSh%\gs that, as soon as one of the vertex weights is set to zero, the
stability matrix (l%ggb has an eigenvalue equal to one. This calculation allows us to show explicitly
how the introduction of a hard constraint radically affects the collective behaviour of the system: it
turns the disordered phase into a critical one. The normalised eigenvector associated to this mode

is of the form
63013 = (1/27 07 07 _1/27 07 07 _1/27 07 07 1/27 07 0) ) (V87)

which we rewrite symbolically
Sp = (6p", 05", q"; 6p", 0%, 8¢%;6p', 05", 64" 6p", 657, 8q") (V.88)
One can actually check that a set of variables of the form

pl=p =—pl=—pl=p st=s"=s=s"=s and ¢°=0, Ya=u,l,dr (V.89
fulfills the equations. In particular, it gives rise to an undetermined system of equations. The
equation that fixes the mutual relation between p and s without fixing their value separately is
given by:

[(a—b)Q—CQH4 [m—1}p2—4ms+(1+5)2}=0. (V.90)

’ Matrix_stab_g

. . . . . . ara 8vertex
The paramagnetic solution of the self-consistent equations p = 0 and s = sp given in eq.

verifies this equation.

The ferromagnetic transitions are of the same type as those found in the single vertex proble
they are dissg%lfinulogs, towards a completely frozen phase without fluctuations. From eq. (V.
and @ﬁﬁh—rﬁg case d = 0 corresponds to the completely frozen solution with pg.pm = 1,
i.e. ¥4+ = 1. The free energy f,.pm = — In a and the magnetisation m,.pyv = 1 are identical to
the exact results in the square lattice.

Fl pla
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The transition lines are gve% bé/ a = b+ ¢, where the paramagnetic solution sp = 0 Vb, c,
as can be read from (E 71§i At the transmon, the free energy of the PM and a-FM phase give the
same value: 3 fp(ac,b,c) = B form(ac,b,¢) = —Ina,.

The antiferromagnetic transition for the Bethe lattice of plaquettes becomes qualitative differ-
ent from the one obtained in the single vertex tree. The small loops of four spins that are taken
into account in the calculation with the plaquette allow for the presence of defects in the antifer-
romagnetic phase. The transition becomes now a continuous transition with a singularity of the
second derivative of the free energy. Still, the transition point coincides with the well know value
¢ = a + b. For ¢ = a + b, the paramagnetic solution reaches the critical value sp = —1. Beyond
that point (where this solution has to be disregarded in favour of the ordered antiferromagnetic
solution) the solution becomes imaginary. The transition is continuous, the magnetisation m..Ar

around the transition point is given by:
[e— cC

tizat 6vert
which gives the mean-field exponent 5 = 1/2 (see Fig. |§ 20). pagnetization-évertex

V2(a +b)3((a + b)? + ab)
Vab((a +b)* + ab((a + )2 + ab))

mc—AF(C; a, b) = C —c )3/2:| ’ (V9l)

1 T : -
q A6<='1
p=q —1<=A6<=1 —
pAg=1 ——
05 i ‘p AG >=1 [ ] 7
P, g o
-0.5 ]
R . . .
-1 -0.5 0 0.5 1

Figure V.19: Schematic picture of the solutions of the six vertex model on a tree made of plaque-
ttes. The solutions for p and ¢ are shown simultaneously. The c-AF solution p = 0 and s = —1
is shown in green. The ¢-AF transition occurs at Ag = —1, where s = —1 and for ¢ > a + b the
value of s remains frozen at s = —1 while ¢ > 0. The PM phase solution is shown in red. As far

—1 < Ag < 1thesolutionis (p = 0,—1 < s < 0,q = 0). The solutions at the a-FM transition
which corresponds to Ag = 1 are shown in blue. For larger values of a, Ag > 1 and the solution
is frozen at the value (p = 1,s = 1,¢ = 0) (shown in pink).

X ig: free—energy—-6vertex . .

In Fig. mon between the free ener y }g)tbet%anoeg(for the single vertex
(fsv), the plaquette (fy;) and the two dimensional model (f24) [24]. In the left panel we show
the free energy in the paramagnetlc phase and fe omalggletlc e%hases asa functlon of a/c moving
along the line ab = 2. The right panel of Fig. V.21 shows the free energy in the paramagnetic
phase and in the antlferromagnetlc phase as a functlon of a/c, moving along the line a = b. The
figure clearly shows that the discontinuity of f;, at the transition are smoothed out by the inclusion
of small loop fluctuations.
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In the spin ice point a = b = c the entropy obtained for the tree of single vertices is
v = —Bfsv =In(3/2) ~ 0.405 , (V.92)

i.e. the Pauling entropy. The result obtained with the plaquette is instead

3
Spr = —Bfp = — ln 6 = 0.418 . (V.93)

thatf obtalned b Igleb for the two dimensional model Sy =

This result goes in the direction
ree—enerq

(3/2)1In(4/3) ~ 0.4315 (see Fig, V.
. . ‘e—energy—6vertex
As it can be seen from Fig.|V.2I[the Tree energy of the frozen ferromagnetic phases is the same

for all the three cases, while in the paramagnetic and antiferromagnetic phases it generically holds
f2d < fpl < fsv'

08t -
0.8 M. 0.6 1 E
£04 t \, -
L 06 | 0.2 :
< ol
2 03 035 04 045
E o4} ]
alc
cavity single vertex
0.2 | cavity plaquette 1
0

0 02 04 06 08 1 1.2 14

alc
Figure V.20: Staggered magnetisation as a function of a/c along the line b = a. The red curve
shows the result obtained with the plaquette, i.e. a continuous transition, while the green curve

shows the results obtained with the single vertex, i.e. the transition towards a completely ordered
phase. The inset shows the mean-field exponent m?2 gy =~ [(a — a.)/d].

Note that he prope ertles dlSlC ssed }Lnsofar are a general consequence of the form of the func-
tions in eqs. 1' ’’’’’ .31)), independently of the precise specification of their argu-
ments. Similar conclus10ns hold when any out of four types of vertices is missing. Note in fact
that for w; > wo, w3 and wy = 0 one recovers the following results:

v(wr, wo; w3, 0) = v(wi, we; 0,wy) =1 (V.94)
Y(w1, wo;ws, 0) = X(wy, we; 0,wy) = — Inwy (V.95)

and
w(wy, wa;ws,0) =1 (V.96)

while for wo = 0 and w1 > w3, wy # 0 they all take a non trivial value. th% thesvgfiEthts 1Oaf AF

vertices (c or d) vanish the phase is frozen since ;x = 1 and X = cte (see eq.

V.4.4.5 The phase diagram of the eight-vertex model

Quite a different behaviour emerges in the more general eight vertex model when one considers
the plaquette model instead of the tree of single vertices. While with the single vertex one finds
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0
-0.3
0.4 | /,\\ 0.2
-05 4
-0.4
w 06
Q. 07! ] 06 |
2D PM
0.8 | ——— PM cavity vertex ] — 2D c-AF
— PM cavity plaquette -0.8 2D PM 1
0.9 1 b-FM cavity = 2D 1 cavity plaquette -~
a-FM cavity = 2D cavity single vertex
-1 . . . . -1 . .
0 0.5 1 15 2 25 0 0.5 1 1.5 2
a/c alc

Figure V.21: The variation of the free-energy density of the six-vertex model along two paths in
the phase diagram indicated in the insets, a/c = b/c and a b = c?. Left panel: free energy of the
paramagnetic phase for 0.6 < a/c < 1.6 for the Bethe lattice of single vertices (red curve), of
plaquettes (blue curve) and in the two dimensional model (pink line). Outside from this region,
in the ferromagnetic phases, all the calculations lead to the same free energy (green and light blue
lines). Right panel: free energy in the paramagnetic phase (a/c > 1/2) and antiferromagnetic
phase (a/c < 1/2) obtained from the Bethe lattice of single vertices (red curve), of plaquettes
(green curve) and the exact results on the two dimensional model (pink and blue line).

that the addition of vertices of type d does not change the discontinuous frozen-to-critical nature
of the transitions in the six-vertex model, with the plaquette one sees that they actually do. We
stress that, despite these differences, the location of transition lines are identical to what was
obtained with the single vertex tree and hence identical to the two dimensional solution which can
be parametrized by the anisotropy parameter Ag.

When a,b,c,d # 0 the free energy at the transition points shows a singularity in its first
derivatives corresponding to a first-order phase transition. Indeed, one can check that

fr(wa + w3 + wa, wo; w3, wy) = L(we + w3 + wa, wo; w3, W), (V.97)

where w3 and w,y are the statistical weights of FM or AF vertices if the transition under consid-
eration is a PM-FM or PM-AF transition. The magnetisation at the transition shows a finite jump
towards a non-frozen ordered phase.

Let us now focus on the a-FM-PM transition and look closely at the equations at the transition
where a = b + ¢ + d. In particular, if we try a solution of the type ¢ 1 = (p&™, 54 ¢atM —
0), it turns out that the system is once again undetermined. The equations for p?t™ and s%FM
become dependent. The relation between p?™ and s¢™ defines a line of fixed points joining
¢p[b+ c+d,b,c,d] and ¢ pm[b + ¢ + d, b, c,d]. The dependence between p?™™ and s¢™ is
implicetely given by:

c+d)b o c+d)b . a
V(perr, &™) =4 {(M) + 1} (pe ™2 — 4(20d)sc M1 — M2 _ g (V.98)

One can actually check that the “critical" modes of the, matrii( Zy o8 at g = a. are defined by the
L. R ritica dromagnet . .

tangent derivative to the level curve defined in ;I%?é) T'he eigenvector with maximal eigenvalue

(equal to 1) evaluated in the paramagnetic solution is of the form

6Q)OCP e (58a = O’ 6pa = 6pcp’ 5qa = 0) Va = u, l, T, d (V99)

’ Eg_critical_ i
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The eigenvector associated to the unstable ferromagnetic mode is given by :
50 ™ — (55 = 57T 5p* = 5p@™ §¢* =0), Ya=wu,l,rd. (V.100)

Then, one can verify that for both solutions (and in general for the points along the line) it holds

05" /op" = —p /75| y—y, = 0 (V.101)
550 /5pa M — | b 2\/ 2¢d 4+ b(c+d)/ \/ b(c+ d), (V.102)
. . . . . ritical ferromagnet
where 7y, and -y, stand for the partial derivatives of the function -y defined in eq. W

to p or s.

Similar considerations also hold for the other transitions occurring in the model. For instance,
at the transition point towards the c-AF phase, c. = a+ b+ d, on can identify a line of fixed points
of the form ¢>AF = (piAF = 0, 554, ¢TAF), where 55T and g2 lie on the curve:

dla+b)1, care | A a+Dd) . ar -AF\2
411+ ——2|(¢° 4—— 25 1 ¢ = A
[ + =0 ](qc )"+ 5ap S + (1 +s)* =0 (V.103)

which connects the antiferromagnetic solution to the paramagnetic one.

Le% us aelsg)qerlotgt%nother important property of the solutions. To this purpose we consider

egs. as a transformation N of the weights:
(a',b',c,d') =R(a,b,c,d) . (V.104)

This transformation is an involution: X [X(a, b, ¢, d)] = (a, b, ¢, d). We may then express a, b, ¢, d
in terms of @', V/, ¢/, d’ in exactly the same way.

One can note that Y[da’, ¥, ,d'] = v]a,b,c,d|, or similarly Y[a,b,c,d] = v[d, ¥, d].
Moreover, fpla’,b', ¢, d'] = farm|a,b,c,d]. Then, one can map one solution into the other:

1/}}—3— [CL, b7 c, d] - 1/}5— [CL, b7 c, d]
YF [a,b,¢,d] + 98 _[a,b,c,d]

_ Sa-FM — Pa-FM [a', v,d, d/]
1 4ppld, V., d)

_ wci—EM[a/7 b,, Cl, d/] _ @Zji{M[a/a b/, Cl, d/]
= wi_ErM [a/7 b’, C’, d'] + wiEM [a/7 b’, 0/7 d’]

d Vicgvg(resla.hgshe transition point can be recognized as the fixed point of the transformation
Zl%ﬁgf which 15 consistent with the transition reoip.t iP two dimension at the critical value a, =
mme t ields

b+ ¢ + d. Thanks to the mapping (V.103) the infinite temperature solution ¢pla,a,a,a] can

be mapped into the completely ordered state ¢,.pm[a’, 0, Q, 0]. At. the transitio (pgjgg tt]ilggghferromaqnet
éplb+ ¢+ d,b,c,d] # ¢arm[b+ ¢+ d, b, c,d], but the line described by Eq. (V.98) preserves

some continuity between the two solutions. The same duality holds for the solution found for the

single vertex Bethe lattice where the free energy of the paramagnetic phase can be edeinvtq(e) iohts

the free energy of the completely frozen ferromagnetic solution under the mapping N :E%% )

For the disordered points lying on the surfaces a + d = ¢+ bora+ ¢ = d+ b in the
paramagneti ha_sgnvgfr: ha_vfeii B4 Cg]in"ggg Sgg%teen}grgy at these po}nps computed wiFh the single
vertex tree 1‘%% i()i 1S fﬁe same as 3f gagiﬁteeEBl%%ILetfe model and coincides exactly with the exact
result of the two dimensional model [24]]. This can be understood thanks to the transformation N:
it maps these PM regimes to the frozen FM phase of the six-vertex model and since loops in this
phase are irrelevant, the free energy on the Bethe lattice is the same as in two dimensions.

spla,b,c,d] =

(V.105) y symmetry_ fie:
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V4.4.6 Summary

In summary, we computed the equilibrium phases of the six- and eight-vertex model defined
on tree-like lattices. The nature of the Ea%sle trgnsmons d%pend upon the elementary unit used for
the construction of the tree. In Table. |V.3]we Teview the nature of the phase transitions obtained
with this approach. Note that the location of the transition points we obtained corresponds exactly
with the solution of the 2d model. However, the critical exponents of the finite dimensional model
cannot be reproduced by this approach.

6V single vertex | 8V single vertex 6V plaquette 8V plaquette

PM-FM | Frozen-to-critical | Frozen-to-critical | Frozen-to-critical | Frozen-to-critical
PM-AF | Frozen-to-critical | Frozen-to-critical Continuous Frozen-to-critical

Table V.3: Different kind of transitions found in the six- and eight-vertex models defined on tree-
like lattices. The comparison with the 2d behaviour is encoded by a colour rule: the text is coloured
in blue when we find agreement between the 2d model and the BP approximation; in red when
contrarily the model on the trees does not behave as the 2d one. The PM-AF transition for the six-
vertex model in the tree of plaquettes is black because a KT transition cannot be captured by a BP
approximation. However, we stress that the plaquette model constitutes an important improvement

v 6 8 vertex]| OVer the single vertex approach which predicts a frozen transition in this case.

V.4.5 The sixteen-vertex model
V.4.5.1 The single vertex model

In this section we study the sixteen-vertex model defined on the tree of single vertices. One
defines the probabilities for the rooted trees ¥% 7, with o € x 16 = {wy,v9, ..., v16}. In the study
of the recurrence equations one is only interested in the value taken by the spin on the missing edge
of the root. Therefore we introduce, just as before, the cavity probabilities ¢ = ek (s<iqu> =
+1) to find a positive spin. It is given by:

wu d}z d_yju wz d_yju ¢Z dyju wl d—yju ’QZJZ dju ¢Z«}11—>] w:}ls—ﬂ ¢:}16_>]
1/)d ¢’L —)] 1/} —)] _’_w%s—)] +'¢11)7_>] +1M11_>] _i_wl —>j wz —)] _I_wz —)]d

V11 'U13 V15

- l
w’t ¢’f}1*>] + 1/}:)4*>j + 1/]'7{)64).7 + w;’?*).] + w’f}g}*}] + 1/}%1%‘] + /l/]’fll)l‘).j 1)15*).]

w ’QZJZ —>] wz —>g d}z —>] ¢Z —>j ’QZJZ —>] w:}l?] w:}lzm w;l?]
(V.106



V.4. VERTEX MODELS ON BETHE LATTICES 143

Along the same reasoning outlined before, one gets the following set of self-consistent equations:

Wt =0a,b,cd, et gt gl o]
= o vt b (g (1= ) et () (1 - g g
e (1 = B+ (1 — ) + (1= )yt + (1= g (1 =) (1 — "))
V'a,be,d, e, ", o]
%[a PR b (L= Pl (1) + (L= 9L~ ")+ d (1 — (1 — )
e (lph(1 =) + (1 — g + 41— )l + (1= (1 — ) (1 - )]
vt = Wa,b ¢ d,e, vt 0 Y]
= o v et + 0 (- gt = g +eur (- g1 - 9) +d (191 !
(1= gt + 47 (1= vl + (1 — ¢l + (1= y") (1 = w1 - )]
[a,b,¢,d, e, 0%, v, !, ]
[a vt 4 b (1= y")e" (1= g% + ey (1 — ¢ (1 —v?) +d (1 —9") (1 — 7)o"

d}’f

_
1
— L
e (W1 = 97l (1 =) (1 — )Y+ (1= ) (1 — )1 - vd))]
(V.107) ’psiU_l6verte)

— .. . . lbs4d 8vertex
where z*=%L%" are normalisation constants (different from those defined in eq. n order

to obtain AF solutions, these equations must be studied on bipartite graphs as in Eq.

We consider here the case in which all the vertices from vy, . .. Ev%ﬁ h'ﬂzg etlrlges}?me weight e

and there is arrow reversal symmetry. The fixed points of the egs. or the sub-lattice A
are the following :
OPM: Y =vh=vp=9f =3

(i) a-FM: M = Vhrm = Vorm = Vpm = ht(a, b, ¢, d,e)
(iil) b-FM: ey = wg_FM = hy(b,a,c,d,e) wé_FM =Yy em = h—(b,a,c,d, e)

(iv) -AF: ¢ sp = Yl ap = hi(c,b,a,d,¢) Vear = Yiar = h-(c,b,a,d,e)
(v) d-AF: z7ZJ2L_AF - z7b2_AF = hy (da b,c,a, 6) 1/}3_/\]3 - wil_AF =h_ (da b,c,a, 6)
with

a—pFf—v—0—2€
2\/(a B—y—0)2-

hi(a,B,7,0,¢) =
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Analogously to what done in Section X3 e proceed defining:
Zull, ", ) = a [l gt (1 - ) (1= (1= 97)(1 - %)

b [(1— )y (1 — ) + 9 (1 = )y (1 - yd)]
e (1 — ) (1 - ¥l 4+ (1 — gy (1 - g)]
+d [ =gheret sl - —eh]

+e [$1 = vpred + (1 -ty -y (1 - ud)

gl (1 — )+ (1= P (1 = p)r (1 — v

(1= gyl 4+ (1= ) (1= y)(1 - v

+ (1= $)(1 =) (1 — ") + gy (1 - yd)]

which in the limit e — 0 gives back eq. (jﬁy The general expression for the free energy of the
sixteen-vertex model on the Bethe lattice reads:

1
Bila.b.c,d e by, apa] = —5 (I Zufap] + In Zufaba) +
(V.109)
—In Z(lr) [wlh Tﬂg] —In Z(lr) [1/Jl27 Wﬂ —In Z(ud) [w%a ¢g] —1In Z(ud) W%a WI]) s
71 :zud
where Z,y and Z,q are defined in eqs. 1‘%%?) gnd %gé)u Once evaluated in the solutions
outlined above the free energies of the different phases are:

b d+4
ﬁfpzﬁf[a7b’c7d’e,¢p]:—ln{a‘F +02+ + 6}
B b d . 2e?
ﬁfa—FM - /Bf[aa Gy 7671l)a—FM] =—1n |:a - m}
B flabed — b 2¢7 (V.110)
ﬁfb—FM—Bf[a> y Cy 567¢b-FM]_7 D[ 7m] ’
9 2
8w = Bflasb,c d e = —In [e— —= ]
) 2
Baae = Bflasb.cd buad = ~In[d - — ]

ix_Jac
We study the stability matrix introduced in eq. (I?Séi now in the case e > 0. The eigenvalues
associated to the paramagnetic solution ¢ p are:

5o 3a—b—c—d
' atbtcetdtde
—a+3b—c—d
b= e d T e
@ (V.111)
[ a+b—3c+d
BT atbtctddtde
a+b+c—3d
L=

Ca+b+c+dHde

’free—energy—(

’free—energy—j

’ stability_16_
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with the same eigenvectors as before. Overall the stability is controlled by the condition:

(1+ E3)(1+ Ey) — (1 = E1)(1 - E»)
(1+ E3)(1+ E4) + (1 —Ey)(1 — Es)

=A% <1 (V.112)

with s 9 o )
—2— 2 —c—
iqé:a +b - —d*+2a+b—c d)e. (V.113)
2(cd+ab+e(a+b+c+d+ 2e))

This generalised anisotropy parameter implies that, in the presence of a non-vanishing vertex

weight e, all the transition lines are shifted by a factor 2e with respect to the value obtained for € ¢ 24 model
eight vertex model. This should be compared with the conjectured value A1g given in eq. (

and with the numerical results. The Bethe-Pej erl§ gp?goacg gives the expected quahtatlve be—
haviour. The conjectured Ajg given in eq. @Wmﬂm numerics. However we do not
any exact result to compare with and conclude about the expression, or even the existence, of such
A1 parameter.

V.4.5.2 The plaquette model

The previous procedure can be extended straightforwardly to the case of the sixteen vertex
model on the plaquette if one includes in the statistical weights a non vanishing e. This can be
done, for instance, through the following definition:

1
Wsy,s9,53,54 (a, b, c,d, 6’) = 1 {a/(l + 81828384) + b/(3183 + 8284) + Cl(8184 + 5253)

e
5(1 — 81828384)

Nertex weight_ 8vertex (V.114)

with cg’ b, ¢ and ¢’ defined as elg 63))._ With_this definition of Wg, ;55,54 the same equations

¢ sixteen-vertex model. Obviously, the calculations become

+ d'(s182 + 8384)} +

more involved.

As for the case e = 0 the paramagnetic solution is of the type ¢pp = ¢} = d)lp = @p =

¢% = (pp = 0,5p,qp = 0) and sp is the solution of the equation:
(a+b+c+d)*(2? —yQ){uZl sp +us sb 4+ uz 5P +uy sP—&—uo} =0 (V.115)
with
ug(z,y, z,t) = (1+1)* + 22
(L+t)* + 2 —2(1 4 22 — %) (¢® + ¢*)

ui(z,y,2,t) = — 72 — o2
ug(x,y, z,t) = —12t (V.116)
1—t)4 424 —2(1 4 22 — ) (2?2 + 42
u3($)yyzvt) = ( ) (2 ) )( ) = _u1($)y7zv _t)
e =y
u4($)yyzvt) = _((1 - t)2 + 22) = _UO(xvyaz) _t) :

’vertex_weight

’ eq_paral6_pl:

. X e xyzt . ara8 plaquette
The variables z, y, z and g were already defined in eq. . This equation reduces to eq

when ¢ = 0. Note that the presence of a non-zero value of ¢ implies a much more complicated
dependence on the parameters. We do not solve this equation explicitly, however one can show
that, as for the eight vertex model, the limit of infinite temperature a = b = ¢ = d = e corresponds
to the trivial solution sp = 0.
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V4.6 The phase diagram of the sixteen-vertex model

The phase diagram obtained with the Bethe lattice made of single vertices in qualitative in
agreement with the results obtained with the Monte Carlo simulations on the two dimensional
squared lattice model. All the transition lines are smooth in the sense that they become all contin-
uous when all possible vertices are present.

The results for the Bethe lattice model predict a uniform shi%tqfi %he fgitisci::lrl1 lirées‘}evg%tgxre—
spect to the eight vertex model, by a factor 2e (compare Eq. together with the crificality
condition |E,| = 1). This implies, for instance, that the critical value for the ferromagnetic tran-
sition occurs at @ = a;’ = b+ ¢+ d + 2e. This is not exactly the case for the two dimensional
squared lattice. While for small values of d and e, one numerically finds a2? ~ b 4 ¢ + d + 3e.
For large values of these parameters we see a deviation from the linear behaviour. We do not
have an analytic expression for the transition lines obtained with the tree of plaquettes. However,
from the numerical results and the MC data, one concludes that for the ferromagnetic transition
af’ < aP! < a2? (where the superscript sv, pl and 2d stands for single vertex, plaquette and 2d
model). SimiEﬁF) lgssteloléiig%rrtahrg_(itél&(g rtgaer%isitions.

In Figure [V.22[we report in the plane of parameters (a/c, b/c), for two fixed values of d/c =
e/c, the comparison between the transition line obtained with Monte Carlo simulations on the two
dimensional squared lattice (orange squared points), the tree of plaquettes (dotted-dashed blu da 16 2d model
dashed green lines) and the transition lines obtained according to the proposed value in Eq. %g%)

(dotted orange lines), together with the exact phase diagram at d = e = 0 (red solid lines).
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Figure V.22: Phase diagram of the sixteen-vertex model. The figure shows the projection of
the transition surfaces on to the plane of parameters (a/c,b/c), for two fixed values of d/c =
e/c = 0.1 and d/c = e/c = 0.2. Orange and red dotted lines represent the results obtained
with the cavity method for the tree of plaquettes. Green anéil\éiozlgt nggllines shows the proposed
behaviour of the transition lines as predicted by eq. @Tﬁr—ﬂmﬁmensional model. Black
dots indicate the transition point obtained with Monte Carlo simulations for the model defined
on the squared lattice. Blue solid lines represent the exact phase diagram in the limiting case
d = e = 0 (six-vertex model).
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V.5 Application to artificial spin ice: the 2d spin-ice model

sec:ASTletter ‘

In this section we demonstrate that a simplified version of the more realistic dipolar s lsnI D1dced 1
model in 2d, the sixteen-vertex model, or 2d spin-ice model as defined in section I% I Z']E 1S an

accurate model for the equilibrium behaviour of artificial spin-ice samples. Concretely, we use
numerical simulations and we apply the computations presented below in the Bethe lattice made
of plaquettes that yields a remarkably accurate approximation to the equilibrium properties of the
square lattice 2d model and real samples as well.

V.5.1 Equilibrium phases and critical properties

We studied the 2d model with the CTMC algorithm with single-spin updates. The usual finite-
size scaling analysis faces serious difficulties close to the SL phase since for a small weight of
defects one cannot easily tell the difference between a critical phase with §., — oo and a disor-
dered phase with L < £, < oo. The non-equilibrium relaxation method (NERM) distinguishes
these cases by investigating how the system relaxes to its equilibrium state from a completely or-
dered configuration M_(0) = 1. At a critical point the staggered magnetisation follows a power
law M_(t) ~ t=B/(vze) where 8 and v are the equilibrium critical exponents associated to the
order parameter and the correlation length and z. is the dynamical exponent. Instead, away from
criticality M_(t) decays exponentially. At short times the dynamic correlation length £(¢) < L
avoiding the difficulty raised by &., 2 L. This allows one to extract the critical temperature and
critical exponents of from the dynamic results.

I — L . -
0.9 e ]
0.8 = \ a < ac |
S 0.7 + , o |
I e \\\
= 06 | |
05 F |
,,,,,,,,,,,, t_,B/(VZc) a>ac
04 a = 0.300 |
10' 10 10° 104
t (in MCS)

Figure V.23: The relaxation of the staggered magnetization from M_(0) = 1 at different inverse

temperatures parametrized as a = e~ 18 with a = 0.27, 0.28, 0.29, 0.30, 0.302, 0.304, 0.306,

0.308, 0.315, 0.32. The dashed line is the best fit obtained with a power law decay. It gives a
critical value a, = 0.300 £ 0.002 with an exponent 3/(vz.) = 0.053 & 0.01.

A single crjtical power-law decay of M_(t) at 8. = 2.65 + 0.017 can be easily identified
from Fig. [V.23] showing that the SL phase is broken at finite temperature by the presence of
defects. A generalised set of critical e)%)onents 1r{<dependent of the choice of parameters, have
been defined in the eight-vertex model [24]. Among them § = /v = 1/8. Our analytic and
numeric results suggesj[that the élxteen -vertex model is in the same generalised universality class
with ﬁ = 1/8 as well [99]. Fixing this value for the ratio of equilibrium exponents the NERM
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yields z. = 2.35 £ 0.40 although a more accurate computation of 3 would be needed to give
further support to this result.

1 .
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Figure V.24: Staggered magnetisation M_ (a) and specific heat C' (b) as a function of the distance
to the critical inverse temperature 3, for system sizes L. = 30, 40, 50, 60. The (red) solid lines

are the results of the analytic calculation on the tree of plaquettes.

ites

In Fig. I%]ﬁ \flelazlesplay equilibrium CTMC data for M_ (a) and the heat capacity C' =
L=2((E?) —(E)?) (b) as a function of the distance to the critical inverse temperature, (3 — f3.)/Be.
These results are in agreement wétglstlhzeeNERM analysis and confirm the second order phase tran-

sition at 3. = 2.65. Figure %?}J also displays the analytic results for M_ and C (solid red lines).
The theory predicts a second-order phase transition with a systematic shift of the critical point by

around 5% towar(}s hi%her tem}gerature.
elaty lon

n—func
Figure I%i’gj (a) displays the space-dependence of the correlation function defined as

1
(2L)2 <Z Sij (8)Sigr jar(1)) (V.117)
.3

C(r,t) =

for different times after a quench from 8 — 0 to 5. = 2.65 (in log-log scale). The indices (i, j)
denote a site of the 2L x 2L square lattice made by all the arrows. S; ; = +1 if the arrow points
right or up and S; ; = —1 otherwise. With these definitions, r is given in units of ag/ V2. The
dynamic curves approach, for increasing times, the asymptotic equilibrium law that close to the
transition is a power-law with an exponential cut-off. The figure also shows, in an insert, a typical
configuration (see the caption for the vertex color code). In the bottom panel we present the
equilibrium C(r) = lim;_, C(7,t) in the c-AF phase (linear scale) and an ordered configuration
in the insert. The equilibrium correlations decay exponentially to a non-zero asymptotic value
co =~ 0.42. The approach to such configurations is fast if the initial state is a completely ordered
T = 0 ground state ut \iftiig very slow a]%(} OgErs via the coarsening process if the initial condition

. . S Budri . . . . .
is a disordered one [[159; 49]. Dynamical issues like coarsening will be discussed in the next
chapter.

Putting together the results of extensive NERM and CTMC n erigaldslignélgrgions for a large
range of parameters we obtained the phase diagram shown in Fig. ‘%Izcﬁ

V.5.2 Experimental density of defects

Dat

In Fig. l%i% we S fot the vertex population of each vertex type as a function of the canonical in-
verse temperature § = — In a/e;. The results of our MC simulations (colored lines-points) and BP
calculation (solid lglg% l1i'nes) are confronted to experimental data from the British collaboration

org
(data points) }fa [. In this experiment, spin configurations are visualized at the end of a sample
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Figure V.25: The space-time C(r, t) and equilibrium C(r) = lim;_,~, C(r, t) correlation function
close to the phase transition (top panel, S = 2.65) and in the ordered phase (bottom panel, 5 = 3).
The colored lines-points in the top panel are dynamic data after a quench from 1" — oo. The
equilibrium critical correlation function (black dots) is confronted to an algebraic decay ~ r~0-22
(dotted line); note that n = 1/4 for the Ising model. The insets show two typical configurations
in these conditions. Orange regions are c-AF ordered, black dots correspond to FM vertices (a
and b), red and blue dots correspond to oppositely charged defects of type e; d vertices are absent.
Connected correlations in the ordered regime agree with an exponential decay ~ exp(—r/{) with
& = 36.

preparation process in which the thickness of the magnetic islands grow by deposition. The Ising
spins flip by thermal fluctuations during the growth process. However, as the time scales for these
moves increase with the growing size of the islands, once a certain thickness is reached the flipping
times become tQo laarlggsa&g&he spins freeze. Using ideas pioneered by Edwards in the context of
granular matter éf [, the assumption that with this procedure one samples configurations from an
effective equilibrium ensemble at an effective temperature S is hence made. Moreover, taking the
vertices as being independent (mean-field approximation) one concludes (n;) = exp (—fg€;)/Z,
where Z is the normalization constant, an% 6% gsn%>§t{%%t€g from the data for (n;). This is the way
in which the data-points have been drawn

Our model reproduces quantitatively the experimental data at temperatures far enough from
the critical point. We argue that at temperatures close to 7, the annealing time leading to the
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d/c

Figure V.26: 3d projection of the phase diagram of 2d spin ice on the square lattice for a = b.

The thick (red) line indicates the SL phase ending at the KT transition point (d = e = 0 and

a/c =b/c = 1/2). The c-AF phase is indicated by the (blue) tetrahedron. In the rest of the phase
‘ diagram and for d < 2a + 3e + ¢ (otherwise a d-AF phase would be found) one finds a PM.

bhase_diagram

frozen configuration is not long enough to sample the equilibrium distribution because of critical

slowing down. It would be interesting to explore the connection between the experimental cooling

procedure and a cooling rate in the n mericill simul%ions. .Evidence for critical slowing down in
. ) . . elation—function i A N

this system was already given in Fig. I%ii (a) where the spatial correlation at different times after

a quench from 7" — oo to T close 7 are shown.

V.6 Extension of the mappings for constrained models to the generic
case

Most of the contents of this section is still work in progress. The included here in order to
give possible further directions in the investigation of generic lattice models. In particular, we
stress how to extend the known mappings to surface growth models and quantum spin chains for
constrained models when we include thermally activated defects such as monopoles in spin-ice.

V.6.1 Height representation, monopoles and dislocations

The sixteen-vertex model cannot be represented faithfully by a hgil l})ttconﬁguration because
of the presence of defects. This can be understood from eq. @._ﬁ_defect in the six-vertex
model is characterised by

S A1l =2¢ = fﬁ.df: 2 (V.118)
jer r

where I is a closed path around a vertex and g is its charge. Note that, in the continuum forlptlggqa—
tion, this equation is identical to the definition of a vortex in the XY model (see eq. . The
height configuration is not uniquely defined in the presence of defects. Just as for the XY model
in the presence of vortices, or for the electromagnetic ﬁe%% in ]tjlles Egecsaeglfgnof magnetic monopoles,
the function A is multivalued. This is illustrated in Fig. along any closed loop sourrounding
a defect the height field goes from some value h(x,y) to a different one h(z,y) + 2q. The shift
between these two values of the height at the same plaquette is given by the charge of the defect.
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<n >

Figure V.27: Averaged ensitg of vertices as a function of inverse temperature. The points are data
Morgan 1, Mor ate

01 b
from the experiment in [[196} 193] and [ 1s estimated as explained in the text. The solid colored
lines are the fits to the CTMC data. The solid black lines are the BP analytic results. The vertical

VertexData| dotted line indicates the critical inverse temperature.

In order to fix its value one must choose arbitrarily a branch cut starting at a defect site and going

to infinity or ending at a different defect of opposite charge. Then one can construct a height
configuration by recursion from a .Vertex conﬁgura.tlon using eq. (| oL ANy ath C wg%lgho%%e ot s
not go through the branch cut. This was already discussed in section [lII.T.4]and[lIl. 1.5} one needs

to fix a branch cut for each topological defect in order to define the value of 6, u or A.

0/\1ﬁ2/\1
1vok3a2
5\!1#1\!5
Ié&iﬂl
< <
OA1A2V3

Figure V.28: Height configuration presence of two defects linked by a branch cut shown in red.
Right: A Scrﬁ‘;"ngg%%ﬁ%%@} cillltgl;le crystal surface of Burgers vector b = (0,0, —ly) (picture ex-
tracted from [[156]).

. . ig:Dislocation . .
As shown in Fig. ranch cufs associated to defects in the vertex model correspond to
screw dislocations in the SOS representation. The height function of the vertex model can describe

the surface of a crystal. Screw dislocations are characterised by a Burgers vector b orthogonal to
the surface: b, = D(Pé 96 Qgt i(g)cr)lnsider a positively charged defect as the one showed by a white
circle in Fig I%]ig[ After going around it in the trigonometric direction, the height experiences a
brutal ‘climb’ which is equal to two times the height difference between NN in the BC lattice,

y:Dislocation
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i.e. a lattice spacing [y (see section %ﬁotations). Instead, for a negative charge, the
height experiences a brutal fall of the same magnitude. The Burgers vector is then b = (0,0, ¢)ly
pointing into or out to the bulk of the crystal.

In the following, we extend %l&eo%rglggnts used by Blote and Nightingale to study the AF Ising
model on the triangular lattice hgm six-vertex model with defects (sixteen-vertex model).
For the Gaussian SOS model, th asym Eostisc correlation function of two height variables at a
distance r is given by (see eq. %ﬁ%«h(o, 0) —h(x,y))?) ~ Inr. The long-wave length
behaviour of the system is then described by an effective Coulomb gas model:

Slel = [ [ it g7~ o) + BE. [ dip?(7) (V.19) [qrvortextnt:

where p is the charge density and E. =~ ¢, is the energy of creation of a defect. From these
arguments, one would expect defects to 1nt§ract via a 2d‘C0u!0mb po.tegtlal. This PW%%I}}%]O%S Moller2006, Sily
different form the 1/r form expected from dipolar interactions in 2d spin-ice samples [263} 1189}

188]].

V.6.2 Mapping into a quantum spin chain

The contents of this subsection are a prelude of the unfinished work we are doing in close
collaboration with Laura Foini. We are trying to generalise the known mappings between quantum
spin chains and constrained vertex models (six- and eight-vertex models) to the Efggp%gﬁl(i)%‘id
case. This is an old problem pointed out by Lieb and Wu more than thirty years ago [163]:

Find a non-trivial linear Hamiltonian that commutes with the transfer matrix for the
sixteen vertex problem.
IiebWuBook

E. Lieb and F. Wu , in Phase transitions and critical phenomena Vol. 1 bm];

In previous sections we presented two different approaches to show the relationship betwee | vy
a classical lattice model and a quantum spin chain. The first one, described in sectionﬁf
is based on the computation of commutators between the R-matrices of the classical model and
the local quantum Hamiltonian acting on two sites of the chain. Then, one has to prove that the
commutator [H,T'] vanish when the in erac_ticL)lr% Qﬁ{%‘}’g{%rgr(’f both models verify some equations.
The second one, described in section lﬁ f%f}; makes use of the Suzuki-Trotter decomposition to
write the partition function of the quantum model as a path integral (a sum for lattice models).
Then these paths are identified with configurations of a classical statistical model in the ‘limit
of continuous imaginary time’ A7 — 0. Both methods need a good ‘guess’ of the quantum
Hamiltonian in order to prove its equivalence with a classical model. In the following I motivate
our ‘guess’ and discuss the difficulties encountered to prove (if true!) its equivalence with the
sixteen-vertex model.

The R—matrix for the sixteen-vertex model is

w1 W11 W9 Wwr

R=| ¥ @ w6 @5 (V.120)
Wi W5 W4 W13

wg Wio Wwi2 W2

and the transfer matrix 7' = Tra(]]; R;) where R; reads

Rl RI2
R; = ( R g ) . (V.121)
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First of all we sh uldbﬁnd a £epresentation of the transfer matrix in terms of Pauli matrices. This
. lLlebWuBoo
has been done 1nﬁ

RI' = L(wi +wi) + F(wi — wia)67 + wied; + Wyl
R?? = %(wn +wi3) + l(wn —w13)07 + UJ50’ + w76,
21 _ 1 i ) (V.122)
R = J(wia + wi2) + 3(wia — wi2)67 + wsb;" + wed;
R? =  $(ws+wo) + 3(ws — w2)67 + w1067 + w156,
where
6G;i=19®..Q00;® .19 (V.123)

are L x L matrices and o; the usual 2 x 2 Pauli matrices. In our case, we keep only five parameters
a, b, c,d, e and we get
R'= 1(a+0b)+ (a—b)a + ed]

RP? = e+co +do;
124
R = e+dé; + co; (V-124)
RZ = 1(a+0b)+ 3(b—a)é? + €67
We rewrite the transfer matrix the symmetric sixteen-vertex model as
T:Trzﬁ a 8767 +06767 +e(6] +67) el+coi +doy
el+co; +dé; b6 6, +adc; 6 +e(6+67).
T (V.125)
The XYZ Hamiltonian eq. (%conserves parity such that terms of type
(+ + | exp[—ATh(i,i + 1)]| + —) =e =0 (V.126)

in the Suzuki-Trotter decomposition vanish. In the sixteen-vertex problems one has to include
these terms to fill the sixteen entries of the R-matrix. The quantum Hamiltonian must allow such
terms, and, for simplicity, give them equal weight. The simplest Hamiltonian verifying this is the
one of the XYZ chain in a transverse field:

hijig1 = J*6767 + JYV6Y6Y,  + J?6767, 1 + hoy . (V.127)
This Hamiltonian gives non-parity conserving defects with weight
— BT (J7+4/(J¥—J7)2+16h2
V(JY — J?)2 4 16h2
= (4 e8| — ) = L= (4 e AT ) = (V.129)

e

(++ |6—A7h(i,i+1)| + )= |h- e% (JY—J?)24+16h2 (V.128)

In our model, all these weights are equal to the weight of single charged defects, e. Complicated
expressions of this kind relate the parameters of the classical model: a, b, ¢, d, e, with the ones
of the quantum chain: J*, JY, J*, h, A7. Some function of a, b, ¢, d, e (as the parameters A
and I" for the eight-vertex model) should be found in such a %a% _t%%tmazfter taking the limit A,
we find a well defined function of J*, JY, J#, h. In section we found how to relate the
parameters of the classical model with the ones of the quantum chain for the eight-vertex model
via the parameters A and I'. The extension of this mapping would allows us to map the phase
diagram of the sixteen-vertex model with the phase diagram of the quantum problem.

In order to rigorously prove the mapping, we have to compute C; = [R;R; 1, h; ;1] for all ¢
and several system sizes L. Our goal i is now A ﬁngfg 7OJ Y, J# and h as functions of a, b, ¢, d and
e. Then following Sutherland’s ideas {[248J we compute these commutators for L = 2,3, ... and
try to find a relation between the parameters which do not depend on L. For small values of L, the
commutators do not give us any useful equation. The calculations become rapidly too complicated
for larger values of L and we did not converge to any concluding result proving the mapping.
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Dynamics in 2d spin-ice

VI.1 Stochastic models

VI.1.1 Microscopic dynamics

From a fundamental point of view, the evolution of any system, both classical or quantum, is
generated by its Hamiltonian. The Poisson brackets between a quantity A and the Hamiltonian
H (or the commutators for a quantum system) give the time-evolution of A. For a macroscopic
system a different approach has to be taken since the number of coupled differential equations
to solve make the problem forbiddingly complex. One usually deals with macroscopic variables,
constructed by averaging over microscopic constituents which evolve in ‘microscopic’ time scales
t,,. For instance, in hydrodynamics one describes the flow of a fluid by a density field instead by
looking at the precise location and momentum of each particle. By doing so, one ends up with a
theory for the study of the evolution of the system at large time scales s > 1.

We are interested here in systems in contact with a thermal bath. The latter is made by a large
number of degrees of freedom interacting with the system and providing thermal agitation. The
microscopic state of the bath is unknown but we assume that it is in a thermal state (by definition a
thermal bath is ergodic). Thus, the evolution of a system with Hamiltonian H coupled to a thermal
bath is modelled by a stochastic process.

Consider the probability P, (t) to find the system on a state £ at time ¢. It is then assumed that
the evolution of the system is a Markov process described by a master equation:

d
aPM(t) = [Po(t)Wop — Pu(t) W] (VL1)

oFu

where W, is the transition rate from state o to state . In classical statistical lattice models, even
though the Hamiltonian has been defined, one must equip the model with updating rules encoded
in the transition rates. A kinetic model is defined by both its Hamiltonian and the dynamical
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protocol chosen. As already mentioned when presenting Monte Carlo methods, a way to reach
thermal equilibrium at long times is to have a dynamical process that satisfies detailed balance:

Wou

Wiﬂg = eXp (—ﬁ(Eu — E;)) (VL.2)

where F,, denotes the energy of state 1 and 3 the inverse temperature of the bath. Then a choice

must be done for the dynamical rules depending on the physical situation one plans to model\lllontecc_:Irlo
the following we make use of single spin-flip Monte Carlo dynamics (see section lﬂll? i i

VI.1.2 Dynamical universality

At a first sight, the choice of the dynamical rules can seem quite arbitrary. However, the dy-
namical universality hypothesis claims that different updating protocols which share some com-
mon features display the same universal properties. A dynamical universality class is defined by:
(i) the dimension of the order parameter; (ii) the dimension of the system; (iii) the symmetries of
the model; (iv) the range of the interactions; (v) the conservation laws. Note that (i), (ii), (iii),
(iv) define a universality class in equilibrium critical phenomena. The relevant characteristic of a
dynamical process is the existence of conserved quantities which constraint the updates of the sys-
tem. An extension of the effective Ginzburg-Landau-Wilson (GLW) field theory has been used for
the study of dynamical collective phenomena. The classification of models in differ I%th%)%aenrlic
universality classes follows from Hohenberg and Halperin’s classical review article [116].

For concreteness, we focus on Zo symmetric problems with a scalar order parameter ¢ and
described by the effective Hamiltonian:

1 1 1
= [ ax {2(v¢(x))2 + 5o + qu ¢(x)4] (VL3)
We shall only discuss here two classes of universality commonly encountered in the context of

Ising-like problems:

. Hohenbergl977 .
(i) Non-conserved order parameter (NCOP) or Model A hr(s : There is no conserved quantity

during the evolution. In Ising spin systems, the szsggm can b be uldeateg by s;[%l?bsgni 9ﬂ61£)8 Two
important examples are Monte Carlo dynamics ([10] and Glauber dynamics [[TO3]. These models
are well suited to study of the evolution of a ferromagnet. A phenomenological GLW-like theory
can be constructed from the assumption that, for NCOP dynamics,, the %VLolllﬁi?n of the scalar
order parameter ¢ is ruled by the minimisation the Hamiltonian in eq. @Tﬁﬁrder parameters
‘flows’ towards the minimum of energy. This is encoded in the so-called time-dependent Ginzburg-
Landau equation:

0 0
— X, 1) = ——
where 7 is a stochastic function which models the presence of a thermal bath. The latter equation
is a field-theoretic version of a Langevin equation where the Hamiltonian plays the role of the
potential acting on a Brownian particle.

H[¢] 4 n(x,t) (VL4)

ohenbergl 977
(ii) Conserved order parameter (COP) or Model B ﬁTTG s the name suggests, the order param-

eter (the magnetisation) of the model must be conserved during the evolution. The system can be
updated by flipping pairs of anti-parallel sp}ns Th1s s is lé&llrtr)lwn as %awasaki dynamics and can also
be implemented in a Monte Carlo scheme \[IOJ “This kinetic model mimics the flow of particles
in a lattice-gas. From the mapping between the Ising model and a lattice-gas, the conservation

of the magnetisation is equivalent to the conservation of particles. A phenomenological evolution

1977

eq:GWLphi4
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equation can also be established in this case. Since the flux of ¢ must be conserved its evolution
follows a continuity equation, also called Cahn-Hilliard equation:

0

500 1) = —V - J +n(x,t) (VL5)

where the current J is given by the gradient of the energy variation —ﬁ%—g.

The dynamical exponents associated to the same model described by H with NCOP and COP
are different. The collective dynamical behaviour is independent of the choice of the updating
rules, as soon as they belong to the same class.

VI.2 Dynamics through a phase transition

Consider a system in contact with a thermal bath. At equilibrium, the thermal state of the
system is characterised by the external parameters of the bath, like the temperature or the external
magnetic field. One can set the system in an out-of-equilibrium situation by suddenly changing
this parameters. An infinitely rapid variation of the parameters is called a quench. By this simple
protocol the system is forced to evolve in an out-of-equilibrium manner towards the equilibrium
state characterised by the new external parameters. In particular, we are interested in quenches
which make the system evolve through phase transitions.

VI.2.1 Coarsening

For concreteness we focus on Ising-like problems with Zo symmetry displaying a second or-
der phase transition at some critical temperature 7,.. Consider that the system is initially is its
disordered phase (7' < T.) and then quenched into an ordered phase (T > T¢).
The system will then try to order in time. This will be done by growing locally regions of
parallel spins. However, the symmetry is not breaking during the dynamics and there is no reason
why the system should choose a positive or a negative magnetised equilibrium state. The tendency
to order locally cannot be satisfied by the global constraints imposed by the symmetry of the
problem. Regions where the order parameter take one among the two possible values grow in
time. The competition between them leads to very slow dynamics and the time needed in order to
reach equilibrium ¢, diverges in the thermodynamic limit. This slow dynamical process dﬂgg a:[392t518 2. Cugliandolo201
symmetry between different phases is known as coarsening or phase ordering dynamics [48]73].
Note that coarsening is a very usual situation in a large class of systems. Volcanic rocks, like
granite, made by different materials, have grains of different size depending on the cooling con-
ditions of the lava. Different cooling procedures such as quenches or annealing are commonly
gsed in matf:rial ‘science to change t‘he proPer‘fies qf metang CIaGHiOQ/lsg 7(;oarsenr[ﬂgo}r%gss ?8818 studied
in a El)e}xfr(gg()%vgg& of systems as binary liquid mixtures [240], soap froths [256]], superconduc-
tors ﬁmW
Consider the infinite temperature state of the 2d Ising model on an L x L square lattice as an
initial configuration. After the quench into its FM phase, the interactions will tend to order the
spins locally by alignin eqrcegg—gseie }}go%rssinThis will grow domains of spins pointing ‘up’ and
‘down’ as shown in Fig. i§ i; [[ By symmetry, the number of spins up and down should be equal. In
order to equilibrate one should correlate all the spins in the system, i.e. grow a domain of the size
of the system. Similarly to what happens at the vicinity of a critical point, the equilibration of the
system needs periods of time of the order of L*¢. This protocol provides a simple way to prepare
out-of-equilibrium states since, for large enough systems the equilibration time is very large. Note
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Figure VI.1: Snapshots of the 2d Ising model after a quench from infinite temperature to a sub-
critical temperature. Spins up and down are represented by red and white dots. Red and white
regions grow in time.

that this exponent z, is a priori different from the dynamical critical exponent z associated with
the divergence of the correlation time at a critical point.

VI1.2.2 Dynamical scaling hypothesis

The relaxation of a system after a quench from a disordered configuration into an ordered
phase exhibits the growth of ordered regions characterised by a typical growing length R. The
dynamical scaling hypothesis asserts that, after some transient time, the domain pattern remains
statistically identical during the time evolution. In the time regime where dynamical scaling ap-
plies (from now on called the coarsening regime) all the length scales become time-independent
when properly rescaled by R(t), the unique relevant length scale in the system. This looks sim-
ilar to Widom’s scaling hypothesis for equilibrium critical phenomena: the key notion of scale
invariance is extended to time evolution.

In view of our work on 2d spin-ice, we focus our discussion on NCOP dynamics of the Monte
Carlo type. A quantitative understanding of coarsening dynamics starts by the computation of
time-dependent observables such as the time dependent magnetisation

1 ZL2
=1

and the two-point self correlation functions

C(t, ty) = % D (Si(t)Si(tw)) 5 t> tw (VL7)
i
G(r,t) = 73 >_(Si(1)S;(#)) (VL8)
=1

where the brackets denote an average over independent realisations of the dynamics !, S;(t) is the
value of the spin on site 7 at time ¢ and 7 is the distance between sites ¢ and j. From these quantities
one can get an estimation of the equilibration time ¢.,. Dynamical scaling states that, after a long

1. In practice, it corresponds to running independent simulations using different random number generators.
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enough period of time such that R(t) > £ (where ¢ is the equilibrium correlation length), r > ¢
and r/R(t) < oo

C(t,tw) ~ M, Fo ( Jif))) , (VL9)

G(r,t) ~ M2, Fg < (VL10)

r
s)
Note that dynamical scaling has not been proved in general. In static critical phenomena, scal-
ing is justified from scale invariance and the RG theory. However, the application of standard
RG meth ]glrsais 216161§:h more subtle for phase ordering dynamics because of their non-perturbative
character [48].An RG theory providing a justification of the dynamic scaling hypothesis is still
lacking. It is usually assumed, and proved in a few cases (see below), that R grows as a power law
of time

R(t) ~ A\ t'/7 (VL11)

where 2, is the dynamical exponent defined by ¢, ~ L*? and A is a non-universal factor which
depends on temperature. Since this length scale is macroscopic in the coarsening regime, one
expects that the exponent z, will be independent of the microscopic specificities of the model and
defines a dynamical universality class. As we discussed in the previous section, for NCOP dynam-
ics we expect to get a single value z; = 1/2 for a class of different systems.

Dynamical scaling and the power law growth of R are strongly supported by many numerical
simulations and a fewer analytical treatments. The more relevant examples for our purposes are:

BrayBook
(i) Exact. In 1d systems exact solutions are available ﬁzf% . ?lot e kinetic Ising chain with Glauber
dynamics domains grow as t'/2 and dynamical scaling is obeyed.

(1) Mean field, ggpthe O(N) model evolving accordingly to the time—ggggrécﬁl}to(gigzburg Landau
equation , exact calculations can be done in the large /N limit }[73|. I'he typical size of the
domains also grows as /2,

(>iii) Allen-Cahn equation. In the thermodynamic limit, equilibrium is never reached. Instead,
there is a coexistence of ordered regions of order parameter ¢ = +1 separated by domain walls.
These are topological defects which carry an excess of energy. The relaxation of the system
proceeds through the annihilation of topological defects. A domain wall can be described by a
unit vector 77 orthogonal to the surface of the wall and pointing in the direction of increasing ¢
(in the field-theory formg%aption). At zero temperature, and close to a domain wall, the NCOP
evolution equation takes the form

U= 5 —[V . fn (VI.12)
where 77 is a unit vect E?gg@% 9 %t}% domain wall and v’ is the wall velocity. This is the so-called
Allen-Cahn equation [5]. For systems like the 2d Ising model with well defined walls carrying a
surface tension, the coarsening dynamics proceed through the minimisation of its local curvature,

hence called curvature driven coars%rg{lrg Tlglns tends to create smooth surfaces between ordered
regions (as shown in Flg‘% l] ).

Consider a spherical domain in a d-dimensional space. Its curvature is (d — 1)/R such that the
Allen-Cahn equation becomes: R(t) = (1 — d)/R which implies that the spherical domain de-
creases with the same ¢'/2 power law.

(iv) Scaling arguments. Inspired by the latter result for a single spherical domain one estimates

’eq:ScalingR(t

’eq:AllenCahn
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that the evolution of the growing length for NCOP dynamics follows the differential equation:

dR(t) 1
TR = & (VL13)

where T is the characteristic time to flip a spin in the Log%% g/'aélﬁol%gg%ging on the behaviour of
7(R,T') the growing length can follow different laws [154/1237]. One recovers the t1/2 growth for
systems which do not involve energy barriers scaling with R during the coarsening, i.e. 7 is a pos-
itive constant. For systems which need to overcome energy barriers growing with the size of the
domain the situation is more involved. For instance, in models with competing interactions such
as the Ising model with nearest-neighbour (NN) ferromagnetic interactions and next-to-nearest
(NNN) antiferromagnetic ones J1 and .J respectively. For this model in three dimensions, the en-
ergy barrier to remove an edge of spins in the domain wall is AE(L) = 4(L + 1).J,. By an Arrhe-
nius argument one can estimate the time needed to overcome this barrier by 7 ~ exp(SAE(L)).
This simple argument, gives a logarithmic growth R(t) ~ Int which has been supported by nu-
merical simulations [237/] The same arguments E{%sseedl gp an spherical domain can be applied to
COP dynamics and give a R(t) ~ t'/3 growth [120], in agreement with numerical simulations
and RG calculations.

(v) Geometrical properties. The distribution of hull-enclosed areas of 2d Ising-like models with
curv'ature drive.n dynamicslScElgilifi a(:?&&ggt’ezgr%%%lgrtlizc%ly. Thus providing a strong argument sup-
porting dynamical scaling [238,9].

VI.2.3 Topological defects

The reader has probably remarked that the central object in the previous discussion were the
domain walls. Their motion characterises completely the coarsening regime. Domain walls are
the simplest example of topologically stable structures (topological defects). Local fluctuations
cannot destroy them, their stability is responsible for slow dynamics.

Topological defects can be spatially extended, such as domain walls, or localised, such as
vortices in the 2d XY model. In general, extended topological defects arise when n < d, where n
is the dimension of the order parameter. Even for localised defects, one usually associates a length
scale to topological defects such as a typical vortex anti-vortex distance. Coarsening proceeds by
shrinking (i.e. annihilating) topological defects. The decay of topological defects after c?(ileiggi% Book
macroscopic system across a phase transition is also of great importance for cosmology E]%O]i

In the spin-ice model, one expects two kind of topological defects: (i) domain walls between
different ordered regions; (ii) defects in the form of charged vertices (monopoles). At high tem-
perature monopoles proliferate. After a quench into an ordered phase they are going to move
and annihilate. At the same time, ordered regions will grow. The evolution of extended defects
(domain walls) proceed through the reduction of the area of individual domains via, for instance,
curvature driven dynamics (e.g. R ~ ¢t~/2). A different mechanism should take place in order
to annihilate localised defects (vortices in the XY model, monopoles in spin-ice). Two defects
of opposite vorticity/charge should meet in the appropriate way to annihilate. It means that, in
spin-ice, two monopoles sitting in neighbouring sites can annihilate only if they share a spin that,
if flipped, recovers the ice-rules. Note that the orientation between localised defects in the 2d XY
model does not play any role in the annihilation rate of vortices. The interplay between these to
processes (domain growth and ‘directional’ annihilation of defects) has to be analysed in detail in
order to understand spin-ice dynamics. In the following pages we tackle this problem using Monte
Carlo simulations.
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V1.3 Model and methods

Here we address the dynamics of 2d spin-ice models with only short-range interactions, i.e.
a vertex model. For the sake of simplicity we focus on thermal quenches in the 2d square lattice
spin ice model built as a stochastic extension of the six-vertex model. We consider an L x L
square lattice V with unit aci'% \e}relcrl tpeexriodic boundary conditions (PBC). The model has been
already defined on section%my, let us recall some notations. We assign a Boltzmann
weight wy, o< e P to each of the k = 1,...,2* four-arrow vertex configurations. The energy
is H = Zigl €xnk, where ny is the number of vertices of type k. We set w; = wo = a,
w3 = w4 = b, ws = wg = c for the ice-rule vertices and w; = wg = d, wg = ... = wyg = e for

the 2-fold and 1—£old defects, respectively, ensuring invariance under reversal of all arrows (see
A ex configurations K . .
Fig. . Henceforth we measure the weights in units of c.

A Y A Y A 4 Y
> <—‘< <—xa< x‘—> < o> <—‘ > »Ax
Vv VvV

"

A\ 7
Vo

a=w1=w2s b=w3=wy C=Ws5=We d=wr=wsg
A A A A

»%> <+« »ﬁ« <¥> <+> + »%> <%«
v v v v

\ 7

VO
E=Wo=Wip0=...=W1ie

Figure VI.2: The sixteen vertex configurations on the 2d square lattice and their weights. The first
six vertices verify the ice-rule. The next pair completes the eight-vertex model and_have é::lngIrlge
q = £2. The last eight vertices have charge ¢ = +1. This color code is used in Fig.

VI1.3.1 Updating rules

We use a rejection-free continuous-time Monte Carlo (MC) algorithr TD\;Ivéth local spin-flip
updates and non-conserved orde arameter as described in section IIII%% [he details of the
algorithm are given in appendix g}zﬂns—allows for thermally-activated creation of defects. The
longest time reached with this method, once translated in terms of usual MC sweeps, is of the
order of 10?> MCs, a scale that is unreachable with usual Metropolis algorithms. This allows us
to analyse different dynamic regimes.

In spin-ice materials, and in artificial 2d realisations in particular, the dynamics are expected
to be of the single spin-flip kind without a Xac&&s%\{%d ﬂélgngg.il"g? fnotion of the defects can be
visualised by microscopy in ASI samples [152}177] and agree with this picture. Moreover, our
dynamics are ergodic for both fixed and periodic boundary conditions. One could think about a
dynamical rule which preserves the ice rules and do not create defects, i.e. a dynamical six-vertex
model. With PBC one needs to introduce loop updates of any size and winding number in order
to sample the whqle phase space. Such a dynarpics llc}%g ]?gggosrutl%eoc% '&n' the 3-colouring .model'on
the hexagonal lattice and leads to glassy behaviour [64]]. Another possible local dynamics which
preserve the ice rules would be to update the system by small loops made by four spins around
a square plaquette. These dynamics are not Qdigq Bfgr PBC but they are, for instance, for the
six-vertex model with DWBC (defined in Fig. %Tlror the spin-ice problem, these two possible
dynamical models seems quite artificial and do not allows us to study defects’ motion in the way
that it is observed to occur in the laboratory.
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A completely disordered initial condition is fixed by placing arrows at random at each edge of
the square lattice V. If we impose PBC it follows that the number of positive and negative charges
is identical. The system remains globally neutral during the evolution, since the system is updated
by single spin flips which cannot create any excess of charge.

V1.3.2 Observables

We now turn to the dissipative stochastic dynamics of an equilibrium initial configuration at
a=b=d=1(Ge. T — o0) after a quench to sets of parameters in the (i) disordered, (ii) FM,
and (iii) AF phases. In case (i) the system should equilibrate easily but the question remains as to
whether it gets blocked in metastable states with a large density of defects. In cases (ii) and (iii)
the interactions between the spins, mediated by the choice of vertex weights, should create ordered
domains, FM or AF. The quantitative characterisation of growth in the ordering processes is given
by two possibly different growing lengths extracted from correlation functions along orthogonal
directions || and L that we identify.

The relaxation dynamics of clean lattice systems are usually studied in terms of time-dependent
macroscopic observables averaged over different realisations of the dynamics (denoted by (...)).
In particular, we compute the following quantities:

(1) The density of vertices of each type:
(na(t)) = (m1(t) +n2(t)) , (mp(t)) = (n3(t) +na(t)), (ne(t)) = (ns(t) +ne(t)), (VL14)

16
(na(t)) = (nz(t) +ns(t)) , (ne(®)) = O nk(t)). (VL15)
k=9

(>ii) The two-times self-correlation function defined by:

1
C(t,tw) = 5[2 > (S5 )5S (tw)) (VL.16)

(i,)eV

with ¢ > t,,. The indices (i, j) denote the coord %'%ateé of a spin in the medial lattice V (ie. the
. Corrl.attice

vertices of the square lattice shown in red in Fig. |

(ii1)) The space-time correlation functions. The definition of the relevant correlation functions
between different points in the lattice is not straightforward when we introduce some anisotropy
in the model (for example by choosing a > b). For convenience, we define a set of correlation
functions between spins in different ’en.t%tci)(grrl%a%lgln("gethe Cartesian axis i, and 1, and along the
7 /4-rotated axis @) and 1 (see Fig.|VL.3). The space-time self correlation functions along the
and | are defined by

1
(i,5)eV
1
GHr=mnt) =75 > (Sip)Sirn) (VL18)
(i,5)eV

and along the %, and 1, axis by

1
Gx(T = \/in,t) = ﬁ Z <S(i,j)S(i+n,j+n)> (VL19)
(i,4)€V
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1
GU(r=v2n.1t)= 25 3 (S)Sti-nj+m) (V1.20)
(i,5)€V

where n € N.

(iv) The growing lengths LI (t) along ) and « . They are extracted numerically from the decay
of the space-time correlations by:

G+ [L”»l(t),t] —0.3. (VL.21)

More refined analysis of GIl- lead to equivalent results for Ll (¢) within our numerical precision.

Uy,
Figure VI.3: Correlations between spins along different directions. The lattice V made of L?
vertices is shown in grey. Its medial lattice V made of 2L? spins is shown in red.

VI.4 Quench into the PM phase

In the following, we study the evolution of the model after a quench from a random initial
condition (o« = b = ¢ = d = e = 1) into a different PM state, typically close to the SL critical
phase (a = b = ¢ = 1 and d,e < 1). In the initial configurations defects are common. We are
interested here in the mechanisms leading to their annihilation.

VI4.1 Dynamical arrest

For the sake of simplicity, let us set d = e. Figure Iﬁ%ﬁs%]l%he time-dependent density
of defects, ny(t), defined as the number of vertices of type 7-16 divided by L?, after an infinitely
rapid quenchtoa = b= 1land d = 1078,...,107! of samples with linear size L = 50 (a) and
L = 100 (b). These data have been averaged over 10> runs.

For large d (black dark curves) ny(t) quickly saturates to its equilibrium value. Numerical
estimates of the equilibrium density of defects, nj’, for d = 107!, 1072, 10~ are shown with
dotted black lines. As expected n is an intensive quantity that increases with d. It does not
depend upon the system size for L > 50 and d > 1073,

For small d (< 10~%) the systems do not reach equilibrium within the simulated time-window.
After a first decay, ng(t) gets frozen at approximately constant values before relaxing, in a much
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longer time-scale, to a configuration in which only two defects are present in our small samples.
Note that in order to distinguish the d—dependent equilibrium values for these very small ds one
would need to equilibrate much larger samples. Unfortunately, the special purpose loop algorithm
devised for the 6 vertex model does not apply to our generalized case. For our working sizes we
see asymptotes taking the value 2/L? on average.

100 T T T T T T T T

10° 10 101° 10® 107
t.d? (MCs)

Figure VI.4: Time-dependent density of defects, ny(t), after a quench from 7' — oo to a =
b=1landd = 1071 1072,...,107%. (a) L = 50 and (b) L = 100. The black curves are for
d = 1071, 1072, 10~3. The grey (color) curves are for smaller values of d decreasing from left
to right. (c) Short time beha}(\j/&il%%re g}l ggg £ d = 10~* and L = 100 confronted to the decay
po/(1 + Qt) (dashed curve) [58] and the it po/(1 + Q2¢)* with a = 0.78 (blue plain curve). (d)

fig:quench-D ‘ Test of scaling with ¢d? for systems with L = 50.

The initial decay of ngy is fitted by a power-law decay
P
(14 Q)
. . . . - W iquench-D
with a ~ 0.78 over three orders of magnitude in ¢ and n4, as shown in panel (c) in Fig. e
power-law is shown with a solid blue line in the figure together with the data for d = 10~* and
L = 100. This law is different from the simple ¢! decay found with a mean—%eld :aquroxi%altioon
. . . . . . aSt ovo
to a diffusion-reaction model shown with a dashed red line in the same figure [[58]. The exponent
« depen%s on gh&p amefers of the system in a non trivial way that we shall discuss in later in
sections | and 1nite size effects will also be discussed in the next subsection.

n(t) = (V1.22) ’eq:power—law—
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The decay is next arrested at a metastable density of defects nfll ~ 10/L2. The plateau lasts

longer for smaller d and its height is roughly independent of d. This feature is remﬂggsgggf I%“ \yg%t

10

was found numerically in dipolar spin-ice although contrary to the modelling in [38] our model
does not have long-range interactions. At the entrance to the plateau the system has between 3
and 4 times more defects of type 7-8 than those of type 9-16 which are only 2 or 3. Therefore,
in the final decay from the plateau to the asymptotic value ngy ~ 2/L? the remaining doubly
charged defects have to disappear. This may be due to two kinds of processes. In terms of a
reaction-diffusion model the relevant processes taking place with their energetic gain/cost are:

(2q) + (—2q) = (@) + (—q) AE=0 (V1.23)
(2¢) + (—=q) = (@) +(0) AE o« kgTIlnd <0 (VL.24)
(@) +(@)  — (29 AFE x kgTlnd <0 (VL.25)
(@) + (=q) — (0)+(0) AFE « 2kgT1Ind < 0 (V1.26)

In the first case, two defects of type 7 and 8 meet to produce two singly (and oppositely) charged
defects with no energetic gain. The total density of defects remains constant after this reaction.
An example of the second case is a reaction in which a defect of type 7 (charge ¢ = 2) meets
one of type 14 (charge ¢ = —1) to produce a defect of type 10 (charge ¢ = 1) and a spin-ice
vertex with no charge. This corresponds to an energetic gain AE. Note that the number of single
charged defects has not been modified in this process but the number of doubly charged defects
diminished and so did the total number of defects. In both cases the remaining defects need to
diffuse, a process with no energetic cost, to find a partner and annihilate. From inspection of
the individual runs and the densities of single and doubly charged defects we see that the second
process is favoured, as also suggested by the energetic gain.

The time regime where the density of defects finally leaves the plateau and reaches its equilib-

’eq:DoubleDef

’eq:AnnDefect:

astelnovo—priv

rium value, is char Qter_isg(einb%gDscaling of the dynamic curves with the scaling variable td? [53]
as shown in Fig. %%ﬂ'ﬂ_mhe L = 50 data. This scaling strongly suggests that the rele-

vant time scale in the system is the typical time needed to create a pair of single defects. From
an ice-rule state, the energy change associated with the reaction : (0) + (0) — (q) + (—¢) is
AFE o —kgTInd?. Then, by a simple Arrhenius argument, the typical time to overcome this
barrier is o< exp(BAE) giving the before mentioned time scaling 7 oc d 2.

V1.4.2 Time evolution for d < e

In real spin-ice realisations, both in 2d and 3d, the energy associated to doubly charged defects
d is larger than the one of single charged defects e. One should then study in detail the effect of
d < e in the time evolution of the model.

At a first sight, one could think that the emergence of the dynamical plateau in the density
of defects discussed in th uﬁgilie%%sfsection, is due to the presence of doubly charged defects d.
The reaction in eq. %ﬁmpanied by an energy gain when d = e, meaning that the
creation of doubly charged vertices are favoured dynamically. Then, d-vertices get stuck, since
any update of one of its legs will break the vertex into two single charged defects accordingly to
(29) — (q) + (q), at an energy cost AE «x —kgT Ind > 0.

When d < e the situation changes and the annihilation of double defects can be favoured. The
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energy difference associated with the previous reactions is:

(29) + (—29) — (q) + (—q¢) AE x —2kpTIn(e/d) (V1.27)
(29) + (—q) — (q)+(0)  AE o kgTlnd <0 (VL.28)
(q) + (q) — (29) AE o kpTIn(e?/d) (VL.29) ’eq:DoubleBree
(@) + (=q) — (0)+(0) AFE x 2kgTIne < 0. (VL30)

One should differentiate three cases:

(i) d = e: All the defects have the same weight. The decay of d-defects into two e-defects fol-
lowing the reaction (2g) — (¢) + (q) is done by at an energy cost AE o< —kpT'Ind > 0.

(i) d < e, d > e?: Single charged defects e are slightly more favourable that d-defects.
However, the decay of d-defects into two e-defects still needs to overcome an energy barrier
AE o —kgT In(e?d) > 0.

(iii) d < e?: Doubly charged defects are very unfavourable. The decay of d-defects now takes
places spontaneously since leads to an energy gain AE oc —kgT In(e?d) < 0.

We now investigate the dynamical consequences of choosing different weights for the two
kind of defects. In particular the fate of the dynamical plateau when doubly charged defects are
rapidly suppressed.

100 T T T T T T T T T T T T T T
ne+ ne+
nd—u— nd—a—

1 E 74 4 -12 7 4

10 \\ d=10""% e=10
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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t (in MCS) t (in MCS) t (in MCS)

(a) (b) ()

Figure VI.5: Decay of the density of vertices for a = b = ¢ = 1 and L = 50 averaged over 500
realisations. The weights of the defects are indicated on the figure and for all of them e? < d
which favours the creation of doubly charged defects. (a) e = d and In(e?/d)/In(10) = —7. (b)

figrdelraEso] € > dand In(e?/d)/In(10) = —4. (c) e > d and In(e?/d)/ In(10) = —2.

As shown in Fig. @%ﬂeﬁ%y of n. freezes at a metastable density for d < e verifying
d > e%. For large enough values of d (In(d/e?)/In(10) > 2) the density of e-vertices n is
smaller than ng in the plateau regime. For In(d/e?)/1In(10) < 2 d-vertices rapidly disappear and
ne remains larger than ng for all times. After a rapid decay, n. gets frozen into a metastable state
for long periods of time before it finally reaches its equilibrium value. Hence, one can conclude
that the presence of d-defects in the system is not responsible for the emergence of the dynamical
plateau. igsdeltaE=0
The evolution of the defect’s density for d = €2 is shown in Fig. @—mity of e-defects
remains larger than ng during the whole evolution for the three sets of parameters. Similarly to
what was observed for e = d, the system gets blocked into a metastable plateau only for small

enough values of e < 1074, and the existence of this arrested dynamical regime is, ng)(t:;ledlutea n,
the presence of d-vertices. The evolution of n. and ng4 for d < e? shown in Fig. %‘ l7 supports
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Figure V1.6: Time evolution of the density of defects n, and ngfora = b =c = 1and L = 50

averaged over 500 realisations. The weights of the defects are indicated on the figure and verify
2

e =d.

this observation. Although n4 rapidly vanishes, n. exhibits a dynamical arrest at a constant value
which, in principle, can depend on the weight of the vertices in a complicated manner.
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Figure VI.7: Time evolution of the density of defects ne and ng fora = b =c = 1and L = 50

averaged over 500 realisations. The weights of the defects are indicated on the figure and verify
2

e’ >d.

In order to understand the emergence of the frozen regime we repeated the numerical experi-
ment with fixed boundary conditions (FBC): the state of each spin on the boundary is kept fixed
from the initial configuration during the simulation. One has to be careful when choosing the
boundary conditions and make sure that these do not induce a polarisation of the sample. Indeed,
polarised boundary conditions such as the DWBC can have dynamical consequences such as the
drift of magnetic monopoles. These effects should be studied independently.

In the initial high temperature state, defects of any kind populate the system. After the quench,
the relaxation proceeds through the annihilation of oppositely charged defects. In order to do so,
defects have to meet in the appropriate manner, meaning that the reversal of the spin shared by both
of them restores the ice rule. In the reaction-diffusion language this corresponds to the process
(q) + (—=q) — (0) + (0). Two defects of opposite charge &1 can also meet in the ‘wrong’ way
and create a pair of doubly charged defects accordingly to: (¢) + (—q) — (2¢) + (—2¢q) by a
single spin-flip. Starting from a completely ordered FM configuration, one can create a pair of
defects by flipping a string of spins. The string can wind around the lattice by PBC. Then, in order
to annihilate these pair of defects one must flip back all the spins in the string. One can think
about this kind of extended structures to be responsible of the slowing down of the dynamics. If
s0, the evolution of the system with FBC, where winding strings are absent, should not present a
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dynamical plateau. As shown in Fig. [%%ﬁv_tsl%s not the case: a metastable plateau in the
evolution of the density of defects appears with FBC as well. This is due to the fact that, in the
presence of more than a single pair of defects, there is always a way to annihilate all the defects
without going through the boundaries of the lattice. In this sense, the dynamics do not feel the
nature of the boundary conditions.

It is interesting to remark here the presence of a ‘bump’ in the evolution of th dengiégv%fp%ec—
fects in the time regime in between the rapid annihilation and the plateau (see Fig. %’(ﬁﬂ'ﬁl‘h‘ls
seems to be a particularity of e = d together with PBC. In all our simulations we observed that the
bump desappears as soon as one among these two conditions is not fulfilled. This behaviour is not
well understood yet.

e=d=10" e=10"% d=10""
100 p—r————— nd'FB'C T 10° = | L I' T 'L=5IO —T
ne FBC I =100 ——
A1 n? L=150 ——
10 F L=209 —
I \ 10° |7 e
1 1

10° 102 10* 10 108 10"® 10'2 10°
t (in MCS)

(a) (b)

Figure VI.8: (a) Time evolution of the density of defects for different boundary conditions: peri-
odic boundary conditions (PBC) and fixed boundary conditions (FBC). The data plotted were ob-
tained from CTMC simulations by averaging over 500 realisations of the dynamics with L = 50,
a=b=c=1andd = e = 10"". (b) Plateau for different system sizes with PBC at d = 10~'8,
e=10"%a=0b=c=1. For L = 100, 150, and 200 the data have been obtained after averaging
over 300 runs, and over 1000 runs for L = 50. The decay of n is confronted to po /(1 + €2t) (black
line). The inset shows the height of the plateau n” as a function of the inverse linear size 1/L.
The dots obtained for L = 50, 100, 150, 200 are confronted to an algebraic decay (1/L)" with

fig:FBCvsPBc\ k=14

As already mentioned in the previous section, the metastable density of defects for d = e is
ng ~ 10/L?, which vanishes at the thermodynamic limit. One should then ask wether the ob-

served metastable density is a finite size effect or not. In order to ask this question we simulated FBCYSPRC
systems of different sizes under the same conditions. The results obtained are shown in Fig.

(b)]. The height of the plateau n” and the time speH%bé{ Ftl]%% System in this regime decreases with
the size of the system, as shown in the inset Fig. . A simple fitting of the data with a
power-law decay n? = L™", suggests that the dynamical arrest observed in the simulations is a
finite size effects which do not last in the thermodynamic limit. The evaluation of the plateau
height is subject to strong fluctuations in such a way that the exponent x = 1.4 has to be taken as
a ‘guide to the eye’ rather than a precise measure. In order to get more precise estimation of the
size dependence of the defects’ density in the plateau, one should simulate larger systems. Our
analysis gives, however, a strong indication that the plateau is due to the finiteness of the samples.



VI.5. QUENCH INTO THE a-FM PHASE 169

. . i ig - FBCvsPBC . .
The evolution of n, shown in Fig. [ﬁ%’(ﬁﬂﬁ&een fitted by a diffusive decay po/(1 + Qt).

InterestinglyC Eygltleerindo 355 gi Othe decay of the defects’ density agrees with the diffusive picture

proposed in }[58 for 3d spin Ice. ;F(ljlg_%resence of d-defects modifies this behaviour and makes the
decay slower (see Fig. |i% lg ici ). The density of defects scales asymptotically as n, ~ t~! and
gives rise to a typical growing length

1
ne(t)

A few comments about this growing length should be done here. In the 2d XY Yuorq(eelig, 9g,érowth
R(t) ~ (t/1nt)'/2, has been found. Scaling arguments given by Yurke et. al [278] for the 2d
XY model, show that logarithmic corrections should be included in order to take into account an
effective frictional force which reduces the mobility of vortices. The t!/2 part of the growth law
comes from the soft domain walls which evolve by curvature driven dynamics. The In corrections
come from the presence of vortices, which slows down the dynamics. Here we do not expect the
presence of extended defects, however a t'/2 growth arises. If we omit the logarithmic correction
due to vortices of the XY model we get the scaling n(t) ~ ¢t~ and R(t) ~ t'/2.

R(t) ~ ~t/2 (VL31)

V143 Ageing

In Fig. @%show the decay of the two-time correlation function C' as a function of the
time difference ¢ — ¢,, for different values of ¢,, shown in the key. One can distinguish different
dynamical regimes from these curves. For short times, as long as neighbouring monopoles annihi-
late in a few MCS the correlations are time translational invariant (as in equilibrium) and close to
one. At later times time-translational invariance is lost and the system exhibits ageing. The longer
the waiting-time t,, is, the slower the decay to the correlations will bg:CT"lT"he behaviour of C' for
e < 10~* characterises the metastable state. As shown in Fig. [ , for waiting times ¢,
shorter than the time associated with the dynamical arrest, the correlations seem to indicate that
the system is at equilibrium after t ~ 107 MCS. One has to wait until ~ 10'2 MCs to reach the
equilibrium state. For larger times, the correlations develop a plateau reminiscent of the metastable
density of defects, meaning that the system is not in thermal equilibrium at 107 MCS. The system
do not evolve during a period of time in between ~ 107 and 10°. As argued before, this might be
due to finite size simulations.

VLS Quench into the a-FM phase

Now we turn on the ordering dynamics following a quench from a random initial condition
into the FM phase dominated by a-vertices (i.e. a = b+ 1+ d + 3e).

VIL.5.1 Decay of topological defects

sec:FMde
In this section, we pursue a similar analysis for the relaxation towards the FM phase: we s u_Lda\yt -
the decay of the defects’ density for different values of the external parameters. In Fig. I% lE I (E we
show the evolution of the density of defects n(t) = n.(t) + nq(t) after aquenchtoa = 5,b = 1,
d = €? and different values of e for two different system’s sizes L = 50 (a) and L = 100 (b). The
data shown has been averaged over 10 independent realisations of the dynamics.
For small enough e (e < 1073) the system gets frozen into a dynamical plateau. Similarly
to what was discussed in the section above, the time period the system spends in this plateau is
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Figure VI.9: Two-time self correlation function C' after a quench from a random initial configura-
tion for a system L = 50 and averaged over 500 realisations fora = b = ¢ = 1 and (a) d = 1074,

e=10"%(b)d=10"12, e =107

longer for smaller e. The evolution is dramatically slowed down at a metastable density of defects
nPl =~ 44/L? for L = 50 and n?! ~ 88/L? for L = 100. The height of the plateau seems to
decrease with the size of the systems as ~ 1/L, slower than the ~ 1/L? behaviour found in the
PM case. In order to conclude about the size dependence of the plateau height one should run
simulations for larger sizes, which, unfortunately, we cannot reach in a reasonable time with our
simulations.
wer—-law-deca

The decay of n. has also been fitted by the power law decay eq. (ﬁ iﬁi with o = 1. 59 ov QVer
the whole time regime before the systems reaches the plateau density as shown in Fig W
This power law is compared with the ¢t~! decay discussed before and also shown in the figure.
The decay of n. becomes slower than the diffusive law in the FM phase. Note that this power-

la.w ca%:a% F(}goce%%%tcdepend on the size of the system as already suggested by the data shown in

Fig. .
The ordering process following a quench into the FM phase is characterised b; t.iI%ea tsggLeFM
7 o e~ 2 in the regime where the defects leave the plateau. As shown in Fig. or

L = 50 all the curves collapse into a single curve when rescaling the time variable by 7. The
typical time associated with the creation of a pair of defects is the relevant time scale in the long
time regime.

The evolution of th .de.ns'itg/tgg 1(liFel\f/Iecatg n following a quench into different points of the FM
phase is shown in Fig. %’m@ and L = 100 samples. During a short time regime
(t < 10 MCs) the density of defects decays independently of a. For later times, the decay of
n depends on the value of a. In particular, the expected power-law decay n(t) ~ t~% becomes
slower for larger values of a. Therefore, the exponent o depends on the weights of the vertices and
decreases when increasing a. The metastable density of defects increases with the a and depends
on the system size.

VL.5.2 Anisotropic domain growth

tion

We choose a = 5, b = 1 and d = 1072, favouring vertices with weight a. In Fig. @7
we present the density of vertices, n.(t), with k = a,b, ¢, d, in a log-linear scale. The evolu-
tion is illustrated with three configurations at instants shown with vertical arrows. Domains grow
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Figure VI.10: Time dependent density of defects after a quench froma = b =d =e = 1to
a=>5,b=1and d = e for the different values of e. (a) L = 50 and e = 1073,107%,...,107°
(as shown in the key). (b) L = 100 for e = 1072 (in black), 1073, ..., 1071, For e = 102 the
system saturates to its equilibrium value shown with a dotted black line. (c) Short-time behaviour
fore = 1073, L = 50 and L = 100. The decay is confronted to a pg /(1 + Qt) decay (grey dashed
line) and the fit po/(1 + Qt)® with o = 0.59 (blue dashed line). (d) Test of scaling with ¢.e? for
L = 50.

fig:PlateauFM‘

anisotropically and we choose the || and L directions to be parallel and perpendicular to the diag-
onal joining the lower-left and upper-right corners in the pictures, respectively.

During a short transient (t < 0.01 MCs) all densities remain roughly constant (regime I).
Suddenly, a large number of defects are transformed into divergence-free vertices by a few single
spin-flips: ng4 decays while ng,, np and n. increase (regime II) independently of a. A typical
configuration at this stage is the left-most snapshot and there is no visual ordering as corroborated
by the small values taken by L | and displayed in the inset in a log-linear scale for three values
of the system size, L. = 100, L = 200 and L = 300. Subsequently the system sets into a slow
relaxation regime in which the dominant mechanism is the one of growing anisotropic domains
with FM order, see the central snapshot (regime III); n,, depend upon a and there are as many
domains with m}¥ = 1 (vertices 1) as m¥Y = —1 (vertices 2) respecting symmetry. In this
regime L) grows faster than L, and tends to saturate to an L-dependent value when the stripes
are fully formed. For the largest sample size, L = 300, our numerical data are consistent with a
t1/2 growth that is shown with a dotted black line. Instead order in the L direction has not yet
percolated. The full equilibration of the sample needs the percolation of order in the | direction
which is achieved by a still much slower mechanism (regime IV).
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Figure VI.11: Time dependent density of defects after a quench froma = b =d =e = 1to

b=1,d=10""8 e = 107 and different values of a. (a) L = 50 for a = 1,3, 4,7, 10 (as shown
‘ in the key). (b) L = 100 for a = 2,4, 7, 9. The data has been averaged over 300 independent runs.
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e b lrlgViF(g}Ilr of the space-time correlation functions confirm this growth. As shown in
Fig ¢ correlations along the direction of the stripes (a) grow faster than in the orthog-

onal direction (b). The function G/l do not vanish at any point of the system for times larger than
~ 10° MCs. Instead, the correlations along i vanish at distances smaller than the system size
in the simulated time window. The growth is highly anisotropic because of the choice a > b. For
b > a correlations glo g fogevelop faster than along ), forming stripes perpendicular to the
ones shown in Fig. e relevant pargmete rcglaﬁlqcterising the anisotropy of the ordering
process is the ratio a/b. As shown in Fig. a%_@ﬂ_ﬁl the regime where anisotropic domain

growth, the correlation function along the || direction depends on space and time through the ratio
r/th/2:

r
Gl(r,t) ~ FI <W> : (VL32)
which confirms the expected growth L (t) ~ t1/2_1n order to study the growth in the L direction
one needs to study larger samples since L (t) < L (t). This makes the estimation of the growth
law for L (t) trickier and heavier simulations are needed.

VI.5.3 Microscopic ordering mechanisms

A better understanding of the processes involved in the ordering dynamics is reached from the
analysis of the snapshots.

(a) Domain walls are made of c—vertic%ssr%gcsi lrallquettes of divergence-free vertices, as shown in
the left and central panels in Fig. |§ |E iﬁ respectively. The latter are ‘loop’ fluctuations in which all

the spins on the plaquette are sequentially flipped. Interfaces between FM states tend to be parallel
to the main diagonal, which one depending on which FM phase one quenches into.

(b) Quasi-one-dimensional paths made of b- and c-vertices (loop fluctuation can be attached to
them) act as bridges between two domains of the same type and run through a region with the
opposii[go%glee?i%lgge structures are similar to the ones found in the kinetically constrained spiral
model [[72]]. In order to further increase the density of a-vertices and develop the FM order the
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Figure VI.12: FM ordering. Upper panel: time evolution of the density of vertices with weight
a,b,c,dfora =5,b=1,d = 10" and L = 100 averaged over 300 samples. The snapshots are
typical configurations at the dates indicated by the arrows. Black/white points are vertices 1/2 and
the rest are shown in grey (color) scale. Inset: time-dependence of the longitudinal (upper curves)
and transverse (lower curves) growing lengths for three system sizes, L = 100, 200, 300. A fit to

t1/2 is shown with a dotted black line.

domain walls and bridges have to be eliminated. The latter disappear first via the following mech-
anism. ‘Corners’ made of b (or, less commonly, d) vertices sit on a curved domain wall. Such b
vertices cannpt be sggggggeg by more than two type 1 or 2 vertices (only defects can, see the third
panel in Fig. %The_stvﬁng progressively disappears eaten by the attached domains that grow
from the corner or, alternatively, it is first cut by the creation of two defects and the two strands
subsequently shrink, an extremely slow process. Once the path has been eliminated one is left
with two defects sitting on the walls of the now detached domains, that move along the interface
and eventually annihilate with their anti-partner.

. . . . tion . i . imientoBandas
(c) Once parallel bands are created (third configuration in Fig. wﬁmechamsm in Fig. W

takes over (regime IV). After the creation of a pair of defects on the interface, the sequence of
steps in the figure shrink the vertex 1 stripe on a time scale that diverges with L.
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Figure VI.13: Space-time correlation function along the longitudinal (a)-(c) and orthogonal (b)
directions for L = 200, a = 5,b = 1, d = e = 107" and different times ¢ given in the key. The
data has been obtained after averaging over 100 runs. (c) G/l as a function of the rescaled variable
r/ t1/2 for different times in the regime III (coarsening regime).

VI.6 Quench into the c-AF phase

Now we turn on the anti-ferromagnetic phase. We follow the evolution of the system after
a quench from a random initial condition into the AF phase dominated by c-vertices (i.e. 1 <
a—+b+d+ 3e).

VI.6.1 Coarsening dynamics

The evolution of the vertex population is shown in the main panel in Fig. W b=0.1
and d = e = 107°. This data is illustrated by four snapshots of the system token at instants
indicated with vertical arrows. The ordering process proceeds by growing isotropic domains of
opposite staggered magnetisation m™¥ = £1.

Similarly to what has been found in the FM quenches, in regime I all densities remain ap-
proximately constant. This is followed by regime II with a rapid annihilation of defects into
divergence-free vertices. The creation of a, b and c-vertices occurs with a rate that depends on a
while, surprisingly, ng does not, at least within our numerical accuracy. In regime III the system
increases the AF order by growing domains of staggered magnetisation +1 with c vertices. Since
a is very close to b fgg Qur choice of parameters, domains are quite isotropic. This is explicitly
shown in Fig. l%lcl 5[ he space-time self correlation functions along the || and L direction are
almost identical and the associated growing lengths are, within numerical accuracy, t'/2. Regime
IV follows next and it is characterised by a strong slowing-down although there is no obvious
extended structure blocking the evolution. In regime V the system finally reaches equilibrium.
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Figure VI.15: Schematic representation of FM stripe motion. Vertices on each site are specified.
Diagonal (red) lines delimit domains of opposite magnetization. Black arrows indicate the spins
that flip to get the new configuration (represented in blue after the flip).

V1.6.2 Domains and contour lines

A better understanding of the processes involved in the ordering dynamics is reached from the
analysis of the snapshots.

(a) Domain walls are made of a- and b-vertices depending on the orientation of the wall. Contrarily
to the FM case, domains of any shape can be cons OrcﬂgaelclnX/Eithout the need to include defects.
As shown in the left and central panels in Fig. |§ |; [ gt horizontal and vertical walls are made by
alternating a- and b-vertices. Diagonal walls are exclusively made by a- or b-vertices depending on
their orientation. Therefore, domain walls without defects (energetically favoured) form loops of
spins pointing along the same direction. In the SOS representation, each domain can be interpret
as a contour line delimiting regions with different height. The ordering then proceeds by growing
or shrinking regions of constant height.

(b) Once isotropic domains are created, one has to eliminate small d g(l:%i&s in order to further
increase the density of c-vertices and develop the AF order. Fig%ﬂates the mechanism
taking place. After the creation of a pair of defects in a typical time ~ 1/e2, their motion along the
wall shrinks the domain. This is done without any energy cost and the sequence of steps needed to
make a domain of linear size L(t) disappear should scale as L?(t). The same kind of mechanism
takes place in horizontal domain walls.

Usually domain walls in magnetic models with NCOP are curved soft interfaces which display
a variety of shapes. In this model, AF domains have the tendency to form straight domain walls
made by FM vertices. This kind of domain wall pattern has been observed in artificial spin ice
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Figure VI.16: AF ordering. Time evolution of the density of vertices in a system with L = 100
after a quench to a = 0.1, b = 0.1, d = 10~° averaged over 300 runs. Inset: the time-dependent
Evolut ionAF ‘ growing length L confronted to t1/2 (dotted black line). Typical configurations are shown.
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Figure VI.17: Space-time correlations after a quench from a random initial condition into a =
0.1 =b=0.1,d = e? = 10719 and L = 50 averaged over 500 runs. (a) Correlations along the
L direction as a function of the distance between r between sites for different times (shown in the

key). (b) Correlations along the || direction as a function of r for the same times as in (a).
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Figure VI.18: Domain walls between AF domains of opposite s%a}ggggg% iorlcliggt"ll“g% Sconﬁguration
of arrows is shown. We use the colour rule defined in Fig. %—L—eftpﬁﬁm walls in the
|| direction are made of a-vertices. Central panel: diagonal walls in the L direction are made of
b-vertices. Right panel: horizontal (and vertical, by symmetry) walls are made of an alternating

fig:DomainAF ‘ chain of a- and b-vertices.

Figure VI.19: Schematic representation of the an ihilatéc}){n Coofn/?_lf clllg):gl@ig%SVertices on the walls
are represented by the colour rule defined in Fig. E llzt[ Blue arrows indicate the spins that have
been flipped to get the new configuration. As monopoles diffuse along the domain wall the ordered

region on the right-bottom side of the figure shrinks.
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Conclusions and open questions

In this thesis we presented a thorough study of the sixteen-vertex model. Both its equilibrium
and out-of-equilibrium dynamics following different quenches have been analysed in detail. We
used a Continuous Time Monte Carlo algorithm to avoid the difficulties raised by the slowing
down of the dynamics when a small weight of the defects is chosen. Thanks to this algorithm we
were able to simulate the equilibrium phases of the model and its long-time dynamical behaviour.
We extended the model to be defined on oriented trees of vertices and square plaquettes made by
four vertices (Bethe-Peierls approximation). Then, we establish the equilibrium phase diagram
using numerical simulations of the 2d model and we compare this results with the ones obtained
by approximating the model by the two before mentioned trees. By comparing our theoretical
results with the vertex population measurements done in artificial spin-ice samples, we showed
the relevance of the sixteen-vertex model for the study of 2d spin-ices.

The main equilibrium results obtained during this thesis can be summarised as follows:

(i) The criticality of the paramagnetic phase is broken as soon as the ice-rules constraint is relaxed.
The a, b-FM-SL ‘frozen-to-critical’ phase transition and the c-AF-PM infinite order phase transi-
tions of the six-vertex model both become continuous phase transitions when defects are allowed.
We established the phase diagram of the unconstrained model numerically and we conjectured the
existence of an generalised anisotropy parameter A1g characterising the phases of the model.

(>ii) Our Bethe-Peierls (BP) approximation gives the exact location of the transition lines for the
(integrable) six- and eight-vertex model. When the defects are rare, our BP approach using a tree
of plaquettes turns out to be an accurate approximation of the equilibrium phases of the sixteen-
vertex model on the square lattice. In artificial spin-ice samples the weight of the defects is small.
Therefore, our BP calculation gives results in quasi-quantitative agreement with the numerical
simulations and with the experiments when choosing the parameters of the model accordingly to
the experimental set-up. We argue that, away from the AF-PM critical point, as-grown artificial
spin-ice samples are in thermal equilibrium. This explains the discrepancy between our (numeri-
cal and analytical) calculations and the experimental data close to the transition temperature.
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(ii1) Using a finite-size and a non-equilibrium relaxation analysis of the simulation data we mea-
sured the value of the critical exponents of the sixteen-vertex model. We found that, similarly to
what is known from the exact solution of the eight-vertex model, the value of the critical exponents
depend on the external parameters of the model. A set of critical exponents can be defined by the
divergence of the correlation length close to the transition instead of the deviation to the critical
point. The values of these new set of critical exponents, which are identical for the six- and eight-
vertex model, are also identical for the sixteen-vertex model and the 2d XY model. Moreover, the
value of these exponents coincide for all these models: the six-, eight-, sixteen-, 2d Ising and 2d
XY models share the same set of generalised critical exponents.

(iv) We proposed some extensions of known mappings for constrained models to the non inte-
grable case. The presence of a hard local constraint in a lattice model allows us to define a height
function and a gauge structure emerges naturally from that. The situation is less clear when the
constraint is relaxed and thermal fluctuations are allowed. We propose the introduction of a mul-
tivalued height function where defects are interpreted as dislocations of the surface field. Once
the extended strings which links two defects have been fixed arbitrarily, a height configuration can
be associated to a vertex configuration. Within this framework a 2d Coulomb interaction between
defects emerges as a many-body effect.

Once the equilibrium properties of these extended problems have been characterised, we
moved to its dynamical properties. We followed the evolution of the system following differ-
ent quenches: from a disordered initial state into its PM, a-FM and c-AF phases.

Let us summarise the results obtained for the out-of-equilibrium dynamics of the sixteen-vertex
model:

(i) We analysed the evolution of the density of defects following all kind of quenches. The initial
decay is fitted by a power-law and different algebraic decays are obtained for different special
values of the Boltzmann weights. The exponent characterising the decay is found to depend on
the choice of the parameters in a non-trivial manner. We recover the 1/¢ decay found in 3d dipolar
spin-ice in the PM phase when the weight of doubly charged defects d is smaller that the square
of the weight of the single charged defects e.

(ii) After the initial power law decay, the density of topological defects take a finite density for
long periods of time. The existence of these long-lived metastable states have been observed in
numerical simulations on 3d dipolar spin-ice. This dynamical arrest is observed for all kind on
quenches. We discuss the persistence of the metastable state for different choices of the defects’
weights, and found that the presence of 4in and 4out vertices are not responsible for the emer-
gence of such slowing down of the dynamics. We analyse the effect of the boundary conditions
and found that the plateau remains for fixed boundary conditions. After analysing the evolution of
the density of defects for different system sizes we argued that the dynamical plateau vanishes at
the thermodynamic limit.

(iii) We identified the microscopic mechanics leading the dynamics during the evolution through
the ordered phases. We evaluate the anisotropic growing lengths and showed that the ordering dy-
namics proceeds through coarsening. The evolution of the system conforms to the domain growth
dynamical scaling picture. The interplay between extended topological defects in the form of do-
main walls and localised defects makes the coarsening dynamics of this model specially rich.

Our dynamic results are manifold. We prove that the dynamics after a quench into the FM and AF
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phases conforms to dynamical scaling, we identify the relevant dynamical mechanisms and repro-
duce known facts on the dynamics of spin-ice, although our model does not include long-range
interactions.

The following is a partial list of possible further research directions inspired by the work done
during this thesis:

1. The connection between a quantum model in 1d and a classical lattice model in 2d allows
a unified framework of quantum and classical phase transitions. The equivalence between
the XXZ and XYZ quantum spin-1/2 chains and the six- and eight-vertex model has been
proved to be closely related to the integrability of the model. We proposed a candidate that
might be the quantum analog of the sixteen-vertex model. The mapping has, however, not
been demonstrated and we should try (harder) to find a way to relate the parameters of the
quantum problem with the weight of the vertices. Then, it would be possible to relate the
phase diagram of the sixteen-vertex model with the quantum phases of the chain, and apply
our BP approach to the quantum problem.

2. One could easily include an external magnetic field and study the equilibrium of the sixteen-
vertex model with the cavity method and CTMC. Although for the six-vertex problem exact
results are available, for the eight- and sixteen-vertex model the phase diagram in a field is
not known yet.

3. Our Bethe-Peierls approach should give accurate results for other constrained lattice models
for the same reasons the transition lines are exactly reproduced for the six- and eight-vertex
models. For instance, one could define Kagome Ice (or the AF Ising model in the triangular
lattice, three-colouring model, etc.) on an appropriate chosen tree. Then I expect that the
zero point entropy, and the transitions lines obtained by the BP calculation be extremely
close to the ones of the finite dimensional model.

4. In the six-vertex model, different boundary conditions (i.e. the topology of the space where
the model is defined) affect the thermodynamics of the system. I expect boundary conditions
to have important dynamical consequences in hardly constrained models. Some work appear
recently in the literature on the dynamical properties of these kind of models with periodic
boundary conditions (PBC). The presence of a hard constraint in a lattice model with PBC
splits the phase space into different topological sectors. This gives rise to an ergodicity
breaking which has motivated several groups to talk about ‘topological glasses’. In the six-
vertex model one expects a slowing down of the dynamics because of the need of extended
loop updates. It its due to the presence of PBC and a hard constraint. One could study the
dynamics of the six-vertex model (or ice-model for simplicity) with Domain Wall Boundary
Conditions where the whole phase space can be sampled by local loop updates. Quantities
of interest in this problem are time correlations and in particular, the equilibrium relaxation
time as a function of the parameters of the model.

5. Insection Wd our equilibrium results of the sixteen-vertex model experimental
data from artificial spin ice (ASI) where the islands grow during the fabrication of the sample
until they freeze. It would be interesting to simulate the thermal annealing occurring in ASI
in our MC simulations in order to try to understand better the relationship between the
equilibrium canonical temperature, and the effective temperature extracted from population
measurements. The effect of boundary conditions in this context should also be investigated,
since usual experimental realisations do not verify PBC.
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6. The dynamics of defects in 3d spin-ice materials has attracted (and still does) much attention

in recent years. Experimental work has proven the possibility to create currents of magnetic
charges and then realise an effective ‘magnetricity’ in spin-ice. We plan to investigate de-
fect’s motion in our model under different external conditions and the possibility to generate
persistent currents. These can be visualised by microscopy in ASI. Starting from the study
of two oppositely charged defects, one should ask whether a collective motion of a large
density of defects is possible in 2d samples. In usual ASI realisations of square lattices, c-
vertices are favoured, leading to a string tension connecting two oppositely charged defect.
However, starting from a polarised initial configuration, defects would have the tendency to
move apart of each other leaving behind a string made by a strong fraction of c-vertices. I
expect that the polarisation background affects monopole’s motion. Then one should study
in detail the transport properties of the system.

. Following the same line of reasoning, one could study the dynamics of artificial Kagome

ice. In this system, all the kind of vertices are equivalent such that monopoles’ motion does
not gives rise to an energetic string. The evolution of the defeg%%ilglmtalhg% geometry has been
recently studied experimentally by applying magnetic fields }[233].—%1?15 made by an
ordered arrangement of defects have been observed in these samples. A possible direction
of research could be to study the statistics of these domains and the dynamical mechanisms
which give rise to these structures.

In the seventies, Kadanoff and Wegner showed the equivalence between the eight-vertex
model and an Ising model with multi-spin interactions. This mapping was originally intro-
duced in order to understand the new type of critical singularities of Baxter’s exact solution:
the critical exponents are continuous functions of the interactions parameters. Using scaling
arguments Kadanoff and Wegner were able to reproduce the variation of critical exponents.
A few years later van Leeuwen proposed a real-space Renormalisation Group (RG) proce-
dure to treat the eight-vertex model. He explained by RG arguments the mechanism respon-
sible for the emergence of continuously varying exponents. In order to give support to the
numerical results, it would be interesting to treat the sixteen-vertex model by a real-space
RG procedure and extend van Leeuwen’s results. We expect to find a marginal scaling field
and a line of fixed points where the critical exponents vary. The existence of exact solu-
tions for the six- and eight-vertex model ca be used as a guide to test the accuracy of the
procedure.
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app:CTMC

A

The CTMC algorithm

In this Appendix we give some details on the implementation of the Continuous Time Monte
Carlo algorithm that we used to study the phase diagram of the sixteen vertex model.
We chose to use single spin updates. The time needed to flip an arrow is computed by

At = Int 2Nln5 1 (A1)
In (1 XY= Wk — uf))
and the transition probabilities defining the dynamics of the system are
1 I
Iy _ . —B(E(u))—E
Wi — p') = 5zmin (1,e (E(u") W)) (A.2)

satisfying detailed balance and ergodicity. This transition probabilities are expressed as a function
of the state of the chosen spin I. We have to compute the problggiéict}fsteots&agsjcne rt)he same state
W — p) =1—2 W(u — p!) to obtain At using eq. (A.T) and then we need to know
every possible energy change a single flip can produce. In the sixteen-vertex model there is a finite
number of such possible processes (and then a finite number of possible transition probabilities)
independently of the system size. This procedure can then be applied by making a list of all the
arrows classified by their state, noted from now on [ and defined by its neighbourhood (i.e. the
type of its two adjacent vertices). Since each vertex can take sixteen different configurations, there
are 8 X 8 such states f(?r .Vertical and hqrizontal arrows, 504 tggarlk%% gleset%gﬂe;nf%rog%ch type of
arrow. Following the original name of this method [40; [16] this algorithm is a 256-fold way. The
transition probability of the process 1 — ! only depends on the state [ of the I-th arrow before
the flip. This can be clearly seen by rewriting

exp [—5(}3#(1) - Eu)} = exp {—5 (E [fo;])} +E [Vz“ﬂ - B {Vfﬂ - B [V;&D}

here £ {Vl" ;D} is the energy of the first adjacent vertex of the /-th arrow after the flip from the
state ;. To know the type of the neighbouring vertices V4 ; and V5 ; at state p is equivalent to

’PreciseTimeSt
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Vi «— Vi, VL‘fy) — V}‘z’“’(j) e~Pa
0 1-1 11-16 e?/a® « 1
1 1-4 11-12 e?Ja.b <k 1
64 16-16 3-1 a.b/e? >>1

Table A.1: Partial classification of the 64 possible sates of an horizontal arrows pointing to the
right, corresponding to each one of all the transitions that can occur by a single flip. The second
and third columns corresponds to the left and right vertices adjacent to the I-th arrow before and
after the flip.

know the state of the concerned arrow before the flip (the vertex types of the neighbouring vertices
after the flip are determined by the vertex types before the flip): the energy change after a flip
depends only in its initial state. We define

1
7 —Be
P = 5N min (1 e )
where ¢; is the energy difference after flipping an arrow in state [. It is useful for the implementa-
tion to note that we can compute At by counting the number of arrows occupying each one of the
different possible states at each step. We substitute the latter equation by

2N 256
Q= W(—pu) ZgzPl (A3)
I=1

where g; is the number of arrows in state [. We then need to keep record of the state of every
arrow on a list at each step. After a tr nTsD%g}())getrll%s list must be updated. The main steps of the
computation are implemented by Alg. (I; )

Algorithm 1 Continuous Time Monte Carlo algorithm.
— for ! =1..256 do

P+~ e~ Bel
— for ¢ = 1..#steps do

input: ¢, state p

Q<+ 1-98.

At + 1+ Int (ln(ralngo’”)>;

t—t+ At

[ <—random with a probability distribution g; F;.
k <—random uniformly between 1 and g;.

flip arrow [

update the list

output: ¢, state ;1) arrows classified
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