
Ecole Doctorale de Physique de la Région Parisienne - ED107

Thèse en vue d’obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE PIERRE ET MARIE CURIE

Discipline : Physique Théorique

Realisée au

Laboratoire de Physique Théorique et Hautes Energies

presentée par

Demian LEVIS

Two-dimensional Spin Ice & the

Sixteen-Vertex Model

dirigée par

Leticia F. CUGLIANDOLO

Soutenue le 26 Octobre 2012 devant le jury composé de :

M. Olivier BABELON Examinateur
M. Claudio CASTELNOVO Rapporteur
Mme. Leticia CUGLIANDOLO Directrice
M. Peter HOLDSWORTH Rapporteur
M. Will BRANFORD Examinateur





Contents

I Introduction 7

II Experimental realisations:
Frustrated magnets and artificial spin-ice 13
II.1 Geometrical frustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II.1.1 Definitions and ground-state manifold . . . . . . . . . . . . . . . . . . . 13
II.1.1.1 Disordered systems . . . . . . . . . . . . . . . . . . . . . . . 13
II.1.1.2 Clean systems . . . . . . . . . . . . . . . . . . . . . . . . . . 14

II.1.2 Water Ice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
II.1.2.1 Zero-point entropy . . . . . . . . . . . . . . . . . . . . . . . . 18
II.1.2.2 Pauling’s Ice model . . . . . . . . . . . . . . . . . . . . . . . 18

II.1.3 Generalised ’ice-type’ models . . . . . . . . . . . . . . . . . . . . . . . 20
II.2 Spin-ice materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II.2.1 Rare-earth pyrochlores with residual entropy . . . . . . . . . . . . . . . 21
II.2.2 Dipolar spin-ice model . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
II.2.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
II.2.4 Magnetic monopoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II.3 Artificial spin-ice samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
II.3.1 Experimental set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
II.3.2 Monopoles and strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
II.3.3 Ordering protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II.3.3.1 External drive . . . . . . . . . . . . . . . . . . . . . . . . . . 36
II.3.3.2 Material selection . . . . . . . . . . . . . . . . . . . . . . . . 36
II.3.3.3 Thermal annealing during fabrication . . . . . . . . . . . . . . 36

II.3.4 Statistical mechanics of a-thermal systems . . . . . . . . . . . . . . . . . 37
II.3.4.1 Edward’s measure in granular matter . . . . . . . . . . . . . . 38
II.3.4.2 Configurational temperature in artificial spin-ice . . . . . . . . 40

II.3.5 Artificial spin ice and computer science . . . . . . . . . . . . . . . . . . 43

III Some concepts about phase transitions 45
III.1 Continuous phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III.1.1 Second order phase transitions . . . . . . . . . . . . . . . . . . . . . . . 46
III.1.2 Universality of equilibrium critical phenomena . . . . . . . . . . . . . . 47
III.1.3 Landau’s classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
III.1.4 Kosterlitz-Thouless phase transition . . . . . . . . . . . . . . . . . . . . 49
III.1.5 Topological defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

III.2 Discontinuous phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 53
III.2.1 First order phase transitions . . . . . . . . . . . . . . . . . . . . . . . . 53
III.2.2 Multi-criticality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



2 CONTENTS

III.2.3 The ‘Frozen-to-Critical’ KDP transition . . . . . . . . . . . . . . . . . . 55
III.3 Finite-size effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

III.3.1 Around a second order phase transition . . . . . . . . . . . . . . . . . . 60
III.3.2 Around a first order phase transition . . . . . . . . . . . . . . . . . . . . 61

III.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
III.4.1 Monte Carlo dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
III.4.2 The Continuous-Time algorithm . . . . . . . . . . . . . . . . . . . . . . 62
III.4.3 Equilibrium analysis of the simulation data . . . . . . . . . . . . . . . . 64

III.4.3.1 Equilibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
III.4.3.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 65
III.4.3.3 Finite-size scaling analysis . . . . . . . . . . . . . . . . . . . 66

III.4.4 Non-equilibrium relaxation method . . . . . . . . . . . . . . . . . . . . 67
III.4.4.1 Short-time critical dynamics . . . . . . . . . . . . . . . . . . . 67
III.4.4.2 NERM for a first-order phase transition . . . . . . . . . . . . . 68

IV Hard constraints and 2d vertex models 71
IV.1 Exactly solvable lattice models . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

IV.1.1 The Yang-Baxter equation . . . . . . . . . . . . . . . . . . . . . . . . . 72
IV.1.2 Classical and quantum integrability . . . . . . . . . . . . . . . . . . . . 72

IV.2 Vertex models: general definition . . . . . . . . . . . . . . . . . . . . . . . . . . 74
IV.3 The six-vertex model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

IV.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
IV.3.2 Transfer matrix formulation . . . . . . . . . . . . . . . . . . . . . . . . 76
IV.3.3 Equilibrium phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . 78
IV.3.4 Height representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
IV.3.5 Topological sectors and boundary conditions . . . . . . . . . . . . . . . 84

IV.4 The eight-vertex model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
IV.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
IV.4.2 Exact solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
IV.4.3 Ising representation in the dual lattice . . . . . . . . . . . . . . . . . . . 89
IV.4.4 The Heisenberg XYZ spin chain . . . . . . . . . . . . . . . . . . . . . . 92

IV.5 The loop algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
IV.5.1 Monte Carlo updates for the six- and eight-vertex models . . . . . . . . . 94
IV.5.2 World-line representation of quantum spin-1/2 chains . . . . . . . . . . 95

IV.6 General remarks about hardly constrained systems . . . . . . . . . . . . . . . . . 98
IV.6.1 Emergent gauge structure and Coulomb phase . . . . . . . . . . . . . . . 98
IV.6.2 Dipolar long range correlations . . . . . . . . . . . . . . . . . . . . . . 99

IV.7 The sixteen-vertex model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
IV.7.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
IV.7.2 Ising representation in the medial lattice . . . . . . . . . . . . . . . . . . 100
IV.7.3 Some exact results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

V The equilibrium phases of 2d spin-ice 105
V.1 Parametrisation of the sixteen-vertex model . . . . . . . . . . . . . . . . . . . . 105

V.1.1 The symmetric sixteen-vertex model . . . . . . . . . . . . . . . . . . . . 105
V.1.2 The 2d spin-ice model . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

V.2 The cavity method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
V.2.1 A prelude: Mean field approximation . . . . . . . . . . . . . . . . . . . 107
V.2.2 The Bethe-Peirls approximation . . . . . . . . . . . . . . . . . . . . . . 109



CONTENTS 3

V.3 Numerical simulations of the sixteen-vertex model . . . . . . . . . . . . . . . . 115
V.3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

V.3.1.1 Monte-Carlo algorithm . . . . . . . . . . . . . . . . . . . . . 116
V.3.1.2 Non-equilibrium relaxation method . . . . . . . . . . . . . . . 116
V.3.1.3 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
V.3.1.4 Equilibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

V.3.2 Phase transitions and critical singularities . . . . . . . . . . . . . . . . . 118
V.3.2.1 The PM-FM transition . . . . . . . . . . . . . . . . . . . . . . 118
V.3.2.2 The PM-AF transition . . . . . . . . . . . . . . . . . . . . . . 121

V.4 Vertex models on Bethe lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
V.4.1 The oriented tree of vertices . . . . . . . . . . . . . . . . . . . . . . . . 123
V.4.2 The tree of plaquettes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

V.4.2.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
V.4.3 The six and eight-vertex model on the single vertex tree . . . . . . . . . 126

V.4.3.1 Self consistent equations . . . . . . . . . . . . . . . . . . . . 126
V.4.3.2 Fixed points and free energy . . . . . . . . . . . . . . . . . . 127
V.4.3.3 Stability of the solutions . . . . . . . . . . . . . . . . . . . . . 129
V.4.3.4 Order parameters . . . . . . . . . . . . . . . . . . . . . . . . 130
V.4.3.5 The phase diagram . . . . . . . . . . . . . . . . . . . . . . . . 131

V.4.4 The six- and eight-vertex model on the tree of plaquettes . . . . . . . . . 132
V.4.4.1 Self-consistent equations . . . . . . . . . . . . . . . . . . . . 132
V.4.4.2 Fixed points and free energy . . . . . . . . . . . . . . . . . . 135
V.4.4.3 Stability of the solutions . . . . . . . . . . . . . . . . . . . . . 137
V.4.4.4 The phase diagram of the six-vertex model . . . . . . . . . . . 137
V.4.4.5 The phase diagram of the eight-vertex model . . . . . . . . . . 139
V.4.4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

V.4.5 The sixteen-vertex model . . . . . . . . . . . . . . . . . . . . . . . . . . 142
V.4.5.1 The single vertex model . . . . . . . . . . . . . . . . . . . . . 142
V.4.5.2 The plaquette model . . . . . . . . . . . . . . . . . . . . . . . 145

V.4.6 The phase diagram of the sixteen-vertex model . . . . . . . . . . . . . . 146
V.5 Application to artificial spin ice: the 2d spin-ice model . . . . . . . . . . . . . . 147

V.5.1 Equilibrium phases and critical properties . . . . . . . . . . . . . . . . . 147
V.5.2 Experimental density of defects . . . . . . . . . . . . . . . . . . . . . . 148

V.6 Extension of the mappings for constrained models to the generic case . . . . . . 150
V.6.1 Height representation, monopoles and dislocations . . . . . . . . . . . . 150
V.6.2 Mapping into a quantum spin chain . . . . . . . . . . . . . . . . . . . . 152

VI Dynamics in 2d spin-ice 155
VI.1 Stochastic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

VI.1.1 Microscopic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
VI.1.2 Dynamical universality . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

VI.2 Dynamics through a phase transition . . . . . . . . . . . . . . . . . . . . . . . . 157
VI.2.1 Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
VI.2.2 Dynamical scaling hypothesis . . . . . . . . . . . . . . . . . . . . . . . 158
VI.2.3 Topological defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

VI.3 Model and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
VI.3.1 Updating rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
VI.3.2 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

VI.4 Quench into the PM phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



4 CONTENTS

VI.4.1 Dynamical arrest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
VI.4.2 Time evolution for d < e . . . . . . . . . . . . . . . . . . . . . . . . . . 165
VI.4.3 Ageing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

VI.5 Quench into the a-FM phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
VI.5.1 Decay of topological defects . . . . . . . . . . . . . . . . . . . . . . . . 169
VI.5.2 Anisotropic domain growth . . . . . . . . . . . . . . . . . . . . . . . . 170
VI.5.3 Microscopic ordering mechanisms . . . . . . . . . . . . . . . . . . . . . 172

VI.6 Quench into the c-AF phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
VI.6.1 Coarsening dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
VI.6.2 Domains and contour lines . . . . . . . . . . . . . . . . . . . . . . . . . 175

VII Conclusions and open questions 179

A The CTMC algorithm 183

Bibliography 187







CHAPTER

I

Introduction

ch:Introduction
In a broad class of condensed-matter systems, the tendency to local ordering is hampered by

constraints. This leads to frustration, with the impossibility of satisfying all competing forces
simultaneously. Hard local constraints lead to a rich variety of collective behaviours such as
the splitting of phase space into different topological sectors and the existence of “topological
phases", which cannot be described with conventional order parameters

Balents2010
[13]. In geometrically

frustrated magnets, the local minimisation of the interaction energy on a frustrated unit gives rise to
a macroscopic degeneracy of the ground state

MoessnerRamirez2006
[187], unconventional phase transitions

Jaubert2008, Lieb1967b
[129, 162],

long-range correlations in the “Coulomb" phase
Youngblood1980,Henley2010
[277, 114] and slow dynamics

Fennell2005,Chakraborty2002
[94, 64] in both 2d

and 3d systems.
The prototypical example is water ice for which this zero point entropy has been measured in

the 30s
Giauque1936
[102]. Pauling explained this feature with a model in which the O atoms occupy the vertices

of a coordination four lattice. Two H atoms are near while the other two H atoms are shifted away
from each vertex

Pauling1935
[214]. This is encoded in the so-called ice-rules. The large degeneracy of such

locally electro-neutral ground states gives rise to the zero point entropy.
A residual entropy has also been measured in frustrated magnets such as Ho2Ti2O7

Harris1997
[112].

In these spin-ice samples, magnetic ions form a tetrahedral structure in 3d, i.e. a pyrochlore
lattice

DiepBookCH7
[44]. This is the case, for instance, of the Dy+3 ions in the Dy2Ti2O7 compound. Their

f -electron spins are large and can be taken as classical variables at, say, T < 10 K. They behave
as Ising doublets, forced to point along the axes joining the centres of the tetrahedra shared by the
considered spin. Geometric frustration arises from the non-collinear Ising-like anisotropy and the
effective exchange and long-range coupling between the spins. In a simplified description, only
short-range ferromagnetic exchanges are retained

Harris1997
[112]. Frustration is due to the different Ising

axes of the spins on the unit cell. The configurations that minimise the energy of each tetrahedron
are the six states with two-in and two-out pointing spins.

The system is more easily visualised by realising that each tetrahedron in 3d space can be
considered as a vertex taking one out of six possible configurations in a coordination four lattice.
With this mapping the magnetic problem just described becomes the analog of the earlier model of
water ice. In this context, the entropy of the ground state satisfying the ice-rules, with all vertices
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taken as statistically equivalent, was estimated by Pauling with a simple counting argument
Pauling1935
[214].

The result is very close to the earlier measurements performed by Giauque and Stout
Giauque1936
[102] on

water ice; and to the ground-state entropy of the magnetic spin-ice sample measured in the late
90s

Ramirez1999
[223]. Experimentally, the Boltzmann weights of the vertices can be tuned by applying pres-

sure or magnetic fields along different crystallographic axes. Indeed, the extensions of Pauling’s
ice model to describe more general ferroelectric systems lead to ‘ice-type models’

Slater1941
[242].

The local constraint leads to many peculiar features that have been studied experimentally
and analytically. The total spin surrounding a lattice point is conserved and constrained to van-
ish according to the two-in – two-out rule. This fact has been interpreted as a zero-divergence
condition on an emergent vector field

Isakov2004a
[123]. Spins are interpreted as fluxes and, quite naturally,

an effective fluctuating electromagnetism emerges with each equilibrium configuration made of
closed loops of flux. This analogy can be used to derive power-law decaying spatial correlations
of the spins

Youngblood1980
[277], with a parameter dependent exponent, that were recently observed experimen-

tally with neutron scattering
Fennell2007
[92]. The criticality of the disordered or spin-liquid phase had been

first observed in a simulation
Stillinger1973
[246], and it has been more recently discussed in general in

Huse2004
[121]. A

detailed description of this also called Coulomb phase can be found in
Henley2010
[114].

Thermal (or other) fluctuations are expected to generate defects, in the form of vertices break-
ing the ice rules. In the electromagnetic analogy a defect corresponds to a charge, defined as
the number of outgoing minus ingoing arrows. As such, a tetrahedra with three-out and one-in
spins contains a positive charge q, and the reversed configuration a positive charge−q of the same
magnitude. The four-out units carry a charge 2q and the four-in ones a charge −2q. Such vertices
should be present in the samples under adequate conditions. The possibility of observing magnetic
monopoles and Dirac strings as being associated to defects has been proposed by Castelnovo et
al.

Castelnovo2008
[57] and investigated experimentally by a number of other groups

Fennell2009,Morris2009,Bramwelletal2009
[93, 197, 43].

Spin ice can be projected onto 2dKagome planes by applying specially chosen magnetic fields.
Recently, interest in 2d spin-ice physics has been boosted by the advent of artificial samples

Wang2006
[263]

on square lattices that are stable at room temperature. These artificial materials have magnetic
moments that are large enough to be easily observed in the lab, giving access to the micro-states
which can be directly visualised using microscopy.

Following the same line of reasoning exposed in the previous paragraphs, such 2d ice-type
systems should be modelled by a sixteen-vertex model on a square lattice. The exact solution of
the ice model

Lieb1967
[164], and the generalisation of it in which a different statistical weight is given to the

six allowed vertices
Sutherland1967
[247] were given by Lieb and Sutherland using the Bethe Ansatz. A few years

later, Baxter developed a more powerful method to treat the generic eight- vertex models
Baxter1971
[21] and

founded in this way the modern theory of integrable systems (in the eight-vertex model vertices
with four in-going or four out-going arrows are allowed).

The presence of a hard constraint in the problem makes 2d vertex models and 3d spin-ice
share several important physical properties. For instance, the ice rules lead to a zero-point entropy
measured in the 3d spin-ice material Dy2Ti2O7 (S3d

exp ≈ 1.86 mol−1 K−1)
Ramirez1999
[223] which is very

close to the exact value computed for the 2d ice-model on a square lattice (S2d
exact ≈ 1.79 mol−1

K−1)
Lieb1967
[164]. Vertex models then appear as good candidates to study spin-ice systems.

Much less is known about the static and dynamic properties of the unconstrained sixteen-vertex
model in two and three dimensions. As the experimental interest in classical frustrated magnets
of spin-ice type is now cantered on the understanding of defects and their effects on the samples’
macroscopic properties, it seems timely to complete the analysis of the generic model. The special
experimental simplicity of two dimensional samples suggests starting from the 2d case. Moreover,
it seems worth trying to extend at least part of the very powerful analytic machinery to the models
with defects.
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Bi-dimensional Ising-like ice-models had no experimental counterpart until recently when
it became possible to manufacture artificial samples made of arrays of elongated ferromagnetic
nano-islands. The beauty of artificial spin-ice (ASI) is that the interaction parameters can be pre-
cisely controlled - by tuning the distance between islands or applying external fields - and the state
of a single degree of freedom can be directly visualised by microscopy

Wang2006
[263]. The system sets

into different phases depending on the island length l, the lattice constant a0, and the height h
between layers

Moller2006
[189]. The main drawback of these materials had been the lack of thermal fluc-

tuations and the ensuing difficulty to observe the expected ground state. Lately, these problems
have been overcome by (i) applying an external drive

Nisoli2010a
[205], (ii) using materials with a lower Curie

temperature
Kapaklis2012
[135], (iii) thermalising the system during the slow growth of the samples

Morgan2011
[196]. The

study of the equilibrium phases and critical behaviour of ASI has thus become possible on rather
large samples with up to 106 vertices.

In this thesis we show that the sixteen-vertex model, a simplified version of the more realistic
dipolar spin-ice model in 2d, is an accurate model for the collective behaviour of artificial spin-ice
samples. During the past thirty years a great effort has been put into the study of the mathematical
properties of constrained vertex models

BaxterBook
[24]. The here proven relevance of more generic ver-

tex models for ASI and the intriguing excitation properties of spin-ice (emergence of magnetic
monopoles and attached Dirac strings

Castelnovo2008
[57]) should encourage their study from a novel and more

phenomenological perspective. The work done during this thesis goes in this direction.

In recent years, research in this field has been boosted by the exciting proposal that topological
defects, in the form of magnetic monopoles and their attached Dirac strings, could be observed
in spin-ice samples

Castelnovo2008a,Jaubert2009,Bramwelletal2009,Castelnovo2010,Morris2009,Mengotti2011
[?, 131, 43, 58, 197, 177]. Spin-flips due to thermal fluctuations are respon-

sible for the emergence of these defects. The presence of frustration gives rise to unusually large
equilibration time scales in real spin-ice materials. Moreover, 2d artificial spin ice samples are
a-thermal, hence fundamentally out-of-equilibrium. For these reasons, the study of the leading
dynamical mechanisms are of prior importance in order to understand spin-ice’s collective be-
haviour. Reaction-diffusion arguments have been used to estimate the time-dependent density of
defects in the disordered phase of 3d spin ice

Castelnovo2010
[58]. Also, the dynamics induced by the presence of

a time-dependent magnetic field on arrays of large ferromagnetic islands has been studied recently
by a mean field approach

Budrikis2010
[50]. As far as we know, no studies of dynamics towards the ordered

phases nor beyond these simple modelling has yet been performed.
Here we choose a different approach to address the dynamics of spin-ice models. For the

sake of simplicity we focus on thermal quenches in the 2d square lattice spin ice model built as
a stochastic extension of the celebrated six-vertex model of statistical mechanics

BaxterBook
[24]. We use a

rejection-free continuous-time Monte Carlo (MC) algorithm
Barkema-Newman_Book
[16], with local spin-flip updates and

non-conserved order parameter, that allows thermally-activated creation of defects. This allows us
to identify the equilibrium phase diagram and to analyse different dynamic regimes.

In this thesis we study both the equilibrium and out-of-equilibrium properties of 2d spin-ice.
In order to do so we consider a sixteen-vertex model defined on an L × L square lattice. Each
edge is occupied by an arrow modelled as a binary variable S = ±1. Then we assign a Boltzmann
weight ωk ∝ e−βεk to each of the k = 1, . . . , 24 vertex configurations shown in Fig

fig:16vertexfig:16vertex
I.1 and we

assume symmetry under spin-reversal. We set the energies of all vertices with three-in and one-out
arrows (and their spin reversed) to be equal. As depicted in Fig.

fig:16vertexfig:16vertex
I.1 these assumptions leave us

with five different statistical weights (or fugacities) a, b, c, d and e: the parameters in the model.
In experimental samples, interactions between arrows favour vertices verifying the ice-rule, then:
min(a, b, c) > e > d.
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Figure I.1: The sixteen possible vertex configurations in the square lattice.fig:16vertex

The manuscript is organised as follows:

Chapter
ch:Experimentsch:Experiments
II starts by a general introduction on geometrically frustrated magnets to then move to

spin-ice in particular. We briefly review the main experimental realisations of spin-ice like sys-
tems in order to motivate the introduction of our model. We stress, when possible, the relationship
between different frustrated systems with a macroscopic degeneracy of the ground state. Some
theoretical models used to compute their thermodynamic quantities are presented and compared
with the relevant experimental results.

In chapter
ch:Basicsch:Basics
III we present some useful concepts from the theory of phase transitions and critical

phenomena: modern classification of phase transitions, scaling and universality. Then, we de-
scribe the numerical methods used in order to investigate the collective behaviour of the system
(Monte Carlo, finite size scaling, non-equilibrium relaxation method). This chapter has been in-
cluded for clarity and completeness. If readers are quite familiar with phase transitions and the
numerical methods used to tackle them, they may skip this chapter and proceed to the next.

In chapter
ch:VertexModelsch:VertexModels
IV we collect the available exact results on 2d vertex models. Although this is not a

thesis in mathematical physics, since we are dealing with extensions of the six- and eight-vertex
models, some comments about the notion of integrability should be done. The exact phase dia-
gram of the six- and eight-vertex models is presented. We discuss the quantum representations of
vertex models and the relationship between Quantum Monte Carlo and loop algorithms for clas-
sical constrained models. We introduce the unifying concept of height function for the six-vertex
model and hardly constrained models in general. This leads us to a general definition of topologi-
cal sectors in this context.

In chapter
ch:Equilibriumch:Equilibrium
V we obtain the equilibrium phases and critical properties of the symmetric sixteen-

vertex model.We proceed in two directions. On the one hand, we study the static properties of
the sixteen vertex model on a square lattice with Monte Carlo simulations. We establish the phase
diagram and critical properties, that we compare to the ones of the integrable cases. On the other
hand, we adapt the cavity (Bethe-Peierls) method to treat the same problem on a well-chosen tree
and we thus access all the expected phases in the model. We discuss the range of validity of this
approximation. We compare the results obtained analytically to the numerical ones for the finite
dimensional system. We then apply the same strategy to the model for a special choice of the pa-
rameters closer to the experimental set-up. We compare the predictions of our vertex model with
the measurements and find quantitative agreement away from the critical point. Our results prove
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the relevance of the vertex model as a simple model system for the study of ASI samples, and more
generally 2d spin-ice. After giving the few exact results available for the sixteen-vertex model, we
present our attempts to generalise the height function framework and the quantum mapping into a
spin chain to our unconstrained generic model. The work presented in this section has been done
in collaboration with Laura Foini and Marco Tarzia.

Finally, in chapter
ch:Dynamicsch:Dynamics
VI we analyse the out-of-equilibrium dynamics of the model following differ-

ent kind of quenches: from a fully disordered initial condition (equilibrium at infinite temperature)
into its disordered, ferromagnetic and anti- ferromagnetic phases. We analyse the evolution of the
density of topological defects and we identify the leading mechanisms for the growth of domains
in the ordered phases. We compare our results with known facts of the dynamics of spin ice sam-
ples. Part of the results presented in this chapter have been reported in

Levis2012
[159].





CHAPTER

II Experimental realisations:
Frustrated magnets and artificial
spin-ice

ch:Experiments
II.1 Geometrical frustration

In systems with a large number of interacting degrees of freedom the tendency to order locally
cannot always be fully satisfied. The impossibility to simultaneously minimize the interaction
energy at each point of the system is called frustration, a concept which covers a broad class of
very different situations in condensed matter physics. Frustration arises when there is a compe-
tition between different interactions and/or when the lattice structure prevents the simultaneous
minimization of the local interaction energy.

II.1.1 Definitions and ground-state manifold

There are two main sources of frustration in condensed matter systems: (i) the presence of
strong disorder or (ii) the geometry of the lattice combined with the specific nature of the interac-
tions (usually antiferromagnetic). In this section, we first discuss briefly the main features related
to frustration to then discuss in more detail its origin in spin-ice. We present some representative
examples of frustrated systems to illustrate general concepts and motivate their study, with no
attempt to give a review on this vast research domain. For a recent general introduction on the
subject the reader may consult

MoessnerRamirez2006
[187]. A more detailed review of the field is given in

Diep2004
[83]. For a

more specific review dedicated to frustrated Ising systems see
LiebmannBook
[166]. We refer the interested reader

to
Ramirez1994
[225] for an experimental review.

II.1.1.1 Disordered systems

In the context of disordered systems frustration arises from the randomness of the interactions
between the different degrees of freedom. One can introduce disorder in the O(n) model by
considering a random exchange interaction Jij between two nearest-neighbours (NN) spins on
sites i and j of a d−dimensional lattice. This class of models is described by the following
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Hamiltonian
H = −

∑
〈i,j〉

Jij Si.Sj (II.1)

where {Jij} is a set of independent ’quenched’ random variables (time independent) with mean
〈Jij〉 = 0; Si are n-component vectors such that S2

i = 1, ∀i. For n = 1 this model corresponds
to the canonical spin-glass model: the d-dimensional Edwards-Anderson model. It models the
presence of magnetic impurities located randomly in ’dirty’ materials. Since the interaction be-
tween them is well captured by the RKKY mechanism the strength and orientation of the exchange
coupling is randomly distributed.

As shown in Fig.
Fig:Random_frustrationFig:Random_frustration
II.1(a) the spin located on site i cannot simultaneously satisfy the antifer-

romagnetic bond Jij > 0 and the ferromagnetic one Jik < 0. In 3d, this model is expected to
undergo a spin-glass transition at a finite temperature Tg

MarinariParisi98
[169]. The low temperature glassy phase

is characterized by a vanishing magnetization and an extremely slowing down of the dynamics.
The ground state of the Edwards-Anderson model is not only characterised by the symmetry of
the Hamiltonian, on the contrary to its non-frustrated counterpart, the Ising model. Therefore, the
nature of the low temperature phase is radically modified by the inclusion of frustrated interac-
tions. Despite the existence of several mean field models which reproduce some characteristic
features of ’real’ glassy systems, the nature of the glass transition in finite dimensions is still a
matter of debate

MezardParisiVirasoroBook
[183]. The question of whether the glass transition is a true phase transition or

just a non-equilibrium effect is far from being solved. This is a formidable theoretical problem
which will not be treated in the following pages. Instead, we will focus on the effects of frustration
in the absence of disorder.

? Jik < 0

Jij > 0

i

j

k

(a)

? i

jk

J < 0

(b) (c)

Figure II.1: Frustrated units with Ising spins. (a) The Edwards-Anderson’s model on the square
lattice. The dashed bond corresponds to AF exchange and plane bonds correspond to FM ex-
change. (b) The AF Ising model on an equilateral triangular lattice. (c) The AF Ising model on a
lattice of corner-sharing tetrahedra.Fig:Random_frustration

II.1.1.2 Clean systems

In a large class of condensed-matter systems without disorder the tendency to order is ham-
pered by constraints. These are due to the nature of the interactions and the geometry (or topology)
of the space where the relevant degrees of freedom are defined. The combination of these two el-
ements gives rise to the so-called geometrical frustration.

In order to illustrate the latter definition we consider the antiferromagnetic (AF) Ising model
defined on the 2d triangular lattice. This model was originally introduced in 1950 by Wan-
nier

Wannier1950
[264] and Houtappel

Houtappel1950
[117] who computed the exact partition function and recognized the

absence of long range order at any temperature. It has been largely studied since then and has
become the text-book example of geometrical frustration. As shown in Fig.

Fig:Random_frustrationFig:Random_frustration
II.1 (b) the three an-

tiferromagnetic bonds around a triangle cannot be satisfied simultaneously. The third spin sitting
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on site i can be equivalently ’up’ or ’down’ such that each plaquette contains at least one pair
of parallel spins. This limitation is due to the particular geometry of the lattice. Hence, all the
configurations verifying ∑

i∈T
Si = ±1 (II.2) AFIM

on each triangular plaquette T are energetically equivalent. Meaning that there is a ’frustrated’
bond of parallel spins per triangle, even thought the interaction is antiferromagnetic. The latter
equation (

AFIMAFIM
II.2) can be seen as a local constraint defining the ground state of the system. Among

the 2 × 2 × 2 = 8 possible configurations for an elementary triangle there are six verifying the
constraint, leading to an extensive degeneracy of the ground-state which diverges in the thermo-
dynamic limit. The phase space submanifold defined by the constraint eq. (

AFIMAFIM
II.2) will be called the

ground-state manifold of the model. The exact value of the associated ground state entropy was
computed by Wannier and Houtappel

Wannier1950,Houtappel1950
[264, 117] . It is given by

S2d
NkB

= 3
π

∫ π/6

0
ln(2 cosx) dx ≈ 0.323 (II.3) eq:WannierEntropy

whereN is the number of spins in the system. This calculation shows that the system is disordered
even at T = 0. The calculation of the pair correlation function C(r) confirms this scenario

Stephenson1970
[245].

Indeed, it has been shown that, for T → 0 the correlations decay algebraically as

C(r) ∼ r−1/2 (II.4)

where r is the distance between two spins in the lattice. The above constraints impose long-
range correlations between the spins. In analogy with molecular liquids this kind of collective
paramagnets are called classical spin-liquids.

For reasons that will become clear in the following section, lets consider the 3d version of the
previous model: the AF Ising model on a pyrochlore lattice (see Fig

Fig:PyrochloreFig:Pyrochlore
II.2) introduced by Ander-

son
Anderson56
[?] six years after the work of Wannier and Houtappel. Similarly to the 2d case, he found a

macroscopic degeneracy of the ground state on a 3d lattice. As shown in Fig.
Fig:Random_frustrationFig:Random_frustration
II.1 (c), the number

of satisfied bonds on an elementary tetrahedron cannot be larger than two. All the configurations
{Si}Ni=1 with two spins up and two spins down per tetrahedron are equivalent and constitute the
ground state of the system. In a more formal way, the ground state manifold G is defined by the
local constraint

G =
{
{Si} :

∑
i∈T

Si = 0, ∀ T
}

(II.5) eq:GSAnderson

where here the elementary frustrated unit T is a tetrahedron.
The models we have discussed above include only NN interactions such that each link of the

lattice can be seen as a two-body interaction (a bond). From Fig.
Fig:Random_frustrationFig:Random_frustration
II.1 one can be easily convinced

that, since the AF order is staggered, the interacting spins must be defined on a bipartite lattice in
order to be able to accommodate into its Néel ground state and avoid geometrical frustration. In 1d
systems, further neighbours interactions are needed in order to have frustration. Indeed, geomet-
rical frustration comes from the presence of closed loops of an odd number of degrees of freedom
with antiferromegnetic interactions. This can be summarised by Toulouse’s criterion

Toulouse1977
[258]: the

plaquette or unit T is frustrated if the parameterWT defined as

WT =
∏
〈i,j〉∈T

Jij
|Jij |

(II.6) eq:loopProd
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1

r0

[100]

[111]

[001]

[010]

Figure II.2: The pyrochlore lattice made by corner-sharing tetrahedra. The cube represents a unit
cell. The three crystallographic directions [001], [010] and [001] are shown together with the [111]
direction. The spacing between nearest neighbours is denoted by r0 (shown in red).Fig:Pyrochlore

is equal to−1. The product in the equation above runs over all the NN pairs around an elementary
frustrated unit T . Since this criterion can be generalised to a product over all the bonds along any
closed loop we will call it loop product. To illustrate this concept let us consider the AF Ising
model on the triangular lattice. Since all the plaquettes are made of three bonds, elementary loops
are made of an odd number of bonds (see Fig.

Fig:AFIM_loopsFig:AFIM_loops
II.3 (a)). ThereforeWT = −1 for any loop T . As

shown in Fig.
Fig:AFIM_loopsFig:AFIM_loops
II.3 (b), this does not apply to the AF Ising model on the Kagome lattice. It this

system all the triangles are frustrated but not all loop products give a negative result because of the
presence of hexagonal plaquettes. The latter remarks lead us to a concise definition of geometrical
frustration:

A system is geometrically frustrated if a negative loop-product exists.

The existence of a ground state manifold with an extensive number of states (diverging in the
thermodynamic limit) is a central feature of geometrical frustration but not all frustrated systems
display this property. For continuous spins (n > 1) placed on the vertices of frustrated lattices the
ground state is usually long-range ordered but no longer made by parallel or antiparallel spins. This
is the so-called non-collinear order. The canonical example is the AF XY model on a triangular
lattice whose ground states give rise to the ‘ 120 o structure’

Diep2004
[83]. In the ground state, the spins

accommodate such that their orientations form an angle of 2π/3, or equivalently, the sum of the
three spins around an elementary plaquette is zero.

So far, we have only considered lattice systems with interacting spin variables. Even though
it usually appears in the context of magnetic systems, geometrical frustration plays a fundamental
role in the understanding of the structural aspects of solids and complex media

Sadoc1999
[232]. In such

systems, the tendency to grow a local ordered structure with some symmetry is hampered by the
topology of the space to fill (e.g. the 3D Euclidean space cannot be filled by tetrahedral packing
of spheres)

TorquatoBook
[257].
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(a) (b)

Figure II.3: Examples of 2d frustrated lattices and their corresponding loop products. (a) The
triangular lattice. The loop product CT1 = (−1)3 around a single frustrated unit T1 made by 3
bonds shown in red and CT2 = (−1)7 around the loop T2 made by five plaquettes and 7 bonds
shown in blue. (b) The Kagome lattice made by corner sharing triangles has a negative loop
product around a triangular plaquette (shown in red).Fig:AFIM_loops

At this stage one should try to answer the following question: Is the lack of long range order ro-
bust to small perturbations? Strictly speaking, the above arguments leading to the macroscopic de-
generacy of the ground state were based on: (i) the equivalence of all the bonds around a frustrated
unit (ii) the lack of thermal fluctuations breaking the constraint. The inclusion of anisotropy

Houtappel1950
[117],

range of the interactions
Metcalf1974
[180] and lattice deformations

Chen1986
[68] break the first before mentioned ar-

gument and order becomes possible in a frustrated system. The second argument breaks down at
any non zero temperature. Then, defects breaking the constraint defining the ground state manifold
must be considered. Thermal fluctuations in frustrated magnets can give rise to ’exotic’ excitations
such as fractional excitations

Balents2010
[13] or unconventional superconductivity

Anderson1987
[8]. It might explain the

enthusiasm of condensed matter physicists in studying these systems.

A subtle ground state selection mechanism occurring in strongly frustrated systems was iden-
tified by Villain et al.

Villain1980
[261]. The authors considered a frustrated Ising system (the domino model)

without long range order at zero temperature. They showed that thermal fluctuations order the
system at any finite temperature below Tc. At Tc the system undergoes a continuous phase tran-
sition to a disordered phase. This intriguing phenomenon was hence termed ‘order as an effect of
disorder’. Similarly, it has been shown in the Kagome and triangular Heisenberg AF models that
quantum fluctuations at zero temperature can also select a ground state

Sachdev1992
[231]. In its usual form, the

third law of thermodynamics is violated in geometrically frustrated systems with a hard constraint
and discrete degrees of freedom. Strictly speaking, one must take into account the presence of
quantum fluctuations at low temperature. It is not clear how these could affect the ground state
degeneracy of water ice. The interplay between quantum fluctuations and geometrical frustration
leads to the so-called quantum spin liquids

Balents2010
[13]. Theories like resonance valence bonds

Anderson1973,Anderson1987
[7, 8] pre-

dict the existence of ’exotic’ excitations in connection with high temperature superconductivity,
explaining the huge amount of recent works in the field. For recent reviews in the subject I would
recommend

Lee2006,MisguishBook,Balents2010
[157, 185, 13] .

II.1.2 Water Ice

Back in the thirties, physicists and chemists where confronted for the first time to the unex-
pected consequences of frustration when studying ordinary water ice. Even though the concept of
frustration was not used yet, everyday’s water ice is indeed the prototypical example of geometri-
cal frustration. This section is devoted to a brief review on this system.
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II.1.2.1 Zero-point entropy

The emergence of a macroscopic degeneracy of the ground state is the main characteristic of
geometrically frustrated systems. Even down to zero temperature, the entropy does not vanish and
the system fluctuates, in apparent contradiction with the third law of thermodynamics. As a result,
there is an absence of long-range order at T = 0 and the corresponding zero-point entropy or
residual entropy can be measured. This was done for water ice in 1936 by Giauque and Stout

Giauque1936
[102].

The authors performed heat capacity measurements on water from 273 K down to 10 K. They
computed the entropy between 10 K and 273 K by integrating the heat capacity measurements
shown in Fig.

Fig:GiauqueStoutFig:GiauqueStout
II.4. They found

∆S =
∫ 273

10
Cp d lnT ≈ 9.081 cal.mol−1.K−1. (II.7)

The entropy of the lower temperature regime, between 0 K and 10 K, was extrapolated using
Debye’s model

KittelBook
[140]. Then, by adding the latent heat contributions, accurately measured in

the past, they found ∆S1 = 44.28 ± 0.05 cal.mol−1.K−1. This measurement was compared
with the entropy calculated by Giauque and Ashley using spectroscopic data S273 ≈ 45.10
cal.mol−1.K−1 GiauqueAshley1932

[103]. This value is larger than the one obtained by calorimetric measurements.
The discrepancy between these two values gives an experimental evidence of a zero-point entropy
of S3d = S(273) −∆S1 = 0.82 ± 0.05 cal.mol−1.K−1 (≈ 3.4 J.mol−1.K−1). By introducing a
simple model, Pauling explained and gave an excellent estimation of this value

Pauling1935
[214].
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very slowly. The following are temperatures 
reached at  various times after the ice was frozen : 
0 hours, 273.1'; 12 hours, 246'; 37 hours, 203'; 
GO hours, 180'; 84 hours, 168'; 92 hours, 156'; 
108 hours, 105'; 120 hours, 91'; 156 hours, 90'. 
The sample was then cooled from 90 to 68' in 
about three hours and the heat capacity measure- 
ments of series I taken. Next the calorimeter 
was cooled to the temperatures of liquid hydrogen 
at  the following rate: 0 hours, 85'; 1.5 hours, 
72'; 2 hours, 60'; 2.5 hours, 56'; 7 hours, 39'; 
(liquid hydrogen evaporated) 17.5 hours, 49' ; 
22 hours, 50' (more liquid hydrogen added) ; 23 
hours, 41'; 27 hours, 13'. The measurements of 
series I1 were then made. 

I--- - 
I 

01 / I I I 
I 

0 80 160 240 
Temperature, OK. 

Fig. 2.-Heat capacity in calories per degree per mole 
of ice. 

During this series of measurements which ex- 
tended from 15'K. to the melting point, and 
covered a period of eighty hours, the calorimeter 
was under constant observation. To make cer- 
tain that no unusual thermal situation was pres- 
ent in the solid near the melting point, the heat 
of fusion was determined a t  the end of the above 
series of measurements. The value obtained, 
1436 cal./mole, agrees well with that which has 
been chosen for the entropy calculation. 

TABLE I 
HEAT CAPACITY OF ICE 

(Molecular weight, 18.0156) OOC. = 273.10"K. 
T,OR. AT C, cal./deg./mole Series 
16.43 1.403 0.303 I1 
18.37 1.729 .410 I1 
20.78 2.964 .528 I1 
24.20 3.815 .700 I1 
28.05 3.596 .883 I1 
31.64 3.578 1.OG5 I1 
35.46 4 073 1.251 I1 
39 62 4 242 1.440 IT 

43.96 
48.52 
52.98 
57.66 
62.63 
G7.83 
70.61 
73.01 
75.60 
78.51 
79.98 
81.44 
82.42 
83.72 
83.94 
86.66 
87.25 
89.20 
91.32 
91.93 
94.93 
95.85 
97.37 
99.57 

100.69 
104.69 
110.13 
115.84 
121.74 
127.54 
133.50 
139.48 
145.43 
151.43 
157.48 
163.52 
169.42 
175.36 
181.25 
187.20 
192.96 
199.11 
205.32 
211.56 
217.97 
224.36 
230.08 
236.19 
242.40 
249.31 
256.17 
262.81 
267.77 

4.469 1.641 i1 
4.571 1.837 i1 
4.361 2.014 i1 
5.041 2.203 11 
5.228 2.418 11 
4.910 2.612 11 
5.403 2.723 1 
5.737 2.821 11 
4 I 638 2.922 1 
4.991 3.016 11 
4.133 3.070 1 
5.538 3.115 111 
4.860 3.163 I v 
5.438 3.191 11 
3.765 3.199 1 
4.893 3.286 111 
4.756 3.336 I V  
5.557 3,389 11 
4.394 3.488 111 
4.651 3.532 IV 
5.233 3.649 11 
4.649 3.660 111 
6.234 3.724 IV 
4.778 3.814 11 
4.980 3.832 111 
5.497 3.985 11 
5.373 4.136 11 
6.031 4.315 11 
5.908 4.489 11 
5.813 4. fi55 11 
6.005 4.808 11 
5.952 4,978 11 
5.928 5.135 11 
6.240 5.306 11 
5.837 5.466 11 
5.851 5 .  G63 11 
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5.983 
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6.200 
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6.303 
4,465 
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(i ,007 
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A .  530 
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6.935 
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7.326 
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8.048 
8.295 
8.526 
8.732 
8.909 
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In the heat capacity measurements between 
85 and lOO'K., the attainment of temperature 
equilibrium in the solid was much less rapid than 
at other temperatures. This observation is of 
considerable interest and some of its implications 
will be discussed below. 

'fo study possible effects due to rapid cooling. 

Figure II.4: Heat capacity of water ice measured by Giauque and Stout (from
Giauque1936
[102]). The structure

of water ice Ih is shown in Fig.
fig:Icefig:Ice
II.7.Fig:GiauqueStout

II.1.2.2 Pauling’s Ice model

The following quote from Giauque and Stout’s seminal paper
Giauque1936
[102] presents in a concise way

the essence of Pauling’s model:

During the course of the present investigation, Pauling offered an alternative expla-
nation based on the random orientation of hydrogen bonds in ice. [...] The spec-
troscopic value is 45.10 leading to a discrepancy of 0.82 cal./deg./mole. This is in
excellent agreement with the theoretical discrepancy 0.806 calculated by Pauling on
the assumption of random orientation of hydrogen bond directions in ice.
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Pauling’s model
Pauling1935
[214] predicts the before mentioned zero-point entropy as arising from the

intrinsic disorder of hydrogen ions (H+) in water ice. Oxygen ions (O2−) occupy the vertices of
a coordination number four lattice and protons are located on its edges. At each oxygen-oxygen
link there is only one proton with two possible equivalent positions: close or distant to an oxygen
ion (covalent or hydrogen bond respectively). Water molecules are polar, hence each edge of
the lattice carries an electric dipole moment (~µ ≡O2− →H+). The two possible positions for the
proton correspond to a dipole pointing towards one of its two adjacent vertices. This is summarized
in the so called Bernal-Fowler’s ice-rules defining the ground state of the model: at each vertex
two dipoles must point inward and two outward

Bernal1933
[29]. These rules are equivalent to the discrete

local constraint,
~∇i.~µi = 0, ∀i (II.8)

where the index i denotes a site (i.e. vertex) of the lattice. All the configurations verifying thaticerule
constraint are energetically equivalent. Even though Pauling’s model was originally proposed to
study 3d water ice, it can be defined in any coordination four lattice. As the reader will remark,
all the discussions and results that follow in this section are independent of the dimensionality
of the lattice as soon as a the relevant unit is a vertex with four equivalent edges attached to it.
On a square lattice, six configurations among the 24 = 16 possible local arrangements verify the
ice-rule (see Fig.

Fig:6VFig:6V
II.5). The system is geometrically frustrated: each frustrated unit (made by a

vertex and its four edges) carries a degeneracy of six, leading to the extensive degeneracy of the
ground state measured by Giauque and Stout.

Pauling computed approximately the number of configurations verifying the ice-rules. Con-
sider a lattice with N vertices (O atoms) and 2N edges (H atoms). There are 2 possible configura-
tions for each edge, which gives Ω0 = 22N possible configurations. This gives the entropy of the
model if the ice-rules are omitted. The number of configurations must then be reduced. In order
to do so, Pauling considered each vertex as an independent object. Then the number of allowed
configurations is reduced by multiplying by N factors 6/16. These factors are the probability that
the vertices verify the ice-rule (six allowed configurations among the sixteen possible ones). One
should note that the hypothesis of independence between vertices is a huge approximation (of the
’mean-field’ kind) and has, a priori, no reason to give accurate results. The number of ground
state configurations is therefore Ω∞ = 22N (6/16)N = (3/2)N and the residual entropy

S∞
NkB

= ln(3/2) ≈ 0.405 . (II.9) eq:Pauling

This value is remarkably close to the experimental value S3d = 0.82 ± 0.05 cal.mol−1.K−1

(≈ 0.41R ≈ 3.4 J.mol−1.K−1, where R ≈ 8.314 J.mol−1.K−1 is the gas constant). This ap-
proximation can be applied to any model where the extensive degeneracy of the ground state
comes from a local constraint. For the AF triangular Ising model the probability to find a triangle
in its ground state [i.e. verifying eq. (

AFIMAFIM
II.2)] is 6/8. Since there are two triangles per spin, one finds

Ω∞ = 2N (6/8)2N , where N is the number of spins in the system. Hence,

S∞
NkB

= ln(9/8) ≈ 0.118 . (II.10)

Pauling’s approximation gives neither an upper nor a lower bound of the zero point entropy. The
exact value of the zero point entropy of the model was given in eq. (

eq:WannierEntropyeq:WannierEntropy
II.3). This result shows

that, for the AF Ising model on the triangular lattice, Pauling’s method is unsatisfactory (see Table
Table:EntropyTable:Entropy
II.1). However, for the AF Kagome lattice and the ice problem this approximation turns out to
be extremely accurate. Magnetic specific heat measurements show the agreement between the
theoretical result and experiments

Ramirez2000
[224].
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The energy of the ice model is minimised when all the vertices verify the ice rule. Protons can
only be in two different positions per bond, which is equivalent to a binary variable attached to each
edge. The model is then defined by giving the same energy to all the configurations verifying the
ice-rule and an infinite one to all the other ones. The exact solution of the ice model on the square
lattice was given by Lieb using transfer matrix techniques

Lieb1967
[164]. The ground state degeneracy is

given by the so-called Lieb’s square ice constant W and the residual entropy is

S2d = N kB lnW, W =
(4

3

) 3
2

= 8
√

3
9 . (II.11) Eq:Lieb

Its numerical value is S2d ≈ 0.43R. The ice problem is closely related to many other problems in
mathematical physics and Lieb’s constant is now extensively used in combinatorics.

1

Figure II.5: The six vertex configurations verifying the ice rule in the square lattice.Fig:6V

II.1.3 Generalised ’ice-type’ models

The extension of Pauling’s ice model to include more general ferroelectric systems led to the
so called ’ice-type models’ and then ’vertex models’. Vertex models consist in some degree of
freedom (Ising spins, q-valued variables, etc.) sitting on the edges of a lattice where interactions
are defined on the vertices (contrary to ’edge’ models, as O(n) models, where interactions are
explicitly written in terms of variables on the edges). The many-body interaction between the
variables sharing a vertex is then encoded by the energy of a local configuration.

The theoretical solution of the ice model
Lieb1967
[164], and some generalizations of it in which a

different statistical weight is given to the six allowed vertices
Lieb1967b,Sutherland1967
[162, 247] were given by Lieb and

Sutherland in the late 60s using the transfer matrix technique with the Bethe Ansatz. Soon after,
Baxter developed a more powerful method to treat the generic six- and eight-vertex model

BaxterBook
[24]

and founded in this way the theory of integrable systems. The eight-vertex model is an extension
of the six-vertex model. It includes all the vertices with an odd number of incoming and outgoing
arrows on each vertex, leading to the eight configurations shown in Fig.

Fig:8VFig:8V
II.6. Their equilibrium

phase diagrams are very rich: depending on the weight of the vertices the system sets into a quasi
long-range ordered spin liquid phase (SL) and several ferromagnetic (FM) and antiferromagnetic
(AF) phases separated by different types of transition lines. In the six vertex case the SL phase is
critical in a similar way to what is observed in 3d spin-ice.

In these models a local constraint makes them integrable, meaning that theYang-Baxter equa-
tions are verified (see Chapter

chap:VertexModelschap:VertexModels
??), and many of its equilibrium properties can be derived exactly.

From a theoretical perspective integrable vertex models are of particular interest. The static prop-
erties can be mapped onto spin models with many-body interactions

LiebWuBook
[165], loop models

NienhuisBook,Jacobsen1998
[204, 124],

three-coloring problems
Lieb1967
[164], random tilings

Zinn-Justin2000b
[281], surface growth

Beijeren1977
[25], alternated sign matri-

ces
Zinn-Justin2000b
[281] and quantum spin chains

Sutherland1970
[248]. A comprehensive discussion of some of these mappings

will be made in the text, mainly in Chapter
ch:VertexModelsch:VertexModels
IV.

The critical properties and the nature of the phase transitions in frustrated spin systems are dif-
ficult to treat with the standard methods of modern statistical mechanics. Although largely studied,
the collective behaviour of frustrated systems is still a matter of debate. Renormalisation group
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studies of Heisenberg frustrated magnets support the existence of scaling laws with continuously
varying exponents

Calabrese2003,Delamotte2004
[53, 81], similarly to what happens in the eight-vertex model (see chapter

ch:VertexModelsch:VertexModels
IV).

Well established approaches must be improved in order to capture the essence of these new phe-
nomena. It is then of great interest to develop simple theoretical models to describe these systems.
Frustrated spin models, and vertex models in particular, seem to be a good playground to start
with.

� �� �
a=ω1=ω2

� �� �
b=ω3=ω4

� �� �
c=ω5=ω6

� �� �
d=ω7=ω8

1

Figure II.6: Vertex configurations of the eight vertex model on the square lattice.Fig:8V

The latter remarks make the study of frustrated systems interesting by itself from the theoreti-
cal point of view. Experimentally, frustrated magnetic materials can be engineered and studied in
the laboratory using a large variety of different techniques. The control of magnetic materials has
been crucial for technological issues during the last decades and we could expect that frustrated
magnetism will also become a source of new technological development. As shown all along
the coming sections, spin ice in 2d is a good candidate both for the theoretical understanding of
geometrical frustration and for potential technological applications. In particular, the ability to
manipulate magnetic monopoles in spin ice would lead to magnetic analogs to electric circuits.

II.2 Spin-ice materials

II.2.1 Rare-earth pyrochlores with residual entropy

This section is devoted to spin ice, a classical frustrated spin system realised in a family of
rare-earth pyrochlore oxides such as Ho2Ti2O7 or Dy2Ti2O7. Since the pioneering work of Harris
and co-workers

Harris1997
[112] spin ice has been the subject of a great deal of work and has become one

of the most studied frustrated systems. This has been driven by the remarkable and unexpected
properties observed in these materials. Spin-ice belongs to the more general family of pyrochlore
oxides of the type A2B2O7. For a review dedicated to magnetic pyrochlore oxides in general and
spin-ice in particular see

Gardner2010
[101] and

BramwellBook
[42], respectively. In spin-ice ’A’ is a rare-earth magnetic ion

(such as Ho3+ or Dy3+) and ’B’ is a non-magnetic ion (such as Ti4+).
The only magnetic ions in spin-ice come from rare-hearth elements (Ho3+ or Dy3+). They

carry a large magnetic moment located on the sites of a lattice made by corner-sharing tetrahedra
forming a pyrochlore lattice. The surrounding crystal field acting on the magnetic ions gives rise
to a strong single ion anisotropy that forces the magnetic moments to be aligned along their local
〈111〉 direction connecting the centres of their two corner-sharing tetrahedra (see Fig.

Fig:PyrochloreFig:Pyrochlore
II.2). At

low temperature, the magnetic moments are well described by classical Ising spins with a large
magnetic moment (≈ 10µB), in such a way that they can only point inward or outward from the
centre of a tetrahedron. Each tetrahedron can be seen as a vertex in a 3d lattice taking one out of
sixteen possible configurations (see Fig.

fig:IceLevelsfig:IceLevels
II.10).

As suggested by its name, spin ice is the magnetic analog of water ice. Magnetic moments in
spin ice play an equivalent role to that of the proton position, i.e. dipolar moment, in water ice. In
ordinary ice Ih the oxygens are located at the centre of the tetrahedra forming a pyrochlore lattice
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as shown in Fig.
fig:Icefig:Ice
II.7. Electric dipoles are then located on the sites of a pyrochlore lattice 1, such

that the correspondence between a water ice configuration and a spin ice one is straightforward:
when there is only one proton per edge, one can identify an electric dipole with a spin.

1

O
2−

H
+

Figure II.7: Equivalence between the crystalline structure Ih of water ice and spin-ice on a py-
rochlore lattice. The oxygens form a diamond lattice, the coordination number four lattice made
by the centers of the tetrahedra. The middle points of the edges where the arrows sit form a py-
rochlore lattice, the dual of the diamond lattice. A spin (black arrows) pointing inside a tetrahedron
occupied by an oxygen corresponds to a hydrogen closer to it.fig:Ice

A few years after Harris et al. reported the absence of long-range order in Ho2Ti2O7, Ramirez
and collaborators measured a residual entropy close to the one predicted by Pauling now using
Dy2Ti2O7

Ramirez1999
[223]. Similarly to what Giauque and Stout did sixty years before, these authors ex-

tracted the entropy at very low temperature from heat capacity measurements between T =0.2 K
and T =12 K (see Fig.

fig:Ramirezfig:Ramirez
II.8). As shown in Table

Table:EntropyTable:Entropy
II.1 this measurement is remarkably close to the

entropy of water ice and, interestingly, to analytical calculations in 2d and making use of the Paul-
ing approximation (mean-field like models). From this observation one would like to conclude
that spin ice is geometrically frustrated and that, at low enough temperatures, it verifies some kind
of hard constraint such as the ice-rules.

Sexp S2d S∞

Water ice 0.41R
Giauque1936
[102] 0.43R

Lieb1967
[164] 0.40R

Spin ice 0.46R
Ramirez1999
[223] 0.43R 0.40R

Kagome AF 0.5018R
Ramirez2000
[224] 0.5018R

Kano1953
[134] 0.5014R

Ising AF 0.36R
Nakatsuji2005
[201] 0.323R

Wannier1950
[264] 0.118R

Table II.1: Zero point entropy. First column Sexp: experimental results with the corresponding
references for different frustrated materials. Second column S2d: exact computations in 2d lattice
models. Third column S∞: approximate results applying Pauling’s method. Where R ≈ 8.314
J.mol−1.K−1 is the gas constant.Table:Entropy

1. The diamond and the pyrochlore lattice are dual.
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In Fig. 2a inset we show xdc(T ) from 2 to 20 K, illustrating
the small ferromagnetic, FM, intercept, corresponding to a Weiss
constant vw � 0:5 K, where 1=x ¼ const:=ðT � v

w
Þ. The C(T)/T data,

which extend down to lower temperatures (Fig. 2a), show a much
broader peak than usually seen for an antiferromagnetic, AF,
transition. The lack of a clear ordering feature in C(T) is consistent
with a picture where the spins ‘freeze’ in a random configuration as
a result of geometrical frustration. The absence of magnetic order in
a system with no structural disorder is by itself unusual. The first
reported example of such a system is another pyrochlore com-
pound, Y2Mo2O7, where despite the absence of any measured
structural disorder, long-range magnetic order is not observed10—
instead, spin glass freezing among Heisenberg-like Mo4+ ions sets in
at T � 0:3vw � 15 K. But existing susceptibility measurements11 on
Dy2Ti2O7 do not show the sharp cusp expected for a spin glass, but
rather a broad feature peaked at T � 0:7 K, indicating a different
type of frozen spin state for this Ising-type spin system.

The most surprising aspect of our data, however, is found when
integrating C(T)/T from 0.2 to 12 K to obtain the total spin entropy
(Fig. 2b). This temperature range incorporates all appreciable
observed contributions to C(T)/T. We obtain DSð0:2; 12Þ ¼
ð0:67 � 0:04ÞRln2, that is, a shortfall of �1/3 of the total spin
entropy. It has been previously noted, based on measurements of
C(T) only up to 1.5 K and a numerical extrapolation to higher
temperatures, that the peak height is consistent with reduced
entropy11: but it was suggested that the extrapolation was too
simple, and that the missing entropy would be found for
T � 1:5 K. We see no evidence for missing entropy for T � 1:5 K

and, although it is possible that additional entropy is developed
below 0.2 K, we think it unlikely for the following reasons. First,
C(T)/T drops by almost two orders of magnitude from 1 to 0.5 K
indicating near-complete spin freezing, and second, there is no
structural reason to assume a bimodal distribution of entropy-loss
processes, for example, due to two different exchange interactions.
In addition, our Monte Carlo simulation reproduces the observed
C(T)/T peak height and shape (Fig. 2a). (The Monte Carlo simu-
lation was performed on a sample of size 8 � 8 � 8 tetrahedra
(2,048 spins) and �104 Monte Carlo steps per spin. The spin–spin
interaction was assumed to be purely dipole–dipole but with a
g-factor reduced by 25% from the J ¼ 15=2 Lande value. This is
most likely the result of the compensating effect of a small
admixture of superexchange interaction. Justification for this,
and further details, will be given elsewhere (A.P.R. et al., manu-
script in preparation).

The comparison of the measured entropy with the prediction of
Pauling for ice Ih, Rðln2 � ð1=2Þlnð3=2ÞÞ, is shown in Fig. 2b. To test
the idea that there exists a contribution to ground-state entropy
from a different energetically unfavoured state, we applied a small
magnetic field, H, to reduce the energy barriers for spin reorienta-
tion. As shown in Fig 2a and b, an applied field of 0.5 T results not
only in a shift of C(T)/T to higher temperatures, but also in an
increase of the integrated entropy, DS(0.2, 12), from 0.67Rln2 to
0.85Rln2. The increase of temperature where C(T)/T is appreciable
is expected, because Zeeman splitting increases with field. The
increase of total DS, however, underscores the existence of addi-
tional entropy beyond that contained in the H ¼ 0 peak. The
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Figure 2 Specific heat and entropy of the spin-ice compound Dy2Ti2O7

showing agreement with Pauling’s prediction for the entropy of water ice Ih,

Rðln2 � ð1=2Þlnð3=2ÞÞ. a, Specific heat divided by temperature of Dy2Ti2O7 in H ¼ 0

and 0.5T. The dashed line is a Monte Carlo simulation of the zero-field C(T)/T, as

discussed in the text. b, Entropy of Dy2Ti2O7 found by integrating C/T from 0.2 to

14K. The value of Rðln2 � ð1=2Þlnð3=2ÞÞ is that found for ice Ih and Rln2 is the full spin

entropy. Inset, susceptibility (M/H) of Dy2Ti2O7 in a field of 0.02T.
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Figure 3 Specific heat versus temperature for various values of applied field. The

broad H ¼ 0 feature is suppressed on increasing H and replaced by three sharp

features at 0.34, 0.47 and 1.12K. The left inset shows the constancy of these

transition temperatures with field; the right inset shows the results of finite-field

Monte Carlo (MC) simulations of C/T.

Figure II.8: Specific heat and entropy measurement in Dy2Ti2O7 from
Ramirez1999
[223]. (a) Heat capacity

divided by temperature of Dy2Ti2O7 in an external field H = 0 and H = 0.5 T. The dashed line
is a Monte Carlo simulation of the dipolar spin-ice model in a finite lattice made by 8 × 8 × 8
tetrahedra at zero field. The inset shows the inverse susceptibility of Dy2Ti2O7 in an external field
h = 0.02 T. (b) Entropy of Dy2Ti2O7 in an external field H = 0 and H = 0.5 T. The entropy of a
random arrangement of spins R ln 2 and the one computed by Pauling R(ln 2− (1/2) ln(3/2)).fig:Ramirez

II.2.2 Dipolar spin-ice model

In order to further understand the analogies between water and spin ice behaviour one should
first understand the origin of frustration in spin ice. In these materials the exchange coupling be-
tween rare-earth ions (≈ 1 K) is weaker that in an usual ferromagnet (≈ 300 K for Co). Moreover,
the magnetic moments carried by the magnetic ions are large (≈ 10µB) such that dipolar inter-
actions cannot be neglected

Harris1998
[111]. Dipolar and exchange interactions are of the same order of

magnitude in spin ice materials. The best suited microscopic model to describe spin ice is the so
called dipolar spin ice (DSI) model

Siddharthan2001
[239]. Its Hamiltonian is given by

HDSI = −J
∑
〈ij〉∈P

Si.Sj +Dr3
0
∑

i<j∈P

(
Si.Sj
||~rij ||3

− 3(Si.~rij) (Sj .~rij)
||~rij ||5

)
(II.12) eq:DSIHamiltonian

where the magnetic moments Si = Si~zi are Ising spin variables (Si = ±1) along the local 〈111〉
axis ~zi 2. The separation between spins is given by ~rij = ~ri − ~rj and P denotes the set of sites
of the pyrochlore lattice. The first sum runs over all the edges 〈ij〉 of P . The exchange coupling
J > 0 is ferromagnetic and the dipole strength D = µ0µ

2/4π~r 3
0 where r0 is the distance between

two nearest-neighbours, µ the net magnetic moment carried by magnetic ions and µ0 the magnetic

2. In the crystallographic basis {[100], [010], [001]} the four local directions of a tetrehedra are

1√
3

(1, 1, 1), 1√
3

(1,−1,−1), 1√
3

(−1, 1,−1), 1√
3

(−1,−1, 1)
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permeability of vacuum 3.
Let us focus first on the local interaction energy coming from HDSI . Consider two nearest-

neighbours spins located on sites i and j. We introduce a new set of binary variables σi on each
site where σi = ±1 if the spin points into or out of the center of a considered tetrahedron. The
scalar product Si.Sj = −1

3σiσj and (Si.~rij) (Sj .~rij) = −2
3σiσjr

2
0. At the nearest-neighbour

(NN) level approximation the DSI Hamiltonian reads

HDSI ≈ HNN = Jeff
∑
〈ij〉∈P

σiσj (II.13) eq:NN

where
Jeff = J

3 + 5D
3 > 0. (II.14)

One obtains a short range antiferromagnetic model where only nearest neighbours (NN) 〈ij〉 in-
teract. The NN Hamiltonian eq. (

eq:NNeq:NN
II.13) is equivalent to the 3d AF Ising model in the pyrochlore

lattice introduced earlier (see Fig.
fig:IcePyroAndersonfig:IcePyroAnderson
II.9). As already mentioned, this system is geometrically frus-

trated, the ground-state corresponds to all the configurations with two σ = 1 and two σ = −1
per tetrahedron. It corresponds to two spins pointing in and two pointing out of each tetrahedron
(2 in − 2 out rule). Meaning that spin ice obeys the same ice rules as water ice in terms of
spins instead of dipole moments. The centre of each tetrahedron in spin-ice can be considered as
a vertex sitting on the dual lattice (i.e. the diamond lattice) taking one out of the sixteen possible
configurations. As shown in Fig.

fig:IceLevelsfig:IceLevels
II.10, all the vertices verifying the ice rule are degenerate. The

ground state manifold of the system can then be formally written

G =
{
{Si} :

∑
i∈T

σi = 0, ∀ T
}

(II.15) eq:Anderson

where the sum is over the four spins which belong to the same tetrahedron T . The interactions
split the sixteen vertices into three categories labelled a, e and d. The reasons for this labelling
will become clear in the following sections, after projecting spin ice in the 2d plane and making
the link with vertex models.

The interaction energy is minimised when the number of satisfied bonds on each tetrahedra
is maximal under the constraint imposed by the lattice geometry. This mapping between the
ferromagnetic interactions in terms of ~Si in spin-ice and the antiferromagnetic interactions in
terms of σi in the AF Ising model shows clearly why spin-ice is frustrated at the nearest-neighbour
level. As pointed out originally

Harris1997
[112], frustration in spin ice arises through the combination of the

ferromagnetic character of the interactions and the local easy-axis anisotropy on the pyrochlore
lattice, being the first example of frustrated ferromagnetism.

The NN model explains the emergence of the ice rules in spin ice and the agreement between
calorimetric measurements and Pauling’s calculation. However, it does not explain why the inclu-
sion of long range interactions does not break the ground-state degeneracy imposed by ice-rules.
We should emphasize that this is a very non-trivial feature of spin-ice: for other frustrated systems
it has been shown that the inclusion of interactions beyond nearest neighbours selects a unique
ground state

Metcalf1974,Reimers1991,Palmer2000a
[180, 227, 213]. The reason why DSI obeys the ice rules comes from the self screen-

ing of the dipolar long range interactions, hence needed in order to investigate the phases and ex-
citations in spin ice. The relevance of the full long-range dipolar Hamiltonian became uncontested
after the experimental work of Bramwell and collaborators

Bramwell2001e
[45]. By numerical simulations using

both the DSI and the NN model, they showed that DSI reproduces correctly neutron scattering
data in Ho2Ti2O7 while the NN model fails. Dipolar interactions are crucial for the understanding
of the phase diagram and the nature of the excitations in spin ice.

3. With r0 ≈ 3 Å and µ ≈ 10µB we get D ≈ 1.5 K. This value is of the same order of magnitude as the Curie
temperature measured in spin ice materials.



II.2. SPIN-ICE MATERIALS 25

+

+
-

-(a) (b) (c)

Figure II.9: Equivalent representations of spin ice. (a) Arrangement of oxygens (red) and hydro-
gens (white) in water ice. (b) Corresponding configuration in spin ice in term of spins pointing
inwards or outwards the center of the tethrahedron. (c) Corresponding configuration in the AF
Ising model.fig:IcePyroAnderson

�a = −2Jeff

�e = 0

�d = 6Jeff

Figure II.10: Energy levels in spin ice. The sixteen possible configurations of a tetrahedron with
their corresponding energy.fig:IceLevels

II.2.3 Phase diagram

The strength of the dipolar interaction at a NN level is denotedDnn. Depending on the relative
strength of dipolar Dnn = 5D/3 and exchange Jnn = J/3 interactions, spin ice can set into
different ordered thermodynamic phases. These have been studied in detail by means on numerical
simulations of the DSI model in

Melko2004
[174]. In this work, the whole long range dipolar interaction is

simulated using the Ewald summation method
Frenkel2002
[77]. Their results are summarised in the phase

diagram shown in Fig.
fig:Melkofig:Melko
II.11. For Jnn/Dnn < 0 small enough compared to T/Dnn the system

sets into a staggered long-range ordered d-AF phase dominated by d-vertices, i.e. 4 in or 4 out
configurations (see Fig.

fig:IceLevelsfig:IceLevels
II.10) and denoted q = 0 in Fig.

fig:Melkofig:Melko
II.11. At low temperatures there is a

region of the phase diagram where the ice-rules are verified. By lowering the temperature within
this region the system undergoes a first order phase transition into a long-range ordered phase
denoted ~q = (0, 0, 2π/a). This phase verifies the ice rules and is characterised by a striped order:
all the spins located in the same (001) layer are parallel (see

Melko2004
[174] for further details). A ground

state without zero point entropy is then found in DSI.
External magnetic fields in different directions can couple with the Ising spins and lift the

degeneracy between states depicted in Fig.
fig:IceLevelsfig:IceLevels
II.10. The phase diagram of spin ice in the presence

of fields is very rich and a full discussion goes beyond the scope of this thesis. We refer the
interested reader to Bramwell, Gingras and Holdsworth’s review

DiepBookCH7
[44]. We should, however, say a
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few words about the particular field direction [111]. The effect of a strong field in this direction is
to effectively project the system onto 2d Kagome layers. The spins pointing in the [111] direction
are oriented with the field direction while the three others do not interact enough with the field
to order. Each tetrahedron should verify the ice rules at low temperature and the direction of
the spins along the [111] direction is fixed. For some range of temperature and magnetic field
strength, an ice rule like constraint arises on the Kagome layers: each triangular plaquette has
one spin pointing in and two out or the opposite

Matsuhira2002
[172]. As the reader may have noticed this so-

called Kagome ice is isomorphic to the AF Ising model on the Kagome lattice mentioned in the
previous section. At high enough magnetic field the Kagome planes order across a first order phase
transition

Higashinaka2004, Castelnovo2008a,Fennell2007
[115, ?, 92].

Topical Review R1285
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Figure 4. The long range ordered q = (0, 0, 2π/a) dipolar spin ice ground state. Projected down
the z axis (a), the four tetrahedra making up the cubic unit cell appear as dark grey squares. The
light grey square in the middle does not represent a tetrahedron, but its diagonally opposing spins
are in the same lattice plane. The component of each spin parallel to the z axis is indicated by + and
− signs. In perspective (b), the four tetrahedra of the unit cell are numbered to enable comparison
with (a).

Figure 5. The phase diagram for the dipolar spin ice model in zero applied magnetic field. The
antiferromagnetic ground state is an all-spins-in or all-spins-out configuration for each tetrahedron.
The spin ice configuration, which includes the q = (0, 0, 2π/a) ground state, is a two-spins-in–
two-spins-out configuration for each tetrahedron. The region encompassed between the quasi-
vertical dotted curves displays hysteresis in the long range ordered state selected (q = 0 versus
q = (0, 0, 2π/a)) as Jnn/Dnn is varied at fixed temperature T .

recover all of Pauling’s missing entropy in the model. The ordered state that is found in the loop
MC simulations [56] corresponds to the ordered state predicted by mean field theory [52, 53].
In other words, the dipolar spin ice model possesses on its own, without invoking energetic
perturbations and/or thermal and quantum fluctuations, a unique (up to trivial global symmetry
relations) classical ground state with zero entropy in the thermodynamic limit.

Pauling’s entropy can also be recovered in spin ices exposed to an external magnetic
field. In particular, for fields of sufficient magnitude aligned along different crystal axes,
distinct ground state ordering patterns can be realized which destroy the macroscopic spin
ice degeneracy through various mechanisms. Using MC simulations and direct Ewald energy
calculations, we are able to investigate the behaviour of the dipolar spin ice model in an
external magnetic field. With application of a large field along three different crystal symmetry

Figure II.11: Phase diagram of DSI in zero field from
Melko2004
[174]. Open circles denote a second order

phase transition between the ordered AF phase (4 in - 4 out staggered order ~q = ~0 ) and the
disordered paramagnet. Open squares denote a cross over between the disordered paramagnet and
the collective paramagnet (SL) verifying the ice-rules. The line of open diamonds represents the
first order phase transition between the SL and the ~q = (0, 0, 2π/a) ordered phase. The region in
between the black dotted lines displays hysteresis as Jnn/Dnn is varied at fixed temperature.fig:Melko

II.2.4 Magnetic monopoles
sec:MagneticMonopoles

Four years ago, Castelnovo, Moessner and Sondhi proposed an alternative picture to explain
the emergence of the ice-rules in spin-ice compounds

Castelnovo2008a
[?]. In this ’dumbbell picture’, spins are

thought as two separated and oppositely charged magnetic monopoles. As shown in Fig.
fig:Dumbbellfig:Dumbbell
II.12 (a),

there are four charges at the center of each tetrahedron. The ice-rules are then equivalent to a local
magnetic charge neutrality. At finite temperature, spin fluctuations create pairs of defects breaking
the ice-rule [see Fig.

fig:Dumbbellfig:Dumbbell
II.12 (b)]. They carry a net magnetic charge defined by

q = 1
2
∑
i∈T

σi ∈ {0,±1,±2}. (II.16)
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Two types of defects are possible: tetrahedra breaking the ice-rule once - with three spins pointing
inwards or outwards (3 in− 1 out or 1 in− 3 out) - or twice - with all the spins pointing inwards
or outwards (4 in or 4 out). Defects create a default or an excess of magnetic charges on the sites
of the diamond lattice (see Fig.

fig:Icefig:Ice
II.7).

We can push forward this picture and rewrite the DSI Hamiltonian eq. (
eq:DSIHamiltonianeq:DSIHamiltonian
II.12) in terms of

interacting monopoles and write

HDSI =
∑

(α,β)∈P∗
V (α, β) +O(r−5

ij ) (II.17)

where the sum here runs over all the pairs of sites (α, β) of the diamond lattice denoted by P∗, the
dual of the pyrochlore lattice. Since spins interact through a dipolar term, their magnetic charges
interact via a Coulomb potential. From any distribution of charges creating a field which strength
decays as r−2, one can perform a multipole expansion. The spins in this picture are equivalent to
dipole moments ~d = qi~ri. The multipole expansion assumes that dipoles are far from each other.
It then gives the same potential as the DSI model with corrections O(r−5). In order to be able to
take into account the nearest neighbour exchange in HDSI one must add a self interaction term
which gives

V (α, β) =
{

µ0
4π

QαQβ
rαβ

if α 6= β
1
2v0Q

2
α otherwise

, (II.18) eq:DumbbellPotential

where the charges are Qα = qαµ/ad, ad the nearest-neighbours distance on the diamond lattice
and v0 a function of the parameters of the system µ, µ0, r0, J and D

Castelnovo2008a
[?]. In this picture the

ice-rules emerge naturally from locally neutral configurations. Flipping a single spin in the ice-
rule manifold generates a 3 in − 1 out and a 1 in − 3 out defect. Then these two defects can
be moved apart from each other by flipping one spin among the three ones responsible of the
ice-rule breaking. By repeating this procedure, the monopoles separate leaving behind a string
connecting them, reminiscent of a Dirac string

Dirac1931
[84]. Since all the configurations verifying the ice

rule are equivalent, the string carries no tension and monopoles can move with the only energy
cost coming from the 1/r Coulomb interaction. In this regime monopoles are deconfined and spin
ice behaves as an effective Coulomb gas.

The equilibrium phases of this ionic gas model explains nicely the first order phase transition
observed in spin ice compounds in the presence of an external magnetic field H[111] in the [111]
direction. As already mentioned, applying such a field selects a single configuration of the spins
along the [111] direction. At H[111] = Hc the system undergoes a first order phase transition
between the Kagome ice phase (at H[111] < Hc) and the ordered phase (at H[111] > Hc ) made by
3 in−1 out (or 1 in−3 out ) vertices. In the magnetic monopoles language, this transition corre-
sponds to a liquid-gas transition where the magnetic field plays the role of the chemical potential
and the magnetisation plays the role of the density of monopoles. This transition terminates in a
critical point like the liquid-gas transition. The dumbbell picture gives a very useful understand-
ing of the low temperature behaviour of spin ice (when a small density of monopoles is present).
Moreover, several recent experiments have given support to this picture

Snyder2004,Jaubert2009,Morris2009, Bramwelletal2009, Giblin2011
[243, 131, 197, 43, 104].

Magnetic monopoles are predicted by Grand Unified Theories tempting to describe electro-
weak interactions and strong nuclear forces by a single unified quantum field theory

tHooft1974,Polyakov1974
[254, 218].

Despite the efforts to reveal their existence, no magnetic monopoles have been observed yet (the
reader will find a recent review on the subject in

Milton2006
[184]). The closest realisation of magnetic charges

might be in spin-ice materials.
A Dirac string is a line of singularities of the vector potential linking two oppositely charged

magnetic monopoles. The choice of this branch cut is arbitrary and cannot therefore be measur-
able. In spin ice, a string can be defined by identifying the reversed spins in relation to some initial
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configuration verifying the ice rules. By forcing the system to be in a polarised initial configuration
aligned with a strong [001] field, strings of reversed moments can be observed by magnetic neu-
tron scattering

Morris2009
[197]. When the field is turned off spin flips create pairs of monopoles connected

by Dirac-like strings. The neutron scattering data is well reproduced if one considers strings as 2d
random walks η(x, y, t) in the (x, y) ≡ (001) plane where the third [001] direction acts like time.

A few years ago, Bramwell, Giblin and collaborators applied the theory of electrolytes to the
study of spin-ice materials

Bramwelletal2009, Giblin2011
[43, 104]. They realised transport measurements by applying small

magnetic fields to the spin ice material Dy2Ti2O7. They addressed for the first time "the question
of whether such magnetic charges and their associated-’magnetricity’-can be measured directly in
experiment" (quoted from

Bramwelletal2009
[43]). Onsager’s theory of electrolytes

Onsager1934
[208] describes transport prop-

erties of ionic systems in the presence of a small electric field E. It gives the dissociation constant
of the ions K(E) perturbatively in b ∝ e3E/(kBT )2. The elementary charge e can then be de-
termined by measuring the conductivity of the material. Bramwell and collaborators applied these
ideas to spin-ice to measure the charge of a single magnetic monopole Q. This was done by mea-
suring the demagnetisation on the samples with muon spin rotation. The experimental value turns
out to be in agreement with the dumbbell model in the range of temperatures 0.3 < T < 0.07K
where the Onsager’s arguments are justified. Quasi-stationary currents of magnetic monopoles
have been measured recently and show the ’symmetry’ between electrolytes and ’magnetolytes’
made by oppositely charged magnetic charges

Giblin2011
[104]. Therefore, the description of spin ice in

terms of magnetic monopoles is specially well suited for the investigation of transport and dynam-
ical phenomena. An exceptional increase of the magnetic relaxation times at low temperatures
has been observed in Dy2Ti2O7

Snyder2004
[243]. A phenomenological Arrenhuis argument based on the

presence of thermally activated monopoles reproduces this behaviour
Jaubert2009
[131].

The emergence of magnetic monopoles in spin-ice has attracted a great deal of attention since
it is the first example of 3d fractionalisation in condensed matter. This phenomenon gives its
name to its most mentioned and studied example where fractionalisation plays a central role:
the fractional quantum Hall effect. In these systems the excitations are non integer parts of the
constituents of the systems, here electrons, and carry a fraction of the elementary charge e. In
spin-ice thermal fluctuations breaking the ice rule give rise to fractional excitations, magnetic
monopoles. Classical spins can be though of as an ordinary dipole made by two opposite charges
at its extremities. Magnetic monopoles are then ’one half’ of a spin, the ’real’ constituent of the
system.

(a) (b)

Figure II.12: The dumbbell picture. Each magnetic moment is replaced by a negative (blue) and a
positive (red) magnetic charge. (a) The ice rules are obeyed and the tetrahedron is neutral. (b) After
flipping a spin (green) we break the ice rule and create a pair of oppositely charged monopoles.
The positive monopole is represented by the dotted circle at the center of the tetrahedron.fig:Dumbbell
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II.3 Artificial spin-ice samples

For many decades, condensed matter systems have been, and still are, built by combining
different chemical compounds. Thanks to the expertise of chemists and material scientists, the
interacting constituents of condensed matter systems can be manipulated. Then materials can be
designed in order to fulfil the requirements that are expected to lead to some interesting behaviour.
A large variety of collective phenomena such as the above mentioned zero point entropy in rare-
earth pyrochlores has been discovered in such a way.

Frustration can be responsible for a large degeneracy of the ground state, associated with
long range correlations and the presence of dynamical obstructions which can give rise to glassy
physics

Ritort2003,Chakraborty2002
[228, 64]. The study of thermal excitations and defects are then crucial for the understand-

ing of frustrated systems. Local probes are needed to characterise these objects, which is clearly
a difficult task to achieve in real materials. A way to solve this problem is to manufacture a frus-
trated system which allows the direct observation of a single constituent. This can be achieved in
nano-arrays of ferromagnetic islands and, as briefly presented at the end of the following section,
in colloidal systems. Using well established tools from nanotechnology, it has become possible to
control magnetic degrees of freedom in a very precise way. The lattice geometry and the interac-
tion strength between constituents become adjustable parameters and the magnetic configurations
can be imaged directly by different microscopic techniques such as MFM (magnetic force mi-
croscopy)

Wang2006,Nisoli2007,Nisoli2010a,Morgan2011
[263, 206, 205, 196] and PEEM (photoemission electron microscopy)

Mengotti2008,Mengotti2011
[176, 177]. This

allows the ’artificial’ realisation of microscopic models of frustration with the possibility of read-
ing directly its micro-states. In particular, two-dimensional analogues of pyrochlore spin-ices can
now be produced in the laboratory. These ’artificial spin-ice’ (ASI) systems constitute an ideal
playground to investigate the excitations and the local dynamics of highly frustrated systems and
2d vertex-models in particular.

II.3.1 Experimental set-up

In 2006, using electron beam lithography, Wang, Nisoli and collaborators
Wang2006
[263] constructed

an artificial analog of spin-ice on a 2d square lattice made by elongated ferromagnetic (made by
permalloy) islands. Each island carries an intrinsic single-domain magnetic moment collinear to
its long axis. In this set up, the size of the islands is fixed to 80 × 220 × 25 nm3 in such a way
that the moment of each island is µ ∼ 107 Bohr magnetons. The strong shape anisotropy and
the large magnetic moment carried by the islands makes them behave as classical Ising spins.
The arrays are made by ∼ 104 islands separated by a lattice parameter r0 ranging from 320 nm
to 880 nm. Therefore, the energy barrier to flip a spin is too high to be overcome by thermal
fluctuations (typically equivalent to temperatures∼ 104−105 K). The system is then a-thermal and
fundamentally out-of-equilibrium, which in some sense reminds a usual situation in the context of
granular matter

MehtaBook
[173]. With this approach individual islands can be directly visualised by MFM or

PEEM as shown in Fig
fig:ASISamplefig:ASISample
II.13. The size and the shape of the nano-arrays just described are rather

typical and do not differ significantly between different realisations 4.
In order to understand the similarities between these artificial square ices , real spin-ice mate-

rials and general vertex models, it is convenient to focus on the vertices where four islands meet.
Since each island is modelled as an Ising spin, there are 24 = 16 possible vertex configurations
shown in Fig

fig:ASISamplefig:ASISample
II.13. In the artificial spin-ice literature, the vertices are divided into four categories

I-IV of increasing interaction energy. In order to make the link with the theory of integrable ver-
tex models, we also show in Fig

fig:ASISamplefig:ASISample
II.13 a different classification for the vertices divided into five

4. In Morgan et al. ’s
Morgan2011
[196] the permalloy islands are 85× 280× 26 nm3 and a lattice spacing r0 = 400 nm.

In Mengotti et al. ’s
Mengotti2011
[177] the permalloy islands are 160× 470× 20 nm3 and a lattice spacing r0 = 500 nm.
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the vertex as a whole, there are four distinct topologies for the
configurations of the four moments with a total multiplicity of 16, as
shown in Fig. 1c. We label the configurations I–IV in the order of
increasing magnetostatic energy, but no configuration can minimize
all of the dipole–dipole interactions (even type I only minimizes the
energy for four of the six pairs in a vertex), and thus the system is
frustrated.
The lowest energy vertex configurations (I and II) have two of the

moments pointing in toward the centre of the vertex, and two
pointing out. Although the interactions between all pairs of spins
on the vertex are not equivalent, these energetics are analogous to the
two-in/two-out ice rules for the atomic moments on a tetrahedron in
spin ice. For arrays with a lattice constant of 320 nm, the energy
difference between vertices of types I and III is more than twice as
large as the energy difference between vertices of types I and II, and
the energy difference between types I and IV is more than six times as
large (based on OOMMF calculations of relaxed magnetostatic
energies). The two-in/two-out motifs (types I and II) therefore
dominate within a large manifold of closely spaced low-energy
magnetic states. Topological considerations further favour the
creation of magnetic states that are dominated by frustratedmixtures
of types I and II. For example, a domain boundary between regions of
types I and II is essentially seamless, requiring no vertices of types III
or IV. The situation contrasts sharply with that of a traditional Ising
ferromagnet or antiferromagnet, wherein magnetic domain walls
contain highly unfavourable anti-aligned spin pairs.
Magnetic force microscopy (MFM) allowed us to image the

orientations of all of the moments in a large area (10 mm £ 10 mm),
far from the edges of the arrays. To enable the system to settle into a
low energy configuration, we followed a protocol developed by
previous authors16,18 and rotated the samples in a magnetic field
which decreased stepwise from above to below the coercive field.
MFM images of the system after such field treatment revealed no
measurable residual magnetic moment for the array, and a ten-fold
variation of the step dwell times did not significantly alter the
distribution of vertex types described below.

In Fig. 2 we show an atomic force microsope (AFM) image and an
MFM image of a portion of a typical array. The black and white spots
in the MFM image, which indicate the north and south poles of the
ferromagnetic islands, confirm the single-domain nature of the
islands and demonstrate the dominance of the shape anisotropy in
aligning the magnetization of each island along its long axis. From
the MFMdata, we can easily determine the moment configuration of
the array (as indicated by the arrows in Fig. 1a). These data
demonstrate that the many vertex types anticipated in Fig. 1c can
be directly observed in the actual system. In order to probe the nature
of frustration in this system, we studied how the properties varied
with the spacing between the islands, counting between 1,000 and
3,000 islands in measurements of 2–4 different arrays for each lattice
spacing. This allowed us direct control over the frustrated inter-
actions, something which is not easily attainable in geometrically
frustrated magnetic materials.
An immediate question is whether our arrays obeyed the ice

rules—that is, did a preponderance of the vertices fall into a two-
in/two-out configuration (type I or II)? By simple counting argu-
ments (see Fig. 1c) we can predict the expected distribution of
different vertex types if the moments were non-interacting and
randomly oriented. One would expect only 37.5% of the vertices to
have a two-in/two-out configuration if the orientations were ran-
dom; an excess of such vertices would indicate that interactions are
determining the moment configuration. We compute the excess
percentage for each type of vertex, defined as the difference between
the percentage observed and that expected for a random distribution.
We plot this excess versus lattice spacing in Fig. 3a for each of the four
vertex types, as well as for types I and II combined. The excess
percentage of vertices with a two-in/two-out configuration (types I
and II) was well over 30% for the smallest lattice spacing; in other
words, over 70% of all vertices had a spin-ice-like configuration. This
excess percentage decreased monotonically with increasing lattice
spacing (decreasing interactions), approaching zero for our largest
lattice spacing, as would be expected for non-interacting (randomly
oriented) moments. In fact, the excess for all vertex types approached
zero as the lattice spacing increased, lending credence both to our
understanding of the system and to the effectiveness of the rotating-
field method in enabling facile local re-orientation of the moments.
To further understand the nature of frustration in this system, we

also studied the pairwise correlations between the Ising-like
moments of the islands. Defining a correlation function is somewhat
complicated by the anisotropic nature of our lattice and that of the
dipole interaction. We thus define a set of correlation functions
between distinct types of neighbouring pairs. The closest pairing is

Figure 1 | Illustration of frustration on the square lattice used in these
experiments. Each island in the lattice is a single-domain ferromagnet with
its moment pointing along the long axis, as indicated by the arrow. a, The
geometry of the lattice studied. The arrows indicate the directions of
moments corresponding to the MFM image of Fig. 2b. b, Vertices of the
lattice with pairs of moments indicated, illustrating energetically favourable
and unfavourable dipole interactions between the pairs. c, The 16 possible
moment configurations on a vertex of four islands, separated into four
topological types. The percentages indicate the expected fraction of each
type if the individual moment orientations on an array were completely
random.

Figure 2 | AFM and MFM images of a frustrated lattice. a, An AFM image
of a typical permalloy array with lattice spacing of 400 nm. b, AnMFM image
taken from the same array. Note the single-domain character of the islands,
as indicated by the division of each island into black and white halves. The
moment configuration of the MFM image is illustrated in Fig. 1a. The
coloured outlines indicate examples of vertices of types I, II and III in pink,
blue and green respectively.
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Figure II.13: Top: MFM image from Wang et al.’s realisation of artificial spin ice in the square
lattice

Wang2006
[263]. Each island in the lattice carries a single magnetic moment. Black and white dots

correspond to its positive and negative poles. The color lines indicate a vertex of type I (pink), II
(blue) and III (green). Vertices of type IV are extremely rare and are not shown in this picture.
Bottom: The sixteen possible vertex configurations. Ferromagnetic islands are represented by
an arrow. The configurations are labeled I,II,III and IV in the artificial spin-ice literature. The
corresponding Boltzmann weights of each configuration a, b, c, d and e are also shown.fig:ASISample

categories labeled by its Boltzmann weights a, b, c, d and e. In artificial square ice samples a = b,
such that the vertices are indeed divided into four different types with different energy. Although
it has not been realised yet, it should be possible to construct artificial samples such that a 6= b
by introducing a height offset between islands pointing in different directions

Moller2006
[189]. This will

become clearer after the following discussion.

In these samples, the interactions between magnetic islands are dipolar, hence described by
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the Hamiltonian

H = Dr3
0
∑

i<j∈P

(
Si.Sj
||~rij ||3

− 3(Si.~rij) (Sj .~rij)
||~rij ||5

)
(II.19) eq:ASI_Hamiltonian

where ~Si = Si~zi are Ising spins, i.e. Si = ±1, along the orthogonal principal axes of the lattice
〈1, 0〉 and 〈0, 1〉 of the island located at ~ri. The vector ~rij = ~ri − ~rj denotes the spacing between
moments, r0 is the lattice constant and D the dipole strength proportional to the intrinsic moment
µ0 of the islands. Note that this Hamiltonian becomes identical to the 3d dipolar spin-ice Hamil-
tonian (

eq:DSIHamiltonianeq:DSIHamiltonian
II.12) by removing the exchange term and replacing the sum over the pyrochlore lattice

by a sum over the square lattice. Therefore, dipoles in artificial spin ice are 3d objects embedded
in a 2d lattice. We will show the importance of this remark when discussing the nature of the
excitations (magnetic monopoles) in the coming section. Following the same strategy we used
to deduce a short range antiferromagnetic Hamiltonian for pyrochlore spin-ice, we consider the
variables σi = ±1 depending on whether the magnetic dipole points inwards or outwards a given
vertex. The Hamiltonian (

eq:ASI_Hamiltonianeq:ASI_Hamiltonian
II.19) gives an effective antiferromagnetic (AF) interaction between

the variables σi sharing a vertex. We note the nearest-neighbour and the next-nearest-neighbour
contribution J1 and J2 respectively with J1, J2 > 0.

A prior goal of these systems is to reproduce the ice-rules and mimic the prototypical example
of geometrical frustration, i.e. the ice model. However, contrarly to its 3d counterpart, the ground
state of these artificial arrays is not the ice-rule manifold. The six bonds around a vertex are not
equivalent since the distances between spins adjacent to the same vertex are not equal: orthogonal
spins sharing a vertex are at a distance r0/

√
2 whereas collinear ones are separated by r0. The

typical AF nearest-neighbour interaction strength J1 between orthogonal spins is larger than the
next-to-nearest-neighbour one J2 (see Fig.

fig:ASIHeightfig:ASIHeight
II.15). The six vertices verifying the ice rules split

into two different categories. Among them, c-vertices (or type-I) are energetically favoured. The
energy of each vertex in terms of these two inequivalent bonds J1 and J2 is shown in Fig.

fig:ASIlevelsfig:ASIlevels
II.14.
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Hard local constraints can lead to a rich variety of collec-
tive behavior such as the splitting of phase space into dif-
ferent topological sectors and the existence of “topological
phases” that cannot be described with conventional order pa-
rameters [1]. In geometrically constrained magnets, the lo-
cal minimization of the interaction energy on a frustrated unit
gives rise to a macroscopic degeneracy of the ground state [2],
unconventional phase transitions [3, 4], long-range correla-
tions in the “Coulomb” phase [5, 6] and slow dynamics [7, 8]
in both 2d and 3d systems. In the present work we focus on a
paradigmatic system with these features: spin-ice [9–11].

The ice rules arise from the combination of the anisotropy
of the samples that forces the Ising-like magnetic moment to
lie on the edges of a coordination four lattice (the sites of the
pyrochlore lattice in 3d) and ferromagnetic interactions. All
configurations with two spins pointing in and two out each
vertex (the center of a tetrahedron in 3d) are ground states.
This leads to the zero-point entropy measured in Dy2Ti2O7

(S3d
exp ≈ 1.86 mol−1 K−1) [12] that is in remarkable agree-

ment with the exact value computed for the 2d ice-model on a
square lattice (S2d

exact ≈ 1.79 mol−1 K−1) [13].
Bi-dimensional Ising-like ice-models had no experimental

counterpart until recently when it became possible to manu-
facture artificial samples made of arrays of elongated ferro-
magnetic nano-islands. The beauty of artificial spin-ice (ASI)
is that the interaction parameters can be precisely controlled
- by tuning the distance between islands or applying exter-
nal fields - and the state of a single degree of freedom can
be directly visualized by microscopy [14]. The system sets
into different phases depending on the island length l, the lat-
tice constant a0, and the height h between layers [15]. The
main drawback of these materials had been the lack of thermal
fluctuations and the ensuing difficulty to observe the expected
ground state. Lately, these problems have been overcome by
(i) applying an external drive [16], (ii) using materials with
a lower Curie temperature [17], (iii) thermalizing the system
during the slow growth of the samples [18]. The study of the
equilibrium phases and critical behavior of ASI has thus be-
come possible on rather large samples with up to 106 vertices.

We will discuss the preparation protocol (iii) later in the con-
text of our study.
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Figure 1. (Color online.) Ordered phases and vertex configurations
in artificial spin-ice on the square lattice. (a) Complete antiferromag-
netic (c-AF) order. The central (red) loop represents an elementary
excitation. (b) Collective paramagnetic (PM) phase. (c) Frozen fer-
romagnetic (FM) order. The last vertical string (red line) represents
a typical extended excitation. (d) Sixteen vertex configurations and
their associated statistical weights ωi = exp (−β�i). The first six-
vertices (a, b and c) verify the ice-rule. The last ten vertices (d and
e) are defects.

In this Letter we demonstrate that a simplified version of the
more realistic dipolar spin-ice model in 2d, the sixteen-vertex

model (see Fig. 1) [8, 19] is an accurate model for the equi-
librium behavior of ASI. The model includes the celebrated
six-vertex (d = e = 0), eight-vertex (e = 0). During the
past thirty years a great effort has been devoted to the study
of the mathematical properties of these models [20]. The in-
triguing excitation properties of spin-ice (emergence of mag-
netic monopoles and attached Dirac strings [21]) and the pos-
sibility to compare theoretical predictions with experiments,
should encourage the study of vertex models from a novel
and more phenomenological perspective; this work goes in
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The ice rules arise from the combination of the anisotropy
of the samples that forces the Ising-like magnetic moment to
lie on the edges of a coordination four lattice (the sites of the
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Université Pierre et Marie Curie - Paris 6, Laboratoire de Physique Théorique et Hautes Energies,
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�c = −4J1 + 2J2

�a,b = −2J2

�e = 0

�d = 4J1 + 2J2

Figure II.14: The sixteen possible vertex configurations classified by their energy in terms of the
first and second-neigbour interaction strength.fig:ASIlevels

Although c-vertices are favoured, all the bonds around a vertex cannot be simultaneously
satisfied and the system is ’weakly’ frustrated. From Fig.

fig:ASIlevelsfig:ASIlevels
II.14, it is clear that the degree of

frustration depends on the ratio J2/J1. All the vertices verifying the ice-rule are degenerate when
J1 = J2. Based on this observation, Möller and Moessner proposed a slight modification of the
experimental set up to restore the ice-rules degeneracy

Moller2006
[189]. One can fix the horizontal islands on
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a square array which is slightly above the array of vertical islands. By including a height difference
h between the layers where the horizontal and vertical spins lie, we change the original distance
between the spins around a vertex. Therefore, the ratio J2/J1 can be tuned and set equal to one
by choosing the appropriate height offset denoted hc 5. Then the interaction parameters can be
controlled by the lattice constant r0, the length of the ferromagnetic islands l and the height shift
between layers h.

Figure 4.4: Schematics illustrating the 24 possible vertex configurations of artificial
square spin ice. The configurations are classified into four types depending on the
vertex energy. In type 1 and type 2 vertices the ice rule of two moments pointing
in and two moments pointing out is obeyed whereas type 3 and type 4 are charged
vertices.

netic imaging techniques has spurred a number of investigations [3, 66, 70].
The first study of the role of frustration in artificial spin ice systems was re-
ported by Wang et al. in 2006 [3]. Their study revealed short range ice like
correlations and an absence of long range order. Further studies have reported
direct observations of magnetic monopole defects and the flow of magnetic
charge in artificial spin ice [71]. Emergent magnetic monopoles have been
reported in the magnetization reversal of kagome spin ice [66, 72]. In this
case the reversal proceeds through the nucleation of monopole-antimonopole
pairs which dissociate along a 1-dimensional path of reversed magnetizations,
defining a Dirac string.

Studies on spin ice systems have mostly focused on patterned structures
composed of magnetic materials with a high magnetization and a high Curie
temperature such as permalloy or cobalt. As the Curie temperature of these
materials lies far above room temperature and the magnetic moments are large
the energies associated with their reversal barriers and interaction are equiva-
lent to a temperature of the order of 104 −105 K. These systems can therefore
be considered as quasi-static and the only way to manipulate their magnetic
moments is through the application of magnetic fields [73, 74, 75, 76, 3]. Us-
ing ac demagnetization protocols energy minimized states and short range or-
der can be achieved which can be described by effective thermodynamics with
a corresponding effective temperature [74, 77]. Obtaining long range ground
state ordering has however not been realized using such demagnetizing proto-
cols.

In order to achieve a thermal ground state ordering in artificial spin ice sys-
tems the energy barrier for reversing the magnetization between the two low
energy states defined by the shape anisotropy must be thermally accessible.
From equation (2.13), the available choices for achieving a thermal ground
state ordering are thus, a higher temperature, a reduction in the energy bar-
rier, or waiting for geological time scales. Considering the available materials
selection and the possibilities for tuning the size and shape of elements in arti-
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J2
J1

}h

J1
J2

Figure II.15: Interactions between spins around a vertex. Left: In the original set-up with no
height shift (h = 0) J1 > J2. Right: The relative strength of J1 and J2 is modified by the height
shift. The ice-rules degeneracy can be recovered by a suitable choice of h.fig:ASIHeight

The possibility to tune the vertex weights by introducing this extra control parameter h makes
this set-up very appealing. However, the experimental realisation becomes rather involved and,
as far as we know, it has not been achieved yet. Another possible route to investigate the physics
related with an ice-rule like constrained ground state is to manufacture a different artificial geom-
etry, the so-called artificial Kagome spin-ice

Mengotti2008,Mengotti2011,Ladak2012
[176, 177, 153]. Similarly to artificial square ice,

these samples are made by elongated ferromagnetic islands in an hexagonal lattice 6 as shown
in Fig.

fig:ASIKagomefig:ASIKagome
II.16. In this geometry the interactions between the three moments around a vertex are

equivalent. There are only two type of energetically different vertices among the 23 = 8 possible
configurations. In this lattice a modified ice-rule defines the ground state: all the configurations
with two spins pointing in and one out (or the opposite) are degenerate.

Recent experiments realised in colloidal systems offer an alternative approach to realise artifi-
cial frustrated materials

Han2008
[110]. Numerical simulations with Brownian dynamics have shown that

artificial spin ice can be realised with charged colloids on a square and hexagonal lattice of optical
traps

Libal2006,Reichhardt2011
[161, 226] . A vertex consist of four orthogonal traps meeting in a point (see Fig.

fig:ASIColloidfig:ASIColloid
II.17)

The repulsive Coulomb interactions of the colloids trapped in a double-well favour vertices with
four arrows pointing out of it, but this local minimisation of the energy cannot be satisfied by its
neighbouring vertex. The collective arrangement of colloids should be considered. The ice rules
can arise as a collective effect and the vertex weights can be tuned by the charge of the colloids,
the lattice spacing and the screening length.

II.3.2 Monopoles and strings

In the dumbbell picture, thermal excitations breaking the ice rules are associated with effective
magnetic monopoles in 3d dipolar spin-ice. Similarly, in 2d spin ice in the square lattice, flipping

5. In Wang’s el al. realisation l/r0 ≈ 0.7 giving hc/r0 ≈ 0.2
Moller2006
[189].

6. The Kagome lattice is the medial graph of the hexagonal lattice: the ferromagnetic islands sit on the sites of the
Kagome lattice which are identical to the mid points of the edges of the hexagonal lattice.
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Figure 1 | Emergent monopoles and associated Dirac strings in artificial kagome spin ice. a, Schematic view of the nanolithographic array of permalloy

islands with anisotropy axes along honeycomb links and the orientation of the magnetization indicated by arrows. Initially, the sample is magnetized to the

left and applying a reversed field induces the formation of a Dirac string with two monopole defects residing at its ends. The island colour corresponds to

the contrast in the XMCD image, which is a measure of the orientation of the magnetization (see Methods, Experiment). Inset: Scanning electron

microscope image of part of the sample, with the kagome lattice overlaid, together with an example of a corresponding XMCD image; the uniform contrast

associated with each island confirms that they are monodomain and unambiguously determines the orientation of the magnetization pointing along each

island. b, Corresponding charge distribution with magnetic moments replaced by dumbbells carrying charge q and −q (in red and blue). At each vertex,

three charges coalesce, and the saturated state with moments pointing towards the left is characterized by an alternating NaCl-type charge ordering.

Along the Dirac string (dark contrast), the charge dumbbells are overturned, resulting in two charge defects with charges �Q= ±2q at the ends of the
string as indicated by the large spheres. Background plane (in light blue): the two charge defects manifest themselves as distinct peaks in the smeared

charge density ρm which characterizes the two defects as a well-separated monopole–antimonopole pair.
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Figure 2 | Identification of monopoles during magnetization reversal. Schematic overview of all vertex configurations, the corresponding dumbbell

representation and their association with monopole defects. The grey scale used for the islands indicates the corresponding XMCD contrast. The total

charge Qα is shown for each vertex configuration, together with the charge difference �Qα =Qα −Q0,α relative to the initial charge configuration Q0,α ,

which is realized here by the initial saturated state where all moments point towards the left (column I). On application of a reverse magnetic field,

individual moments will reverse, as highlighted in yellow. A mobile monopole exists when one moment around a vertex is reversed (column II). When two

head-to-tail magnetic moments are reversed, the total magnetic charge associated with the vertex does not change (�Qα =0) and a configuration

encountered in the interior of a Dirac string is obtained (column III). The reversal of two head-to-head (tail-to-tail) moments shown in column IV is never

observed, as explained by the charge model (see Methods, Theory). Column V shows a state with all moments reversed. This state describes a charge

defect that sits on a Dirac string and is trapped, that is, it can no longer move on further increase of the applied field.
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(a) (b)

Figure II.16: Artificial Kagome ice (a) X-ray magnetic circular dichroism (XMCD) images of the
lithographic array of permalloy islands (from

Mengotti2011
[177]). The contrast associated with each island in

the hexagonal lattice indicates that they analog to the Ising spins represented by the white arrows.
The colour in the image is a measure of the orientation of the spin. (b) The hexagonal lattice.fig:ASIKagomeMulti-Step Ordering in Kagome and Square Artificial Spin Ice 4

(a) (b)

Figure 1. (a) Schematic of artificial square ice system consisting of elongated traps
with two potential minima. An elementary unit or vertex consists of four traps that
each capture one charged colloid. The effective spin direction is defined to be toward the
end of the trap where the colloid is sitting. Ice-rule obeying states have two colloids
close to the vertex and two colloids away from the vertex; one of the two possible
ground state configurations is illustrated. (b) Schematic of an artificial kagome ice
system. Ice-rule obeying states have either two colloids close to the vertex and one
away from the vertex or two colloids away from the vertex and one close to the vertex,
as shown.

obeying states can be biased, with the close colloids occupying traps oriented at 90◦ to

each other, or they can be the slightly lower energy ground state configuration shown in

figure 1(a) [20]. For kagome ice, shown schematically in figure 1(b), the ice rule obeying

vertices have either two in and one out or one out and two in.

The colloid dynamics evolve according to the following overdamped equation of

motion:

η
dRi

dt
= Fcc

i + Fext + FT
i + Fs

i . (1)

Here η is the damping constant and the colloid-colloid interaction force is Fcc
i =

−F0q2
∑N

i "=j ∇iV (rij) with F0 = Z∗2/(4πεε0), rij = |ri − rj |, and r̂ij = (ri − rj)/rij.
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of the solvent, and q is the magnitude of the charge on a single colloid. The strength
of the repulsion between the colloids can be controlled by varying q. The thermal force

FT arises from Langevin kicks with 〈FT
i 〉 = 0 and 〈Fi(t)Fj(t′)〉 = 2ηkBT δijδ(t − t′).

The substrate force Fs
i arises from N traps composed of two parabolic ends capping a

cylindrical confining area of length l = 1.333a0 and width dp = 0.4a0 with a maximum

strength of Fp and radius rp; an additional parabolic barrier of height fr is placed at

the center of the trap to produce two potential minima at each end of the trap [20].
The external biasing force is given by Fext = Fext[cos(θext)x̂+ sin(θext)ŷ], with θext = 0

for kagome ice and θext = 45◦ for square ice. For the nanomagnetic system, an in-plane

applied external field was used as a biasing force that could align the magnetic moments

of the nanoislands. For the colloidal system, the sample can be biased by an in-plane

electric field, while for a system of vortices in a type-II superconductor the bias would

come from an in-plane applied current. In this work we consider external forces that
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Figure 1. (a) Schematic of artificial square ice system consisting of elongated traps
with two potential minima. An elementary unit or vertex consists of four traps that
each capture one charged colloid. The effective spin direction is defined to be toward the
end of the trap where the colloid is sitting. Ice-rule obeying states have two colloids
close to the vertex and two colloids away from the vertex; one of the two possible
ground state configurations is illustrated. (b) Schematic of an artificial kagome ice
system. Ice-rule obeying states have either two colloids close to the vertex and one
away from the vertex or two colloids away from the vertex and one close to the vertex,
as shown.

obeying states can be biased, with the close colloids occupying traps oriented at 90◦ to

each other, or they can be the slightly lower energy ground state configuration shown in

figure 1(a) [20]. For kagome ice, shown schematically in figure 1(b), the ice rule obeying

vertices have either two in and one out or one out and two in.

The colloid dynamics evolve according to the following overdamped equation of

motion:

η
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dt
= Fcc

i + Fext + FT
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i . (1)

Here η is the damping constant and the colloid-colloid interaction force is Fcc
i =

−F0q2
∑N

i "=j ∇iV (rij) with F0 = Z∗2/(4πεε0), rij = |ri − rj |, and r̂ij = (ri − rj)/rij.

ri(j) is the position of particle i(j), Z∗ is the unit of charge, ε is the dielectric constant

of the solvent, and q is the magnitude of the charge on a single colloid. The strength
of the repulsion between the colloids can be controlled by varying q. The thermal force

FT arises from Langevin kicks with 〈FT
i 〉 = 0 and 〈Fi(t)Fj(t′)〉 = 2ηkBT δijδ(t − t′).

The substrate force Fs
i arises from N traps composed of two parabolic ends capping a

cylindrical confining area of length l = 1.333a0 and width dp = 0.4a0 with a maximum

strength of Fp and radius rp; an additional parabolic barrier of height fr is placed at

the center of the trap to produce two potential minima at each end of the trap [20].
The external biasing force is given by Fext = Fext[cos(θext)x̂+ sin(θext)ŷ], with θext = 0

for kagome ice and θext = 45◦ for square ice. For the nanomagnetic system, an in-plane

applied external field was used as a biasing force that could align the magnetic moments

of the nanoislands. For the colloidal system, the sample can be biased by an in-plane

electric field, while for a system of vortices in a type-II superconductor the bias would

come from an in-plane applied current. In this work we consider external forces that

curs at constant temperature when the trap barrier strength
is varied.

We perform 2D Brownian dynamics (BD) simulations
for systems of two sizes. System A contains N ! 1800
interacting colloids and N ! 1800 optical traps with peri-
odic boundary conditions in the x and y directions. System
B has N ! 24 colloids and N ! 24 optical traps with open
boundary conditions. In each case the overdamped equa-
tion of motion for colloid i is:

 !
dRi

dt
! Fcc

i " FT
i " Fext

i " Fs
i ; (1)

where the damping constant ! ! 1:0. We define the unit of
distance in the simulation to be a0. The colloid-colloid
interaction force has a Yukawa or screened Coulomb form,
Fcc
i ! #F0q2

PN
i!jriV$rij% with V$rij% ! $1=rij%&

exp$#"rij%. Here, rij ! jri # rjj, r̂ij ! $ri # rj%=rij, ri$j%
is the position of particle i$j%; F0 ! Z'2=$4#$$0%, Z' is the
unit of charge; $ is the solvent dielectric constant; q is the
dimensionless colloid charge; and 1=" is the screening
length, where " ! 4=a0 unless otherwise mentioned. We
neglect hydrodynamic interactions between colloids,
which is a reasonable assumption for charged particles in
the low volume fraction limit. The thermal force FT is
modeled as random Langevin kicks with the properties
hFT

i i ! 0 and hFT$t%FT$t0%i ! 2!kBT%$t# t0%. Unless oth-
erwise mentioned, FT ! jFT j ! 0. Fext

i represents an ex-
ternally applied drive which is set to zero except for the
biased system, where Fext

i ! Fdc$x̂" ŷ%.
The substrate force Fs

i arises from elongated traps,
shown schematically in Fig. 1(a), arranged in square struc-
tures with lattice constant d, as in Fig. 1(b). Each trap is
composed of two half-parabolic wells of strength fp and
radius rp separated by an elongated region of length 2l
which confines the colloid perpendicular to the trap axis
and has a small repulsive potential or barrier of strength fr
parallel to the axis which pushes the colloid out of the
middle of the trap into one of the ends: Fs

ik !
$fp=rp%r(ik!$rp # r(ik%r̂(ik " $fp=rp%r?ik!$rp # r?ik%r̂?ik "
$fr=l%$1 # rkik%!$l # rkik%r̂kik. Here r(ik ! jri # rpk ( lp̂k

kj,
r?;k
ik ! j$ri # rpk % ) p̂k

?;kj, ri (rpk ) is the position of colloid i
(trap k), and p̂k

k (p̂k
?) is a unit vector parallel (perpendicu-

lar) to the axis of trap k. We take 2l ! 2a0, rp ! 0:4a0, and
d ! 3a0 unless otherwise noted. Elongated traps of this
form have been created in previous experimental work
[11,12]. Our dimensionless units can be converted to physi-
cal units for a particular system. For example, when a0 !
2 &m, $ ! 2, and Z' ! 300e, such as in Ref. [14], F0 !
2:5 pN and the trap ends are 0:2 &m apart at d ! 3. We
find the ground state of each configuration using simulated
annealing.

The vertices are categorized into six types, listed in
Table I, and we identify the percentage occupancy Ni=N
and energy Ei of each type. Type III and type IV vertices
each obey the ice rule of a two-in two-out configuration,

represented here by two colloids close to the vertex and
two far from the vertex. Locally, the system would prefer
type I vertices, but such vertices must be compensated by
highly unfavorable type VI vertices. The colloidal spin ice
realization differs from the magnetic system, where north-
north and south-south magnetic interactions at a vertex
have equal energy. For the colloids, interactions between
two filled trap ends raise the vertex energy Ei, whereas two
adjacent empty trap ends decrease Ei. Since particle num-
ber must be conserved, creating empty trap ends at one
vertex increases the particle load at neighboring vertices.
As a result, the ice rules still apply to our system, but they
arise due to collective effects rather than from a local
energy minimization.

In Fig. 1(b) we illustrate a small part of system A with
noninteracting colloids at charge q ! 0. The distribution of
Ni=N is consistent with a random arrangement. When we
increase q to q ! 1:3 so that the colloids are strongly

 

(b)
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(a)

FIG. 1. (a) Schematic of the basic unit cell with four double
well traps each capturing one colloid. (b)–(d) Images of a small
portion of system A with N ! 1800. Dark circles: colloids;
ellipses: traps. (b) Random vertex distribution at q ! 0.
(c) Long-range ordered square ice ground state at q ! 1:3.
(d) Biased system at q ! 0:4 with Fdc ! 0:02.

TABLE I. Electrostatic energy Ei=EIII for each vertex type. An
example configuration for each vertex is listed; 1 (0) indicates a
colloid close to (far from) the vertex.

Type Configuration Ei=EIII Type Configuration Ei=EIII

I 0000 0.001 IV 1001 7.02
II 0001 0.0214 V 1101 14.977
III 0101 1.0 IV 1111 29.913

PRL 97, 228302 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
1 DECEMBER 2006

228302-2

(c)

Figure II.17: Artificial spin ice made by charged colloidal particles confined in a double well
potential (from

Reichhardt2011
[226]). (a) One among the six possible vertices occurring in the square lattice

verifying the ice rules. (b) One among the eight vertices occurring in artificial Kagome ice. The
ice rules here corresponds to two particles close to the vertex and one further, or the opposite. (c)
Artificial square ice ground state.fig:ASIColloid

a single spin in an ice-rule configuration leads to the creation of a pair of defects with a non-zero
opposite charge in adjacent sites (see Fig

fig:Defects2dfig:Defects2d
II.18). As for its 3d counterpart, the charge of a vertex

is defined by

qv = 1
2
∑
i∈v

σi ∈ {0,±1,±2}. (II.20)

where the sum runs over the four spins sharing a vertex v in the square lattice. Defects are divided
into two categories depending on the absolute value of their charge: d-vertices (Type-IV) carrying
a double charge qd = ±2 and e-vertices (Type-III) with a single charge qe = ±1. In artificial spin
ice, and spin ice-like systems in general, vertices breaking the ice rule are much more energetic
than the six 2-in–2-out ones (hence called defects).

Interactions between defects in 2d are not simply given by a 1/r Coulomb interaction by exten-
sion of what happens in 3d pyrochlores. This comes from the fact that not all the configurations
verifying the ice-rules are equivalent in the square lattice as dictated by the Hamiltonian

eq:ASI_Hamiltonianeq:ASI_Hamiltonian
II.19.

Although as in 3d defects can be separated without creating any extra defects, they can create
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excitations verifying the ice-rules, i.e. a- and b-vertices. Besides the 1/r Coulomb energy coming
from the dipolar interactions, the strings carry a tension associated with the creation of a- and
b-vertices. Numerical simulations of the dipolar model in the square lattice have shown evidences
for a string tension proportional to its length X

Silva2009
[188]. In this work, the energy computed for

different configurations seems consistent with an interaction between defects of the form

V (r) = −Q
r

+ κX(r) + C (II.21) eq:SilvaEnergy

where r is given in units of the lattice spacing, κ > 0 is the effective strain of the string and Q and
C are adjustable parameters 7. The interaction between monopoles has been evaluated numerically
at zero temperature by computing the energy of different configurations with two defects at a given
distance attached by a string of spins with a given shape. The energy cost of a pair of defects is
given by the sum of a 3d Coulomb interaction and a potential κX(r) which diverges with the
length of a string and the monopoles remain confined. Magnetic monopoles in 2d artificial spin
ice are ’3d objects’ embedded in a lattice. It is a particularity of dipolar interactions in 3d spin ice
that both electrostatic and entropic interactions are 1/r.
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Figure II.18: (a) Initial configuration verifying the ice-rules. (b) Creation of two oppositely
charged defects (open and black circles) by flipping the spin shown in red. (c) Displacement
of the positively charged defect by flipping one among its three outgoing spins. (d) Configuration
after six spin-flips without creation of an extra defect. The positively charged defect has moved
apart leaving behind a string of red spins.fig:Defects2d

So far, we have only considered artificial spin ice at zero temperature. At finite temperature,
effective entropic 2d Coulomb interactions ∝ T ln r must be added to the previous potential. The
free energy of the system made by two monopoles distant of r is F (r) = V (r) − TS(r). The
energy is given by eq.

eq:SilvaEnergyeq:SilvaEnergy
II.21 and the entropy associated to the number of ways of connecting two

monopoles by a string of length X is approximated by

S(r) ≈ kB ln
(
3X(r)

)
. (II.22)

This result is obtained by considering the strings as self-avoiding random walks in the 2d square
lattice. Then, the string’s contribution to the free energy Fs(r) = κX(r) − kBT ln(3)X(r) in-
cludes a confining term ∝ kBTX(r). At high temperatures the configurational entropy of the
string makes the string tension vanish, and at low temperatures the entropic interaction between
monopoles confines them. Making use of an argument à la Kosterlitz-Thouless

Kosterlitz1972a
[148], one would

expect a transition to occur at kBTc = κ/ ln(3). Although the above ‘heuristic’ argument is ap-
pealing, it only considers the free energy cost of an isolated string and do not take into account

7. The value of Q extracted from the fitting of the numerical data should be compared with µ0µ
2

4π q2 and C should
be associated with an ’ionization’ energy of a pair of defects.
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the effective interactions between defects, neither the energy associated with a single defect. It is
however not clear whether there is a deconfinement transition in artificial spin ice coming from
the competition between these effects. A more careful analysis is needed to describe the situa-
tion at high enough temperatures, when the string losses its tension. A non negligible density of
defects will then populate the system and intersections between strings make the definition of X
ambiguous. Subtle many-body effects as self-screening can take place in the system.

A modified artificial square ice system with a height shift h can remove the inconveniences
caused by the emergence of the string tension

Moller2006,Moller2009
[189, 190]. If h is chosen in such a way that the ice

rule degeneracy is restored, the strings carry no tension and the interaction energy between defects
would be simply given by a 3d Coulomb potential.

A statistical approach has been used by Silva et al. in order to link oppositely charged defects
and define an effective string length

Silva2011
[241]. In this approach, the strings are defined by identifying,

among all the possible ways to link n positive charges to n negative charges, the one which min-
imises the total distances between them. The average distance between defects is maximum at a
given temperature Td where the specific heat exhibits a logarithmic divergence. It has been argued
that this temperature corresponds to a transition temperature between a confined and a deconfined
phase of magnetic monopoles in artificial spin ice.

Recently, Morgan and co-workers have identified and classified defects and string excitations
in artificial spin ice on square arrays of elongated ferromagnetic islands

Morgan2011
[196]. They have ob-

served that the excitations should be classified by the number of a- and b-vertices and the number
of defects involved. More recently, magnetic monopoles motion with the proliferation of attached
strings have been visualized in artificial square ice by microscopy

Pollard2012
[217]. Similarly to what was

done for 3d spin ices, the samples were initially prepared in a polarized configuration by ap-
plying a strong magnetic field in the [11] direction, then switched to the opposite orientation.
Strings of flipped spins are then identified from their background with the corresponding motion
of monopoles induced by the field reversal.

Most of the work in artificial spin-ices focus on the square and hexagonal arrangements. The
interest on the square geometry finds its roots in the physics of spin-ice and 2d vertex models. In
the honeycomb lattice, also known as artificial Kagome ice, the zero divergence constraint cannot
be satisfied. Instead, the minimisation of the local charge on each site yields to a modified ice rule:
on each vertex two arrows point in and one out, or the opposite (see Fig.

fig:ASIKagomefig:ASIKagome
II.16). The Kagome lattice

is then highly frustrated and has two main advantages over the square geometry: (i) all the bonds
around a vertex are equivalent; (ii) defects dynamics are induced naturally by the presence of an
external field since all the vertices carry a non negative charge q =

∑
i∈v σi = ±1,±3

Mellado2010
[175].

Kagome artificial spin ice verifying the ice rule degeneracy has been realised by lithographic
techniques

Mengotti2008,Qi2008,Ladak2010,Mengotti2011,Chern2011
[176, 222, 152, 177, 69]. Although an ordered GS is expected to occur in dipolar

Kagome spin ice
Melko2004
[174], none experiment has been able to accesses it.

Strings associated with the motion of defects, i.e. vertices with q = ±3, have been directly
observed by PEEM in these systems

Ladak2010,Mengotti2011
[152, 177]. This has been done by preparing the samples in a

polarised state align with an external magnetic field H . Then the field is reversed, creating strings
of spins in a background of opposite orientation. Below a certain critical field Hc the defects
are free to move. Instead, they become trapped for higher fields. The orientation and strength
of an external magnetic field applied to these samples alters considerably the configuration and
the dynamics of the system. The possibility to control defects’ motion and manipulate states in
Kagome spin ice motivates its study for potential applications in spintronics and computer science.
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II.3.3 Ordering protocols

Artificial spin ices built by nano-lithography are a-thermal. A usual method one would like
to apply is to thermally anneal the system to its ground state by heating and cooling the material.
This, however, is not possible in spin ice since the energy barriers involved are of the order of
104-105K (the system would melt during the procedure). We discuss in the following lines the
alternative protocols which have been proposed to overcome this difficulty.

II.3.3.1 External drive

Several works have reported the use of time-varying external fields to order artificial spin
ice samples

Wang2006, Mengotti2008,Qi2008, Ke2008, Rougemaille2011
[263, 176, 222, 138, 229]. The expected ground state in artificial spin ice is non

magnetized. A way to demagnetise the system is to rotate the sample in a time-dependent mag-
netic field, a method which was already used in nano-technology

Imre2003
[122]. The sample rotates at

a frequency of 2π/∆t while the magnetic field H(t) decreases by a step Hs after each period
∆t. In Wang et al.’ s realisation the magnetic field also changes its polarity at each step, i.e.
H(n∆t) = (−1)n(Ho− nHs). The initial value of the magnetic field Ho should be chosen much
larger than the coercive field of the ferromagnetic islands. Then, vertex populations are measured
after the demagnetisation protocol, when H(tfinal) = 0 and the islands are in a frozen configura-
tion. As we will show in the next section, an effective statistical ensemble describing the outcomes
of this demagnetisation procedure can be constructed

Nisoli2007,Nisoli2010a
[206, 205] (see Section

sec:Edwardssec:Edwards
II.3.4). Indeed, the

demagnetisation protocol described above will lower energy states but does not reach the stag-
gered ground state of the system

Nisoli2010a
[205].

II.3.3.2 Material selection

In order to achieve thermal ordering, an alternative approach is to reduce the energy barriers
between different configurations. One can select a material to build the nano-islands in such a
way that the energy cost for a single spin flip is reduced enough to allow thermal activation. This
can be achieved by using a material with lower Curie temperature

Kapaklis2012
[135]. The selected material is

made of δ-doped Pd(Fe) thin films instead of permalloy. It has the important advantage that the
Curie temperature and the magnetisation can be tuned by the thickness of the Fe layer. The energy
barrier to reverse the magnetisation of an island is now strongly temperature dependent 8. Thermal
fluctuations in the sample become relevant if not too small compared with the Curie temperature
of the islands. The equilibrium thermodynamics of artificial spin ice can then be investigated. By
increasing the temperature from a magnetised state, the samples loose their magnetisation. The
mechanisms taking place in this realisation and leading to such ordering are, however, difficult to
analyse. One should be able to ’decouple’ what comes from the artificial spin ice problem and can
give us some insights on spin ice like systems, and what comes from the internal behaviour of the
islands.

II.3.3.3 Thermal annealing during fabrication

Two years ago, Jason P. Morgan and colleagues reported for the first time the role of real ther-
modynamics in artificial spin ice

Morgan2011
[196]. In this experiment, spin configurations are visualised at the

8. The energy barrier to flip the magnetisation of the island depends on temperature in Wang et al.’s realisation as
well. However, the magnetisation of the permalloy islands is not very sensitive to temperature changes in this range
and can be considered constant.
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end of a sample preparation process in which the thickness of the magnetic islands grows by depo-
sition onto pre-patterned substrates. During a limited time, the permalloy islands are small enough
to reverse they magnetic moment by thermal fluctuations during the growth process. However, as
the time scales for these moves increase with the growing size of the islands, once a certain thick-
ness is reached the flipping times become too large and the effective spins freeze. Therefore, the
blocked configurations are reached by thermal annealing. Using this different approach they find
large domains of staggered order regions containing c-vertices only (see Fig.

fig:Morganfig:Morgan
II.19). This allowed

the visualisation of artificial spin ice very close to its ground state. Frozen thermal excitations as
domain walls and charged defects can be visualised after the growing process. No information
about the actual thermal dynamics occurring during the annealing is available, only the frozen
states at the end of the experiment can be analysed. These authors also measured the frequency of
occurrence for a large number of local excitations and they find that they can be reproduced by a
Boltzmann distribution.ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS1853

from a ‘checkerboard’ tiling of alternating T1 vertices (or,

alternatively, alternating flux closure loops), shown schematically

and experimentally in Fig. 1a. All first-nearest neighbours

order north-to-south, imposing antiferromagnetic second- and

third-nearest-neighbour order. (The various orders of nearest

neighbours are shown in Fig. 1a.) Long-range dipolar interactions

are needed in Monte Carlo calculations of the 3D pyrochlore

lattice to select a periodic GS (ref. 30), as all six pairwise vertex

interactions are equivalent.

Acquisition of the GS in experiment has proved non-trivial. A

surplus of T1,2 vertices over a random configuration can be achieved

using a rotating a.c. demagnetization protocol
5,26

; however, the T3,4

arrangements, analogous to fractionalized magnetic monopoles
15
,

cannot be fully annihilated. These ‘monopoles’ are confined, in

contrast to the pyrochlore systems
22,23

. Owing to a complex land-

scape of local energy minima, the effective ‘thermodynamics’
13,27

cannot access microstates below a floor of degenerate low-energy

short-range ‘icy’ order
14,29

.

MFMobservation of the ground state
The array studied here comprises permalloy (Ni80Fe20) bars of

area A = 280 × 85 nm
2
and thickness d = 26 nm on a lattice

of pitch a = 400 nm, fabricated by electron beam lithography,

evaporation and liftoff. The as-grown state was then surveyed

by MFM: no global magnetic fields were deliberately applied.

The MFM image shown in Fig. 2a is representative of the entire

sample (see Supplementary Information), with every element in a

single-domain state. A state of highly uniform order has formed

with distinct chain defects. Magnification (inset) shows that regions

of GS background have formed, giving long-range order over

∼20a. Mapping defect moment configurations (Fig. 2b) reveals

two distinct types, comprising T2,3 vertices: antiferromagnet-like

domain walls (DWs) where two opposite-sense GS tilings meet,

and localized groups of moments flipped out of the T1 background.

No T4 vertices were observed. It is extremely unlikely an applied

field induced this state: d.c. fields greater than or equal to the array

coercivity result in polarized states
6
, whereas a.c. demagnetized

states are only short-range correlated
5,13,14

.

The possibility still remains for such ordering to occur through

thermalization, taking place during the early stages of material

deposition. An island will form a continuous magnetic layer within

0 < d ∼< 1 nm of NiFe growth. At temperature T , its moment

m(d,T ) = AdM (T ), where magnetization M (T ) ∝ 1− cT 3/2
for

constant c . Nanoelement dynamics will occur according to a

Néel–Arrhenius rate ∝ exp(−βEb), where the reversal barrier en-

ergy Eb = KAd for shape anisotropy K (d,T )= µ0DM 2
(T )/2 (the

demagnetizing factorDwill depend on d as it affects the element as-

pect ratio
31
), and β =1/kBT , with kB being the Boltzmann constant.

Dipolar interactions are then ∝ m(d)2/r3, where r is the centre–

centre separation of two islands. This slightly lowers/raises Eb for

moments in energetically unfavourable/favourable configurations,

biasing transitions towards lower-energy states, allowing interac-

tions to locally resolve before themoments block (freeze) at d of the

order of a few nanometres. Correct tuning of interactions/barriers

allows for strong GS ordering in ideal optically trapped colloidal

square ice
32
, and likewise, we are aided here by short inter-island

distances. As seen in simulations of superconducting vortex ice
33
,

finite levels of weak disorder lead to multiple GS-order nucleation

centres. Compatible regions coalesce, whereas incompatible regions

must form DWs, which become frozen-in as dynamics slow down.

Slowly raising d , therefore, has an equivalent effect to a decreasing-

T anneal. A finite d-dependent probability also exists for localized

defects to occur within the GS domains, which have also been

preserved. Combined atomic force microscopy andMFM shows no

obvious underlying structural defects on those particular elements

that support thesemagnetic defects, so they are presumably subtle.
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Figure 2 |MFM images of a 400-nm-pitch as-grown square ice array.
a, Direct observation of frozen-in long-range GS order with ∼10-µm-width

domains, separated by antiferromagnet-like DW boundaries, supporting

localized elementary excitations of small groups of moments flipped

against the background. A magnified region, containing a DW and localized

excitations (1, 2L, 3Z, notation explained in the text), is shown in the inset.

A key identifying the rotationally degenerate vertex configurations is also

shown. The green square indicates a large domain-like excitation.

b, Moment arrangements of the regions highlighted in a, indicating the

flipped elements (grey), T2-dipole (green arrow) and T3-monopole vertices

(red and blue circles) making up the defects.

Thermally ordered ground states have also been sought in

other artificial model systems. Artificial 2D Ising antiferromagnets

have been previously studied, using superconducting flux vortex

arrays
34–37

and close-packed colloidal spheres
38,39

. In the former,

thermal annealing could not access long-range-ordered states, even

where a unique GS was defined, partly attributed to patterning

disorder. In the latter, ‘annealing’ produced a compressible ‘glassy’

phase, rather than the triangular GS. As-fabricated square ices have

been studied before following milling of sputter-deposited films
6
,

which does not allow thermalization.

Elementary excitations on a square ice lattice
We have imaged an athermal system of elements with large

d . Therefore, we have no information about the dynamics

of defect nucleation mechanisms, and can observe only their

end results. Examination of the frozen configurations presents

strong evidence for thermally driven low-d defect growth. The

localized defects, elementary excitations of the system, may be

classified by the number of flipped moments, n, and a mnemonic

character for shape, shown in Fig. 3a for a representative selection.

Excitations may also be represented by reversed moment maps;

translation, rotation, reflection or inversion forming equivalent
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Figure 3 | Elementary excitations above the GS of square ice. a, MFM

images of observed (with the exception of 4t and 4+) isolated excitations

and corresponding moment flip-maps along with the mnemonic for the

shape, ordered by n, the number of flipped elements, for n≤8. b, Calculated

values of dE (in units of the elementary dipole–dipole interaction energy u)
for selected low-lying excitations positioned at the centre of an N×N
GS-ordered array, which converge to well-defined energies for N ∼>4.

excitations. Visual inspection reveals that all shapes are formed from

sequential first-nearest-neighbour flips alone. Sequentially flipped

second-nearest neighbour pairs are never observed, unless linked

by a shared first-nearest neighbour. Defect propagation will be

discussed in the following section.

Summing the interaction energies over an N ×N array of point

dipoles
8,22,40

, the excitation energy dE above a GS background for

a given shape may be calculated in units of u = µ0m2/4πa3. For
an excitation centred in a GS-ordered array, dE(N ) converges

acceptably close to the large array limit by N ∼> 4 (Fig. 3b). All

shapes therefore have well-defined bulk dE (given for all excitations

in Supplementary Fig. S3a), which tends to increase with n.
Calculations show that excitations must be only 2–3 vertices away

from other defects (excitations, DWs, edges) to be non-interacting.

Two excitations separated by a third-nearest-neighbour distance

couple to raise/lower their combined energy by ∼ 1%, which could

be considered as a composite excitation; however, the frequency of

such occurrences and the excitation density are sufficiently low to
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Figure 4 | Statistics of square ice excitations. a, Abundance versus dE of
observed excitations, with an exponential best fit shown in red. The vertical

yellow regions correspond to energy ‘bands’ discussed in the text.

Excitations in the first four bands are labelled in order of increasing energy.

The error bars correspond to the square root of the number of observations

of each excitation type. b, dE versus T2 string length s, for p=0 to 3

pole-pair excitations, with low-lying bands coloured yellow.

neglect this in our analysis. Most excitations observed are therefore

largely unaffected by lying within a finite domain.

We have counted the relative abundances of the different

excitations, ∼500 in total, inspecting numerous MFM images

covering ∼165,000 elements in total (all survey images are shown

in the Supplementary Information). The observed frequencies

decrease exponentially with dE , as shown in Fig. 4a, just what would
be expected for thermal excitations. We may hence describe this

distribution as being given by Boltzmann factors ∼ exp(−βdE).
Estimating sample temperature to be T ≈ 350K during growth,

and M ≈ 860×10
3
Am

−1
for Permalloy, we estimate that ordering

occurs at d ∼ 1 nm from the line of best fit, comparable to the

thickness at which themagnetic layer will become continuous.

Internal structure and growth of excitations
Although the overall trend is for dE to increase with n, exceptions
may be found, for example 2L and 4O both have dE ≈ 40u (Figs 3b
and 4a). It is instructive, therefore, to further classify a given

excitation in terms of s and p, the number of T2 vertices and

the number of oppositely charged T3 vertex pairs, respectively.

(See Supplementary Information for more examples of observed

excitations.) Grouping excitations by p, dE is found to be close to

linear in s (Fig. 4b), with each group having F =d(dE)/ds≈10u per
element, and separated by �E ≈ 30u. Hence, it can be written that

dE≈ sF+p�E for any given excitation. F is a ‘force’ acting to unflip

a chain ofmoments, and�E is a pole-pair creation cost. These agree

closely with values determined in ref. 23 for straight-line monopole
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(a)

(b)

(c)

Figure II.19: Extacted from Morgan et al. ’s publication
Morgan2011
[196]. (a) MFM Image of a frozen con-

figuration displaying large domains of ground-state order. The domains are separated by domain
walls made by a- and b-vertices. Localised excitations are shown in the inset. (b) Different ar-
rangements of islands with their corresponding vertex configuration. The flipped spins are shown
in grey. (c) Visualisation of different local excitations. A mnemonic labelling based on the shape
and size of the excitations has been introduced.fig:Morgan

II.3.4 Statistical mechanics of a-thermal systems
sec:Edwards

The methods of statistical mechanics to study a large number of ’individuals’ differ fundamen-
tally if these individuals are microscopic or macroscopic. By microscopic individuals we mean
physical degrees of freedom which are subject to thermal noise (e.g.: particles, spins, etc.). Sys-
tems of this kind are the object of classical equilibrium statistical physics and thermodynamics.
On the contrary, by macroscopic individuals we mean physical bodies which are large enough to
avoid thermal fluctuations and hence canonical equilibration (e.g.: grains, ferromagnetic nano-
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islands, etc.). Artificial spin ice on arrays of elongated ferromagnetic nano-islands fall in the
category of a-thermal systems. Following Edwards’ ideas

Edwards1989,EdwardsBook
[86, 87], a micro-canonical ensemble

can be constructed for such systems under some assumptions. These notions can then be applied
to the artificial spin ice problem.

II.3.4.1 Edward’s measure in granular matter

The fundamental quantity that makes the connection between the statistical micro-canonical
ensemble and thermodynamics is the entropy S. In order to give a thermodynamic meaning to
an a-thermal system one should first of all define its entropy. For convenience we focus here
on granular materials

MehtaBook,Jaeger1996
[173, 126] for which this approach was first introduced to then move our

attention to artificial spin ice.
In order to allow a statistical description, the number N of individuals in the system must me

large. The fundamental postulate of statistical mechanics asserts that all the accessible config-
urations of an isolated system in a volume V and energy E have equal probability. The set of
micro-states with given E, V and N (called external parameters) constitute the micro-canonical
ensemble

HuangBook
[118]. This implies a uniform probability in the ensemble:

P (µ) =
{

Ω(E, V,N)−1 if E ≤ H(µ) ≤ E + ∆E
0 otherwise

(II.23)

where µ denotes a micro-state of the system and Ω(E, V,N) the volume of the phase space oc-
cupied by the micro-canonical ensemble: Ω(E, V,N) =

∑
µ δE,H(µ), i.e. the number of states

with an energy between E and E + ∆E (with ∆E � E). The entropy S and temperature T are
defined by

S(E, V,N) = kB ln Ω(E, V,N), 1
T

= ∂S(E, V,N)
∂E

. (II.24)

The construction of a statistical ensemble can be viewed as an optimisation problem under
some constraints. The microcanonical distribution can be derived by maximising the entropy
S = −kB

∑
µ P (µ) lnP (µ) under the constraint

∑
µ P (µ) = 1. We present this method for the

construction of the canonical ensemble with a Botzmann-Gibbs measure. Consider a Lagrange
multiplier λ1 associated to the constraint

∑
µ P

c(µ)H(µ) = E and a second one λ2 associated to
the normalisation of the probability distribution

∑
µ P

c(µ) = 1. Then we should extremise the
entropy S = −kB

∑
µ P

c(µ) lnP c(µ) under these constraints, i.e. we need to solve

δ

δP c(µ)

(
S[{P c(µ)}]− λ1[

∑
µ

P c(µ)H(µ)− E]− λ2[
∑
µ

P c(µ)− 1]
)

= 0, (II.25)

which leads to

P c(µ) = e
−1− λ2

kB e
− λ1
kB

H(µ)
, ∀µ . (II.26)

Then we impose the normalization of P c(µ) and we define Z =
∑
µ e
− λ1
kB

H(µ) to obtain the
canonical distribution

P c(µ) = e−H(µ)/kBT

Z
(II.27)

where we have identified T = λ−1
1 . Note that this is consistent with the previous definition of

the temperature since λ1 = ∂S/∂E. The second Lagrange multiplier is associated with Z =
exp (1 + λ2/kB). The same method will be applied to construct an effective temperature for
artificial spin ice samples.
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In granular matter, the energy does not characterize configurations with different macroscopic
arrangements and the temperature can be ignored (effectively T = 0). The volume though depends
on the configuration and suggests that it is the relevant variable to describe granular matter. The
starting point to construct a statistical mechanics description is the fundamental postulate: all the
blocked configurations with the same number of grains formed by manipulations which do not act
on individual grains (shearing, shaking, compressing, etc.) and occupying the same volume V are
equally probable. An important assumption has been done here: we consider that an enormous
number of configurations are available to the grains and that the system is ergodic. Under this
assumptions the probability density is

P (µ) =
{

Ω(V,N)−1 if V ≤W (µ) ≤ V + ∆V
0 otherwise

(II.28)

We have introduced a function W which gives the occupied volume of a given configuration. The
log of Ω(V,N) gives the ’Edwards’s entropy’ SE of grain configurations with given volume and
satisfying stability conditions. The configurational entropy is sometimes called ’complexity’ in the
context of glassy systems. For a recent review on the subjects I refer the reader to

Cavagna2009
[61] and

Berthier2011
[30].

From this central quantity an effective thermodynamics can be constructed.
The volume plays here the same role as the energy for a thermal system where the function

W is analog to the Hamiltonian H . We should also introduce an ’indicating’ function Q which
is equal to one or zero weather the configuration is stable or not. The function Q imposes an
extra condition in the phase space volume of this Edwards’ micro-canonical ensemble. In this
construction, a mechanically stable configuration of macroscopic objects is the analog of a micro-
state in usual thermal statistical mechanics. We introduce the new variable X defined by

1
X

= ∂SE(V,N)
∂V

. (II.29)

X is the analog of the temperature and it is called ’compactivity’. For X = 0 the system is
’compact’ (analog to a frozen state at T = 0) and for X → ∞ the system is ’loose’ (analog to a
random state at T → ∞). It measures the ability of the system to be more or less ’compact’ in a
way analog of what temperature measures in terms of energy. As the temperature, the variable X
controls the equilibrium between different subsystems. We can also introduce the thermodynamic
potential Y (X,N) = V − XSE(V,N), the analog of the free energy F (T, V,N) in statistical
mechanics which extends this construction into the canonical ensemble. In order to study the
packing and the effective thermodynamics of grains one has to start by defining the W and Q of
the model, as one usually does in statistical mechanics via the Hamiltonian of the system. Note
that, in the previous discussion we considered two external parameters V andN and we derived an
analog of the temperature in terms of entropic variation with V . We can pursue the same strategy
and define a ’configurational’ temperature TE defined by the derivative of the Edward’s entropy
as a function of the energy. Depending on the system we are dealing with, one can define ’two
different temperatures’, X and TE , the Lagrange multipliers associated with volume and energy
conservation in the Edwards’ ensemble. None of them is equivalent to the ’thermal’ temperature
T of the environment.

Edward’s measure has become a systematic tool to study glassy dynamics. One has to decide
which configurations are considered as being blocked and belonging to the Edwards’s ensemble.
In particular, it is quite natural to define blocked configurations in the context of kinetically con-
strained lattice models displaying glassy-like behaviour

Ritort2003
[228]. In has been shown that an Edwards’

entropy can be defined in a systematic way for these systems and reproduces different dynamical
observables in the aging regime of the Kob-Andersen model

Barrat2001
[17]. It has also been proposed to
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extend Edwards’s construction to general glassy systems in finite dimensions with thermal fluctu-
ations

Biroli2001
[36].

Several studies have demonstrated the usefulness of Edwards’ construction. An effective tem-
perature can be extracted from violations of the fluctuation-dissipation theorem

Cugliandolo1997
[76] in a granular

system under compaction
Colizza2002
[71]. This dynamical effective temperature Teff turns out to coincide

with the Edwards’ compactivityX . The introduction of a dynamical effective temperature is theo-
retically justified for mean-field models but beyond the situation is less clear. Similarly, numerical
simulations on slowly sheared grains have extracted a dynamical effective temperature Teff in
agreement with the configurational temperature TE

Makse2002
[168]. It is however a very difficult task to

sample the blocked configurations experimentally. It is far from being clear whether a perturba-
tion or procedure is appropriate in order to generate configurations in the blocked manifold in an
ergodic way.

II.3.4.2 Configurational temperature in artificial spin-ice

Edwards’ ideas have recently been applied to artificial spin ice samples under a rotating mag-
netic field

Nisoli2007, Nisoli2010a
[206, 205]. Similarly to grains in granular materials, magnetic moments in artificial

spin ice are frozen. There are mainly two experimental procedures to drive the system into a
lower energy state: (i) by rotating the sample in a decreasing magnetic field

Nisoli2010a
[205]; (ii) by thermal

annealing during the growth of the islands
Morgan2011
[196]. The first procedure is analog to shearing and

shaking in granular matter language. The second procedure is somehow similar to compaction: if
we identify a grain with a dipole the annealing procedure corresponds to start by a microscopic
particle, subject to thermal fluctuations, and make it grow until it freezes.

In order to construct an Edwards’ measure for artificial spin ice one should identify the blocked
configurations of a given volume/energy and assume their are equiprobable. The micro-state of
the samples can be directly visualise such that one can extract the number of vertices of each
type. One needs an experimental control function, as an applied oscillatory field H(ω,Hs). Then
one should assume that, once this function has been fixed, the ’ergodic’ hypothesis of Edwards’
construction is fulfilled. Meaning that all the possible blocked configurations of the system are
generated by applying the demagnetisation protocol H(ω,Hs) in an equiprobable manner. Then
the set of blocked configurations reached in this way can be described by a canonical ensemble
with a configurational temperature TE . This temperature would a priori depend on the control
parameters Hs and ω. For a given choice of Hs and ω one can run the experiment, count the
number of vertices, and extract TE from eq. (

eq:TEeq:TE
II.40) and then plot how the temperature depends

on the external drive (see Fig.
fig:Nisolifig:Nisoli
II.20).

Nisoli and collaborators
Wang2006, Nisoli2007, Nisoli2010a
[263, 206, 205] used a vertex model to describe their samples. The

interaction energy per vertex can be approximated by:

ε =
16∑
i=1

εini (II.30)

where ni is the density of vertices of type i (see Fig.
fig:ASISamplefig:ASISample
II.13) and εi their corresponding energies.

In this description, we are only considering the interactions occurring around a vertex, i.e. the
nearest and next-nearest neighbour interactions. This model is an unconstrained sixteen-vertex
model with

ε1 = ε2 = ε3 = ε4 = εa,b = εII

ε5 = ε6 = εc = εI

ε8 = ε9 = εd = εIV

ε9 = ... = ε16 = εe = εIII (II.31)
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We use the notations: i = 1...16 or α = I, II, III, IV to label the vertices according to Fig.
fig:ASISamplefig:ASISample
II.13.

The value of the vertex energies can be computed using the dumbbell picture introduced in section
sec:MagneticMonopolessec:MagneticMonopoles
II.2.4 eq. (

eq:DumbbellPotentialeq:DumbbellPotential
II.18) in the square lattice. If one considers the interactions between the charges around

a vertex one gets: εc/εe ≈ 0.453. One could also make a next-to-nearest neighbours approxima-
tion of the dipolar Hamiltonian (

eq:ASI_Hamiltonianeq:ASI_Hamiltonian
II.19). Meaning that only the spins around a vertex are considered

and longer range interactions are neglected. This yields to εc/εe ≈ 0.692.
Initially the samples are prepared in a completely polarised state made exclusively by a- or

b-vertices. This can be achieved by applying a strong magnetic field in the [11] direction. In a
background of one type of polarised vertices, lets say v1, the rotating magnetic field will create all
other kinds of vertices. The density of vertices different from v1 is given by ρ = D/N where D is
the total number of vertices that are different from the initial one created during the protocol and
N the total number of vertices in the sample. The density of vertices of type i 6= 1 relative to the
density of non-polarised vertices created during this process is denoted νi and reads

νi = ni
ρ

(II.32)

for the vertex types which were absent in the initial configuration. For v1 vertices we have

n1 = 1− ρ (II.33)

which accounts for the density of vertices which remain identical after the demagnetisation proto-
col.

In order to compute a configurational entropy Nisoli and collaborators assumed that vertices
are independent. Thus, the volume of the phase space Ω(ε,N) is simply the number of ways of
choosing D objects among N divided into four categories α = I, II, III, IV (c, a(b), e and d
respectiveley), and within each category the objects are considered indistinguishable. Hence,

Ω(ε,N) = 1∏
αNα!

N !
(N −D)! (II.34)

where, in order to make the link with the usual conventions,

NI/N = n5 + n6 = nI

NII/N = n1 + n2 + n3 + n4 = nII

NIII/N = n9 + n10 + ...+ n16 = nIII

NIV /N = n7 + n8 = nIV . (II.35)

The configurational entropy is given by S(ε,N) = kB ln Ω(ε,N) which for N large enough it is
well approximated by

S(ε,N)
NkB

= −ρ
∑
i

νi ln νi − (1− ρ) ln(1− ρ)− ρ ln ρ . (II.36)

In order to define a configurational temperature we look for extremes of this function under
the energy constraint

ε =
∑
i

εini = εa,b ≡ ct . (II.37) eq:EnergyConstant

The energy ε can be measured after running the demagnetisation protocol from a completely
polarised sample. The main experimental observation justifying the Edwards’ construction is that
this energy constraint is verified after a cycle

Nisoli2007
[206], i.e. the external drive does not reduce the total

energy (similarly to shearing and shaking grains in a fixed container conserves the volume). This
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immediately implies that the ground state of the system cannot be reached using this procedure.
The demagnetised field creates different type of vertices, some of them more or less energetic than
a- and b-vertices, and experimentally the energetic contribution of the new vertices created during
the demagnetization compensate each other.

We introduce the Lagrange multiplier λ associated to it. The optimisation equation reads

δ

(
ρ
∑
i

νi ln νi − (1− ρ) ln(1− ρ)− ρ ln ρ− λ(ρ
∑
i

εiνi − ε)
)

= 0. (II.38)

Once solved we obtain the canonical distribution for vertices i 6= 1

νi = exp (−βEεi)
Z(βE) (II.39) eq:NisoliCanonical

where βE = λ/kB is equivalent to an inverse temperature in the canonical formalism andZ(βE) =∑
i exp(−βEεi) to the partition function. This configurational temperature can be extracted from

measurements by counting vertices of each kind and averaging over all the configurations obtained
with the same procedure. Then, the predictions of the canonical measure can be compared with
the experiments. In particular

ln 4(ν5 + ν6)
(ν9 + ν10 + ...+ ν16) = ln 4nI

nIII
= βE(εe − εc) (II.40) eq:TE

allows βE to be determined. As shown in Fig.
fig:Nisolifig:Nisoli
II.20 (a), the experimental data of is well repro-

duced by this canonical distribution. Moreover, the configurational temperature derived above can
be controlled during the demagnetisation via Hs. As also shown in Fig.

fig:Nisolifig:Nisoli
II.20 (b), Nisoli and col-

laborators found a linear dependence of βE in the magnetic step size, meaning that the rotating
magnetic field behaves as an effective thermal bath. Note that negative temperatures are possible
when 4nI < nIII . These are highly energetic states with a very low entropy.

effective temperatures, based on Eqs. (1)–(3). The excel-
lent agreement between theory and the experimental data
demonstrates the predictive power of the effective
temperature.

Is the effective temperature derived above only a
Lagrange multiplier, or does it provide physical informa-
tion about the ‘‘fluidizing’’ external magnetic drive, as an
actual physical temperature provides information about the
surrounding thermodynamic bath? We found that effective
temperature can be controlled via the external drive in a
way strikingly analogous to that reported for vibrofluidized
granular materials [11]—but here in a system with an
explicit energetic description of interactions. As seen in
Fig. 3(b), we find a strikingly linear dependence of h!ei in
the magnetic step size of the ac demagnetization, indicat-
ing that the effective temperature description does indeed
have a physical basis akin to actual temperature.

We now consider the effective temperature of the hex-
agonal ice arrays, in which ac demagnetization consis-
tently returns the vertex ground state (all type-I vertices)
for arrays of small lattice constant. For a ¼ 225, 260, 320,
and 425 nm, the frequency of excitations is "10#3, below
experimental error. Hence hexagonal ice is a good candi-
date to study effective temperature only for larger lattice
constants a ¼ 650, 910, 1135, 1395, and 1620 nm, wherein
the occurrence of excitations nII is significant. As the
density of excitations nII completely defines the thermo-
dynamics, the introduction of an effective temperature as
for the square ice, !eEII ¼ lnðnI=3nIIÞ, might seem only a
reparametrization with little predictive power. In Fig. 4(a),
however, we extract lnðnI=nIIÞ from arrays of different
lattice constant a, but annealed with the same magnetic
step Hs, and plot that ratio against the respective energy

EII. Somewhat surprisingly, we find a linear behavior,
which suggests an effective temperature that is indepen-
dent of the lattice constant. In this calculation, the vertex
energies are obtained via micromagnetic calculations that
describe the full vertex interaction of dipole islands [30],
since we now study much larger lattices for which the
dumbbell approximation (which treats only the monopole
tips that converge at a vertex) is less accurate. The intercept
of the fits in Fig. 4(a) is surprisingly close to the expected
lnðqI=qIIÞ ¼ ln3, lending further credence to the analy-
sis. The extracted effective temperature !e is plotted in
Fig. 4(b) against the magnetic step size Hs. As in the case
of the square ice, we again find a remarkable linear depen-
dence of !e on the anneal step size Hs, although with
different parameters (different geometries apparently ex-
perience different effective temperatures under the same
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effective temperatures, based on Eqs. (1)–(3). The excel-
lent agreement between theory and the experimental data
demonstrates the predictive power of the effective
temperature.

Is the effective temperature derived above only a
Lagrange multiplier, or does it provide physical informa-
tion about the ‘‘fluidizing’’ external magnetic drive, as an
actual physical temperature provides information about the
surrounding thermodynamic bath? We found that effective
temperature can be controlled via the external drive in a
way strikingly analogous to that reported for vibrofluidized
granular materials [11]—but here in a system with an
explicit energetic description of interactions. As seen in
Fig. 3(b), we find a strikingly linear dependence of h!ei in
the magnetic step size of the ac demagnetization, indicat-
ing that the effective temperature description does indeed
have a physical basis akin to actual temperature.

We now consider the effective temperature of the hex-
agonal ice arrays, in which ac demagnetization consis-
tently returns the vertex ground state (all type-I vertices)
for arrays of small lattice constant. For a ¼ 225, 260, 320,
and 425 nm, the frequency of excitations is "10#3, below
experimental error. Hence hexagonal ice is a good candi-
date to study effective temperature only for larger lattice
constants a ¼ 650, 910, 1135, 1395, and 1620 nm, wherein
the occurrence of excitations nII is significant. As the
density of excitations nII completely defines the thermo-
dynamics, the introduction of an effective temperature as
for the square ice, !eEII ¼ lnðnI=3nIIÞ, might seem only a
reparametrization with little predictive power. In Fig. 4(a),
however, we extract lnðnI=nIIÞ from arrays of different
lattice constant a, but annealed with the same magnetic
step Hs, and plot that ratio against the respective energy

EII. Somewhat surprisingly, we find a linear behavior,
which suggests an effective temperature that is indepen-
dent of the lattice constant. In this calculation, the vertex
energies are obtained via micromagnetic calculations that
describe the full vertex interaction of dipole islands [30],
since we now study much larger lattices for which the
dumbbell approximation (which treats only the monopole
tips that converge at a vertex) is less accurate. The intercept
of the fits in Fig. 4(a) is surprisingly close to the expected
lnðqI=qIIÞ ¼ ln3, lending further credence to the analy-
sis. The extracted effective temperature !e is plotted in
Fig. 4(b) against the magnetic step size Hs. As in the case
of the square ice, we again find a remarkable linear depen-
dence of !e on the anneal step size Hs, although with
different parameters (different geometries apparently ex-
perience different effective temperatures under the same
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FIG. 3 (color online). (a) Vertex frequency from square arrays
of different lattice constants and Hs, plotted against their effec-
tive reciprocal temperature !e in units of EIII. Data are from
averaging at least three MFM images from the same array with
the same Hs. Lines are theoretical curves from Eqs. (1)–(3).
(b) Linear dependence between !e and the magnetic step sizeHs

(data are averaged over the lattice constant a). Negative tem-
peratures are possible, because of high-energy, low-entropy
states.
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FIG. 2 (color online). The effective temperature of the square
arrays, plotted as lnð5nI=2nIIÞ vs lnð8nI=2nIIIÞ: The linear fit
returns a ratio very close to the theoretical value. (nI, nII, and nIII
are average values from the MFM images taken on the same
array and at same magnetic step size.)
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Figure II.20: Experimental data extracted from
Nisoli2010a
[205]. (a) Density of vertices from arrays with

different lattice constants (shown in the key) and magnetic step Hs (in Oersted). Dotted lines are
obtained from eq.

eq:NisoliCanonicaleq:NisoliCanonical
II.39. The configurational inverse temperature βE is given in units of εe. (b)

Dependence of βE in the magnetic step Hs confronted to a linear decay βE = γ − κHs.fig:Nisoli

Note that the same group studied in detail the effect of different demagnetisation protocols on
the correlations between islands and the energy of the system

Ke2008
[138]. In this paper, they show that
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the correlations and energy of the system are dependent of Hs. Although for a given step size
the total energy can remain roughly constant during the procedure, its not equal to εa in general.
It is not very clear whether the constraint ε ≡ cte actually holds or under which experimental
conditions.

II.3.5 Artificial spin ice and computer science

Artificial arrays of nano-scale ferromagnetic materials can be produced industrially produced
by nanolitographic techniques. Apart from the fundamental physics interests, they constitute
promising candidates to improve the performances of data storage devices

Chou1996, Zhu2000
[70, 280] and data

processing
Cowburn2000, Imre2003, Bader2006
[74, 122, 12].

A ferromagnetic islands have typically an elongated shape that make them behave as a large
Ising spin. Usual nowadays data storage technology is based on the manipulation of magnetic
domains trying to remove or avoid the effect of the interactions between them, which is not con-
trolled. One magnetic domain (an Ising variable) is used to store a single bit of information. The
control of the interactions in these materials and the associated excitations opens the possibility
of taking advantage of these features to push forward the limits of data storage and conceive elec-
tronic devices with greater processing capacity. Modern nanotechnology allows us to write and
read the state of a nano-array. Therefore, the work on artificial spin ice is also motivated by the
hope of being able to manipulate precisely the spins such that we can use them to perform calcu-
lations. Some work has been done very recently in artificial spin ice in this direction by Branford,
Ladak and collaborators

Ladak2010,Lammert2010,Branford2012
[152, 155, 46] who have found a possible way to precisely manipulate

states in artificial Kagome ice by applying magnetic fields.





CHAPTER

III

Some concepts about phase tran-
sitions

ch:Basics

Matter appears to us in a rich variety of different thermodynamic states called phases. When
dealing with systems with a large number of degrees of freedom (infinite for practical purposes),
a thermodynamic state is the set of points of the phase space which share some extended physical
quantity (e.g. the global magnetisation of an usual ferromagnet). Statistical mechanics makes
the connection between these macroscopic phases and the microscopic constituents of the system.
Different phases arise from some particular collective arrangement of the elementary building
blocks of the macroscopic system. A system in contact with an environment can display different
phases depending on the thermodynamic conditions of the latter (also called external parameters
such as the temperature, the pressure, an external field, etc.). A familiar example is given by the
different phases of water.

The phenomenon of transformation that takes brutally a system from one phase to another
is called a phase transition, such as melting and condensation in water. In order to get a deeper
understanding of the system under study, one should characterise quantitatively its different phases
as a function of the external parameters, i.e. establish the phase diagram, and identify the location
and the properties of the different phase transitions taking place. For a more detailed discussion
on the subject I refer to reader to the classical textbooks

AmitBook, GoldenfeldBook
[78, 106].

Ideally, one would like to start from the fundamental interactions between the elementary
building blocks of the system and ’zoom out’ to deduce the collective behaviour of the system (e.g.
given the atomic interactions between water molecules in the continuum, deduce the quantitative
behaviour of water). This is however an impossible task and a different theoretical route has to
be taken. The first step is to construct a model system which reproduces the behaviour of a ’real’
physical one. Since the introduction of the Ising model

Schultz1964
[234], the study of simple lattice models

which keep what is thought to be the ’main ingredients’ of a physical problem has proven to be a
very fruitful approach.

We shall use the Ising model, the simpler system with a phase transition, to illustrate the
general concepts presented here. The model is defined by a set of N spin variables σi = ±1
(’up’ or ’down’) sitting on the sites i of a d-dimensional lattice G and interacting via the following
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Hamiltonian:

H({σ}) = −J
∑
〈i,j〉

σiσj − h
N∑
i=1

σi (III.1)

where the first sum runs over all the edges 〈i, j〉 of the lattice G, J > 0 favours the alignment
between the spins and h is an external field.

A phase transition is characterised by a singular behaviour of the free energy at the thermody-
namic limit. They are usually classified by the nature of the singularities of the free energy. Phase
transitions pertaining to different categories can exhibit very different collective behaviour and
their study demands the introduction of specific methods. In the coming sections a brief descrip-
tion of the different kind of transitions we encounter in the study of spin ice is presented, together
with the methods we used for their investigation.

III.1 Continuous phase transitions

III.1.1 Second order phase transitions

Phase transitions can change the symmetry of the thermodynamic state. Consider the mag-
netisation m(T ) as a function of temperature in the Ising model. At fixed T , lower h until zero.
If the system remains magnetised it is said to have a spontaneous magnetisation. At low tempera-
ture, the model exhibits a non-zero spontaneous magnetisation. The interaction energy aligns the
spins and the system develops large domains of parallel spins. Since the system is invariant under
global spin reversal, one has to apply an external field h in order to select a given magnetisation
in one among the two degenerate orientations. This is called a ferromagnetic (FM) phase. Above
a critical temperature Tc, the entropic tendency to randomly distribute the spins dominates over
the tendency to align them, such that the system is not magnetised when the field is switched to
zero. This is called a paramagnetic (PM) phase. At Tc the system experiences a phase transition
between an equilibrium state which does not respect the Z2 symmetry of the Hamiltonian (FM
phase) and a PM phase which does. Below Tc the symmetry is said to be spontaneously broken
andm is used as an order parameter which labels the phases by their symmetry or degree of order.

For h = 0, the spontaneous magnetisation is a continuous function of T . The transition is
therefore said to be continuous or second order 1. But one should ask the following question:
where does the singular behaviour of the free energy comes from? Let us consider the spin-spin
connected correlation function

G(rij) = 〈σiσj〉 − 〈σi〉〈σj〉 (III.2)

where rij denotes the lattice distance between sites i and j. At high temperature, thermal fluctua-
tions ensures the de-correlation of distant spins. One finds that G decreases exponentially at large
distances:

lim
r→∞

G(r) ∼ exp(−r/ξ(T )). (III.3) eq:CorrExpDecay

Here we introduced a characteristic correlation length ξ(T ) which quantifies the typical size of
clusters made by strongly correlated spins. For temperatures T < Tc, the connected correlation
function also falls off exponentially. A phase with a finite correlation length is called disordered if

1. The name ’second-order’ comes from the old-fashioned Ehrenfest’s classification of phase transitions
Jeager1998
[125]: the

second derivative of the free-energy displays a singular point at Tc. The concept of continuity of the transition is more
general since it also refers to higher-order transitions in Ehrenfest’s scheme and, in particular, to the Kosterlitz-Thouless
phase transitions. The scaling theory developed three decades later suggests to adopt a more modern terminology and
divide phase transitions into two categories: ’continuous’ and ’first-order’.foot:Ehrenfest
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the magnetisation is zero and long range ordered if the magnetisation is non-zero (corresponding
here to the high and low temperature regime respectively). The most interesting situation occurs
at Tc where the correlations decay algebraically:

lim
r→∞

G(r) ∼ 1
rd−2+η (III.4) eq:CorrAlgDecay

where η is a critical exponent. The correlation function varies with temperature, and in order
to connect this form with the one found away from Tc in eq. (

eq:CorrExpDecayeq:CorrExpDecay
III.3) one must set ξ(Tc) ≡ ∞.

Precisely at the critical point the system has long-range correlations. The FM-PM transition point
in the Ising model is a critical point, defined by a divergent correlation length. A phase with
an infinite correlation length is said to be quasi long-range ordered. A thermodynamic phase
should be characterised by its symmetry, leading to both the value of an order parameter and the
nature of the correlations. By the fluctuation-dissipation theorem the correlation function must be
proportional to the susceptibility:

kBTχ(T ) =
∑
i,j

G(rij), χ(T ) = 1
N

[
∂2F (T, h)

∂h2

]
h=0

. (III.5)

At the critical point the system has long-range correlations then χ diverges, meaning that the
second derivative of the free energy is singular (see footnote

foot:Ehrenfestfoot:Ehrenfest
1).

III.1.2 Universality of equilibrium critical phenomena

At a critical point, clusters made of parallel spins of any size are present and the system looks
statistically identical on all length scales. This means that the critical point is scale invariant. A
scale transformation should then leave the free energy invariant, meaning that its singular part,
denoted fs, defines a generalised homogeneous function. This is usually called the ’scaling hy-
pothesis’ introduced by Widom in 1964

Widom1964
[267]. Using this single statement one can show that the

associated thermodynamic quantities at the vicinity of a critical point are characterised by a set of
critical exponents α, β and γ defined by:

C(t) ∼ t−α (III.6) eq:Calpha

m(t) ∼ tβ (III.7) eq:mbeta

χ(t) ∼ t−γ (III.8) eq:chigamma

where t = (T − Tc)/T goes to zero. The exponent α can be also be defined as
BaxterBook
[24]:

fs(t) ∼ t2−α, as t→ 0. (III.9) eq:alpha

The definition of α in eq. (
eq:Calphaeq:Calpha
III.6) is problematic when the specific heat has a jump or a logarith-

mic discontinuity. Instead, eq. (
eq:alphaeq:alpha
III.9) allows for a non ambiguous determination of α. When the

discontinuity of C manifests through a divergence below and above Tc both definitions are equiv-
alent. In a ferromagnet at the critical point the behaviour of the magnetisation in the presence of a
small external field h defines a critical exponent δ:

m(t = 0, h) ∼ h1/δ . (III.10) eq:ScalingH

The correlation function G is a generalised homogeneous function at the vicinity of a scale
invariant point as well. The divergence of the spatial correlations can then be characterised by two
other exponents, η (already introduced in eq. (

eq:CorrAlgDecayeq:CorrAlgDecay
III.4)) and ν defined by:

G(r) ∼ r−(d−2+η) (III.11)

ξ(t) ∼ t−ν (III.12) eq:ScalingXi
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From the homogeneity form of the correlation function G and the free energy fs at the vicinity of
a critical point, one can show the following scaling relations between critical exponents:

α+ 2β + γ = 2 (III.13) eq:ScRel

γ = ν(2− η) (III.14) eq:HyperSc1

dν = 2− α (III.15) eq:HyperSc2

δ = d+ 2− η
d− 2 + η

(III.16) eq:HyperSc3

Therefore, there are only two independent critical exponents, for instance η and ν. Equations
(
eq:HyperSc1eq:HyperSc1
III.14), (

eq:HyperSc2eq:HyperSc2
III.15) and (

eq:HyperSc3eq:HyperSc3
III.16) are usually referred to as hyperscaling relations since they link singu-

larities in the global thermodynamic quantities with singularities related to the spatial correlations.
Note that, however, the scaling hypothesis on the correlation function is only valid if the dimension
the system is smaller than a certain value called the upper critical dimension dc. Above dc spatial
correlations become irrelevant (mean-field like) and the system’s dimension d becomes meaning-
less. The values of all the critical exponents are independent of d for d > dc. The scaling relations
can be precisely proven from the scale invariance by a renormalisation group (RG) approach

Fisher1998
[95].

Critical phenomena display a remarkable fact: a wide class of different physical systems have
the same critical exponents (such as the ’historical’ identification of the liquid-gas critical point and
the ferromagnetic transition

LeeYang1952_2
[158]). A set of critical exponents is also called a universality class

verifying the universal scaling relations eq (
eq:ScReleq:ScRel
III.13), (

eq:HyperSc1eq:HyperSc1
III.14) and (

eq:HyperSc2eq:HyperSc2
III.15). The critical behaviour

of macroscopic systems seems then to be independent on the microscopic details of system. This
phenomenon is extremely appealing from the theoretical point of view: one can describe a physical
problem by a simple mathematical model belonging to the same universality class and forget about
the microscopic complexity of the ’real world’. One should ask the following question: What are
the main ingredients that make different systems belong to the same universality class? The answer
is given by the renormalisation group theory. Suppose we have two different systems described
in the continuum by two different statistical field theories. If the action of these two theories is
the same up to some irrelevant terms, it will be described by the same fixed points and then the
same critical behaviour. The universality hypothesis asserts that different systems with the same
symmetry, dimensionality and range of the interactions should belong to the same universality
class.

However, as we will see in chapter
ch:VertexModelsch:VertexModels
IV and

ch:Equilibriumch:Equilibrium
V, vertex models appear as counterexamples of

this claim. The exact solution of the eight-vertex model
Baxter1971
[21] showed that the value of the criti-

cal exponents depend continuously on the microscopic interaction parameters. This observation
shows that a deeper understanding of the theories used until then to describe critical phenomena
was needed. In particular, a rigorous renormalisation group construction has been applied to the
eight-vertex model reformulated as a fermionic field theory

Schultz1964, Mastropietro2003
[234, 170]. The formulation of vertex

models as a field theory is already quite subtle. Then, in such cases, the fermionic interactions can
be marginal in the RG sense and the RG transformation has a line of fixed points with different
critical exponents associated to each of them. Non-universal exponents are thought to come from
the emergence of ’hidden’ symmetries and marginal terms which are not apparent in the original
formulation of the model in terms of Ising spins or vertex variables

Benfatto2001, Mastropietro2004
[26, 171]. Kadanoff and Weg-

ner
Kadanoff1971
[132] pointed out that the eight-vertex model presents more symmetries that the just the Z2

symmetry of the Ising model. Then they argued that the presence of four-spin interactions around
a plaquette can explain the continuous variation of critical exponents verifying scaling. A few
years after Kadanoff and Wagner’s work van Leeuwen

Leeuwen1975
[259] proposed a real-space RG procedure

in order to show the emergence of a marginal scaling field indicating the existence of a line of
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fixed points along which the exponents vary. However, the exact value of the exponents found by
Baxter were not reproduced.

III.1.3 Landau’s classification

The main idea behind Landau theory is that an effective thermodynamic potential F can be
constructed in order to describe phase transitions, on the unique basis of symmetry considerations.
This potential is expressed as an analytic function of the order parameter m which must respect
the symmetry of the problem. Equilibrium thermodynamic states are then given by the minimi-
sation of F . The theory is constructed under some important assumptions: thermal and spatial
fluctuations of the order parameter are negligible and the parameters in F are analytic functions
of the microscopic parameters of the system (e.g. J , T and h for the Ising model). For a system
with the Z2 symmetry of the Ising model, the Landau potential has the general form:

F(m, g) =
∑
n≥0

1
n
cn(g)m2n = ct + 1

2a(g)m2 + 1
4b(g)m4 +O(m6) . (III.17) eq:LandauF

where g denotes a set of external parameters (e.g. g = (t, J, h)). This model considers a global
non-fluctuating order parameter and then it is of the mean-field kind. With this model Landau
suggested that the phenomenon of spontaneous symmetry breaking is the crucial ingredient for the
understanding of phase transition. However, the theory neglects another central point of critical
phenomena: fluctuations. Therefore it does not give a correct description of critical phenomena at
low dimensions. For dimensions above the upper critical dimension dc fluctuations can indeed be
neglected.

The extension of Landau’s symmetry arguments to include fluctuations in a systematic way is
known as the Ginzburg-Landau-Wilson theory. It is a field theory where the spatial fluctuations
of a local order parameter are included in the action and departures from the mean field behaviour
can be evaluated 2. Together with the RG and other field theoretical techniques, it constitutes the
‘canonical’ approach to study critical phenomena.

The function in eq. (
eq:LandauFeq:LandauF
III.17) can describe a variety of different situations depending on the

nature of the order parameter (scalar, tensor, etc.) and the expression of the functions a, b, etc.
Although a more careful treatment has to be done to study the critical properties of a system,
Landau theory allows for a simple phenomenological description of multi-critical points and first-
order phase transitions. We introduced it here for this reason.

III.1.4 Kosterlitz-Thouless phase transition
sec:Ch3KT

So far, we were only concerned with phase transitions with a discrete symmetry breaking. The
Mermin-Wagner theorem

Mermin1966
[179] states that in a system with continuous symmetry in a space of

dimension d ≤ 2, fluctuations are strong enough to avoid the establishment of a long-range order
at any temperature. However, the theorem does not prevent the emergence of phase transitions.
Indeed, this interesting situation occurs in the case of a planar model (e.g. O(2) or XY model) in
d = 2. This system experiences a phase transition due to the unbinding of topological defects: the
so-called Kosterlitz-Thouless phase transition (KT)

Berezinskii1971, Kosterlitz1973, Kosterlitz1974
[28, 149, 147]. Although the ’order parameter’

m is identically zero at all temperatures, the behaviour of the spatial correlation function changes
abruptly from an exponential decay at high temperature (disordered phase) to an algebraic decay
at low temperature (quasi-long range ordered phase).

2. For the Ising model one replaces m by a local field m(x) in eq. (
eq:LandauFeq:LandauF
III.17) and includes terms in even powers of

∇m(x).
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The prototypical example displaying a KT transition is the classical XY model described by
the following Hamiltonian

H{θ} = −J
∑
〈i,j〉

SiSj = −J
∑
〈i,j〉

cos(θi − θj) (III.18)

where the sum runs over all the links of a square lattice and θi is an angle defined by: Si =
(cos θi, sin θi). At very low temperature, one can approximate this Hamiltonian by a quadratic
form: H ≈ −J/2

∑
〈i,j〉(θi − θj)2. This leads to a Gaussian field theory in the continuum . The

thermodynamics of the Gaussian model are obtained from the action:

Ssw[θ] = 1
2K

∫
d~r [~∇θ(~r)]2 (III.19) eq:GaussianField

where K = βJ is sometimes called the stiffness of the field. In the context of magnetic systems,
this theory is usually referred to as spin-wave approximation. The equilibrium configurations are
given by the extrema of the action, i.e. solutions of the Poisson equation ∇2θ = 0. The function
θ is 2π-periodic such that the solutions of the Poisson equation can be written as∮

Γ
~∇θ(~r).d~l = 2πq, q ∈ Z (III.20) eq:Vortex

where the integration is done along a closed path Γ. Configurations with q 6= 0 are called vortices.
Along any close loop surrounding a vortex, θ goes from some value θ(~r) to a different value
θ(~r) + 2πq, meaning that the function θ is multivalued. In order to define θ in the presence of
vortices, one should fix a branch cut starting at a singularity and going to infinity, or ending at
a different vortex. Vortices are an example of topological defects indexed by an integer number
called vorticity or winding number or topological charge. A topological defect is a singularity
of the field, θ here, characterised by, as the name suggests, the topology of the order parameter
manifold. Topological defects cannot be destroyed by continuous deformations of the system:
they are said to be topologically stable. Homotopy theory is the natural language to describe
these objects. One can classify the possible stable topological defects of a system by looking at
the homotopy groups of the order parameter manifold. Vortices in the XY model are the easiest
non-trivial example: the order parameter manifold is the 1d sphere S1 and its unique non-trivial
homotopy group is the set of integers Z (the winding numbers). For a detailed and pedagogical
introduction on the subject see

Mermin1979
[178].

The Gaussian approximation allows for the calculation of the correlation functions. One finds
the following asymptotic behaviour:

G(r) = 〈S(r)S(0)〉 = exp[−(g(0)− g(r))] ∼
(1
r

) 1
2πK

for |~r| = r →∞ (III.21)

where g is the Green function of the Gaussian field theory

g(r) = 〈θ(r)θ(0)〉 ∼
r�a

1
2πK ln

(
r

a

)
. (III.22) eq:GreenGauss

The correlation function decays as a power law with a critical exponent η = 1/(2πK). It depends
explicitly on the external parameters and is hence non-universal. The low temperature phase is
then critical, which is the extreme situation allowed by the Mermin-Wagner theorem.

This simple low temperature approximation suggests that the model has two different phases:
a quasi-long range ordered phase and a disordered one. A simple heuristic argument was provided
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by Kosterlitz and Thouless
Kosterlitz1972a
[148] to justify the existence of a rather special phase transition be-

tween these two phases. Then, using the Gaussian theory, one can determine the energy carried by
a vortex: E1v = πKq2 ln(R/a), where R is the linear dimension of the 2d lattice and a the lattice
spacing. One can estimate the importance of these excitations as a function of the temperature by
considering the free energy associated to a single vortex. A free vortex can be in (R/a)2 different
states (i.e. the number of sites in the lattice). Then, the free energy of a single vortex is:

F1v = (πJ − 2kBT ) ln
(
R

a

)
. (III.23) eq:KT1vortex

The competition between the tendency to order and the entropy indicates a critical value Tc =
πJ/2kB . At low temperature the creation of vertices is suppressed. At high temperature F1v < 0
and vortices are created spontaneously. Once vertices are created the above arguments based on
small perturbations over a uniform field configuration are not justified.

In the Gaussian theory, one can compute the interaction energy between two vortices of vor-
ticity q1 and q2 located at ~r1 and ~r2:

E2v = E
(1)
1v + E

(2)
1v − 2πJq1q2 ln

( |~r1 − ~r2|
a

)
. (III.24)

A pair of isolated vortices interact via an effective 2d Coulomb potential arising as a many body
effect. At low enough density of vortices one can describe the system by the effective action:

S[θ, ρ] = Ssw[θ] + Sv[ρ] (III.25)

Sv[ρ] = −πK
∫ ∫

d~rd~r′ρ(~r) ln
( |~r − ~r′|

a

)
ρ(~r′) + βEc

∫
d~rρ2(~r) (III.26) eq:vortexInteraction

where ρ is the vorticity density and Ec is the energy needed to create a vortex. This theory is a
2d Coulomb gas of positive and negative charges with a spin-wave term. The emergence of such
long-range interaction between defects is a subtle effect and one should study more carefully with
an RG approach. This was done by Kosterlitz

Kosterlitz1974
[147], who used the Coulomb gas representation of

the model. He showed that a screening length is generated along the RG flow and vortices cannot
be considered as independent excitations. In the high temperature phase vortices are free to move:
it corresponds to a conducting phase. Below Tc vortices of opposite charge are bound together: it
corresponds to a dielectric phase.

Using RG arguments Kosterlitz found the following critical singularities associated with the
KT transition:

G(r) ∼ r−η, η = 1/4 (III.27)

ξ(t) ∼ exp(a/
√
t), t > 0 (III.28)

fs(t) ∼ ξ−2, t > 0 (III.29)

χ(t) ∼ ξ2−η, t > 0 (III.30)

Below the critical temperature the correlation length and hence the susceptibility are infinite. The
correlation length has an essential singularity at t = 0, meaning that, in the Ehrenfest classi-
fication, it corresponds to an infinite order phase transition. In this case, a new set of critical
exponents α̂, β̂ and γ̂ should be introduced

Kosterlitz1974
[147]. These are defined in terms of the divergence of

the correlation length at the KT transition point:

C ∼ ξα̂ , m ∼ ξ−β̂ , χ ∼ ξγ̂ . (III.31)
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They are related to the usual critical exponents previously defined by:

φ̂ = 2− α
ν

, α̂ = α

ν
, γ̂ = γ

ν
= 2− η, β̂ = β

ν
. (III.32)

The scaling relations are obeyed by these exponents. Their numerical values are:

φ̂ = 2 , γ̂ = 7/4 , β̂ = 1/8 , η = 1/4 , (III.33)

which defines the KT universality class.

III.1.5 Topological defects
sec:Ch3TopoDefects

Topological defects are the key ingredient of the KT transition. They also play a central role
in the theory of melting in solids. The field θ in the XY model can represent a large variety
of different physical systems. For example, θ might represent the phase of the macroscopic wave
function in liquid helium. The KT ordering is in this context a transition into superfluid phase. The
XY model in its Coulomb gas representation is dual to the Gaussian approximation of the absolute
solid-on-solid model (ASOS). The angular variable θ can then be mapped onto a height function
h describing a solid-fluid interface or the shape of a growing crystal. The duality transformation
maps the low temperature behaviour of the XY model into the hight temperature behaviour of the
surface model (and viceversa). The transition point can then be located by identifying the fixed
point of such transformation and the critical singularities of both models are the same. In this
context, the KT transition corresponds to a roughening transition. As we will show in chapter

ch:VertexModelsch:VertexModels
IV,

this duality property and the roughening transition are closely related to the critical properties of
spin-ice. The six-vertex model in its antiferromagnetic regime (i.e. the F model) can be one-to-one
mapped anto a SOS model. We should postpone this discussion to the section devoted to hardly
constrained models.

Halperin, Nelson and Young
Nelson1979, Young1979
[202, 276] proposed a generalisation of the Kosterlitz-Thouless

theory in order to describe melting in 2d solids. In this so-called dislocation mediated melting
in 2d, usually referred to as Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) transition, the
displacement field u plays the role of θ. The Burgers vector b is the topological charge character-
ising a dislocation, a vectorial analog to the winding number of a vortex in the XY model. In the
theory of dislocations

NabarroBook,KleinertBook,LandauElasticity
[198, 142, 156] the Burgers vector is defined by:∮

Γ
~∇u(~r).d~l = b = (kx, ky)a, kx, ky ∈ Z . (III.34) eq:burgers

The vector b is a measure of the strength of the dislocation. Just as θ around a vertex, it is
a natural consequence of eq. (

eq:burgerseq:burgers
III.34) that the displacement field is a multivalued function. In

order to give a meaning to this function one should arbitrarily fix a branch cut going from the
singularity to infinity (or to an other singularity) and defining the dislocation line. The problem of
definiteness of a field and the need for a branch cut is a general fact associated with the presence
of a topological defect. In electrodynamics, the presence of a Dirac monopole of charge q makes
the vector potential singular, and the Dirac string is the branch cut associated to it

Dirac1931
[84]. The

circulation of the vector potential around a monopole is given by its charge:∮
Γ

A(~r).d~l = 4πq . (III.35)

Therefore, a Dirac string can be thought of as a ‘dislocation’ of the electromagnetic field.
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Using similar arguments that the ones used by Kosterlitz and Thouless, one can show that the
interaction between dislocations leads to the following contribution to the effective action

Nelson1979
[202]:

Sd[d] = − 1
8πK

∫
d~r

∫
d~r′
[
d(~r) · d(~r′) ln

( |~r − ~r′|
a

)
− [d(~r) · (~r − ~r′)] [d(~r′) · (~r − ~r′)]

|~r − ~r′|2
]

+ βEc

∫
d~r d2(~r) (III.36)

where d is the density of dislocations. This should be compared with eq. (
eq:vortexInteractioneq:vortexInteraction
V.119). A review on

KTHNY theory can be found in Nelson’s book
NelsonBook
[203]. Note that a 2d dipolar interaction emerges

as a many-body effect. A detailed discussion on the KT transition in the XY model, in 2d solids
and liquid helium can be found in Chaikin and Lubensky’s book

ChaikinLubenskyBook
[63] and Kleinert’s book

KleinertBook
[142].

III.2 Discontinuous phase transitions

III.2.1 First order phase transitions

In this section we describe briefly, on the basis on Landau mean field theory, the main features
of the ‘usual’ first order phase transitions which differ from the ones of the ‘unusual’ discontinuous
FM transition of the six-vertex model. A much detailed and precise presentation of first-order
phase transitions beyond mean field arguments can be found in the review by Binder

Binder1987
[34].

Landau theory predicts a first-order phase transition if the symmetry of the system imposes the
presence of a cubic term in the expansion eq. (

eq:LandauFeq:LandauF
III.17)(used in the context of liquid crystals

Gennes1993
[79]).

Consider
F(m,T, h) = ct + 1

2a1 (T − Tc) m2 − 1
3a2 m

3 + 1
4b m

4 (III.37) eq:LandauFirstOrder

where a1, a2 and b are all positive constants. As shown in Fig.
fig:FirstOrderfig:FirstOrder
III.1 this function might have two

minima of different nature depending on the range of temperature. The thermodynamic state is
given by the minimisation ofF which leads to a second order equation inm. The solutions depend
on the sign of the parameter ∆ = a2

2 − 4a1(T − Tc)b. This leads to three different regimes:

– High temperature regime:

For T ≥ T+ > Tc the function F has a single global minimum at m0 = 0.

– Metastable regime:

(i) For T+ > T ≥ Tc the function F has a global minimum at m0 = 0 and a local minimum
at m0 = m+ 6= 0. The limit temperature T+ separating a pure phase and a mixed phase is
thus the limit of metastability of the disordered state. It is identified by an inflexion point:
(∂2F/∂m2)T+ = 0. Local minima of the Landau potential are interpreted as metastable
states. Such that, in this regime, ordered and disordered regions coexist.

(ii) For Tc > T > T− the function F has a global minimum at m+ and a local minimum
at m0 = 0. Both phases coexist until the temperature T− is reached when cooling. The
minimum associated to the ordered phase is deeper than the one associated with the disor-
dered one. When cooling, regions of non-negative order parameter grow until the limit of
metastability T− is reached.

– Low temperature regime:

For T < T− the function F has a single global minima at m0 = m+ and the ordered phase
is stable.
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Figure III.1: (a) Landau potential with a cubic term in m for different temperatures. The limits of
metastability are indicated. For clarity we only show here the positivem-axis. (b) Order parameter
as a function of temperature. Depending on the cooling (blue) or heating (red) procedure, the
system can avoid the transition at Tc and set in a supercooled of superheated phase between the
metastability limits. Metastable states coexisting with the equilibrium stable phase are present
between the blue and the red lines.fig:FirstOrder

At Tc the two minima m0 = 0 and m0 = m+ are equally deep. The concavity of F changes
abruptly at that point, leading to a discontinuous phase transition: the spontaneous magnetisation
given by the deeper minima jumps from a strictly positive value m+ to zero. The emergence of
metastable states is responsible for the hysteresis phenomenon. Starting from a high temperature
state one can ’supercool’ the system and obtain a metastable disordered state below the critical
temperature. This needs cooling procedures faster than the microscopic kinetics of the system
(see Fig.

fig:FirstOrderfig:FirstOrder
III.1). The phenomena of hysteresis and phase coexistence characterising a first-order

phase transition might be familiar from everyday’s observation of boiling water: the formation of
bubbles of vapour coexisting with liquid water above 100◦C.

Some important remarks should be done about the meaning of metastability. Usually, one
refers implicitly to the dynamical properties of the system when discussing metastability and hys-
teresis (which depends on the cooling rate and it is hence a non-equilibrium phenomenon). The
minima ofF is related to the probability of finding an equilibrium configuration with a given value
ofm. In this mean field picture we neglected fluctuations, which turn out to be crucial for a precise
characterisation of coexistence phases. When one includes fluctuations all possible configurations
can be observed with a given probability. One can think of a metastable state as being a state,
among all the possible ones, where the system spends a long macroscopic time. In an ordered
phase, such as the FM phase of the Ising model, the same argument applies. The system spends a
huge time ∼ expN close to one of its two valleys m = ±m0 and a very little time far from them.
Fluctuations and dynamics should be taken into account in order to get a complete understanding
of first order phase transitions. The existence of long-lived metastable states (such as in super-
cooled liquids

Debenedetti2001
[80]) and the dynamical mechanisms responsible for the equilibration of a system

close to a first order phase transition are interesting but rather complicated issues which are not
completely understood yet. First-order phase transitions constitute a difficult situation to handle
theoretically even though it is a phenomenon we encounter more usually than critical phenomena.

III.2.2 Multi-criticality
sec:Multicriticality

The stability of the equilibrium solutions of the Landau theory eq. (
eq:LandauFeq:LandauF
III.17) is guaranteed by the

positivity of the parameter b. The Ising second-order transition in this theory is due to the change of
sign of a(g) = a1(T −Tc) at Tc. If one includes the next term c(g)m6 in the development of F the
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Figure III.2: Landau potential at a critical point corresponding to p = 2 (in blue) and at a multi-
critical point of order p = 4 and p = 12.fig:MultiCritical

stability condition is c(g) > 0, i.e. the positivity of the factor in front of the term with the largest
power. The transition comes from the change of sign of the terms with lower power. If b(g) > 0
there is a ’lambda line’ of second order phase transitions at (gt) = 0 (the name lambda line comes
from the phase diagram of liquid helium where this kind of behaviour was first observed

Graf1967
[107]).

If b(g) < 0 the system experiences a first order phase transition a(gc) = 0. At b(gt) = a(gt) = 0
the system is said to be on a tricritical point. The system responds in a qualitatively different
manner to changes along different directions in the parameter space. Depending on the relative
sign of a(g) and b(g) the system undergoes a first order or second order phase transition. At a
multi-critical point, the system has more than one relevant external parameters.

In general, one can consider a Landau potential including all the even powers of the order
parameter:

F(m, g) =
∑
n>0

1
2nc2n(g)m2n . (III.38) eq:LandauMulti

A multi-critical point of order p is defined by: (i) the stability condition: c2p(g) > 0, ∀g (higher
order terms are neglected), (ii) the ’meeting’ point of all the critical surfaces: c2n(gt) = 0, ∀n < p.
Note that g must be, at least, a (p − 1)-dimensional vector. As shown in Fig.

fig:MultiCriticalfig:MultiCritical
III.2 the mean-field

probability of an equilibrium state becomes flatter as p increases.

III.2.3 The ‘Frozen-to-Critical’ KDP transition
sec:KDP

So far, we distinguished transitions for which: (i) the order parameter is continuous, there is a
diverging correlation length at the critical point and a set of exponents characterising the singular-
ity; (ii) the order parameter is discontinuous, there is no divergent length scale in the system at the
transition point and no critical exponents associated to it. This classification into first and second
order is mainly based on general arguments coming from Landau’s ideas and the more precise
Ginzburg-Landau-Wilson formulation. The conjectures made by field theory approaches should
be confronted with the few exact results available in statistical mechanics

BaxterBook
[24]. The exact solu-

tion of the dimer model by Kasteleyn
Kasteleyn1961,Kasteleyn1963
[136, 137] 3 and the solution of the KDP model by Lieb in

1967
Lieb1967b
[162] show that this classification is not exhaustive. As we will show in a second, these sim-

ple lattice models cannot be described by the Ginzburg-Landau-Wilson framework. Constrained
models, and in particular vertex models, exhibit phase transitions that do nit fit into the standard

3. Although the solution of the dimer model is commonly attributed to Kasteleyn, the problem was solved almost
simultaneously in 1961 by two other ’big names’ of statistical physics, namely Fisher

Fisher1961
[96] and Temperley

Temperley1961
[255].
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classification.

The dimer model is meant to describe the absorption of a diatomic gas on a substrate. Each
diatomic molecule is modelled as a rigid dimer (or domino) occupying two neighbouring sites of
a lattice. A recent review on dimer models in 2d can be found in

Wu2006
[268]. Here we focus on perfect

matchings, i.e. configurations where all the sites are occupied by exactly one dimer. These models
defined on general bipartite graphs are largely studied in mathematics as well, where there are
known as domino tilings. But let us focus here on the interesting collective phenomena arising
in these systems and leave the discussion of more formal aspects to the next chapter. Consider
dimers on an hexagonal lattice and give a Boltzmann weight to the three possible configurations
of a dimer (the three orientations of the hexagonal lattice) denoted z1 = e−βε1 , z2 = e−βε2 and
z3 = e−βε3 . The partition function of the model is

Z(z1, z2, z3) =
∑

N1,N2,N3

g(N1, N2, N3)zN1
1 zN2

2 zN3
3 (III.39)

where g(N1, N2, N3) is a combinatorial factor which counts the number of dimer coverings using
N1, N2 and N3 dimers along the three directions of the hexagon. This model experiences a phase
transition when one of the weights is equal to the sum of the other two, for example z1 = z2 + z3.
In the ordered phase z1 > z2 + z3 and Z(z1, z2, z3) = √z1. Meaning that the only allowed
configuration is the one where all the dimers are z1 (see Fig.

fig:DimerHexagonalfig:DimerHexagonal
III.3). The system shows a perfect

order in this phase. The only excitations that could introduce some orientational disorder in the
system involve an extensive number of dimers and are hence suppressed in the thermodynamic
limit. This ordered phase is said to be frozen.

(a) (b)

Figure III.3: The dimer model on the hexagonal lattice. (a) A particular isotropic dimer cover-
ing. (b) Ground state of the system when dimers in the vertical direction are favoured. Below Tc,
the system is frozen in this configuration.fig:DimerHexagonal

A phenomenological picture of this transition mechanism arises as follows. Consider the
ground state shown in Fig. [

fig:DimerHexagonalfig:DimerHexagonal
III.3 (b)] and, for simplicity, let us fix ε1 = 0 and ε2 = ε3 = ε > 0.

In order to excite the system one would try to shift a vertical dimer into one among the two non-
vertical positions. By doing so, one creates a pair of topological defects called monomers at an
energy cost ε. Monomers are strictly forbidden in this model and one must then shift dimers in
order to eliminate them. As shown in Fig.

fig:MonomersHexagonalfig:MonomersHexagonal
III.4, one must shift an extensive number of vertical

dimers forming a string in order to avoid the presence of monomers. This can be done at an energy
cost of Lε. Since there are two possible choices for the shift of a dimer during the construction of
the string , the free energy of one ’string excitation’ is

F1s = L(ε− kBT ln 2). (III.40)
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Then, a simple argument à la Kosterlitz-Thouless (see eq. (
eq:KT1vortexeq:KT1vortex
III.23)) locates the transition tem-

perature at kBTc = ε/ ln 2. It turns out that this simple estimation gives the exact transition
temperature: z1 = z2 + z3. At T > Tc string excitations populate the system. At T < Tc the
system freezes since thermal fluctuations are not strong enough to create a string.

(a) (b)

(c) (d)

Figure III.4: Excitations in the hexagonal dimer model. (a) Ground state configuration. (b)
Configuration after switching the blue dimer in (a) into the dimer shown in red. So doing, one
creates a pair of monomers of opposite topological charge shown by white and black circles. (c)
Configuration after switching the blue dimer in (b) into the dimer shown in red. The switching of
the dimer induces the motion of the black monomer. (d) Configuration obtained by repetition of
the same procedure. The pair of monomers finally disappear if one switches all the dimers along
the string shown in red which ends at the boundaries of the lattice.fig:MonomersHexagonal

Note that this is not a usual phase transition as the continuous and first-order transitions de-
scribed before. It takes the system from a critical phase with long range correlations into a frozen
state. It is also very asymmetric since the free energy is constant in the ordered phase and a contin-
uous function of the parameters in the quasi-ordered phase characterised by a diverging correlation
length. These observations suggested Nagle to call it ‘3/2-order transition’

Nagle1973a
[200]. From the low

temperature side the thermodynamics are consistent with a first-order transition but, in the high-
temperature side, there are large fluctuations at the vicinity of the transition proper of a continuous
phase transition with the associated critical exponent: α = 1/2. Hence the name 3/2-order tran-
sition, as an ‘average’ between the first-order and second order like behaviour from one side to
the oder of the transition. In 1973, Nagle identified the extended excitations of the dimer model
with hydrocarbon chains present in biomembranes

Nagle1973a,Nagle1973b
[200, 199]. The model predicts the qualitative

behaviour of the phase transition occurring in lipid bilayers between a frozen trans-phase and a
disordered gauche-phase. It has been shown that this unusual kind of transition can also occur in
dimer models in 3d lattices

Bhattacharjee1983
[32]. Using transfer matrix techniques, a logarithmic divergence of the
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heat capacity (α = 0) has been found when approaching the transition point from above.

The KDP model
Slater1941
[242] is defined as the special case of the sixteen-vertex model introduced in

the Introduction
ch:Introductionch:Introduction
I for which e = d = 0 and a ≥ b = c. This model exhibits a very asymmetric

transition of the same kind. It is defined on a square lattice, in which the energy of a pair of
ferromagnetic (or ferroelectric) vertices is set to zero and all other ones are equal and positive,
i.e. a = 1 > b = c = e−βε as shown in Fig.

fig:KDPfig:KDP
III.5. The exact solution of the model

Lieb1967c,BaxterBook
[163, 24]

shows that a transition takes place at a = b + c, i.e. kBTc = ε/ ln 2. Below Tc the system is
frozen in an ordered phase where all the vertices are of type a. The free energy is constant in this
regime. Above Tc the free energy becomes a continuous function of the parameters and thermal
fluctuations in the form of small loops of spins pointing along the loop are present. At Tc the free
energy is singular with a critical exponent α = 1. The first derivative of the free energy shows a
step discontinuity at the transition. In the canonical classification this would correspond to a first-
order phase transition. However, contrary to what happens in usual first-order transitions, critical
exponents can be defined. Note that the transition temperature kBTc = ε/ ln 2 can be obtained
from the same arguments used for the dimer model. Indeed, this ‘frozen-to-critical’ transition is
of the same kind as the one discussed a few lines above: it is due to the presence of extended
excitations in the form of strings of collinear arrows spanning the whole lattice (see Fig.

fig:KDPfig:KDP
III.5).

1

(a)

1

(b)

� �� �
a=ω1=ω2

� �� �
b=ω3=ω4

� �� �
c=ω5=ω6

1

(c)

Figure III.5: Excitations in the KDP model. (a) A particular hight temperature configuration. A
typical loop fluctuation is shown in red. (b) Low temperature configuration. The system is frozen
into its ground state below Tc. A typical fluctuation in the form of an extended string is shown in
red. (c) Six vertex configurations and their associated statistical weights a and b = e−βε where
ε > 0. The first two vertices are favoured.fig:KDP

In order to further understand the equivalence between these two transitions and fix our ter-
minology we should make a few remarks. An order parameter can be defined in the KDP model:
the magnetisation M . It is defined as the average orientation of the arrows along the two di-
rections of the square lattice. In the absence of an external field this order parameter exhibits a
jump-discontinuity at Tc = ε/kB ln 2: M = 0 at T < Tc and M = ±1 at T < Tc. Because of
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its peculiarities, we will call it KDP transition. However, when an external field is included, the
magnetisation becomes continuous

BaxterBook,Watson1998
[24, 265]. Wu showed that the six-vertex model in an infinite

external field can be mapped onto the dimer problem on an hexagonal lattice studied by Kaste-
leyn

Wu1968
[269]. Several authors, in particular in the field of frustrated magnetism, call this transition

occurring in the six-vertex model in presence of a field Kastelyn transition, in honour of the work
of Kasteleyn on the hexagonal dimer problem.

Neutron scattering experiments have found evidence for a Kasteleyn transition in this sys-
tem

Fennell2007
[92]. This should not come as a surprise us since the Kagome Ice problem is equivalent to

the dimer model in the hexagonal lattice. Kagome Ice is obtained in the laboratory by applying a
[111] field to pyroclhore spin-ice materials. The Kasteleyn transition is induced by a field along
to the Kagome planes.

Theoretical studies in the NN spin-ice model on the 3d pyrochlore lattice in a [100] field
predict a Kasteleyn transition

Jaubert2008
[129]. This is again expected since the NN spin-ice model is a

six-vertex model on the diamond lattice. Experimental studies on spin-ice materials in a [100]
field have been reported in

Fukazawa2002,Fennell2005
[100, 94]. Below the freezing temperature, experimental samples are

though to be out of equilibrium
Fukazawa2002
[100], avoiding a conclusive observation of the transition predicted

theoretically
Jaubert2008
[129].

A KDP transition is also expected to occur in spin ice model when an anisotropy favouring a
pair of ferromagnetic vertices is introduced. This can be done in the laboratory by applying uni-
axial pressure in a particular crystallographic direction

Mito2007
[186]. In that way, bond distortion is intro-

duced in the system which splits the degeneracy of the ice-ruled manifold. Jaubert et al. studied the
effect of bond distortion on the NN spin-ice model on the pyroclhore lattice

Jaubert2010
[130]. Using a mean

field approach supported by Monte Carlo simulations and transfer matrix techniques, they argued
that the special features of the KDP transition are due to the flatness of the probability distribution
of the magnetisation at the transition. Hence, they claimed that the KDP transition corresponds to
a multi-critical point of infinite order. Such a multi-critical point was previously studied by means
of the Landau’s mean field theory presented in section

sec:Multicriticalitysec:Multicriticality
III.2.2

Benguigui1977
[27]. This theory predicts a jump

discontinuity of the order parameter at the multi-critical point. As shown in Fig.
fig:MultiCriticalfig:MultiCritical
III.2, the potential

F(m), giving the probability of a configuration with magnetisation m, becomes flatter and flatter
as p increases. The flatness of the Landau’s potential makes the KDP transition radically different
from the mean field picture of a first order phase transition with metastable states and hysteresis.
Using the mean field potential in eq. (

eq:LandauMultieq:LandauMulti
III.38), one finds the following associated critical exponents

when approaching the critical temperature from above: β = 0, α = 1/2, γ = 1 and ν = 1/2.

The main property which explains the emergence of such unconventional collective behaviour
in these systems is the presence of a hard constraint: the ice-rule for the KDP and spin-ice model,
the ‘tessellation’ condition for dimers (i.e. there is no overlaps and no gaps in the dimer packing).
In order to preserve the constraint, the only possible fluctuations in these systems are of the form
of closed loops of dimers or spins. If we impose periodic boundary conditions, the hard constraint
splits the phase space of the system into different topological sectors. These are characterised by
the number of winding loops closing at the borders of the lattice thanks to PBC. In the condensed
matter literature, such a frozen phase due to the presence of a hard constraint is usually said to be
topologically ordered. The intriguing effects arising from the imposition of a hard local constraint
will be discussed in much more detail in the coming chapter.
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III.3 Finite-size effects
sec:FiniteSize

The concept of phase transition only makes sense in the thermodynamic limit. This is a the-
oretical idealisation of real physical systems made by a finite number of elements. Although this
number can be inconceivably large, a detailed analysis of the effects arising from the finiteness of
the system should be done, in particular in view of the analysis of the data obtained by numerical
simulations.

III.3.1 Around a second order phase transition

The collective behaviour in finite-size systems is smooth, no divergencies can take place since
the partition function is a sum over a finite number of reals. The theory of critical phenomena is
based on the scale invariance of the critical point. A finite system breaks the scale invariance and
the length scale ξ can, at most, be of the order of the linear size of the system L. The divergencies
associated with an infinite correlation length are then ’smoothed’ by the bound imposed by L.
Nevertheless, it is possible to define a transition temperature Tc(L) for a finite system as the
"rounded peak" corresponding to the divergence of some quantity in the thermodynamic limit
(e.g. the second order moment of the probability distribution of the order parameter). Relevant
finite size effects are expected to appear when ξ ≈ L.

The renormalisation group approach to critical phenomena showed that the singular part of the
free energy density is a generalised homogeneous function for p scaling variables x1...xp, i.e.

fs(x1, ..., xp) = λ−nfs(λa1x1, ..., λ
apxp), ∀λ ∈ R . (III.41)

When L . ξ finite-size effects can be taken into account by including L−1 as an extra scaling
field 4. As a result

fs(x1, ..., xp, L
−1) = λ−nfs(λa1x1, ..., λ

apxp, λL
−1), ∀λ ∈ R . (III.42)

Using this finite size scaling hypothesis, one can deduce the scaling form of the other thermody-
namic quantities for a finite system size

Fisher1972
[97]. For a review see

BarberBook, CardyBook
[14, 54].

Consider a second order phase transition described by an order parameter m. In order to
illustrate these concepts let us consider again the Ising model d-dimensional lattice for which;
m = L−d〈

∑Ld

i=1 si〉, where the brackets denote an ensemble average. When ξ ≈ L the system
looks ordered. This defines a size dependent critical temperature Tc(L), in general smaller than
the infinite size prediction Tc(∞). Using the scaling relation eq. (

eq:ScalingXieq:ScalingXi
III.12) one can write

Tc(L)− Tc(∞) ∝ L−1/ν . (III.43)

The pseudo critical temperature can be located from the maximum (rounded peak) of the heat
capacity Cmax or susceptibility χmax. From the scaling relation eq. (

eq:Calphaeq:Calpha
III.6) and (

eq:chigammaeq:chigamma
III.8) we find

Cmax ∼ (Tc(L)− Tc(∞))−α ∼ Lα/ν , χmax ∼ (Tc(L)− Tc(∞))−γ ∼ Lγ/ν . (III.44)

The critical exponents can be determined using the following scaling relations:

C(t, L−1) ∼ L
α
ν ΦC(tL

1
ν ) (III.45)

χ(t, L−1) ∼ L
γ
ν Φχ(tL

1
ν ) (III.46)

m(t, L−1) ∼ L−
β
ν Φm(tL

1
ν ) (III.47)

4. For an anisotropic system in two dimensions we must consider two correlation lengths ξ⊥ and ξ‖ which might
diverge with different critical exponents.
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where the Φ∗’s are the scaling functions of the quantities indicated on the subscript. A useful
quantity is the Binder cumulant

Binder1981
[33]. It is the reduced forth order cumulant of the order parameter

defined by

Km = 1− 〈m4〉
3〈m2〉2

. (III.48)

The finite size scaling analysis of this quantity gives:

Km(t, L−1) ∼ ΦKm(tL
1
ν ). (III.49) eq:Binder

Therefore, it tends to three different fixed points: at T = 0, T = ∞ and T = Tc. It grows
monotonically from K(T → ∞) = 0 to K(T = 0) = 2/3 and gives a value K∗, independent
of L, at the critical point. This allows for the location of the latter: the point where the Binder
cumulants for different system sizes intersect gives an estimation of the critical point.

The arguments given above are not extremely precise since we are using the scaling forms
obtained in the thermodynamic limit to study finite size effects. More precise arguments based on
RG calculations in finite systems can be found in

CardyBook, BarberBook
[54, 14].

III.3.2 Around a first order phase transition

The scaling arguments presented above are valid close to a critical point, where the correlation
length diverges. This is no longer the case for a first order phase transition and a different finite-
size scaling analysis is needed

Privman1983,BinderLandau1984,Challa1986,Vollmayr1993
[220, 35, 65, 262].

In a second order phase transition, the shift of the transition temperature because of the finite-
ness of the system was characterised by the exponent 1/ν. Such exponent is not defined for a first
order phase transition and the shift of the transition is only due to the volume of the system. For a
first order phase transition one can write

Tc(L)− Tc(∞) ∝ L−d , Cmax ∼ Ld . (III.50)

The reduced fourth order cumulant Km(t, L−1) shows a very different behaviour depending
on the order of the transition

Vollmayr1993
[262]. Indeed, it develops a pronounced minimum at t(L) ≈ cte L−d,

close to the transition temperature and can take negative values. The basic assumption needed to
deduce this results is that for a first-order phase transition one has a coexistence of ordered and
disordered phases. A probability distribution for observing metastable states is constructed and
used to compute thermodynamic quantities. Note that this theory has no reason to work out for a
KDP transition.

III.4 Numerical methods

III.4.1 Monte Carlo dynamics
sec:BasicMonteCarlo

Monte Carlo methods stands for a class of numerical techniques used for solving physical
problems. The goal of a Monte Carlo simulation in statistical mechanics can be: (i) the estimation
of the ensemble average of some thermodynamic observable at equilibrium; (ii) the estimation of
time-dependent quantities and the study of the dynamics of the system under consideration. Both
are related and do not need independent approaches. The microscopic dynamics are encoded in the
updating rules used by Monte Carlo algorithm and equilibrium measurements can be done after
the equilibration of the system. In this thesis Monte Carlo simulations have been used for both
equilibrium and out-of -equilibrium studies of 2d spin-ice. There are many books which cover the
applications of Monte Carlo methods to statistical mechanics and condensed matters problems.
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Here I briefly present the basis of the numerical methods used during the thesis and I refer the
interested reader to

Barkema-Newman_Book, KrauthBook
[16, 150].

A Monte Carlo simulation of a lattice model must generate configurations accordingly to the
Boltzmann distribution. From a state µ(0) of a L× L lattice system the agorithm generates via a
Markov process a new state µ(1). The transition probability of this stochastic process is denoted
W (µ(0) → µ(1)). This procedure must guarantee that any state of the system can be generated
using a finite number of steps. This is called the ergodicity condition. The stochastic process of
generation of new states can be though as the microscopic evolution of the system. The probability
P(µ, t) of finding the system in the state µ(t) at time t is described by a master equation:

∂P(µ, t)
∂t

= −
∑
ν

[P(µ, t)W (µ→ ν)− P(ν, t)W (ν → µ)] . (III.51) Master equation

Suppose that this Markov process is able to reach an equilibrium state µe as t→∞. The dynamics
are encoded in the updating rules used by the algorithm to get a new configuration µ(t+ 1) from
a previous one µ(t). Different dynamics can be implemented in the algorithm depending on the
physical situation one wants to simulate. All of them must ensure that, at equilibrium, states are
generated accordingly to the Boltzmann distribution. A way to ensure that is to impose detailed
balance

W (µ→ ν)e−βE(µ) = W (ν → µ)e−βE(ν) . (III.52) DB

together with the ergodicity condition. Nevertheless, these two requirements do not determine
completely the transition rates. A simple and widely used choice is given by the Metropolis algo-
rithm:

W (µ→ ν) = g(µ→ ν)A(µ→ ν) (III.53)

where we have split the transition probabilities into an edge-selection probability

g(µ→ ν) = 1/L2, ∀ν (III.54)

and a flip-acceptance probability

A(µ→ ν) =
{

exp{−β(E(ν)− E(µ))} ifE(ν)− E(µ) > 0
1 otherwise

. (III.55)

The transition probabilities defining the dynamics of the system can now be written as

W (µ→ ν) = 1
L2 min

(
1, e−β(E(ν)−E(µ))

)
. (III.56) probaDyn

The specification of the transition probabilities together with the updating rules used to generate
new configurations define a Monte Carlo algorithm. During the simulations we update the time
variable by one after we have performed L2 times the two steps of the algorithm: (i) select a spin,
(ii) flip it with the acceptance probability. This is called a Monte Carlo step and it is the unit of
time in the simulations.

III.4.2 The Continuous-Time algorithm
sec:CTMC

For frustrated magnets showing a macroscopic degeneracy of the ground state - such as spin ice
- the usual Metropolis algorithm, from now on called Fixed Step Monte Carlo algorithm (FSMC),
is very inefficient. For systems at low temperature and, in general, displaying slow dynamics
most of the updates proposed by the FSMC algorithm will be rejected. We have implemented an
algorithm which overcomes this difficulty, the Continuous Time Monte Carlo algorithm (CTMC).
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In this section we present this technique for a general problem. The concrete implementation for
the study of 2d spin ice can be found in the Appendix

sec:AnnexoCTMCsec:AnnexoCTMC
??.

The CTMC algorithm is also known with different names: Bortz-Kalos-Lebowitz
Bortz1975
[40], n-fold

way or kinetic Monte Carlo. The basic aim of this algorithm is to get rid of the time wasted due
to a large number of rejections when the physics of the problem imposes a very small acceptance
ratio. It is extremely useful for the study of the long time behaviour of systems with complicated
energy landscapes and a large number of metastable states. The main idea behind this method is
to sample stochastically the time needed to update the system and then do it without rejections.

We can easily predict the time interval needed to update the system. Suppose that the system
is at state µ at time t0. The exact probability of leaving the state µ after ∆t trials is

(W (µ→ µ))∆t (1−W (µ→ µ)) = (W (µ→ µ))∆t − (W (µ→ µ))∆t+1 .

In order to estimate for this quantity we have to generate a random number ξ uniformly distributed
between 0 and 1. The latter corresponds to ∆t trials if 0 < ξ < (Wµµ)∆t − (Wµµ)∆t+1 then
∆t + 1 < ln ξ

lnWµµ
< ∆t. It follows that the number of steps needed to flip an arrow should be

computed by

∆t = Int

 ln ξ
ln
(
1−

∑
µ′ 6=µW (µ→ µ′)

)
+ 1 , (III.57) eq:TimeUpdate

with the transition probabilities given by the Metropolis scheme:

W (µ→ µ′) = 1
L2 min

(
1, e−β(E(µ′)−E(µ)

)
. (III.58) probaDyn

These transition probabilities are the same as for the FSMC algorithm, but we should notice that
in this case the aim is to compute the time we have to wait before we do an update of the system.
Using this time-step update, the output data of a CTMC calculation should be identical to the
output of the usual FSMC. This has been checked in our simulations of 2d spin-ice (see Fig.

fig:CTMSvsFSMCfig:CTMSvsFSMC
III.7).

Equation (
eq:TimeUpdateeq:TimeUpdate
III.57) shows that we need to know the transition probabilities for all possible up-

dates at each step. This is the main difficulty for the implementation of the CTMC algorithm since
this number can grow exponentially with the system’s size. However, for systems with only short
range interactions one can only consider the neighbourhood of a site and the number of possible
changes is fixed to n (hence the name n-fold way). There is then a finite number of such possible
processes (and then a finite number of possible transition probabilities) independent of the system
size.

For an Ising model on a square lattice with single-spin flip updates, all the possible changes one
can generate in one step can be labelled by the change on the number of satisfied bonds (nµ′−nµ)
before and after the spin flip. For this problem the CTMC algorithm is a 5-fold way since the
change on the number of satisfied bonds can take five different values nµ′ − nµ = ±4,±2, 0 (see
Fig.

fig:IsingCTfig:IsingCT
III.6). We then say that a spin has 5 energetic states.

Let us rewrite the transition probabilities W is the following enlightening form:

Pl = 1
L2 min

(
1, e−β εl

)
(III.59)

where εl is the energy difference after flipping an arrow in state l. In this form one observes taht
the transition probabilities are completely determined by the state of a given site. One can compute
∆t by counting the number of arrows occupying each one of the different possible states at each
step:

2N∑
µ′ 6=µ

W (µ→ µ′) =
5∑
l=1

gl Pl (III.60) eq:Q
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where gl is the number of spins in state l. One needs to keep record of the state of every spin on a
list at each step. After each step the list must be updated.

1 1 1 1 1 1

nµ = 0 nµ = 1 nµ = 2 nµ� = 2nµ� = 3nµ� = 4

Figure III.6: Different possible states of a spin down in the 2d Ising model classified by the number
of satisfied bonds nµ. After flipping the central down spin, the number of satisfied bonds becomes
nµ′ . The difference nµ′ − nµ = l = 0,±2,±4 determines the energetic state of the selected spin.
By counting the number of spins gl in the same state l one is able to compute needed to flip a spin.fig:IsingCT
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Figure III.7: Time evolution of the horizontal magnetisation in the sixteen-vertex model with:
L = 50, a = 2.4, b = c = 1 and d = e = 0.1. The simulation starts from an ordered initial
configuration where all the arrows point to the right. This data was obtained after averaging over
100 independent simulations. The results obtained with the FSMC and CTMC algorithm are in
good agreement. The straight line in the CTMC plot is just due to the fact that we used linepoints
and there is no data in between those points far away in time.fig:CTMSvsFSMC

III.4.3 Equilibrium analysis of the simulation data

III.4.3.1 Equilibration

The computation of any thermodynamic average must be done only when the system is at
equilibrium. Starting from an initial configuration one must run the simulation long enough, until
the system has reached thermal equilibrium. This period is the equilibration time teq. It can depend
on the initial configuration and it is difficult to predict in general. In order to check equilibration
we proceed as follows:
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(i) We compute the evolution of some quantity A from different initial conditions. Typically, for
a ferromagnet we compute 〈m(t)〉 from a completely ordered FM and AF initial configurations.
The brackets denote a statistical average performed over different independent realisations of the
dynamics. In practice, one repeats the simulations for a different sequence of pseudo-random
numbers. Usually, equilibrium is identified by a plateau in the evolution of this quantity (usually
the energy). This emergence of a dynamical plateau in the simulated time window can be due to
a metastable state and not the equilibrium one. This is the reason why we also introduce the next
point.

(ii) We compute two-point correlations of the type C(t, tw) = 〈A(t)A(tw)〉 − 〈A(t)〉〈A(tw)〉. At
equilibrium, the system is time-translational invariant such thatC(t, tw) = Ceq(t−tw). Moreover,
C must decay decay to zero for t− tw ≈ teq. For the models studied in this thesis the combination
of these two measurements gives a criterium for the equilibration of our simulated samples.

III.4.3.2 Measurements

Once the equilibration has been checked, one can start doing thermal measurements. Indepen-
dent equilibrium configurations can be generated in two ways:

(i) Let the system evolve from an initial configuration until equilibrium is reached. Repeat that for
n different initial configuration uniformly distributed. The n configurations obtained are indepen-
dent and thermal.

(ii) Let the system evolve from an equilibrium configuration. After a time period td the system
has decorrelated from its initial configuration. This time is defined by the exponential decay of the
equilibrium correlation function:

Ceq(t− teq) ∝ exp
(
− t− teq

td

)
(III.61)

where t > teq. The time period td is the so-called correlation time. Then, by waiting periods of td
one generates independent configurations from the initial equilibrium one. Let the system evolve
from t = 0. Keep the configurations at times tn = teq + ntd. The n configurations obtained in
this way are independent and thermally distributed. This second method is expected to be faster
than (i) since, usually, teq > td.

Suppose we realise n independent measurements of some thermodynamic quantity A and
denote a1, ..., an the values of such measurements. Then we estimate the thermal average 〈A〉 by

[A] = 1
n

n∑
i=1

ai . (III.62)

This is what one measures in Monte Carlo simulations.
There are two sources of errors for such numerical measurements: i) statistical (from thermal

fluctuations) and ii) systematic (from mistakes in the procedure we apply to compute the observ-
ables), just as for real experiments in a laboratory. Once we have checked the conditions needed
to compute the observable we are interested in (e.g. equilibration), we can state that there are no
systematic errors in our simulation data. Since we cannot get rid of statistical errors inherent to
Monte Carlo techniques we must be able to carefully estimate them.

We denote by A1, ..., An different random realisations of the fluctuating quantity A. The
statistical estimator of 〈A〉 is defined by

A∗ = 1
n

n∑
i=1

Ai (III.63)
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and is a random variable. This estimation is unbiased since

〈A∗〉 = 〈A〉 and σ2(A∗) = σ2(A)
n

. (III.64)

A naive estimation of the dispersion σ2(A) = 〈(A− 〈A〉)2〉 would be

[σ(A)] =
√

1
n

∑
i

(ai − [A])2 . (III.65)

Unfortunately, this estimation is biased and causes the propagation of systematic errors. A faithful
estimation of the standard deviation giving a measure of the statistical error on A is given by

ε(A) =
√

1
n− 1

∑
i

(ai − [A])2 (III.66)

To perform an estimation of the deviation of another quantity B = f(A1, .., Am), which is a
function of a set of fluctuating quantities, we proceed as follows. The numerical estimator of 〈B〉
is

[B] = 1
n

n∑
i=1

bi . (III.67)

In the limit of small deviations the dispersion of B can be approximated by

σ (B) ≈

√√√√ m∑
i

σ2(Ai)
(
∂f( ~A)
∂Ai |Ai=<Ai>

)2

. (III.68)

Then we estimate this quantity by replacing 〈Ai〉 and σ2(Ai) by our estimators.

III.4.3.3 Finite-size scaling analysis

Phase transitions can be studied by Monte Carlo simulations using the finite size scaling results
presented in section

sec:FiniteSizesec:FiniteSize
III.3. In frustrated systems the phase diagrams can be very rich and the phase

transitions taking place can, in principle, be of different kind. Our analysis must be able to distin-
guish between different types of phase transitions, determine the associated critical exponents and
characterise the nature of the equilibrium configurations. One can proceed as follows:

1. Compute the Binder cumulant K(t, L−1) for different system sizes L. If the transition is
continuous the Binder cumulant must be monotonic from K(T � 0, L−1) = 0 to K(T =
0, L−1) = 2/3. At a critical point all the curves intersect. Hence, in a quasi-long range
phase, all the data points for different system sizes collapse on top of each other. This
makes the estimation of a KT transition point very difficult. If the transition is first order the
transition temperature Tc(L) is identified from the minimum of the K.

2. If the transition is continuous, use the scaling relation eq.
eq:Bindereq:Binder
III.49 to estimate the exponent ν.

This is done by plotting K as a function of t.L1/ν for different system sizes. Then we vary
the value of 1/ν until the data collapses into a single curve close to the transition.

3. Compute the maximum of the specific heat Cmax for different sizes. If the transition is
first order it scales as Cmax ∼ Ld. If instead it is continuous, it scales as Cmax ∼ Lα/ν .
Using the estimation of the critical temperature and the exponent ν the exponent α can be
estimated by data collapse. Check the consistency of this value of α with the value of ν
previously determined by plotting C.L−α/ν as a function of t.L1/ν .
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4. Compute the order parameter m and the susceptibility χ for different system sizes. If the
transition is continuous the exponents β and γ can be estimated from m(Tc(L)) ∼ L−β/ν

and χmax ∼ Lγ/ν .

5. Check the scaling laws eq. (
eq:ScReleq:ScRel
III.13) and eq. (

eq:HyperSc2eq:HyperSc2
III.15).

In this form, finite-size scaling analysis is unable to distinguish between a continuous phase transi-
tions for which ξ →∞ and a first order transition for which ξ is finite but larger than the maximum
size of the system available in simulations. In order to give support to our results on 2d spin ice
we also used a different numerical technique: the Non-Equilibrium Relaxation Method (NERM).

III.4.4 Non-equilibrium relaxation method
sec:NERM

The numerical investigation of phase transitions usually exploits directly equilibrium results,
by first sampling the canonical ensemble of a finite system and then performing a finite size analy-
sis of the data. The NERM exploits the dynamical behaviour of the system to deduce equilibrium
properties. This is done by letting the system relax towards equilibrium from a non-equilibrium
initial condition. Using this method one avoids the difficulties raised by a correlation lenght ξ > L
but finite. A precise review on this method can be found in

Ozeki2007
[210] and

Albano2011
[3].

III.4.4.1 Short-time critical dynamics

Classical spin models do not have any intrinsic dynamics. To study the evolution of such
a system we must begin by defining a priori updating rules. In the following we consider the
relaxation of a spin model in contact with a thermal bath, exchanging energy with it. Therefore,
the dynamical rules do not conserve energy and are stochastic. For this problem a natural choice
is to introduce a local single-spin-flip kinetic rule - e.g. of the Monte Carlo type - without any
conserved order parameter.

The choice of the microscopic dynamics is part of the modelling of the physical situation one
is interested in. Depending on this choice, the system sets into different dynamical universality
classes

Hohenberg1977, Odor2004
[116, 207]. The theory of dynamical critical phenomena extends the ideas of scaling

and universality of equilibrium critical phenomena to the time-evolution properties of statistical
models. In the vicinity of a critical point the correlation length diverges. Therefore, the system
has to establish correlations between spins over an infinite range in order to reach equilibrium, a
process which takes a diverging period of time τ . This is the so-called critical slowing down. The
dynamical scaling hypothesis (which is less well founded that its equilibrium analog) asserts that
the divergence of τ is characterised by a power law which defines the dynamical critical exponent
z:

τ ∼ ξz . (III.69)

Dynamical scaling extends the crucial notion of scale invariance in equilibrium critical phenomena
for the time dependence of thermodynamic quantities. This exponent is strongly affected by the
dynamical rules chosen in the simulations. During the evolution towards the critical point, the size
of the correlated regions given the time-dependent correlation length ξ(t) grows accordingly to
this exponent:

ξ(t) ∼ t1/z . (III.70)

A field theoretic approach was proposed by Janssen et. al to describe the dynamical scaling
behaviour of thermodynamic quantities evolving from an initial condition with a given magnetisa-
tion m(0) and short range correlations

Janssen1989
[127]. By an RG analysis of a field theory with stochastic

non-conserved order parameter dynamics (in the same universality class as the single-spin flip
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evolution in spin models), he showed that the evolution of the order parameter at the critical point
is given by

m(t) ' t−β/(νz) F (tx0/zm(0)) (III.71)

with z the dynamic critical exponent, x0 a new exponent which depends on the initial configuration
and F a scaling function which verifies: F (x) ' x for x � 1 and F (x) → ct for x → ∞. In
finite size simulations, this scaling form should be correct for ‘short times’. By short times we
mean here periods of time which are longer than some microscopic time tµ but short enough to
guarantee ξ(t) � L. This condition reduces finite size effects and avoids the need for the proper
equilibration of the samples.

Suppose that one starts the evolution from a disordered initial state: m(0) � 1. Then we
adjust the external parameters in order to be at a critical point (i.e. we perform a quench to the
critical point). For times short enough such that tx0/zm(0)� 1 the magnetisation is given by

m(t) ' t−β/(νz)tx0/ν ' tθ , tx0/zm(0)� 1 (III.72)

where θ > 0 is the so-called initial flip exponent. The order parameter initially grows. For longer
times tx0/zm(0)� 1 the magnetisation decreases algebraically:

m(t) ' t−β/(νz) , tx0/zm(0)� 1 , (III.73) eq:NERMfromPM

which allows for a determination of β/(νz).
Suppose now that one starts the evolution from a completely ordered configuration: m0 = 1.

The time-evolution of m is given by
Calabrese2006
[52]

m(t) ' t−β/(νz) . (III.74) eq:NERMfromFM

Together with the scaling eq. (
eq:NERMfromPMeq:NERMfromPM
III.73) one can extract important informations about the equilibrium

properties of the system. For instance, the critical point. It can be determined by letting the system
relax from an initial configuration (with m(0) � 1 or m(0) = 1) towards different points of
the phase space. A critical point is characterised by a power law evolution of the order parameter,
whereas it decays exponentially fast to its equilibrium value for a non-critical point. The departures
from critical dynamics are very sensitive to small modifications of the parameters which allows
for a precise location of the critical point.

The relaxation behaviour of the order parameter is also valuable for the study KT transi-
tions

Ozeki2003a
[212]. The study of this transition by equilibrium measurements is hard because of the

correlation length increases exponentially when approaching the transition and makes the equili-
bration times of the samples very long. In the XY model, the whole low temperature phase is
critical. Therefore, for all T ≤ TKT the relaxation of the order parameter from an ordered initial
state must decay algebraically. From this simple observation one can deduce if a phase is critical
or not and if a KT transition can occur. From the dynamical scaling of the relaxation time one
can also determine the KT transition temperature precisely. I refer to

Ozeki2003a,Ozeki2007
[212, 210] for further details

about relaxation studies for the KT transition.

III.4.4.2 NERM for a first-order phase transition

Finite-size scaling analysis of the simulation data is unable to distinguish between a second-
order phase transition and a weak first order transition. By weak first order transition we mean here
first order transitions with a finite but large, typically larger than the size of the system, correlation
length. The NERM exploits the hysteresis phenomenon to determine the transition point and,
more importantly to us, to give a criterium to distinguish between weak first order and second
order transitions

Albano2001,Ozeki2003
[2, 211].
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Consider the relaxation of the system from a disordered (high temperature) initial configu-
ration: m(0) � 1. By repeating the process at different temperatures, we get an estimation of
the transition temperature T ∗ from power law time-dependence of m. The temperature T ∗ is a
measure of the limit of metastability T− of the ordered phase ( T− < Tc as shown in Fig.

fig:FirstOrderfig:FirstOrder
III.1).

At this point the disordered phase becomes stable and large (but finite) fluctuations are present.
For a finite size system, it is equivalent to a critical point. One can repeat the same procedure
from an ordered initial configuration: m(0) = 1 and get a different estimation of the transition
temperature T ∗∗. This value is a measure of the limit of metastability T+ > Tc of the disordered
phase. This approach has been supported by numerical studies on exactly solvable models where
the limit of metastability can be rigorously defined and computed

Ozeki2003,Loscar2009
[211, 167]. At a second order

phase transition T ∗ = T ∗∗ = Tc.





CHAPTER

IV

Hard constraints and 2d vertex
models

ch:VertexModels
Before Onsager’s solution of the 2d Ising model in 1944

Onsager1944
[209], the definition of a phase tran-

sition from fundamental statistical mechanics was a matter of debate. Mean field results and other
approximations were already available but though to be too artificial to capture the real essence of
phase transitions in real physical systems. The Ising model is probably the most simple model with
a thermal phase transition and its precise study set the grounds of the theory of critical phenomena.

Twenty years later, the development of the renormalisation group (RG) theory clarified the
concept of universality which theoretically explains the observation that, very different physical
systems share the same critical exponents. In the context of 2D spin systems, models with dif-
ferent and unexpected universality classes were constructed. An example is the six-vertex model.
The exact solution of particular cases of this model (ice, KDP and F model, see below) was ac-
complished by Lieb in 1967. He applied the Bethe Ansatz and exploited the formal equivalence
between the six-vertex model and the XXZ spin chain solved a few months before by Yang and
Yang

Yang1966
[273].

The exact solution of the six-vertex model shows that the critical exponents depend on the
precise values of the microscopic parameters. This model appeared then as a counterexample of
the universality ideas coming from the RG theory. The theoretical physics community did not
paid much attention to this results until the exact solution of the eight-vertex model by Baxter
came out in 1971

Baxter1971
[21]. The non-universality of the six-vertex model was though to result from

the pathological definition of the model through ‘hard constraints’ (here the ice rules). However
this variation of critical exponents was confirmed by the exact solution of the less pathological
eight-vertex model: its exponents also change continuously and lead to the six-vertex model ones
by taking the appropriate limit. In order to do so, Baxter (and Yang

Yang1967
[272]) introduced the Yang-

Baxter equation which, as we will discuss in this section was a capital contribution to the theory
of quantum integrability.

In this chapter we review some exact results on constrained vertex models in order to discuss
the role of a local constraint in the collective behaviour of the system. A detailed discussion on the
equilibrium properties of the completely unconstrained sixteen-vertex models is let for the next
chapter

ch:Equilibriumch:Equilibrium
V.



72 CHAPTER IV. HARD CONSTRAINTS AND 2d VERTEX MODELS

IV.1 Exactly solvable lattice models
sec:integrability

For sake of completeness, we include in this section we add some rapid comments on integra-
bility issues for ‘non-mathematical physicists’. A more precise exposition on this vast subject can
be found in the references given in the text.

IV.1.1 The Yang-Baxter equation

Consider a statistical model on a square lattice 1. A degree of freedom, an Ising spin for
simplicity, is attached to each edge of the lattice. One associates to each line of the lattice a vector
space Vh,v indexed by h (as horizontal) and v (as vertical) (see Fig.

fig:RMatrixfig:RMatrix
IV.1). Let us focus on a vertex

where two lines intersect as shown in Fig.
fig:RMatrixfig:RMatrix
IV.1. The Boltzmann weight of a configuration of four

edges meeting at a vertex is encoded by a linear operator acting on the tensor product Vh
⊗
Vv:

the R-matrix. For Ising problems on a square lattice the Vh,v ' C2 and the R-matrix is a 4 × 4
matrix which gives the weight of the 24 possible configurations:

Rh,v =


〈+ + |R|+ +〉 〈+ + |R|+−〉 〈+ + |R| −+〉 〈+ + |R| − −〉
〈+− |R|+ +〉 〈+− |R|+−〉 〈+− |R| −+〉 〈+− |R| − −〉
〈−+ |R|+ +〉 〈−+ |R|+−〉 〈−+ |R| −+〉 〈−+ |R| − −〉
〈− − |R|+ +〉 〈− − |R|+−〉 〈− − |R| −+〉 〈− − |R| − −〉

 (IV.1)

Thermal phase transitions in Artificial Spin-Ice

Demian Levis,1 Leticia F. Cugliandolo,1 Laura Foini,1 and Marco Tarzia2

1
Université Pierre et Marie Curie - Paris 6, Laboratoire de Physique Théorique et Hautes Energies,

4, Place Jussieu, Tour 13, 5ème étage, 75252 Paris Cedex 05, France
2
Université Pierre et Marie Curie - Paris 6, Laboratoire de Physique Théorique de la Matière Condensée,

4, Place Jussieu, Tour 12, 5ème étage, 75252 Paris Cedex 05, France

POR HACER... Citar los experimentos. We analyze then the AF-transition in artificial spin-ice. The results
are supported by analytical calculation on Bethe lattice of plaquettes. Agreement with experiments. Interpreta-
tion of the experimental results, in particular the temperature. Answer the question: Is ASI thermal?
To stress: we justify the model and we make a first (well, second) step to give further experimental meaning to
the 2d vertex models.
We confront to experiments
We show the first mean-field analysis of the model
I do not think is the first one. Cluster mean-field method? Confusion between β’s (inverse temperature and
critical exponent)

Hard local constraints can lead to a rich variety of collec-
tive behavior such as the splitting of phase space into dif-
ferent topological sectors and the existence of “topological
phases” that cannot be described with conventional order pa-
rameters [1]. In geometrically constrained magnets, the lo-
cal minimization of the interaction energy on a frustrated unit
gives rise to a macroscopic degeneracy of the ground state [2],
unconventional phase transitions [3, 4], long-range correla-
tions in the “Coulomb” phase [5, 6] and slow dynamics [7, 8]
in both 2d and 3d systems. In the present work we focus on a
paradigmatic system with these features: spin-ice [9–11].

The ice rules arise from the combination of the anisotropy
of the samples that forces the Ising-like magnetic moment to
lie on the edges of a coordination four lattice (the sites of the
pyrochlore lattice in 3d) and ferromagnetic interactions. All
configurations with two spins pointing in and two out each
vertex (the center of a tetrahedron in 3d) are ground states.
This leads to the zero-point entropy measured in Dy2Ti2O7

(S3d
exp ≈ 1.86 mol−1 K−1) [12] that is in remarkable agree-

ment with the exact value computed for the 2d ice-model on a
square lattice (S2d

exact ≈ 1.79 mol−1 K−1) [13].
Bi-dimensional Ising-like ice-models had no experimental

counterpart until recently when it became possible to manu-
facture artificial samples made of arrays of elongated ferro-
magnetic nano-islands. The beauty of artificial spin-ice (ASI)
is that the interaction parameters can be precisely controlled
- by tuning the distance between islands or applying exter-
nal fields - and the state of a single degree of freedom can
be directly visualized by microscopy [14]. The system sets
into different phases depending on the island length l, the lat-
tice constant a0, and the height h between layers [15]. The
main drawback of these materials had been the lack of thermal
fluctuations and the ensuing difficulty to observe the expected
ground state. Lately, these problems have been overcome by
(i) applying an external drive [16], (ii) using materials with
a lower Curie temperature [17], (iii) thermalizing the system
during the slow growth of the samples [18]. The study of the
equilibrium phases and critical behavior of ASI has thus be-
come possible on rather large samples with up to 106 vertices.

We will discuss the preparation protocol (iii) later in the con-
text of our study.

1
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Figure 1. (Color online.) Ordered phases and vertex configurations
in artificial spin-ice on the square lattice. (a) Complete antiferromag-
netic (c-AF) order. The central (red) loop represents an elementary
excitation. (b) Collective paramagnetic (PM) phase. (c) Frozen fer-
romagnetic (FM) order. The last vertical string (red line) represents
a typical extended excitation. (d) Sixteen vertex configurations and
their associated statistical weights ωi = exp (−β�i). The first six-
vertices (a, b and c) verify the ice-rule. The last ten vertices (d and
e) are defects.

In this Letter we demonstrate that a simplified version of the
more realistic dipolar spin-ice model in 2d, the sixteen-vertex

model (see Fig. 1) [8, 19] is an accurate model for the equi-
librium behavior of ASI. The model includes the celebrated
six-vertex (d = e = 0), eight-vertex (e = 0). During the
past thirty years a great effort has been devoted to the study
of the mathematical properties of these models [20]. The in-
triguing excitation properties of spin-ice (emergence of mag-
netic monopoles and attached Dirac strings [21]) and the pos-
sibility to compare theoretical predictions with experiments,
should encourage the study of vertex models from a novel
and more phenomenological perspective; this work goes in

αj
i

µj
i

µj+1
i

αj
i+1

w(i, j) =

v

h
= �αj

i , µ
j
i |Rh,v|αj

i+1, µ
j+1
i �

Figure IV.1: Graphical representation of the weight of a vertex with the edge variables α and µ.
The arrows denote the abstract direction induced by the action ofR (from bottom left to top right).
The subscripts i denote a line of the lattice and the superscripts j a column.fig:RMatrix

The R-matrix is the central object to consider when one is interested in the integrability of the
model. The model is said to be integrable provided its R-matrix satisfies:

1. The Yang-Baxter equation:

R12R13R23 = R23R12R13 (IV.2) eq:YangBaxter

2. and the identity equation:
R12R21 ∝ 1d. (IV.3) eq:IdentityEquation

These two equations are usually represented graphically as shown in Fig.
fig:YangBaxterfig:YangBaxter
IV.2.

IV.1.2 Classical and quantum integrability

In classical mechanics, a Hamiltonian system is said to be integrable if it satisfies Liou-
ville’s theorem

ArnoldBook, BabelonBook
[10, 11]. Consider a dynamical system with N degrees of freedom definig a

1. Note that the following concepts can be extended to more general planar graphs with connectivity 4
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Figure IV.2: Digrammatic representation of the integrability conditions. Top: Identity equation.
Bottom: Yang-Baxter equation.fig:YangBaxter

2N -dimensional phase space Γ. Then, a system is Liouville’s integrable if it has N function-
ally independent 2 integrals of motion {Fi}i=1..N in mutual involution, i.e.

{H,Fi} = 0 , {Fi, Fj} = 0 , ∀i, j = 1..N . (IV.6) eq:Liouville

So that the evolution of the system takes place on a compact and connected sub-manifold M ⊂ Γ
defined by some constant value of the integrals of motion. The solution of the equations of motion
are periodic trajectories on M such that ergodicity is lost. Hence, integrable and non-integrable
systems have very distinct dynamical properties.

One could be tempted to generalise this notion to quantum systems using the canonical quan-
tisation prescription and replace Poisson brackets by commutators times i/~. However, when
trying to extend Liouville’s theorem to hermitian operators acting on a Hilbert space, the notion
of functional independence is lost. This definition of quantum integrability does not provide a
correspondence between classical and quantum integrability

Weigert1992
[266]. At this day, there is still no

unique and well accepted definition of quantum integrability. The correspondence between the
non-ergodicity arising from classical integrability and the relaxation properties of quantum many-
body systems is far from being clear and motivates a large number of current investigations (for a
review see

Polkovnikov2010
[216]). The relationship between the available definitions of quantum integrability and

the out-of-equilibrium behaviour observed in quantum systems is still a matter debate. A recent
review on the different definitions of quantum integrability encountered in the literature can be
found in

Caux2011
[60].

Back to lattice models in classical statistical mechanics, the notion of integrability comes
from the Yang-Baxter equation (

eq:YangBaxtereq:YangBaxter
IV.2) together with the identity relation eq.(

eq:IdentityEquationeq:IdentityEquation
IV.3). Let us explain

quickly why. The operator R is assumed to depend on the difference of two spectral parameters λ
and µ. These are related to the Boltzmann weights given by the Hamiltonian of the model via an

2. A set of N real functions of M variables

Fi(x1, ...xn) , i = 1, ...M (IV.4)

is functionally independent if and only if

Ψ[F1, ....FM ] = 0⇒ Ψ = 0 . (IV.5)

It is a generalisation of the notion of linear independence. Hence, analytic functions of the Hamiltonian H are trivial
integrals of motion but do not fulfil Liouville’s conditions. Note that this definition of independence cannot be extended
to hermitian operators acting on a Hilbert space.
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appropriate parametrisation. The entries of the R-matrix, for instance 〈+−|R|+−〉, are replaced
by some function of λ−µ. The transfer matrix T can then be written as a productR-matrices along
a line (see eq. (

eq:TandReq:TandR
IV.17) for an explicit example). The R-matrix can be seen as the contribution of a

vertex to the partition function. By the successive action of the operator R the partition function
of whole lattice can then be constructed.

If the R-matrix of our lattice model verifies the integrability (sufficient)conditions eq. (
eq:YangBaxtereq:YangBaxter
IV.2)

and (
eq:IdentityEquationeq:IdentityEquation
IV.3), then transfer matrices T (λ) with different spectral parameters λ form an infinite set

of commuting linear operators. All these operators can then be diagonalised simultaneously (for
instance by using the Bethe Ansatz). Moreover, the transfer matrix of a 2d model describes the
evolution of a 1d quantum system defined by the Hamiltonian:

H = − d

dλ
lnT (λ) |λ=0 . (IV.7)

The commutativity of the transfer matrices allows to construct an infinite set of conserved quanti-
ties Qi defined by

Qi = − di

dλi
lnT (λ) |λ=0 , (IV.8)

and verifying
[H,Qi] = 0 , [Qi, Qj ] = 0 , ∀i, j ∈ N . (IV.9)

We obtain in this way a quantum analog of Liouville’s theorem eq. (
eq:Liouvilleeq:Liouville
IV.6): a 2d statistical lattice

model verifying eq. (
eq:YangBaxtereq:YangBaxter
IV.2) and (

eq:IdentityEquationeq:IdentityEquation
IV.3) is said to be quantum integrable.

IV.2 Vertex models: general definition

In this Section we recall the definition and main equilibrium properties of bi-dimensional
Ising-like vertex models defined on a square lattice. We focus on an L × L square lattice V with
periodic boundary conditions. We label the coordinates of the lattice sites by (α, β). This lattice
is bipartite, that is, it can be partitioned in two sub-lattices A and B of even α+ β and odd α+ β
sites such that each edge connects a site in A to one in B. The degrees of freedom sit on the links,
in other words, on sites of the ‘medial’ lattice V̂ that are placed on the midpoints of the bonds of
the original lattice. The midpoints are hence labeled (α+ 1/2, β) and (α, β+ 1/2) 3. We consider
models in which the degrees of freedom are arrows aligned along the edges of the square lattice
that can be naturally mapped onto Ising spins, say Sα+1/2,β = ±1 (see Fig.

fig:VertexLatticefig:VertexLattice
IV.3). We choose a

convention such that the positive value corresponds to an arrow pointing in the right or up direction,
and conversely for negative spin: S = 1 if the arrow on the corresponding edge points along ~ux
or ~uy and S = −1 otherwise. Then, instead of defining the system’s Hamiltonian by an explicit
interaction term between the Ising variables we assign a Boltzmann weight ωk = exp(−βεk) to
each of the k = 1, . . . , 24 four-arrow configurations that may occur at vertex (α, β) (see Fig.

fig:16verticesfig:16vertices
V.1).

The Hamiltonian of the general vertex model in the square lattice is then simply defined by the
sum of the vertex energies

H =
∑

(α,β)
ε(α,β) =

16∑
k=1

εknk (IV.10) Hamiltonian16v

where nk is the number of vertices of type k.

3. The lattice made by all the Ising variables is the medial graph of the original L × L square lattice where each
site is occupied by a vertex.
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A charge can be attributed to each single vertex configuration. Its definition is simply the
number of in-coming minus the number of out-going arrows. We recall the definition of a charge
given by

q = 1
2
∑
i∈v

σi ∈ {0,±1,±2}. (IV.11) eq:MagneticCharge

where σ = ±1 if the arrow points into or out to the vertex v under consideration.
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Figure IV.3: The square lattice of vertices V is represented in grey. Its medial lattice V̂ made by
the centre of each edge occupied by an arrow is shown in red.fig:VertexLattice
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Figure IV.4: The sixteen vertex configurations of the square lattice.fig:16vertices

IV.3 The six-vertex model

IV.3.1 Definition

In the six vertex model arrows or Ising spins sit on the edges of a (coordination four) square
lattice and they are constrained to satisfy the two-in two-out ice rule

Bernal1933,Pauling1935
[29, 214]. In consequence,

each node on the lattice has four spins attached to it with two possible directions, in the form
shown in Fig.

fig:six-vertexfig:six-vertex
IV.5. Accordingly to eq. (

eq:MagneticChargeeq:MagneticCharge
IV.11), the six-vertex model vertices have zero charge.
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(Note that the charge is not the sum of the spins attached to a vertex, such a total spin will be
defined and used in sec.

sec:VertexTreesec:VertexTree
V.4.)

v1 v2

� �� �
a=ω1=ω2

v3 v4

� �� �
b=ω3=ω4

v5 v6

� �� �
c=ω5=ω6

1

Figure IV.5: The six possible vertex configurations in the six vertex model with their associated
weights.fig:six-vertex

Although in the initial modelling of ice all such vertices were equivalent, the model was gener-
alised to describe ferroelectric systems by giving different statistical weights to different vertices:
ωk = exp(−βεk) with εk the energy of each of the k = 1, . . . , 6 vertices. Spin reversal sym-
metry naturally imposes ω1 = ω2 = a for the first pair of ferromagnetic vertices, ω3 = ω4 = b
for the second pair of ferromagnetic vertices, and ω5 = ω6 = c for the anti-ferromagnetic ones,
see Fig.

fig:six-vertexfig:six-vertex
IV.5. Note that since the vertices v5 and v6 act as sources and sinks of vertical and hor-

izontal arrows, we must have the same number of them on each row and column if we impose
periodic boundary conditions (PBC) and one has ω5 = ω6 = c without symmetry assumptions.
The conventional parameter names a, b, c have been introduced here. In the theoretical literature
it is customary to parametrize the phase diagram and equilibrium properties in terms of a/c and
b/c. This is the choice we also make here. Particular cases of the six-vertex model include:

– the F model of anti-ferroelectrics: the energy of the antiferromagnetic c-vertices is set to
zero and all other ones are taken to be equal and positive, i.e. c > a = b

Rys1963
[230].

– the KDP model of ferroelectrics : the energy of a pair of ferromagnetic a- or b-vertices is
set to zero and all other ones are equal and positive, e.g. a > b = c

Slater1941
[242].

– the Ice model: the energy of all vertices are equal, i.e. a = b = c
Lieb1967
[164].

It is important to note, however, that in the context of experiments in artificial spin-ice type
samples vertex energies are fixed and the control parameter is something used to prepare different
configurations. Then, it is associated to a temperature. In

Levis2012a
[160] we used this alternative parametri-

sation and we compared the model predictions to experimental observations
Nisoli2010a,MorganPrivate
[205, 195]. We shall

present these results in the next chapter.

IV.3.2 Transfer matrix formulation
sec:TransferMatrix

The net arrow flux in the vertical (or horizontal) direction is conserved from row to row (re-
spectively column) as a consequence of the ice-rules. From the flux conservation, the six-vertex
model can be represented by non-crossing paths or strings going ’north-east‘ (NE). Edges with
arrows pointing up or right are marked while edges with arrows down or left are unmarked, as
shown in Fig.

fig:PMPathfig:PMPath
IV.6 (this convention follows from the one we used in section

sec:integrabilitysec:integrability
IV.1 for the spectral

parameters). One can interpret these paths as trajectories of particles where time evolution is along
the vertical direction. There can be several arrangements of horizontal bonds in between to rows
of vertical edges. As shown below, the row-to-row transfer matrix T is obtained after summing
over all these possible arrangements of horizontal arrows. Then T encodes this ‘vertical’ time
evolution. It is a linear operator acting on a row |φi〉 (a 2L dimensional vector) which generates
the next one |φi+1〉. With PBC, the initial and final state are identical, hence the partition function
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Z is a ‘discrete path integral’ along a closed loop:

Z =
∑
|φ1〉

...
∑
|φL〉
〈φ1|T |φL−1〉...〈φ2|T |φ1〉 = Tr TL , (IV.12)

which in the thermodynamic limit is given by the largest eigenvalue of T denoted λ0.
Because of the ice-rules, open paths are forbidden, hence the number of vertical ‘red’ edges is

conserved from row-to-row. In the particle picture, it means that the transfer matrix must conserve
the number of particles n. Thus T splits into L + 1 diagonal blocks: T = ⊕Ln=0T

(n). Each
block T (n) is called a topological sector defined by n, the number of particles or strings in the
system. A sector is left invariant by T . They are said to be topologically protected since no smooth
deformation of the strings, hence no thermal fluctuation below the critical point, can change the
number n. This number is a topological property of a given configuration which cannot be changed
by updating a finite number of arrows (this point might become clearer after the discussion of the
phase diagram). Then, in order to find the largest eigenvalue of T one can apply the Bethe Ansatz
and solve the Bethe equations for each sector.

The ‘coordinate’-Bethe Ansatz consist on trying a particular form for the eigenvector with
largest eigenvalue of each block T (n). The so-called Bethe many-body wave function (this ter-
minology comes from Bethe’s work on the XXX quantum spin chain) is an completely anti-
symmetric product of one-body wave functions. Back to the six-vertex model, the eigenvalue
problem writes: ∑

y
T (n)(x, y)φ(y) = λnφ(x) (IV.13) eq:Teigenval

where x = (x1, ..., xn) gives the location of the coloured vertical bonds. The vector x specifies a
configuration of the system after summation over the intermediate horizontal arrows. The Bethe
Ansatz then tries the form:

φ(x) =
∑
{P}

Ap1,...,pnϕ(x1)p1 ...ϕ(xn)pn (IV.14)

where the sum runs over all the permutations P = (p1, ..., pn), Ap1,...,pn are constants to be deter-
mined and ϕ(x)i are solutions of eq. (

eq:Teigenvaleq:Teigenval
IV.13) for the one particle sector n = 1. The calculations are

long and carried on in detail in Baxter’s book
BaxterBook
[24]. Most of the results presented in section

sec:equilibrium6Vsec:equilibrium6V
IV.3.3

come from these calculations.

1

Figure IV.6: A particular configuration of the six-vertex model and its NE path representation
shown in red lines. The number of strings in a row of vertical edges (here n = 2) is conserved.fig:PMPath

The reason why one can actually find the largest eigenvalue of T , i.e. solve the model, is
because it is integrable. In order to show that, let us write the partition function of the six-vertex
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model as

Z =
∑
l∈C

L∏
i=1

L∏
j=1

wl(i, j) (IV.15)

where wl(i, j) is the Boltzmann weight of the vertex at site (i, j) for a configuration l ∈ C. For
convenience, we denote by α the spin variables defined on the horizontal edges of the lattice and
µ the vertical ones (see Fig.

fig:RMatrixfig:RMatrix
IV.1). The vertex weight is given by the R-matrix:

wl(i, j) = 〈αji , µ
j
i |R|α

j
i+1, µ

j+1
i 〉 (IV.16)

where αji = ±1 denotes the spin linked to the vertex (i, j) from below and µji = ±1 denotes the
spin linked from the left (as shown in Fig.

fig:RMatrixfig:RMatrix
IV.1).

The transfer matrix can be constructed by adding vertex contributions and can hence be written
as a product of R-matrices:

〈ᾱi|T |ᾱi+1〉 =
∑

µ1
i=±1

...
∑

µLi =±1

∏
j

〈αji , µ
j
i |R|α

j
i+1, µ

j+1
i 〉 (IV.17) eq:TandR

The variable µ1
i appears in both extremities, so this sum is a trace over it represented in Fig.

fig:TMatrixfig:TMatrix
IV.7.

The R-matrix of the six vertex model is given by

R(u) =


a(u) 0 0 0

0 b(u) c(u) 0
0 c(u) b(u) 0
0 0 0 a(u)

 (IV.18) eq:R6V

where we have introduce the spectral parameter u 4. This matrix verifies eq. (
eq:YangBaxtereq:YangBaxter
IV.2) and eq. (

eq:IdentityEquationeq:IdentityEquation
IV.3):

the six-vertex model is quantum integrable, its transfer matrix T can be identified with the evolu-
tion operator of the XXZ quantum spin chain. We will go back to the equivalence between vertex
models and quantum spin chains later on in section

sec:8vXYZsec:8vXYZ
IV.4.4.

µ2
iµ1

i µL
i µ1

i

α1
i α2

i αL
iαL−1

i

αL−1
i+1 αL

i+1α1
i+1 α2

i+1

�

µ1
i=±1
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Figure IV.7: Graphical representation of the transfer matrix of the six-vertex model.fig:TMatrix

IV.3.3 Equilibrium phase diagram
sec:equilibrium6V

The free-energy density of the six vertex model with a = b = c and periodic boundary
conditions was computed by Lieb in the late 60s with the transfer matrix technique and the Bethe

4. The dependence of R on the spectral parameters appears in the parametrisation of the weights. In the PM phase,
it is convenient to parametrize the weights by:

a = sin(γ − u) , b = sin(u) , c = sin γ , ∆ = cos γ (0 < γ < π/2) . (IV.19)
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Ansatz to solve the eigenvalue problem
Lieb1967
[164]. The method was then extended to calculate the free-

energy density of the the F model
Lieb1967b
[162], KDP model

Lieb1967c
[163], models with generic a, b, c values with

periodic boundary conditions (PBC)
Sutherland1967
[247], and the same general case with antisymmetric

Batchelor1995
[?] and

domain wall boundary conditions (DWBC)
Korepin1982
[145]. The effect of the boundary conditions is indeed

very subtle in these systems as some thermodynamic properties depend upon them
Korepin2000
[144] contrary

to what happens in conventional statistical physics models. An order parameter that allows one to
characterise the different phases is the total direct and staggered magnetisation per spin

〈M±〉 = 1
2(〈|mx

±|〉+ 〈|my
±|〉) (IV.20) eq:magn

with the horizontal and vertical fluctuating components given by

L2mx
± =

∑
(α,β)∈A

Sα+1/2,β ±
∑

(α,β)∈B
Sα+1/2,β , (IV.21)

L2my
± =

∑
(α,β)∈A

Sα,β+1/2 ±
∑

(α,β)∈B
Sα,β+1/2 . (IV.22)

The angular brackets 〈. . .〉 denote here and in the following the statistical average.
The equilibrium phases are classified by the anisotropy parameter

∆6 = a2 + b2 − c2

2ab , (IV.23) delta6

and they are the following.

a-Ferromagnetic (a-FM) phase: ∆6 > 1; i.e. a > b + c. Vertices v1 and v2 are favoured. The
lowest energy state in the full FM phase is doubly degenerate: either all arrows point up and right
(shown in Fig. [

fig:6VPhasesfig:6VPhases
IV.8 (a)]) or down and left [i.e. M+ = 1, with M+ the magnetisation density

defined in eq. (
eq:magneq:magn
V.36)]. In this phase the system is frozen as the only possible excitations involve

strings made by a number of degrees of freedom of the order of L. All over this phase the exact
free energy per vertex is flat and given by

BaxterBook
[24]

fFM = ε1 . (IV.24)

At a = b+c (∆6 = 1) the system experiences a discontinuous phase transition between the frozen
ferromagnet and a disordered (D) or spin liquid (SL) phase that we discuss below.

b-Ferromagnetic (b-FM) phase: ∆6 > 1; i.e. b > a + c. This phase is equivalent to the previous
one by replacing a- by b-vertices. The free-energy is fFM = ε3.

Spin liquid (SL) phase: −1 < ∆6 < 1; i.e. a < b+ c, b < a+ c and c < a+ b. In this phase the
averaged magnetization is zero, 〈M±〉 = 0, and one could expect the system to be a conventional
paramagnet. However, the ice constraints are stringent enough to prevent the full decorrelation
of the spins all over the lattice, even at infinite temperature. The system is in a quasi long-range
ordered phase with an infinite correlation length. At c = a + b there is a Kosterlitz-Thouless
phase transition between this critical phase and an anti-ferromagnetic phase with staggered order
that is discussed below. The exact solution found by Baxter yields the free-energy density as a
function of the parameters through a number of integral equations

BaxterBook
[24]. In the following section

we evaluate it numerically and we compare it to the outcome of the Bethe approximation. Close
to the FM transition the singular part of the free-energy can be approximated by

f
(s)
FM ' max(ε1, ε3)− 1

2kBT
(
b+ c

a
− 1

)
= max(ε1, ε3)− 1

2kBT t
2−α , (IV.25) eq:free-energy-6vertex-PM
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with t the reduced distance to criticality, t = (b+ c)/a− 1, and α an exponent that plays the rôle
of the one of the heat-capacity and takes the value α = 1 here. The first derivative of fSL with
respect to the distance from the transition t shows a step discontinuity at the SL-FM transition
corresponding to a discontinuous phase transition but with a well defined set of critical exponents
(see Fig.

tab:CriticalExp6Vtab:CriticalExp6V
IV.1). Accordingly to the frozen-to-critical transition scenario discussed in section

sec:KDPsec:KDP
III.2.3.

Some special points in parameter space belonging to the SL phase deserve a few comments.
Such as the ice point a = b = c for which ∆6 = 1/2. At this special point the ground state is
macroscopically degenerate giving rise to the residual entropy

Lieb1967
[164]

S/N = 3/2 ln 4/3 . (IV.26) eq:entropy-spin-ice

Another special set of points is defined by the free-fermion 5 condition a2 + b2 = c2 (∆6 = 0).
If this relation between the parameters is verified, the integral equations simplify and the model
can be solved using Pfaffians. It has been found that the correlations of the F model in the free
fermion line decay as r−2 Baxter1970a

[19].

Antiferromagnetic (AF) phase: ∆6 < −1; i.e. c > a + b. Vertices v5 and v6 are favoured. The
ground state is doubly degenerate, corresponding to the configurations M− = ±1. The staggered
order is not frozen, thermal excitations involving only a finite number of spins populate this phase.
This is confirmed by the exact expression of the staggered magnetisation found by Baxter

Baxter1970a,Baxter1973a
[19, 23].

The free energy has an essential singularity at the critical line (towards the SL phase)

fAF ' e−ct/√t , (IV.27) eq:free-energy-6vertex-AF

with ct a constant and t = (a + b)/c − 1 the distance to criticality, characteristic of an infinite
order phase transition.

1 11

(a) (b) (c)

Figure IV.8: Equilibrium phases of the six-vertex model. The NE paths are represented by thick
black lines. Typical fluctuations are shown by red lines. (a) a-FM ordered configurations. The
only possible excitations of the system are extended strings spanning the whole lattice. (b) SL
configuration. Excitations in the form of local loops are possible. (c) Saturated c-AF order. Ele-
mentary loops involving the four spins around a square plaquette are the lowest energy excitations
populating the system in this phase.fig:6VPhases

The transition lines are straight lines (given by ∆6 = 1 for the SL-FM and ∆6 = −1 for the
SL-AF) and they are shown in Fig.

fig:phase-diagram-8vertexfig:phase-diagram-8vertex
IV.15 with solid (red) lines. The dashed line along the diagonal

5. As explained in more detail in section
sec:8vXYZsec:8vXYZ
IV.4.4 that name comes from the mapping to the XXZ quantum spin chain.

The fermionic representation of the XXZ model via the Jordan-Wigner transformation shows the equivalence with a
free-fermion problem in 1d.
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is the range of variation of the parameters in the F model. The horizontal dashed line is the one
of the KDP model. The intersection of this two lines corresponds to the ice-model. Although the
transitions are not of second order, critical exponents have been defined and are given in the first
column of Table

tab:CriticalExp6Vtab:CriticalExp6V
IV.1. The exponent α is taken from the expansion of the free-energy close to the

transition, see eqs. (
eq:free-energy-6vertex-PMeq:free-energy-6vertex-PM
IV.25) and (

eq:free-energy-6vertex-AFeq:free-energy-6vertex-AF
IV.27). The ratios

γ̂ = γ/ν , β̂ = β/ν , φ̂ = (2− α)/ν (IV.28)

follow from the use of the (divergent in the SL phase) correlation length ξ instead of t as the
scaling variable

Suzuki1974
[249] (see section

sec:Ch3KTsec:Ch3KT
III.1.4). As explained when we treat the eight-vertex model

in section
sec:EightVertexsec:EightVertex
IV.4, these exponents generalise the concept of universality. Interestingly enough, the

values of γ̂, β̂ and φ̂ are constant along the two transition lines and, moreover, they coincide with
the ones of the 2d Ising model and the 2d XY model recalled in the last two columns of Table

tab:CriticalExp6Vtab:CriticalExp6V
IV.1.

They also satisfy the usual scaling relations. The exponents β, γ and ν are extrapolated from the
eight-vertex model ones in the form explained in the next section.

SL-FM SL-AF 2d Ising 2d XY
γ/ν = γ̂ 7/4 7/4 7/4 7/4
β/ν = β̂ 1/8 1/8 1/8 1/8

(2− α)/ν = φ̂ 2 2 2 2
η 1/4 1/4 1/4 1/4
δ 15 15 15 15
α 1 ∞ 0 ∞
β 1/16 ∞ 1/8 ∞
γ 7/8 ∞ 7/4 ∞
ν 1/2 ∞ 1 ∞

Table IV.1: Critical exponents of the SL-FM and SL-AF transition lines of the six-vertex model
compared to the ones of the 2d Ising model and the 2d XY model. The ‘hat’ exponents have been
defined by using ξ as the parameter measuring the deviation from the critical point instead of t.tab:CriticalExp6V

IV.3.4 Height representation
sec:Ch4Height

In the study of crystal growth, solid-on-solid (SOS) models are theoretical simplifications
introduced for the investigation of the roughening transition and the equilibrium shapes of inter-
phases. In general, a SOS model is a constrained model for crystal growth where vacancies are
forbidden. In the case of a body-centred cubic crystal (BC) , the SOS model can be mapped on to
the six vertex model

Beijeren1977
[25]. Since the equilibrium phase diagram of the latter is known exactly, this

mapping allows for an exact description of the roughening transition.
The body-centred SOS model (BCSOS) is a constrained version of the BC Ising model with

a nearest-neighbours (NN) coupling J0 and next-to-nearest neighbours (NNN) coupling Jx, Jy
and Jz along the three cartesian axes (shown in Fig. [

fig:vanBeijerenfig:vanBeijeren
IV.9 (b)]). We impose to all the spins in

the bottom to be up (occupied sites represented in black in Fig.
fig:vanBeijerenfig:vanBeijeren
IV.9) and all the spins in the top

to be down (vacancies represented in white in Fig.
fig:vanBeijerenfig:vanBeijeren
IV.9). The solid-on-solid constraint consists

in fixing J0 � Jx,y,z and Jx, Jy, Jz constant. Therefore, a vacancy cannot be found below an
occupied site. This constraint ensures the existence of a single domain wall or surface separating
occupied sites from empty regions. One can specify in a unique way a configuration of the model
by giving the shape of this domain wall. The coordinates (x, y, h(x, y)) of the occupied sites on
the surface define a height configuration h describing a surface. The height difference between
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J0

Jx
Jy

Jz
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(b)

(c)

h = 2

h = 1

h = 0

1

0
11

2
(d)

Figure IV.9: Body-Centered Solid-On-Solid model (BCSOS). (a) A particular configuration of
the BCSOS for a small system made by four unit cells. Black and white dots represent occupied
and empty sites respectively. (b) The interactions occuring in a unit cell. The NN interaction J0 is
represented in blue. The NNN ones in red. (c) The configuration in (a) observed along the x-axis.
The height difference from site to site cannot be larger than a half of the lattice spacing. (d) The
vertex configuration corresponding to the four occupied sites on the surface shown with a red ring.fig:vanBeijeren

two nearest neighbour sites is constrained to be either 1 or −1 (in units of l0/2, where l0 is the
lattice parameter). One can identify the configuration of four sites in the BCSOS with a vertex of
the six-vertex model as shown in Fig. [

fig:vanBeijerenfig:vanBeijeren
IV.9 (d)]. This exact mapping is completed by giving the

following relations:

ε1 = ε2 = Jy − Jx , ε3 = ε4 = Jx − Jy , ε5 = ε6 = −Jx − Jy . (IV.29)

Then both models share the same partition function.

The ice-rules make possible to represent the six-vertex model in the square lattice by a height
function h. A height variable hi is assigned to each site of the dual lattice (i.e. each square
plaquette). One can construct a configuration of heights from a six-vertex model configuration in
the following way. Fix some reference height, for instance h = 0 at the plaquette located in the
northwest corner of the lattice. The height is increased by one if, when traveling from the left
to the right, or from the top to the bottom, we cross a spin pointing up or right. The height is
decreased by one otherwise. This construction is illustrated in Fig.

fig:HeightFunctionfig:HeightFunction
IV.10. Accordingly to these

rules, one can associate to each vertex a unique (up to a constant) set of four integers as shown in
Fig.

fig:Height6Vfig:Height6V
IV.11. One can summarise these mapping by the equation:

hi+1 = hi +
(
~vi,i+1 × ~Si,i+1

)
· ~uz . (IV.30) eq:heightfunction

The vector ~Si,i+1 gives the direction of the arrow sitting on the edge between the two plaquettes i
and i+ 1; ~vi,i+1 gives the direction followed during the construction of the heights. Since we are
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dealing with a square lattice : (~vi,i+1 × ~Si,i+1) · ~uz = ±1. It should be clear from this equation
that one must assign arbitrarily the height h0 of some plaquette before constructing h by recursion.
Once this gauge h0 has been fixed we can deduce from eq. (

eq:heightfunctioneq:heightfunction
IV.30) the value of the height hi at

any site by recursion:

hi = h0 +
i−1∑

j=0 , j∈C

(
~vi,i+1 × ~Si,i+1

)
· ~uz (IV.31) eq:HeightFlux

where the sum is done all along an arbitrary path C from 0 to i. The height function is well defined
since the value hi is independent of the path chosen to compute it. Equivalently, the circulation of
the height difference along any closed path denoted Γ is zero. We define the connection ~Ai,i+1 =
(hi+1 − hi) ~vi,i+1. Then, eq. (

eq:HeightFluxeq:HeightFlux
IV.31) is equivalent to∑

j∈Γ

~Ai,i+1 ·~li,i+1 = 0 ≡
∮

Γ
~A.d~l = 0 (IV.32) eq:AHeight

where ~li,i+1 is the displacement vector from site i to site i + 1. From this equation if becomes
clear that, when the gauge has been fixed, the uniqueness of the height function comes from the
fact that there are no defects in the system.
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Figure IV.10: Height representation of the six-vertex model. The vector ~vi,i+1 is represented
by an horizontal red arrow. It links two nearest neighbours of the dual lattice. The spin variable
~Si,i+1 equals ±~ux if the black arrow points right or left and ±~uy if it points up or down. The four
possible height increments are shown.fig:HeightFunction
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Figure IV.11: The six-vertices allowed by the ice-rules and the corresponding height configura-
tions.fig:Height6V

From Fig.
fig:Height6Vfig:Height6V
IV.11 we deduce that a flat a configuration of the BCSOS corresponds to an anti-

ferromagnetic state in the six-vertex model. The roughening transition corresponds to the AF-SL
transition of the F model. This transition is known to be of the KT type. From the Villain’s rep-
resentation of the XY model, we know that a duality transformation relates the discrete gaussian
model, which is the simplest surface model, with the XY model

ChaikinLubenskyBook
[63]. From duality, the high
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temperature phase of the BCSOS model (rough) is mapped into the low temperature state of the
F model (ordered AF), and the low temperature phase of the SOS model (flat) is mapped into the
hight temperature phase of the F model, which is critical.

IV.3.5 Topological sectors and boundary conditions

In section
sec:TransferMatrixsec:TransferMatrix
IV.3.2 we introduced the concept of topological sector from the block diagonal

decomposition of the transfer matrix. Then, in the discussion of the phase diagram we insist in the
frozen-to-critical character of the FM transition due to the non-local nature of the excitations. In
modern condensed matter terminology, the SL phase would be said to be a topologically ordered
phase.

In the six-vertex model, strings fall into distinct homotopy classes, depending on whether or
not they can be deformed into each other by smooth transformations (without intermediate in-
tersections). The ice-rules divide the phase space into disconnected sectors characterised by the
number of winding loops. Only transformations involving an extensive number of constituents of
the system can make us visit all the configurations. If one only allows local updates can take the
system from one state to another, ergodicity is broken

Castelnovo2007a
[56]. This might be responsible of some

kind of glassy dynamics. Recently, some authors have studied the slow dynamics due to this topo-
logical ergodicity breaking in hardly constrained models

Chakraborty2002,Castelnovo2004,Cepas2012
[64, 59, 62].

Consider the height representation of the six-vertex model on an L × L square lattice with
PBC. At the boundaries the height function verifies: (i) h(x, L) = h(x, 0) − nr + (L2 − nr),
where nr denotes the number of arrows pointing to the right one crosses when going from the bot-
tom of the lattice towards the top; (ii) h(L, y) = h(0, y) + nu − (L2 − nu), where nu denotes the
number of arrows pointing up one crosses when going from the left of the lattice towards the right.
The values of nu and nr define a topological sector. The connection with the definition given in
section

sec:TransferMatrixsec:TransferMatrix
IV.3.2 is straightforward: nu is equivalent to the number of marked lines (particles) in the

NE path representation (see Fig.
fig:PMPathfig:PMPath
IV.6). By flipping local loops of arrows one can deform these

paths and generate new configurations in the same sector. The difference between the height of
the plaquettes in the horizontal and vertical boundaries is left identical. The value of the magneti-
sation in the horizontal and vertical direction is given by: mx

+ = nr − L2 and my
+ = nu − L2.

Hence, the magnetisation is left invariant under local transformations within a sector such that one
can also characterise a sector by the value of the magnetisation.

In order to have winding loops and topological sectors one needs to ‘close’ the lattice from the
boundaries, for instance using PBC. If we define the same model in a lattice with fixed boundary
conditions string excitations of the FM phase do not belong anymore to a different homotopy class
than the ones in the PM and AF phases and the system becomes ‘ergodic’. Thus, we expect that
different boundary conditions can notably affect the dynamical properties of the system. Dynami-
cal properties will be discussed in chapter

ch:Dynamicsch:Dynamics
VI. The dependence of the phase space structure of the

six-vertex model under different boundary conditions has been studied in
Han2010
[109].

The choice of the boundary conditions must satisfy the constraint. A particular choice of
fixed boundary conditions which has attracted a great deal of attention is the so-called Domain
Wall Boundary conditions (DWBC)

Korepin1982
[145]. The six-vertex model with DWBC can be exactly

solved
Korepin2000,Bogoliubov2002
[144, 39], showing that the choice of the boundary conditions can affect the equilibrium

thermodynamic properties of the system as well. The DWBC consist on fixing all the arrows in
boundary lines of the lattice to point into the bulk and all the arrows in the boundary columns to
point out, as shown in Fig.

fig:DWBCfig:DWBC
IV.12. The phase diagram of the model is not altered by the boundary

conditions. However, a complete order cannot be established with DWBC.
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The six-vertex model with this particular choice of boundary conditions is closely related to
important problems in combinatorics:

(i) There is a bijection between the six-vertex model with DWBC and alternating sign matrices
(ASM). An ASM is a square lattice made of 0s, 1s and −1s such that the sum of each row and
column is equal to 1 and the nonzero entries alternate sign in each row and column. The combi-
natorial problem of counting the number of such matrices of size n is equivalent to computing the
partition function of the ice model (∆6 = 1/2) with DWBC on a n× n lattice

Kuperberg1996
[151].

(ii) The six-vertex model with DWBC in the free-fermion point (∆6 = 0) is equivalent to the
dimer model in the Aztec diamond lattice

Eloranta1999,Kenyon2006
[88, 139]. Reknown mathematicians (such as the 2006

Fields Medal, Andrei Okounkov) have been interested into this problem. They studied the the
height function associated to this problem and found the limit shape separating different thermo-
dynamic states. The emergence of an interface between a disordered and an ordered regions is
the so-called Arctic circle phenomenon. In the six-vertex model at ∆6 = 0 the limit shape is a
circle which delimits a FM region close to the boundaries and a SL region in the bulk. The SL
region inside the circle is larger than the ordered phase. The ratio between the SL and FM phase
is constant such that an extensive FM region is still present in the thermodynamic limit. This is
shown in Fig.

fig:DWBCfig:DWBC
IV.12. Numerical simulations have given support for the existence of limit shapes

away from the free-fermion point as well
Syljuasen2004,Allison2005
[252, 6].
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FIG. 6: Polarization χN(x, y) as a function of x for different
values of y. Vertex weights a = b = 1/

√
2. Results for two

different system sizes are shown: N = 32 (upper panel) and
N = 64 (lower panel). The filled symbols are Monte Carlo re-
sults, while the crosses are exact results gotten from Ref. [15].
The dotted lines are guides to the eye.

Applying this we find that each “frozen” corner is 4.6% of
the total area. This value changes relatively little chang-
ing the value of ε.

Going away from the ∆ = 0 curve, let us follow along
the diagonal, a = b, towards ∆ = ∞ first, Fig. 7. As
the values of the vertex weights a and b increase, the
area of the “frozen” regions decreases. We find that with
ε = 0.08 each frozen corner in (b) is 4.0% of the total
area, and 2.8% in (c). For very large values of a = b,
the polarization χN (x, y) increases linearly from −1 to
1 as (x − 1)/N goes from 0 to 1, independent of y, as
can be seen in Fig. 7 (d). This is consistent with what
is expected from an ensemble of configurations with the
smallest possible number of c-type vertices: N ! configu-
rations each with a single c-type vertex on every row and
column.

Consider now a #= b. Because of the symmetry of the
phase diagram, Fig. 5, one can choose b > a without
loss of generality. The weights of the vertices in the
four “frozen” corners are no longer equal, and the “dis-
ordered” region distorts into an oblong shape oriented
along the diagonal with large corners of b2 and b1 vertices,
see Fig. 8. The simulations for a = 1/4 and b =

√

15/16
are shown in Fig. 8(a). The width of the oblong region

(a) (b)

(c) (d)

FIG. 7: Greyscale plot of the polarization χN(x, y) for N = 64
in the disordered phase. Vertex weights are equal, a = b, and
run through the values 1/

√
2, 1, 3, 100 for figures (a)–(d),

respectively. The corresponding values of ∆ are 0, 1/2, 17/18,
1 − 5 · 10−5.

(a) (b)

FIG. 8: Greyscale plot of the polarization χN (x, y) for N =
64. The weight a = 1/4, while the weight b is chosen to be b =
√

15/16 (∆ = 0, disordered phase) in figure (a) and b = 5/4
(∆ = 1, the boundary between disordered and ferroelectric
phases) in figure (b).

shrinks as b increases keeping a fixed, a = 1/4, and be-
comes very thin at the boundary to the ferroelectric re-
gion, as can be seen in Fig. 8(b). Along this boundary,
b = a + 1, the width of the oblong region expands as a
increases with N being constant.

(ii) Antiferroelectric phase: ∆ < −1. The simulations

Figure IV.12: Left: Domain Wall Boundary Conditions in a 4×4 square lattice. Right: Numerical
results for a 64× 64 lattice from

Syljuasen2004
[252]. Greyscale plot of the horizontal local magnetisation (from

−1 in black to +1 in white) for a = b and ∆6 = 0. The grey disk is a SL region, clearly separated
from FM regions of opposite magnetisation.fig:DWBC

IV.4 The eight-vertex model
sec:EightVertex

IV.4.1 Definition

The eight-vertex model is a generalisation of the six-vertex model introduced to remove its
very unconventional properties due to the ice-rule constraint (frozen FM state, quasi long-range
order at infinite temperature, etc.)

Sutherland1970,FanWu1970
[248, 91]. In this model the allowed local configurations are the

ones with an even number of arrows pointing in or out of each vertex, adding the two vertices with
weight d shown in Fig.

fig:eight-vertexfig:eight-vertex
IV.13 to the ones in Fig.

fig:six-vertexfig:six-vertex
IV.5. It was first solved by Baxter in the zero-field

case (i.e., with Z2 symmetry)
Baxter1971,Baxter1972
[21, 22].

Using the same NE convention as for the six-vertex model, the eight vertex model can be
represented by non-intersecting loops as well. A typical configuration is shown in Fig.

fig:eight-vertexPathsfig:eight-vertexPaths
IV.14. The

number of coloured links (bonds) incident at a vertex is always even, such that the NE paths form
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Figure IV.13: The eight vertex configurations with an even number of incoming and outgoing
arrows.fig:eight-vertex

closed loops. Note however that the particle interpretation is no long valid in this case. The number
of bonds is not conserved from row to row and the arrows along the loops do not define orientated
paths. The solution of the eight-vertex model problem turns out to be much more involved than
the six-vertex such that we refer the interested reader to Baxter’s book for further details

BaxterBook
[24]. In

the following we present some results of importance for the present work.

1

Figure IV.14: Path representation of the eight vertex model. The partition function of the eight-
vertex model is equivalent to the weighted enumeration of closed polygons.fig:eight-vertexPaths

IV.4.2 Exact solution

The phase diagram of the eight-vertex model is characterized by the anisotropy parameter

∆8 = a2 + b2 − c2 − d2

2(ab+ cd) (IV.33) eq:Lambda8

which becomes the six-vertex one when d = 0 (see eq.(
delta6delta6
IV.23)). This model sets into the following

five phases depending on the weight of the vertices:

Ferromagnetic phase I (a-FM): ∆8 > 1 (a > b + c + d). This ordered phase is no longer frozen
and M+ ≤ 1 is a continuous function of the parameters. Topological order is broken by the
introduction of v7 and v8, i.e. by the relaxation of the ice-rules.

Ferromagnetic phase II (b-FM): ∆8 > 1 (b > a + c + d). Fluctuations also exist in this ordered
phase, equivalent to the previous one by replacing a-vertices by b-vertices; M+ ≤ 1.

Paramagnetic phase (PM): −1 > ∆8 > 1 [a, b, c, d < (a+ b+ c+ d)/2]. As soon as d > 0 this
phase is truly disordered, with a finite correlation length. The magnetisation vanishes M± = 0.
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Figure IV.15: The phase diagram of the six- (red solid lines) and eight- (dashed lines) vertex
models. In the case of the latter, the projection on the d = 0 plane is shown. Only for d = 0 the
PM region becomes a SL phase.fig:phase-diagram-8vertex

Antiferromagnetic phase I (c-AF): ∆8 < −1 (c > a + b + d). The configurations are dominated
by c-vertices with an alternating pattern of vertices of type 5 and 6 with defects; M− ≤ 1.

Antiferromagnetic phase II (d-AF): ∆8 < −1 (d > a+ b+ c). The configurations are dominated
by d-vertices, with an alternating pattern of vertices 7 and 8 with defects. M− is also different
from zero in this phase; this order parameter does not allow one to distinguish this phase from the
c-AF.

The transition lines are given by ∆8 = 1 for the PM-FM transitions and ∆8 = −1 for the PM-
AF ones. The projection of the critical surfaces on the d = 0 plane yields straight lines translated
by d/c with respect to the ones of the six-vertex model, in the direction of enlarging the PM phase,
as shown with dashed lines in Fig.

fig:phase-diagram-8vertexfig:phase-diagram-8vertex
IV.15.

The effect of the d-vertices on the order of the different phase transitions is very important.
As soon as one quits the d = 0 plane, the KT line between the c-AF and the SL phases becomes
‘stronger’ and the intersection between this and the a = 0 or b = 0 planes are of the KDP type
(following our classification described in section

sec:KDPsec:KDP
III.2.3). On the contrary, the KDP transition lines

between the FMs and SL phases become ‘softer’ when entering the d > 0 space and they become
KT lines on the a = 0 and b = 0 planes. Finally, the separation between the d-AF and disordered
phases is second order for a, b, d > 0 and it is of KT type on the a = 0 and b = 0 planes. As we
will show in chapter

ch:Equilibriumch:Equilibrium
V , this is consistent with our numerical results.

The critical exponents can be found from the analysis of the free-energy density close to the
transition planes. Close to the c = a+ b+d surface the singular part of the free energy behaves as

fs ∼ |t|π/µ ln |t| for µ = π/n, n ∈ N , (IV.34)

fs ∼ |t|π/µ otherwise (IV.35)

where

t = (a− ac)(b− bc)(c− cc)(d− dc)
16abcd (IV.36)

is the deviation from the critical point and µ is a function of the vertex weights defined by
Baxter1971
[21]

tan(µ/2) =
√
cd/ab . (IV.37)
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The singular behaviour of all the other transitions occurring in the model can be deduced from this
one. This can be done by using the symmetries of the model

BaxterBook
[24]:

Z8V (a, b, c, d) = Z8V (b, a, d, c) = Z8V (b, a, c, d) = Z8V (c, d, a, b) . (IV.38)

Therefore, the critical exponents depend explicitly on the weights of the vertices via µ. They are
given in the second column of Table

table:8Vexponents-thtable:8Vexponents-th
IV.2.

On the d → 0 plane of the phase diagram, where µ goes to 0, the AF-PM transition is inifite
order and the six-vertex exponents given in the second column of Table

tab:CriticalExp6Vtab:CriticalExp6V
IV.1 are recovered. The

six-vertex model exponents associated with the FM-SL are also found by taking the limit d → 0
when the parameter µ→ π.

In the b → 0 and a → 0 manifolds, where µ goes to π, the AF-PM transition is discontin-
uous. This can be easily check from the critical exponents given in Table

table:8Vexponents-thtable:8Vexponents-th
IV.2. For µ = 0 we

get "α = −∞" and α = 1 for µ = π, accordingly with the six-vertex model exponents. The
critical exponents of the six- and eight vertex models are strongly dependent on the weight given
to each vertex. This apparently violates the universality principle. In order to restore a ’kind of
universality’ Suzuki proposed in 1974

Suzuki1974
[249] to define new critical exponents using ξ as the scaling

variable instead of t. Note that the same approach was used by Kosterlitz the same year for the
XY model

Kosterlitz1974
[147] (as mentioned in section

sec:Ch3KTsec:Ch3KT
III.1.4). Following this idea we define a new set of

exponents γ̂, α̂ and β̂ by

χ ∼ ξγ̂ , M ∼ ξ−β̂ , C ∼ ξα̂ . (IV.39)

Then β̂ = β/ν = 1/8, independently of the details of the microscopic interactions. If one applies
the scaling relations the other exponents η and δ are identical to the ones of the 2d Ising model
and XY model:

δ = 15, η = 1
4 . (IV.40)

Moreover, these new exponents verify the scaling relations. They are fixed by the value of the
magnetic exponent δ and the dimension d of the model:

γ̂ = d
δ − 1
δ + 1 , β̂ = d

δ + 1 , φ̂ = d , η = 2− d δ − 1
δ + 1 . (IV.41)

eight-vertex 2d Ising 2d XY
γ/ν = γ̂ 7/4 7/4 7/4
β/ν = β̂ 1/8 1/8 1/8

(2− α)/ν = φ̂ 2 2 2
η 1/4 1/4 1/4
δ 15 15 15
α 2− π/µ 0 ∞
β π/(16µ) 1/8 ∞
γ 7π/(8µ) 7/4 ∞
ν π/(2µ) 1 ∞

Table IV.2: Exact critical exponents of the six- and eight-vertex model with tan(µ/2) =
√
cd/ab.

(The way in which the values for the six-vertex model are derived is explained in the text.) The
critical exponents of 2d Ising model are recalled in the third column for comparison.table:8Vexponents-th
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IV.4.3 Ising representation in the dual lattice

The eight-vertex model on a square lattice V is equivalent to an Ising model on its dual lattice
V∗

Kadanoff1971
[132]. There is a one-to-one correspondence between a vertex configuration and a configuration

of its four adjacent Ising spins as depicted in Fig.
fig:Kadanoff-Wegner8Vfig:Kadanoff-Wegner8V
IV.16. An upward and rightward pointing arrow

(a "+" spin located on an edge of V) attached to a vertex corresponds to a pair of parallel Ising
spins located at the center of the adjacent plaquettes (sites of V∗). This representation is invariant
by global spin reversal, meaning that there are 24/2 = 8 different configurations as expected. In
this way an Ising variable σij = ±1 is attached to each site of V∗. In order to complete the Ising
representation of the vertex model one must establish the deduce the interactions between spins
from the vertex weights. In the general eight-vertex model there are six interaction parameters:
ω1, ω2, ω3, ω4, c and d. This is due to the fact that v5,6,7,8 act as sources and sinks of arrows flux
and must then be in equal number if one imposes PBC. Then, without loss of generality one can
fix ω5 = ω6 = c and ω7 = ω8 = d. The simplest Hamiltonian with interactions between the spins
around a vertex (nearest and next-nearest neighbours spins), satifying the symmetry of the model
and with the same number of parameters is

H = −J0 −
∑
i

∑
j

(Jx1 σijσi,j+1 + Jy1σijσi+1,j

+ J2σi,j+1σi+1,j + J ′2σijσi+1,j+1 +Kσijσi,j+1σi+1,jσi+1,j+1). (IV.42) eq:HamiltonianIsing8V

This generalised Ising model includes two body and four body interactions without an external
field. Anisotropic interactions between nearest neighbour spins are given by Jx1 and Jy1 , between
next-nearest neighbour spins by J2 and J ′2 and the four spin interaction by K. The interactions
between four spins surrounding a vertex are illustrated in Fig.

fig:Kadanoff-Wegner8Vfig:Kadanoff-Wegner8V
IV.16. It is important to note here

that the eight vertex model constraint αijαi+1,jµijµi,j+1 = 1 is verified.
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Figure IV.16: Equivalence between the eight-vertex configurations and the Ising spin arrangements
in the dual lattice.fig:Kadanoff-Wegner8V

The correspondence between the coupling between spins and vertex weights is now straightfor-
ward. Consider each vertex configuration and compute the contribution of the Ising Hamiltonian.
We obtain

ω1 = exp[−β(J0 + Jx1 + Jy1 + J2 + J ′2 +K)]
ω2 = exp[−β(J0 − Jx1 − J

y
1 + J2 + J ′2 +K)]

ω3 = exp[−β(J0 + Jx1 − J
y
1 − J2 − J ′2 +K)]

ω4 = exp[−β(J0 − Jx1 + Jy1 − J2 + J ′2 +K)]
ω5 = ω6 = c = exp[−β(J0 + J2 − J ′2 −K)]
ω7 = ω8 = d = exp[−β(J0 − J2 + J ′2 −K)]. (IV.43)

The parameter J0 is irrelevant for energetic considerations but must be added to the Hamiltonianeq:weight_exchange8V eq:HamiltonianIsing8Veq:HamiltonianIsing8V
IV.42 in order to have an invertible set of linear equations between the vertex energies and the
interaction parameters. One can invert the linear set of equations obtained by taking the log of
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eq.
eq:weight_exchange8Veq:weight_exchange8V
IV.4.3 and write

J0 = −1/8(ε1 + ε2 + ε3 + ε4 + 2ε5 + 2ε7)
Jx1 = 1/4(−ε1 + ε2 − ε3 + ε4)
Jy1 = 1/4(−ε1 + ε2 + ε3 − ε4)
J2 = 1/8(−ε1 − ε2 + ε3 + ε4 − 2ε5 + 2ε7)
J ′2 = 1/8(−ε1 − ε2 + ε3 + ε4 + 2ε5 − 2ε7)
K = 1/8(−ε1 − ε2 − ε3 − ε4 + 2ε5 + 2ε7). (IV.44) eq:excahnge_weight8V

We can normalize the vertex energies such that J0 = 0 and forget about the contribution coming
from the constant term in eq.

eq:weight_exchange8Veq:weight_exchange8V
IV.4.3. The symmetric zero-field eight-vertex model a = ω1 = ω2,

b = ω3 = ω4 corresponds to an Ising model with

Jx1 = Jy1 = 0
J2 = 1/4(−ε1 + ε3 − ε5 + ε7)
J ′2 = 1/4(−ε1 + ε3 + ε5 − ε7)
K = 1/4(−ε1 − ε3 + ε5 + ε7). (IV.45) eq:exchange_wight8Vzerofield

and equivalently

a = exp[−β(J2 + J ′2 +K)]
b = exp[−β(−J2 − J ′2 +K)]
c = exp[−β(J2 − J ′2 −K)]
d = exp[−β(−J2 + J ′2 −K)] (IV.46) eq:weight_exchange8Vzerofield

The critical exponents are given by tan(µ/2) =
√

cd
ab = e−2K . Therefore, the four-body in-

teraction is responsible for the variation of critical exponents. The nearest-neighbour interactions
vanish in the absence of an external field. The six-vertex model limit d → 0 is not well defined
in this representation since it corresponds to a non-trivial way of taking infinite interaction param-
eters. The eight-vertex model is equivalent to two interpenetrating Ising models coupled by the
four spin interaction K. In the particular case K = 0 these two Ising models are independent
and the thermodynamics of the eight-vertex problem become identical to the ones of the usual 2d
Ising model. In particular, the free energy density of the eight vertex model is identical to the one
computed by Onsager 6:

f8 = fIsing (IV.47)

From eq.
eq:exchange_wight8Vzerofieldeq:exchange_wight8Vzerofield
IV.45, the four spin interaction vanishes in the so-called free fermion point

ε1 + ε3 = ε5 + ε7 . (IV.48)

From this condition we get J2 = J ′2 and

a2 + b2 = c2 + d2 , ∆8 = 0 . (IV.49)

The free fermion condition was originally introduced to express the solvability of generalised Ising
models

Hurst1960,FanWu1970
[119, 91]. It is well known that the 2d Ising model solved by Onsager is equivalent to a 1d

chain of free fermions
Schultz1964
[234]. Similarly, the eight vertex model at the free fermion point turns out

to be equivalent to a chain of free fermions, hence ‘easily’ solvable.

6. In the Ising case whereK = 0 then µ = π/2 and one finds the Ising exponents. For instance, β = π/16µ = 1/8
when µ = π/2.
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Figure IV.17: The eight vertex model square lattice shown in black with each vertex denoted by a
dot and the corresponding sites of the dual lattice (in red) where the Ising spins are defined shown
by crosses.fig:8-vertex-Ising

In view of the non-integrable sixteen-vertex problem, it is important to note here in what extent
the equivalence with this Ising model is particular of the eight-vertex model. Let’s define binary
variables on the links of the original lattice V . For all the vertices w(i, j) we define two binary
variables αij and αi+1,j for vertical bonds and two for horizontal bonds denoted by µi,j and µi,j+1.
For the eight vertex model they are defined in the Ising representation by

αij = σijσi,j+1

µij = σijσi+1,j (IV.50)

This definition implies that, for all (i, j), the eight vertex model constraint is verified since

αijαi+1,jµijµi,j+1 = 1 (IV.51)

The Hamiltonian
eq:HamiltonianIsing8Veq:HamiltonianIsing8V
IV.42 can now be rewritten in terms of these new variables. We get

H = −
∑
ij

(
Jx1αij + Jy1µij + J2αijµij + J ′2αi+1,jµij +Kαijαi+1,j

)
(IV.52)

This Ising representation of the model in the dual lattice can not be extended to the general sixteen-
vertex problem. A different approach will be used in the next section.

As already mentioned, the exact solution of the eight-vertex model shows that the critical
exponents are continuous functions of the interaction parameters. This contradicts a priori the
universality hypothesis. The Ising model representation of the problem gives light into the source
of this pathological behaviour. It was introduced by Kadanoff and Wegner to understand the origin
of this apparent violation of universality. They argue that the four spin interaction gives rise to a
marginal operator conjugate to K which gives K-dependent exponents

Kadanoff1971
[132].
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IV.4.4 The Heisenberg XYZ spin chain
sec:8vXYZ

The transfer matrix of a classical two-dimensional statistical model can be thought of as an op-
erator acting on the Hilbert space of a one-dimensional quantum many-body system. The partition
function of the eight-vertex model in a square lattice V = L× L can be written as

Z =
∑
l∈C

L∏
i=0

L∏
j=0

wl(i, j) (IV.53)

where wl(i, j) is the Boltzmann weight of the vertex at site (i, j) for a configuration l ∈ C. The
vertex weight can be re-written by introducing the R-matrix:

wl(i, j) = 〈αji , µ
j
i |R|α

j
i+1, µ

j+1
i 〉 (IV.54)

where αji = ±1 denotes the spin linked to the vertex (i, j) from below and µji = ±1 denotes the
spin linked from the left. Here we use the same notations as in section

sec:TransferMatrixsec:TransferMatrix
IV.3.2. For the eight-vertex

model the R-matrix is given by 7

R =


ω1 0 0 ω7
0 ω3 ω6 0
0 ω5 ω4 0
ω8 0 0 ω2

 (IV.55)

The partition function then reads

Z =
∑
|α〉

∑
|µ〉

∏
(i,j)∈V

〈αji , µ
j
i |R|α

j
i+1, µ

j+1
i 〉 =

∑
|α〉

∏
i

〈{αi}|T |{αi+1}〉 = Tr TL . (IV.56)

The 2.2L × 2.2L row-to-row transfer matrix T is given by

〈{αi}|T |{αi+1}〉 =
∑

µ1
i=±1

...
∑

µLi =±1

∏
j

〈αji , µ
j
i |R|α

j
i+1, µ

j+1
i 〉 . (IV.57)

For convenience we note

T (i, i+ 1) =
∑

µ1
i=±1

...
∑

µLi =±1

∏
j

〈µji |Ri|µ
j+1
i 〉 = Tr2 (R1.R2...RL) , (IV.58)

where the trace is taken over the 2× 2 matrix where each entry is an operator on a row of L spins.
We defined the linear operator Ri acting on a row of horizontal edges such as

〈µ|Ri|µ′〉 = 〈αi, µ|R|αi+1, µ
′〉 (IV.59)

which is the 2.2L × 2.2L matrix:

Ri =
(
〈+, µ|R|+, µ′〉 〈+, µ|R|−, µ′〉
〈−, µ|R|+, µ′〉 〈−, µ|R|−, µ′〉

)
. (IV.60)

Each entry in this array corresponds to a 2L × 2L matrix since each row |µ〉 is a 2L−dimensional
vector. For the eight-vertex model one gets

Ri = 1
2

(
(ω1 + ω4)I + (ω1 − ω4)σ̂zi 2(ω5σ̂

+
i + ω7σ̂

−
i )

2(ω6σ̂
+
i + ω8σ̂

+
i ) (ω2 + ω3)I− (ω2 − ω3)σ̂zi

)
. (IV.61)

7. In the Z2-symmetric case solved by Baxter: ω1 = ω2 = a, ω3 = ω4 = b, ω5 = ω6 = c and ω7 = ω8 = d.



IV.5. THE LOOP ALGORITHM 93

The Pauli operators for the i-th spin on the chain σ̂i = 12⊗ ...⊗σi⊗ ...12 act on the Hilbert space
of a quantum spin-1/2 chain of length L, where the σi are the usual 2 × 2 Pauli matrices. Let us
focus on the symmetric model where

Ri = 1
2

(
(a+ b)I + (a− b)σ̂zi 2(cσ̂+

i + dσ̂−i )
2(cσ̂−i + dσ̂+

i ) (a+ b)I− (a− b)σ̂zi

)
(IV.62)

Now let us try to find a commuting Hamiltonian with only nearest neighbours interactions

H =
L∑
i=1

hi,i+1 (IV.63)

where hi,i+1 involves only variables on sites i and i + 1. We shall impose periodic boundary
conditions (which will be shown to be necessary since the partition function is computed from a
trace). We replace H by H ⊗ 12, then the commutator [T,H] can be written

[T,H] = Tr2
∑
i

[R1R2...RiRi+1..RL, hi,i+1] (IV.64)

= Tr2
∑
i

{R1..Ri−1([Ri, hi,i+1]Ri+1 +Ri[Ri+1, hi,i+1])Ri+2..RL} (IV.65)

Only two commutators should be calculated: [Ri, hi,i+1] and [Ri+1, hi,i+1]. The convenient
choice was found by Sutherland

Sutherland1970
[248] and corresponds to the XY Z Heisenberg Hamiltonian

H =
L∑
i=1

(
Jxσ̂xi σ̂

x
i+1 + Jyσ̂yi σ̂

y
i+1 + Jzσ̂zi σ̂

z
i+1

)
(IV.66) eq:HXYZ

= (Jx + Jy)
L∑
i=1

(
σ̂+
i σ̂
−
i+1 + σ̂−i σ̂

+
i+1 + Γ [σ̂+

i σ̂
+
i+1 + σ̂−i σ̂

−
i+1] + ∆

2 σ̂zi σ̂
z
i+1

)
. (IV.67)

The next step is to find Jx, Jy and Jz as functions of the vertex weights. This Hamiltonian
commutes with T if

∆ = 2Jz

Jx + Jz
= a2 + b2 − c2 − d2

2(ab+ cd) , Γ = Jx − Jy

Jx + Jy
= cd. (IV.68)

From this result we conclude that if we can find the spectrum of T then we can also find the quan-
tum eigenstates and eigenvalues of HXY Z . The largest eigenvalue of T , i.e. the thermal state,
corresponds to the ground state of the quantum problem. The six-vertex model corresponds to the
case d = 0. From the latter equation: Γ = 0 hence Jx = Jy. Note that non-global properties,
such as two-point functions, cannot be computed from the eigenvector with the largest eigenvalue.
Further refinements are needed for this purpose

Korepin1997
[146].

IV.5 The loop algorithm

Single-spin flip updates break the six- and eight- vertex model constraints and cannot be used
to generate different configurations in these cases. Instead, as each spin configuration can be
viewed as a non-intersecting (six vertex) or intersecting (eight vertex) loop configuration, stochas-
tic non-local updates of the loops have been used to sample phase space

Barkema1998,Syljuasen2004
[15, 252]. By imposing

the correct probabilities all along the construction of non-local moves cluster algorithms can be
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Figure IV.18: Short Loop algorithm. Starting from an ice-rule configuration (a) the algorithm
constructs the path shown in red by adding spins one by one until it forms a closed loop (c). All
the spins in the loop are flipped with probability P ∝ min[1, eβ∆E ] where ∆E is the energy
difference between the configuration (d) and (a). Defects of opposite charge are shown by black
and white circles.fig:ShortLoop

designed
Syljuasen2004,Evertz1993
[252, 89]. Non-trivial issues as the effect of boundary conditions have been explored in

this way
Syljuasen2004,Allison2005
[252, 6].

Loop-algorithms, as usually presented in the context of Quantum Monte Carlo methods, ex-
ploit the world-line representation of the partition function of a given quantum lattice model

Suzuki1985
[251].

As explained in section
sec:8vXYZsec:8vXYZ
IV.4.4 the 2d six- and eight-vertex models are equivalent to the Heisen-

berg XXZ and XYZ quantum spin-1/2 chains, respectively
Sutherland1970,Suzuki1976
[248, 250]. It is then not surprising to

find the same kind of loop-algorithms in the vertex models literature. A configuration in terms of
bosonic world lines of the quantum spin chain in imaginary time can be one-to-one mapped into
a vertex configuration in the square lattice, such as the same loop algorithm samples equivalently
the configurations of both models.

In this section we describe the loop algorithm broadly used to simulate constrained systems.
The relationship between classical vertex models and quantum spin chains is also discussed from
this point of view.

IV.5.1 Monte Carlo updates for the six- and eight-vertex models

In order so sample configurations in a constrained manifold, as the 2in-2out configurations of
spin-ice, one has to think about updates which do not create defects. This is the purpose of the loop
algorithm. In the six-vertex model, the divergence free condition is preserved by updating loops of
arrows which point into the same direction along the loop

Barkema1998
[15]. The steps of this algorithm shown

in Fig.
fig:ShortLoopfig:ShortLoop
IV.18 are:

– Choose a seed spin S0 randomly among all the spins in the lattice. We denote by v0 the
vertex where it points to.

– Choose randomly a spin among the two outgoing ones attached to v0.
– Continue this procedure keeping track of the cluster/path of spins we have chosen until the

path encounters a vertex which already belongs to it, creating a closed loop.
– Reverse all the spins along the loop with a Metropolis rule.
The creation of loops can be done à la Kandel and Domany

Kandel1991
[133], i.e. impose detailed balance

during the construction of the loop where the spins are successively flipped
Evertz1992, Evertz1993
[90, 89]. The same

ideas have also been applied to the eight vertex model
Syljuasen2008
[253]. One can interpret this process as the

creation of two defects of charge q = ±1 moving from site to site until they recombine. Loops
are the natural excitations in vertex models and can be though of as the creation and annihilation
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Figure IV.19: World-line representation of the XXZ chain. World-lines for the quantum spins
are shown in red. The weights w in eq. (

eq:PartXXZeq:PartXXZ
IV.73) which contribute to the partition function are only

for the dashed plaquettes shown in the picture. In the classical representation, each on these grey
plaquettes is a vertex verifying the ice-rule. Time evolution is represented by red arrows along the
world lines.fig:QuantumLoop

of two defects. This remark will be important when discussing dynamics.
The loop algorithm is used to sample the equilibrium configurations of hard constrained mod-

els in general. In these systems loops made by the relevant degrees of freedom in the system con-
stitute the simplest possible updates. In colouring models

Baxter1970d,Baxter1970e
[18, 20] loops are made by a sequence

of two colours and they are updated by switching its colours. The 3-colouring model on the hexag-
onal lattice

Baxter1970d
[18] has been studied by Monte Carlo simulations using loop updates

Chakraborty2002,Castelnovo2004
[64, 59]. In this

model, one can choose at random a site of colourA and a neighbour of colourB. Then construct a
closed loop ABABAB...BA for site to site. Then switch the colours AB...BA→ BA..AB with
a Metropolis rule. Similar updates have been used for the simulation of dimer models

Alet2005,Sandvik2006
[4, 233],

and spin ice
Melko2004
[174].

IV.5.2 World-line representation of quantum spin-1/2 chains
sec:SuzukiTrotter

In section
sec:8vXYZsec:8vXYZ
IV.4.4 we showed the relationship between the six- and eight-vertex with the XXZ

and XYZ quantum spin chains by inspection of the transfer matrix. Here we adopt a different route
for the same scope. We start from the quantum Hamiltonian of the XXZ model and, by making use
of the Suzuki-Trotter decomposition, we show the equivalence with the six-vertex problem

Suzuki1976
[250].

The Hamiltonian of the XXZ spin half chain is

HXXZ =
N∑
i=1

(JxSxi Sxi+1 + JxSyi S
y
i+1 + JzSzi S

z
i+1) =

N∑
i=1

h(i, i+ 1) (IV.69)

and we introduce the anisotropy parameter describing its phase diagram ∆XXZ = Jz/Jx. The
partition function of the model can be sliced intoM factors using the Suzuki-Trotter formula

Suzuki1976
[250]:

ZM = Tr{[exp(− β

M
H2) exp(− β

M
H1)]M} , ZXXZ = lim

M→∞
ZM , (IV.70)
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where we have split the Hamiltonian H = H2 + H1 into an odd H1 =
∑
n=0 h(2n + 1, 2n) and

an even part H2 =
∑
n=1 h(2n, 2n+ 1). By introducing the state of N spins |Sk〉k=1...M for each

one of the M factors one gets:

ZM =
∑
|S1〉

...
∑
|SM 〉
〈S1|e−∆τH2 |SM 〉...〈S2|e−∆τH1 |S1〉 (IV.71)

where the index k is the ‘imaginary time’ coordinate in units of ∆τ = β/M . The partition
function is the sum of the weight of each possible trajectory (the so-called world lines) obtained
by application of the evolution operators e−∆τH1 and e−∆τH2 . The representation of the partition
function as a sum over path contributions is the discrete version of the path integral formulation of
quantum mechanics. The fact that the world lines are closed is imposed by the PBC. The first step
of the evolution is given by

〈S2|e−∆τH1 |S1〉 =
∏

i, odd
〈s(i, 2)s(i+ 1, 2)| exp[−∆τh(i, i+ 1)]|s(i, 1)s(i+ 1, 1)〉 (IV.72)

where {|s(i, k)〉} are the eigenvectors of the spin operator Szi with eigenvalue s(i, k) = ±1 and
i is an odd number. The quantum system has been mapped into a classical model defined by the
spin variables s(i, k) sitting on the site of a N ×M lattice with coordinates (i, k). The lattice can
be divided into two sub-lattices A and B. The partition function can then be written as a sum over
configurations of this classical model as

ZM =
∑
{s(i,k)}

∏
(i,k)∈A

w(i, k) (IV.73) eq:PartXXZ

where w(i, k) denotes the weight of a plaquette made by the four sites of coordinates {(i, k), (i+
1, k), (i + 1, k + 1), (i, k + 1)}. The product runs over the sites for which is i + k even (i.e. the
A sub-lattice). Only the shaded plaquettes shown in Fig.

fig:QuantumLoopfig:QuantumLoop
IV.19 contribute to the partition function

with the weight w(i, k). The latter is given by the elements of the 4× 4 matrix:

w(i, k) = 〈s(i, k + 1)s(i+ 1, k + 1)|e−∆τh(i,i+1)|s(i, k)s(i+ 1, k)〉 , (IV.74)

w(i, k) =


e−

∆τ
4 Jz 0 0 0
0 e

∆τ
4 Jz cosh(∆τ

2 |J
x|) e

∆τ
4 Jz sinh(∆τ

2 |J
x|) 0

0 e
∆τ
4 Jz sinh(∆τ

2 |J
x|) e

∆τ
4 Jz cosh(∆τ

2 |J
x|) 0

0 0 0 e−
∆τ
4 Jz

 . (IV.75) eq:WXXZ

If one identifies the matrix elements above as following

〈+ + |e−∆τh(i,i+1)|+ +〉 = 〈− − |e−∆τh(i,i+1)| − −〉 = ω1 = ω2 = a

〈+− |e−∆τh(i,i+1)|+−〉 = 〈−+ |e−∆τh(i,i+1)| −+〉 = ω3 = ω4 = b

〈+− |e−∆τh(i,i+1)| −+〉 = 〈−+ |e−∆τh(i,i+1)|+−〉 = ω5 = ω6 = c

, (IV.76) eq:vertexWeightsXXZ

the matrix eq. (
eq:WXXZeq:WXXZ
IV.75) of the XXZ chain becomes identical to the R-matrix of the six-vertex model

eq. (
eq:R6Veq:R6V
IV.18). The only six matrix elements which do not vanish conserve the magnetization in

the z-direction. This conservation law is equivalent to the bond conservation in the NE path
representation of the six-vertex model, hence to the ice-rule. From eq. (

eq:vertexWeightsXXZeq:vertexWeightsXXZ
IV.76), a, b and c depend

on the couplings Jx, Jz and on ∆τ . In order to apply Suzuki-Trottrer theorem, one has to take the
limit ∆τ → 0 for all of this to make sense. One obtains the important result:

lim
∆τ→0

a2 + b2 − c2

2ab = Jz

Jx
, ∆6 = ∆XXZ . (IV.77)



IV.5. THE LOOP ALGORITHM 97

1

11

1

1

1

ω1 ω2 ω3 ω4 ω5 ω6

Figure IV.20: Equivalence between the XXZ and the six-vertex model. One-to-one correspon-
dence between the six possible vertex configurations on a dashed plaquette and world-lines in the
XXZ quantum chain.fig:QuantumPlaquette

The partition function of the XXZ and the six-vertex model are equal in the thermodynamic
limit with PBC: ZXXZ = Z6V . The phase diagram is hence identical and characterised by
the same anisotropy parameter. The correspondence between bosonic 8 world lines and vertex
configurations is shown in Fig.

fig:QuantumLoopfig:QuantumLoop
IV.19 and Fig.

fig:QuantumPlaquettefig:QuantumPlaquette
IV.20. The quantum equivalent of the frozen FM

phase in the KDP model is a gapped phase. The gap energy correspond to the energy associated
with a string excitation.

In order to perform a Monte Carlo simulation of the XXZ chain one has to generate different
world-lines configurations with the appropriate statistical weight. This can be done by deforming
locally the world lines and updating the system accordingly to a Metropolis rule. An allowed
deformation of a world line which preserves the conservation of the magnetisation along z can be
generated by the loop algorithm described before. As shown in Fig.

fig:QuantumMCfig:QuantumMC
IV.21, a different configuration

is generated by flipping all the arrows along a closed loop.
It is quite straightforward to generalise the mapping and show the equivalence between the

XY Z and eight-vertex model. The Hamiltonian in this case is

HXY Z =
N∑
i=1

(JxSxi Sxi+1 + JySyi S
y
i+1 + JzSzi S

z
i+1) =

N∑
i=1

h(i, i+ 1) (IV.78)

which gives the following plaquette weights:

〈+ + |e−∆τh(i,i+1)|+ +〉 = 〈− − |e−∆τh(i,i+1)| − −〉 = ω1 = ω2 = a

〈+− |e−∆τh(i,i+1)|+−〉 = 〈−+ |e−∆τh(i,i+1)| −+〉 = ω3 = ω4 = b

〈+− |e−∆τh(i,i+1)| −+〉 = 〈−+ |e−∆τh(i,i+1)|+−〉 = ω5 = ω6 = c

〈+ + |e−∆τh(i,i+1)| − −〉 = 〈− − |e−∆τh(i,i+1)|+ +〉 = ω7 = ω8 = d

(IV.79) eq:vertexWeightsXYZ

verifying

lim
∆τ→0

a2 + b2 − c2 − d2

2(ab+ cd) = Jx + Jy

2Jz , ∆8 = ∆XY Z . (IV.80)

The inclusion of 4in and 4out vertex configurations does not break the ‘closeness’ of the world
lines and the loop algorithm can be applied. The extra anisotropy Jx = Jy introduces the pos-
sibility to world lines to go backwards as shown in Fig.

fig:XYZPlaquettefig:XYZPlaquette
IV.22. For the XYZ model there is no

need to construct oriented loops since any closed loop update preserves the parity of the number
of incoming and outgoing arrows at each vertex.

8. One can replace the operator Szi by a bosonic creator operator ni. Since world lines do not cross the model turns
out to describe hard core bosons in 1d.
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Figure IV.21: Loop update in the XXZ model. (a) Initial world line configuration. The yellow
dotted lines denote a loop of arrows in the vertex representation. (b) Configuration obtained from
(a) by switching all the arrows allong the yellow loop. The modification induced by this update is
shown in blue.fig:QuantumMC

IV.6 General remarks about hardly constrained systems

IV.6.1 Emergent gauge structure and Coulomb phase

The definition of the height representation of the six-vertex model given in section
sec:Ch4Heightsec:Ch4Height
IV.3.4 for a

continuous formulation of the model. In the continuum the height configuration becomes a smooth
function. One can introduce a coarse-grained field M defined by

Youngblood1980
[277]

~M(x, y) =
(
− ∂

∂y
h(x, y), ∂

∂x
h(x, y)

)
. (IV.81) eq:CoarseGrainM

The coarse-grained field ~M(x, y) is the local average of the magnetisation around ~r = (x, y):
~M(~r) = 1

N~r

∑
e∈D~r

~Se where D~r denotes a subdomain of the lattice around the point ~r. The
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Figure IV.22: World line representation of the 4-in and 4-out plaquettes allowed in the XYZ model.fig:XYZPlaquette
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correlations of this are ruled by the divergence free constraint

~∇ · ~M(x, y) = 0 , ∀ (x, y) ∈ R2 (IV.82)

which is the continuum version of the ice-rules. In the absence of singularities, this constraint
allows the existence of a ’scalar vector potential’ h. This was already apparent from eq. (

eq:CoarseGrainMeq:CoarseGrainM
IV.81),

which can be written symbolically as:

~M(x, y) ≡ ~∇× ~h(x, y) , ∀ (x, y) ∈ R2 (IV.83)

where ~h(x, y) = h(x, y) ~uz . The ice-rules make rise quite naturally to a U(1) gauge structure. In
the rough phase the effective action is supposed to be Gaussian:

S[h] = K

2

∫
~M2dx dy = K

2

∫
[~∇h]2dx dy . (IV.84)

The probability distribution of a field configuration can be written as

P[h] = 1
Z
e−β

K
2

∫
~M2dx dy

∏
~r

δ(~∇. ~M) . (IV.85)

By analogy with electrodynamics, the set of field configurations distributed accordingly with P is
sometimes referred to as the Coulomb phase

Henley2010
[114].

IV.6.2 Dipolar long range correlations

The computation of two-point correlation function in this theory only involves gaussian inte-
grals and can be carried out analytically. In d-dimensions one gets the asymptotic correlations:〈

Mµ(~r)Mν(~0)
〉

= kBT

g

[
δd(~r) + 1

rd

(
δ−1
µν − d

rµrν

|~r|2
)]

. (IV.86)

If we relax the divergence-free condition we get〈
Mµ(~r)Mν(~0)

〉
= kBT

g
δµνδ(~r) . (IV.87)

It is explicit from this simple model that the constraint is responsible for the emergence of critical
correlations. In d = 2 it gives:〈

Mµ(~r)Mν(~0)
〉

= kBT

g

(
δd(~r) + 1

r2 (1− 2 cos2 ϕ)
)

for µ = ν (IV.88)〈
Mµ(~r)Mν(~0)

〉
= kBT

g

(
δd(~r)− 2 sinϕ cosϕ

r2

)
for µ 6= ν . (IV.89)

Many interesting aspects of the collective behaviour arising in the six-vertex model are due to
the ice-rule constraint and can be also found in other constrained lattice models. A specially clear
and unifying concept of constrained models is the existence of a height representation

Henley2011b
[113].The

4-state AF Potts model in the triangular lattice
Moore2000
[194], the 3-colouring model on the hexagonal

lattice
Kondev1996
[143] or the dimer model on the hexagonal lattice (which is equivalent to the ground state

of the AF Ising in the triangular lattice)
Blote1982
[37] allow for a height representation. The height function

formulation is closely related to the Coulomb gas method
NienhuisBook
[204], an efficient way to compute the

critical exponents of constrained systems
Blote1993,Kondev1996
[38, 143].
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IV.7 The sixteen-vertex model
sec:16Vertex

IV.7.1 Definition

The most general model obtained by the relaxation of the ice-rules is the sixteen-vertex model,
in which no restriction is imposed on the value of the binary variables attached on each edge
of the lattice, and 24 = 16 vertex configurations can occur. The three-in one-out and three-out
one-in vertices that are added to the ones already discussed are shown in Fig.

fig:sixteen-vertexfig:sixteen-vertex
IV.23. In order

to preserve the Z2 symmetry, and with no external magnetic field applied that would break the
rotation symmetry, all these ‘defects’ with charge 1 and −1 are given the same statistical weight
that we call e. In the figure, vertices are ordered in pairs of spin-reversed couples (v10 is the spin
reversed of v9 and so on and so forth) and the difference with the following couples is a rotation
by π/2 (v11 is equal to v9 apart from a π/2-rotation and so on and so forth).

1

v9 v10 v11 v12 v13 v14 v15 v16

� �� �
e

v1 v2

� �� �
a=ω1=ω2

v3 v4

� �� �
b=ω3=ω4

v5 v6

� �� �
c=ω5=ω6

v7 v8

� �� �
d=ω7=ω8

1

= ω9,..,16

Figure IV.23: The sixteen configurations of the sixteen-vertex model. The eight three-in one-out
(with charge +1) or three-out one-in (with charge −1) vertices are added. We give them equal
weight e.fig:sixteen-vertex

The new vertices naturally entail the existence of new phases. One can envisage the existence
of a critical SL phase for a = b = c = d = 0 and e > 0 as this new eight-vertex model is
equivalent to the dimer model solved by Kasteleyn. It is quite easy to see that e-AF stripe order
is also possible. For instance, one can build an ordered configuration with alternating lines of
v9 and v10 vertices, or another one with alternating columns of v11 and v12 vertices. Phases of
this kind should appear if one favours one pair of spin-reversed related vertices by giving them
a higher weight. The phase transitions to this phase are expected to be continuous since, for
a = b = c = d = 0 and ωi>8 > 0 local updates are in form of loops of spins around a plaquette
are possible. The critical properties of such eight-vertex model are unknown.

IV.7.2 Ising representation in the medial lattice

In this section we show the equivalence between the symmetric sixteen-vertex model with Z2
symmetry and an Ising model with two-spin and four-spin interactions and without external field
LiebWuBook
[165]. We consider the case where a = ω1 = ω2, b = ω3 = ω4, c = ω5 = ω6, d = ω7 = ω8 and
e = ωi>8. A more general dicussion can be found in

LiebWuBook
[165].

There is an obvious bijection between a vertex configurations on V and a four Ising spins
configuration on S: we assign a spin up(down) on S if the corresponding arrow on V points up
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Figure IV.24: The four spin variables sitting on the sites of the medial lattice around a vertex. The
red lines represent the interactions between them. This representation allows for a one-to-one map
between a vertex configuration and an arrangement of four spins σr,u,l,d.fig:16-vertex-Ising

(down) or right (left). The identification of the interactions between spins leading to the sixteen-
vertex Hamiltonian defined above is much less obvious. One can identify the energy of each vertex
to the energy with its four spins. The Hamiltonian for each square plaquette made of four spins
surrounding a vertex reads

Hv = −J0 − J1(σuσl + σrσd)− J ′1(σuσr + σlσd)
− J2(σuσd + σrσl)−Kσuσdσrσl (IV.90)

where the subscripts u, d, l, r correspond to the four edges attached to a single vertex as illustratedeq:H16Ising
in Fig.

fig:16-vertex-Isingfig:16-vertex-Ising
IV.24. The total lattice Hamiltonian H is then given by summing Hv all over the square

lattice V . The vertex energies can then be rewritten

ε1 = ε2 = εa = −J0 − 2J1 − 2J ′1 − 2J2 −K
ε3 = ε4 = εb = −J0 + 2J1 + 2J ′1 − 2J2 −K
ε5 = ε6 = εc = −J0 − 2J1 + 2J ′1 + 2J2 −K
ε7 = ε8 = εd = −J0 + 2J1 − 2J ′1 + 2J2 −K
ε9 = ... = ε16 = εd = −J0 +K

(IV.91)

The constant J0 guarantees the set of linear equations can be inverted leading to

J0 = 1/16(−2εa − 2εb − 2εc − 2εd − 8εe)
J1 = 1/16(−2εa + 2εb − 2εc + 2εd)
J ′1 = 1/16(−2εa + 2εb + 2εc − 2εd)
J2 = 1/16(−2εa − 2εb + 2εc + 2εd)
K = 1/16(−2εa − 2εb − 2εc − 2εd + 8εe). (IV.92)

The eight-vertex model corresponds to the particular case K = J0. The six-vertex model corre-
sponds to an anisotropic Ising model with two body and four body interactions:

J1 = 1/8(−εa + εb − εc)
J ′1 = 1/8(−εa + εb + εc)
J2 = 1/16(−εa − εb + εc)
K = −1/8(εa + εb + εc). (IV.93)
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This Ising model becomes isotropic when εc → 0 (J1 = J ′1).
The model defined by the Hamiltonian

eq:H16Isingeq:H16Ising
IV.7.2 reduces to an Ising model with only two body

exchange interactions if K = 0, i.e.

4εe = εa + εb + εc + εd ⇔ e4 = abcd. (IV.94)

When this condition is satisfied some equilibrium properties of the model can be computed. The
coming section is devoted to them.

IV.7.3 Some exact results

The sixteen-vertex model loses the integrability properties. However, some exact results are
available for a few special sets of parameters when the equivalent classical Ising model only has
nearest and next-nearest neighbor two-body interactions, i.e. when e4 = abcd

LiebWuBook,WuPRL1969
[165, 270].

In the c-AF sector this condition leads to the generalized F model defined by c = 1, a = b < 1,
d = au and e = av, with the constraint 4v = u + 2. The model has been solved for the special
cases:

(i) v = 1 and u = 2 (i.e. e = a and d = a2), the associated spin model simplifies into an antifer-
romagnetic Ising model with only nearest neighbor interactions. This model is known to exhibit
a second-order phase transition at ε/kBTc = 2 ln(

√
2 + 1) with a logarithmic divergence of the

specific heat (α = 0).

(ii) v → ∞ and u = 2 (i.e. e = 0 and d = a2) the system also exhibits a second-order phase
transition in the same universality class as (i). Note that the exactly solved F model is recovered
in the limit v →∞ and u→∞ (d = e = 0).

In the same way, in the a-FM sector this leads to the generalised KDP model
WuPRL1970
[271] by setting

a = 1, b = c < 1, d = bu, e = bv and again 4v = u + 2. For v = 1 and u = 2 (i.e. e = a and
d = a2) the system exhibits a second-order phase transition with the same properties of its c-AF
analog discussed above. For v →∞ and u = 2 (i.e. e = 0 and d = a2) the system also exhibits a
second-order phase transition in the same universality class as the previous case.







CHAPTER

V

The equilibrium phases of 2d
spin-ice

ch:Equilibrium
V.1 Parametrisation of the sixteen-vertex model

sec:DefVertex

In this chapter, we consider the equilibrium properties of two different particular cases of the
general sixteen-vertex model introduced in section

sec:16Vertexsec:16Vertex
IV.7. We shall fix these two different parametri-

sations before discussing their phase diagram. For clarity, let us recall the definition of the sixteen
possible vertex configurations with their corresponding weight shown in Fig.

fig:16verticesfig:16vertices
V.1.
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Figure V.1: The sixteen vertices of the model with their Boltzmann weights ωi=1...16.fig:16vertices

V.1.1 The symmetric sixteen-vertex model

We define the symmetric sixteen-vertex model by setting

ω1 = ω2 = a, ω2 = ω4 = b, ω5 = ω6 = c = 1 (V.1)

ω7 = ω8 = d, ω9 = ... = ω16 = e .
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The model is defined by four independent parameters a, b, d, e, and, for the sake of simplicity, we
usually set d = e. In order to define a temperature from ωi = e−βεi one has to fix three among the
four before-mentioned parameters. Depending on the weight given to the vertices the model ex-
hibits antiferromagnetic (AF) and ferromagnetic (FM) order. This parametrisation of the general
sixteen-vertex model is an extension of the symmetric eight-vertex model where we give the same
weight to all the defects breaking the parity constraint (i.e. with an odd number of incoming or
outgoing arrows). The theoretical motivation to study this model is to try to extend the knowledge
on integrable vertex models to non-integrable ones, and in particular, to understand the conse-
quences of the ‘integrability breaking’ in the collective behaviour of vertex models. Although all
the 3in-1out 1in-3out defects are equivalent, the model is very general.

The results obtained for this model and presented in section
sec:Numerics16Vsec:Numerics16V
V.3 and section

sec:VertexTreesec:VertexTree
V.4 have lead to a

publication
Levis2012
[159] and a preprint

CavityMC
[99].

V.1.2 The 2d spin-ice model
sec:ASIModel

A particular choice of the vertex weights should be done in order to compare the predictions
of the model with concrete experimental realisations. In 2d artificial spin-ice samples, one expects
the interactions between the nano-islands to be dipolar. In order to fix the energy of the vertices
some approximation has to be done. We adopt here the the values used by Nisoli et al.

Nisoli2010a
[205].

It uses of the ‘dumbbell’ picture where each dipole is considered as a pair of oppositely charged
monopoles sitting on the vertices. Then, by considering only the Coulomb interactions among the
monopoles around a vertex we find (after an appropriate normalisation of the energy units):

ε1 = ε2 = ε3 = ε4 = (
√

2− 1)/(
√

2− 1/2), a = b = exp(−βε1)
ε5 = ε6 = 0, c = 1 (V.2) eq:vertexEnergy

ε7 = ε8 = 4
√

2/(2
√

2− 1), d = exp(−βε7)
ε9 = ... = ε16 = 1, e = exp(−βε9)

This allows us to define the temperature of the system by, for instance, kBT = −ε1/ ln(a). One
could choose different vertex energies. Morgan and collaborators, use a point-dipole approach to
set the energy of the vertices

MorganPrivate
[195]. If one considers the dipole-dipole interaction between the

four islands meeting at a vertex (and neglects the interaction with further neighbours) one gets:
ε5 = 0, ε9 = 1, ε1 ≈ 0.69 and ε7 ≈ 2.1. One should check the relevance of these parameters
by comparing the theoretical results obtained with the vertex model with numerical simulations of
the dipolar model or experimental measurements.

The equilibrium properties of this model with the parameters in eq. (
eq:vertexEnergyeq:vertexEnergy
V.2) are presented in

section
sec:ASIlettersec:ASIletter
V.5 and lead to a preprint

Levis2012a
[160].

V.2 The cavity method

In chapter 4 we presented several exact results for 2d statistical models closely related to spin
ice. There are however a very few interacting models which can be solved exactly and 2d spin
ice in the presence of defects cannot be realistically modelled by an integrable theory. In 3d exact
solutions are even rarer and approximate methods should be developed to tackle interacting sys-
tems in general. Depending on the features one is interested in and the model under investigation,
different approaches are more suitable. Mean-field theory is the simplest approximation one can
do to get some insight into the collective behaviour of a system. It is often used as a preliminarily
study when trying to understand a complicated problem with many interacting degrees of free-
dom. After a short presentation of the standard mean field approximation an improvement over
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this method is presented: the cavity method. It is a more sophisticated mean-field method based
on the Bethe-Peierls approximation introduced in 1935

Bethe1935
[31]. The name ’cavity method’ comes

from the extension of the method to the study of spin glasses
Mezard1986,MezardParisiVirasoroBook
[182, 183] and has become since

then a standard method in disordered systems. Other contexts in which the Bethe-Peierls (BP)
approximation has been used the name given to this approach differs, but all of them are based
upon the same basic assumptions.

The BP approximation and its generalisations have been used in a broad class of different situ-
ations. The bond percolation model can be exactly solved in the Bethe lattice

StaufferBook,Chalupa1978
[244, 66]. The com-

putation of the percolation threshold using the BP approximation is due to the early work by Flory
in 1941

Flory1941
[98]. He identified the gelation problem of polymer physics with the percolating transi-

tion. The Bethe lattice approach turns out to be accurate since polymers tend to avoid the presence
of loops. Since then this method has been used in several works on polymer physics

Gujrati1984
[108]. Dif-

ferent problems where the BP approximation has shown to be very fruitful include Anderson’s
localisation

Chacra1973,Zirnbauer1986,Klein1998
[1, 282, 141], Ising models with multi-spin interactions

Monroe1991,Buzano1997
[193, 51], sandpiles

Dhar1990
[82],

quantum many-body systems
Semerjian2009
[236], computer science problems

Yedida2003
[274] and, more importantly to

us, frustrated magnets
Chandra1994,Monroe1998
[67, 192] and, in particular, spin ice

Yoshida2004,Jaubert2008
[275, 129]. Further comments about

these works and the extensions made to study geometrically frustrated lattice models will be given
at the end of this section. Then, we adapt the Bethe-Peierls approximation (or cavity method) in
order to investigate the whole phase diagram of generic vertex models.

V.2.1 A prelude: Mean field approximation

There are many formulations of mean-field theory. The one presented here is a molecular
field approximation and it is based on the same grounds as the original formulation of Bragg and
Williams in 1934

Bragg1934
[41]. This choice has been done in order to make a clear connection with the

cavity method and its improvements over this standard mean-field approach.
In any interacting statistical model each degree of freedom interacts with its neighbours up

to some range and, eventually, with an external field. For pedagogical reasons, we consider the
textbook example, the Ising model defined by N interacting spins accordingly to the Hamiltonian

H({σ}) = −J
∑
〈i,j〉

σiσj , (V.3)

where the sum runs over all the links of a lattice of coordination number c (the number of links
per vertex). In a mean field model the interaction of a given spin with its surrounding its replaced
by an average over all the spins in the system which create an effective molecular field acting on
it. To illustrate the nature of the approximation we focus upon a single spin located on site i. The
local Hamiltonian for this spin is

Hi = −σi

J c∑
j=1

σj

 (V.4)

where we sum only over the c nearest-neighbours of i. The mean field approximation assumes
that one can replace the fluctuating variable in this sum by an homogeneous mean value which
will be determined self-consistently:

∑c
j=1 σj ≈ c〈σ〉. The neighbouring spins are replaced by an

effective molecular field:
heff = cJ〈σ〉 . (V.5) eq:heffMF

The goal of a mean field calculation is to compute this effective field induced by the presence of the
sourrounding spins. This approximation decouples the spins and the approximated Hamiltonian



108 CHAPTER V. THE EQUILIBRIUM PHASES OF 2d SPIN-ICE

reduces to the one of a single body problem, i.e.

HMF = −heff
∑
i

σi . (V.6) eq:MFHamiltonian

Using this approximation, the free energy can be written explicitly as a function of the magnetisa-
tion m = 〈σ〉 1:

βFMF [m] = −J cN2 m2 + 1 +m

2 ln
(1 +m

2

)
+ 1−m

2 ln
(1−m

2

)
(V.8) eq:FMF

From eq. (
eq:heffMFeq:heffMF
V.5), the mean field felt by a spin is completely determined by the magnetisation,

leading to the self-consistent equation

m = tanh (cKm) (V.9) eq:MFself

where K = βJ . The self-consistent equation can be solved graphically. The approximation
neglects the presence of spatial correlations between neighbours 2. After rescaling the coupling
constant by the number of spins, it can be easily shown that mean field theory is equivalent to an
’infinite dimension’ approximation (since all the vertices of the lattice are coupled equally 3). It is
then equivalent to do a mean field calculation and an exact calculation on a fully connected graph
where the vertices are occupied by the interacting degrees of freedom (see Fig.

fig:MFBethefig:MFBethe
V.2). There is

no notion of distance in the theory and the exponents associated with the spatial structure of the
system, i.e. ν and η, are not well defined (see Chapter 3). One would then expect that the mean
field approximation becomes accurate in the limit of c very large.

Using this approximation one can compute the thermodynamic quantities of the system and
the associated critical exponents. We briefly present here the main results in zero field h = 0
which will be compared with the more elaborate method we develop in the coming section. The
stable solutions of the self-consistent equation (

eq:MFselfeq:MFself
V.9) is

m(T ) =
{

0, for βJc ≤ 1
±m0(T ), for βJc > 1

. (V.13)

1. The expansion of FMF for small m gives the Landau free energy and shows the connection between Landau’s
theory and the standard mean field approach on a lattice model. For small m one can write

FMF [m] = ct + 1
2a(J)(T − Tc)m2 + bm4 +O(m6) (V.7)

where a and b are positive real number. In Landau’s theory its is constructed a priori by symmetry requirements.
2. This can be shown explicitly by rewriting

σiσj = m2 +m(σi −m) +m(σj −m) + (σi −m)(σj −m) (V.10)

which gives the mean-field Hamiltonian (
eq:MFHamiltonianeq:MFHamiltonian
V.6) up to a constant if we neglect the last term (σi −m)(σj −m), i.e. the

spatial correlations.
3. The dimensionality of a lattice can be defined as the following. Consider a site i and count the number of sites

attached to it at a given ’distance’ r. By distance between two sites i and j we mean here the minimal number of edges
that one must visit in order to get from i to j. For a d-dimensional lattice and r large, the number of sites attached to i
scales as rd. More formally, the number of sites at distance r from a given site is given by

Cr =
r∑

n=0

gn (V.11)

where gn is the number of n-th nearest neighbours of a site. The dimension of the lattice is then given by

d = lim
r→∞

lnCr
ln r , i.e. Cr→∞ ∼ rd. (V.12)
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(a) (b)

0

1

2

(c)

Figure V.2: (a) Original square lattice. (b) Fully connected lattice, i.e. mean field approximation
of (a). (c) Cayley tree of connectivity c = 4 and L = 2 shells, i.e. Bethe-Peierls approximation
of (a).fig:MFBethe

Therefore, βJc = 1 gives the critical temperature Tc of the model. The solutions m0(t) 6= 0
give the spontaneous magnetisation of the system characterising the ordered phase. The thermo-
dynamic quantities show a different qualitative behaviour if T > Tc or T < Tc. The main results
are summarised in Table

tab:MFtab:MF
V.1 where we have introduced the deviation from the critical temperature

t = 1 − Tc/T . The free energy and the magnetic susceptibility are continuous at the transition
point, the heat capacity has a jump discontinuity.

T > Tc T < Tc T ∼ Tc

m(T ) 0 ±m0(t)
√

3t ∼ |t|β , β = 1/2

βf(T ) − ln 2 −1
2 ln

(
4

1−m2
0

)
+ m2

0
2 (1− βJc) − ln 2 + 3

4 t
2 ∼ |t|2−α, α = 0

χ(T ) (cJt)−1 1−m2
0

cJ(t+m2
0) ∼ |t|−γ , γ = 1

Table V.1: Thermodynamic quantities and critical behaviour of the Ising mean field theory. The
deviation from the critical point t = 1− Tc/T has been introduced.tab:MF

This set of critical exponents defines the mean field Ising universality class. All approxima-
tion methods dealing with infinite dimensional models neglecting spatial correlations fall into this
class. Indeed, there are several ways to implement such an approximation and most of them are so
important in their respective fields of application that they even have their own name: saddle-point
approximation, Bogoliubov approximation, Bragg-Williams approximation, Flory approximation,
etc. All of them can predict correct qualitative behaviour except near the critical point.

V.2.2 The Bethe-Peirls approximation
sec:BethePeierls

The Bethe-Peierls approximation consists in assuming that in the absence of a given site, the
remaining neighbouring sites are uncorrelated

Domb1960
[85]. Like the mean-field model, it approximates

the model by defining the interacting variables in an infinite dimensional lattice better suited for
exact calculations, the Bethe lattice

BaxterBook
[24]. The main improvement over the mean field approxi-

mation is that, in the Bethe-Peierls approach (BP), correlations between nearest-neighbours are
taken into account and the connectivity of the original model is preserved. It takes into account
the interactions of the neighbours of a given site with the other spins of the lattice by a ’mean
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molecular field’. Loops of links connecting spins are absent, and hence long-range correlations
are not taken into account. The BP approximation will hence be accurate for any interacting graph
where loops are irrelevant. An important example is given by regular random graphs for which
loops do not affect the thermodynamic behaviour of the problem. Random graphs include loops
of typical length ∼ lnN and hence are locally equivalent to a Bethe lattice at the thermodynamic
limit, for which the BP method is exact.

The Bethe lattice is a connected graph with no loops, where each site is connected to c nearest
neighbours. It can be constructed recursively in the following way: start from a central point, or
seed, i0 and attach c links connecting i0 with its c neighbours. The set of these c points is called
the first shell n = 1 denoted ∂i0. From now on we should use ∂i to denote the set of vertices
adjacent to the vertex i. The next shell n = 2 is constructed by attaching (c − 1) vertices to each
vertex of the previous shell in order to preserve the connectivity c of the graph. The shell n+1 > 2
is constructed by adding (c − 1) vertices to each vertex in shell n. The shells 0, 1, 2 of the graph
constructed in such a way with c = 4 are shown in Fig. [

fig:MFBethefig:MFBethe
V.2 (c)]. There are Nn = c(c − 1)n−1

sites in shell n and therefore the total number in the graph is

N =
L∑
n=1

Nn =
c
(
(c− 1)L − 1

)
c− 2 (V.14)

The L-th shell corresponds to the boundary of the graph. In this form, the finite graph we have
constructed is a Cayley tree. The Bethe lattice is a Cayley tree which ignores the boundary sites
and considers only properties of sites ‘deep’ in the bulk in the thermodynamic limit. Typically,
one focuses on the central site. Then, by assuming translational invariance, the results obtained
for the central site can be extended to the full Bethe lattice.

In order to illustrate the Bethe-Peierls approach let us consider the Ising model on a Bethe
lattice of coordination number c in the absence of any external field. The probability of a given
configuration of spins, denoted {σ} = (σ0, ..., σN−1), is given by

P({σ}) = 1
Z

exp

K∑
〈i,j〉

σiσj

 , Z =
∑
{σ}

exp

K∑
〈i,j〉

σiσj

 (V.15) eq:partitionFc

where the sum is over all the edges of the Bethe lattice and K = βJ . It is useful to define the
marginal probability of a spin σ0 by

p(σ0) =
∑
{σ}\σ0

P({σ}), (V.16) eq:Defmarginal

where {σ}\σ0 denotes the configurations for which the spin σ0 has been removed. The sum above
runs over all the spins but σ0. We will also use the standard notation ∂i\j for the sites in the
neighbourhood of i different from j. Equation (

eq:Defmarginaleq:Defmarginal
V.16) can be written in terms of the c neighbours

of the central spin {σi}i∈∂0 as

p(σ0) = 1
z0

∑
{σi}i∈∂0

pc(σ0|σ1, ..., σc)
∏
j∈∂0

exp(Kσ0σj) (V.17)

where pc(σ0|σ1, ..., σc) is the joint probability of {σi}i∈∂0 in the absence of σ0 and z0 a nor-
malisation factor. The Bethe-Peierls approximation assumes the statistical independence of each
neighbour of σ0 in its absence, i.e

p(σ0)
BP︷︸︸︷= 1

z0

∑
{σj}j∈∂0

pc(σ0|σ1)...pc(σ0|σc)
c∏

j∈∂0
exp(Kσ0σj) . (V.18) eq:marginal



V.2. THE CAVITY METHOD 111

σ0

σ1

σ2

σ3

σ4

Figure V.3: Cayley tree with c = 4 and L = 2. When the central site 0 is removed (in white), the
graph splits into c disconnected rooted sub-trees.fig:RootedTree

If we remove the central spin σ0 in the 0-th shell the lattice splits into c disconnected rooted trees
(see Fig.

fig:RootedTreefig:RootedTree
V.3). Therefore, it is equivalent to do a Bethe-Peierls approximation of a model on a

finite dimensional lattice and solve it on a Bethe lattice. In a similar way that it is equivalent to
apply a mean field approximation to a finite dimensional problem and to solve it exactly on a fully
connected graph.

The fundamental quantity to compute self-consistently in this approach is the "cavity" prob-
ability pc(σ0|σj). We assume translational invariance in the bulk of the lattice: then we define
the cavity probabilities µ(σj) ≡ pc(σ0|σj) = pc(σi|σj), i.e. the marginal probability of σj in the
modified lattice where one of its neighbours i ∈ ∂j has been removed. Note that there is no more
a central site when imposing translational invariance and the same reasoning applies to any site in
the bulk of the lattice. Equation (

eq:marginaleq:marginal
V.18) can be rewritten as

p(σi) = 1
zs

c∏
j∈∂i

∑
{σj}

µ(σj) exp(Kσiσj) (V.19) eq:marginalBP

with the normalisation factor:

zs =
∑
σi

 c∏
j∈∂i

∑
{σj}

µ(σj) exp(Kσiσj)

 (V.20)

which can be though of as the partial partition function of a site.
In order to establish the self-consistent equation let us consider the cavity probability µ(σj)

and take advantage of the natural recursive structure of the tree. When a neighbouring spin σi has
been removed, j ∈ ∂i has c − 1 neighbours: {σk}k∈{∂j\i}. The self-consistent equation for the
cavity probabilities µ then is

µ(σj) = 1
zc

c−1∏
k∈{∂j\i}

∑
{σk}

µ(σk) exp(Kσjσk) (V.21) eq:selfcons

where zc is the normalisation factor:

zc =
∑
σj

 c−1∏
k∈{∂j\i}

∑
{σk}

µ(σk) exp(Kσjσk)

 . (V.22)
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In the thermodynamic limit all the sites are assumed to be equivalent and one can then write the
self-consistent equation in the following compact form

µ(σ) = 1
zc

∑
{σ′}

µ(σ′) exp(Kσσ′)

c−1

, zc =
∑
σ

(∑
σ′

µ(σ′) exp(Kσσ′)
)c−1

. (V.23) eq:BPself

In order to obtain thermodynamic quantities from this equation it is useful to parametrize µ by
a ‘cavity field’ hc and the marginal probability p by an effective field heff :

µ(σ) = exp(βhcσ)
2 cosh(βhc)

, p(σ) = exp(βheffσ)
2 cosh(βheff ) . (V.24)

Then, using eqs. (
eq:BPselfeq:BPself
V.23) and (

eq:marginalBPeq:marginalBP
V.19) one can write a self-consistent equations for the fields 4

hc = c− 1
2β ln

[cosh(βhc +K)
cosh(βhc −K)

]
= c− 1

β
arctanh[tanh(K) tanh(βhc)] , (V.25)

heff = c

2β ln
[

cosh(βheff +K)
cosh(βheff −K)

]
= c

β
arctanh[tanh(K) tanh(βheff )] . (V.26) eq:heff

These equations can be solved graphically. The slope of the right-hand-side of eq. (
eq:heffeq:heff
V.26) at

heff = 0 is s = (c − 1) tanh(K). For s ≤ 1, the only solution is heff = 0. If s > 1 there are
three solutions: heff = 0, ±h0(T ) 6= 0. The critical point is then determined by

(c− 1) tanh(βcJ) = 1 . (V.27)

After solving the self-consistent equation the thermodynamic quantities can be computed. The
magnetisation is given by

m =
∑
σ

σp(σ) = tanh(βheff ) , (V.28) eq:mBP

the partition function by

Z =
(
zs

z
c/2
l

)N
, zl =

∑
σ

∑
σ′

µ(σ)µ(σ′) exp(Kσσ′) = zs
zc
, (V.29)

and the Bethe free-energy by

F/N = fs −
c

2fl , fs = −kBT ln zs , fl = −kBT ln zl . (V.30)

The Bethe free-energy is written as the sum over site and link contributions. Note that eq. (
eq:mBPeq:mBP
V.28)

is identical to the mean field result eq. (
eq:MFselfeq:MFself
V.9) for heff = cJm.

In the square lattice, the BP approximation gives a critical temperature kBTc/J ≈ 2.885
which is much closer to the exact value kBTc/J = arcsinh(1)/2 ≈ 2.269

Onsager1944
[209] than the mean

field prediction kBTc/J = 4. Note that, for the Ising chain (c = 2) the BP calculation is exact
(since a one dimensional lattice is a Cayley tree) whereas the mean field approximation fails to
describe its qualitative behaviour.

The BP approximation is of the mean field kind since correlations beyond nearest neighbours
are neglected. It is an infinite dimensional approach, and hence it belongs to the mean field uni-
versality class: the critical exponents have the same values as those of the mean field model (see
Table

tab:MFtab:MF
V.1). However, the description of the qualitative behaviour away from the critical point is

4. Using the relation: arctanh(x) = 1
2 ln
[

1+x
1−x

]
.
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i j
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µj→i(σj)

i j

k

µk→j(σk)e
Kkjσkσj

≡
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k∈{∂j\i}
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σk

≡
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j∈∂i

�

σj

µi(σi)
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µj→i(σj)e
Kjiσjσi

Figure V.4: Schematic representations of the BP recursion relations eq. (
eq:RecMargeq:RecMarg
V.31) and (

eq:RecCaveq:RecCav
V.32).fig:RecursionBP

improved compared to the mean field approach: for instance, the critical temperature is closer to
the exact one, the heat capacity does not vanish for T > Tc.

In the simple example of the Ising model on a Bethe lattice all the sites were equivalent (homo-
geneous model). The Bethe-Peierls approximation presented above can be extended to the study
of non-homogeneous systems on a general graph G where all the sites are not equivalent and the
interactions between sites {Jij} can depend on the link.

Then, the marginal probability p(σ) eq. (
eq:marginalBPeq:marginalBP
V.19) depends on the site which has been removed.

We denote the marginal probability of the modified system where the site i has been removed
by µi(σi). The BP approximation consist in assuming that G is locally a tree. Then, using new
notations which make appear explicitly the inhomogeneity between different sites, eq. (

eq:marginalBPeq:marginalBP
V.19) and

eq. (
eq:selfconseq:selfcons
V.21) become

µi(σi) = 1
zi

c∏
j∈∂i

∑
{σj}

µj→i(σj) exp(Kijσiσj) (V.31) eq:RecMarg

µj→i(σj) = 1
zj→i

c−1∏
k∈{∂j\i}

∑
{σk}

µk→j(σk) exp(Kkjσkσj) (V.32) eq:RecCav

respectively, where Kij = βJij . A diagrammatic representation of these recursion relations is
shown in Fig.

fig:RecursionBPfig:RecursionBP
V.4.

From what we presented in the previous section it is straightforward to find the self-consistent
equation

hj→i(σj) = 1
β

∑
k∈∂j\i

arctanh[tanh(Kkj) tanh(βhk→j)] (V.33)

for the cavity fields defined by

µj→i(σj) = exp(βhj→iσj)
2 cosh(βhj→i)

. (V.34)

In this form, the cavity method can be applied to very general models by choosing the appropriate



114 CHAPTER V. THE EQUILIBRIUM PHASES OF 2d SPIN-ICE

Figure V.5: Representation of the messages arriving at the site shown in white of a generic net-
work. The BP approximation on a generic graph consist in neglecting the correlations due to the
link between the nodes marked in blue.fig:BeliefPropagation

lattice structure and interacting Hamiltonian. On a generic graph with loops the existence of
solutions of the recursion equations (

eq:RecMargeq:RecMarg
V.31,

eq:RecCaveq:RecCav
V.32) is far from being obvious. The cavity variables

µj→i(σj) can be though of as ’messages’ between the nodes of a network (Fig.
fig:BeliefPropagationfig:BeliefPropagation
V.5). The problem

of finding a fixed point of the recursion relations is equivalent to an inference problem: find the
optimal solution considering all the statistical dependencies between the nodes of the network.
This technique was introduced in artificial intelligence by Pearl

Pearl1988
[215] where it is known under the

name of ’Belief Propagation’. Modern techniques of statistical mechanics, and disordered systems
in particular, have been largely applied to optimisation problems in the last decades. Indeed,
several important satisfiability problems can be reformulated in terms of spin models. The quest
of a solution of a logical problem subject to some constraints turns out to be equivalent to finding
the ground state of a spin glass Hamiltonian. For a review on the subject I refer the interested
reader to

Yedida2003,Monasson2007, MezardMontanariBook
[274, 191, 181].

The BP approach presented above considers exactly the pair interactions in an elementary
‘cluster’ made by a site and its c links. The Bethe lattice is then constructed by recursion from
this cluster. There have been many attempts to improve this approximation (see

Domb1960
[85] for a review

on the subject). An important one is due to Kikuchi and is usually referred to as cluster variation
method. In this approximation a finite number of different kinds of clusters of are systematically
constructed and taken into account in the computation of thermodynamic quantities. It contains
the mean-filed and BP approximations as special cases.

In order to describe four-spin interactions (as occurs in vertex models) one should replace
edges linking two sites by a plaquette made by four sites as shown in Fig.

fig:Cactusfig:Cactus
V.6. Connecting such

structures results on a Cactus tree (sometimes called Husimi tree) 5. A variational reformulation
of the BP approximation on cactus trees has also been introduced

Pretti2003
[219]. The lattice shown in

Fig. [
fig:Cactusfig:Cactus
V.6 (c)] can be constructed easily by replacing each site of Bethe lattice with coordination

number c = 4 by a square plaquette made of four spins (each one sitting on the vertices of
the squares). It has been shown that approximate Ising models with multi-spin interactions by a
cactus graph predicts the correct qualitative behaviour where a direct mean field approximations
fails

Monroe1991
[193]. These lattices present a recursive structure and recursion relations can be established in

the same way as in a Bethe lattice. The only difference between a calculation on a Bethe lattice and
on a cactus is the number of terms in the recursion relations: it grows exponentially with the size

5. In graph theory, a cactus is a connected graph in which any two loops have, at most, one site in common. Every
edge in such a graph belongs to at most one loop. In the following we will discuss ‘regular’ cacti for which all the loops
are identical
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z

(a) (b) (c)

Figure V.6: (a) The elementary unit of the Bethe lattice. (b) Minimal elementary unit taking
needed to into account four-spin interactions. (c) Cactus tree with c = 4 and L = 3. A Cayley
tree with c = 4 and L = 3 is shown in dotted lines.fig:Cactus

of an elementary plaquette. Hence, a balance between accuracy and computational complexity
should be found.

In order to apply the BP approximation to a geometrically frustrated system, the introduction
of cactus trees is needed. As pointed out in chapter 2, the central object one must keep is the
elementary local frustrated loop with a negative loop product as defined by eq. (

eq:loopProdeq:loopProd
II.6) . The sites of

a Bethe lattice can be replaced by the relevant frustrated unit. This approximation has been applied
to spin liquids

Chandra1994
[67], the AF Ising model on the triangular lattice

Monroe1998
[192] and the nearest-neighbours

spin-ice model on the pyrochlore lattice
Yoshida2004,Jaubert2008
[275, 129]. Although the critical properties of the physical

system are lost, by defining the appropriate cactus tree, this method predicts a qualitatively correct
phase diagram for these systems. In section

sec:VertexTreesec:VertexTree
V.4 we apply the BP approximation to the six-,

eight- and sixteen-vertex models. When defining vertex models on a Bethe lattice of vertices, we
reproduce the results of

Yoshida2004,Jaubert2008
[275, 129]. We go further by defining an ‘orientated’ tree which allows for

the investigation of all kind of possible orders occurring in the system (in particular the AF ones
which were not studied in

Yoshida2004,Jaubert2008
[275, 129]). We improve these results by defining the model on a cactus

made by plaquettes of four vertices. This allows us to include the relevant low energy excitations
of spin-ice.

V.3 Numerical simulations of the sixteen-vertex model
sec:Numerics16V

The 2d sixteen-vertex model is isomorphic to the Ising model on the checkerboard lattice with
many-body interactions

LiebWuBook
[165]. While this model is integrable for a special set of parameters for

which the equivalent Ising model has two-body interactions only, none of these special cases cor-
responds to our choice of parameters. We used two numerical methods to explore the equilibrium
properties of the generic model; the Continuous time Monte Carlo (CTMC) method that that we
briefly explain in Sec.

sec:CTMCsec:CTMC
III.4.2 and in App.

app:CTMCapp:CTMC
A and the Non-equilibrium relaxation method (NERM)

that we equally explained in Sec.
sec:NERMsec:NERM
III.4.4.
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V.3.1 Methods

V.3.1.1 Monte-Carlo algorithm

The numerical analysis of the equilibrium properties of 2d vertex models has been restricted,
so far, to the study of the six and eight vertex cases. As explained in section

sec:LoopAlgosec:LoopAlgo
??, these models are

simulated using non-local loop updates
Barkema1998,Syljuasen2004
[15, 252]. By imposing the correct probabilities all along

the construction of non-local moves cluster algorithms can be designed
Syljuasen2004,Evertz1993
[252, 89]. Non-trivial

issues as the effect of boundary conditions have been explored in this way
Syljuasen2004,Allison2005
[252, 6].

The loop algorithms could be modified to include three-in – one-out and one-in – three-out
defects for the study of spin-ice systems

Melko2004,Jaubert2008
[174, 129]. However, the simultaneous inclusion of four-

in and four-out defects makes this algorithm inefficient compared to a Monte Carlo algorithm with
local updates. For this reason, we will use local moves in our numerical studies, implemented by
the Continuous-Time Monte Carlo algorithm (CTMC).

V.3.1.2 Non-equilibrium relaxation method

The fact that dynamic scaling applies during relaxation at a critical point
Janssen1989
[127] suggested to

use short-time dynamic measurements to extract equilibrium critical quantities with numerical
methods

Jaster1999,Albano2011
[128, 3]. Magnetized, M0

± ≡ M±(t = 0) = ±1, and non-magnetized, M0
± = 0,

configurations can be used as starting conditions and the critical relaxation

M±(t) ' t−β/(νz) F (tx0/zM0
±) (V.35)

with z the dynamic critical exponent, and F (x) ' x for x� 1 and F (x)→ ct for x→∞, can be
used to extract either the critical parameters or the critical exponents. This expression is expected
to hold for t1/z � L and t1/z � ξeq with ξeq the equilibrium correlation length.

V.3.1.3 Observables

We used the following strategy to study the different phase transitions. We recall for clarity
the definitions introduced in section

sec:DefVertexsec:DefVertex
V.1. We chose the relevant order parameter, 〈M+〉 or 〈M−〉,

to study FM or AF phases. These are the total direct and staggered magnetisation per spin

〈M±〉 = 1
2(〈|mx

±|〉+ 〈|my
±|〉) (V.36) eq:magn

with the horizontal and vertical fluctuating components given by

L2mx
± =

∑
(α,β)∈A

Sα+1/2,β ±
∑

(α,β)∈B
Sα+1/2,β , (V.37)

L2my
± =

∑
(α,β)∈A

Sα,β+1/2 ±
∑

(α,β)∈B
Sα,β+1/2 . (V.38)

The angular brackets 〈. . .〉 denote here and in the following the statistical average. The notations
follow the ones already introduced in section

sec:DefVertexsec:DefVertex
V.1. The indices (α, β) are the coordinates of each

vertex and ((2α+1)/2), β) and (α, (2β+1)/2) locate the mid-points of the right- and up- pointing
bonds. In the expressions formwe divided the lattice into two sub-latticesA andB such that α+β
is even and odd, respectively. The ± signs allow one to distinguish between FM and AF order.

From the scaling analysis of the corresponding fourth-order reduced Binder’s cumulant

KM± = 1−
〈M4
±〉

3〈M2
±〉2
' ΦK(tL1/ν) (V.39) eq:K-def
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with t the distance to the critical point, we extracted ν. From the maximum of the magnetic
susceptibility

χ± = L2
[
〈M2
±〉 − 〈M±〉2

]
' Lγ/νΦχ(tL1/ν) (V.40) eq:suscp-magn

we extracted γ/ν, then γ as ν was already known. From the maximum of the specific heat

CE = L−2
[
〈E2〉 − 〈E〉2

]
' Lα/νΦC(tL1/ν) (V.41)

we extracted α/ν, therefore α. Here, E =
∑
k nkεk with nk the number of vertices of type k

and εk their energy. The direct measurement of β is difficult, we thus deduced it from the scaling
relation β = 1

2(2−α−γ). Finally, we checked hyper-scaling, i.e. whether dν = 2−α is satisfied
by the exponent values obtained, that we summarize in Table

table:num-exponentstable:num-exponents
V.2 for the SL/PM-FM transition

and two choices of parameters.

V.3.1.4 Equilibration
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Figure V.7: Test of the equilibration of L = 100 samples for a = b = 1 and d = e = 10−7.
The data shown has been averaged over 300 independent runs. Top: Evolution of the density of
vertices na,b,c,d from a completely magnetised initial configuration with na = 1 (plain lines) and
from a random initial configuration (dotted lines). Bottom: Two-time self correlation function of
the system at different times (shown in the key) from a random initial configuration (i.e. a = b =
c = d = e = 1). The correlations are not time translational invariant until later times t & 1012

MCs.fig:Equilibration
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In order to estimate the thermal average of some thermodynamic quantity we must ensure the
equilibration of the samples before performing any measurement. This is done by verifying that
(i) the density of vertices stabilises at long times at the same value starting the evolution from very
different (uncorrelated) initial configurations; (ii) the spatially local two-time correlation function
is time translational invariant. This test is shown in Fig.

fig:Equilibrationfig:Equilibration
V.7 for a special set of parameters.

V.3.2 Phase transitions and critical singularities

In this subsection we present a selected set of results from our simulations by describing the
kind of phases and critical properties found. All our results are for a square lattice with linear size
L and periodic boundary conditions.

V.3.2.1 The PM-FM transition

In order to diminish the number of parameters in the problem we studied the PM-FM transition
for the special choice d = e.

As the direct magnetization density 〈M+〉 defined in eqs. (
eq:magneq:magn
V.36)-(

eq:magnyeq:magny
V.38) is the order parameter

for the PM-FM transition in the six vertex model, we study this quantity to investigate the fate of
the FM phase in the sixteen vertex model. In Fig.

fig:equilibriumfig:equilibrium
V.8 (a) we show 〈M+〉 for b = 0.5 and two

values of d as a function of a, L = 10, . . . , 40 and we averaged over 103 − 104 samples. The
variation of the magnetization as a function of a shows a sharp jump at a = 1.5 for b = 0.5 and
d = 0, as one would expected for a first order phase transition. For d > 0 the curve takes a
sigmoid form that gets wider (less step-like) for increasing d. The intersection point appears at
larger values of a for larger values of d. These features suggest that the transition to the FM phase
is continuous, occurs at larger values of a, and that there are fluctuations in the ordered state. The
crossing ofKM+ at height 1/3 (dotted horizontal line) for several values of L shown in Fig.

fig:equilibriumfig:equilibrium
V.8 (b)

determines the transition point ac(b, d). Consistently with a second-order phase transition, KM+

remains positive for all L.
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Figure V.8: Study of the FM transition. (a) Magnetization per spin 〈M+〉 and (b) magnetization
cumulant KM+ as a function of a for b = 0.5, d = 10−5 (the group of curves on the left) and
d = 0.1 (the ones on the right), and several L given in the key. The crossing points of KM+

determine ac(b, d). The vertical dotted (black) lines are the critical values predicted by |∆16| = 1.
The horizontal dotted level is 1/3.fig:equilibrium

In Fig.
fig:magn-PM-FMfig:magn-PM-FM
V.9 we show 〈M+〉 as a function of a for b = 0.5 and three values of the parameter

d = e (all normalised by c). The data for the 2d model (shown with coloured points) demonstrate
that the presence of defects tends to disorder the system and, therefore, the extent of the PM phase
is enlarged for increasing values of d = e. Moreover, the variation of the curves gets smoother for
increasing values of d = e suggesting that the transitions are of second order (instead of first order)
with defects. The data displayed with black points for the same parameters are the result of the
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analysis of the model defined on a tree and we postpone its discussion to Sec.
sec:VertexTreesec:VertexTree
V.4. The numerical

results suggest that the equilibrium phases of the sixteen vertex model could be characterised by a
generalisation of the anisotropy parameter of the eight-vertex model:

∆16 = a2 + b2 − c2 − (d+ 3e)2

2[ab+ c(d+ 3e)] . (V.42) Delta16_2d_model

In the same way as in the integrable cases, the proposal is that the PM phase corresponds to the
region of the parameters’ space where |∆16| < 1, the FM phases corresponds to ∆16 > 1 (and
the AF ones to ∆16 < −1). It follows that the projection of the FM-transition hyper-planes onto
the (a/c, b/c) plane should be parallel to the ones of the six and eight vertex models and given by
ac = b+ c+ d+ 3e (or equivalently bc = a+ c+ d+ 3e). As shown in Fig.

fig:magn-PM-FMfig:magn-PM-FM
V.9, the numerical

results are close to this assumption but they do not justify it completely either (We will compare
the trend of the transition lines with d = e as obtained with the cavity method in Sec.

sec:VertexTreesec:VertexTree
V.4.). As

we will explain in detail in the following section, our BP approximations predicts a similar shift
of the transition lines given by ac = b+ c+ d+ 2e. This is characterised by the parameter

∆sv
16 = a2 + b2 − c2 − d2 + 2(a+ b− c− d)e

2(cd+ ab+ e(a+ b+ c+ d+ 2e)) (V.43)

for the ‘single vertex’ model (see section
sec:VertexTreesec:VertexTree
V.4 for details). For the more sophisticated ‘plaquette’

model the transition lines are not parallel to the ones of the six and eight vertex models and an
analytic from of the anisotropy parameter has not been found. However, the predicted transition
lines can be computed numerically and lead to the phase diagram depicted in Fig.

fig:phase_diagram-16vertexfig:phase_diagram-16vertex
V.22.
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Figure V.9: Equilibrium magnetisation density, 〈M+〉, of the sixteen vertex model with d = e
taking three values given in the key and b = 0.5 as a function of a (parameters normalised by c).
The coloured data points are the result of the numerical simulations of the 2d model for L = 40
while the black dots have been obtained with the analytic solution of the model defined on the tree,
as explained in Sec.

sec:VertexTreesec:VertexTree
V.4.fig:magn-PM-FM

Further evidence for the transition becoming second order comes from the analysis of the
fourth-order cumulant defined in eq. (

eq:K-defeq:K-def
V.39). In Fig.

fig:K-PM-FMfig:K-PM-FM
V.10 we display raw data for d = e = 10−5

(a) and scaled data for d = e = 0.1 (b) as a function of t = (a − ac)/ac. In both cases b = 0.5
and, as above, we normalise all parameters by c. From the analysis of the scaling properties we
extract ac = 1.5 for d = e = 10−5 and ac = 1.93 for d = e = 0.1. Sets of data for linear system
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Figure V.10: Analysis of the Binder fourth-order cumulant defined in eq. (
eq:K-defeq:K-def
V.39) across the FM-

PM transition in the sixteen vertex model. (a) Raw data for d = e = 10−5. (b) Scaling plot for
d = e = 0.1. One extracts 1/ν = 1.65± 0.05 in case (a) and 1/ν = 1± 0.1 in case (b) from this
analysis.fig:K-PM-FM

sizes L = 10, 20, 30, 40, 50 are scaled quite satisfactorily by using 1/ν = 1.65 ± 0.05 for the
small d and 1/ν = 1± 0.1 for the large value of d.

In order to complete the analysis of this transition we studied the magnetic susceptibility (
eq:suscp-magneq:suscp-magn
V.40)

associated to the direct magnetization M+ and its finite size scaling. Figure
fig:chi-PM-FMfig:chi-PM-FM
V.11 displays χ+ for

b = 0.5, d = e = 10−5 (a) and d = e = 0.1 (b), and five linear sizes, L = 10, 20, 30, 40, 50. The
data collapse is very accurate and it allows us to extract the exponent γ/ν ' 1.75 ± 0.02 in both
cases. The study of the maximum of χ+ displayed in the insets confirms this estimate for γ/ν.
We repeated this analysis for other values of d = e and we found that in all cases critical scaling
is rather well obeyed and, interestingly enough, γ/ν is, within numerical accuracy, independent
of d = e. This is similar to what happens in the eight-vertex model since, as shown in Table

table:8Vexponents-thtable:8Vexponents-th
IV.2,

this ratio is independent of the parameters.
The ratio α/ν is obtained from the finite size analysis of the specific heat (not shown) that

is consistent with Cmax ' Lα/ν (instead of LD for a first order phase transition). We found
α/ν ' 1.30 ± 0.06 for these values of b and d = e = 10−5 and a logarithmic divergence of the
heat capacity, i.e. α/ν ≈ 0 for d = e = 0.1 (cf. Table

table:num-exponentstable:num-exponents
V.2), although this is difficult to assert

numerically.
The numerical exponents at the second order phase transition with d = e and both different

from zero are compared to the ones of the six vertex model and the 2d Ising model in Table
table:num-exponentstable:num-exponents
V.2. It

is interesting to note that for very small value of d = e the exponents are rather close to the ones of
the six-vertex model while for large value of d = e they approach the ones of the 2d Ising model.
The numerical critical exponents we obtained depend on the parameter d = e, as suggested from
the theory of the eight vertex model. As shown in Table

table:num-exponentstable:num-exponents
V.2, the ratios of critical exponents γ̂, β̂

and φ̂ do not depend on the choice of the external parameters. As one could expect, the values we
obtained for these generalized critical exponents are equal to the ones of the eight vertex model
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and the 2d Ising model, since these two latter models are special cases of the sixteen vertex model.
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Figure V.11: The magnetic susceptibility across the PM-FM transition for b = 0.5, d = e = 10−5

(a) and d = e = 0.1 (b). Where t is the distance to the critical point measured as t = (a− ac)/ac
with ac = 1.5 (a) and ac = 1.93 (b). From the finite size scaling of the maximum shown in the
insets one extracts γ/ν ' 1.75± 0.02 in both cases.fig:chi-PM-FM

six-vertex MC (d = e = 10−5) MC (d = e = 0.1) 2d Ising
γ/ν = γ̂ 7/4 1.75± 0.02 1.75± 0.02 7/4
β/ν = β̂ 1/8 0.125± 0.05 ≈ 0.125 1/8

(2− α)/ν = φ̂ 2 2.00± 0.15 ≈ 2 2
α 1 0.84± 0.23 ≈ 0 0
β 1/16 0.050± 0.014 ≈ 0.125 1/8
γ 7/8 1.06± 0.03 1.75± 0.18 7/4
ν 1/2 0.60± 0.02 1.0± 0.1 1

2ν = 2− α ? yes yes yes yes

Table V.2: Numerical values of the critical exponents at the FM-PM transition in the sixteen vertex
model as compared to the ones in the six vertex model (first column) and 2d Ising model (fourth
column). The parameter µ, tan(µ/2) =

√
cd/ab, has been chosen to take the same value in

the two MC columns, µ = π. We did not include error bars for β̂, φ̂, α and β in the column
corresponding to d = e = 0.1 as our determination of α is not precise enough to distinguish
between α = 0 (the value used to extract the remaining exponents) and a very small but non-
vanishing value.table:num-exponents

V.3.2.2 The PM-AF transition

We now focus on the transition between the c-AF and PM phases. For the six-vertex model
this is a KT transition while for the eight-vertex model it is of second order as soon as d > 0. In
this case we chose to work with d = 10−5 6= e = 10−3 and with d = e = 10−5. We present data
obtained with the NERM.

Figure
NERMAFNERMAF
V.12 shows the relaxation of the staggered averaged magnetization at b = c = 1 and

different values of a given in the caption. The power-law relaxation, typical of the critical point, is
clearly identifiable from the figure. We extract a critical weight ac = 0.46±0.01 for the c-AF-PM
phase transition. Moreover, the data allow us to prove that the PM phase is not of SL-type as soon
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Figure V.12: Non-equilibrium relaxation of the staggered magnetization from a fully ordered ini-
tial condition M0

− = 1 at different values of a = b, for c = 1, e = 10−3 and d = 10−5. After a
short transient the relaxation at the critical point follows a power law t−p with p = β/(νz). We
identify such critical relaxation at ac = 0.46± 0.01. A precise estimation of the exponent z needs
longer simulations and here the NERM has only been used here to estimate the transition point.NERMAF

as a finite density of defects is allowed. Indeed, the relaxation of M− does not follow a power law
within this phase; instead, for a > ac the decay is exponential.

The standard analysis of the c-AF-PM transition is not as clean as for the FM-PM one. Fig-
ure

fig:Binder-AFfig:Binder-AF
V.13 (a) shows the scaling plot of the Binder cumulant of the staggered magnetization for

b = 0.5 and, in this case, d = e = 10−5. From it one extracts 1/ν = 0.4 ± 0.05. The suscepti-
bility fluctuates too much to draw certain conclusions about the exponent γ. The analysis of the
specific heat (not shown) suggests a logarithmic divergence α ≈ 0.

0

0��

0��

0��

0��

1

0 0�1 0�� 0�� 0�� 0�� 0�� 0�� 0��

hM
�
i

a

L = 10
L = �0
L = �0

L = �0

L = �0

0

0���

0��

0���

0��

0���

-� -� -� 0 � � �

K
M
�

t:L	
4

L = �0

L = �0

L = �0

L = �0

L = 80

Figure V.13: Study of the c-AF-PM transition for b = 0.5 and d = e = 10−5. (a) The averaged
staggered magnetization as a function of a for several system sizes given in the key. (b) Scaling
plots across the c-AF-PM transition of the Binder cumulant of the staggered magnetization. t is
the distance from the critical point t = (a − ac)/ac with ac = 0.5. The best scaling of data is
obtained for 1/ν = 0.4± 0.05.fig:Binder-AF
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V.4 Vertex models on Bethe lattices
sec:VertexTree

In this Section we study the properties of the six-, eight- and sixteen-vertex models defined
on the Bethe lattice by using the cavity method. Aiming at capturing the properties of the two-
dimensional squared lattice problem we will first consider a standard Bethe lattice of uniform
connectivity c = 4, and then, we will improve such approximation by taking into account small
loops by applying the same method to plaquettes of 2 × 2 vertices connected in a tree-like way.
As shown in the following, such approach, compared to the exact and the numerical results in two
dimensions turns out to be remarkably good.

V.4.1 The oriented tree of vertices

The definition of the vertices requires the selection of a particular orientation of the edges
adjacent to a given site. Thus, we will define “horizontal" and “vertical" edges. Each one can
get two possible orientations. This procedure allows us to associate a statistical weight to the
configuration of each vertex, even in such non-Euclidean geometry. In the recursive equation this
partition will translate into four possible species of rooted trees, depending on the position of the
missing neighbour.

We focus on a regular tree with no loops and fixed connectivity c = 4 for all the sites (vertices)
in the bulk, thus conserving the local connectivity of the square lattice geometry. The sites on the
boundary, also called the leaves, have only one neighbour.

The evaluation of the physical quantities using this geometry is based on the determination of
the properties of the site at the root of the rooted tree. As discussed in section

sec:BethePeierlssec:BethePeierls
V.2.2 a rooted tree

is a tree in which all the sites have the same connectivity c = k + 1 apart from the root (and the
leaves) which has only k neighbours. The Bethe lattice (or Cayley tree) is obtained by connecting
k + 1 rooted trees with a central site.

In the models we are interested in, each site is a vertex and its coordination, which is fixed,
is the number of vertices connected to it. In order to distinguish one vertex from another one and
later identify all possible ordered phases we define the analogue of the two orthogonal directions
that characterise the Euclidean squared lattice. With this purpose, we construct the rooted tree in
the following way. Given that the connectivity of the graph is equal to four, each vertex has four
terminals that we call “up" (u), “down" (d), “left" (l) and “right" (r). So far, the vertices were
labeled by their positions. Here, for the sake of clarity, we label the vertices with a single latin
index, say i and j for two neighbouring ones. Vertices are connected through edges 〈iujd〉 and
〈iljr〉 that link respectively the “up" extremity of a vertex i with the “down" terminal of a second
vertex j, or the “left" end of i with the “right" end of j. The symbols 〈iljr〉 and 〈iujd〉 denote
undirected edges, so that 〈iljr〉 = 〈jril〉 and 〈iujd〉 = 〈jdiu〉. In this way, one creates a bipartition
of the edges into “horizontal" (left-right 〈iljr〉) and “vertical" (up-down 〈iujd〉) edges.

We now characterise the variables, interpreted as arrows or spins, in these terms. Each edge is
occupied by an arrow shared by two vertices i and j. An arrow defined on the 〈iljr〉 edge is the left
arrow for the i vertex, and therefore the right arrow for the neighbouring j vertex, and similarly
for the 〈iujd〉 edges. Each arrow, as any binary variable, can be identified with a spin degree of
freedom, taking values in {−1, 1}. In this construction there are two kinds of spins, those living
on horizontal edges, s〈iljr〉, and those sitting on vertical edges, s〈iujd〉. In the following we will
assume that s〈juid〉 = +1 if the arrow points from down to up of a given vertex, i.e. if it points
towards the vertex i (see the left panel of Fig.

fig:def_spinsfig:def_spins
V.14), and s〈iujd〉 = −1 otherwise. Similarly,

s〈jlir〉 = +1 if the arrow points from left to right, i.e. if it points towards the vertex j (see the
right panel of Fig.

fig:def_spinsfig:def_spins
V.14) and s〈jlir〉 = −1 otherwise. This is the analog of the convention used for

the spin sign assignment used in the 2d model. The labels assigned to the terminals of the vertices
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naturally determine the directions and in this way the value of the spin is uniquely defined. Clearly,
these definitions are not unique and one may introduce other ones if found more convenient.
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Figure V.14: Two spins living on a vertical and horizontal edge both taking value +1.fig:def_spins

The local arrow configuration defines the state of the corresponding vertex. In the eight-vertex
model each vertex i can be in eight possible states, χ8

i ∈ {v1, v2, v3, v4, v5, v6, v7, v8}, depicted in
Fig.

fig:16verticesfig:16vertices
V.1. Assuming arrow reversal symmetry we can group such states into four classes, each one

two-fold degenerate, with statistical weights a, b, c and d as shown in Fig
fig:16verticesfig:16vertices
V.1. One can also assign

a total spin Si to each vertex i, and define it as the sum of the spins attached to it, Si ≡
∑
j∈∂i s〈ij〉.

With the spin convention introduced above six out of the eight vertices have vanishing total spin,
i.e. Si = 0 for the a, b and c vertices, while the two d vertices have non-vanishing total spin,
Si = ±4.

This argument generalises to the sixteen-vertex model, where all possible states determined
by the configuration of the arrows are allowed. Each vertex takes values in an extended “alpha-
bet" of sixteen states χ16

i ∈ {v1, . . . , v16} where we have introduced the 3in-1out and 3out-1in
configurations (see Fig.

fig:16verticesfig:16vertices
V.1). Their total spin Si equals ±2.

Consider now a site (vertex) i at the root of a rooted tree. There are four possible distinct kinds
of rooted trees depending on whether the missing vertex j that should be attached to the root be the
one on its left, right, up or down direction. By analogy with the two dimensional case, one could
interpret these rooted trees as the result of the integration of a transfer matrix approach applied in
four possible directions. This can be emphasised by taking into account the particular direction of
the missing edge at the root that we will indicate as follows: ip → jq, with p, q ∈ {u, d, l, r}. For
instance, an “up rooted tree" is the one where the root i lacks the connection to the up terminal of
the vertex j, i.e. the link id → ju is absent. As shown in Fig.

fig:rooted_upfig:rooted_up
V.15, such a rooted tree is obtained

by merging a left, an up and a right rooted tree (with root vertices l, h and k respectively) with the
addition of a new vertex i through the links lr → il, hd → iu, kl → ir (pictorially the transfer
matrix is moving “down"). Similarly a “left rooted tree" is obtained by merging a down, a left and
an up rooted tree, and so on. The Bethe lattice is finally recovered by joining an up, a left, a down
and a right rooted tree with the insertion of the new vertex. Equivalently, given a tree, one creates
rooted (cavity) trees removing an edge.

V.4.2 The tree of plaquettes

As we will show, the results obtained by using the tree constructed above turn out to be remark-
ably accurate in the reproduction of the 2D phase diagram that, in many respects, is also exact. In
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Figure V.15: Construction of an “up rooted tree" from the merging of a left, up, right and down
rooted tree.fig:rooted_up

order to further improve the comparison with the finite dimensional case we used a similar Bethe
lattice made of “plaquettes" (see Fig.

fig:tree_plaquettefig:tree_plaquette
V.16). This means that the basic unit is not a single vertex

but a square of 2× 2 vertices and the tree is constructed by connecting one of these plaquettes to
other four, without forming loops of plaquettes. As we will see, in some cases, the presence of
local loops of spins within the plaquette can result in qualitative different results, that go in the
direction of the two-dimensional behaviour.

In the following we will refer to the first simpler geometry as the “single vertex problem" and
to the second one as the “plaquette model".

V.4.2.1 Discussion
sec:discussionTree

The results obtained using a Bethe lattice made of vertices, generalise some of the calculations
derived in

Yoshida2004
[275] and

Jaubert2008
[129] as a mean-field approximation to the pyrochlore spin-ice system. In fact,

the approximation that we use here is the same adopted in
Jaubert2008
[129] to study the a-FM phase. Even if

in that context the original motivation is that of studying the pyrochlore lattice, one nevertheless
ends up with a tree-like structure of vertices with connectivity four and spins (arrows) shared by
two neighbouring vertices. Our approach, keeping track of four different directions, allows us to
simultaneously study all possible phases of the general sixteen-vertex model. We also mention
that within such approach it is quite straightforward to remove the degeneracy of the vertices by
introducing for instance external fields.

A tree without loops yields a very good approximation to the transition towards the frozen FM
phase (KDP problem) in pyrochlore spin-ice

Yoshida2004,Jaubert2008
[275, 129]. This is due to the absence of loops in

the frozen FM phase. Such an approximation is not, however, precise enough to describe the un-
frozen staggered AF order, since this phase is populated by loop fluctuations at finite temperature.
Therefore, it is crucial to be able to include finite loops in the approximation in order to try to
describe ASI. We did that by defining the model on a Bethe lattice made by elementary loops and
prove its efficiency to describe the AF transition occurring in the sixteen-vertex model and, more
concretely, in ASI samples.

We also note that the study on the Bethe lattice of the particular case a = b = c = d > e > 0
is closely related to the well studied problem at finite temperature of a spin model on sparse
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(a)

(b)

(c)

(d)

Figure V.16: The main panel shows how to construct a Bethe lattice of individual units that can
be chosen at wish. In the right panel we show four different choices of such units. The image in
(b) represents a single vertex that once inserted in (a) builds the simplest Bethe lattice of vertices,
discussed in the text. The tetrahedron in (c) can be equally thought of as a planar vertex, as the one
in Fig. (b). We discuss such representation in section

sec:discussionTreesec:discussionTree
V.4.2.1. Finally panel (d) shows a plaquette

of four vertices that is the unit also considered in the text.fig:tree_plaquette

graphs with p = 4-body ferromagnetic interactions and with spin connectivity c = 2. The case
e = 0, i.e. the infinite temperature limit of the eight vertex model, on the same geometry, instead,
corresponds to the zero temperature limit of the same spin problem with p-body interactions,
whose ground state is known to be exponentially degenerate

MezardMontanariBook
[181]. Similar analogies with other

well-known optimisation problems which describe frustrated spin models on random tree-like
graphs can actually be extended also to other particular cases, as for the six vertex model in its
spin-ice point

ZM08
[279].

V.4.3 The six and eight-vertex model on the single vertex tree

V.4.3.1 Self consistent equations

For the sake of simplicity let us focus for the moment on the six- and the eight-vertex models
and consider the tree of single vertices. We define ψi

p→jq
α , with α ∈ χ8

v and p, q ∈ {u, d, l, r}, the
probability that the root vertex i – in a rooted tree where 〈ipjq〉 is the missing edge – is of type α.
Such probabilities must satisfy the normalisation condition∑

α∈χ8
v

ψi
p→jq
α = 1, ∀〈ipjq〉 . (V.44)

In the recurrence procedure we will be only concerned with the state of the arrow on the
missing edge. Therefore, considering a root vertex i with a missing edge ip → jq, we define
ψqi ≡ ψi

p→jq(+1) as being the probability that the arrow that lies on the missing edge 〈ipjq〉
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takes the value s〈ipjq〉 = +1. Then,

ψui = ψi
d→ju
v1 + ψi

d→ju
v3 + ψi

d→ju
v6 + ψi

d→ju
v8

ψdi = ψi
u→jd
v1 + ψi

u→jd
v3 + ψi

u→jd
v5 + ψi

u→jd
v7

ψli = ψi
r→jl
v1 + ψi

r→jl
v4 + ψi

r→jl
v6 + ψi

r→jl
v7 (V.45) eq:def_prob

ψri = ψi
l→jr
v1 + ψi

l→jr
v4 + ψi

l→jr
v5 + ψi

l→jr
v8

and
ψi

p→jq(−1) = 1− ψip→jq(+) = 1− ψqi . (V.46) eq:psi

Note that other parameterisations are possible for these probabilities. For instance, one could
use an effective field acting on the spin s〈ipjq〉, i.e. ψqi = eh

q
i /(eh

q
i + e−h

q
i ), and the recurrent

equations could be equivalently written for the fields hqi .
The operation of merging rooted trees allows us to define the set of probabilities associated

to the new root in terms of those belonging to the previous generation. In the bulk of the tree
one does not expect such quantities to depend on the precise site. Then, the explicit reference to
the particular vertex in (

eq:def_probeq:def_prob
V.45) can be dropped, and one self-consistent equations for the “cavity"

probabilities are obtained.
In the BP approximation, the strategy is to write down the self-consistent equations due to the

site independence of the behaviour in the bulk. Then, one should find the solutions, i.e. fixed points
of these equations. Assuming the statistical weights to be symmetric under the arrow reversal and
defined as in Fig.

fig:16verticesfig:16vertices
V.1, the self-consistent equations reads:

ψu = Ψ̂u[a, b, c, d, ψu, ψd, ψl, ψr] = gu(a, b, c, d, ψu, ψd, ψl, ψr)/zu

= 1
zu

[
a ψlψuψr + b (1− ψl)ψu(1− ψr) + c ψl(1− ψu)(1− ψr) + d (1− ψuI )(1− ψlI)ψr

]
ψl = Ψ̂l[a, b, c, d, ψu, ψd, ψl, ψr]

= 1
zl

[
a ψdψlψu + b (1− ψd)ψl(1− ψu) + c ψd(1− ψl)(1− ψu) + d (1− ψd)(1− ψl)ψu

]
ψd = Ψ̂d[a, b, c, d, ψu, ψd, ψl, ψr]

= 1
zd

[
a ψrψdψl + b (1− ψr)ψd(1− ψl) + c ψr(1− ψd)(1− ψl) + d (1− ψr)(1− ψd)ψl

]
ψr = Ψ̂u[a, b, c, d, ψu, ψd, ψl, ψr]

= 1
zr

[
a ψuψrψd + b (1− ψu)ψr(1− ψd) + c ψu(1− ψr)(1− ψd) + d (1− ψu)(1− ψr)ψd

]
(V.47) psiU_8vertex

where zi are normalisation constants which guarantee that ψi is the probability that a spin takes
the value (+1):

zi = gi(a, b, c, d, ψu, ψd, ψl, ψr) + gi(a, b, c, d, 1− ψu, 1− ψd, 1− ψl, 1− ψr) (V.48)

the first term in this sum is for the un-normalised contribution for a spin ‘(+1)’ spin and the second
term for a spin ‘(−1)’ from eq. (

eq:psieq:psi
V.46).

V.4.3.2 Fixed points and free energy
FP_8vertex

In order to allow for a fixed point solution associated to antiferromagnetic order (both c-AF and
d-AF) we study the equations (

psiU_8vertexpsiU_8vertex
V.47) on a bipartite graph. We partition the graph into two distinct
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sub-latticesA1 andA2, such that each vertex belonging toA1 is connected to vertices belonging to
A2 and vice-versa. This amounts to double the “fields" {ψα1 , ψα2 }α=u,l,r,d, one for the sub-lattice
of vertex A1 and the other for A2, and to solve the following set of coupled equations:

ψα1 = Ψ̂α[a, b, c, d, ψu2 , ψd2 , ψl2, ψr2] (V.49) eq-cav

ψα2 = Ψ̂α[a, b, c, d, ψu1 , ψd1 , ψl1, ψr1] α = u, l, r, d.

The ferromagnetic and paramagnetic phases are characterised by ψα1 = ψα2 , while the antiferro-
magnetic phases by ψα1 = 1− ψα2 .

Considering only the solution associated to the sub-lattice A1 the fixed points are the follow-
ing: 

Paramagnet ψP = (ψu = 1
2 , ψ

l = 1
2 , ψ

r = 1
2 , ψ

d = 1
2)

a-Ferromagnet ψa-FM = (ψu = 1, ψl = 1, ψr = 1, ψd = 1)
b-Ferromagnet ψb-FM = (ψu = 1, ψl = 0, ψr = 0, ψd = 1)
c-Antiferromagnet ψc-AF = (ψu = 1, ψl = 0, ψr = 1, ψd = 0)
d-Antiferromagnet ψd-AF = (ψu = 1, ψl = 1, ψr = 0, ψd = 0)

(V.50) Fixed_points

Moreover, the overall arrow reversal symmetry allows for the solution ψ′ = 1 − ψ, which for
the AF phase is nothing but the exchange of ψα1 with ψα2 . By inserting these values of ψ in to
the self-consistent equations (

psiU_8vertexpsiU_8vertex
V.47), (

eq-caveq-cav
V.49), one easily checks that these are indeed self-consistent

solutions. Investigating numerically by iteration the same set of equations, one can also realise
that these solutions are unique.

In order to do compute the free energy of the system, it is useful to consider the partial con-
tributions to the partition function coming from a vertex, an horizontal edge and a vertical edge.
These quantities are defined as follows:

Zv[ψl, ψr, ψu, ψd] = a
[
ψlψuψrψd + (1− ψu)(1− ψl)(1− ψr)(1− ψd)

]
+ b

[
(1− ψl)ψu(1− ψr)ψd + ψl(1− ψu)ψr(1− ψd)

]
+ c

[
ψl(1− ψu)(1− ψr)ψd + (1− ψl)ψuψr(1− ψd)

]
+ d

[
(1− ψu)(1− ψl)ψrψd + ψuψl(1− ψr)(1− ψd)

]
(V.51) eq:Zv

and
Z〈lr〉[ψli, ψrj ] = ψliψ

r
j + (1− ψli)(1− ψrj ) (V.52) eq:Zlr

Z〈ud〉[ψui , ψdj ] = ψui ψ
d
j + (1− ψui )(1− ψdj ) (V.53) eq:Zud

The first term Zv represents the shift in the partition function brought by the introduction of a
new vertex which is connected with four rooted trees. The other terms Z〈lr〉 and Z〈ud〉 represent
the shift in the partition function induced by the connection of two rooted trees (respectively one
left and one right or one up and one down) through a link. In terms of these quantities one can
compute the intensive free energy (where here and in the following we normalize by the number
of vertices) which characterises the bulk properties of the tree in the thermodynamic limit:

βf [a, b, c, d,ψ1,ψ2] = −1
2
(

lnZv[ψ1] + lnZv[ψ2] +

− lnZ〈lr〉[ψl1, ψr2]− lnZ〈lr〉[ψl2, ψr1]− lnZ〈ud〉[ψu1 , ψd2 ]− lnZ〈ud〉[ψu2 , ψd1 ]
) (V.54) free-energy-Cavity
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The free energy (
free-energy-Cavityfree-energy-Cavity
V.54) evaluated in the fixed points (

Fixed_pointsFixed_points
V.50) reads as follows:

Paramagnet βfP = βf [a, b, c, d,ψP ] = − ln
(
a+ b+ c+ d

2

)
a-Ferromagnet βfa-FM = βf [a, b, c, d,ψa-FM] = − ln a

b-Ferromagnet βfb-FM = βf [a, b, c, d,ψb-FM] = − ln b

c-Antiferromagnet βfc-AF = βf [a, b, c, d,ψc-AF] = − ln c

d-Antiferromagnet βfd-AF = βf [a, b, c, d,ψd-AF] = − ln d

(V.55) free-energy-fixed-points-8vertex

V.4.3.3 Stability of the solutions

Before entering into the analysis of the fixed points characterising the phases of the system,
we discuss the approach used to study their stability. In particular, we focus on the stability of
the paramagnetic solution ψP , i.e. ψl = ψr = ψd = ψu = 1

2 . Consider the following Jacobian
matrix M , that describes the derivative of the vector function Ψ̂ = (Ψ̂u, Ψ̂r, Ψ̂l, Ψ̂d) defined in
(
psiU_8vertexpsiU_8vertex
V.47) with respect to the fields {ψα}, evaluated in the paramagnetic solution:

M = dΨ̂α

dψβ

∣∣∣∣
ψP

=



a+b−c−d
a+b+c+d

a−b+c−d
a+b+c+d

−a+b+c−d
a+b+c+d 0

a−b+c−d
a+b+c+d

a+b−c−d
a+b+c+d 0 −a+b+c−d

a+b+c+d

−a+b+c−d
a+b+c+d 0 a+b−c−d

a+b+c+d
a−b+c−d
a+b+c+d

0 −a+b+c−d
a+b+c+d

a−b+c−d
a+b+c+d

a+b−c−d
a+b+c+d


. (V.56) matrix_Jac

The eigenvalues of the stability matrix M are:

E1 = 3a− b− c− d
a+ b+ c+ d

E2 = −a+ 3b− c− d
a+ b+ c+ d

E3 = a+ b− 3c+ d

a+ b+ c+ d

E4 = a+ b+ c− 3d
a+ b+ c+ d

(V.57) Eig_stab_sv

In the basis (δψu, δψr, δψl, δψd) the corresponding eigenvectors can be written: v1 = (1, 1, 1, 1),
v2 = (1,−1,−1, 1), v3 = (−1, 1,−1, 1) and v4 = (−1,−1, 1, 1). In general (∀ a, b, c, d), the
eigenvalue E1 regulates the stability towards the ferromagnet of type a, E2 the ferromagnet of
type b, E3 the antiferromagnet of type c, and E4 towards the d-antiferromagnet.

The stability of the paramagnetic solution is controlled by the eigenvector of maximal eigen-
value Emax, and in particular the solution becomes unstable when |Emax| > 1. From Eq. (

Eig_stab_svEig_stab_sv
V.57)

it is clear that the stability of the ferromagnetic phases is characterized by positive values of Eα
while for antiferromagnetic solutions the critical point corresponds to Eα = −1. One can recog-
nise that altogether the stability of the solutions can be stated in terms of the condition∣∣∣∣(1 + E3)(1 + E4)− (1− E1)(1− E2)

(1 + E3)(1 + E4) + (1− E1)(1− E2)

∣∣∣∣ < 1, (V.58)



130 CHAPTER V. THE EQUILIBRIUM PHASES OF 2d SPIN-ICE

which in terms of a, b, c, d reads∣∣∣∣∣a2 + b2 − c2 − d2

2(ab+ cd)

∣∣∣∣∣ = |∆8| < 1 . (V.59)

The study of the stability matrix gives the exact location of the PM phase and hence the location of
the transition lines found by Baxter (see eq. (

eq:Lambda8eq:Lambda8
IV.33)). This is the correct criterium that identifies the

presence of a phase transition associated to a diverging susceptibility χ. Indeed, the susceptibility
is given by:

χ = 1
N

d
∑
〈ij〉〈s〈ij〉〉
dh = 1

N

∑
〈ij〉,〈kl〉

〈s〈ij〉s〈kl〉〉c ∝
∑

α,β=〈ud〉,〈lr〉

∞∑
r=1

∑
P(r)
〈sα0 sβr 〉c (V.60)

where in the last equality we used the homogeneity of the solution. The symbol P(r) indicates
that the sum runs over all the paths that connect a given spin on an edge of type α, supposed to
be the centre (site denoted by 0) of the tree, to all the remaining spins that live on edges of type β
and are located at a distance r from 0 (in terms of the number of edges that make the path). As the
tree has no loops, such paths are uniquely defined. The above formula can be simplified by using
the fluctuation-dissipation relation

〈sα0 sβr 〉c = d〈sβr 〉
dhα0

, (V.61)

where hα0 is a field conjugated to sα0 . The above expression can be evaluated by using the chain
rule

d〈sβr 〉
dhα0

= dΨ̂γ1

dψα0

r−1∏
i=2

dΨ̂γi

dψγi−1

d〈sβr 〉
dψγr−1

(V.62)

where the particular values taken by {γi} ∈ {u, d, l, r} depend on the path followed. Each deriva-
tive is finally evaluated in the paramagnetic solution. Then, defining the vectors |vα〉 such that
vβα = dΨ̂β

dψα and |wα〉 such that wβα = dΨ̂α
dψβ one obtains

χ =
∑

α,β=〈ud〉,〈lr〉

∞∑
r=1

∑
P(r)
〈sα0 sβr 〉c

=
∑

α,β=〈ud〉,〈lr〉

∞∑
r=1

∑
P(r)

dΨ̂γ1

dψα0

r−1∏
i=2

dΨ̂γi

dψγi−1

d〈sβr 〉
dψγr−1

∝
∑

α,β = 〈ud〉,〈lr〉

∞∑
r=1
〈vα|M r−2|wβ〉 '

∞∑
r=1

TrM r.

(V.63)

As long as the abslote value of the eigenvalues remain smaller than one, i.e. |Emax| < 1, the
series converges, giving a finite value for the susceptibility. The same procedure can be used to
investigate the stability of the other solutions.

V.4.3.4 Order parameters

Accordingly to the definitions in eq. (
eq:magneq:magn
V.36), we characterise the phases by direct and staggered

magnetizations. In particular, we define the following order parameters, each one associated with
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a particular phase 6:

ma-FM = 1
Zv

[
a (ψlψuψrψd − (1− ψu)(1− ψl)(1− ψr)(1− ψd))

]
mb-FM = 1

Zv

[
b ((1− ψl)ψu(1− ψr)ψd − ψl(1− ψu)ψr(1− ψd))

]
mc-AF = 1

Zv

[
c (ψl(1− ψu)(1− ψr)ψd − (1− ψl)ψuψr(1− ψd))

]
md-AF = 1

Zv

[
d((1− ψu)(1− ψl)ψrψd − ψuψl(1− ψr)(1− ψd))

]
,

(V.64)

where Zv is the contribution of a vertex to the partition function defined in eq. (
eq:Zveq:Zv
V.51).

V.4.3.5 The phase diagram

For the six-vertex model we found four different fixed points. These characterise the possible
equilibrium phases: (i) a-FM phase, (ii) b-FM phase, (iii) c-AF phase, (iv) a, b, c-PM phase (we
want to distinguish the PM phase found with this method that differs from the actual SL phase in
d = 2 in ways that we will describe below). As in the two dimensional model, the location of the
phase transitions are determined by the anisotropy parameter ∆6 defined in eq(

delta6delta6
IV.23).This can be

shown by comparing the free energies of the paramagnetic and the ordered phases (
free-energy-Cavityfree-energy-Cavity
V.54) when

d = 0; or studying the stability matrix M , whose eigenvalues are equal to one for ∆6 = 1.

Some remarks are in order here:

(i) For d = 0, the eigenvalue E4 = 1, ∀ a, b, c. The PM phase in the six-vertex model is therefore
in the limit of stability. This is reminiscent of the critical properties of the spin-liquid phase in 2
dimensions.

(ii) Similarly, for a = 0 the eigenvalue E1 = −1 ∀ b, c, d.

(iii) The same holds for the other vertices: for b = 0 then E2 = −1, ∀ a, c, d; for c = 0 then
E3 = 1, ∀ a, b, d.

These remarks are in agreement with the exact solution of the eight vertex model: as soon as one
among the four vertex weights is zero, the system is critical.

The transition between the paramagnetic and the ordered solutions (both FM and AF) is dis-
continuous. This can be seen at the level of the fixed pointψα or by the inspection of the singularity
in the free energy. Still, it is characterized by the absence of metastability and hysteresis and a
diverging susceptibility.

Let us first discuss the PM-FM transition lines. In fact, approaching the transition line from
the two sides, both the paramagnetic and the ferromagnetic solutions become unstable. This kind
of transition corresponds to the ‘frozen-to-critical’ KDP transition discussed in section

sec:KDPsec:KDP
III.2.3 and

sec:equilibrium6Vsec:equilibrium6V
IV.3.3. Note that if one focuses on the transition point, plugs into the equations the critical value
a = ac = b+ c, and assumes the homogeneity of the solution ψα = ψ ∀α, the remaining equation
has the trivial form ψ = ψ. This means that all the values of ψ are valid. One can actually see
that, the free energy for the same critical value of a = ac, does not depend on ψ and thus it is
uniformly minimised by all values of the magnetisation. This is the mechanism through which
such discontinuous transition displays a line of instability.

6. Note that this is an extension of the definition given in eq. (
eq:magneq:magn
V.36) needed in order to make the difference between

FM orders dominated by a or b vertices, as well as AF orders dominated by c or d.
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At the level of the calculation of the tree made of single vertices the antiferromagnetic transi-
tion is completely equivalent to the ferromagnetic ones. It is characterised by a completely frozen
order, where no defects are allowed. The transition shares the same properties of the other KDP
transitions towards the ferromagnets.

The addition of the vertex of type d does not change the properties of the a-FM, b-FM and
c-AF transitions. As a function of the strength of the statistical weight d it appears a second anti-
ferromagnetic transition (denoted d-AF) towards an ordered phase of 4in and 4out vertices. The
transition is also discontinuous in this case towards a completely frozen phase. Still, as for the
six vertex model at the transition point, both the ferromagnetic and the paramagnetic solutions
become unstable. When all the statistical weights are different from zero, a, b, c, d 6= 0, the four
eigenvalues of the stability matrix within the paramagnetic phase are all smaller than one. The
transition lines are altogether characterised by the condition |∆8| = 1, as for the two dimensional
model.

In summary, the location of transition lines of the 2d model are reproduced exactly in the
tree of single vertices. However, its critical properties in presence of d vertices are different from
the ones of the 2d model. The absence of loops ‘freezes’ the ordered phases and makes all the
transitions discontinuous.

V.4.4 The six- and eight-vertex model on the tree of plaquettes

V.4.4.1 Self-consistent equations

The computations involving the tree of plaquettes proceeds along the same line as the one for
the single vertex. The calculations, though, became rather involved as the number of configura-
tions allowed on a plaquette is already quite large.

Each rooted tree now has two missing edges, which means that one has to write appropriate
self-consistent equations for the joint probability of the two arrows lying on those edges. The
analogue of ψα, which in the previous section described the marginal probability of the arrow to
point “up" or “right", depending on the type of edge it lives on, now becomes a probability vector
with four components. The marginal probability to find a pair of arrows with value “++, −+,
+−, −−” will be denoted by ψα = {ψα++, ψ

α
−+, ψ

α
+−, ψ

α
−−, }. The superscript α = u, d, l, r

denotes, just as before, whether the pair of arrows are on the missing edges of an “up”, “down”,
“left”, “right” rooted tree (now made of plaquettes of four vertices instead of a single vertex). This
is illustrated in Fig.

Fig:psi_plaquetteFig:psi_plaquette
V.17. In this definition the spins take positive values if the arrows point from

down to up or from left to right, as before. Moreover, we assume that the first symbol indicates
the state of the arrow that is on the left, for the vertical edges, and on the top, for the horizontal
ones. Consequently, the second symbol refers to the value taken by the spin sitting on the right or
the bottom edge, for vertical and horizontal edges respectively.

In order to allow all possible ordered phases we preserve the distinction between the different
direction u, r, l and d, which amounts to study a set of 4×4 self consistent equations. Let us write
the vertex weights as follows:

ws1,s2,s3,s4(a, b, c, d) = 1
4
[
a′(1+s1s2s3s4)+b′(s1s3 +s2s4)+c′(s1s4 +s2s3)+d′(s1s2 +s3s4)

]
(V.65) vertex_weight_8vertex

where s1, . . . , s4 are taken as in Fig.
Fig:vertex_weightFig:vertex_weight
V.18 and

a′ = 1
2(a+ b+ c+ d) b′ = 1

2(a+ b− c− d)

c′ = 1
2(a− b+ c− d) d′ = 1

2(a− b− c+ d) .
(V.66) change_weights
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Figure V.17: Definitions of {ψα++, ψ
α
−+, ψ

α
+−, ψ

α
−−}α=u,l,r,d used in the recurrent equations for

the plaquette model. Left: ψu,d where the first index ± denotes the value of the spin on the left
and second index denotes the spin on the right. Right: ψl,d where the first index ± denotes the
value of the spin on the top and second index denotes the spin on the bottom.Fig:psi_plaquette
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Figure V.18: Left panel: representation of the variables {si} used in the definition of the vertex
weight eq. (

vertex_weight_8vertexvertex_weight_8vertex
V.65). Right panel: numbering assigned to the spin/arrow variables in eqs. (

Eq_psi_plaquetteEq_psi_plaquette
V.70)

and (
Eq_free_energy_plaquetteEq_free_energy_plaquette
V.77). We denote by SP = {s1, s2, s3, s4, s5, s6, s7, s8, t1, t2, t4} the set of spin variables on

a plaquette.Fig:vertex_weight

Similarly, we also introduce a parameterization for the probability vector:

ψαs1s2 = 1
2
[
(1 + s1s2)

ψα++ + ψα−−
2 + (s1 + s2)

ψα++ − ψα−−
2

+(1− s1s2)
ψα+− + ψα−+

2 + (s1 − s2)
ψα+− − ψα−+

2
]

= 1
4
[
1 + s1s2 s

α + (s1 + s2) pα + (s1 − s2) qα
]

(V.67)

where we have introduced the set of variables

φα = (pα, sα, qα) ≡ (ψα++ − ψα−−, ψα++ + ψα−− − ψα−+ − ψα+−, ψα+− − ψα−+) , (V.68)
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which exploits the fact that, due to the normalisation conditions, for each direction only three
variables have to be determined. For the sake of completeness we also report the inverse mapping:

ψα++ = 1
4(1 + sα + 2pα)

ψα+− = 1
4(1− sα + 2qα)

ψα−+ = 1
4(1− sα − 2qα)

ψ−− = 1
4(1 + sα − 2pα)

(V.69) change_var

The self-consistent equations for the probability vector describing “up",“ left", “right" and “down"
rooted trees made of square plaquettes read:

ψus2s3 = Ψ̂u
s2s3 [a, b, c, d,ψu,ψl,ψr,ψd]

∝
∑

SP \{s1,s2}
ws1,s2,t2,t1wt1,s3,s4,t3wt4,t3,s5,s6ws8,t1,t4,s7ψ

l
s8s1ψ

u
s7s6ψ

r
s5s4

ψls5s4 = Ψ̂l
s5s4 [a, b, c, d,ψu,ψl,ψr,ψd]

∝
∑

SP \{s5,s6}
ws1,s2,t2,t1wt1,s3,s4,t3wt4,t3,s5,s6ws8,t1,t4,s7ψ

d
s2s3ψ

l
s8s1ψ

u
s7s6

ψds7s6 = Ψ̂d
s7s6 [a, b, c, d,ψu,ψl,ψr,ψd]

∝
∑

SP \{s6,s7}
ws1,s2,t2,t1wt1,s3,s4,t3wt4,t3,s5,s6ws8,t1,t4,s7ψ

l
s8s1ψ

d
s2s3ψ

r
s5s4

ψrs8s1 = Ψ̂r
s8s1 [a, b, c, d,ψu,ψl,ψr,ψd]

∝
∑

SP \{s8,s1}
ws1,s2,t2,t1wt1,s3,s4,t3wt4,t3,s5,s6ws8,t1,t4,s7ψ

u
s7s6ψ

r
s5s4ψ

d
s2s3

(V.70) Eq_psi_plaquette

and the normalization constant is given by zα =
∑
si,sj ψ

α
sisj .

We found more convenient to focus on the variables φα = (φα1 , φα2 , φα3 ) = (pα, sα, qα) for
which one can readily derive a set of self-consistent equations from (

Eq_psi_plaquetteEq_psi_plaquette
V.70):

pα = Φ̂α
1 [a, b, c, d,φu,φl,φr,φd] ≡ Ψ̂α

++ − Ψ̂α
−−

sα = Φ̂α
2 [a, b, c, d,φu,φl,φr,φd] ≡ Ψ̂α

++ + Ψ̂α
−− − Ψ̂α

−+ − Ψ̂α
+−

qα = Φ̂α
3 [a, b, c, d,φu,φl,φr,φd] ≡ Ψ̂α

−+ − Ψ̂α
+− ,

(V.71) Eq_psq_plaquette

with α = u, l, r, d and where the argument of the functions in the rightest hand side is given in
terms of the transformations (

change_varchange_var
V.69). The solutions describing the ordered phases and the corre-

sponding phase transitions are diverse for different values of the parameters a, b, c, d. They
are however characterised in general by the spontaneous symmetry breaking associated to ferro-
magnetic pα 6= 0 or the antiferromagnetic qα 6= 0 order. In the paramagnetic phase there is no
symmetry breaking and hence pα = qα = 0. In the following we will focus on the different
solutions of such system of equations.
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V.4.4.2 Fixed points and free energy

The paramagnetic solution. The paramagnetic solution is of the form φP ≡ φuP = φlP =
φrP = φdP = (pP = 0, sP , qP = 0). Therefore, our study should focus on the variable sP . The
self-consistent equation we are interested in for the paramagnetic phase is the second equation
in (

Eq_psq_plaquetteEq_psq_plaquette
V.71). In order to study the paramagnetic solution we introduce the following quantities:

x = a− b
a+ b+ c+ d

, y = c− d
a+ b+ c+ d

, z = a+ b− c− d
a+ b+ c+ d

. (V.72) change_xyzt

The previous equations can be easily inverted as follows:

a

a+ b+ c+ d
= 1

4(1 + z + 2x) , b

a+ b+ c+ d
= 1

4(1 + z − 2x) ,

c

a+ b+ c+ d
= 1

4(1− z + 2y) , d

a+ b+ c+ d
= 1

4(1− z − 2y)
(V.73)

The latter equation allows us to write the vertex weights as linear functions of x, y and z up to an
irrelevant factor (a+ b+ c+ d)−1.

The self-consistent equation for sP takes the following form:

(a+ b+ c+ d)4(x2 − y2)(1 + z2)
[
1 + 2 Υ + 1

Υ− 1 sP − 2 Υ + 1
Υ− 1 s

3
P − s4

P

]
= 0 , (V.74) eq_para8_plaquette

with

Υ(a, b, c, d) = 4x2 + z2 − 1
4y2 + z2 − 1 = (a+ b)(c+ d)− (a− b)2

(a+ b)(c+ d)− (c− d)2 . (V.75)

Apart from the ‘trivial’ solutions sP = 1,−1, the paramagnetic solution is given by:

sP = 1−
√

Υ
1 +
√

Υ
. (V.76) sol_para_8vertex

Equation (
eq_para8_plaquetteeq_para8_plaquette
V.74) suggests that the paramagnetic solution depends effectively on a single parameter,

and it remains unchanged if the vertex weights a, b, c, d are modified in such a way to preserve the
value of Υ. Note that the limit of infinite temperature for the eight vertex model, i.e. a = b =
c = d, corresponds to the solution sP = 0 which implies ψα++ = ψα−− = ψα+− = ψα−+ = 1/4,
∀α ∈ {u, l, r, d}. We anticipate that this result is also obtained for the sixteen-vertex model. On
the contrary, the limit of infinite temperature for the six vertex model a = b = c and d = 0 (or
more generally when one out of the four vertices is absent) corresponds to a non-trivial solution
for sP which implies ψα++ = ψα−− 6= ψα+− = ψα−+.

The free energy per vertex can by generically written as:

βf [a, b, c, d,ψl,ψr,ψd] = 1
4
{

ln
[ ∑
s1,s2

ψds1s2ψ
u
s1s2

]
+ ln

[ ∑
s1,s2

ψls1s2ψ
r
s1s2

]
− ln

[∑
SP

ws1,s2,t2,t1wt1,s3,s4,t3wt4,t3,s5,s6ws8,t1,t4,s7ψ
l
s8s1ψ

u
s7s6ψ

r
s5s4ψ

d
s2s3

]} (V.77) Eq_free_energy_plaquette

where eventually one can use the variable φ to express ψ.
By inserting the paramagnetic solution in the previous expression one obtains:

β fP (a, b, c, d) = ln 2−ln(a+b+c+d)− 1
4 ln

[
1+ (x2 − y2)2(−3 + 2x2 + 2y2 − z2)

(−1 + 2x2 + 2y2 + z2)
]
, (V.78)
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where x, y and z are given in terms of vertex weights in Eq. (
change_xyztchange_xyzt
V.72). The function is clearly invari-

ant under the exchange of a with b and c with d together with the simultaneous exchange of the
weights of the ferromagnetic vertices with the antiferromagnetic ones.

Ferromagnetic solutions. In order to study the other phases of the model we introduce the
following functions of four variables (which will be the four vertex weights):

ν(w1, w2;w3, w4) = w2
1 − w2

2 − (w3 + w4)2

w2
1 − w2

2 − (w3 − w4)2 (V.79) nu_plaq

Σ(w1, w2;w3, w4) = 1
4 ln

[ w2
1 − w2

2 − w2
3 − w2

4
2w2

3w
2
4(w2

1 + w2
2) + (w4

1 + w2
3w

2
4)(w2

1 − w2
2 − w2

3 − w2
4)

]
(V.80) sigma_plaq

and

µ(w1, w2;w3, w4) = (w2
1 − w2

2 − (w3 − w4)2)(w2
1 − w2

2 − (w3 + w4)2)

(w2
1 − w2

2 − w2
3 − w2

4)
√

(w2
1 − w2

2 − w2
3 − w2

4)2 − 4w2
3w

2
4

× (2w2
3w

2
4 + w2

1(w2
1 − w2

2 − w2
3 − w2

4))w2
1

(w2
1(w2

1(w2
1 − w2

2 − w2
3 − w2

4) + 2w2
3w

2
4)− w2

3w
2
4(−w2

1 − w2
2 + w2

3 + w2
4))

.

(V.81) mu_plaq

Note that ν, Σ and µ are symmetric under the exchange of w3 and w4. In the following we will
describe only one solution among the two possible ones allowed by symmetry. Clearly, for any
ordered solution, an extra solution generated by arrow reversal also exists.

The ferromagnetic solution of type a is homogeneous along all the directions (meaning that
φa-FM ≡ φua-FM = φla-FM = φra-FM = φda-FM) and it is given by:

φαa-FM = φa-FM =
(
pF1 =

√
ν(a, b; c, d), sF1 = 1, qF1 = 0

)
∀α = u, l, r, d . (V.82) sol_F1_plaq

It implies ψ+− = ψ−+ = 0 and spontaneous symmetry breaking since ψ++ 6= ψ−−. The
associated free energy and magnetization read:

β fa-FM(a, b, c, d) = Σ(a, b; c, d)

ma-FM(a, b, c, d) = µ(a, b; c, d) .
(V.83) f_m_solF1_plaq

The extension of these results to the other phases is rather straightforward. The ferromagnetic
phase of type b is characterized by the same functions, with the exchange of b and a. Moreover
for the solution along the horizontal edges one finds φl,rb-FM =

(
pF2 = −

√
ν(b, a; c, d), sF2 =

1, qF2 = 0
)

.
Antiferromagnetic solutions. Antiferromagnetic ordered phases can also be characterised by

the functions ν, Σ and µ defined by eqs. (
nu_plaqnu_plaq
V.79) (

sigma_plaqsigma_plaq
V.80) (

mu_plaqmu_plaq
V.81). In particular, for the c-AF phase,

the solution of the self-consistent equations is given by:

φαc-AF = φc-AF =
(
pA1 = 0, sA1 = −1, qA1 =

√
ν(c, d; a, b)

)
, ∀α = u, l, r, d . (V.84) eq:solAF

It implies ψ++ = ψ−− = 0 and a staggered order with ψ+− 6= ψ−+. The free energy and
staggered magnetisation read:

β fc-AF(a, b, c, d) = Σ(c, d; a, b)

mc-AF(a, b, c, d) = µ(c, d; a, b)
(V.85)
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The solution dominated by vertex of type d is of the same form as that of vertex c, by exchanging
of the vertex weight c and d. The solution of the self-consistent equations corresponding to AF
order eq.

eq:solAFeq:solAF
V.84 gives: ql,rd-AF = −ql,rc-AF. Meaning that the c-AF and d-AF solutions only differ by

a sing along the horizontal edges. This corresponds to our expectations since a d vertex can be
obtained from a c one by reversing its horizontal arrows.

V.4.4.3 Stability of the solutions

Similarly to what was done in the previous section, we investigate the stability of the solutions
by studying numerically the stability matrix

Mα,β
i,j = dΦ̂α

i

dφβj
α, β = u, l, d, r i, j = 1, 2, 3 . (V.86) Matrix_stab_plaq

The elements of this 12 × 12 Jacobian should be evaluated at the fixed point of the recursion
equations of interest. We recall that: Φ̂α

1 = pα, Φ̂α
2 = sα and Φ̂α

3 = qα. Then, the points of the
phase space where the maximum eigenvalue of the matrix is equal to one, should be compared
with the results obtained from the study of the free energy.

V.4.4.4 The phase diagram of the six-vertex model

The solution presented in eq. (
sol_para_8vertexsol_para_8vertex
V.76) for d = 0, describes the paramagnetic phase of the six

vertex model. In this case the fixed point is characterised by a value of sP which lies in the interval
−1 < sP < 0 while takes the values −1 or 0 at the transition. Interestingly enough, the study of
the stability in the PM phase shows that, as soon as one of the vertex weights is set to zero, the
stability matrix (

Matrix_stab_plaqMatrix_stab_plaq
V.86) has an eigenvalue equal to one. This calculation allows us to show explicitly

how the introduction of a hard constraint radically affects the collective behaviour of the system: it
turns the disordered phase into a critical one. The normalised eigenvector associated to this mode
is of the form

δϕP = (1/2, 0, 0;−1/2, 0, 0;−1/2, 0, 0; 1/2, 0, 0) , (V.87)

which we rewrite symbolically

δϕP = (δpu, δsu, δqu; δpd, δsd, δqd; δpl, δsl, δql; δpr, δsr, δqr) , (V.88)

One can actually check that a set of variables of the form

pu = pr = −pl = −pd = p, su = sr = sl = sd = s and qα = 0 , ∀α = u, l, d, r (V.89)

fulfills the equations. In particular, it gives rise to an undetermined system of equations. The
equation that fixes the mutual relation between p and s without fixing their value separately is
given by:[

(a− b)2 − c2
]{

4
[ c (b+ a− c)
(a− b)2 − c2 − 1

]
p2 − 4 c (b+ a− c)

(a− b)2 − c2 s+ (1 + s)2
}

= 0 . (V.90)

The paramagnetic solution of the self-consistent equations p = 0 and s = sP given in eq.
sol_para_8vertexsol_para_8vertex
V.76

verifies this equation.
The ferromagnetic transitions are of the same type as those found in the single vertex problem:

they are discontinuous, towards a completely frozen phase without fluctuations. From eq. (
sol_F1_plaqsol_F1_plaq
V.82)

and (
f_m_solF1_plaqf_m_solF1_plaq
V.83), the limiting case d = 0 corresponds to the completely frozen solution with pa-FM = 1,

i.e. ψ++ = 1. The free energy fa-FM = − ln a and the magnetisation ma-FM = 1 are identical to
the exact results in the square lattice.
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The transition lines are given by a = b + c, where the paramagnetic solution sP = 0 ∀ b, c,
as can be read from (

sol_para_8vertexsol_para_8vertex
V.76). At the transition, the free energy of the PM and a-FM phase give the

same value: β fP (ac, b, c) = β fa-FM(ac, b, c) = − ln ac.

The antiferromagnetic transition for the Bethe lattice of plaquettes becomes qualitative differ-
ent from the one obtained in the single vertex tree. The small loops of four spins that are taken
into account in the calculation with the plaquette allow for the presence of defects in the antifer-
romagnetic phase. The transition becomes now a continuous transition with a singularity of the
second derivative of the free energy. Still, the transition point coincides with the well know value
c = a+ b. For c = a+ b, the paramagnetic solution reaches the critical value sP = −1. Beyond
that point (where this solution has to be disregarded in favour of the ordered antiferromagnetic
solution) the solution becomes imaginary. The transition is continuous, the magnetisation mc-AF
around the transition point is given by:

mc-AF(c; a, b) =
√

2(a+ b)3((a+ b)2 + ab)√
ab((a+ b)4 + ab((a+ b)2 + ab))

√
c− cc
cc

+O
[(c− cc

cc

)3/2]
, (V.91)

which gives the mean-field exponent β = 1/2 (see Fig.
fig:magnetization-6vertexfig:magnetization-6vertex
V.20).
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Figure V.19: Schematic picture of the solutions of the six vertex model on a tree made of plaque-
ttes. The solutions for p and q are shown simultaneously. The c-AF solution p = 0 and s = −1
is shown in green. The c-AF transition occurs at ∆6 = −1, where s = −1 and for c > a + b the
value of s remains frozen at s = −1 while q > 0. The PM phase solution is shown in red. As far
as −1 ≤ ∆6 ≤ 1 the solution is (p = 0,−1 ≤ s ≤ 0, q = 0). The solutions at the a-FM transition
which corresponds to ∆6 = 1 are shown in blue. For larger values of a, ∆6 > 1 and the solution
is frozen at the value (p = 1, s = 1, q = 0) (shown in pink).fig:solution-6vertex

In Fig.
fig:free-energy-6vertexfig:free-energy-6vertex
V.21 we report the comparison between the free energy obtained for the single vertex

(fsv), the plaquette (fpl) and the two dimensional model (f2d)
BaxterBook
[24]. In the left panel we show

the free energy in the paramagnetic phase and ferromagnetic phases, as a function of a/c moving
along the line a b = c2. The right panel of Fig.

fig:free-energy-6vertexfig:free-energy-6vertex
V.21 shows the free energy in the paramagnetic

phase and in the antiferromagnetic phase as a function of a/c, moving along the line a = b. The
figure clearly shows that the discontinuity of fsv at the transition are smoothed out by the inclusion
of small loop fluctuations.
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In the spin ice point a = b = c the entropy obtained for the tree of single vertices is

Ssv = −βfsv = ln(3/2) ' 0.405 , (V.92)

i.e. the Pauling entropy. The result obtained with the plaquette is instead

Spl = −βfpl = −1
4 ln 3

16 ' 0.418 . (V.93)

This result goes in the direction of that obtained by Lieb for the two dimensional model S2d =
(3/2) ln(4/3) ' 0.4315 (see Fig.

fig:free-energy-6vertexfig:free-energy-6vertex
V.21).

As it can be seen from Fig.
fig:free-energy-6vertexfig:free-energy-6vertex
V.21 the free energy of the frozen ferromagnetic phases is the same

for all the three cases, while in the paramagnetic and antiferromagnetic phases it generically holds
f2d < fpl < fsv.
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Figure V.20: Staggered magnetisation as a function of a/c along the line b = a. The red curve
shows the result obtained with the plaquette, i.e. a continuous transition, while the green curve
shows the results obtained with the single vertex, i.e. the transition towards a completely ordered
phase. The inset shows the mean-field exponent m2

a-FM ' [(a− ac)/c].fig:magnetization-6vertex

Note that the properties discussed insofar are a general consequence of the form of the func-
tions in eqs. (

nu_plaqnu_plaq
V.79), (

sigma_plaqsigma_plaq
V.80) and (

mu_plaqmu_plaq
V.81), independently of the precise specification of their argu-

ments. Similar conclusions hold when any out of four types of vertices is missing. Note in fact
that for w1 > w2, w3 and w4 = 0 one recovers the following results:

ν(w1, w2;w3, 0) = ν(w1, w2; 0, w4) = 1 (V.94)

Σ(w1, w2;w3, 0) = Σ(w1, w2; 0, w4) = − lnw1 (V.95)

and
µ(w1, w2;w3, 0) = 1 (V.96)

while for w2 = 0 and w1 > w3, w4 6= 0 they all take a non trivial value. When the weights of AF
vertices (c or d) vanish the phase is frozen since µ = 1 and Σ ≡ cte (see eq. (

f_m_solF1_plaqf_m_solF1_plaq
V.83)).

V.4.4.5 The phase diagram of the eight-vertex model

Quite a different behaviour emerges in the more general eight vertex model when one considers
the plaquette model instead of the tree of single vertices. While with the single vertex one finds
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Figure V.21: The variation of the free-energy density of the six-vertex model along two paths in
the phase diagram indicated in the insets, a/c = b/c and a b = c2. Left panel: free energy of the
paramagnetic phase for 0.6 . a/c . 1.6 for the Bethe lattice of single vertices (red curve), of
plaquettes (blue curve) and in the two dimensional model (pink line). Outside from this region,
in the ferromagnetic phases, all the calculations lead to the same free energy (green and light blue
lines). Right panel: free energy in the paramagnetic phase (a/c > 1/2) and antiferromagnetic
phase (a/c < 1/2) obtained from the Bethe lattice of single vertices (red curve), of plaquettes
(green curve) and the exact results on the two dimensional model (pink and blue line).fig:free-energy-6vertex

that the addition of vertices of type d does not change the discontinuous frozen-to-critical nature
of the transitions in the six-vertex model, with the plaquette one sees that they actually do. We
stress that, despite these differences, the location of transition lines are identical to what was
obtained with the single vertex tree and hence identical to the two dimensional solution which can
be parametrized by the anisotropy parameter ∆8.

When a, b, c, d 6= 0 the free energy at the transition points shows a singularity in its first
derivatives corresponding to a first-order phase transition. Indeed, one can check that

fP (w2 + w3 + w4, w2;w3, w4) = Σ(w2 + w3 + w4, w2;w3, w4), (V.97)

where w3 and w4 are the statistical weights of FM or AF vertices if the transition under consid-
eration is a PM-FM or PM-AF transition. The magnetisation at the transition shows a finite jump
towards a non-frozen ordered phase.

Let us now focus on the a-FM-PM transition and look closely at the equations at the transition
where a = b+ c+ d. In particular, if we try a solution of the type φc F1 = (pa-FM

c , sa-FM
c , qa-FM

c =
0), it turns out that the system is once again undetermined. The equations for pa-FM

c and sa-FM
c

become dependent. The relation between pa-FM
c and sa-FM

c defines a line of fixed points joining
φP [b + c + d, b, c, d] and φa-FM[b + c + d, b, c, d]. The dependence between pa-FM

c and sa-FM
c is

implicetely given by:

γ(pc F1, s
a-FM
c ) = 4

[(c+ d)b
2cd + 1

]
(pa-FM
c )2 − 4(c+ d)b

2cd sa-FM
c + (1− sa-FM

c )2 = 0 . (V.98) Eq_critical_ferromagnet

One can actually check that the “critical" modes of the matrix Mα,β
ij at a = ac are defined by the

tangent derivative to the level curve defined in (
Eq_critical_ferromagnetEq_critical_ferromagnet
V.98). The eigenvector with maximal eigenvalue

(equal to 1) evaluated in the paramagnetic solution is of the form

δϕPc = (δsα = 0, δpα = δpPc , δq
α = 0) ∀α = u, l, r, d . (V.99)
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The eigenvector associated to the unstable ferromagnetic mode is given by :

δϕa-FM
c = (δsα = δsa-FM

c , δpα = δpa-FM
c , δqα = 0) , ∀α = u, l, r, d . (V.100)

Then, one can verify that for both solutions (and in general for the points along the line) it holds

δsP /δpP = −γp/γs
∣∣
φ=φP

= 0 (V.101)

δsa-FM/δpa-FM = −γp/γs
∣∣
φ=φa-FM

= 2
√

2cd+ b(c+ d)/
√
b(c+ d), (V.102)

where γs and γp stand for the partial derivatives of the function γ defined in eq. (
Eq_critical_ferromagnetEq_critical_ferromagnet
V.98) with respect

to p or s.

Similar considerations also hold for the other transitions occurring in the model. For instance,
at the transition point towards the c-AF phase, cc = a+ b+d, on can identify a line of fixed points
of the form φc-AF

c = (pc-AF
c = 0, sc-AF

c , qc-AF
c ), where sc-AF

c and qc-AF
c lie on the curve:

4
[
1 + d(a+ b)

2ab
]
(qc-AF
c )2 + 4d(a+ b)

2ab sc-AF
c + (1 + sc-AF

c )2 = 0 (V.103)

which connects the antiferromagnetic solution to the paramagnetic one.
Let us also note another important property of the solutions. To this purpose we consider

eqs. (
change_weightschange_weights
V.66) as a transformation ℵ of the weights:

(a′, b′, c′, d′) = ℵ(a, b, c, d) . (V.104)

This transformation is an involution: ℵ [ℵ(a, b, c, d)] = (a, b, c, d). We may then express a, b, c, d
in terms of a′, b′, c′, d′ in exactly the same way.

One can note that Υ[a′, b′, c′, d′] = ν[a, b, c, d], or similarly Υ[a, b, c, d] = ν[a′, b′, c′, d′].
Moreover, fP [a′, b′, c′, d′] = fa-FM[a, b, c, d]. Then, one can map one solution into the other:

sP [a, b, c, d] =
ψP−−[a, b, c, d]− ψP+−[a, b, c, d]
ψP++[a, b, c, d] + ψP+−[a, b, c, d]

= sa-FM − pa-FM[a′, b′, c′, d′]
1 + pF1[a′, b′, c′, d′]

=
ψa-FM
−− [a′, b′, c′, d′]− ψa-FM

+− [a′, b′, c′, d′]
ψa-FM

++ [a′, b′, c′, d′] + ψa-FM
+− [a′, b′, c′, d′]

(V.105) symmetry_fields

and viceversa. The transition point can be recognized as the fixed point of the transformation
(
change_weightschange_weights
V.66) which is consistent with the transition point in two dimension at the critical value ac =
b + c + d. Thanks to the mapping (

symmetry_fieldssymmetry_fields
V.105) the infinite temperature solution φP [a, a, a, a] can

be mapped into the completely ordered state φa-FM[a′, 0, 0, 0]. At the transition point though,
φP [b + c + d, b, c, d] 6= φa-FM[b + c + d, b, c, d], but the line described by Eq. (

Eq_critical_ferromagnetEq_critical_ferromagnet
V.98) preserves

some continuity between the two solutions. The same duality holds for the solution found for the
single vertex Bethe lattice where the free energy of the paramagnetic phase can be mapped into
the free energy of the completely frozen ferromagnetic solution under the mapping ℵ (

change_weightschange_weights
V.66).

For the disordered points lying on the surfaces a + d = c + b or a + c = d + b in the
paramagnetic phase we have sP = 0. The free energy at these points computed with the single
vertex tree (

free-energy-fixed-points-8vertexfree-energy-fixed-points-8vertex
V.110) is the same as for the plaquette model and coincides exactly with the exact

result of the two dimensional model
BaxterBook
[24]. This can be understood thanks to the transformation ℵ:

it maps these PM regimes to the frozen FM phase of the six-vertex model and since loops in this
phase are irrelevant, the free energy on the Bethe lattice is the same as in two dimensions.
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V.4.4.6 Summary

In summary, we computed the equilibrium phases of the six- and eight-vertex model defined
on tree-like lattices. The nature of the phase transitions depend upon the elementary unit used for
the construction of the tree. In Table.

table:Cavity_6_8_vertextable:Cavity_6_8_vertex
V.3 we review the nature of the phase transitions obtained

with this approach. Note that the location of the transition points we obtained corresponds exactly
with the solution of the 2d model. However, the critical exponents of the finite dimensional model
cannot be reproduced by this approach.

6V single vertex 8V single vertex 6V plaquette 8V plaquette
PM-FM Frozen-to-critical Frozen-to-critical Frozen-to-critical Frozen-to-critical
PM-AF Frozen-to-critical Frozen-to-critical Continuous Frozen-to-critical

Table V.3: Different kind of transitions found in the six- and eight-vertex models defined on tree-
like lattices. The comparison with the 2d behaviour is encoded by a colour rule: the text is coloured
in blue when we find agreement between the 2d model and the BP approximation; in red when
contrarily the model on the trees does not behave as the 2d one. The PM-AF transition for the six-
vertex model in the tree of plaquettes is black because a KT transition cannot be captured by a BP
approximation. However, we stress that the plaquette model constitutes an important improvement
over the single vertex approach which predicts a frozen transition in this case.table:Cavity_6_8_vertex

V.4.5 The sixteen-vertex model

V.4.5.1 The single vertex model

In this section we study the sixteen-vertex model defined on the tree of single vertices. One
defines the probabilities for the rooted trees ψi

p→jq
α , with α ∈ χ16

v = {v1, v2, ..., v16}. In the study
of the recurrence equations one is only interested in the value taken by the spin on the missing edge
of the root. Therefore we introduce, just as before, the cavity probabilities ψqi ≡ ψi

p→jq(s〈ipjq〉 =
+1) to find a positive spin. It is given by:

ψui = ψi
d→ju
v1 + ψi

d→ju
v3 + ψi

d→ju
v6 + ψi

d→ju
v8 + ψi

d→ju
v9 + ψi

d→ju
v11 + ψi

d→ju
v13 + ψi

d→ju
v16

ψdi = ψi
u→jd
v1 + ψi

u→jd
v3 + ψi

u→jd
v5 + ψi

u→jd
v7 + ψi

u→jd
v10 + ψi

u→jd
v11 + ψi

u→jd
v13 + ψi

u→jd
v15

ψli = ψi
r→jl
v1 + ψi

r→jl
v4 + ψi

r→jl
v6 + ψi

r→jl
v7 + ψi

r→jl
v9 + ψi

r→jl
v12 + ψi

r→jl
v13 + ψi

r→jl
v15

ψri = ψi
l→jr
v1 + ψi

l→jr
v4 + ψi

l→jr
v5 + ψi

l→jr
v8 + ψi

l→jr
v9 + ψi

l→jr
v11 + ψi

l→jr
v14 + ψi

l→jr
v15

(V.106) def_prob16
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Along the same reasoning outlined before, one gets the following set of self-consistent equations:

ψu = Ψ̂u[a, b, c, d, e, ψu, ψd, ψl, ψr]

= 1
zu

[
a ψlψuψr + b (1− ψl)ψu(1− ψr) + c ψl(1− ψu)(1− ψr) + d (1− ψu)(1− ψl)ψr

+e
(
ψl(1− ψu)ψr + ψlψu(1− ψr) + (1− ψl)ψuψr + (1− ψl)(1− ψu)(1− ψr)

)]
ψl = Ψ̂l[a, b, c, d, e, ψu, ψd, ψl, ψr]

= 1
zl

[
a ψdψlψu + b (1− ψd)ψl(1− ψu) + c ψd(1− ψl)(1− ψu) + d (1− ψd)(1− ψl)ψu

+e
(
ψdψl(1− ψu) + ψd(1− ψl)ψu + +(1− ψd)ψlψu + (1− ψd)(1− ψl)(1− ψu)

)]
ψd = Ψ̂d[a, b, c, d, e, ψu, ψd, ψl, ψr]

= 1
zd

[
a ψrψdψl + b (1− ψr)ψd(1− ψl) + c ψr(1− ψd)(1− ψl) + d (1− ψr)(1− ψd)ψl

+e
(
(1− ψr)ψdψl + ψr(1− ψd)ψl + ψrψd(1− ψl) + (1− ψr)(1− ψd)(1− ψl)

)]
ψr = Ψ̂u[a, b, c, d, e, ψu, ψd, ψl, ψr]

= 1
zr

[
a ψuψrψd + b (1− ψu)ψr(1− ψd) + c ψu(1− ψr)(1− ψd) + d (1− ψu)(1− ψr)ψd

+e
(
ψu(1− ψr)ψd + ψu(1− ψr)ψd + ψu(1− ψr)ψd + (1− ψu)(1− ψr)(1− ψd)

)]
(V.107) psiU_16vertex

where zα=u,l,d,r are normalisation constants (different from those defined in eq. (
psiU_8vertexpsiU_8vertex
V.47) ). In order

to obtain AF solutions, these equations must be studied on bipartite graphs as in Eq. (
eq-caveq-cav
V.49).

We consider here the case in which all the vertices from v9, . . . , v16 have the same weight e
and there is arrow reversal symmetry. The fixed points of the eqs. (

psiU_16vertexpsiU_16vertex
V.107) for the sub-lattice A1

are the following :

(i) PM: ψuP = ψlP = ψrP = ψdP = 1
2

(ii) a-FM: ψua-FM = ψla-FM = ψra-FM = ψda-FM = h+(a, b, c, d, e)

(iii) b-FM: ψub-FM = ψdb-FM = h+(b, a, c, d, e) ψlb-FM = ψrb-FM = h−(b, a, c, d, e)

(iv) c-AF: ψuc-AF = ψlc-AF = h+(c, b, a, d, e) ψrc-AF = ψdc-AF = h−(c, b, a, d, e)

(v) d-AF: ψud-AF = ψrd-AF = h+(d, b, c, a, e) ψdd-AF = ψld-AF = h−(d, b, c, a, e)

with

h±(α, β, γ, δ, ε) = 1
2 ±

α− β − γ − δ − 2ε
2
√

(α− β − γ − δ)2 − 4ε2
.
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Analogously to what done in Section
FP_8vertexFP_8vertex
V.4.3.2 we proceed defining:

Zv[ψl, ψr, ψu, ψd] = a
[
ψlψuψrψd + (1− ψu)(1− ψl)(1− ψr)(1− ψd)

]
+ b

[
(1− ψl)ψu(1− ψr)ψd + ψl(1− ψu)ψr(1− ψd)

]
+ c

[
ψl(1− ψu)(1− ψr)ψd + (1− ψl)ψuψr(1− ψd)

]
+ d

[
(1− ψu)(1− ψl)ψrψd + ψuψl(1− ψr)(1− ψd)

]
+ e

[
ψl(1− ψu)ψrψd + (1− ψl)ψu(1− ψr)(1− ψd)

+ψlψu(1− ψr)ψd + (1− ψl)(1− ψu)ψr(1− ψd)

+ (1− ψl)ψuψrψd + ψl(1− ψu)(1− ψr)(1− ψd)

+ (1− ψl)(1− ψu)(1− ψr)ψd + ψlψuψr(1− ψd)
]
,

(V.108) eq:Zv16

which in the limit e → 0 gives back eq. (
eq:Zveq:Zv
V.51). The general expression for the free energy of the

sixteen-vertex model on the Bethe lattice reads:

βf [a, b, c, d, e,ψ1,ψ2] = −1
2
(

lnZv[ψ1] + lnZv[ψ2] +

− lnZ〈lr〉[ψl1, ψr2]− lnZ〈lr〉[ψl2, ψr1]− lnZ〈ud〉[ψu1 , ψd2 ]− lnZ〈ud〉[ψu2 , ψd1 ]
)
,

(V.109) free-energy-Cavity16

where Z〈lr〉 and Z〈ud〉 are defined in eqs. (
eq:Zlreq:Zlr
V.52) and (

eq:Zudeq:Zud
V.53). Once evaluated in the solutions

outlined above the free energies of the different phases are:

βfP = βf [a, b, c, d, e,ψP ] = − ln
[a+ b+ c+ d+ 4e

2
]

βfa-FM = βf [a, b, c, d, e,ψa-FM] = − ln
[
a− 2e2

−a+ b+ c+ d

]
βfb-FM = βf [a, b, c, d, e,ψb-FM] = − ln

[
b− 2e2

a− b+ c+ d

]
βfc-AF = βf [a, b, c, d,ψc-AF] = − ln

[
c− 2e2

a− c+ b+ d

]
βfd-AF = βf [a, b, c, d,ψd-AF] = − ln

[
d− 2e2

a− d+ b+ c

]

(V.110) free-energy-fixed-points-8vertex

We study the stability matrix introduced in eq. (
matrix_Jacmatrix_Jac
V.56), now in the case e ≥ 0. The eigenvalues

associated to the paramagnetic solution ψP are:

E1 = 3a− b− c− d
a+ b+ c+ d+ 4e

E2 = −a+ 3b− c− d
a+ b+ c+ d+ 4e

E3 = a+ b− 3c+ d

a+ b+ c+ d+ 4e

E4 = a+ b+ c− 3d
a+ b+ c+ d+ 4e

(V.111) stability_16_single_vertex
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with the same eigenvectors as before. Overall the stability is controlled by the condition:∣∣∣∣(1 + E3)(1 + E4)− (1− E1)(1− E2)
(1 + E3)(1 + E4) + (1− E1)(1− E2)

∣∣∣∣ = |∆sv
16| < 1 (V.112)

with

∆sv
16 = a2 + b2 − c2 − d2 + 2(a+ b− c− d)e

2(cd+ ab+ e(a+ b+ c+ d+ 2e)) . (V.113)

This generalised anisotropy parameter implies that, in the presence of a non-vanishing vertex
weight e, all the transition lines are shifted by a factor 2e with respect to the value obtained for the
eight vertex model. This should be compared with the conjectured value ∆16 given in eq. (

Delta16_2d_modelDelta16_2d_model
V.42)

and with the numerical results. The Bethe-Peierls approach gives the expected qualitative be-
haviour. The conjectured ∆16 given in eq. (

Delta16_2d_modelDelta16_2d_model
V.42) is closer to the numerics. However we do not

any exact result to compare with and conclude about the expression, or even the existence, of such
∆16 parameter.

V.4.5.2 The plaquette model

The previous procedure can be extended straightforwardly to the case of the sixteen vertex
model on the plaquette if one includes in the statistical weights a non vanishing e. This can be
done, for instance, through the following definition:

ws1,s2,s3,s4(a, b, c, d, e) = 1
4
[
a′(1 + s1s2s3s4) + b′(s1s3 + s2s4) + c′(s1s4 + s2s3)

+ d′(s1s2 + s3s4)
]

+ e

2(1− s1s2s3s4)
(V.114) vertex_weight_16vertex

with a′, b′, c′ and d′ defined as in (
vertex_weight_8vertexvertex_weight_8vertex
V.65). With this definition of ws1,s2,s3,s4 the same equations

(
Eq_psi_plaquetteEq_psi_plaquette
V.70) (

Eq_psq_plaquetteEq_psq_plaquette
V.71) and (

Eq_free_energy_plaquetteEq_free_energy_plaquette
V.77) apply to the sixteen-vertex model. Obviously, the calculations become

more involved.
As for the case e = 0 the paramagnetic solution is of the type φP ≡ φuP = φlP = φrP =

φdP = (pP = 0, sP , qP = 0) and sP is the solution of the equation:

(a+ b+ c+ d)4(x2 − y2)
[
u4 s

4
P + u3 s

3
P + u2 s

2
P + u1 sP + u0

]
= 0 (V.115) eq_para16_plaquette

with

u0(x, y, z, t) = (1 + t)2 + z2

u1(x, y, z, t) = − (1 + t)4 + z4 − 2(1 + z2 − t2)(x2 + y2)
x2 − y2

u2(x, y, z, t) = −12t

u3(x, y, z, t) = (1− t)4 + z4 − 2(1 + z2 − t2)(x2 + y2)
x2 − y2 = −u1(x, y, z,−t)

u4(x, y, z, t) = −((1− t)2 + z2) = −u0(x, y, z,−t) .

(V.116)

The variables x, y, z and q were already defined in eq. (
change_xyztchange_xyzt
V.72). This equation reduces to eq (

eq_para8_plaquetteeq_para8_plaquette
V.74)

when t = 0. Note that the presence of a non-zero value of t implies a much more complicated
dependence on the parameters. We do not solve this equation explicitly, however one can show
that, as for the eight vertex model, the limit of infinite temperature a = b = c = d = e corresponds
to the trivial solution sP = 0.
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V.4.6 The phase diagram of the sixteen-vertex model

The phase diagram obtained with the Bethe lattice made of single vertices in qualitative in
agreement with the results obtained with the Monte Carlo simulations on the two dimensional
squared lattice model. All the transition lines are smooth in the sense that they become all contin-
uous when all possible vertices are present.

The results for the Bethe lattice model predict a uniform shift of the critical lines, with re-
spect to the eight vertex model, by a factor 2e (compare Eq. (

stability_16_single_vertexstability_16_single_vertex
V.111) together with the criticality

condition |Eα| = 1). This implies, for instance, that the critical value for the ferromagnetic tran-
sition occurs at a = asvc = b + c + d + 2e. This is not exactly the case for the two dimensional
squared lattice. While for small values of d and e, one numerically finds a2d

c ' b + c + d + 3e.
For large values of these parameters we see a deviation from the linear behaviour. We do not
have an analytic expression for the transition lines obtained with the tree of plaquettes. However,
from the numerical results and the MC data, one concludes that for the ferromagnetic transition
asvc < aplc < a2d

c (where the superscript sv, pl and 2d stands for single vertex, plaquette and 2d
model). Similar results hold for the other transitions.

In Figure
fig:phase_diagram-16vertexfig:phase_diagram-16vertex
V.22 we report in the plane of parameters (a/c, b/c), for two fixed values of d/c =

e/c, the comparison between the transition line obtained with Monte Carlo simulations on the two
dimensional squared lattice (orange squared points), the tree of plaquettes (dotted-dashed blue and
dashed green lines) and the transition lines obtained according to the proposed value in Eq. (

Delta16_2d_modelDelta16_2d_model
V.42)

(dotted orange lines), together with the exact phase diagram at d = e = 0 (red solid lines).
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Figure V.22: Phase diagram of the sixteen-vertex model. The figure shows the projection of
the transition surfaces on to the plane of parameters (a/c, b/c), for two fixed values of d/c =
e/c = 0.1 and d/c = e/c = 0.2. Orange and red dotted lines represent the results obtained
with the cavity method for the tree of plaquettes. Green and violet plain lines shows the proposed
behaviour of the transition lines as predicted by eq. (

Delta16_2d_modelDelta16_2d_model
V.42) for the two dimensional model. Black

dots indicate the transition point obtained with Monte Carlo simulations for the model defined
on the squared lattice. Blue solid lines represent the exact phase diagram in the limiting case
d = e = 0 (six-vertex model).fig:phase_diagram-16vertex
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V.5 Application to artificial spin ice: the 2d spin-ice model
sec:ASIletter

In this section we demonstrate that a simplified version of the more realistic dipolar spin-ice
model in 2d, the sixteen-vertex model, or 2d spin-ice model as defined in section

sec:ASIModelsec:ASIModel
V.1.2, is an

accurate model for the equilibrium behaviour of artificial spin-ice samples. Concretely, we use
numerical simulations and we apply the computations presented below in the Bethe lattice made
of plaquettes that yields a remarkably accurate approximation to the equilibrium properties of the
square lattice 2d model and real samples as well.

V.5.1 Equilibrium phases and critical properties

We studied the 2d model with the CTMC algorithm with single-spin updates. The usual finite-
size scaling analysis faces serious difficulties close to the SL phase since for a small weight of
defects one cannot easily tell the difference between a critical phase with ξeq → ∞ and a disor-
dered phase with L < ξeq < ∞. The non-equilibrium relaxation method (NERM) distinguishes
these cases by investigating how the system relaxes to its equilibrium state from a completely or-
dered configuration M−(0) = 1. At a critical point the staggered magnetisation follows a power
law M−(t) ∼ t−β/(νzc) where β and ν are the equilibrium critical exponents associated to the
order parameter and the correlation length and zc is the dynamical exponent. Instead, away from
criticality M−(t) decays exponentially. At short times the dynamic correlation length ξ(t) � L
avoiding the difficulty raised by ξeq & L. This allows one to extract the critical temperature and
critical exponents of from the dynamic results.
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Figure V.23: The relaxation of the staggered magnetization from M−(0) = 1 at different inverse
temperatures parametrized as a = e−ε1β with a = 0.27, 0.28, 0.29, 0.30, 0.302, 0.304, 0.306,
0.308, 0.315, 0.32. The dashed line is the best fit obtained with a power law decay. It gives a
critical value ac = 0.300± 0.002 with an exponent β/(νzc) = 0.053± 0.01.NERM

A single critical power-law decay of M−(t) at βc = 2.65 ± 0.017 can be easily identified
from Fig.

NERMNERM
V.23, showing that the SL phase is broken at finite temperature by the presence of

defects. A generalised set of critical exponents, independent of the choice of parameters, have
been defined in the eight-vertex model

BaxterBook
[24]. Among them β̂ = β/ν = 1/8. Our analytic and

numeric results suggest that the sixteen-vertex model is in the same generalised universality class
with β̂ = 1/8 as well

CavityMC
[99]. Fixing this value for the ratio of equilibrium exponents the NERM
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yields zc = 2.35 ± 0.40 although a more accurate computation of β̂ would be needed to give
further support to this result.
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Figure V.24: Staggered magnetisation M− (a) and specific heat C (b) as a function of the distance
to the critical inverse temperature βc for system sizes L = 30, 40, 50, 60. The (red) solid lines
are the results of the analytic calculation on the tree of plaquettes.FiniteSize

In Fig.
FiniteSizeFiniteSize
V.24 we display equilibrium CTMC data for M− (a) and the heat capacity C =

L−2(〈E2〉−〈E〉2) (b) as a function of the distance to the critical inverse temperature, (β−βc)/βc.
These results are in agreement with the NERM analysis and confirm the second order phase tran-
sition at βc ≈ 2.65. Figure

FiniteSizeFiniteSize
V.24 also displays the analytic results for M− and C (solid red lines).

The theory predicts a second-order phase transition with a systematic shift of the critical point by
around 5% towards higher temperature.

Figure
correlation-functioncorrelation-function
V.25 (a) displays the space-dependence of the correlation function defined as

C(r, t) = 1
(2L)2 〈

∑
i,j

Si,j(t)Si+r,j+r(t)〉 (V.117)

for different times after a quench from β → 0 to βc = 2.65 (in log-log scale). The indices (i, j)
denote a site of the 2L × 2L square lattice made by all the arrows. Si,j = +1 if the arrow points
right or up and Si,j = −1 otherwise. With these definitions, r is given in units of a0/

√
2. The

dynamic curves approach, for increasing times, the asymptotic equilibrium law that close to the
transition is a power-law with an exponential cut-off. The figure also shows, in an insert, a typical
configuration (see the caption for the vertex color code). In the bottom panel we present the
equilibrium C(r) = limt→∞C(r, t) in the c-AF phase (linear scale) and an ordered configuration
in the insert. The equilibrium correlations decay exponentially to a non-zero asymptotic value
c0 ≈ 0.42. The approach to such configurations is fast if the initial state is a completely ordered
T = 0 ground state but it is very slow and occurs via the coarsening process if the initial condition
is a disordered one

Levis2012,Budrikis2012
[159, 49]. Dynamical issues like coarsening will be discussed in the next

chapter.
Putting together the results of extensive NERM and CTMC numerical simulations for a large

range of parameters we obtained the phase diagram shown in Fig.
phase_diagramphase_diagram
V.26.

V.5.2 Experimental density of defects

In Fig.
VertexDataVertexData
V.27 we plot the vertex population of each vertex type as a function of the canonical in-

verse temperature β = − ln a/ε1. The results of our MC simulations (colored lines-points) and BP
calculation (solid black lines) are confronted to experimental data from the British collaboration
(data points)

Morgan2011
[196]. In this experiment, spin configurations are visualized at the end of a sample
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Figure V.25: The space-time C(r, t) and equilibrium C(r) = limt→∞C(r, t) correlation function
close to the phase transition (top panel, β = 2.65) and in the ordered phase (bottom panel, β = 3).
The colored lines-points in the top panel are dynamic data after a quench from T → ∞. The
equilibrium critical correlation function (black dots) is confronted to an algebraic decay ∼ r−0.22

(dotted line); note that η = 1/4 for the Ising model. The insets show two typical configurations
in these conditions. Orange regions are c-AF ordered, black dots correspond to FM vertices (a
and b), red and blue dots correspond to oppositely charged defects of type e; d vertices are absent.
Connected correlations in the ordered regime agree with an exponential decay ∼ exp(−r/ξ) with
ξ = 36.correlation-function

preparation process in which the thickness of the magnetic islands grow by deposition. The Ising
spins flip by thermal fluctuations during the growth process. However, as the time scales for these
moves increase with the growing size of the islands, once a certain thickness is reached the flipping
times become too large and the spins freeze. Using ideas pioneered by Edwards in the context of
granular matter

EdwardsBook
[87], the assumption that with this procedure one samples configurations from an

effective equilibrium ensemble at an effective temperature βE is hence made. Moreover, taking the
vertices as being independent (mean-field approximation) one concludes 〈ni〉 = exp (−βEεi)/Z,
where Z is the normalization constant, and βE is extracted from the data for 〈ni〉. This is the way
in which the data-points have been drawn

MorganPrivate
[195].

Our model reproduces quantitatively the experimental data at temperatures far enough from
the critical point. We argue that at temperatures close to Tc the annealing time leading to the
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Figure V.26: 3d projection of the phase diagram of 2d spin ice on the square lattice for a = b.
The thick (red) line indicates the SL phase ending at the KT transition point (d = e = 0 and
a/c = b/c = 1/2). The c-AF phase is indicated by the (blue) tetrahedron. In the rest of the phase
diagram and for d . 2a+ 3e+ c (otherwise a d-AF phase would be found) one finds a PM.phase_diagram

frozen configuration is not long enough to sample the equilibrium distribution because of critical
slowing down. It would be interesting to explore the connection between the experimental cooling
procedure and a cooling rate in the numerical simulations. Evidence for critical slowing down in
this system was already given in Fig.

correlation-functioncorrelation-function
V.25 (a) where the spatial correlation at different times after

a quench from T →∞ to T close Tc are shown.

V.6 Extension of the mappings for constrained models to the generic
case

Most of the contents of this section is still work in progress. The included here in order to
give possible further directions in the investigation of generic lattice models. In particular, we
stress how to extend the known mappings to surface growth models and quantum spin chains for
constrained models when we include thermally activated defects such as monopoles in spin-ice.

V.6.1 Height representation, monopoles and dislocations

The sixteen-vertex model cannot be represented faithfully by a height configuration because
of the presence of defects. This can be understood from eq. (

eq:AHeighteq:AHeight
IV.32). A defect in the six-vertex

model is characterised by ∑
j∈Γ

~Ai,i+1 ·~li,i+1 = 2q ≡
∮

Γ
~A.d~l = 2q (V.118)

where Γ is a closed path around a vertex and q is its charge. Note that, in the continuum formula-
tion, this equation is identical to the definition of a vortex in the XY model (see eq. (

eq:Vortexeq:Vortex
III.20)). The

height configuration is not uniquely defined in the presence of defects. Just as for the XY model
in the presence of vortices, or for the electromagnetic field in the presence of magnetic monopoles,
the function h is multivalued. This is illustrated in Fig.

fig:Dislocationfig:Dislocation
V.28: along any closed loop sourrounding

a defect the height field goes from some value h(x, y) to a different one h(x, y) + 2q. The shift
between these two values of the height at the same plaquette is given by the charge of the defect.
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Figure V.27: Averaged density of vertices as a function of inverse temperature. The points are data
from the experiment in

Morgan2011, MorganPrivate
[196, 195] and β is estimated as explained in the text. The solid colored

lines are the fits to the CTMC data. The solid black lines are the BP analytic results. The vertical
dotted line indicates the critical inverse temperature.VertexData

In order to fix its value one must choose arbitrarily a branch cut starting at a defect site and going
to infinity or ending at a different defect of opposite charge. Then, one can construct a height
configuration by recursion from a vertex configuration using eq. (

eq:HeightFluxeq:HeightFlux
IV.31) for any path C which does

not go through the branch cut. This was already discussed in section
sec:Ch3KTsec:Ch3KT
III.1.4 and

sec:Ch3TopoDefectssec:Ch3TopoDefects
III.1.5: one needs

to fix a branch cut for each topological defect in order to define the value of θ, u or A.
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Figure V.28: Height configuration presence of two defects linked by a branch cut shown in red.
Right: A screw dislocation in the crystal surface of Burgers vector b = (0, 0,−l0) (picture ex-
tracted from

LandauElasticity
[156]).fig:Dislocation

As shown in Fig.
fig:Dislocationfig:Dislocation
V.28, branch cuts associated to defects in the vertex model correspond to

screw dislocations in the SOS representation. The height function of the vertex model can describe
the surface of a crystal. Screw dislocations are characterised by a Burgers vector b orthogonal to
the surface: b = (0, 0, b). Consider a positively charged defect as the one showed by a white
circle in Fig

fig:Dislocationfig:Dislocation
V.28. After going around it in the trigonometric direction, the height experiences a

brutal ‘climb’ which is equal to two times the height difference between NN in the BC lattice,
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i.e. a lattice spacing l0 (see section
sec:Ch4Heightsec:Ch4Height
IV.3.4 for the notations). Instead, for a negative charge, the

height experiences a brutal fall of the same magnitude. The Burgers vector is then b = (0, 0, q)l0
pointing into or out to the bulk of the crystal.

In the following, we extend the arguments used by Blöte and Nightingale to study the AF Ising
model on the triangular lattice

Blote1993
[38] to the six-vertex model with defects (sixteen-vertex model).

For the Gaussian SOS model, the asymptotic correlation function of two height variables at a
distance r is given by (see eq.

eq:GreenGausseq:GreenGauss
III.22): g(r) = 〈(h(0, 0)−h(x, y))2〉 ∼ ln r. The long-wave length

behaviour of the system is then described by an effective Coulomb gas model:

S[ρ] =
∫ ∫

d~rd~r′ρ(~r)g(|~r − ~r′|)ρ(~r′) + βEc

∫
d~rρ2(~r) (V.119) eq:vortexInteraction

where ρ is the charge density and Ec ≈ εe is the energy of creation of a defect. From these
arguments, one would expect defects to interact via a 2d Coulomb potential. This potential is
different form the 1/r form expected from dipolar interactions in 2d spin-ice samples

Wang2006,Moller2006,Silva2009
[263, 189,

188].

V.6.2 Mapping into a quantum spin chain

The contents of this subsection are a prelude of the unfinished work we are doing in close
collaboration with Laura Foini. We are trying to generalise the known mappings between quantum
spin chains and constrained vertex models (six- and eight-vertex models) to the unconstrained
case. This is an old problem pointed out by Lieb and Wu more than thirty years ago

LiebWuBook
[165]:

Find a non-trivial linear Hamiltonian that commutes with the transfer matrix for the
sixteen vertex problem.
E. Lieb and F. Wu , in Phase transitions and critical phenomena Vol. 1

LiebWuBook
[165]

In previous sections we presented two different approaches to show the relationship between
a classical lattice model and a quantum spin chain. The first one, described in section

sec:8vXYZsec:8vXYZ
IV.4.4,

is based on the computation of commutators between the R-matrices of the classical model and
the local quantum Hamiltonian acting on two sites of the chain. Then, one has to prove that the
commutator [H,T ] vanish when the interaction parameters of both models verify some equations.
The second one, described in section

sec:SuzukiTrottersec:SuzukiTrotter
IV.5.2, makes use of the Suzuki-Trotter decomposition to

write the partition function of the quantum model as a path integral (a sum for lattice models).
Then these paths are identified with configurations of a classical statistical model in the ‘limit
of continuous imaginary time’ ∆τ → 0. Both methods need a good ‘guess’ of the quantum
Hamiltonian in order to prove its equivalence with a classical model. In the following I motivate
our ‘guess’ and discuss the difficulties encountered to prove (if true!) its equivalence with the
sixteen-vertex model.

The R−matrix for the sixteen-vertex model is

R =


ω1 ω11 ω9 ω7
ω14 ω3 ω6 ω15
ω16 ω5 ω4 ω13
ω8 ω10 ω12 ω2

 . (V.120)

and the transfer matrix T = Tr2(
∏
iRi) where Ri reads

Ri =
(
R11
i R12

i

R21
i R22

i

)
. (V.121)
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First of all we should find a representation of the transfer matrix in terms of Pauli matrices. This
has been done in

LiebWuBook
[165]:

R11
i = 1

2(ω1 + ω4) + 1
2(ω1 − ω4)σ̂zi + ω16σ̂

+
i + ω9σ̂

−
i

R12
i = 1

2(ω11 + ω13) + 1
2(ω11 − ω13)σ̂zi + ω5σ̂

+
i + ω7σ̂

−
i

R21
i = 1

2(ω14 + ω12) + 1
2(ω14 − ω12)σ̂zi + ω8σ̂

+
i + ω6σ̂

−
i

R22
i = 1

2(ω3 + ω2) + 1
2(ω3 − ω2)σ̂zi + ω10σ̂

+
i + ω15σ̂

−
i

, (V.122)

where
σ̂i = 12 ⊗ ...⊗ σi ⊗ ...12 (V.123)

are L×Lmatrices and σi the usual 2×2 Pauli matrices. In our case, we keep only five parameters
a, b, c, d, e and we get

R11
i = 1

2(a+ b) + 1
2(a− b)σ̂zi + eσ̂xi

R12
i = e+ cσ̂+

i + dσ̂−i
R21
i = e+ dσ̂+

i + cσ̂−i
R22
i = 1

2(a+ b) + 1
2(b− a)σ̂zi + eσ̂xi

. (V.124)

We rewrite the transfer matrix the symmetric sixteen-vertex model as

T = Tr2

L∏
i

(
a σ̂+

i σ̂
−
i + b σ̂−i σ̂

+
i + e(σ̂+

i + σ̂−i ) e I + cσ̂+
i + dσ̂−i

e I + cσ̂−i + dσ̂+
i b σ̂+

i σ̂
−
i + a σ̂−i σ̂

+
i + e(σ̂+

i + σ̂−i ) .

)
(V.125)

The XYZ Hamiltonian eq. (
eq:HXYZeq:HXYZ
IV.66) conserves parity such that terms of type

〈+ + | exp[−∆τh(i, i+ 1)]|+−〉 = e = 0 (V.126)

in the Suzuki-Trotter decomposition vanish. In the sixteen-vertex problems one has to include
these terms to fill the sixteen entries of the R-matrix. The quantum Hamiltonian must allow such
terms, and, for simplicity, give them equal weight. The simplest Hamiltonian verifying this is the
one of the XYZ chain in a transverse field:

hi,i+1 = Jxσ̂xi σ̂
x
i+1 + Jyσ̂yi σ̂

y
i+1 + Jzσ̂zi σ̂

z
i+1 + hσ̂xi . (V.127)

This Hamiltonian gives non-parity conserving defects with weight

〈+ + |e−∆τh(i,i+1)|+−〉 =
[
h− e

∆τ
2

√
(Jy−Jz)2+16h2

]
e−

∆τ
4 (Jx+

√
(Jy−Jz)2+16h2√

(Jy − Jz)2 + 16h2 (V.128)

= 〈+ + |e−∆τh(i,i+1)| −+〉 = .. = 〈+− |e−∆τh(i,i+1)|+ +〉 = e . (V.129)

In our model, all these weights are equal to the weight of single charged defects, e. Complicated
expressions of this kind relate the parameters of the classical model: a, b, c, d, e, with the ones
of the quantum chain: Jx, Jy, Jz , h, ∆τ . Some function of a, b, c, d, e (as the parameters ∆
and Γ for the eight-vertex model) should be found in such a way that, after taking the limit ∆τ ,
we find a well defined function of Jx, Jy, Jz , h. In section

sec:8vXYZsec:8vXYZ
IV.4.4, we found how to relate the

parameters of the classical model with the ones of the quantum chain for the eight-vertex model
via the parameters ∆ and Γ. The extension of this mapping would allows us to map the phase
diagram of the sixteen-vertex model with the phase diagram of the quantum problem.

In order to rigorously prove the mapping, we have to compute Ci = [RiRi+1, hi,i+1] for all i
and several system sizes L. Our goal is now to find Jx, Jy, Jz and h as functions of a, b, c, d and
e. Then following Sutherland’s ideas

Sutherland1970
[248] we compute these commutators for L = 2, 3, ... and

try to find a relation between the parameters which do not depend on L. For small values of L, the
commutators do not give us any useful equation. The calculations become rapidly too complicated
for larger values of L and we did not converge to any concluding result proving the mapping.





CHAPTER

VI

Dynamics in 2d spin-ice

ch:Dynamics

VI.1 Stochastic models

VI.1.1 Microscopic dynamics

From a fundamental point of view, the evolution of any system, both classical or quantum, is
generated by its Hamiltonian. The Poisson brackets between a quantity A and the Hamiltonian
H (or the commutators for a quantum system) give the time-evolution of A. For a macroscopic
system a different approach has to be taken since the number of coupled differential equations
to solve make the problem forbiddingly complex. One usually deals with macroscopic variables,
constructed by averaging over microscopic constituents which evolve in ‘microscopic’ time scales
tµ. For instance, in hydrodynamics one describes the flow of a fluid by a density field instead by
looking at the precise location and momentum of each particle. By doing so, one ends up with a
theory for the study of the evolution of the system at large time scales tM � tµ.

We are interested here in systems in contact with a thermal bath. The latter is made by a large
number of degrees of freedom interacting with the system and providing thermal agitation. The
microscopic state of the bath is unknown but we assume that it is in a thermal state (by definition a
thermal bath is ergodic). Thus, the evolution of a system with HamiltonianH coupled to a thermal
bath is modelled by a stochastic process.

Consider the probability Pµ(t) to find the system on a state µ at time t. It is then assumed that
the evolution of the system is a Markov process described by a master equation:

d

dt
Pµ(t) =

∑
σ 6=µ

[Pσ(t)Wσµ − Pµ(t)Wµσ] (VI.1)

where Wσµ is the transition rate from state σ to state µ. In classical statistical lattice models, even
though the Hamiltonian has been defined, one must equip the model with updating rules encoded
in the transition rates. A kinetic model is defined by both its Hamiltonian and the dynamical
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protocol chosen. As already mentioned when presenting Monte Carlo methods, a way to reach
thermal equilibrium at long times is to have a dynamical process that satisfies detailed balance:

Wσµ

Wµσ
= exp (−β(Eµ − Eσ)) (VI.2)

where Eµ denotes the energy of state µ and β the inverse temperature of the bath. Then a choice
must be done for the dynamical rules depending on the physical situation one plans to model. In
the following we make use of single spin-flip Monte Carlo dynamics (see section

sec:BasicMonteCarlosec:BasicMonteCarlo
III.4.1).

VI.1.2 Dynamical universality

At a first sight, the choice of the dynamical rules can seem quite arbitrary. However, the dy-
namical universality hypothesis claims that different updating protocols which share some com-
mon features display the same universal properties. A dynamical universality class is defined by:
(i) the dimension of the order parameter; (ii) the dimension of the system; (iii) the symmetries of
the model; (iv) the range of the interactions; (v) the conservation laws. Note that (i), (ii), (iii),
(iv) define a universality class in equilibrium critical phenomena. The relevant characteristic of a
dynamical process is the existence of conserved quantities which constraint the updates of the sys-
tem. An extension of the effective Ginzburg-Landau-Wilson (GLW) field theory has been used for
the study of dynamical collective phenomena. The classification of models in different dynamical
universality classes follows from Hohenberg and Halperin’s classical review article

Hohenberg1977
[116].

For concreteness, we focus on Z2 symmetric problems with a scalar order parameter φ and
described by the effective Hamiltonian:

H[φ] =
∫
dx
[1

2(∇φ(x))2 + 1
2r φ(x)2 + 1

4u φ(x)4
]

(VI.3) eq:GWLphi4

We shall only discuss here two classes of universality commonly encountered in the context of
Ising-like problems:

(i) Non-conserved order parameter (NCOP) or Model A
Hohenberg1977
[116]: There is no conserved quantity

during the evolution. In Ising spin systems, the system can be updated by single spin-flips. Two
important examples are Monte Carlo dynamics

Barkema-Newman_Book
[16] and Glauber dynamics

Glauber1963
[105]. These models

are well suited to study of the evolution of a ferromagnet. A phenomenological GLW-like theory
can be constructed from the assumption that, for NCOP dynamics, the evolution of the scalar
order parameter φ is ruled by the minimisation the Hamiltonian in eq. (

eq:GWLphi4eq:GWLphi4
VI.3). The order parameters

‘flows’ towards the minimum of energy. This is encoded in the so-called time-dependent Ginzburg-
Landau equation:

∂

∂t
φ(x, t) = − δ

δφ
H[φ] + η(x, t) (VI.4) eq:NCOP

where η is a stochastic function which models the presence of a thermal bath. The latter equation
is a field-theoretic version of a Langevin equation where the Hamiltonian plays the role of the
potential acting on a Brownian particle.

(ii) Conserved order parameter (COP) or Model B
Hohenberg1977
[116]: As the name suggests, the order param-

eter (the magnetisation) of the model must be conserved during the evolution. The system can be
updated by flipping pairs of anti-parallel spins. This is known as Kawasaki dynamics and can also
be implemented in a Monte Carlo scheme

Barkema-Newman_Book
[16]. This kinetic model mimics the flow of particles

in a lattice-gas. From the mapping between the Ising model and a lattice-gas, the conservation
of the magnetisation is equivalent to the conservation of particles. A phenomenological evolution
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equation can also be established in this case. Since the flux of φ must be conserved its evolution
follows a continuity equation, also called Cahn-Hilliard equation:

∂

∂t
φ(x, t) = −~∇ · ~J + η(x, t) (VI.5)

where the current ~J is given by the gradient of the energy variation −~∇ δH
δφ .

The dynamical exponents associated to the same model described by H with NCOP and COP
are different. The collective dynamical behaviour is independent of the choice of the updating
rules, as soon as they belong to the same class.

VI.2 Dynamics through a phase transition

Consider a system in contact with a thermal bath. At equilibrium, the thermal state of the
system is characterised by the external parameters of the bath, like the temperature or the external
magnetic field. One can set the system in an out-of-equilibrium situation by suddenly changing
this parameters. An infinitely rapid variation of the parameters is called a quench. By this simple
protocol the system is forced to evolve in an out-of-equilibrium manner towards the equilibrium
state characterised by the new external parameters. In particular, we are interested in quenches
which make the system evolve through phase transitions.

VI.2.1 Coarsening

For concreteness we focus on Ising-like problems with Z2 symmetry displaying a second or-
der phase transition at some critical temperature Tc. Consider that the system is initially is its
disordered phase (T � Tc) and then quenched into an ordered phase (T > Tc).

The system will then try to order in time. This will be done by growing locally regions of
parallel spins. However, the symmetry is not breaking during the dynamics and there is no reason
why the system should choose a positive or a negative magnetised equilibrium state. The tendency
to order locally cannot be satisfied by the global constraints imposed by the symmetry of the
problem. Regions where the order parameter take one among the two possible values grow in
time. The competition between them leads to very slow dynamics and the time needed in order to
reach equilibrium teq diverges in the thermodynamic limit. This slow dynamical process due to the
symmetry between different phases is known as coarsening or phase ordering dynamics

Bray2002,Cugliandolo2010b
[48, 75].

Note that coarsening is a very usual situation in a large class of systems. Volcanic rocks, like
granite, made by different materials, have grains of different size depending on the cooling con-
ditions of the lava. Different cooling procedures such as quenches or annealing are commonly
used in material science to change the properties of metallic alloys. Coarsening has been studied
in a large diversity of systems as binary liquid mixtures

Siggia1979
[240], soap froths

Thomas2006
[256], superconduc-

tors
Prozorov2008
[221], etc.
Consider the infinite temperature state of the 2d Ising model on an L× L square lattice as an

initial configuration. After the quench into its FM phase, the interactions will tend to order the
spins locally by aligning nearest-neighbours. This will grow domains of spins pointing ‘up’ and
‘down’ as shown in Fig.

fig:CoarseningIsingfig:CoarseningIsing
VI.1. By symmetry, the number of spins up and down should be equal. In

order to equilibrate one should correlate all the spins in the system, i.e. grow a domain of the size
of the system. Similarly to what happens at the vicinity of a critical point, the equilibration of the
system needs periods of time of the order of Lzd . This protocol provides a simple way to prepare
out-of-equilibrium states since, for large enough systems the equilibration time is very large. Note
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The problem
e.g. up & down spins in a 2d Ising model (IM)
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Question : starting from equilibrium at T0 → ∞ or T0 = Tc how is
equilibrium at Tf = Tc or Tf < Tc attained ?

t = 0 t1 > 0 t2 > t1

Figure VI.1: Snapshots of the 2d Ising model after a quench from infinite temperature to a sub-
critical temperature. Spins up and down are represented by red and white dots. Red and white
regions grow in time.fig:CoarseningIsing

that this exponent zd is a priori different from the dynamical critical exponent z associated with
the divergence of the correlation time at a critical point.

VI.2.2 Dynamical scaling hypothesis

The relaxation of a system after a quench from a disordered configuration into an ordered
phase exhibits the growth of ordered regions characterised by a typical growing length R. The
dynamical scaling hypothesis asserts that, after some transient time, the domain pattern remains
statistically identical during the time evolution. In the time regime where dynamical scaling ap-
plies (from now on called the coarsening regime) all the length scales become time-independent
when properly rescaled by R(t), the unique relevant length scale in the system. This looks sim-
ilar to Widom’s scaling hypothesis for equilibrium critical phenomena: the key notion of scale
invariance is extended to time evolution.

In view of our work on 2d spin-ice, we focus our discussion on NCOP dynamics of the Monte
Carlo type. A quantitative understanding of coarsening dynamics starts by the computation of
time-dependent observables such as the time dependent magnetisation

M(t) = 1
L2

L2∑
i=1

Si(t) (VI.6)

and the two-point self correlation functions

C(t, tw) = 1
L2

L2∑
i=1
〈Si(t)Si(tw)〉 , t > tw (VI.7)

G(r, t) = 1
L2

L2∑
i=1
〈Si(t)Sj(t)〉 (VI.8)

where the brackets denote an average over independent realisations of the dynamics 1, Si(t) is the
value of the spin on site i at time t and r is the distance between sites i and j. From these quantities
one can get an estimation of the equilibration time teq. Dynamical scaling states that, after a long

1. In practice, it corresponds to running independent simulations using different random number generators.
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enough period of time such that R(t) � ξ (where ξ is the equilibrium correlation length), r � ξ
and r/R(t) <∞:

C(t, tw) 'M2
eq FC

(
R(t)
R(tw)

)
, (VI.9)

G(r, t) 'M2
eq FG

(
r

R(t)

)
. (VI.10)

Note that dynamical scaling has not been proved in general. In static critical phenomena, scal-
ing is justified from scale invariance and the RG theory. However, the application of standard
RG methods is much more subtle for phase ordering dynamics because of their non-perturbative
character

Bray2002
[48]. An RG theory providing a justification of the dynamic scaling hypothesis is still

lacking. It is usually assumed, and proved in a few cases (see below), that R grows as a power law
of time

R(t) ' λ t1/zd (VI.11) eq:ScalingR(t)

where zd is the dynamical exponent defined by teq ∼ Lzd and λ is a non-universal factor which
depends on temperature. Since this length scale is macroscopic in the coarsening regime, one
expects that the exponent zd will be independent of the microscopic specificities of the model and
defines a dynamical universality class. As we discussed in the previous section, for NCOP dynam-
ics we expect to get a single value zd = 1/2 for a class of different systems.

Dynamical scaling and the power law growth of R are strongly supported by many numerical
simulations and a fewer analytical treatments. The more relevant examples for our purposes are:

(i) Exact. In 1d systems exact solutions are available
BrayBook
[47]. In the kinetic Ising chain with Glauber

dynamics domains grow as t1/2 and dynamical scaling is obeyed.

(ii) Mean field. In the O(N) model evolving accordingly to the time-dependent Ginzburg Landau
equation (

eq:NCOPeq:NCOP
VI.4), exact calculations can be done in the large N limit

Corberi2002a
[73]. The typical size of the

domains also grows as t1/2.

(iii) Allen-Cahn equation. In the thermodynamic limit, equilibrium is never reached. Instead,
there is a coexistence of ordered regions of order parameter φ = ±1 separated by domain walls.
These are topological defects which carry an excess of energy. The relaxation of the system
proceeds through the annihilation of topological defects. A domain wall can be described by a
unit vector ~n orthogonal to the surface of the wall and pointing in the direction of increasing φ
(in the field-theory formulation). At zero temperature, and close to a domain wall, the NCOP
evolution equation (

eq:NCOPeq:NCOP
VI.4) takes the form

~v = ∂~n

∂t
= −[~∇ · ~n]~n (VI.12) eq:AllenCahn

where ~n is a unit vector normal to the domain wall and ~v is the wall velocity. This is the so-called
Allen-Cahn equation

AllenCahn1979
[5]. For systems like the 2d Ising model with well defined walls carrying a

surface tension, the coarsening dynamics proceed through the minimisation of its local curvature,
hence called curvature driven coarsening. This tends to create smooth surfaces between ordered
regions (as shown in Fig

fig:CoarseningIsingfig:CoarseningIsing
VI.1).

Consider a spherical domain in a d-dimensional space. Its curvature is (d − 1)/R such that the
Allen-Cahn equation becomes: Ṙ(t) = (1 − d)/R which implies that the spherical domain de-
creases with the same t1/2 power law.

(iv) Scaling arguments. Inspired by the latter result for a single spherical domain one estimates
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that the evolution of the growing length for NCOP dynamics follows the differential equation:

dR(t)
dt

τ(R, T ) = 1
R

(VI.13)

where τ is the characteristic time to flip a spin in the domain wall. Depending on the behaviour of
τ(R, T ) the growing length can follow different laws

Lai1988,Shore1992
[154, 237]. One recovers the t1/2 growth for

systems which do not involve energy barriers scaling with R during the coarsening, i.e. τ is a pos-
itive constant. For systems which need to overcome energy barriers growing with the size of the
domain the situation is more involved. For instance, in models with competing interactions such
as the Ising model with nearest-neighbour (NN) ferromagnetic interactions and next-to-nearest
(NNN) antiferromagnetic ones J1 and J2 respectively. For this model in three dimensions, the en-
ergy barrier to remove an edge of spins in the domain wall is ∆E(L) = 4(L+ 1)J2. By an Arrhe-
nius argument one can estimate the time needed to overcome this barrier by τ ∼ exp(β∆E(L)).
This simple argument gives a logarithmic growth R(t) ∼ ln t which has been supported by nu-
merical simulations

Shore1992
[237] The same arguments based on an spherical domain can be applied to

COP dynamics and give a R(t) ∼ t1/3 growth
Huse1986
[120], in agreement with numerical simulations

and RG calculations.

(v) Geometrical properties. The distribution of hull-enclosed areas of 2d Ising-like models with
curvature driven dynamics can be computed analytically. Thus providing a strong argument sup-
porting dynamical scaling

Sicilia2007a,Arenzon2007
[238, 9].

VI.2.3 Topological defects

The reader has probably remarked that the central object in the previous discussion were the
domain walls. Their motion characterises completely the coarsening regime. Domain walls are
the simplest example of topologically stable structures (topological defects). Local fluctuations
cannot destroy them, their stability is responsible for slow dynamics.

Topological defects can be spatially extended, such as domain walls, or localised, such as
vortices in the 2d XY model. In general, extended topological defects arise when n < d, where n
is the dimension of the order parameter. Even for localised defects, one usually associates a length
scale to topological defects such as a typical vortex anti-vortex distance. Coarsening proceeds by
shrinking (i.e. annihilating) topological defects. The decay of topological defects after cooling a
macroscopic system across a phase transition is also of great importance for cosmology

VilenkinBook
[260].

In the spin-ice model, one expects two kind of topological defects: (i) domain walls between
different ordered regions; (ii) defects in the form of charged vertices (monopoles). At high tem-
perature monopoles proliferate. After a quench into an ordered phase they are going to move
and annihilate. At the same time, ordered regions will grow. The evolution of extended defects
(domain walls) proceed through the reduction of the area of individual domains via, for instance,
curvature driven dynamics (e.g. R ∼ t−1/2). A different mechanism should take place in order
to annihilate localised defects (vortices in the XY model, monopoles in spin-ice). Two defects
of opposite vorticity/charge should meet in the appropriate way to annihilate. It means that, in
spin-ice, two monopoles sitting in neighbouring sites can annihilate only if they share a spin that,
if flipped, recovers the ice-rules. Note that the orientation between localised defects in the 2d XY
model does not play any role in the annihilation rate of vortices. The interplay between these to
processes (domain growth and ‘directional’ annihilation of defects) has to be analysed in detail in
order to understand spin-ice dynamics. In the following pages we tackle this problem using Monte
Carlo simulations.
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VI.3 Model and methods

Here we address the dynamics of 2d spin-ice models with only short-range interactions, i.e.
a vertex model. For the sake of simplicity we focus on thermal quenches in the 2d square lattice
spin ice model built as a stochastic extension of the six-vertex model. We consider an L × L
square lattice V with unit spacing and periodic boundary conditions (PBC). The model has been
already defined on section

sec:16Vertexsec:16Vertex
IV.7. For clarity, let us recall some notations. We assign a Boltzmann

weight ωk ∝ e−βεk to each of the k = 1, . . . , 24 four-arrow vertex configurations. The energy
is H =

∑16
k=1 εknk, where nk is the number of vertices of type k. We set ω1 = ω2 = a,

ω3 = ω4 = b, ω5 = ω6 = c for the ice-rule vertices and ω7 = ω8 = d, ω9 = ... = ω16 = e for
the 2-fold and 1-fold defects, respectively, ensuring invariance under reversal of all arrows (see
Fig.

vertex_configurationsvertex_configurations
VI.2). Henceforth we measure the weights in units of c.

• •
� �� �

a=ω1=ω2

• •
� �� �

b=ω3=ω4

• •
� �� �

c=ω5=ω6

• •
� �� �

d=ω7=ω8

• • • • • • • •
� �� �

e=ω9=ω10=...=ω16

1

Figure VI.2: The sixteen vertex configurations on the 2d square lattice and their weights. The first
six vertices verify the ice-rule. The next pair completes the eight-vertex model and have charge
q = ±2. The last eight vertices have charge q = ±1. This color code is used in Fig.

EvolutionEvolution
VI.12.vertex_configurations

VI.3.1 Updating rules

We use a rejection-free continuous-time Monte Carlo (MC) algorithm, with local spin-flip
updates and non-conserved order parameter as described in section

sec:CTMCsec:CTMC
III.4.2. The details of the

algorithm are given in appendix
app:CTMCapp:CTMC
A. This allows for thermally-activated creation of defects. The

longest time reached with this method, once translated in terms of usual MC sweeps, is of the
order of 1025 MCs, a scale that is unreachable with usual Metropolis algorithms. This allows us
to analyse different dynamic regimes.

In spin-ice materials, and in artificial 2d realisations in particular, the dynamics are expected
to be of the single spin-flip kind without any conserved quantity. The motion of the defects can be
visualised by microscopy in ASI samples

Ladak2010,Mengotti2011
[152, 177] and agree with this picture. Moreover, our

dynamics are ergodic for both fixed and periodic boundary conditions. One could think about a
dynamical rule which preserves the ice rules and do not create defects, i.e. a dynamical six-vertex
model. With PBC one needs to introduce loop updates of any size and winding number in order
to sample the whole phase space. Such a dynamics has been studied in the 3-colouring model on
the hexagonal lattice and leads to glassy behaviour

Chakraborty2002
[64]. Another possible local dynamics which

preserve the ice rules would be to update the system by small loops made by four spins around
a square plaquette. These dynamics are not ergodic for PBC but they are, for instance, for the
six-vertex model with DWBC (defined in Fig.

fig:DWBCfig:DWBC
IV.12). For the spin-ice problem, these two possible

dynamical models seems quite artificial and do not allows us to study defects’ motion in the way
that it is observed to occur in the laboratory.
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A completely disordered initial condition is fixed by placing arrows at random at each edge of
the square lattice V . If we impose PBC it follows that the number of positive and negative charges
is identical. The system remains globally neutral during the evolution, since the system is updated
by single spin flips which cannot create any excess of charge.

VI.3.2 Observables

We now turn to the dissipative stochastic dynamics of an equilibrium initial configuration at
a = b = d = 1 (i.e. T → ∞) after a quench to sets of parameters in the (i) disordered, (ii) FM,
and (iii) AF phases. In case (i) the system should equilibrate easily but the question remains as to
whether it gets blocked in metastable states with a large density of defects. In cases (ii) and (iii)
the interactions between the spins, mediated by the choice of vertex weights, should create ordered
domains, FM or AF. The quantitative characterisation of growth in the ordering processes is given
by two possibly different growing lengths extracted from correlation functions along orthogonal
directions ‖ and ⊥ that we identify.

The relaxation dynamics of clean lattice systems are usually studied in terms of time-dependent
macroscopic observables averaged over different realisations of the dynamics (denoted by 〈...〉).
In particular, we compute the following quantities:

(i) The density of vertices of each type:

〈na(t)〉 = 〈n1(t) + n2(t)〉 , 〈nb(t)〉 = 〈n3(t) + n4(t)〉 , 〈nc(t)〉 = 〈n5(t) + n6(t)〉, (VI.14)

〈nd(t)〉 = 〈n7(t) + n8(t)〉 , 〈ne(t)〉 = 〈
16∑
k=9

nk(t)〉. (VI.15)

(ii) The two-times self-correlation function defined by:

C(t, tw) = 1
2L2

∑
(i,j)∈V̂

〈S(i,j)(t)S(i,j)(tw)〉 (VI.16)

with t > tw. The indices (i, j) denote the coordinates of a spin in the medial lattice V̂ (i.e. the
vertices of the square lattice shown in red in Fig.

fig:CorrLatticefig:CorrLattice
VI.3).

(iii) The space-time correlation functions. The definition of the relevant correlation functions
between different points in the lattice is not straightforward when we introduce some anisotropy
in the model (for example by choosing a > b). For convenience, we define a set of correlation
functions between spins in different orientations: along the Cartesian axis ~ux and ~uy and along the
π/4-rotated axis ~u‖ and ~u⊥ (see Fig.

fig:CorrLatticefig:CorrLattice
VI.3). The space-time self correlation functions along the ~u‖

and ~u⊥ are defined by

G‖(r = n, t) = 1
L2

∑
(i,j)∈V̂

〈S(i,j)S(i,j+n)〉 (VI.17)

G⊥(r = n, t) = 1
L2

∑
(i,j)∈V̂

〈S(i,j)S(i+n,j)〉 (VI.18)

and along the ~ux and ~uy axis by

Gx(r =
√

2n, t) = 1
L2

∑
(i,j)∈V̂

〈S(i,j)S(i+n,j+n)〉 (VI.19)



VI.4. QUENCH INTO THE PM PHASE 163

Gy(r =
√

2n, t) = 1
L2

∑
(i,j)∈V̂

〈S(i,j)S(i−n,j+n)〉 (VI.20)

where n ∈ N.

(iv) The growing lengths L‖,⊥(t) along ~u‖ and ~u⊥. They are extracted numerically from the decay
of the space-time correlations by:

G‖,⊥
[
L‖,⊥(t), t

]
= 0.3 . (VI.21)

More refined analysis ofG‖,⊥ lead to equivalent results forL‖,⊥(t) within our numerical precision.

•

•

•

•
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•

•

•
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�uy
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1

G⊥ G�

Gy

Gy

Figure VI.3: Correlations between spins along different directions. The lattice V made of L2

vertices is shown in grey. Its medial lattice V̂ made of 2L2 spins is shown in red.fig:CorrLattice

VI.4 Quench into the PM phase

In the following, we study the evolution of the model after a quench from a random initial
condition (a = b = c = d = e = 1) into a different PM state, typically close to the SL critical
phase (a = b = c = 1 and d, e � 1). In the initial configurations defects are common. We are
interested here in the mechanisms leading to their annihilation.

VI.4.1 Dynamical arrest

For the sake of simplicity, let us set d = e. Figure
fig:quench-Dfig:quench-D
VI.4 displays the time-dependent density

of defects, nd(t), defined as the number of vertices of type 7-16 divided by L2, after an infinitely
rapid quench to a = b = 1 and d = 10−8, . . . , 10−1 of samples with linear size L = 50 (a) and
L = 100 (b). These data have been averaged over 103 runs.

For large d (black dark curves) nd(t) quickly saturates to its equilibrium value. Numerical
estimates of the equilibrium density of defects, neqd , for d = 10−1, 10−2, 10−3 are shown with
dotted black lines. As expected neqd is an intensive quantity that increases with d. It does not
depend upon the system size for L ≥ 50 and d > 10−3.

For small d (. 10−4) the systems do not reach equilibrium within the simulated time-window.
After a first decay, nd(t) gets frozen at approximately constant values before relaxing, in a much
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longer time-scale, to a configuration in which only two defects are present in our small samples.
Note that in order to distinguish the d−dependent equilibrium values for these very small ds one
would need to equilibrate much larger samples. Unfortunately, the special purpose loop algorithm
devised for the 6 vertex model does not apply to our generalized case. For our working sizes we
see asymptotes taking the value 2/L2 on average.
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Figure VI.4: Time-dependent density of defects, nd(t), after a quench from T → ∞ to a =
b = 1 and d = 10−1, 10−2, . . . , 10−8. (a) L = 50 and (b) L = 100. The black curves are for
d = 10−1, 10−2, 10−3. The grey (color) curves are for smaller values of d decreasing from left
to right. (c) Short time behaviour in the case d = 10−4 and L = 100 confronted to the decay
ρ0/(1 + Ωt) (dashed curve)

Castelnovo2010
[58] and the fit ρ0/(1 + Ωt)α with α = 0.78 (blue plain curve). (d)

Test of scaling with td2 for systems with L = 50.fig:quench-D

The initial decay of nd is fitted by a power-law decay

n(t) = ρ0
(1 + Ωt)α (VI.22) eq:power-law-decay

with α ' 0.78 over three orders of magnitude in t and nd, as shown in panel (c) in Fig.
fig:quench-Dfig:quench-D
VI.4. The

power-law is shown with a solid blue line in the figure together with the data for d = 10−4 and
L = 100. This law is different from the simple t−1 decay found with a mean-field approximation
to a diffusion-reaction model shown with a dashed red line in the same figure

Castelnovo2010
[58]. The exponent

α depends on the parameters of the system in a non trivial way that we shall discuss in later in
sections

sec:PMdesec:PMde
VI.4.2 and

sec:FMdesec:FMde
VI.5.1. Finite size effects will also be discussed in the next subsection.
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The decay is next arrested at a metastable density of defects npld ≈ 10/L2. The plateau lasts
longer for smaller d and its height is roughly independent of d. This feature is reminiscent of what
was found numerically in dipolar spin-ice although contrary to the modelling in

Castelnovo2010
[58] our model

does not have long-range interactions. At the entrance to the plateau the system has between 3
and 4 times more defects of type 7-8 than those of type 9-16 which are only 2 or 3. Therefore,
in the final decay from the plateau to the asymptotic value nd ≈ 2/L2 the remaining doubly
charged defects have to disappear. This may be due to two kinds of processes. In terms of a
reaction-diffusion model the relevant processes taking place with their energetic gain/cost are:

(2q) + (−2q)→ (q) + (−q) ∆E = 0 (VI.23)

(2q) + (−q) → (q) + (0) ∆E ∝ kBT ln d < 0 (VI.24)

(q) + (q) → (2q) ∆E ∝ kBT ln d < 0 (VI.25) eq:DoubleDef

(q) + (−q) → (0) + (0) ∆E ∝ 2kBT ln d < 0 (VI.26) eq:AnnDefects

In the first case, two defects of type 7 and 8 meet to produce two singly (and oppositely) charged
defects with no energetic gain. The total density of defects remains constant after this reaction.
An example of the second case is a reaction in which a defect of type 7 (charge q = 2) meets
one of type 14 (charge q = −1) to produce a defect of type 10 (charge q = 1) and a spin-ice
vertex with no charge. This corresponds to an energetic gain ∆E. Note that the number of single
charged defects has not been modified in this process but the number of doubly charged defects
diminished and so did the total number of defects. In both cases the remaining defects need to
diffuse, a process with no energetic cost, to find a partner and annihilate. From inspection of
the individual runs and the densities of single and doubly charged defects we see that the second
process is favoured, as also suggested by the energetic gain.

The time regime where the density of defects finally leaves the plateau and reaches its equilib-
rium value, is characterised by a scaling of the dynamic curves with the scaling variable td2 Castelnovo-priv

[55]
as shown in Fig. [

fig:quench-Dfig:quench-D
VI.4 (d)] for the L = 50 data. This scaling strongly suggests that the rele-

vant time scale in the system is the typical time needed to create a pair of single defects. From
an ice-rule state, the energy change associated with the reaction : (0) + (0) → (q) + (−q) is
∆E ∝ −kBT ln d2. Then, by a simple Arrhenius argument, the typical time to overcome this
barrier is ∝ exp(β∆E) giving the before mentioned time scaling τ ∝ d−2.

VI.4.2 Time evolution for d < e
sec:PMde

In real spin-ice realisations, both in 2d and 3d, the energy associated to doubly charged defects
d is larger than the one of single charged defects e. One should then study in detail the effect of
d < e in the time evolution of the model.

At a first sight, one could think that the emergence of the dynamical plateau in the density
of defects discussed in the previous section, is due to the presence of doubly charged defects d.
The reaction in eq. (

eq:DoubleDefeq:DoubleDef
VI.25) is accompanied by an energy gain when d = e, meaning that the

creation of doubly charged vertices are favoured dynamically. Then, d-vertices get stuck, since
any update of one of its legs will break the vertex into two single charged defects accordingly to
(2q)→ (q) + (q), at an energy cost ∆E ∝ −kBT ln d > 0.

When d < e the situation changes and the annihilation of double defects can be favoured. The
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energy difference associated with the previous reactions is:

(2q) + (−2q)→ (q) + (−q) ∆E ∝ −2kBT ln (e/d) (VI.27)

(2q) + (−q) → (q) + (0) ∆E ∝ kBT ln d < 0 (VI.28)

(q) + (q) → (2q) ∆E ∝ kBT ln(e2/d) (VI.29) eq:DoubleBreak

(q) + (−q) → (0) + (0) ∆E ∝ 2kBT ln e < 0 . (VI.30)

One should differentiate three cases:

(i) d = e: All the defects have the same weight. The decay of d-defects into two e-defects fol-
lowing the reaction (2q) → (q) + (q) is done by at an energy cost ∆E ∝ −kBT ln d > 0.

(ii) d < e, d > e2: Single charged defects e are slightly more favourable that d-defects.
However, the decay of d-defects into two e-defects still needs to overcome an energy barrier
∆E ∝ −kBT ln(e2d) > 0.

(iii) d < e2: Doubly charged defects are very unfavourable. The decay of d-defects now takes
places spontaneously since leads to an energy gain ∆E ∝ −kBT ln(e2d) < 0.

We now investigate the dynamical consequences of choosing different weights for the two
kind of defects. In particular the fate of the dynamical plateau when doubly charged defects are
rapidly suppressed.
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Figure VI.5: Decay of the density of vertices for a = b = c = 1 and L = 50 averaged over 500
realisations. The weights of the defects are indicated on the figure and for all of them e2 < d
which favours the creation of doubly charged defects. (a) e = d and ln(e2/d)/ ln(10) = −7. (b)
e > d and ln(e2/d)/ ln(10) = −4. (c) e > d and ln(e2/d)/ ln(10) = −2.fig:deltaE>0

As shown in Fig.
fig:deltaE>0fig:deltaE>0
VI.5, the decay of ne freezes at a metastable density for d < e verifying

d > e2. For large enough values of d
(
ln(d/e2)/ ln(10) & 2

)
the density of e-vertices ne is

smaller than nd in the plateau regime. For ln(d/e2)/ ln(10) . 2 d-vertices rapidly disappear and
ne remains larger than nd for all times. After a rapid decay, ne gets frozen into a metastable state
for long periods of time before it finally reaches its equilibrium value. Hence, one can conclude
that the presence of d-defects in the system is not responsible for the emergence of the dynamical
plateau.

The evolution of the defect’s density for d = e2 is shown in Fig.
fig:deltaE=0fig:deltaE=0
VI.6. The density of e-defects

remains larger than nd during the whole evolution for the three sets of parameters. Similarly to
what was observed for e = d, the system gets blocked into a metastable plateau only for small
enough values of e . 10−4, and the existence of this arrested dynamical regime is not due on
the presence of d-vertices. The evolution of ne and nd for d < e2 shown in Fig.

fig:deltaE<0fig:deltaE<0
VI.7 supports
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Figure VI.6: Time evolution of the density of defects ne and nd for a = b = c = 1 and L = 50
averaged over 500 realisations. The weights of the defects are indicated on the figure and verify
e2 = d.fig:deltaE=0

this observation. Although nd rapidly vanishes, ne exhibits a dynamical arrest at a constant value
which, in principle, can depend on the weight of the vertices in a complicated manner.

(a) (b)

10-3

10-2

10-1

100

100 102 104 106 108 1010

n(
t)

t (in MCS)

d=10
-18

 e=10
-6

nend

10-3

10-2

10-1

100

100 102 104 106 108 1010

n(
t)

t (in MCS)

d=10
-13

 e=10
-6

nend

Figure VI.7: Time evolution of the density of defects ne and nd for a = b = c = 1 and L = 50
averaged over 500 realisations. The weights of the defects are indicated on the figure and verify
e2 > d.fig:deltaE<0

In order to understand the emergence of the frozen regime we repeated the numerical experi-
ment with fixed boundary conditions (FBC): the state of each spin on the boundary is kept fixed
from the initial configuration during the simulation. One has to be careful when choosing the
boundary conditions and make sure that these do not induce a polarisation of the sample. Indeed,
polarised boundary conditions such as the DWBC can have dynamical consequences such as the
drift of magnetic monopoles. These effects should be studied independently.

In the initial high temperature state, defects of any kind populate the system. After the quench,
the relaxation proceeds through the annihilation of oppositely charged defects. In order to do so,
defects have to meet in the appropriate manner, meaning that the reversal of the spin shared by both
of them restores the ice rule. In the reaction-diffusion language this corresponds to the process
(q) + (−q) → (0) + (0). Two defects of opposite charge ±1 can also meet in the ‘wrong’ way
and create a pair of doubly charged defects accordingly to: (q) + (−q) → (2q) + (−2q) by a
single spin-flip. Starting from a completely ordered FM configuration, one can create a pair of
defects by flipping a string of spins. The string can wind around the lattice by PBC. Then, in order
to annihilate these pair of defects one must flip back all the spins in the string. One can think
about this kind of extended structures to be responsible of the slowing down of the dynamics. If
so, the evolution of the system with FBC, where winding strings are absent, should not present a
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dynamical plateau. As shown in Fig. [
fig:FBCvsPBCfig:FBCvsPBC
VI.8 (a)] this is not the case: a metastable plateau in the

evolution of the density of defects appears with FBC as well. This is due to the fact that, in the
presence of more than a single pair of defects, there is always a way to annihilate all the defects
without going through the boundaries of the lattice. In this sense, the dynamics do not feel the
nature of the boundary conditions.

It is interesting to remark here the presence of a ‘bump’ in the evolution of the density of de-
fects in the time regime in between the rapid annihilation and the plateau (see Fig.

fig:FBCvsPBCfig:FBCvsPBC
VI.8 (a)]). This

seems to be a particularity of e = d together with PBC. In all our simulations we observed that the
bump desappears as soon as one among these two conditions is not fulfilled. This behaviour is not
well understood yet.
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Figure VI.8: (a) Time evolution of the density of defects for different boundary conditions: peri-
odic boundary conditions (PBC) and fixed boundary conditions (FBC). The data plotted were ob-
tained from CTMC simulations by averaging over 500 realisations of the dynamics with L = 50,
a = b = c = 1 and d = e = 10−7. (b) Plateau for different system sizes with PBC at d = 10−18,
e = 10−6, a = b = c = 1. For L = 100, 150, and 200 the data have been obtained after averaging
over 300 runs, and over 1000 runs for L = 50. The decay of n is confronted to ρ0/(1 + Ωt) (black
line). The inset shows the height of the plateau np as a function of the inverse linear size 1/L.
The dots obtained for L = 50, 100, 150, 200 are confronted to an algebraic decay (1/L)κ with
κ = 1.4.fig:FBCvsPBC

As already mentioned in the previous section, the metastable density of defects for d = e is
nd ≈ 10/L2, which vanishes at the thermodynamic limit. One should then ask wether the ob-
served metastable density is a finite size effect or not. In order to ask this question we simulated
systems of different sizes under the same conditions. The results obtained are shown in Fig. [

fig:FBCvsPBCfig:FBCvsPBC
VI.8

(b)]. The height of the plateau np and the time spend by the system in this regime decreases with
the size of the system, as shown in the inset Fig. [

fig:FBCvsPBCfig:FBCvsPBC
VI.8 (b)]. A simple fitting of the data with a

power-law decay np = L−κ, suggests that the dynamical arrest observed in the simulations is a
finite size effects which do not last in the thermodynamic limit. The evaluation of the plateau
height is subject to strong fluctuations in such a way that the exponent κ = 1.4 has to be taken as
a ‘guide to the eye’ rather than a precise measure. In order to get more precise estimation of the
size dependence of the defects’ density in the plateau, one should simulate larger systems. Our
analysis gives, however, a strong indication that the plateau is due to the finiteness of the samples.
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The evolution of ne shown in Fig. [
fig:FBCvsPBCfig:FBCvsPBC
VI.8 (b)] has been fitted by a diffusive decay ρ0/(1 + Ωt).

Interestingly, when d < e2 the decay of the defects’ density agrees with the diffusive picture
proposed in

Castelnovo2010
[58] for 3d spin ice. The presence of d-defects modifies this behaviour and makes the

decay slower (see Fig. [
fig:quench-Dfig:quench-D
VI.4 (c)]). The density of defects scales asymptotically as ne ∼ t−1 and

gives rise to a typical growing length

R(t) ' 1√
ne(t)

∼ t1/2 . (VI.31)

A few comments about this growing length should be done here. In the 2d XY model, a growth
R(t) ∼ (t/ ln t)1/2, has been found. Scaling arguments given by Yurke et. al

Yurke1993
[278] for the 2d

XY model, show that logarithmic corrections should be included in order to take into account an
effective frictional force which reduces the mobility of vortices. The t1/2 part of the growth law
comes from the soft domain walls which evolve by curvature driven dynamics. The ln corrections
come from the presence of vortices, which slows down the dynamics. Here we do not expect the
presence of extended defects, however a t1/2 growth arises. If we omit the logarithmic correction
due to vortices of the XY model we get the scaling n(t) ∼ t−1 and R(t) ∼ t1/2.

VI.4.3 Ageing

In Fig.
fig:CTTfig:CTT
VI.9 we show the decay of the two-time correlation function C as a function of the

time difference t − tw for different values of tw shown in the key. One can distinguish different
dynamical regimes from these curves. For short times, as long as neighbouring monopoles annihi-
late in a few MCS the correlations are time translational invariant (as in equilibrium) and close to
one. At later times time-translational invariance is lost and the system exhibits ageing. The longer
the waiting-time tw is, the slower the decay to the correlations will be. The behaviour of C for
e < 10−4 characterises the metastable state. As shown in Fig. [

fig:CTTfig:CTT
VI.9 (b)], for waiting times tw

shorter than the time associated with the dynamical arrest, the correlations seem to indicate that
the system is at equilibrium after t ≈ 107 MCS. One has to wait until ≈ 1012 MCs to reach the
equilibrium state. For larger times, the correlations develop a plateau reminiscent of the metastable
density of defects, meaning that the system is not in thermal equilibrium at 107 MCS. The system
do not evolve during a period of time in between ≈ 107 and 109. As argued before, this might be
due to finite size simulations.

VI.5 Quench into the a-FM phase

Now we turn on the ordering dynamics following a quench from a random initial condition
into the FM phase dominated by a-vertices (i.e. a & b+ 1 + d+ 3e).

VI.5.1 Decay of topological defects
sec:FMde

In this section, we pursue a similar analysis for the relaxation towards the FM phase: we study
the decay of the defects’ density for different values of the external parameters. In Fig.

fig:PlateauFMfig:PlateauFM
VI.10 we

show the evolution of the density of defects n(t) = ne(t) + nd(t) after a quench to a = 5, b = 1,
d = e2 and different values of e for two different system’s sizes L = 50 (a) and L = 100 (b). The
data shown has been averaged over 103 independent realisations of the dynamics.

For small enough e (e . 10−3) the system gets frozen into a dynamical plateau. Similarly
to what was discussed in the section above, the time period the system spends in this plateau is
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Figure VI.9: Two-time self correlation function C after a quench from a random initial configura-
tion for a system L = 50 and averaged over 500 realisations for a = b = c = 1 and (a) d = 10−4,
e = 10−2; (b) d = 10−12, e = 10−6.fig:CTT

longer for smaller e. The evolution is dramatically slowed down at a metastable density of defects
nple ≈ 44/L2 for L = 50 and nple ≈ 88/L2 for L = 100. The height of the plateau seems to
decrease with the size of the systems as ∼ 1/L, slower than the ∼ 1/L2 behaviour found in the
PM case. In order to conclude about the size dependence of the plateau height one should run
simulations for larger sizes, which, unfortunately, we cannot reach in a reasonable time with our
simulations.

The decay of ne has also been fitted by the power law decay eq. (
eq:power-law-decayeq:power-law-decay
VI.22) with α ' 0.59 over

the whole time regime before the systems reaches the plateau density as shown in Fig. [
fig:PlateauFMfig:PlateauFM
VI.10 (c)].

This power law is compared with the t−1 decay discussed before and also shown in the figure.
The decay of ne becomes slower than the diffusive law in the FM phase. Note that this power-
law decay does not depend on the size of the system as already suggested by the data shown in
Fig. [

fig:FBCvsPBCfig:FBCvsPBC
VI.8 (b)].

The ordering process following a quench into the FM phase is characterised by time scale
τ ∝ e−2 in the regime where the defects leave the plateau. As shown in Fig. [

fig:PlateauFMfig:PlateauFM
VI.10 (d)] for

L = 50 all the curves collapse into a single curve when rescaling the time variable by τ . The
typical time associated with the creation of a pair of defects is the relevant time scale in the long
time regime.

The evolution of the density of defects n following a quench into different points of the FM
phase is shown in Fig.

fig:PlateauFM_asfig:PlateauFM_as
VI.11 for L = 50 (a) and L = 100 samples. During a short time regime

(t . 10 MCs) the density of defects decays independently of a. For later times, the decay of
n depends on the value of a. In particular, the expected power-law decay n(t) ∼ t−α becomes
slower for larger values of a. Therefore, the exponent α depends on the weights of the vertices and
decreases when increasing a. The metastable density of defects increases with the a and depends
on the system size.

VI.5.2 Anisotropic domain growth

We choose a = 5, b = 1 and d = 10−5, favouring vertices with weight a. In Fig.
EvolutionEvolution
VI.12

we present the density of vertices, nκ(t), with κ = a, b, c, d, in a log-linear scale. The evolu-
tion is illustrated with three configurations at instants shown with vertical arrows. Domains grow
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Figure VI.10: Time dependent density of defects after a quench from a = b = d = e = 1 to
a = 5, b = 1 and d = e2 for the different values of e. (a) L = 50 and e = 10−3, 10−4, ..., 10−9

(as shown in the key). (b) L = 100 for e = 10−2 (in black), 10−3, ..., 10−10. For e = 10−2 the
system saturates to its equilibrium value shown with a dotted black line. (c) Short-time behaviour
for e = 10−3, L = 50 and L = 100. The decay is confronted to a ρ0/(1 + Ωt) decay (grey dashed
line) and the fit ρ0/(1 + Ωt)α with α = 0.59 (blue dashed line). (d) Test of scaling with t.e2 for
L = 50.fig:PlateauFM

anisotropically and we choose the ‖ and ⊥ directions to be parallel and perpendicular to the diag-
onal joining the lower-left and upper-right corners in the pictures, respectively.

During a short transient (t . 0.01 MCs) all densities remain roughly constant (regime I).
Suddenly, a large number of defects are transformed into divergence-free vertices by a few single
spin-flips: nd decays while na, nb and nc increase (regime II) independently of a. A typical
configuration at this stage is the left-most snapshot and there is no visual ordering as corroborated
by the small values taken by L‖,⊥ and displayed in the inset in a log-linear scale for three values
of the system size, L = 100, L = 200 and L = 300. Subsequently the system sets into a slow
relaxation regime in which the dominant mechanism is the one of growing anisotropic domains
with FM order, see the central snapshot (regime III); nκ depend upon a and there are as many
domains with mx,y

+ = 1 (vertices 1) as mx,y
+ = −1 (vertices 2) respecting symmetry. In this

regime L‖ grows faster than L⊥ and tends to saturate to an L-dependent value when the stripes
are fully formed. For the largest sample size, L = 300, our numerical data are consistent with a
t1/2 growth that is shown with a dotted black line. Instead order in the ⊥ direction has not yet
percolated. The full equilibration of the sample needs the percolation of order in the ⊥ direction
which is achieved by a still much slower mechanism (regime IV).
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Figure VI.11: Time dependent density of defects after a quench from a = b = d = e = 1 to
b = 1, d = 10−18, e = 10−6 and different values of a. (a) L = 50 for a = 1, 3, 4, 7, 10 (as shown
in the key). (b) L = 100 for a = 2, 4, 7, 9. The data has been averaged over 300 independent runs.fig:PlateauFM_as

The behaviour of the space-time correlation functions confirm this growth. As shown in
Fig.

fig:Crt_FMfig:Crt_FM
VI.13 the correlations along the direction of the stripes (a) grow faster than in the orthog-

onal direction (b). The function G‖ do not vanish at any point of the system for times larger than
≈ 105 MCs. Instead, the correlations along ~u⊥ vanish at distances smaller than the system size
in the simulated time window. The growth is highly anisotropic because of the choice a > b. For
b > a correlations along ~u⊥ develop faster than along ~u‖, forming stripes perpendicular to the
ones shown in Fig.

EvolutionEvolution
VI.12. The relevant parameter characterising the anisotropy of the ordering

process is the ratio a/b. As shown in Fig. [
fig:Crt_FMfig:Crt_FM
VI.13 (c)] in the regime where anisotropic domain

growth, the correlation function along the ‖ direction depends on space and time through the ratio
r/t1/2:

G‖(r, t) ' F ‖
(

r

t1/2

)
, (VI.32)

which confirms the expected growth L‖(t) ∼ t1/2. In order to study the growth in the ⊥ direction
one needs to study larger samples since L⊥(t)� L‖(t). This makes the estimation of the growth
law for L⊥(t) trickier and heavier simulations are needed.

VI.5.3 Microscopic ordering mechanisms

A better understanding of the processes involved in the ordering dynamics is reached from the
analysis of the snapshots.

(a) Domain walls are made of c-vertices and plaquettes of divergence-free vertices, as shown in
the left and central panels in Fig.

MecanismosDynMecanismosDyn
VI.14, respectively. The latter are ‘loop’ fluctuations in which all

the spins on the plaquette are sequentially flipped. Interfaces between FM states tend to be parallel
to the main diagonal, which one depending on which FM phase one quenches into.

(b) Quasi-one-dimensional paths made of b- and c-vertices (loop fluctuation can be attached to
them) act as bridges between two domains of the same type and run through a region with the
opposite order. These structures are similar to the ones found in the kinetically constrained spiral
model

Corberi2009
[72]. In order to further increase the density of a-vertices and develop the FM order the
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Figure VI.12: FM ordering. Upper panel: time evolution of the density of vertices with weight
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domain walls and bridges have to be eliminated. The latter disappear first via the following mech-
anism. ‘Corners’ made of b (or, less commonly, d) vertices sit on a curved domain wall. Such b
vertices cannot be surrounded by more than two type 1 or 2 vertices (only defects can, see the third
panel in Fig.

MecanismosDynMecanismosDyn
VI.14). The string progressively disappears eaten by the attached domains that grow

from the corner or, alternatively, it is first cut by the creation of two defects and the two strands
subsequently shrink, an extremely slow process. Once the path has been eliminated one is left
with two defects sitting on the walls of the now detached domains, that move along the interface
and eventually annihilate with their anti-partner.

(c) Once parallel bands are created (third configuration in Fig.
EvolutionEvolution
VI.12) the mechanism in Fig.

MovimientoBandasMovimientoBandas
VI.15

takes over (regime IV). After the creation of a pair of defects on the interface, the sequence of
steps in the figure shrink the vertex 1 stripe on a time scale that diverges with L.
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VI.6 Quench into the c-AF phase

Now we turn on the anti-ferromagnetic phase. We follow the evolution of the system after
a quench from a random initial condition into the AF phase dominated by c-vertices (i.e. 1 .
a+ b+ d+ 3e).

VI.6.1 Coarsening dynamics

The evolution of the vertex population is shown in the main panel in Fig.
EvolutionAFEvolutionAF
VI.16 for a = b = 0.1

and d = e = 10−5. This data is illustrated by four snapshots of the system token at instants
indicated with vertical arrows. The ordering process proceeds by growing isotropic domains of
opposite staggered magnetisation mx,y

− = ±1.
Similarly to what has been found in the FM quenches, in regime I all densities remain ap-

proximately constant. This is followed by regime II with a rapid annihilation of defects into
divergence-free vertices. The creation of a, b and c-vertices occurs with a rate that depends on a
while, surprisingly, nd does not, at least within our numerical accuracy. In regime III the system
increases the AF order by growing domains of staggered magnetisation ±1 with c vertices. Since
a is very close to b for our choice of parameters, domains are quite isotropic. This is explicitly
shown in Fig.

fig:CrtAFfig:CrtAF
VI.17. The space-time self correlation functions along the ‖ and ⊥ direction are

almost identical and the associated growing lengths are, within numerical accuracy, t1/2. Regime
IV follows next and it is characterised by a strong slowing-down although there is no obvious
extended structure blocking the evolution. In regime V the system finally reaches equilibrium.
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Figure VI.15: Schematic representation of FM stripe motion. Vertices on each site are specified.
Diagonal (red) lines delimit domains of opposite magnetization. Black arrows indicate the spins
that flip to get the new configuration (represented in blue after the flip).MovimientoBandas

VI.6.2 Domains and contour lines

A better understanding of the processes involved in the ordering dynamics is reached from the
analysis of the snapshots.

(a) Domain walls are made of a- and b-vertices depending on the orientation of the wall. Contrarily
to the FM case, domains of any shape can be constructed without the need to include defects.
As shown in the left and central panels in Fig.

fig:DomainAFfig:DomainAF
VI.18, horizontal and vertical walls are made by

alternating a- and b-vertices. Diagonal walls are exclusively made by a- or b-vertices depending on
their orientation. Therefore, domain walls without defects (energetically favoured) form loops of
spins pointing along the same direction. In the SOS representation, each domain can be interpret
as a contour line delimiting regions with different height. The ordering then proceeds by growing
or shrinking regions of constant height.

(b) Once isotropic domains are created, one has to eliminate small domains in order to further
increase the density of c-vertices and develop the AF order. Fig.

fig:MecaAFfig:MecaAF
VI.19 illustrates the mechanism

taking place. After the creation of a pair of defects in a typical time∼ 1/e2, their motion along the
wall shrinks the domain. This is done without any energy cost and the sequence of steps needed to
make a domain of linear size L(t) disappear should scale as L2(t). The same kind of mechanism
takes place in horizontal domain walls.

Usually domain walls in magnetic models with NCOP are curved soft interfaces which display
a variety of shapes. In this model, AF domains have the tendency to form straight domain walls
made by FM vertices. This kind of domain wall pattern has been observed in artificial spin ice
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Figure VI.19: Schematic representation of the annihilation of AF domains. Vertices on the walls
are represented by the colour rule defined in Fig.
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VI.2. Blue arrows indicate the spins that have

been flipped to get the new configuration. As monopoles diffuse along the domain wall the ordered
region on the right-bottom side of the figure shrinks.fig:MecaAF





CHAPTER

VII

Conclusions and open questions

In this thesis we presented a thorough study of the sixteen-vertex model. Both its equilibrium
and out-of-equilibrium dynamics following different quenches have been analysed in detail. We
used a Continuous Time Monte Carlo algorithm to avoid the difficulties raised by the slowing
down of the dynamics when a small weight of the defects is chosen. Thanks to this algorithm we
were able to simulate the equilibrium phases of the model and its long-time dynamical behaviour.
We extended the model to be defined on oriented trees of vertices and square plaquettes made by
four vertices (Bethe-Peierls approximation). Then, we establish the equilibrium phase diagram
using numerical simulations of the 2d model and we compare this results with the ones obtained
by approximating the model by the two before mentioned trees. By comparing our theoretical
results with the vertex population measurements done in artificial spin-ice samples, we showed
the relevance of the sixteen-vertex model for the study of 2d spin-ices.

The main equilibrium results obtained during this thesis can be summarised as follows:

(i) The criticality of the paramagnetic phase is broken as soon as the ice-rules constraint is relaxed.
The a, b-FM–SL ‘frozen-to-critical’ phase transition and the c-AF–PM infinite order phase transi-
tions of the six-vertex model both become continuous phase transitions when defects are allowed.
We established the phase diagram of the unconstrained model numerically and we conjectured the
existence of an generalised anisotropy parameter ∆16 characterising the phases of the model.

(ii) Our Bethe-Peierls (BP) approximation gives the exact location of the transition lines for the
(integrable) six- and eight-vertex model. When the defects are rare, our BP approach using a tree
of plaquettes turns out to be an accurate approximation of the equilibrium phases of the sixteen-
vertex model on the square lattice. In artificial spin-ice samples the weight of the defects is small.
Therefore, our BP calculation gives results in quasi-quantitative agreement with the numerical
simulations and with the experiments when choosing the parameters of the model accordingly to
the experimental set-up. We argue that, away from the AF-PM critical point, as-grown artificial
spin-ice samples are in thermal equilibrium. This explains the discrepancy between our (numeri-
cal and analytical) calculations and the experimental data close to the transition temperature.
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(iii) Using a finite-size and a non-equilibrium relaxation analysis of the simulation data we mea-
sured the value of the critical exponents of the sixteen-vertex model. We found that, similarly to
what is known from the exact solution of the eight-vertex model, the value of the critical exponents
depend on the external parameters of the model. A set of critical exponents can be defined by the
divergence of the correlation length close to the transition instead of the deviation to the critical
point. The values of these new set of critical exponents, which are identical for the six- and eight-
vertex model, are also identical for the sixteen-vertex model and the 2d XY model. Moreover, the
value of these exponents coincide for all these models: the six-, eight-, sixteen-, 2d Ising and 2d
XY models share the same set of generalised critical exponents.

(iv) We proposed some extensions of known mappings for constrained models to the non inte-
grable case. The presence of a hard local constraint in a lattice model allows us to define a height
function and a gauge structure emerges naturally from that. The situation is less clear when the
constraint is relaxed and thermal fluctuations are allowed. We propose the introduction of a mul-
tivalued height function where defects are interpreted as dislocations of the surface field. Once
the extended strings which links two defects have been fixed arbitrarily, a height configuration can
be associated to a vertex configuration. Within this framework a 2d Coulomb interaction between
defects emerges as a many-body effect.

Once the equilibrium properties of these extended problems have been characterised, we
moved to its dynamical properties. We followed the evolution of the system following differ-
ent quenches: from a disordered initial state into its PM, a-FM and c-AF phases.

Let us summarise the results obtained for the out-of-equilibrium dynamics of the sixteen-vertex
model:

(i) We analysed the evolution of the density of defects following all kind of quenches. The initial
decay is fitted by a power-law and different algebraic decays are obtained for different special
values of the Boltzmann weights. The exponent characterising the decay is found to depend on
the choice of the parameters in a non-trivial manner. We recover the 1/t decay found in 3d dipolar
spin-ice in the PM phase when the weight of doubly charged defects d is smaller that the square
of the weight of the single charged defects e.

(ii) After the initial power law decay, the density of topological defects take a finite density for
long periods of time. The existence of these long-lived metastable states have been observed in
numerical simulations on 3d dipolar spin-ice. This dynamical arrest is observed for all kind on
quenches. We discuss the persistence of the metastable state for different choices of the defects’
weights, and found that the presence of 4in and 4out vertices are not responsible for the emer-
gence of such slowing down of the dynamics. We analyse the effect of the boundary conditions
and found that the plateau remains for fixed boundary conditions. After analysing the evolution of
the density of defects for different system sizes we argued that the dynamical plateau vanishes at
the thermodynamic limit.

(iii) We identified the microscopic mechanics leading the dynamics during the evolution through
the ordered phases. We evaluate the anisotropic growing lengths and showed that the ordering dy-
namics proceeds through coarsening. The evolution of the system conforms to the domain growth
dynamical scaling picture. The interplay between extended topological defects in the form of do-
main walls and localised defects makes the coarsening dynamics of this model specially rich.

Our dynamic results are manifold. We prove that the dynamics after a quench into the FM and AF
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phases conforms to dynamical scaling, we identify the relevant dynamical mechanisms and repro-
duce known facts on the dynamics of spin-ice, although our model does not include long-range
interactions.

The following is a partial list of possible further research directions inspired by the work done
during this thesis:

1. The connection between a quantum model in 1d and a classical lattice model in 2d allows
a unified framework of quantum and classical phase transitions. The equivalence between
the XXZ and XYZ quantum spin-1/2 chains and the six- and eight-vertex model has been
proved to be closely related to the integrability of the model. We proposed a candidate that
might be the quantum analog of the sixteen-vertex model. The mapping has, however, not
been demonstrated and we should try (harder) to find a way to relate the parameters of the
quantum problem with the weight of the vertices. Then, it would be possible to relate the
phase diagram of the sixteen-vertex model with the quantum phases of the chain, and apply
our BP approach to the quantum problem.

2. One could easily include an external magnetic field and study the equilibrium of the sixteen-
vertex model with the cavity method and CTMC. Although for the six-vertex problem exact
results are available, for the eight- and sixteen-vertex model the phase diagram in a field is
not known yet.

3. Our Bethe-Peierls approach should give accurate results for other constrained lattice models
for the same reasons the transition lines are exactly reproduced for the six- and eight-vertex
models. For instance, one could define Kagome Ice (or the AF Ising model in the triangular
lattice, three-colouring model, etc.) on an appropriate chosen tree. Then I expect that the
zero point entropy, and the transitions lines obtained by the BP calculation be extremely
close to the ones of the finite dimensional model.

4. In the six-vertex model, different boundary conditions (i.e. the topology of the space where
the model is defined) affect the thermodynamics of the system. I expect boundary conditions
to have important dynamical consequences in hardly constrained models. Some work appear
recently in the literature on the dynamical properties of these kind of models with periodic
boundary conditions (PBC). The presence of a hard constraint in a lattice model with PBC
splits the phase space into different topological sectors. This gives rise to an ergodicity
breaking which has motivated several groups to talk about ‘topological glasses’. In the six-
vertex model one expects a slowing down of the dynamics because of the need of extended
loop updates. It its due to the presence of PBC and a hard constraint. One could study the
dynamics of the six-vertex model (or ice-model for simplicity) with Domain Wall Boundary
Conditions where the whole phase space can be sampled by local loop updates. Quantities
of interest in this problem are time correlations and in particular, the equilibrium relaxation
time as a function of the parameters of the model.

5. In section
sec:ASIlettersec:ASIletter
V.5 we compared our equilibrium results of the sixteen-vertex model experimental

data from artificial spin ice (ASI) where the islands grow during the fabrication of the sample
until they freeze. It would be interesting to simulate the thermal annealing occurring in ASI
in our MC simulations in order to try to understand better the relationship between the
equilibrium canonical temperature, and the effective temperature extracted from population
measurements. The effect of boundary conditions in this context should also be investigated,
since usual experimental realisations do not verify PBC.
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6. The dynamics of defects in 3d spin-ice materials has attracted (and still does) much attention
in recent years. Experimental work has proven the possibility to create currents of magnetic
charges and then realise an effective ‘magnetricity’ in spin-ice. We plan to investigate de-
fect’s motion in our model under different external conditions and the possibility to generate
persistent currents. These can be visualised by microscopy in ASI. Starting from the study
of two oppositely charged defects, one should ask whether a collective motion of a large
density of defects is possible in 2d samples. In usual ASI realisations of square lattices, c-
vertices are favoured, leading to a string tension connecting two oppositely charged defect.
However, starting from a polarised initial configuration, defects would have the tendency to
move apart of each other leaving behind a string made by a strong fraction of c-vertices. I
expect that the polarisation background affects monopole’s motion. Then one should study
in detail the transport properties of the system.

7. Following the same line of reasoning, one could study the dynamics of artificial Kagome
ice. In this system, all the kind of vertices are equivalent such that monopoles’ motion does
not gives rise to an energetic string. The evolution of the defects in this geometry has been
recently studied experimentally by applying magnetic fields

Schumann2012
[235]. Domains made by an

ordered arrangement of defects have been observed in these samples. A possible direction
of research could be to study the statistics of these domains and the dynamical mechanisms
which give rise to these structures.

8. In the seventies, Kadanoff and Wegner showed the equivalence between the eight-vertex
model and an Ising model with multi-spin interactions. This mapping was originally intro-
duced in order to understand the new type of critical singularities of Baxter’s exact solution:
the critical exponents are continuous functions of the interactions parameters. Using scaling
arguments Kadanoff and Wegner were able to reproduce the variation of critical exponents.
A few years later van Leeuwen proposed a real-space Renormalisation Group (RG) proce-
dure to treat the eight-vertex model. He explained by RG arguments the mechanism respon-
sible for the emergence of continuously varying exponents. In order to give support to the
numerical results, it would be interesting to treat the sixteen-vertex model by a real-space
RG procedure and extend van Leeuwen’s results. We expect to find a marginal scaling field
and a line of fixed points where the critical exponents vary. The existence of exact solu-
tions for the six- and eight-vertex model ca be used as a guide to test the accuracy of the
procedure.



APPENDIX

A

The CTMC algorithm

app:CTMC
In this Appendix we give some details on the implementation of the Continuous Time Monte

Carlo algorithm that we used to study the phase diagram of the sixteen vertex model.
We chose to use single spin updates. The time needed to flip an arrow is computed by

∆t = Int

 ln ξ
ln
(
1−

∑2N
I=1W (µ→ µI)

)
+ 1 (A.1) PreciseTimeStep

and the transition probabilities defining the dynamics of the system are

W (µ→ µI) = 1
2L2 min

(
1, e−β(E(µI)−E(µ)

)
(A.2) probaDyn

satisfying detailed balance and ergodicity. This transition probabilities are expressed as a function
of the state of the chosen spin I . We have to compute the probability to stay in the same state
W (µ → µ) = 1 −

∑2N
I=1W (µ → µI) to obtain ∆t using eq. (

PreciseTimeStepPreciseTimeStep
A.1) and then we need to know

every possible energy change a single flip can produce. In the sixteen-vertex model there is a finite
number of such possible processes (and then a finite number of possible transition probabilities)
independently of the system size. This procedure can then be applied by making a list of all the
arrows classified by their state, noted from now on l and defined by its neighbourhood (i.e. the
type of its two adjacent vertices). Since each vertex can take sixteen different configurations, there
are 8 × 8 such states for vertical and horizontal arrows, so a total of 64 states for each type of
arrow. Following the original name of this method

Bortz1975,Barkema-Newman_Book
[40, 16] this algorithm is a 256-fold way. The

transition probability of the process µ→ µI only depends on the state l of the I-th arrow before
the flip. This can be clearly seen by rewriting

exp
[
−β(Eµ(I) − Eµ)

]
= exp

[
−β

(
E
[
V µ(I)

1,I

]
+ E

[
V µ(I)

2,I

]
− E

[
V µ

1,I

]
− E

[
V µ

2,I

])]
here E

[
V µ(I)

1,I

]
is the energy of the first adjacent vertex of the I-th arrow after the flip from the

state µ. To know the type of the neighbouring vertices V1,I and V2,I at state µ is equivalent to
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l V µ
L,I ←→ V µ

R,I V µ(I)

L,I ←→ V µ(I)

R,I e−βεl

0 1-1 11-16 e2/a2 ≪ 1
1 1-4 11-12 e2/a.b≪ 1
... ... ... ...
64 16-16 3-1 a.b/e2 ≫ 1

Table A.1: Partial classification of the 64 possible sates of an horizontal arrows pointing to the
right, corresponding to each one of all the transitions that can occur by a single flip. The second
and third columns corresponds to the left and right vertices adjacent to the I-th arrow before and
after the flip.States

know the state of the concerned arrow before the flip (the vertex types of the neighbouring vertices
after the flip are determined by the vertex types before the flip): the energy change after a flip
depends only in its initial state. We define

Pl = 1
2N min

(
1, e−β εl

)
where εl is the energy difference after flipping an arrow in state l. It is useful for the implementa-
tion to note that we can compute ∆t by counting the number of arrows occupying each one of the
different possible states at each step. We substitute the latter equation by

Q =
2N∑
I=1

W (µ→ µ(I)) =
256∑
l=1

gl Pl (A.3) Q

where gl is the number of arrows in state l. We then need to keep record of the state of every
arrow on a list at each step. After a transition this list must be updated. The main steps of the
computation are implemented by Alg. (

CTMCbuenoCTMCbueno
1).

Algorithm 1 Continuous Time Monte Carlo algorithm.CTMCbueno
– for l = 1..256 do

Pl ← e−βεl

– for i = 1..#steps do
input: t, state µ
Q̃← 1−

∑
l glPl .

∆t← 1 + Int
(

ln(ran∈[0,1])
ln Q̃

)
;

t← t+ ∆t
l←random with a probability distribution glPl.
k ←random uniformly between 1 and gl.
flip arrow I
update the list
output: t, state µ(I), arrows classified
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