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PLAN of the talk

Introduction:

»  Geometrical frustration: Water Ice, Pyrochlore magnets (3D spin ice)

> Generic model: 2D I 6-vertex model

»  Experiments: Artificial nano-arrays (2D spin ice)

Equilibrium phases:

»  Using CTMC and Bethe-Peierls approx. (cavity method). Phase diagram and critical
properties of the 16V model.

»  Theory vs. experiments in "a-thermal’ Artificial spin ice: Edwards’ measure vs.
Canonical.

Stochastic dynamics:
»  Evolution after a quench into the PM, FM and AF phases.

»  Dynamical arrest , mechanisms leading the evolution and topological defects.

Conclusion & perspectives




Introduction.

Geometrical frustration

Prototypical example: Ising AF on a triangular lattice

H=J ) 88  S==+1Vi @
<2,7>

Ground state:
3
— All configurations such that Z S; = %1
i=1

——> Macroscopic degeneracy QO ~ eXp( N )

—>  Extensive zero-point entropy SO — ln Q()

Frustrated because of the geometry of the lattice and
the antiferromagnetic nature of the interactions.



Introduction.

Geometrical frustration

Crucial example:Water Ice

Single unit: ? /

Experimental evidence of an extensive entropy at T=0 <——= Predicted by Pauling’s model
Giauque & Stout 1936 Pauling 1935
—_— each bond carries a dipolar moment IL_[ ___at each vertex (oxygen atoms)

verifying the ice=rules two in - two out

—> SI1X vertices

Ground state : lce-rule vertices are favoured —> Geometrically frustrated



Introduction.

Geometrical frustration
Harris, Bramwell, McMorrow, Zeiske & Godfrey 1997

Water lce <] > Spin Ice

electric dipoles magnetic moments

7

O

~ o~ Zero point entropy
Sw ~ 041K Ssi = 0.46 measured in Dy, Ti5O7

Ramirez, Hayashi, Cava, Siddharthan & Shastry 1999



Introduction.

Geometrical frustration
Harris, Bramwell, McMorrow, Zeiske & Godfrey 1997

Water lce <] > Spin Ice

electric dipoles magnetic moments

(P O Spin Ice is geometrically
i frustrated accordingly to
the ice rules

L <= ‘
O/Q “O . .

N O

~ o~ Zero point entropy
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Introduction.

Geometrical frustration
Harris, Bramwell, McMorrow, Zeiske & Godfrey 1997

Water lce <] > Spin Ice

electric dipoles magnetic moments

(P Spin Ice is geometrically
frustrated accordingly to

the ice rules
o= /.
. 2?
O" \\\\“ / Why. °

O

~ o~ Zero point entropy
Sw ~ 0411 @6}% measured in Dy, Ti5O7

Ramirez, Hayashi, Cava, Siddharthan & Shastry 1999




Introduction.

Geometrical frustration
in SPin ice Harris, Bramwell, McMorrow, Zeiske & Godfrey 1997

/ classical Ising spins

DSI: nn FM + dipolar interactions

3 5
<1,71> 1<) Tij Tij
J+5D : .
NN contribution: H ~ T Z ;0 with: o; = =1 Gs: 2 in-2 out (ice-rules)
3 — — -
Y\<m> Geometrically frustrated
Ferromagnet
AF :
Experiments 3D Exact 2D Approx.
Sw ~ 0.41R SQD — 3/2 111(4/3)
~ ~ S.~040R

Lieb 1967



Introduction.

Thermal excitations in spin-ice

—— W “Dumbbell picture”
Tq —q
—> lce configurations = {qa = O} Thermal excitations

violating the ice rules =

@tic mon@

Castelnovo, Moessner & Sondhi 2008



Introduction.

Thermal excitations in spin-ice

A A
2D projection > < > >

—> 2% — 16 - vertex model



Introduction.

2D Spin-lce theory: the sixteen-vertex model

—Beg

Fix the Boltzmann weight of each vertex: wg = €

%Af> <Y% <% %> %+% % —> xx

E/—/E/—/E/—/E/—/

a=wi=ws b=ws3=wy C=Ws5=We d=wr=wsg

Gl bl

€— W9_W10— -—W1e




Introduction.

2D Spin-lce theory: the sixteen-vertex model

—Beg

Fix the Boltzmann weight of each vertex: wg = €

A Y Integrability
> < < < x x > »+< > x < — .
v (six- and eight-vertex models)

a=wi=ws b=ws3=wy C=Ws5=We d=wr=wsg

Gl bl

€— W9_W10— -—W1e




Introduction.

2D Spin-lce theory: the sixteen-vertex model

—Beg

Fix the Boltzmann weight of each vertex: Wi = €

A Y A Y Integrability
> < < < x x > »+< > >0 < «— _
v A (six- and eight-vertex models)
%,_/ %,_/ %,_/ E/—/

Aa=Wi1=w2m b=w3=wa C=Ws5=Weg d=w7=wsg

A A A A Non-Integrability
*%> <+* *ﬁ* <$> <%> 4* *%> < « Monte Carlo simulations
N Y Y v v P

& Cavity calculation

E=Wog=—Wwi10=—...—W1e6

Thermal excitations:
Vertices breaking the ice-rule are allowed but un-favoured = defects

Stochastic extension of a general
integrable model




Introduction.

2D Spin-lce theory: the sixteen-vertex model

—Bek

Fix the Boltzmann weight of each vertex: Wi = €

i\ Y N Y A N Y Integrability
»f> < < < < >0> »+< <%> <O> >0< «— _
v A v v v A (six- and eight-vertex models)
—— —_—,—— N——— N —e

a=wi=ws b=ws3=wy C=Ws5=We d=wr=wsg

A A A A on-Integrability
%%> <$< *i* <$> <%> 4* *%> <%* <— ( Monte Carlo simulations
- v Yy v M _ & Cavity calculation

E=W9g=wW1i0=...=W1e [

Equilibrium phases of the
Thermal excitations: general model ?

Vertices breaking the ice-rule are allowed but un-favoured = defects

— Stochastic extension of a general
integrable model




Introduction.

2D experiments:Artificial Spin-lce

|.Array of elongated ferromagnetic islands behave as classical Ising spins.
2. Dipolar interactions — ¢ > a = b
3. Direct visualisation of defects’ dynamics

Ladak, Read, Perkins, Cohen, Branford 2010 ;
Mengotti, Heyderman, Rodriguez, Nolting, Hiigli, Braun 2011.

1 um
A v A v A from Wang et al., Nature 2008
>%> < < < < [>o> <%> <+> »E«
a—wi1=w2 b=ws3=wy C=Ws5=We d=wr=ws
A A A A
> <+% %i—< <$> <+> 4—< %> <%%
N v \ 4 v v P
E=Wog=Wip0=...—W1ie

Wang, Nisoli, Freitas, Li, McConville, Cooley, Lund, Samarth, Leighton,
Crespi, Schiffer 2006.



Equilibrium.



Equilibrium.

Six-vertex model (exact results)

lce-rules => d —e = () b/CA
A A A

>& > < Y« < ‘ < »Y> %« <%>

. v A v v . EF'M
a:wT=w2 bzw;rzwzl Czw?:wfi (frozen)

Equilibrium phases:
a2 4 b2 — 2
Ag =
2ab

Ag > 1 frozen FM phase

‘Frozen-to-critical’ phase transition

e

SL

(critical)

AL FM

1 > Ag > —1 quasi long-range ordered SL phase ‘(ordered) (frozen)
>
[Kosterlitz-Thouless phase transition a/c

Ag < —1 ordered AF phase with low energy excitations

Baxter, Exactly Solvable Models in Statistical Mechanics 1982



Equilibrium.

Six-vertex model (exact results)

>
>
>
>
FM AF SL
(frozen) (ordered) (critical)

a or b C ab c




Equilibrium.

Sixteen-vertex model (numerics)
Allow defects = ( = e # ()

Conjecture: (numerics)

2 | p2 _ 2 2 | e= 2 12 _ 2 _ 2
A16:a +b° — ¢ — (3e + d) Agza +b%—c°—d
2(ab + c(3e + d)) 2(ab + cd)

|.All the transitions become continuous
2.The PM phase is not critical, the FM phase is not frozen.

3. Finite size scaling: Critical exponents depend on the value of the parameters: a, b, ¢, d, e .

4. Phase diagram characterised by a generalised ‘anisotropy parameter’.

consistent with the exact results on the eight-vertex model Baxter 1971, 1982

and (the very few) the sixteen-vertex model Wu 1969

Levis & Cugliandolo 2011
Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.
Spin-ice on a tree graph (cavity method)

Bethe-Peierls approximation:
In the absence of a given site, the neighbours are de-correlated.

—> The connectivity of the original model is preserved BUT no loops
—> Allows for a recursive treatment to be solved self-consistently

o o o

FC
< Q Q Q
Q Q Q

; Good approximation <
for FM order
No loops LOOI.D
fluctuations
AF order !
v v

Defects ?



Cavity method.
Spin-ice on a tree graph (cavity method)

Bethe-Peierls approximation:
In the absence of a given site, the neighbours are de-correlated.

4 disconnected
rooted trees

N

A

~
- .
0
.
y
S
S
'
'

—> The connectivity of the original model is preserved BUT no loops
—> Allows for a recursive treatment to be solved self-consistently

o o o

FC
< Q Q Q
Q Q Q

; Good approximation <
for FM order
No loops LOOI.D
fluctuations
AF order !
v v

Defects ?



Cavity method.

Spin-ice on a tree graph (cavity method)

Two models:

............

|.An oriented tree of vertice
No loop fluctuations

2.A tree of plaquettes made of four vertices ‘plaquette tree’
Include elementary loop fluctuations

...............................................

................

AN
»

<

A
»

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph (cavity method)

Two models:

............

|.An oriented tree of vertice
No loop fluctuations

2.A tree of plaquettes made of four vertices ‘plaquette tree’
Include elementary loop fluctuations

...............................................

................

%‘;
v Jaubert, Chalker,

Holdsworth &
Moessner 2008

AN
»

<

A
»

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph (cavity method)

Two models:

............

|.An oriented tree of vertices ‘single vertex tree’

No loop fluctuations

2.A tree of plaquettes made of four vertic@ette t@
Include elementary loop fluctuations

..........................................

................

/

A

Y
\
>
A Y
———
\

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph (cavity method)

Stl”ategx: |. Define an oriented tree (up,left,down,right) where vertices can be identified.

2. Write the self-consistent equations satisfied by the ‘cavity probabilities’: n-th shell as

a function of the (n+1)th shell.

[ U r
d U [ r U
P ’h -k
~~~~ hdlu>: "‘¢¢
<lr7:l> ~~~~ : /'¢ <k,llr>
§~(:7'¢
.d - 1 2 U
<Z ]u>i —_— w —
O,
J

up-rooted tree from
merging a right, up and
left rooted tree

probability that the spin in the
missing edge (i%j") points
towards 7 (up).

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph (cavity method)

Stl”ategx: |. Define an oriented tree (up,left,down,right) where vertices can be identified.

2. Write the self-consistent equations satisfied by the ‘cavity probabilities’: n-th shell as

a function of the (n+1)th shell.

The simplest example: eight-vertex model in the single vertex tree

gt = [asterur + b1 — gt (1 -y

<4 - wl,d,’r

(1= 91— gy +dg (1 — g)(1 - ¢7)

W = U%a,b,c,d, e, p*, pe, Pt Y]

a=u, [, d, r

Self-consistent equations

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph (cavity method)

Stl”ategx: |. Define an oriented tree (up,left,down,right) where vertices can be identified.

2. Write the self-consistent equations satisfied by the ‘cavity probabilities’: n-th shell as

a function

of the (n+1)th shell.

W = U%a,b,c,d, e, v, P, Pt Q"]

a=u, [, d, r
A Plaquette A
model
-
A 4
o o
T d [

w;xlsQ — \ijsxlsz [a7 b7 C, d7 €, ¢u’ ¢ y ¢ y ¢T]

Self-consistent equations

4 x 4

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph (cavity method)

Stl”ategx: |. Define an oriented tree (up,left,down,right) where vertices can be identified.

2. Write the self-consistent equations satisfied by the ‘cavity probabilities’: n-th shell as
a function of the (n+1)th shell.

3. Find the fixed points of the self-consistent equations.

> Equilibrium phases

4. Compute thermodynamic observables: free energy, magnetisation, etc.

5. Study the stability of the solutions

AVLS 5
Vi - > Phase transitions and nature of the
(87

P dyB | fp phases.

Eigenvalues: [V, /o, ...

> Try to find an anisotropy parameter A(El, Es, )
which characterises the phase diagram

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph (cavity method)

Results for the six-vertex model:

|. Exact location of the transition lines with both the single vertex and the plaquette

model.

2. Thermodynamic quantities in remarkable agreement with the 2D results.

B f

2D AF
2D Para

cavity plaquette
cavity single vertex

0.5

1
alc

1.5

03 .
| -0.4
-0.5
] «w 0.6
ol
. -0.7 3
e 2D PM
-0.8 —— PM cavity vertex
. - PM cavity plaquette
-0.9 b-FM cavity = 2D
——— a-FM cavity = 2D
_1 L | T 1
2 0 0.5 1 1.5 2 2.5
al/c

Free energy of the 6V model on trees vs.

exact results in 2D.

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph (cavity method)

Results for the six-vertex model:

|. Exact location of the transition lines with both the single vertex and the plaquette
model.

2. Thermodynamic quantities in remarkable agreement with the 2D results.

3. Nature of the phase transitions is qualitatively improved by making use of the tree
of plaquettes.

6V single vertices | 6V plaquettes o6V 2D
PM-FMs Frozen-to-PC Frozen-to-PC | Frozen-to-crit
PM-AFs Frozen-to-PC Cont.-to-PC KT

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph (cavity method)

Results for the six-vertex model:

|. Exact location of the transition lines with both the single vertex and the plaquette
model.

2. Thermodynamic quantities in remarkable agreement with the 2D results.

3. Nature of the phase transitions is qualitatively improved by making use of the tree
of plaquettes.

6V single vertices | 6V plaquettes o6V 2D

PM-FMs Frozen-to-PC Frozen-to-PC Frozen-to-crit
PM-AFs ( Frozerﬁ)to—PC ( Cont.—\t)o—PC ( KT )

— goes in the good direction

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph & CTMC

Results for the sixteen-vertex model:

d=0 (exact)
d=0.1 ——
d=0.2 ——
Pd=0.1 ——
Pd=0.2 —— _

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

b/c

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph & CTMC

Results for the sixteen-vertex model:

Non-critical phase

d=0 (exact)
d=0.; _—
P 32811 e continuous phase transitions
Pd=0.2 —— _

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Non-frozen order

b/c

Foini, Levis, Tarzia & Cugliandolo 2012



Cavity method.

Spin-ice on a tree graph & CTMC

Results for the sixteen-vertex model:

T
o
©
>
)
o

oNoNoNoN
I
|

oo

0T

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Apply this general picture to
concrete experimental
realisations

b/c

Foini, Levis, Tarzia & Cugliandolo 2012



ASI.
Artificial spin ice

Fix the energy Ievels:

= -4, +2J5 < <%>
A A
€a,b — —2J7 -T- >—k> <TL< <Jr< >jﬁ>
Y v
A A A A
€. =0 -+ %> <%v—< >Jf< <J\:T> <JF> >{/—< >—v#> <%<
€q =4J1 +2J5 -+ <JA?> %( Jl > JQ
v

\ 4

Dipolar interactions in the square lattice

:> 2 in - 2 out vertices are not equivalent.

Ina

One external parameter, the canonical temperature: 6 —
€a



ASI.
"Thermal’ Artificial spin ice

Numerics vs. Cavity calculation

M_

(B = Bc)/Be (B = Bc)/Be

Second order phase transition at 3. =~ 2.65

> Compare with experiments

Levis, Foini, Tarzia & Cugliandolo 2012



ASI.
"Thermal’ Artificial spin ice

|. Thermal annealing during deposition.

2. Nano-islands feel thermal fluctuations
during the growth process.

3. After the growing process the islands

freeze.
Very close to the expected =+ = =0 0

A ERRE — Tt o |t
groun d state B S ORI IRG = S R i 5 & L v e
SRR i) | SRR [T | e e

it 2N BE0N ittt B0 B B Bl t oyt
PP = Pt [2era] L At e T U
Excitations and defects can be Bt gl i g gt o (g
Itﬁti-. —>¢ ¢<—T—> Eir'ﬁ.&f:{_‘ —>¢ <—T—> Iiﬁ,.. . —>¢ J«f_’

1 1 ‘ “!‘r B4 |« — "‘I‘ﬂ."h‘-“ -« —»ir#—» -« ‘u_ &ﬂ‘ e | —»i]—»
VIsuallsed lﬂi.r‘ i‘i" —>T<— —»t—‘—» I‘-'-'IL o —>T<— — <—¢—> I:r“ . = -« ‘
i 20 TR T il N2 O OO il O A

From Morgan et al., Nature Phys. 7 2011.



ASI.
"Thermal’ Artificial spin ice

Unpublished data from Morgan et al. 2012 <«——

\
A Numerics and analytics in
v agreement

1 .
) (€e — €)” " vs. Canonical temperature

Levis, Foini, Tarzia & Cugliandolo 2012



ASI.
"Thermal’ Artificial spin ice

Unpublished data from Morgan et al. 2012 <«——

\

Critical slowing down

Equilibrium is not reached
close to the critical point

<n;>

Our model reproduces quantitatively

the experimental data
Levis, Foini, Tarzia & Cugliandolo 2012



Conclusions equilibrium.

|. Phase diagram of the sixteen-vertex model.
The inclusion of defects modifies dramatically the thermodynamics.

2. Continuously varying critical exponents verify ‘weak universality’.

3.Approximating the system by a tree of square plaquettes leads to
good agreement with 2D results.

4. The model reproduces experimental data away from the critical
point

— Relationship between configurational temperature and canonical
temperature in ASI?

— Out-of-equilibrium phenomena ?



Out-of-equilibrium.



Out-of-equilibrium.

Phase ordering dynamics after a quench.

Evolution of the system across a phase transition.

® Give updating rules: Non-conserved order parameter (single spin flips)

coupled to a thermal bath

Stochastic dynamics

® Prepare the system in a disordered equilibrium state and quench it into a
known equilibrium ordered symmetry broken phase

> Competition between opposite orders

Slow dynamics ~ L(t) ~ t*

> Apply this procedure to the sixteen-vertex model




Out-of-equilibrium.

Quench into the PM phase.
initial configuration:

a=b=c=d=e=1 (T = )

at t=0 (instantaneous) FM -
v PM

No order parameter to describe

Magnetisation = 0 BUT ‘close’ to a QLRO phase ——> the relaxation process



Out-of-equilibrium.

Quench into the PM phase.

Density of defects

10° : . . . — 10°
- S
-1 g
10 £
S 107 g
1072 S
2
4 S :
10 ] ] ] ] 2 :
102  10° 10° 100 10 _ _ _
10 10 10
t (MCs) time (MC steps)
2D vertex model 3D pyroclhore spin ice with dipolar interactions
d=e=10"1, ..., T =0.6K,...,0.025K
N = 2L% = 5000 N = 8192

Levis & Cugliandolo 2011 Castelnovo, Moessner & Sondhi 2012



Out-of-equilibrium.

Quench into the PM phase.

Density of defects

Dynamical arrest for

d< 1074

10° ¢

107" |

Monopole density (per tetrahedron)

10 | | | |
102  10° 10° 100 10 _ _ _
t (MCs) 10 1(’:ime (MC steps) 10
2D vertex model 3D pyroclhore spin ice with dipolar interactions
d=e = 10_17,,,, ey T'=0.6K,....0.025 K
N = 2L* = 5000 N = 8192

Levis & Cugliandolo 2011 Castelnovo, Moessner & Sondhi 2012



Out-of-equilibrium.

Quench into the PM phase.

Density of defects

Dynamical arrest for

d< 1074

10° ¢

107" |

Monopole density (per tetrahedron)

10" 2 P 6 10 14
10° 10 10° 10" 10 - _ -
t (MCs) 10 1(’:ime (MC steps) 10
2D vertex model 3D pyroclhore spin ice with dipolar interactions
d=e=10"1, ..., T =0.6K,...,0.025K
N = 2L* = 5000 N = 8192
Levis & Cugliandolo 2011 Castelnovo, Moessner & Sondhi 2012

—> Due to finite size 2 d = e 7 are long range interactions needed ?



Out-of-equilibrium.

Quench into the PM phase.

NN spin ice model described
by a mean field reaction-
diffusion model

Levis & Cugliandolo 2011



Out-of-equilibrium.

Quench into the PM phase.

= (29) — (q) + (¢)

spontaneously.

NN spin ice model described
by a mean field reaction-
diffusion model

Levis & Cugliandolo 2011



Out-of-equilibrium.

Quench into the PM phase.

= (29) — (q) + (¢)

spontaneously.

Same power law as in 3D spin-ice.

The decay power depends on the value of

the parameters.
Levis & Cugliandolo 2011



Out-of-equilibrium.

Quench into the PM phase.

Size dependence

The dynamical arrest is size
dependent:

the height and the time
spend in the plateau
decrease for larger systems.

At the thermodynamic
limit ?

G
= (29) — (q) + (¢)

spontaneously.



Out-of-equilibrium.

Quench into the FM phase.

initial configuration:

a=b=c=d=e=1 (T = )

at t=0 (instantaneously)

) b/c A
a=5b=c=1,d=e=10""° FM
(T < T) )
1&'" PM
or ? X-.
AF -~ . FM
— slow relaxation 1

a/c



Out-of-equilibrium.

(]
i
<
1O
>
o)
»»
L

Quench into th
1 .

Levis & Cugliandolo 2011



Out-of-equilibrium.

Quench into th
1 .

(]
i
<

1O
>
o)
»»
L

——————————— Rapid annihilation of defects
A /

0.75

Levis & Cugliandolo 2011



Out-of-equilibrium.

Quench into th
1 .

e Rapid annihilation of defects
. VAR /

(]
i
<

1O
>
o)
»»
L

Growth of FM domains with walls
made of c-vertices and linked by
strings.

Defects far from each other,
difficult to annihilate: slow dynamics.

0.75

0.25

Levis & Cugliandolo 2011



Out-of-equilibrium.

0]
—_
<

e,
>
jab)
(V)
O

Quench into th
1 .

0.75

0.25

Rapid annihilation of defects

Growth of FM domains with walls
made of c-vertices and linked by
strings.

Defects far from each other,
difficult to annihilate: slow dynamics.

Very stable domains
_— = Parallel bands

Levis & Cugliandolo 2011




Out-of-equilibrium.

Q_uench into the FM phase.

0.75

strings.

g—

'y 15#" e .
Oy

b3 L -fc""
V-?“-Q O
"*-5-“-"-"!?:5’

X oL AL

Levis & Cugliandolo 2011

Rapid annihilation of defects

Growth of FM domains with walls
made of c-vertices and linked by

Defects far from each other,
difficult to annihilate: slow dynamics.

Very stable domains
= Parallel bands

Ly~ 12

L7



Out-of-equilibrium.

Quench into the AF phase.

Same procedure

initial configuration:

a=b=c=d=e=1 (T = 0)

at t=0 (instantaneously)

\4

a=b=01;¢c=1, d=e=10""

(T < T,)

or

b/c A
FM .
) PM
| AR FM
: »a/c



Out-of-equilibrium.

Growth of AF domains with walls
made of FM-vertices (a- b-type).
Defects on domain walls,

far from each other,

difficult to annihilate: slow dynamics.

v A
m”Y = —1
> <
m>Y = +1
AV

Levis & Cugliandolo 2011



Out-of-equilibrium.

T L T,
W en it hT vl ] e T«u&?«n& f«anf«nvﬁl

s R Ll LT g ]
a .-ﬂmt.ﬂ.mrmiu.b.ﬁﬁl IV»AI —>, - IV»AI —>,
DawiewfanTend vh Bae Lo nel . l (! il w
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From Morgan et al., Nature Phys. 7 2011.



Conclusion out-of-equilibrium.

|. Dynamical arrest appears for all type of quenches for e < 10™%.
Why ? i) presence of 4in 4out vertices 7 NO
ii) presence of winding loops 7 NO
iii) finite-size effects? YES ? Arrhenius barrier 7 ~ e ?
2.The evolution of the density of defects follows a power-law ng(t) ~ t~<.
The exponent depends on the value of the parameters (how?).

3. Stripes of competing FM order with two different growing lenghts:
anisotropic coarsening.
Rich microscopic dynamical mechanisms.

4. Coarsening dynamics in the AF regime:

artificial spin-ice samples!?

effective ‘cooling rate’ during deposition? vs. MC simulated annealing?
time-dependent correlations! geometric properties of the domain walls!?



Conclusion & outlook.



Conclusion & outlook.

|. Investigate the variation of critical exponents in the |6V model by a real-
space Renormalisation Group approach.

2. Extend the mappings between integrable vertex models (6V and 8V) into
quantum spin chains (XXZ and XYZ resp.) to the unconstrained |6V model.
Then, use our understanding on the classical model to predict the behaviour
of the quantum system!?

3. Link between configurational temperatures in ASl and the canonical
temperature! In experiments: - properties of the domain walls?

- thermal equilibration?

- growth rate (link with a cooling rate)

4. Defects’ motion in 2D (square or hexagonal).

5. Effect of boundary conditions on the dynamics of hardly constrained
models. Topological glass !



END OF EVERYTHING



Introduction.

Geometrical frustration

Crucial example:Water Ice

Single unit: ? /

Experimental evidence of an extensive entropy at T=0 <——= Predicted by Pauling’s model
Giauque & Stout 1936 Pauling 1935
—_— each bond carries a dipolar moment IL_[ ___at each vertex (oxygen atoms)

verifying the ice=rules two in - two out

—> SIX possible vertices

—

Ground state : ] — lce-rule vertices are favoured = Geometrically frustrated
U Y




Introduction.

Geometrical frustration
in SPin ice Harris, Bramwell, McMorrow, Zeiske & Godfrey 1997
Pyroclhore lattice

+ magnetic moments / , y ,

/ ' 8,404 48 4

classical Ising spins pointing in the local direction connecting a site with the centre of its tetrahedron

Y

S;.S; . (Si7i;)(S;.7;)

DSI: nn FM + dipolar interactions H — —.J Z S;.S; + Da
3 ro.
<1,5> 1<J tJ &)
J+5D . |
NN contribution: H ~ +3 Z 0,0 with: o0; = x1 GS: 2 in-2 out (ice-rules)

<i,j> \ = Geometrically frustrated
\ Ferromagnet

AF «iny or «outy



Introduction.

Zero-point entropy

Pauling’s argument: [V tetrahedra, 2 /N links (4 NN)
Pauling 1935 — QO — 22N (without ice-rules)

vertices indept. — Qoo — 22N(6/16)N

— S ~ 0.40R
2D Lieb’s exact result (Bethe Ansatz): A
Lieb 1967 Sop = N/cBg In (%) ~0.43R > <
v
3D Experiments (both Spin and Water Ice):
S., ~041R Se; ~ 0.46R

Giauque & Stout 1936 Ramirez, Hayashi, Cava, Siddharthan & Shastry 1999



Introduction.

Zero-point entropy

Pauling’s argument: [V tetrahedra, 2 /N links (4 NN)
Pauling 1935 — QO — 22N (without ice-rules)

vertices indept. — Qoo — 22N 6/16)N
— S ©040R

2D Lieb’s exact result (Bethe Ansatz): A

ie 3 4
Lieb 1967 SQD — NkB§ ln (g) O43R *%
\4

3D Experiments (both Spin and Water Ice):

Giauque & Stout 1936 Ramirez, Hayashi, Cava, Siddharthan & Shastry 1999




Introduction.

Thermal excitations in spin-ice

—

H=—7 % 5.8 +pay 202 g0iTil5i74) ~ Ny,

5
r re.
<i,5> i<j W % (a,8)
Pyroclhore lattice Diamond lattice
= dipoles = monopoles
W . 4
S Thermal excitations
q q violating the ice rules =
b A4 ¢'—-

o

= — E—

—> lce configurations = {qa — O}

Castelnovo, Moessner & Sondhi 2008



Introduction.

Magnetic monopoles in spin-ice

- If all the 2 in - 20ut vertices are equivalent, the only energy cost
comes from the 1 /r Coulomb interaction.

- Finite energy to separate two monopoles to infinity = de-confined

— Fractionalisation in 3D



Introduction.

2D experiments:Artificial Spin-lce
A A A A from Wang et al., Nature 2008

Y | Y — .
jf> < ! i j X{ > ! i ji« <%i j$> »E«J L &3 -

Aa=Ww1=wsy b=w3=wy C=Ws5=We d=w7=wsg
A A A A
)%> <+< %i% <4> <%> 4% %> <%<
\4 v \4 \4
g 4
Vo
E=Wog=Wwi10=...—W1e6

Experimental motivation:

|. direct visualisation of defects’ dynamics
Mengotti, Heyderman, Rodriguez, Nolting, Hiigli, Braun 2011.

2. vertex weights can be tuned — @ = b = ¢
Moller & Moessner 2006

3. A-thermal system: energy barrier ~ 1O5K;

— effective thermodynamics can be recovered
Nisoli, Li, Ke, Garand, Schiffer, Crespi 2010;
Morgan, Stein, Langridge, Morrows 2011.



Equilibrium.

Sixteen-vertex model (humerics) dy > dy
Allow defects = ( = e # () b/c a o
FM d1 <1
Conjecture: (numerics) Ad
0'( '¢"'
a® +b* — c? — (3e + d)? g g
A =
2(ab+ c(3e +d))
B PM
e=10 a’ + b% — c? — d? (disordered)
Ag = 1 &
2(ab + cd) 2
A > 1 ordered FM phase ‘
continuous phase transition AF

1 > A1 > —1 disordered PM phase

v

continuous phase transition

Ag < —1 ordered AF phase

Levis & Cugliandolo 2011



Out-of-equilibrium.

Phase ordering dynamics after a quench.

Evolution of the system across a phase transition.

® Give updating rules: Non-conserved order parameter (single spin flips)

coupled to a thermal bath
— Stochastic dynamics

® Prepare the system in a disordered equilibrium state and quench it into a known
equilibrium ordered symmetry broken phase

> Competition between opposite orders Slow dynamics — L(t) ~ t*

® Dynamical scaling theory: at late times, there is a single length scale L(t) such that:

C(t,tw) = (5i(t)si(tw)) = Me2q e (L[éi?))

G(r,t) = (si(t)s;(t)) = Mg, Fe ($>

cf.review Bray 1994



Out-of-equilibrium.

Quench into the FM ph

dS€.

Dynamic mechanisms

Levis & Cugliandolo 2011

- anisotropy a¥#b tends to create
diagonal domain walls made of AF
vertices.

- loop fluctuations are the elementary
moves that do not break the ice-rules.

- ‘corners’ of domains cannot have a
neighboring a-vertex. Avoiding defects,
this explains the presence of strings.

- Strings connect two domains and
mediate their growth.



Out-of-equilibrium.

Quench into the FM phase.

Dynamic mechanisms

- once the bands are created we must create a
pair of defects and made them move along the
walls to restore the equilibrium configuration.

—> Extremely slow process T ~ [

(diverging at the thermodynamic limit)

‘s Equilibrium is reached when magnetic order percolates in
the | direction.

> 22 22228 22226 22224 2222 ¢
> 22 222151 22 2181 222 243 22225
> 25 22 )66 | 22§7£1 2224 22241
2 4 > . 2 611 2 551 2 51 23661
> 172 A5 | 1,42 01 55

Levis & Cugliandolo 2011



Out-of-equilibrium.

Quench into the FM phase.

1 T T T T
t,=3750 e
‘ t,=12500
t,=37500 *
t,=125000 O
t,,=375000

G”(t,r)

Pddodobadod 1 |

0.2 1 1 1 1

=200

Two-point self correlation function in the || direction:

Gy (t,r) = D (Sii(t)Siy = gy = (1))

2.5

Ly ()

120
L=300 |
L

L=200 ||
L

80

40

L=100 ||
J_ .
12 ... ...

t

2,]

10°



Out-of-equilibrium.

Quench into the FM phase.

Evolution froma Di.c.to a=5,b=1, e=10"", d = ¢’




Equilibrium.

Sixteen-vertex model

Allow defects = ( = e # ()

Example: b=1/2,c=1

1 b/cA
0.8
0.6
+ d <1
= %
0.4 1
0.2 1/2 ...................................... d:01
° | 1 >a/c
a
d<1 d=0.1

RN The FM transition gets “smoother” by increasing the
weight of the defects



Equilibrium.

Sixteen-vertex model

Finite size scaling:

(M?)
Ky, =1 T~ B (tLYY)
=ia 2\92
3(MZ)
X+ ~ (I)chi+ (tLV/V)
. o a—a
Distance from the transition: ¢t = <
a
2:2— | | ‘IaF Sasid e ' o L L=10 +
05 | B * i 0.15
+ 04 F R | 3
!2 03 L ﬁ ] I_I 0.1
X
0-2 ” St 4 = oo0s
0.1 ﬁEI L=30 » -
0 » y EFH_ | LT4O o] 0
-10 5 0 5 10 _




Equilibrium.

Sixteen-vertex model

Ex: critical exponents for the FM transition

six-vertex | 2d Ising | SI (d=e=10"") | SI (d =e =0.1)
5 = /v 7/4 7/4 —1.75+£0.02 | =1.75+0.02
B=23/v 1/8 1/8 ~ 0.125 £ 0.05 ~ 0.125
a=(2—a)/v 2 2 —2.00 +0.15 ~ 2
7 7/8 7/4 —1.06+0.03 | —1.75+0.18
5 1/16 1/8 | =0.050+0.014 ~ 0.125
o 1 0 — 0.84 +0.23 ~ 0
v 1/2 1 — 0.60 + 0.02 —1.0+0.1
b/cA
Define new exponents : M, ~ 9
d <1
Consistent with scaling relations 1
L5 | s ¢=0.1




Equilibrium.

Sixteen-vertex model

six-vertex | 2d Ising | SI (d=e=10"") | SI (d =e =0.1)
¥ =/v 7/4 7/4 = 1.75 £ 0.02 = 1.75 £ 0.02
B=23/v 1/8 1/8 ~ 0.125 4+ 0.05 ~ 0.125
a=(2—a)/v 2 2 =700 £ 015 2 N
v 7/8 7/4 /=1.06+£0.03\ | /=1.75+£0.18 \
g 1/16 1/8 | [=0.050+0.014 ) ~ 0.125
o 1 0 \=084+023 /|\ =0
v 1/2 1 0.60 + 0.0 =1.0+0.1

Exponents depend on the vertex weights




Equilibrium.

Sixteen-vertex model

six-vertex | 2d Ising | SI (d=e=10"") | SI (d =e =0.1)
¥ =/v 7/4 7/4 = 1.75 £ 0.02 = 1.75 £ 0.02
B=23/v 1/8 1/8 ~ 0.125 4+ 0.05 ~ 0.125
a=(2—a)/v 2 2 =700 £ 015 2 N
~ 7/8 7/4 /=1.06+£0.03\ | /=1.75+£0.18 \
g 1/16 1/8 | [=0.050+0.014 ) ~ 0.125
o 1 0 \=084+023 /|\ =0
v 1/2 1 0.60 + 0.0 =1.0+0.1

Exponents depend on the vertex weights

v,a, 3 does not!

w=l)  Weak universality (Suzuki 1974)




Cavity method vs. Monte Carlo.

Spin-ice on a tree graph (cavity method)

Cavity vs. numerical results (sixteen-vertex model)

|. The approx. becomes worse when increasing the weight of the
defects and the transition gets “softer”.

2. The location of critical surfaces obtained by the cavity

calculation are almost parallel to the six-vertex ones
(as predicted by MC))

Foini, Levis, Tarzia, Cugliandolo In preparation (2012)



ASI.
Al’tlﬁ C|a| §P| N |(£ Wang et al, Nature 439 (2006)

3 (Si.735) (Sj.745)
H = D'r() Z <|T7J]H3 3 H_)HES

1<J€eP

Energy levels

A
€c = —4J1+2Jy - %—< <%>
\
A A
€ap = —2J2 T >JT> <%—< <Jf< >jﬁ>
v \%
A A A A
€. = 0 - >—}> < >JI< <Jf> <JT> >%—< > <%<
%"4 v v A\r
A
eq =41 +2J2 <+> %
Vv

v

——> 2in- 2 out vertices are not equivalent in the square lattice



ASI

‘A-thermal’ Artificial spin ice

(Nisoli et al. 2007-2008)

> L
A A A A
> > > > > N R VA
ﬁ A A A A ﬁ(t) QA £ A 7T v 7
0 > > > > > " £ A\ 9 1 7 v b
A A A A
> | 5 | ool o L ™ 7 \ £ © £ v
A A AN A 4 v £ 1 7 1
> > > > >
A A AT A 4 1 9 1
28
R
t =0 t >0

Demagnetisation protocol: H(t = nAt) = (—1)"(Hy — nHy)

- polarised initial configuration
- rotate the sample

- decrease magnetic field

- change polarity of the field after a cycle

Shearing and shaking in
e granular matter 7



ASI.
‘A-thermal’ Artificial spin ice

(Nisoli et al. 2007-2010)

Assume: () F =~ ct
(ii) vertices can be chosen independently (mean-field)

» Construct an Edwards’ measure

|. Count configurations S(E,N)=InQ(FE,N)

2. Maximise the entropy under the constraint /£ ~ ct

Gives population of vertices created

during the demagnetisation : exp(—BErea)
Nao —
Z(BE)
1 0S
With — configurational ‘temperature’

Tw  OF



ASI

‘A-thermal’ Artificial spin ice (Nisoli et al. 2007-2010)
o exp(—Brea) Count vertices in the samples
L=
Z(ﬁE) 4n
Se = In °) (e —€.)!
Ne

From: Nisoli et al, PRL 105 (2010)
0.6 -

——>  Ground state cannot be reached with this procedure



ASI.
"Thermal” Artificial spin ice

Special parametrisation of the |6-vertex model:

A \Y; A \% A \" A \'
>0 > < < < < > > > 0 < < 0 > < > > <
A A\ A \ 4 \ 4 A \" A
A& _J/ A& _J/ A& _J/ A& 4
Vo VO VO Vo
a=wi=ws b=ws3=wy C=Ws5=Wseg d=w7=ws
\Y; A A \Y; A \' A \'/
>0 > < 0L > 0 < < 0> < o> > 0 < >0 > < 0L
A \ A v A v \' A
A\ 4
VO
E=Wog=—Wi0=—...—W1ie6

a=0b=exp(—Le,)
c = exp(—pe.)

e = exp(—[e.)

= exp(—L€q)

Energy of each vertex = approximation of the dipolar interactions

—> High energy to the defects

Analytical calculation on the
-+

Continuous Time simulations

Our canonical temperature: 6 —

Ina

€a



Equilibrium.

Sixteen-vertex model

Allow defects —> d=c¢e # 0

How can we
observe a
difference?

lce rules —> collective paramagnet with geq = OO

lc&yutés —5 disordered paramagnet? OO > feq > L

Non-equilibrium relaxation from an completely ordered
state towards equilibrium in different phases

~ 637p(—t/7) disordered
M_|_ (t) ~ t_)‘ critical feq — OQ

o _T_q Gﬂjp(—t/T) ordered

power-law behaviour inside the SL phase TEST C|”|t|Ca||ty



ASI.
"Thermal” Artificial spin ice

A single critical point

0.9 F : s |
0.8 ' a<a, -

0.7 L * . -
0.6 L o

M_(1)

____________ BI.2.) a=>dc

a = 0.300 |
101 102 10° 10%
t in MCS)

0.4

Non-critical correlation in the PM phase

i The spin-liquid phase is lost as soon as a finite density of defects is present



ASI.
"Thermal’ Artificial spin ice

Numerics vs. Cavity calculation

M_

(:8 _IBC)/IBC (18 _:Bc)/ﬁc

Second order phase transition at 3. =~ 2.65

- Compare with experiments

Levis, Cugliandolo, Foini, Tarzia In preparation (2012)



ASI.
"Thermal’ Artificial s spin ice Two-point space-time correlations:

10° X <Z Sq;,j (t)Si+r,j-|—?“ (t)>

E

B~ Be
Slowing down close to the
critical point

B> Be




ASI.
"Thermal” Artificial spin ice

Phase diagram of ASI (extensive numerics + cavity)

e/c
A

~1/3 2

PM

The criticality of the SL phase is lost as soon as d, e > (



Conclusion & outlook.

|. Investigate the variation of critical exponents in the |6V model by a real-
space Renormalisation Group approach.

2. Extend the mappings between integrable vertex models (6V and 8V) into
quantum spin chains (XXZ and XYZ resp.) to the unconstrained |6V model.
Then, use our understanding on the classical model to predict the behaviour
of the quantum system!?

3. Link between configurational temperatures in ASl and the canonical
temperature! In experiments: - properties of the domain walls?

- thermal equilibration!?

- growth rate (link with a cooling rate)



Conclusion & outlook.

4. Defects’ motion in 2D (square or hexagonal).

Prepare the system into an ‘ice-rule’ configuration, then follow the motion of a
pair of defects. Interaction!?

Model for collective transport properties!?

5. Effect of boundary conditions on the dynamics of hardly constrained
models.

6. In particular, study the relaxation dynamics of the six-vertex model with
fixed boundary conditions using local updates. Topological glass?

/. 1. Use the same BP and CTMC approach to study the 16V model in an
external field.

Extend the BP approach to deal with other geometrically frustrated stat.
models (AF Ising, Kagome ice, colouring models, etc.).
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