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PLAN of the talk
• Introduction: 

‣ Geometrical frustration:  Water Ice,  Pyrochlore magnets (3D spin ice)

‣ Generic model: 2D 16-vertex model

‣ Experiments:  Artificial nano-arrays (2D spin ice)

• Equilibrium phases: 

‣ Using CTMC and Bethe-Peierls approx. (cavity method). Phase diagram and critical 
properties of the 16V model. 

‣ Theory vs. experiments in `a-thermal’  Artificial spin ice: Edwards’ measure vs. 
Canonical. 

• Stochastic dynamics: 

‣ Evolution after a quench into the PM, FM and AF phases.

‣ Dynamical arrest , mechanisms leading the evolution and topological defects.

• Conclusion & perspectives



Introduction.

Geometrical frustration 

Prototypical example:  Ising AF on a triangular lattice

≡

H = J

�

<i,j>

SiSj Si = ±1 ∀i J > 0

Ground state: 
3�

i=1

Si = ±1All configurations such that

Macroscopic degeneracy

Frustrated because of the geometry of the lattice  and 
the antiferromagnetic nature of the interactions.

Ω0 ∼ exp(N)

S0 = lnΩ0Extensive zero-point entropy



Introduction.

each bond carries a dipolar moment      
verifying the  ice-rules 

Geometrical frustration 

Crucial example: Water Ice

at each vertex (oxygen atoms) 
two in - two out=

Ground state :   Ice-rule vertices are favoured

�µ

⇒ Geometrically frustrated
1

O
2−

H
+

Frustration
Origins & effects

Quenched disorder Geometry Constraints

+

+

+

!
?

?

Spin-glasses AF on a triangular lattice Water ice

Zero-point entropy :
S0 = lnΩ0 with Ω0 = eNΣ and Σ finite in the ground state.

Single unit:

Experimental evidence of an extensive entropy at T=0 ⇐= Predicted by Pauling’s model
Giauque & Stout 1936 Pauling 1935

⇒ SIX vertices

Ih



Introduction.

Geometrical frustration 

Spin Ice

electric dipoles magnetic moments

zero point entropy 
measured in                       Dy2Ti2O7

Ramirez, Hayashi, Cava, Siddharthan & Shastry 1999

Single unit
Spin ice configuration

Four (Ising) spins on each tetrahedron ; they are forced to point along
the axes that join the centers of two neighboring units (Ising anisotropy).
Ferromagnetic short-range interactions imply the two-in two-out ice rule.

Frustration
Origins & effects

Quenched disorder Geometry Constraints

+

+

+

!
?

?

Spin-glasses AF on a triangular lattice Water ice

Zero-point entropy :
S0 = lnΩ0 with Ω0 = eNΣ and Σ finite in the ground state.

 Water Ice

Sw ≈ 0.41R Ssi ≈ 0.46R

Harris, Bramwell, McMorrow, Zeiske & Godfrey 1997
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Geometrical frustration 

Spin Ice

electric dipoles magnetic moments

Dy2Ti2O7

Ramirez, Hayashi, Cava, Siddharthan & Shastry 1999

Single unit
Spin ice configuration

Four (Ising) spins on each tetrahedron ; they are forced to point along
the axes that join the centers of two neighboring units (Ising anisotropy).
Ferromagnetic short-range interactions imply the two-in two-out ice rule.

Frustration
Origins & effects

Quenched disorder Geometry Constraints
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+
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Spin-glasses AF on a triangular lattice Water ice

Zero-point entropy :
S0 = lnΩ0 with Ω0 = eNΣ and Σ finite in the ground state.

 Water Ice

Sw ≈ 0.41R Ssi ≈ 0.46R

Spin Ice is geometrically 
frustrated accordingly to 

the ice rules                     

Why??

zero point entropy 
measured in                       

Harris, Bramwell, McMorrow, Zeiske & Godfrey 1997



Introduction.

Geometrical frustration 
in spin ice

classical Ising spins 

 DSI:  nn FM + dipolar interactions

NN contribution: H ≈ J + 5D

3

�

<i,j>

σiσj with: σi = ±1
⇒

GS:   2 in-2 out (ice-rules)

Geometrically frustrated 
Ferromagnet

AF

H = −J

�

<i,j>

�Si.
�Sj +Da

3
�

i<j

�Si.
�Sj

r
3
ij

− 3
(�Si.�rij)(�Sj .�rij)

r
5
ij

Harris, Bramwell, McMorrow, Zeiske & Godfrey 1997

Sw ≈ 0.41R

Ssi ≈ 0.46R
� S∞ ≈ 0.40R�

Single unit
Spin ice configuration

Four (Ising) spins on each tetrahedron ; they are forced to point along
the axes that join the centers of two neighboring units (Ising anisotropy).
Ferromagnetic short-range interactions imply the two-in two-out ice rule.

S2D = 3/2 ln(4/3)

≈ 0.43R
Lieb 1967

Experiments 3D Exact 2D Approx.



Introduction.

+q −q

Ice configurations ⇒ ≡ qα = 0{        }

Castelnovo, Moessner & Sondhi 2008

(a) (b)

Thermal excitations in spin-ice

Thermal excitations 
violating the ice rules = 

magnetic monopoles

“Dumbbell picture”



Introduction.

(a) (b)

� �� �
a=ω1=ω2

� �� �
b=ω3=ω4

� �� �
c=ω5=ω6

� �� �
d=ω7=ω8

� �� �
e=ω9=ω10=...=ω16

1

� �� �
a=ω1=ω2

� �� �
b=ω3=ω4

� �� �
c=ω5=ω6

� �� �
d=ω7=ω8

� �� �
e=ω9=ω10=...=ω16

1

2D projection

⇒ - vertex model24 = 16

Thermal excitations in spin-ice



2D Spin-Ice theory: the sixteen-vertex model
Introduction.

• •
� �� �

a=ω1=ω2

• •
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b=ω3=ω4

• •
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c=ω5=ω6

• •
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d=ω7=ω8
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1

ωk = e−β�kFix the Boltzmann weight of each vertex:
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• •
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a=ω1=ω2
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Fix the Boltzmann weight of each vertex:

Integrability
(six- and eight-vertex models)

Stochastic extension of  a general 
integrable model

=⇒

Thermal excitations:
Vertices breaking the ice-rule are allowed but un-favoured = defects 

2D Spin-Ice theory: the sixteen-vertex model

Non-Integrability
Monte Carlo simulations

& Cavity calculation

Dynamics

ωk = e−β�k
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a=ω1=ω2
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b=ω3=ω4
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c=ω5=ω6

• •
� �� �

d=ω7=ω8

• • • • • • • •
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e=ω9=ω10=...=ω16

1

Fix the Boltzmann weight of each vertex:

Integrability
(six- and eight-vertex models)

Non-Integrability
Monte Carlo simulations

& Cavity calculation

Equilibrium phases of the 

general model ?

2D Spin-Ice theory: the sixteen-vertex model

ωk = e−β�k

Stochastic extension of  a general 
integrable model

=⇒

Thermal excitations:
Vertices breaking the ice-rule are allowed but un-favoured = defects 

Dynamics



2D experiments: Artificial Spin-Ice 
Introduction.

1. Array of elongated ferromagnetic islands behave as classical Ising spins.

2. Dipolar interactions  

3. Direct visualisation of defects’ dynamics 

Ladak, Read, Perkins, Cohen, Branford 2010 ;
Mengotti, Heyderman, Rodríguez, Nolting, Hügli, Braun 2011.

→ c > a = b

Wang, Nisoli, Freitas, Li, McConville, Cooley, Lund, Samarth, Leighton, 
Crespi, Schiffer 2006.

©!2006!Nature Publishing Group!

!

the vertex as a whole, there are four distinct topologies for the
configurations of the four moments with a total multiplicity of 16, as
shown in Fig. 1c. We label the configurations I–IV in the order of
increasing magnetostatic energy, but no configuration can minimize
all of the dipole–dipole interactions (even type I only minimizes the
energy for four of the six pairs in a vertex), and thus the system is
frustrated.
The lowest energy vertex configurations (I and II) have two of the

moments pointing in toward the centre of the vertex, and two
pointing out. Although the interactions between all pairs of spins
on the vertex are not equivalent, these energetics are analogous to the
two-in/two-out ice rules for the atomic moments on a tetrahedron in
spin ice. For arrays with a lattice constant of 320 nm, the energy
difference between vertices of types I and III is more than twice as
large as the energy difference between vertices of types I and II, and
the energy difference between types I and IV is more than six times as
large (based on OOMMF calculations of relaxed magnetostatic
energies). The two-in/two-out motifs (types I and II) therefore
dominate within a large manifold of closely spaced low-energy
magnetic states. Topological considerations further favour the
creation of magnetic states that are dominated by frustratedmixtures
of types I and II. For example, a domain boundary between regions of
types I and II is essentially seamless, requiring no vertices of types III
or IV. The situation contrasts sharply with that of a traditional Ising
ferromagnet or antiferromagnet, wherein magnetic domain walls
contain highly unfavourable anti-aligned spin pairs.
Magnetic force microscopy (MFM) allowed us to image the

orientations of all of the moments in a large area (10 mm £ 10 mm),
far from the edges of the arrays. To enable the system to settle into a
low energy configuration, we followed a protocol developed by
previous authors16,18 and rotated the samples in a magnetic field
which decreased stepwise from above to below the coercive field.
MFM images of the system after such field treatment revealed no
measurable residual magnetic moment for the array, and a ten-fold
variation of the step dwell times did not significantly alter the
distribution of vertex types described below.

In Fig. 2 we show an atomic force microsope (AFM) image and an
MFM image of a portion of a typical array. The black and white spots
in the MFM image, which indicate the north and south poles of the
ferromagnetic islands, confirm the single-domain nature of the
islands and demonstrate the dominance of the shape anisotropy in
aligning the magnetization of each island along its long axis. From
the MFMdata, we can easily determine the moment configuration of
the array (as indicated by the arrows in Fig. 1a). These data
demonstrate that the many vertex types anticipated in Fig. 1c can
be directly observed in the actual system. In order to probe the nature
of frustration in this system, we studied how the properties varied
with the spacing between the islands, counting between 1,000 and
3,000 islands in measurements of 2–4 different arrays for each lattice
spacing. This allowed us direct control over the frustrated inter-
actions, something which is not easily attainable in geometrically
frustrated magnetic materials.
An immediate question is whether our arrays obeyed the ice

rules—that is, did a preponderance of the vertices fall into a two-
in/two-out configuration (type I or II)? By simple counting argu-
ments (see Fig. 1c) we can predict the expected distribution of
different vertex types if the moments were non-interacting and
randomly oriented. One would expect only 37.5% of the vertices to
have a two-in/two-out configuration if the orientations were ran-
dom; an excess of such vertices would indicate that interactions are
determining the moment configuration. We compute the excess
percentage for each type of vertex, defined as the difference between
the percentage observed and that expected for a random distribution.
We plot this excess versus lattice spacing in Fig. 3a for each of the four
vertex types, as well as for types I and II combined. The excess
percentage of vertices with a two-in/two-out configuration (types I
and II) was well over 30% for the smallest lattice spacing; in other
words, over 70% of all vertices had a spin-ice-like configuration. This
excess percentage decreased monotonically with increasing lattice
spacing (decreasing interactions), approaching zero for our largest
lattice spacing, as would be expected for non-interacting (randomly
oriented) moments. In fact, the excess for all vertex types approached
zero as the lattice spacing increased, lending credence both to our
understanding of the system and to the effectiveness of the rotating-
field method in enabling facile local re-orientation of the moments.
To further understand the nature of frustration in this system, we

also studied the pairwise correlations between the Ising-like
moments of the islands. Defining a correlation function is somewhat
complicated by the anisotropic nature of our lattice and that of the
dipole interaction. We thus define a set of correlation functions
between distinct types of neighbouring pairs. The closest pairing is

Figure 1 | Illustration of frustration on the square lattice used in these
experiments. Each island in the lattice is a single-domain ferromagnet with
its moment pointing along the long axis, as indicated by the arrow. a, The
geometry of the lattice studied. The arrows indicate the directions of
moments corresponding to the MFM image of Fig. 2b. b, Vertices of the
lattice with pairs of moments indicated, illustrating energetically favourable
and unfavourable dipole interactions between the pairs. c, The 16 possible
moment configurations on a vertex of four islands, separated into four
topological types. The percentages indicate the expected fraction of each
type if the individual moment orientations on an array were completely
random.

Figure 2 | AFM and MFM images of a frustrated lattice. a, An AFM image
of a typical permalloy array with lattice spacing of 400 nm. b, AnMFM image
taken from the same array. Note the single-domain character of the islands,
as indicated by the division of each island into black and white halves. The
moment configuration of the MFM image is illustrated in Fig. 1a. The
coloured outlines indicate examples of vertices of types I, II and III in pink,
blue and green respectively.
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from Wang et al., Nature 2008
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Six-vertex model (exact results)
Equilibrium.

Ice-rules ⇒

• •
� �� �

a=ω1=ω2

• •
� �� �

b=ω3=ω4

• •
� �� �

c=ω5=ω6

1

Equilibrium phases:

frozen FM phase 

quasi long-range ordered SL phase

ordered AF phase with low energy excitations

AF

(critical)

(frozen)

b/c

`Frozen-to-critical’ phase transition

Kosterlitz-Thouless phase transition

FM

1

(frozen)

(ordered)

Baxter, Exactly Solvable Models in Statistical Mechanics 1982

d = e = 0

SL

a/c

FM

∆6 =
a2 + b2 − c2

2ab

∆6 > 1

1 > ∆6 > −1

∆6 < −1



Six-vertex model (exact results)
Equilibrium. The 2d 6 vertex model

Equilibrium configurations

FM AF D

large a large c
︸ ︷︷ ︸

a close to b > c
︸ ︷︷ ︸

Ordered Disordered

(frozen)
FM AF

(ordered) (critical)
SL

ora b c a b c

11 1



Equilibrium.

Allow defects ⇒
Sixteen-vertex model (numerics)

d = e �= 0

Foini, Levis, Tarzia & Cugliandolo 2012  

∆16 =
a2 + b2 − c2 − (3e+ d)2

2(ab+ c(3e+ d))

1. All the transitions become continuous

2. The PM phase is not critical, the FM phase is not frozen. 

3. Finite size scaling: Critical exponents depend on the value of the parameters:                   .

4.  Phase diagram characterised by a generalised ‘anisotropy parameter’.  

⇒ consistent with the exact results on the eight-vertex model Baxter 1971, 1982

a, b, c, d, e

and (the very few) the sixteen-vertex model Wu 1969

Conjecture: (numerics)

Levis & Cugliandolo 2011  

∆8 =
a2 + b2 − c2 − d2

2(ab+ cd)
−→
e = 0



Cavity method.

Spin-ice on a tree graph (cavity method)
Bethe-Peierls approximation: 
In the absence of a given site, the neighbours are de-correlated.

               The connectivity of the original model is preserved BUT no loops
               Allows for a recursive treatment to be solved self-consistently

0

1

2

1

=⇒Good approximation 
for FM order

1

AF order ?
Defects ?

FC BP

No loops
Loop 

fluctuations



Cavity method.

Spin-ice on a tree graph (cavity method)
Bethe-Peierls approximation: 
In the absence of a given site, the neighbours are de-correlated.

               The connectivity of the original model is preserved BUT no loops
               Allows for a recursive treatment to be solved self-consistently

0

1

2

1

=⇒Good approximation 
for FM order

1

AF order ?
Defects ?

BP

No loops
Loop 

fluctuations

4 disconnected 
rooted trees

FC



Cavity method.

Spin-ice on a tree graph (cavity method)

(c)

(a)

(b)

(d)

Foini, Levis, Tarzia & Cugliandolo 2012  

Two models:   1. An oriented tree of vertices ‘single vertex tree’ 
No loop fluctuations

2. A tree of plaquettes made of four vertices ‘plaquette tree’ 
Include elementary loop fluctuations 



Cavity method.

Spin-ice on a tree graph (cavity method)

(c)

(a)

(b)

(d)

Foini, Levis, Tarzia & Cugliandolo 2012  

Jaubert, Chalker, 
Holdsworth &  
Moessner 2008 

Two models:   1. An oriented tree of vertices ‘single vertex tree’ 
No loop fluctuations

2. A tree of plaquettes made of four vertices ‘plaquette tree’ 
Include elementary loop fluctuations 



Cavity method.

Spin-ice on a tree graph (cavity method)

(c)

(a)

(b)

(d)

Two models:   1. An oriented tree of vertices ‘single vertex tree’ 
No loop fluctuations

2. A tree of plaquettes made of four vertices ‘plaquette tree’ 
Include elementary loop fluctuations 

Foini, Levis, Tarzia & Cugliandolo 2012  



Cavity method.

Spin-ice on a tree graph (cavity method)
Strategy:  

Foini, Levis, Tarzia & Cugliandolo 2012  

i
�idju�

j

l h k

�lril�
�hdiu�

�klir�

l u
d dl ur

r
u

ψu

up-rooted tree from 
merging a right, up and 

left rooted tree

≡ probability that the spin in the 
missing edge          points 
towards   (up). 

�idju�
i

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the self-consistent equations satisfied by the ‘cavity probabilities’: n-th shell as 
a function of the (n+1)th shell.  



Cavity method.

Spin-ice on a tree graph (cavity method)
Strategy:  

Foini, Levis, Tarzia & Cugliandolo 2012  

ψu =
1

zu

�
aψlψuψr + b(1− ψl)ψu(1− ψr)

+ c(1− ψu)(1− ψl)ψr + dψl(1− ψu)(1− ψr)
�

×4 : ψl,d,r

The simplest example: eight-vertex model in the single vertex tree

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

Self-consistent equations

α = u, l, d, r

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the self-consistent equations satisfied by the ‘cavity probabilities’: n-th shell as 
a function of the (n+1)th shell.  

ψα = Ψ̂α[a, b, c, d, e,ψu,ψd,ψl,ψr]



Cavity method.

Spin-ice on a tree graph (cavity method)
Strategy:  

Foini, Levis, Tarzia & Cugliandolo 2012  

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the self-consistent equations satisfied by the ‘cavity probabilities’: n-th shell as 
a function of the (n+1)th shell.  

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

α = u, l, d, r

ψu ψu
+−

Plaquette 
model 

4× 4

Self-consistent equationsψα = Ψ̂α[a, b, c, d, e,ψu,ψd,ψl,ψr]

ψα
s1s2 = Ψ̂α

s1s2 [a, b, c, d, e,ψ
u,ψd,ψl,ψr]



Cavity method.

Spin-ice on a tree graph (cavity method)
Strategy:  

Foini, Levis, Tarzia & Cugliandolo 2012  

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the self-consistent equations satisfied by the ‘cavity probabilities’: n-th shell as 
a function of the (n+1)th shell.  

3.  Find the fixed points of the self-consistent equations. 

4. Compute thermodynamic observables: free energy, magnetisation, etc.

5. Study the stability of the solutions

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

Mα,β =
dΨ̂α

dψβ

���
fp

Phase transitions and nature of the 
phases. 

Try to find an anisotropy parameter 
which characterises the phase diagram

Equilibrium phases

E1, E2, ...

∆(E1, E2, ...)

Eigenvalues:



Cavity method.

Spin-ice on a tree graph (cavity method)
Results for the six-vertex model:  

Foini, Levis, Tarzia & Cugliandolo 2012  

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.5  1  1.5  2

!
 f

a/c

cavity single vertex
cavity plaquette
2D Para
2D AF

 0

 1

 2

 0  1  2

b
/c

a/c

Free energy of the 6V model on trees vs. 
exact results in 2D.

1.  Exact location of the transition lines with both the single vertex and the plaquette 
model. 

2. Thermodynamic quantities in remarkable agreement with the 2D results. 



Cavity method.

Spin-ice on a tree graph (cavity method)
Results for the six-vertex model:  

Foini, Levis, Tarzia & Cugliandolo 2012  

1.  Exact location of the transition lines with both the single vertex and the plaquette 
model. 

2. Thermodynamic quantities in remarkable agreement with the 2D results. 

3. Nature of the phase transitions is qualitatively improved by making use of the tree 
of plaquettes. 

                            

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

6V single vertices 6V plaquettes 6V 2D

PM-FMs Frozen-to-PC Frozen-to-PC Frozen-to-crit
PM-AFs Frozen-to-PC Cont.-to-PC KT



Cavity method.

Spin-ice on a tree graph (cavity method)
Results for the six-vertex model:  

Foini, Levis, Tarzia & Cugliandolo 2012  

1.  Exact location of the transition lines with both the single vertex and the plaquette 
model. 

2. Thermodynamic quantities in remarkable agreement with the 2D results. 

3. Nature of the phase transitions is qualitatively improved by making use of the tree 
of plaquettes. 

                            goes in the good direction

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
function of the (n+1)th shell.  

→

6V single vertices 6V plaquettes 6V 2D

PM-FMs Frozen-to-PC Frozen-to-PC Frozen-to-crit
PM-AFs Frozen-to-PC Cont.-to-PC KT



Cavity method.

Results for the sixteen-vertex model:  

Foini, Levis, Tarzia & Cugliandolo 2012  
1.  Define an oriented tree (up,left,down,right) where vertices can be identified.

2.  Write the recursion relations satisfied by the ‘cavity probabilities’: n-th shell as a 
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POR HACER... Citar los experimentos. We analyze then the AF-transition in artificial spin-ice. The results
are supported by analytical calculation on Bethe lattice of plaquettes. Agreement with experiments. Interpreta-
tion of the experimental results, in particular the temperature. Answer the question: Is ASI thermal?
To stress: we justify the model and we make a first (well, second) step to give further experimental meaning to
the 2d vertex models.
We confront to experiments
We show the first mean-field analysis of the model
I do not think is the first one. Cluster mean-field method? Confusion between β’s (inverse temperature and
critical exponent)

Hard local constraints can lead to a rich variety of collec-
tive behavior such as the splitting of phase space into dif-
ferent topological sectors and the existence of “topological
phases” that cannot be described with conventional order pa-
rameters [1]. In geometrically constrained magnets, the lo-
cal minimization of the interaction energy on a frustrated unit
gives rise to a macroscopic degeneracy of the ground state [2],
unconventional phase transitions [3, 4], long-range correla-
tions in the “Coulomb” phase [5, 6] and slow dynamics [7, 8]
in both 2d and 3d systems. In the present work we focus on a
paradigmatic system with these features: spin-ice [9–11].

The ice rules arise from the combination of the anisotropy
of the samples that forces the Ising-like magnetic moment to
lie on the edges of a coordination four lattice (the sites of the
pyrochlore lattice in 3d) and ferromagnetic interactions. All
configurations with two spins pointing in and two out each
vertex (the center of a tetrahedron in 3d) are ground states.
This leads to the zero-point entropy measured in Dy2Ti2O7

(S3d
exp ≈ 1.86 mol−1 K−1) [12] that is in remarkable agree-

ment with the exact value computed for the 2d ice-model on a
square lattice (S2d

exact ≈ 1.79 mol−1 K−1) [13].
Bi-dimensional Ising-like ice-models had no experimental

counterpart until recently when it became possible to manu-
facture artificial samples made of arrays of elongated ferro-
magnetic nano-islands. The beauty of artificial spin-ice (ASI)
is that the interaction parameters can be precisely controlled
- by tuning the distance between islands or applying exter-
nal fields - and the state of a single degree of freedom can
be directly visualized by microscopy [14]. The system sets
into different phases depending on the island length l, the lat-
tice constant a0, and the height h between layers [15]. The
main drawback of these materials had been the lack of thermal
fluctuations and the ensuing difficulty to observe the expected
ground state. Lately, these problems have been overcome by
(i) applying an external drive [16], (ii) using materials with
a lower Curie temperature [17], (iii) thermalizing the system
during the slow growth of the samples [18]. The study of the
equilibrium phases and critical behavior of ASI has thus be-
come possible on rather large samples with up to 106 vertices.

We will discuss the preparation protocol (iii) later in the con-
text of our study.
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Figure 1. (Color online.) Ordered phases and vertex configurations
in artificial spin-ice on the square lattice. (a) Complete antiferromag-
netic (c-AF) order. The central (red) loop represents an elementary
excitation. (b) Collective paramagnetic (PM) phase. (c) Frozen fer-
romagnetic (FM) order. The last vertical string (red line) represents
a typical extended excitation. (d) Sixteen vertex configurations and
their associated statistical weights ωi = exp (−β�i). The first six-
vertices (a, b and c) verify the ice-rule. The last ten vertices (d and
e) are defects.

In this Letter we demonstrate that a simplified version of the
more realistic dipolar spin-ice model in 2d, the sixteen-vertex

model (see Fig. 1) [8, 19] is an accurate model for the equi-
librium behavior of ASI. The model includes the celebrated
six-vertex (d = e = 0), eight-vertex (e = 0). During the
past thirty years a great effort has been devoted to the study
of the mathematical properties of these models [20]. The in-
triguing excitation properties of spin-ice (emergence of mag-
netic monopoles and attached Dirac strings [21]) and the pos-
sibility to compare theoretical predictions with experiments,
should encourage the study of vertex models from a novel
and more phenomenological perspective; this work goes in
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4, Place Jussieu, Tour 12, 5ème étage, 75252 Paris Cedex 05, France

POR HACER... Citar los experimentos. We analyze then the AF-transition in artificial spin-ice. The results
are supported by analytical calculation on Bethe lattice of plaquettes. Agreement with experiments. Interpreta-
tion of the experimental results, in particular the temperature. Answer the question: Is ASI thermal?
To stress: we justify the model and we make a first (well, second) step to give further experimental meaning to
the 2d vertex models.
We confront to experiments
We show the first mean-field analysis of the model
I do not think is the first one. Cluster mean-field method? Confusion between β’s (inverse temperature and
critical exponent)

Hard local constraints can lead to a rich variety of collec-
tive behavior such as the splitting of phase space into dif-
ferent topological sectors and the existence of “topological
phases” that cannot be described with conventional order pa-
rameters [1]. In geometrically constrained magnets, the lo-
cal minimization of the interaction energy on a frustrated unit
gives rise to a macroscopic degeneracy of the ground state [2],
unconventional phase transitions [3, 4], long-range correla-
tions in the “Coulomb” phase [5, 6] and slow dynamics [7, 8]
in both 2d and 3d systems. In the present work we focus on a
paradigmatic system with these features: spin-ice [9–11].

The ice rules arise from the combination of the anisotropy
of the samples that forces the Ising-like magnetic moment to
lie on the edges of a coordination four lattice (the sites of the
pyrochlore lattice in 3d) and ferromagnetic interactions. All
configurations with two spins pointing in and two out each
vertex (the center of a tetrahedron in 3d) are ground states.
This leads to the zero-point entropy measured in Dy2Ti2O7

(S3d
exp ≈ 1.86 mol−1 K−1) [12] that is in remarkable agree-

ment with the exact value computed for the 2d ice-model on a
square lattice (S2d

exact ≈ 1.79 mol−1 K−1) [13].
Bi-dimensional Ising-like ice-models had no experimental

counterpart until recently when it became possible to manu-
facture artificial samples made of arrays of elongated ferro-
magnetic nano-islands. The beauty of artificial spin-ice (ASI)
is that the interaction parameters can be precisely controlled
- by tuning the distance between islands or applying exter-
nal fields - and the state of a single degree of freedom can
be directly visualized by microscopy [14]. The system sets
into different phases depending on the island length l, the lat-
tice constant a0, and the height h between layers [15]. The
main drawback of these materials had been the lack of thermal
fluctuations and the ensuing difficulty to observe the expected
ground state. Lately, these problems have been overcome by
(i) applying an external drive [16], (ii) using materials with
a lower Curie temperature [17], (iii) thermalizing the system
during the slow growth of the samples [18]. The study of the
equilibrium phases and critical behavior of ASI has thus be-
come possible on rather large samples with up to 106 vertices.

We will discuss the preparation protocol (iii) later in the con-
text of our study.

1

(a)

1

(b)

1

(c)

� �� �
a=ω1=ω2

� �� �
b=ω3=ω4

� �� �
c=ω5=ω6

� �� �
d=ω7=ω8

� �� �
e=ω9=ω10=...=ω16

1

(d)

Figure 1. (Color online.) Ordered phases and vertex configurations
in artificial spin-ice on the square lattice. (a) Complete antiferromag-
netic (c-AF) order. The central (red) loop represents an elementary
excitation. (b) Collective paramagnetic (PM) phase. (c) Frozen fer-
romagnetic (FM) order. The last vertical string (red line) represents
a typical extended excitation. (d) Sixteen vertex configurations and
their associated statistical weights ωi = exp (−β�i). The first six-
vertices (a, b and c) verify the ice-rule. The last ten vertices (d and
e) are defects.

In this Letter we demonstrate that a simplified version of the
more realistic dipolar spin-ice model in 2d, the sixteen-vertex

model (see Fig. 1) [8, 19] is an accurate model for the equi-
librium behavior of ASI. The model includes the celebrated
six-vertex (d = e = 0), eight-vertex (e = 0). During the
past thirty years a great effort has been devoted to the study
of the mathematical properties of these models [20]. The in-
triguing excitation properties of spin-ice (emergence of mag-
netic monopoles and attached Dirac strings [21]) and the pos-
sibility to compare theoretical predictions with experiments,
should encourage the study of vertex models from a novel
and more phenomenological perspective; this work goes in

Thermal phase transitions in Artificial Spin-Ice

Demian Levis,1 Leticia F. Cugliandolo,1 Laura Foini,1 and Marco Tarzia2

1
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Université Pierre et Marie Curie - Paris 6, Laboratoire de Physique Théorique de la Matière Condensée,
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Figure 4.4: Schematics illustrating the 24 possible vertex configurations of artificial
square spin ice. The configurations are classified into four types depending on the
vertex energy. In type 1 and type 2 vertices the ice rule of two moments pointing
in and two moments pointing out is obeyed whereas type 3 and type 4 are charged
vertices.

netic imaging techniques has spurred a number of investigations [3, 66, 70].
The first study of the role of frustration in artificial spin ice systems was re-
ported by Wang et al. in 2006 [3]. Their study revealed short range ice like
correlations and an absence of long range order. Further studies have reported
direct observations of magnetic monopole defects and the flow of magnetic
charge in artificial spin ice [71]. Emergent magnetic monopoles have been
reported in the magnetization reversal of kagome spin ice [66, 72]. In this
case the reversal proceeds through the nucleation of monopole-antimonopole
pairs which dissociate along a 1-dimensional path of reversed magnetizations,
defining a Dirac string.

Studies on spin ice systems have mostly focused on patterned structures
composed of magnetic materials with a high magnetization and a high Curie
temperature such as permalloy or cobalt. As the Curie temperature of these
materials lies far above room temperature and the magnetic moments are large
the energies associated with their reversal barriers and interaction are equiva-
lent to a temperature of the order of 104 −105 K. These systems can therefore
be considered as quasi-static and the only way to manipulate their magnetic
moments is through the application of magnetic fields [73, 74, 75, 76, 3]. Us-
ing ac demagnetization protocols energy minimized states and short range or-
der can be achieved which can be described by effective thermodynamics with
a corresponding effective temperature [74, 77]. Obtaining long range ground
state ordering has however not been realized using such demagnetizing proto-
cols.

In order to achieve a thermal ground state ordering in artificial spin ice sys-
tems the energy barrier for reversing the magnetization between the two low
energy states defined by the shape anisotropy must be thermally accessible.
From equation (2.13), the available choices for achieving a thermal ground
state ordering are thus, a higher temperature, a reduction in the energy bar-
rier, or waiting for geological time scales. Considering the available materials
selection and the possibilities for tuning the size and shape of elements in arti-
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correlation length and zc is the dynamical exponent. Instead,

away from criticality M−(t) decays exponentially. At short

times the dynamic correlation length ξ(t) � L avoiding the

difficulty raised by ξeq � L. This allows one to extract the

critical temperature and critical exponents of the system from

the dynamical results.

Our analytic approach uses the Bethe-Peierls approxima-

tion (BP) [? ]. We define the sixteen-vertex model on a Bethe

lattice of square plaquettes as depicted in Fig. 2. A tree with-
out loops was used to describe pyrochlore spin-ice [? ? ] and

it yields a very good approximation to the transition towards

the FM phase (KDP problem) since the FM order is frozen

when the ice-rules are strictly imposed It is not however pre-

cise enough to describe the staggered AF order that is popu-

lated by loop fluctuations at finite temperature [see Fig. 1 (a)].

It is then crucial to include finite loops as the ones exempli-

fied in Fig. 2 (d) in the graph to correctly describe the unfrozen

AF ordered phase. The details of the calculations, as they are

quite technical, will be presented elsewhere [? ].

Phase diagram and critical properties. A single critical

power-law decay of M−(t) at βc = 2.65± 0.017 can be eas-

ily identified from Fig. 3, showing that the SL phase is broken

at finite temperature by the presence of defects. A generalized

set of critical exponents, independent of the choice of parame-

ters, have been defined in the eight-vertex model [? ]. Among

them β̂ = β/ν = 1/8. Our analytic and numeric results sug-

gest that the sixteen-vertex model is in the same generalized

universality class with β̂ = 1/8 as well [? ? ]. Fixing this

value for the ratio of equilibrium exponents the NERM yields

zc = 2.35 ± 0.40. A more accurate computation of β̂ would

be needed to give further support to this result.
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Figure 4. (Color online.) Staggered magnetization M− (a) and spe-

cific heat C (b) as a function of the distance to the critiical inverse

temperature βc for system sizes L = 30, 40, 50, 60. The (red) solid

lines are the results of the analytic calculation on the Bethe-lattice of

plaquettes.

In Fig. ?? we display equilibrium CTMC data for M− (a)

and the heat capacity C = L−2(�E2�−�E�2) (b) as a function

of the distance to the critical inverse temperature, (β−βc)/βc.

These results are in agreement with the NERM analysis and

confirm the second order phase transition at βc ≈ 2.65. Fig-

ure ?? also displays the analytic results for M− and C (solid

red lines). The theory predicts a second-order phase transi-

tion with a systematic shift of the critical point by around 5%

towards higher temperature.

Figure ?? (a) displays the space-dependence of the corre-
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Figure 5. (Color online.) The space-time C(r, t) and equilibrium

Ceq(r) = limt→∞ C(r, t) correlation function close to the phase

transition (top panel, β = 2.65) and in the ordered phase (bottom

panel β = 3). The colored lines-points in the top panel are dynamic

data after a quench from infinite temperature. The equilibrium crit-

ical correlation function (black dots) is confronted to an algebraic

decay ∼ r−2.5
(dotted line). Isn’t η huge here? I am used to seeing

small values for this exponent, but we can check what was found in

other cases. It could mean that this is not the equilibrium limit and

but that you are still far away from, as I would expect for these times.

For the ice model the correlations decay as r−2
. Two-time correla-

tions vanish at t > 1000. Look at larger times. TO BE UPDATED.

The insets show two typical configurations in these conditions. Or-

ange regions are c-AF ordered, black dots correspond to FM vertices

(a and b), red and blue dots correspond to oppositely charged defects

of type e; d vertices are absent. Connected correlations in the ordered

regime agree with an exponential decay ∼ exp(−r/ξ) with ξ = 36.

Why have you cut the y-axis at 0.5? Why not use the more standard

linear-log scale, after subtracting the constant, and show the linear

decay with the slope determined by ξ? Use the same size for the two

panels.

lation function C(r, t) = (2L)−2�
�

i,j Si,j(t)Si+r,j+r(t)� at

different times after a quench from β → 0 to βc = 2.65 (in

log-log scale). The indices (i, j) denote a site of the 2L× 2L
square lattice made by all the arrows. Si,j = +1 if the arrow

points right or up and Si,j = −1 otherwise. With these defi-

nitions, r is given in units of a0/
√
2. The dynamic curves ap-

proach, for increasing times, the asymptotic equilibrium law

that close to the transition is a power-law with an exponential

cut-off. The figure also shows, in an insert, a typical configu-

ration (see the caption for the vertex color code). In the bottom

panel we present the equilibrium C(r) = limt→∞ C(r, t) in

the c-AF phase (linear scale) and an ordered configuration in

the insert. The equilibrium correlations decay exponentially

to a non-zero asymptotic value c0 ≈ 0.42. The approach to

such configurations is fast if the initial state is a completely

ordered T = 0 ground state but it is very slow and occurs via
the coarsening process if the initial condition is a disordered

one [? ]. cite here Budrikis?

Putting together the results of extensive NERM and CTMC

numerical simulations for a large range of parameters we ob-

tained the phase diagram shown in Fig. ??.

Experimental density of vertices. In Fig. ?? we plot the

vertex population of each vertex type as a function of the

canonical inverse temperature β = − ln a/�1. The results of

Numerics vs. Cavity calculation

Second order phase transition at βc ≈ 2.65

Compare with experiments

Levis, Foini, Tarzia & Cugliandolo 2012  
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from a ‘checkerboard’ tiling of alternating T1 vertices (or,

alternatively, alternating flux closure loops), shown schematically

and experimentally in Fig. 1a. All first-nearest neighbours

order north-to-south, imposing antiferromagnetic second- and

third-nearest-neighbour order. (The various orders of nearest

neighbours are shown in Fig. 1a.) Long-range dipolar interactions

are needed in Monte Carlo calculations of the 3D pyrochlore

lattice to select a periodic GS (ref. 30), as all six pairwise vertex

interactions are equivalent.

Acquisition of the GS in experiment has proved non-trivial. A

surplus of T1,2 vertices over a random configuration can be achieved

using a rotating a.c. demagnetization protocol
5,26

; however, the T3,4

arrangements, analogous to fractionalized magnetic monopoles
15
,

cannot be fully annihilated. These ‘monopoles’ are confined, in

contrast to the pyrochlore systems
22,23

. Owing to a complex land-

scape of local energy minima, the effective ‘thermodynamics’
13,27

cannot access microstates below a floor of degenerate low-energy

short-range ‘icy’ order
14,29

.

MFMobservation of the ground state
The array studied here comprises permalloy (Ni80Fe20) bars of

area A = 280 × 85 nm
2
and thickness d = 26 nm on a lattice

of pitch a = 400 nm, fabricated by electron beam lithography,

evaporation and liftoff. The as-grown state was then surveyed

by MFM: no global magnetic fields were deliberately applied.

The MFM image shown in Fig. 2a is representative of the entire

sample (see Supplementary Information), with every element in a

single-domain state. A state of highly uniform order has formed

with distinct chain defects. Magnification (inset) shows that regions

of GS background have formed, giving long-range order over

∼20a. Mapping defect moment configurations (Fig. 2b) reveals

two distinct types, comprising T2,3 vertices: antiferromagnet-like

domain walls (DWs) where two opposite-sense GS tilings meet,

and localized groups of moments flipped out of the T1 background.

No T4 vertices were observed. It is extremely unlikely an applied

field induced this state: d.c. fields greater than or equal to the array

coercivity result in polarized states
6
, whereas a.c. demagnetized

states are only short-range correlated
5,13,14

.

The possibility still remains for such ordering to occur through

thermalization, taking place during the early stages of material

deposition. An island will form a continuous magnetic layer within

0 < d ∼< 1 nm of NiFe growth. At temperature T , its moment

m(d,T ) = AdM (T ), where magnetization M (T ) ∝ 1− cT 3/2
for

constant c . Nanoelement dynamics will occur according to a

Néel–Arrhenius rate ∝ exp(−βEb), where the reversal barrier en-

ergy Eb = KAd for shape anisotropy K (d,T )= µ0DM 2
(T )/2 (the

demagnetizing factorDwill depend on d as it affects the element as-

pect ratio
31
), and β =1/kBT , with kB being the Boltzmann constant.

Dipolar interactions are then ∝ m(d)2/r3, where r is the centre–

centre separation of two islands. This slightly lowers/raises Eb for

moments in energetically unfavourable/favourable configurations,

biasing transitions towards lower-energy states, allowing interac-

tions to locally resolve before themoments block (freeze) at d of the

order of a few nanometres. Correct tuning of interactions/barriers

allows for strong GS ordering in ideal optically trapped colloidal

square ice
32
, and likewise, we are aided here by short inter-island

distances. As seen in simulations of superconducting vortex ice
33
,

finite levels of weak disorder lead to multiple GS-order nucleation

centres. Compatible regions coalesce, whereas incompatible regions

must form DWs, which become frozen-in as dynamics slow down.

Slowly raising d , therefore, has an equivalent effect to a decreasing-

T anneal. A finite d-dependent probability also exists for localized

defects to occur within the GS domains, which have also been

preserved. Combined atomic force microscopy andMFM shows no

obvious underlying structural defects on those particular elements

that support thesemagnetic defects, so they are presumably subtle.

2L

GS

T1 T2 T3 T3

10 µm

1

3Z

DW 2

a

GS DW 2

1 2L 3Z

DW 1b

DW 1

Figure 2 |MFM images of a 400-nm-pitch as-grown square ice array.
a, Direct observation of frozen-in long-range GS order with ∼10-µm-width

domains, separated by antiferromagnet-like DW boundaries, supporting

localized elementary excitations of small groups of moments flipped

against the background. A magnified region, containing a DW and localized

excitations (1, 2L, 3Z, notation explained in the text), is shown in the inset.

A key identifying the rotationally degenerate vertex configurations is also

shown. The green square indicates a large domain-like excitation.

b, Moment arrangements of the regions highlighted in a, indicating the

flipped elements (grey), T2-dipole (green arrow) and T3-monopole vertices

(red and blue circles) making up the defects.

Thermally ordered ground states have also been sought in

other artificial model systems. Artificial 2D Ising antiferromagnets

have been previously studied, using superconducting flux vortex

arrays
34–37

and close-packed colloidal spheres
38,39

. In the former,

thermal annealing could not access long-range-ordered states, even

where a unique GS was defined, partly attributed to patterning

disorder. In the latter, ‘annealing’ produced a compressible ‘glassy’

phase, rather than the triangular GS. As-fabricated square ices have

been studied before following milling of sputter-deposited films
6
,

which does not allow thermalization.

Elementary excitations on a square ice lattice
We have imaged an athermal system of elements with large

d . Therefore, we have no information about the dynamics

of defect nucleation mechanisms, and can observe only their

end results. Examination of the frozen configurations presents

strong evidence for thermally driven low-d defect growth. The

localized defects, elementary excitations of the system, may be

classified by the number of flipped moments, n, and a mnemonic

character for shape, shown in Fig. 3a for a representative selection.

Excitations may also be represented by reversed moment maps;

translation, rotation, reflection or inversion forming equivalent

76 NATURE PHYSICS | VOL 7 | JANUARY 2011 | www.nature.com/naturephysics

1. Thermal annealing during deposition.

2. Nano-islands feel thermal fluctuations 
during the growth process.

3. After the growing process the islands 
freeze.

Very close to the expected 
ground state

Excitations and defects can be 
visualised
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Figure 6. (Color online.) Three-dimensional projection of the phase
diagram of 2d spin ice on the square lattice for a = b. The thick
(red) line indicates the spin-liquid phase ending at the KT transition
point (d = e = 0 and a/c = b/c = 1/2). The c−AF phase is
indicated by the (blue) tetrahedron. Away from these regions and
d/c � 2(a/c) + 3(e/c) + 1 (where the system is expected to be
d-AF [? ] ) the system is a disordered paramagnet (PM).

our MC simulations (colored lines-points) and BP calculation
(solid black lines) are confronted to experimental data from
the British collaboration (data points) [? ]. In this experi-
ment, spin configurations are visualized at the end of a sam-
ple preparation process in which the thickness of the magnetic
islands grow by deposition. The Ising spins flip by thermal
fluctuations during the growth process. However, as the time
scales for these moves increase with the growing size of the
islands, once a certain thickness is reached the flipping times
become too large and the spins freeze. Using ideas pioneered
by Edwards in the context of granular matter [? ], the as-
sumption that with this procedure one samples configurations
from an effective equilibrium ensemble at an effective tem-
perature βE is hence made. Moreover, taking the vertices as
being independent (mean-field approximation) one concludes
�ni� = exp (−βE�i)/Z, where Z is the normalization con-
stant, and βE is extracted from the data for �ni� [? ]. This is
the way in which the data-points have been drawn.

Our model reproduces quantitatively the experiments at
temperatures far enough from the critical point. We argue that
at temperatures close to Tc the annealing time leading to the
frozen configuration is not long enough to sample the equilib-
rium distribution because of critical slowing down. It would
be interesting to explore the connection between the experi-
mental cooling procedure and a cooling rate in the numerical
simulations. Evidence for critical slowing down in this system
was already given in Fig. ?? (a) where the spatial correlation
at different times after a quench from T → ∞ to T close Tc

are shown.
Conclusion In conclusion, by comparing our results to ex-

perimental data we justified the relevance of the sixteen-vertex
model to describe ASI. In so doing, we confirmed that effec-
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Figure 7. (Color online.) Averaged density of vertices as a function
of inverse temperature. The points are data from the experiment in [?
] and β is estimated as explained in the text. The solid colored
lines are the fits to the CTMC data. The solid black lines are the BP
analytic results. The vertical dotted line indicates the critical inverse
temperature.

tive thermal equilibrium is attained by the as-grown protocol
proposed in [? ] away from the critical point. Furthermore,
we showed that static behavior of the model defined on a “dec-
orated” tree is notably close to the one of the 2d system.

*** Algo mas un poco mas general que abra posibles
vias para el futuro....***

Cite Bukridis somewhere. Possibly in dynamics at the start.
Domain growth with disorder.

Acknowledgments: We thank T. Blanchard, C. Castel-
novo, C. Nisoli for very useful discussion and G. Brunell, J.
Morgan and C. Morrows for lending their experimental data
to us as well.
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Figure 6. (Color online.) Three-dimensional projection of the phase
diagram of 2d spin ice on the square lattice for a = b. The thick
(red) line indicates the spin-liquid phase ending at the KT transition
point (d = e = 0 and a/c = b/c = 1/2). The c−AF phase is
indicated by the (blue) tetrahedron. Away from these regions and
d/c � 2(a/c) + 3(e/c) + 1 (where the system is expected to be
d-AF [? ] ) the system is a disordered paramagnet (PM).

our MC simulations (colored lines-points) and BP calculation
(solid black lines) are confronted to experimental data from
the British collaboration (data points) [? ]. In this experi-
ment, spin configurations are visualized at the end of a sam-
ple preparation process in which the thickness of the magnetic
islands grow by deposition. The Ising spins flip by thermal
fluctuations during the growth process. However, as the time
scales for these moves increase with the growing size of the
islands, once a certain thickness is reached the flipping times
become too large and the spins freeze. Using ideas pioneered
by Edwards in the context of granular matter [? ], the as-
sumption that with this procedure one samples configurations
from an effective equilibrium ensemble at an effective tem-
perature βE is hence made. Moreover, taking the vertices as
being independent (mean-field approximation) one concludes
�ni� = exp (−βE�i)/Z, where Z is the normalization con-
stant, and βE is extracted from the data for �ni� [? ]. This is
the way in which the data-points have been drawn.

Our model reproduces quantitatively the experiments at
temperatures far enough from the critical point. We argue that
at temperatures close to Tc the annealing time leading to the
frozen configuration is not long enough to sample the equilib-
rium distribution because of critical slowing down. It would
be interesting to explore the connection between the experi-
mental cooling procedure and a cooling rate in the numerical
simulations. Evidence for critical slowing down in this system
was already given in Fig. ?? (a) where the spatial correlation
at different times after a quench from T → ∞ to T close Tc

are shown.
Conclusion In conclusion, by comparing our results to ex-

perimental data we justified the relevance of the sixteen-vertex
model to describe ASI. In so doing, we confirmed that effec-
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] and β is estimated as explained in the text. The solid colored
lines are the fits to the CTMC data. The solid black lines are the BP
analytic results. The vertical dotted line indicates the critical inverse
temperature.

tive thermal equilibrium is attained by the as-grown protocol
proposed in [? ] away from the critical point. Furthermore,
we showed that static behavior of the model defined on a “dec-
orated” tree is notably close to the one of the 2d system.

*** Algo mas un poco mas general que abra posibles
vias para el futuro....***

Cite Bukridis somewhere. Possibly in dynamics at the start.
Domain growth with disorder.
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Critical slowing down
Equilibrium is not reached 
close to the critical point

Our model reproduces quantitatively 
the experimental data
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 Conclusions equilibrium.
1. Phase diagram of the sixteen-vertex model. 
 The inclusion of defects modifies dramatically the thermodynamics.

2. Continuously varying critical exponents verify  ‘weak universality’.

3. Approximating the system by a tree of square plaquettes leads to 
good agreement with 2D results.

4. The model reproduces experimental data  away from the critical 
point
     Relationship between configurational temperature and canonical 
temperature in ASI?
→

→ Out-of-equilibrium phenomena ?



 Out-of-equilibrium.



Phase ordering dynamics after a quench. 
Out-of-equilibrium.

• •
� �� �

a=ω1=ω2

• •
� �� �

b=ω3=ω4

• •
� �� �

c=ω5=ω6

1

Evolution of the system across a phase transition.

• Give updating rules: Non-conserved order parameter (single spin flips)

coupled to a thermal bath

Stochastic dynamics

• Prepare the system in a disordered equilibrium state and quench it into a 
known equilibrium ordered symmetry broken phase

L(t) ∼ tz

Competition between opposite orders 

Slow dynamics

Apply this procedure to the sixteen-vertex model



Quench into the PM phase. 
Out-of-equilibrium.

• •
� �� �

a=ω1=ω2

• •
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b=ω3=ω4

• •
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c=ω5=ω6

1

initial configuration:  

at t=0 (instantaneous)

=⇒

d/c

• •
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a=ω1=ω2

• •
� �� �

b=ω3=ω4

• •
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c=ω5=ω6

1

Magnetisation = 0 BUT ‘close’ to a QLRO phase

a/c

AF

FM
PM

b/c

FM

1

1

1
-

=⇒ No order parameter to describe 
the relaxation process

a = b = c = d = e = 1 (T = ∞)

a = b = c � d, e



Quench into the PM phase. 
Out-of-equilibrium.

• •
� �� �

a=ω1=ω2

• •
� �� �

b=ω3=ω4

• •
� �� �

c=ω5=ω6

1

Density of defects

nihilated by flipping the shared spin (see Fig. 2, left-hand
panel). Annihilation then takes place only if the two mono-
poles separate and meet elsewhere in the lattice. Because
of their magnetic Coulomb interaction, there is an energy
barrier for such a process, leading to an activated Arrhenius
behavior in the monopole density relaxation.

The smallest possible energy barrier determines the long
time behavior in the system. This is given by an elementary
move where the monopoles of a bound pair annihilate
around one of the adjacent hexagonal loops in the lattice
(see Fig. 2, right-hand panel). Two of the five spin flips
involved in such a process increase the distance between
oppositely charged monopoles. A rough estimate for the
concomitant energy gaps (see Ref. [1]) is given by the
Coulomb interaction between the magnetic charges, lead-
ing to an overall energy barrier ! ¼ 1:47 K. In practice,
the energy cost of a spin flip varies due to the effectively
random fields set up by nearby bound pairs, leading to a
broadened distribution of !.

We ran extensive numerical Monte Carlo simulations
treating the long-range dipolar interaction via the Ewald
summation technique, [11] and using the waiting time
method [12] with single spin flip updates to access the
long time regime [13]. We prepare the system at equilib-
rium at the initial temperature of 10 K. We then set the
temperature to its quench value at time t ¼ 0, and we start
the measurements.

The defect density either reaches its equilibrium value
very quickly (for T * 0:4 K), or a significant deviation
from power law decay appears (T & 0:4 K) due to the
activated behavior induced by the noncontractible bound
pairs, as illustrated in Fig. 3.

A (temperature independent) Gaussian distribution of
energy barriers ! peaked around 1.47 K, with a variance
0:01 K2, leads to a probability distribution P ð"Þ of single
hexagon decay times ", and hence a (normalized) defect
density !ðtÞ ¼ 1$ R

t
0 P ð"Þd". The resulting curves !ðtÞ

are compared with the numerical ones in the inset of Fig. 3.

Notice the good agreement over more than 20 orders of
magnitude in t for the different values of the quench
temperature. Clearly, this phenomenological model cap-
tures the fundamental physics underlying the dynamical
arrest in thermal quenches.
To further confirm this scenario, we explicitly deter-

mined the density of monopoles forming noncontractible
pairs, as well as the density of contractible defect pairs
(i.e., pairs where flipping the intermediate spin lowers the
number of defects in the system). The result is illustrated in
Fig. 4 for a given quench temperature. One can see that the
initial decay ends when there are essentially no contracti-
ble pairs left in the system (magenta curve falling below
1=Nt, where Nt ¼ 8L3 is the total number of tetrahedra in
the lattice). From thereon, the total defect density is essen-
tially given by monopoles forming noncontractible pairs.
The defect density decay approaching the plateau is

captured by a diffusion process where oppositely charged
particles (A, B) either annihilate (;) or fuse into a non-
contractible pair (D) (Fig. 5, left-hand panel). For
quenches to low temperatures, the noncontractible pairs
can be approximated as frozen unless another single par-
ticle annihilates one member of the pair, thus freeing the
other one (Fig. 5, right-hand panel). In a simple mean-field
model, one finds a surviving population of noncontractible
pairs D, provided the single particle density decays faster
than 1=t, as is the case in our simulations. The resulting
time dependence of the total and noncontractible particle
densities is in qualitative agreement with the numerical
results illustrated in Fig. 4 [15]. On the longest time scales,
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FIG. 3 (color online). Numerical simulations of thermal
quenches in dipolar spin ice (system size L ¼ 8, i.e., 8192 spins,
and simulation parameters for Dy2Ti2O7 as in Ref. [17]). The
curves show the total density of defects ! per tetrahedron as a
function of Monte Carlo time in units of Monte Carlo steps (one
attempt per spin), for quenches from T ¼ 10 K, down to T ¼
0:025 K (red), T ¼ 0:04 K (blue), T ¼ 0:05 K (green), T ¼
0:075 K (magenta), T ¼ 0:1 K (cyan), T ¼ 0:125 K (yellow),
T ¼ 0:15 K (black), T ¼ 0:4 K (red), T ¼ 0:5 K (blue), and
T ¼ 0:6 K (green)—appearing in order from right to left.
Inset: Long time behavior of ! normalized by its plateau value
!plateau, compared to the phenomenological model discussed in

the text (thin black lines).

FIG. 2 (color online). Example of a noncontractible
monopole-antimonopole pair (left-hand panel). The shortest
path that can lead to their annihilation is a hexagonal loop,
provided the spins along the path are oriented appropriately
(right-hand panel). One can see explicitly that the two mono-
poles must separate before they are allowed to annihilate,
resulting in a Coulomb energy barrier for the process.
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Density of defects

nihilated by flipping the shared spin (see Fig. 2, left-hand
panel). Annihilation then takes place only if the two mono-
poles separate and meet elsewhere in the lattice. Because
of their magnetic Coulomb interaction, there is an energy
barrier for such a process, leading to an activated Arrhenius
behavior in the monopole density relaxation.

The smallest possible energy barrier determines the long
time behavior in the system. This is given by an elementary
move where the monopoles of a bound pair annihilate
around one of the adjacent hexagonal loops in the lattice
(see Fig. 2, right-hand panel). Two of the five spin flips
involved in such a process increase the distance between
oppositely charged monopoles. A rough estimate for the
concomitant energy gaps (see Ref. [1]) is given by the
Coulomb interaction between the magnetic charges, lead-
ing to an overall energy barrier ! ¼ 1:47 K. In practice,
the energy cost of a spin flip varies due to the effectively
random fields set up by nearby bound pairs, leading to a
broadened distribution of !.

We ran extensive numerical Monte Carlo simulations
treating the long-range dipolar interaction via the Ewald
summation technique, [11] and using the waiting time
method [12] with single spin flip updates to access the
long time regime [13]. We prepare the system at equilib-
rium at the initial temperature of 10 K. We then set the
temperature to its quench value at time t ¼ 0, and we start
the measurements.

The defect density either reaches its equilibrium value
very quickly (for T * 0:4 K), or a significant deviation
from power law decay appears (T & 0:4 K) due to the
activated behavior induced by the noncontractible bound
pairs, as illustrated in Fig. 3.

A (temperature independent) Gaussian distribution of
energy barriers ! peaked around 1.47 K, with a variance
0:01 K2, leads to a probability distribution P ð"Þ of single
hexagon decay times ", and hence a (normalized) defect
density !ðtÞ ¼ 1$ R

t
0 P ð"Þd". The resulting curves !ðtÞ

are compared with the numerical ones in the inset of Fig. 3.

Notice the good agreement over more than 20 orders of
magnitude in t for the different values of the quench
temperature. Clearly, this phenomenological model cap-
tures the fundamental physics underlying the dynamical
arrest in thermal quenches.
To further confirm this scenario, we explicitly deter-

mined the density of monopoles forming noncontractible
pairs, as well as the density of contractible defect pairs
(i.e., pairs where flipping the intermediate spin lowers the
number of defects in the system). The result is illustrated in
Fig. 4 for a given quench temperature. One can see that the
initial decay ends when there are essentially no contracti-
ble pairs left in the system (magenta curve falling below
1=Nt, where Nt ¼ 8L3 is the total number of tetrahedra in
the lattice). From thereon, the total defect density is essen-
tially given by monopoles forming noncontractible pairs.
The defect density decay approaching the plateau is

captured by a diffusion process where oppositely charged
particles (A, B) either annihilate (;) or fuse into a non-
contractible pair (D) (Fig. 5, left-hand panel). For
quenches to low temperatures, the noncontractible pairs
can be approximated as frozen unless another single par-
ticle annihilates one member of the pair, thus freeing the
other one (Fig. 5, right-hand panel). In a simple mean-field
model, one finds a surviving population of noncontractible
pairs D, provided the single particle density decays faster
than 1=t, as is the case in our simulations. The resulting
time dependence of the total and noncontractible particle
densities is in qualitative agreement with the numerical
results illustrated in Fig. 4 [15]. On the longest time scales,
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FIG. 3 (color online). Numerical simulations of thermal
quenches in dipolar spin ice (system size L ¼ 8, i.e., 8192 spins,
and simulation parameters for Dy2Ti2O7 as in Ref. [17]). The
curves show the total density of defects ! per tetrahedron as a
function of Monte Carlo time in units of Monte Carlo steps (one
attempt per spin), for quenches from T ¼ 10 K, down to T ¼
0:025 K (red), T ¼ 0:04 K (blue), T ¼ 0:05 K (green), T ¼
0:075 K (magenta), T ¼ 0:1 K (cyan), T ¼ 0:125 K (yellow),
T ¼ 0:15 K (black), T ¼ 0:4 K (red), T ¼ 0:5 K (blue), and
T ¼ 0:6 K (green)—appearing in order from right to left.
Inset: Long time behavior of ! normalized by its plateau value
!plateau, compared to the phenomenological model discussed in

the text (thin black lines).

FIG. 2 (color online). Example of a noncontractible
monopole-antimonopole pair (left-hand panel). The shortest
path that can lead to their annihilation is a hexagonal loop,
provided the spins along the path are oriented appropriately
(right-hand panel). One can see explicitly that the two mono-
poles must separate before they are allowed to annihilate,
resulting in a Coulomb energy barrier for the process.
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nihilated by flipping the shared spin (see Fig. 2, left-hand
panel). Annihilation then takes place only if the two mono-
poles separate and meet elsewhere in the lattice. Because
of their magnetic Coulomb interaction, there is an energy
barrier for such a process, leading to an activated Arrhenius
behavior in the monopole density relaxation.

The smallest possible energy barrier determines the long
time behavior in the system. This is given by an elementary
move where the monopoles of a bound pair annihilate
around one of the adjacent hexagonal loops in the lattice
(see Fig. 2, right-hand panel). Two of the five spin flips
involved in such a process increase the distance between
oppositely charged monopoles. A rough estimate for the
concomitant energy gaps (see Ref. [1]) is given by the
Coulomb interaction between the magnetic charges, lead-
ing to an overall energy barrier ! ¼ 1:47 K. In practice,
the energy cost of a spin flip varies due to the effectively
random fields set up by nearby bound pairs, leading to a
broadened distribution of !.

We ran extensive numerical Monte Carlo simulations
treating the long-range dipolar interaction via the Ewald
summation technique, [11] and using the waiting time
method [12] with single spin flip updates to access the
long time regime [13]. We prepare the system at equilib-
rium at the initial temperature of 10 K. We then set the
temperature to its quench value at time t ¼ 0, and we start
the measurements.

The defect density either reaches its equilibrium value
very quickly (for T * 0:4 K), or a significant deviation
from power law decay appears (T & 0:4 K) due to the
activated behavior induced by the noncontractible bound
pairs, as illustrated in Fig. 3.

A (temperature independent) Gaussian distribution of
energy barriers ! peaked around 1.47 K, with a variance
0:01 K2, leads to a probability distribution P ð"Þ of single
hexagon decay times ", and hence a (normalized) defect
density !ðtÞ ¼ 1$ R

t
0 P ð"Þd". The resulting curves !ðtÞ

are compared with the numerical ones in the inset of Fig. 3.

Notice the good agreement over more than 20 orders of
magnitude in t for the different values of the quench
temperature. Clearly, this phenomenological model cap-
tures the fundamental physics underlying the dynamical
arrest in thermal quenches.
To further confirm this scenario, we explicitly deter-

mined the density of monopoles forming noncontractible
pairs, as well as the density of contractible defect pairs
(i.e., pairs where flipping the intermediate spin lowers the
number of defects in the system). The result is illustrated in
Fig. 4 for a given quench temperature. One can see that the
initial decay ends when there are essentially no contracti-
ble pairs left in the system (magenta curve falling below
1=Nt, where Nt ¼ 8L3 is the total number of tetrahedra in
the lattice). From thereon, the total defect density is essen-
tially given by monopoles forming noncontractible pairs.
The defect density decay approaching the plateau is

captured by a diffusion process where oppositely charged
particles (A, B) either annihilate (;) or fuse into a non-
contractible pair (D) (Fig. 5, left-hand panel). For
quenches to low temperatures, the noncontractible pairs
can be approximated as frozen unless another single par-
ticle annihilates one member of the pair, thus freeing the
other one (Fig. 5, right-hand panel). In a simple mean-field
model, one finds a surviving population of noncontractible
pairs D, provided the single particle density decays faster
than 1=t, as is the case in our simulations. The resulting
time dependence of the total and noncontractible particle
densities is in qualitative agreement with the numerical
results illustrated in Fig. 4 [15]. On the longest time scales,
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FIG. 3 (color online). Numerical simulations of thermal
quenches in dipolar spin ice (system size L ¼ 8, i.e., 8192 spins,
and simulation parameters for Dy2Ti2O7 as in Ref. [17]). The
curves show the total density of defects ! per tetrahedron as a
function of Monte Carlo time in units of Monte Carlo steps (one
attempt per spin), for quenches from T ¼ 10 K, down to T ¼
0:025 K (red), T ¼ 0:04 K (blue), T ¼ 0:05 K (green), T ¼
0:075 K (magenta), T ¼ 0:1 K (cyan), T ¼ 0:125 K (yellow),
T ¼ 0:15 K (black), T ¼ 0:4 K (red), T ¼ 0:5 K (blue), and
T ¼ 0:6 K (green)—appearing in order from right to left.
Inset: Long time behavior of ! normalized by its plateau value
!plateau, compared to the phenomenological model discussed in

the text (thin black lines).

FIG. 2 (color online). Example of a noncontractible
monopole-antimonopole pair (left-hand panel). The shortest
path that can lead to their annihilation is a hexagonal loop,
provided the spins along the path are oriented appropriately
(right-hand panel). One can see explicitly that the two mono-
poles must separate before they are allowed to annihilate,
resulting in a Coulomb energy barrier for the process.
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L� ∼ t1/2

L⊥?



Quench into the AF phase. 
Out-of-equilibrium.
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a = b = 0.1 ; c = 1, d = e = 10−5



Quench into the AF phase. 
Out-of-equilibrium.
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• •
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c=ω5=ω6

1

Growth of AF domains with walls 
made of FM-vertices (a- b-type).
Defects on domain walls,
far from each other, 
difficult to annihilate: slow dynamics. 

Levis & Cugliandolo 2011  
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Quench into the AF phase. 
Out-of-equilibrium.

• •
� �� �

a=ω1=ω2

• •
� �� �

b=ω3=ω4

• •
� �� �

c=ω5=ω6

1

From Morgan et al., Nature Phys. 7 2011.
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from a ‘checkerboard’ tiling of alternating T1 vertices (or,

alternatively, alternating flux closure loops), shown schematically

and experimentally in Fig. 1a. All first-nearest neighbours

order north-to-south, imposing antiferromagnetic second- and

third-nearest-neighbour order. (The various orders of nearest

neighbours are shown in Fig. 1a.) Long-range dipolar interactions

are needed in Monte Carlo calculations of the 3D pyrochlore

lattice to select a periodic GS (ref. 30), as all six pairwise vertex

interactions are equivalent.

Acquisition of the GS in experiment has proved non-trivial. A

surplus of T1,2 vertices over a random configuration can be achieved

using a rotating a.c. demagnetization protocol
5,26

; however, the T3,4

arrangements, analogous to fractionalized magnetic monopoles
15
,

cannot be fully annihilated. These ‘monopoles’ are confined, in

contrast to the pyrochlore systems
22,23

. Owing to a complex land-

scape of local energy minima, the effective ‘thermodynamics’
13,27

cannot access microstates below a floor of degenerate low-energy

short-range ‘icy’ order
14,29

.

MFMobservation of the ground state
The array studied here comprises permalloy (Ni80Fe20) bars of

area A = 280 × 85 nm
2
and thickness d = 26 nm on a lattice

of pitch a = 400 nm, fabricated by electron beam lithography,

evaporation and liftoff. The as-grown state was then surveyed

by MFM: no global magnetic fields were deliberately applied.

The MFM image shown in Fig. 2a is representative of the entire

sample (see Supplementary Information), with every element in a

single-domain state. A state of highly uniform order has formed

with distinct chain defects. Magnification (inset) shows that regions

of GS background have formed, giving long-range order over

∼20a. Mapping defect moment configurations (Fig. 2b) reveals

two distinct types, comprising T2,3 vertices: antiferromagnet-like

domain walls (DWs) where two opposite-sense GS tilings meet,

and localized groups of moments flipped out of the T1 background.

No T4 vertices were observed. It is extremely unlikely an applied

field induced this state: d.c. fields greater than or equal to the array

coercivity result in polarized states
6
, whereas a.c. demagnetized

states are only short-range correlated
5,13,14

.

The possibility still remains for such ordering to occur through

thermalization, taking place during the early stages of material

deposition. An island will form a continuous magnetic layer within

0 < d ∼< 1 nm of NiFe growth. At temperature T , its moment

m(d,T ) = AdM (T ), where magnetization M (T ) ∝ 1− cT 3/2
for

constant c . Nanoelement dynamics will occur according to a

Néel–Arrhenius rate ∝ exp(−βEb), where the reversal barrier en-

ergy Eb = KAd for shape anisotropy K (d,T )= µ0DM 2
(T )/2 (the

demagnetizing factorDwill depend on d as it affects the element as-

pect ratio
31
), and β =1/kBT , with kB being the Boltzmann constant.

Dipolar interactions are then ∝ m(d)2/r3, where r is the centre–

centre separation of two islands. This slightly lowers/raises Eb for

moments in energetically unfavourable/favourable configurations,

biasing transitions towards lower-energy states, allowing interac-

tions to locally resolve before themoments block (freeze) at d of the

order of a few nanometres. Correct tuning of interactions/barriers

allows for strong GS ordering in ideal optically trapped colloidal

square ice
32
, and likewise, we are aided here by short inter-island

distances. As seen in simulations of superconducting vortex ice
33
,

finite levels of weak disorder lead to multiple GS-order nucleation

centres. Compatible regions coalesce, whereas incompatible regions

must form DWs, which become frozen-in as dynamics slow down.

Slowly raising d , therefore, has an equivalent effect to a decreasing-

T anneal. A finite d-dependent probability also exists for localized

defects to occur within the GS domains, which have also been

preserved. Combined atomic force microscopy andMFM shows no

obvious underlying structural defects on those particular elements

that support thesemagnetic defects, so they are presumably subtle.

2L

GS

T1 T2 T3 T3

10 µm

1

3Z

DW 2

a

GS DW 2

1 2L 3Z

DW 1b

DW 1

Figure 2 |MFM images of a 400-nm-pitch as-grown square ice array.
a, Direct observation of frozen-in long-range GS order with ∼10-µm-width

domains, separated by antiferromagnet-like DW boundaries, supporting

localized elementary excitations of small groups of moments flipped

against the background. A magnified region, containing a DW and localized

excitations (1, 2L, 3Z, notation explained in the text), is shown in the inset.

A key identifying the rotationally degenerate vertex configurations is also

shown. The green square indicates a large domain-like excitation.

b, Moment arrangements of the regions highlighted in a, indicating the

flipped elements (grey), T2-dipole (green arrow) and T3-monopole vertices

(red and blue circles) making up the defects.

Thermally ordered ground states have also been sought in

other artificial model systems. Artificial 2D Ising antiferromagnets

have been previously studied, using superconducting flux vortex

arrays
34–37

and close-packed colloidal spheres
38,39

. In the former,

thermal annealing could not access long-range-ordered states, even

where a unique GS was defined, partly attributed to patterning

disorder. In the latter, ‘annealing’ produced a compressible ‘glassy’

phase, rather than the triangular GS. As-fabricated square ices have

been studied before following milling of sputter-deposited films
6
,

which does not allow thermalization.

Elementary excitations on a square ice lattice
We have imaged an athermal system of elements with large

d . Therefore, we have no information about the dynamics

of defect nucleation mechanisms, and can observe only their

end results. Examination of the frozen configurations presents

strong evidence for thermally driven low-d defect growth. The

localized defects, elementary excitations of the system, may be

classified by the number of flipped moments, n, and a mnemonic

character for shape, shown in Fig. 3a for a representative selection.

Excitations may also be represented by reversed moment maps;

translation, rotation, reflection or inversion forming equivalent

76 NATURE PHYSICS | VOL 7 | JANUARY 2011 | www.nature.com/naturephysics

Same kind of domain walls 
observed in as-grown  ASI 

samples. 
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 Conclusion out-of-equilibrium.
1. Dynamical arrest appears for all type of quenches for               . 
 Why ?        i) presence of 4in 4out vertices ? NO

  ii) presence of winding loops ? NO
  iii) finite-size effects? YES ? Arrhenius barrier 

2. The evolution of the density of defects follows a power-law                     .
   The exponent depends on the value of the parameters (how?).  

3. Stripes of competing FM order with two different growing lenghts: 
anisotropic coarsening. 
Rich microscopic dynamical mechanisms.  

4. Coarsening dynamics in the AF regime: 
artificial spin-ice samples? 
effective ‘cooling rate’ during deposition? vs. MC simulated annealing?
time-dependent correlations? geometric properties of the domain walls?

e < 10−4

nd(t) ∼ t−α

τ ∼ e−2



 Conclusion & outlook.



 Conclusion & outlook.
1. Investigate the variation of critical exponents in the 16V model by a real-
space Renormalisation Group approach. 

2. Extend the mappings between integrable vertex models (6V and 8V) into 
quantum spin chains (XXZ and XYZ resp. ) to the unconstrained 16V model. 
Then, use our understanding on the classical model to predict the behaviour 
of the quantum system?

3. Link between configurational temperatures in ASI and the canonical 
temperature?  In experiments: 

4. Defects’ motion in 2D (square or hexagonal).

5. Effect of boundary conditions on the dynamics of hardly constrained 
models. Topological glass ?

- properties of the domain walls?
- thermal equilibration?
- growth rate (link with a cooling rate)

                   



END OF EVERYTHING



Introduction.

each bond carries a dipolar moment      
verifying the  ice-rules 

Geometrical frustration 

Crucial example: Water Ice

at each vertex (oxygen atoms) 
two in - two out=

Ground state :                       Ice-rule vertices are favoured

�µ

⇒ Geometrically frustrated
1

O
2−

H
+

Frustration
Origins & effects

Quenched disorder Geometry Constraints

+

+

+

!
?

?

Spin-glasses AF on a triangular lattice Water ice

Zero-point entropy :
S0 = lnΩ0 with Ω0 = eNΣ and Σ finite in the ground state.

Single unit:

Experimental evidence of an extensive entropy at T=0 ⇐= Predicted by Pauling’s model
Giauque & Stout 1936 Pauling 1935

�∇.�µ = 0

⇒SIX possible vertices

Ih



Introduction.

Geometrical frustration 
in spin ice

classical Ising spins pointing in the local direction connecting a site with the centre of its tetrahedron 

 DSI:  nn FM + dipolar interactions

NN contribution: H ≈ J + 5D

3

�

<i,j>

σiσj with: σi = ±1

«in» or «out»

⇒
GS:   2 in-2 out (ice-rules)

Geometrically frustrated 
Ferromagnet

AF

H = −J

�

<i,j>

�Si.
�Sj +Da

3
�

i<j

�Si.
�Sj

r
3
ij

− 3
(�Si.�rij)(�Sj .�rij)

r
5
ij

3d systems
The pyrochlore lattice

Coordination four lattice of corner linked tetahedra. The rare earth ions
occupy the vertices of the tetrahedra ; e.g. Dy2 Ti2 O7

Harris, Bramwell, McMorrow, Zeiske & Godfrey 97

Harris, Bramwell, McMorrow, Zeiske & Godfrey 1997

+

+
-

-(a) (b) (c)

Pyroclhore lattice
+ magnetic moments 



Introduction.

Zero-point entropy

Ramirez, Hayashi, Cava, Siddharthan & Shastry 1999

Sw ≈ 0.41R Ssi ≈ 0.46R

Pauling’s argument:               

vertices indept.

N 42N
Ω0 = 22N

Ω∞ = 22N (6/16)N

NN           links (           )tetrahedra,           

Single unit
Spin ice configuration

Four (Ising) spins on each tetrahedron ; they are forced to point along
the axes that join the centers of two neighboring units (Ising anisotropy).
Ferromagnetic short-range interactions imply the two-in two-out ice rule.

→ (without ice-rules)

→
→ S∞ ≈ 0.40R

2D Lieb’s exact result (Bethe Ansatz):               

� �� �
a=ω1=ω2

� �� �
b=ω3=ω4

� �� �
c=ω5=ω6

� �� �
d=ω7=ω8

� �� �
e=ω9=ω10=...=ω16

1

Lieb 1967

Pauling 1935

S2D = NkB
3

2
ln

�
4

3

�
≈ 0.43R

3D Experiments (both Spin and Water Ice):               

Giauque & Stout 1936
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Introduction.

H = −J

�

<i,j>

�Si.
�Sj +Da

3
�

i<j

�Si.
�Sj

r
3
ij

− 3
(�Si.�rij)(�Sj .�rij)

r
5
ij

�S+q −q

Diamond lattice
= monopoles

≈
�

(α,β)

Vαβ

Pyroclhore lattice
= dipoles

Thermal excitations 
violating the ice rules = 

magnetic monopoles

Ice configurations ⇒ ≡ qα = 0{        }

Castelnovo, Moessner & Sondhi 2008

(a) (b)

Thermal excitations in spin-ice



Magnetic monopoles in spin-ice
Introduction.

◦ •

◦ •

◦

•

1

◦ •

◦ •

◦

•

1

◦ •

◦ •

◦

•

1

◦ •

◦ •

◦

•

1

(a) (b) (c) (d)

- Finite energy to separate two monopoles to infinity = de-confined

1/r
- If all the 2 in - 2out vertices are equivalent, the only energy cost 
comes from  the        Coulomb interaction.

→ Fractionalisation in 3D



2D experiments: Artificial Spin-Ice 
Introduction.

1. direct visualisation of defects’ dynamics 
Mengotti, Heyderman, Rodríguez, Nolting, Hügli, Braun 2011.

2. vertex weights can be tuned
Moller & Moessner 2006

3.  A-thermal system: energy barrier                  ; 

    effective thermodynamics can be recovered
Nisoli, Li, Ke, Garand, Schiffer, Crespi 2010; 
Morgan, Stein, Langridge, Morrows 2011.

   

©!2006!Nature Publishing Group!
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the vertex as a whole, there are four distinct topologies for the
configurations of the four moments with a total multiplicity of 16, as
shown in Fig. 1c. We label the configurations I–IV in the order of
increasing magnetostatic energy, but no configuration can minimize
all of the dipole–dipole interactions (even type I only minimizes the
energy for four of the six pairs in a vertex), and thus the system is
frustrated.
The lowest energy vertex configurations (I and II) have two of the

moments pointing in toward the centre of the vertex, and two
pointing out. Although the interactions between all pairs of spins
on the vertex are not equivalent, these energetics are analogous to the
two-in/two-out ice rules for the atomic moments on a tetrahedron in
spin ice. For arrays with a lattice constant of 320 nm, the energy
difference between vertices of types I and III is more than twice as
large as the energy difference between vertices of types I and II, and
the energy difference between types I and IV is more than six times as
large (based on OOMMF calculations of relaxed magnetostatic
energies). The two-in/two-out motifs (types I and II) therefore
dominate within a large manifold of closely spaced low-energy
magnetic states. Topological considerations further favour the
creation of magnetic states that are dominated by frustratedmixtures
of types I and II. For example, a domain boundary between regions of
types I and II is essentially seamless, requiring no vertices of types III
or IV. The situation contrasts sharply with that of a traditional Ising
ferromagnet or antiferromagnet, wherein magnetic domain walls
contain highly unfavourable anti-aligned spin pairs.
Magnetic force microscopy (MFM) allowed us to image the

orientations of all of the moments in a large area (10 mm £ 10 mm),
far from the edges of the arrays. To enable the system to settle into a
low energy configuration, we followed a protocol developed by
previous authors16,18 and rotated the samples in a magnetic field
which decreased stepwise from above to below the coercive field.
MFM images of the system after such field treatment revealed no
measurable residual magnetic moment for the array, and a ten-fold
variation of the step dwell times did not significantly alter the
distribution of vertex types described below.

In Fig. 2 we show an atomic force microsope (AFM) image and an
MFM image of a portion of a typical array. The black and white spots
in the MFM image, which indicate the north and south poles of the
ferromagnetic islands, confirm the single-domain nature of the
islands and demonstrate the dominance of the shape anisotropy in
aligning the magnetization of each island along its long axis. From
the MFMdata, we can easily determine the moment configuration of
the array (as indicated by the arrows in Fig. 1a). These data
demonstrate that the many vertex types anticipated in Fig. 1c can
be directly observed in the actual system. In order to probe the nature
of frustration in this system, we studied how the properties varied
with the spacing between the islands, counting between 1,000 and
3,000 islands in measurements of 2–4 different arrays for each lattice
spacing. This allowed us direct control over the frustrated inter-
actions, something which is not easily attainable in geometrically
frustrated magnetic materials.
An immediate question is whether our arrays obeyed the ice

rules—that is, did a preponderance of the vertices fall into a two-
in/two-out configuration (type I or II)? By simple counting argu-
ments (see Fig. 1c) we can predict the expected distribution of
different vertex types if the moments were non-interacting and
randomly oriented. One would expect only 37.5% of the vertices to
have a two-in/two-out configuration if the orientations were ran-
dom; an excess of such vertices would indicate that interactions are
determining the moment configuration. We compute the excess
percentage for each type of vertex, defined as the difference between
the percentage observed and that expected for a random distribution.
We plot this excess versus lattice spacing in Fig. 3a for each of the four
vertex types, as well as for types I and II combined. The excess
percentage of vertices with a two-in/two-out configuration (types I
and II) was well over 30% for the smallest lattice spacing; in other
words, over 70% of all vertices had a spin-ice-like configuration. This
excess percentage decreased monotonically with increasing lattice
spacing (decreasing interactions), approaching zero for our largest
lattice spacing, as would be expected for non-interacting (randomly
oriented) moments. In fact, the excess for all vertex types approached
zero as the lattice spacing increased, lending credence both to our
understanding of the system and to the effectiveness of the rotating-
field method in enabling facile local re-orientation of the moments.
To further understand the nature of frustration in this system, we

also studied the pairwise correlations between the Ising-like
moments of the islands. Defining a correlation function is somewhat
complicated by the anisotropic nature of our lattice and that of the
dipole interaction. We thus define a set of correlation functions
between distinct types of neighbouring pairs. The closest pairing is

Figure 1 | Illustration of frustration on the square lattice used in these
experiments. Each island in the lattice is a single-domain ferromagnet with
its moment pointing along the long axis, as indicated by the arrow. a, The
geometry of the lattice studied. The arrows indicate the directions of
moments corresponding to the MFM image of Fig. 2b. b, Vertices of the
lattice with pairs of moments indicated, illustrating energetically favourable
and unfavourable dipole interactions between the pairs. c, The 16 possible
moment configurations on a vertex of four islands, separated into four
topological types. The percentages indicate the expected fraction of each
type if the individual moment orientations on an array were completely
random.

Figure 2 | AFM and MFM images of a frustrated lattice. a, An AFM image
of a typical permalloy array with lattice spacing of 400 nm. b, AnMFM image
taken from the same array. Note the single-domain character of the islands,
as indicated by the division of each island into black and white halves. The
moment configuration of the MFM image is illustrated in Fig. 1a. The
coloured outlines indicate examples of vertices of types I, II and III in pink,
blue and green respectively.
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Experimental motivation:  

• •
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a=ω1=ω2

• •
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b=ω3=ω4

• •
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c=ω5=ω6

• •
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d=ω7=ω8

• • • • • • • •
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e=ω9=ω10=...=ω16

1

→ a = b = c

from Wang et al., Nature 2008

∼ 105K

→



Equilibrium.

Conjecture: (numerics)

ordered FM phase 

disordered PM phase

ordered AF phase

a/c

AF

FM

PM

b/c

FM

1

1

Allow defects ⇒

(disordered)

4d

continuous phase transition

continuous phase transition

d = e �= 0

Levis & Cugliandolo 2011  

d2 > d1

d1 � 1

∆16 =
a2 + b2 − c2 − (3e+ d)2

2(ab+ c(3e+ d))

∆8 =
a2 + b2 − c2 − d2

2(ab+ cd)
−→
e = 0

∆16 < −1

1 > ∆16 > −1

∆16 > 1

Sixteen-vertex model (numerics)



Phase ordering dynamics after a quench. 
Out-of-equilibrium.

• •
� �� �

a=ω1=ω2

• •
� �� �

b=ω3=ω4

• •
� �� �

c=ω5=ω6

1

Evolution of the system across a phase transition.

• Give updating rules: Non-conserved order parameter (single spin flips)

coupled to a thermal bath
Stochastic dynamics

• Prepare the system in a disordered equilibrium state and quench it into a known 
equilibrium ordered symmetry broken  phase

• Dynamical scaling theory: at late times, there is a single length scale            such that:L(t)

C(t, tw) = �si(t)si(tw)� � M2
eq FC

�
L(t)

L(tw)

�

G(r, t) = �si(t)sj(t)� � M2
eq FG

�
r

L(t)

�

cf. review Bray 1994  

L(t) ∼ tzCompetition between opposite orders  Slow dynamics



Quench into the FM phase. 
Out-of-equilibrium.
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Dynamic mechanisms
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- anisotropy a≠b tends to create 
diagonal domain walls made of AF 
vertices.

- loop fluctuations are the elementary 
moves that do not break the ice-rules.

- ‘corners’ of domains cannot have a 
neighboring a-vertex. Avoiding defects, 
this explains the presence of strings.

- Strings connect two domains and 
mediate their growth.

Levis & Cugliandolo 2011  



Quench into the FM phase. 
Out-of-equilibrium.

• •
� �� �

a=ω1=ω2

• •
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b=ω3=ω4

• •
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c=ω5=ω6

1

Dynamic mechanisms
- once the bands are created we must create a 
pair of defects and made them move along the 
walls to restore the equilibrium configuration. 

Extremely slow process

(diverging at the thermodynamic limit)

T ∼ L→

Equilibrium is reached when magnetic order percolates in 
the      direction.⊥
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Equilibrium.

Allow defects ⇒

Sixteen-vertex model
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Equilibrium.

Sixteen-vertex model
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Equilibrium.

Sixteen-vertex model

six-vertex 2d Ising SI (d = e = 10−5) SI (d = e = 0.1)

γ̂ = γ/ν 7/4 7/4 = 1.75± 0.02 = 1.75± 0.02

β̂ = β/ν 1/8 1/8 ≈ 0.125± 0.05 ≈ 0.125
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M+ ∼ ξ−β̂Define new exponents :

Consistent with scaling relations

Ex: critical exponents for the FM transition
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Equilibrium.
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Cavity method vs. Monte Carlo.

Spin-ice on a tree graph (cavity method)

1. The approx. becomes worse when increasing the weight of the 
defects and the transition gets “softer”.  

2. The location of critical surfaces obtained by the cavity 
calculation are almost parallel to the six-vertex ones 
(as predicted by MC )

Cavity vs. numerical results (sixteen-vertex model)
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ASI.

Artificial spin ice
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POR HACER... Citar los experimentos. We analyze then the AF-transition in artificial spin-ice. The results
are supported by analytical calculation on Bethe lattice of plaquettes. Agreement with experiments. Interpreta-
tion of the experimental results, in particular the temperature. Answer the question: Is ASI thermal?
To stress: we justify the model and we make a first (well, second) step to give further experimental meaning to
the 2d vertex models.
We confront to experiments
We show the first mean-field analysis of the model
I do not think is the first one. Cluster mean-field method? Confusion between β’s (inverse temperature and
critical exponent)

Hard local constraints can lead to a rich variety of collec-
tive behavior such as the splitting of phase space into dif-
ferent topological sectors and the existence of “topological
phases” that cannot be described with conventional order pa-
rameters [1]. In geometrically constrained magnets, the lo-
cal minimization of the interaction energy on a frustrated unit
gives rise to a macroscopic degeneracy of the ground state [2],
unconventional phase transitions [3, 4], long-range correla-
tions in the “Coulomb” phase [5, 6] and slow dynamics [7, 8]
in both 2d and 3d systems. In the present work we focus on a
paradigmatic system with these features: spin-ice [9–11].

The ice rules arise from the combination of the anisotropy
of the samples that forces the Ising-like magnetic moment to
lie on the edges of a coordination four lattice (the sites of the
pyrochlore lattice in 3d) and ferromagnetic interactions. All
configurations with two spins pointing in and two out each
vertex (the center of a tetrahedron in 3d) are ground states.
This leads to the zero-point entropy measured in Dy2Ti2O7

(S3d
exp ≈ 1.86 mol−1 K−1) [12] that is in remarkable agree-

ment with the exact value computed for the 2d ice-model on a
square lattice (S2d

exact ≈ 1.79 mol−1 K−1) [13].
Bi-dimensional Ising-like ice-models had no experimental

counterpart until recently when it became possible to manu-
facture artificial samples made of arrays of elongated ferro-
magnetic nano-islands. The beauty of artificial spin-ice (ASI)
is that the interaction parameters can be precisely controlled
- by tuning the distance between islands or applying exter-
nal fields - and the state of a single degree of freedom can
be directly visualized by microscopy [14]. The system sets
into different phases depending on the island length l, the lat-
tice constant a0, and the height h between layers [15]. The
main drawback of these materials had been the lack of thermal
fluctuations and the ensuing difficulty to observe the expected
ground state. Lately, these problems have been overcome by
(i) applying an external drive [16], (ii) using materials with
a lower Curie temperature [17], (iii) thermalizing the system
during the slow growth of the samples [18]. The study of the
equilibrium phases and critical behavior of ASI has thus be-
come possible on rather large samples with up to 106 vertices.

We will discuss the preparation protocol (iii) later in the con-
text of our study.
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Figure 1. (Color online.) Ordered phases and vertex configurations
in artificial spin-ice on the square lattice. (a) Complete antiferromag-
netic (c-AF) order. The central (red) loop represents an elementary
excitation. (b) Collective paramagnetic (PM) phase. (c) Frozen fer-
romagnetic (FM) order. The last vertical string (red line) represents
a typical extended excitation. (d) Sixteen vertex configurations and
their associated statistical weights ωi = exp (−β�i). The first six-
vertices (a, b and c) verify the ice-rule. The last ten vertices (d and
e) are defects.

In this Letter we demonstrate that a simplified version of the
more realistic dipolar spin-ice model in 2d, the sixteen-vertex

model (see Fig. 1) [8, 19] is an accurate model for the equi-
librium behavior of ASI. The model includes the celebrated
six-vertex (d = e = 0), eight-vertex (e = 0). During the
past thirty years a great effort has been devoted to the study
of the mathematical properties of these models [20]. The in-
triguing excitation properties of spin-ice (emergence of mag-
netic monopoles and attached Dirac strings [21]) and the pos-
sibility to compare theoretical predictions with experiments,
should encourage the study of vertex models from a novel
and more phenomenological perspective; this work goes in
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Université Pierre et Marie Curie - Paris 6, Laboratoire de Physique Théorique de la Matière Condensée,
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Université Pierre et Marie Curie - Paris 6, Laboratoire de Physique Théorique de la Matière Condensée,
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(S3d
exp ≈ 1.86 mol−1 K−1) [12] that is in remarkable agree-

ment with the exact value computed for the 2d ice-model on a
square lattice (S2d

exact ≈ 1.79 mol−1 K−1) [13].
Bi-dimensional Ising-like ice-models had no experimental

counterpart until recently when it became possible to manu-
facture artificial samples made of arrays of elongated ferro-
magnetic nano-islands. The beauty of artificial spin-ice (ASI)
is that the interaction parameters can be precisely controlled
- by tuning the distance between islands or applying exter-
nal fields - and the state of a single degree of freedom can
be directly visualized by microscopy [14]. The system sets
into different phases depending on the island length l, the lat-
tice constant a0, and the height h between layers [15]. The
main drawback of these materials had been the lack of thermal
fluctuations and the ensuing difficulty to observe the expected
ground state. Lately, these problems have been overcome by
(i) applying an external drive [16], (ii) using materials with
a lower Curie temperature [17], (iii) thermalizing the system
during the slow growth of the samples [18]. The study of the
equilibrium phases and critical behavior of ASI has thus be-
come possible on rather large samples with up to 106 vertices.

We will discuss the preparation protocol (iii) later in the con-
text of our study.
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Figure 1. (Color online.) Ordered phases and vertex configurations
in artificial spin-ice on the square lattice. (a) Complete antiferromag-
netic (c-AF) order. The central (red) loop represents an elementary
excitation. (b) Collective paramagnetic (PM) phase. (c) Frozen fer-
romagnetic (FM) order. The last vertical string (red line) represents
a typical extended excitation. (d) Sixteen vertex configurations and
their associated statistical weights ωi = exp (−β�i). The first six-
vertices (a, b and c) verify the ice-rule. The last ten vertices (d and
e) are defects.

In this Letter we demonstrate that a simplified version of the
more realistic dipolar spin-ice model in 2d, the sixteen-vertex

model (see Fig. 1) [8, 19] is an accurate model for the equi-
librium behavior of ASI. The model includes the celebrated
six-vertex (d = e = 0), eight-vertex (e = 0). During the
past thirty years a great effort has been devoted to the study
of the mathematical properties of these models [20]. The in-
triguing excitation properties of spin-ice (emergence of mag-
netic monopoles and attached Dirac strings [21]) and the pos-
sibility to compare theoretical predictions with experiments,
should encourage the study of vertex models from a novel
and more phenomenological perspective; this work goes in

�c = −4J1 + 2J2

�a,b = −2J2

�e = 0

�d = 4J1 + 2J2

Energy levels

H = Dr
3
0

�

i<j∈P

�
Si.Sj

||�rij ||3
− 3

(Si.�rij) (Sj .�rij)

||�rij ||5

�

=⇒ 2 in - 2 out vertices are not equivalent in the square lattice

Figure 4.4: Schematics illustrating the 24 possible vertex configurations of artificial
square spin ice. The configurations are classified into four types depending on the
vertex energy. In type 1 and type 2 vertices the ice rule of two moments pointing
in and two moments pointing out is obeyed whereas type 3 and type 4 are charged
vertices.

netic imaging techniques has spurred a number of investigations [3, 66, 70].
The first study of the role of frustration in artificial spin ice systems was re-
ported by Wang et al. in 2006 [3]. Their study revealed short range ice like
correlations and an absence of long range order. Further studies have reported
direct observations of magnetic monopole defects and the flow of magnetic
charge in artificial spin ice [71]. Emergent magnetic monopoles have been
reported in the magnetization reversal of kagome spin ice [66, 72]. In this
case the reversal proceeds through the nucleation of monopole-antimonopole
pairs which dissociate along a 1-dimensional path of reversed magnetizations,
defining a Dirac string.

Studies on spin ice systems have mostly focused on patterned structures
composed of magnetic materials with a high magnetization and a high Curie
temperature such as permalloy or cobalt. As the Curie temperature of these
materials lies far above room temperature and the magnetic moments are large
the energies associated with their reversal barriers and interaction are equiva-
lent to a temperature of the order of 104 −105 K. These systems can therefore
be considered as quasi-static and the only way to manipulate their magnetic
moments is through the application of magnetic fields [73, 74, 75, 76, 3]. Us-
ing ac demagnetization protocols energy minimized states and short range or-
der can be achieved which can be described by effective thermodynamics with
a corresponding effective temperature [74, 77]. Obtaining long range ground
state ordering has however not been realized using such demagnetizing proto-
cols.

In order to achieve a thermal ground state ordering in artificial spin ice sys-
tems the energy barrier for reversing the magnetization between the two low
energy states defined by the shape anisotropy must be thermally accessible.
From equation (2.13), the available choices for achieving a thermal ground
state ordering are thus, a higher temperature, a reduction in the energy bar-
rier, or waiting for geological time scales. Considering the available materials
selection and the possibilities for tuning the size and shape of elements in arti-

36

J2
J1

}h

J1
J2

Wang et al., Nature 439 (2006)
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‘A-thermal’ Artificial spin ice

1

(Nisoli et al. 2007-2008)

1

t = 0

�H0
�H(t)

- polarised initial configuration
- rotate the sample
- decrease magnetic field
- change polarity of the field after a cycle

t > 0

Shearing and shaking in 
granular matter ??

H(t = n∆t) = (−1)n(H0 − nHs)Demagnetisation protocol:
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(Nisoli et al. 2007-2010)

Assume:  E ≈ ct

Construct an Edwards’ measure

 vertices can be chosen independently (mean-field)

1

TE
=

∂S

∂E

Gives population of vertices created 
during the demagnetisation : 

nα =
exp(−βE�α)

Z(βE)

1. Count configurations S(E,N) = lnΩ(E,N)

2. Maximise the entropy under the constraint E ≈ ct

With configurational ‘temperature’

‘A-thermal’ Artificial spin ice

(i)

(ii)
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(Nisoli et al. 2007-2010)

nα =
exp(−βE�α)

Z(βE)

Count vertices in the samples

βE = ln

�
4nc

ne

�
(�e − �c)

−1

‘A-thermal’ Artificial spin ice

From: Nisoli et al., PRL 105 (2010)

=⇒ Ground state cannot be reached with this procedure

effective temperatures, based on Eqs. (1)–(3). The excel-
lent agreement between theory and the experimental data
demonstrates the predictive power of the effective
temperature.

Is the effective temperature derived above only a
Lagrange multiplier, or does it provide physical informa-
tion about the ‘‘fluidizing’’ external magnetic drive, as an
actual physical temperature provides information about the
surrounding thermodynamic bath? We found that effective
temperature can be controlled via the external drive in a
way strikingly analogous to that reported for vibrofluidized
granular materials [11]—but here in a system with an
explicit energetic description of interactions. As seen in
Fig. 3(b), we find a strikingly linear dependence of h!ei in
the magnetic step size of the ac demagnetization, indicat-
ing that the effective temperature description does indeed
have a physical basis akin to actual temperature.

We now consider the effective temperature of the hex-
agonal ice arrays, in which ac demagnetization consis-
tently returns the vertex ground state (all type-I vertices)
for arrays of small lattice constant. For a ¼ 225, 260, 320,
and 425 nm, the frequency of excitations is "10#3, below
experimental error. Hence hexagonal ice is a good candi-
date to study effective temperature only for larger lattice
constants a ¼ 650, 910, 1135, 1395, and 1620 nm, wherein
the occurrence of excitations nII is significant. As the
density of excitations nII completely defines the thermo-
dynamics, the introduction of an effective temperature as
for the square ice, !eEII ¼ lnðnI=3nIIÞ, might seem only a
reparametrization with little predictive power. In Fig. 4(a),
however, we extract lnðnI=nIIÞ from arrays of different
lattice constant a, but annealed with the same magnetic
step Hs, and plot that ratio against the respective energy

EII. Somewhat surprisingly, we find a linear behavior,
which suggests an effective temperature that is indepen-
dent of the lattice constant. In this calculation, the vertex
energies are obtained via micromagnetic calculations that
describe the full vertex interaction of dipole islands [30],
since we now study much larger lattices for which the
dumbbell approximation (which treats only the monopole
tips that converge at a vertex) is less accurate. The intercept
of the fits in Fig. 4(a) is surprisingly close to the expected
lnðqI=qIIÞ ¼ ln3, lending further credence to the analy-
sis. The extracted effective temperature !e is plotted in
Fig. 4(b) against the magnetic step size Hs. As in the case
of the square ice, we again find a remarkable linear depen-
dence of !e on the anneal step size Hs, although with
different parameters (different geometries apparently ex-
perience different effective temperatures under the same
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FIG. 3 (color online). (a) Vertex frequency from square arrays
of different lattice constants and Hs, plotted against their effec-
tive reciprocal temperature !e in units of EIII. Data are from
averaging at least three MFM images from the same array with
the same Hs. Lines are theoretical curves from Eqs. (1)–(3).
(b) Linear dependence between !e and the magnetic step sizeHs

(data are averaged over the lattice constant a). Negative tem-
peratures are possible, because of high-energy, low-entropy
states.
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FIG. 2 (color online). The effective temperature of the square
arrays, plotted as lnð5nI=2nIIÞ vs lnð8nI=2nIIIÞ: The linear fit
returns a ratio very close to the theoretical value. (nI, nII, and nIII
are average values from the MFM images taken on the same
array and at same magnetic step size.)
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lent agreement between theory and the experimental data
demonstrates the predictive power of the effective
temperature.

Is the effective temperature derived above only a
Lagrange multiplier, or does it provide physical informa-
tion about the ‘‘fluidizing’’ external magnetic drive, as an
actual physical temperature provides information about the
surrounding thermodynamic bath? We found that effective
temperature can be controlled via the external drive in a
way strikingly analogous to that reported for vibrofluidized
granular materials [11]—but here in a system with an
explicit energetic description of interactions. As seen in
Fig. 3(b), we find a strikingly linear dependence of h!ei in
the magnetic step size of the ac demagnetization, indicat-
ing that the effective temperature description does indeed
have a physical basis akin to actual temperature.

We now consider the effective temperature of the hex-
agonal ice arrays, in which ac demagnetization consis-
tently returns the vertex ground state (all type-I vertices)
for arrays of small lattice constant. For a ¼ 225, 260, 320,
and 425 nm, the frequency of excitations is "10#3, below
experimental error. Hence hexagonal ice is a good candi-
date to study effective temperature only for larger lattice
constants a ¼ 650, 910, 1135, 1395, and 1620 nm, wherein
the occurrence of excitations nII is significant. As the
density of excitations nII completely defines the thermo-
dynamics, the introduction of an effective temperature as
for the square ice, !eEII ¼ lnðnI=3nIIÞ, might seem only a
reparametrization with little predictive power. In Fig. 4(a),
however, we extract lnðnI=nIIÞ from arrays of different
lattice constant a, but annealed with the same magnetic
step Hs, and plot that ratio against the respective energy

EII. Somewhat surprisingly, we find a linear behavior,
which suggests an effective temperature that is indepen-
dent of the lattice constant. In this calculation, the vertex
energies are obtained via micromagnetic calculations that
describe the full vertex interaction of dipole islands [30],
since we now study much larger lattices for which the
dumbbell approximation (which treats only the monopole
tips that converge at a vertex) is less accurate. The intercept
of the fits in Fig. 4(a) is surprisingly close to the expected
lnðqI=qIIÞ ¼ ln3, lending further credence to the analy-
sis. The extracted effective temperature !e is plotted in
Fig. 4(b) against the magnetic step size Hs. As in the case
of the square ice, we again find a remarkable linear depen-
dence of !e on the anneal step size Hs, although with
different parameters (different geometries apparently ex-
perience different effective temperatures under the same
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of different lattice constants and Hs, plotted against their effec-
tive reciprocal temperature !e in units of EIII. Data are from
averaging at least three MFM images from the same array with
the same Hs. Lines are theoretical curves from Eqs. (1)–(3).
(b) Linear dependence between !e and the magnetic step sizeHs
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peratures are possible, because of high-energy, low-entropy
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are average values from the MFM images taken on the same
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Special parametrisation of the 16-vertex model: a = b = exp(−β�a)

c = exp(−β�c)

e = exp(−β�e)

d = exp(−β�d)

Energy of each vertex = approximation of the dipolar interactions 
High energy to the defects

Analytical calculation on the tree of plaquettes
+

Continuous Time Monte Carlo simulations

Our canonical temperature: β = − ln a

�a

⇒



Equilibrium.

Allow defects ⇒ d = e �= 0

Ice rules → collective paramagnet with ξeq = ∞

Sixteen-vertex model

Ice rules → disordered paramagnet ? ∞ > ξeq > L

Non-equilibrium relaxation from an completely ordered 
state towards equilibrium in different phases

} How can we 
observe a 
difference?

{ ∼ exp(−t/τ)

M+(t) ∼ t−λ

∼ Meq
+ exp(−t/T )

disordered 

critical ξeq = ∞

ordered 

power-law behaviour inside the SL phase TEST criticality
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‘Thermal’ Artificial spin ice

3

correlation length and zc is the dynamical exponent. Instead,

away from criticality M−(t) decays exponentially. At short

times the dynamic correlation length ξ(t) � L avoiding the

difficulty raised by ξeq � L. This allows one to extract the

critical temperature and critical exponents of the system from

the dynamical results.

Our analytic approach uses the Bethe-Peierls approxima-

tion (BP) [? ]. We define the sixteen-vertex model on a Bethe

lattice of square plaquettes as depicted in Fig. 2. A tree with-
out loops was used to describe pyrochlore spin-ice [? ? ] and

it yields a very good approximation to the transition towards

the FM phase (KDP problem) since the FM order is frozen

when the ice-rules are strictly imposed It is not however pre-

cise enough to describe the staggered AF order that is popu-

lated by loop fluctuations at finite temperature [see Fig. 1 (a)].

It is then crucial to include finite loops as the ones exempli-

fied in Fig. 2 (d) in the graph to correctly describe the unfrozen

AF ordered phase. The details of the calculations, as they are

quite technical, will be presented elsewhere [? ].

Phase diagram and critical properties. A single critical

power-law decay of M−(t) at βc = 2.65± 0.017 can be eas-

ily identified from Fig. 3, showing that the SL phase is broken

at finite temperature by the presence of defects. A generalized

set of critical exponents, independent of the choice of parame-

ters, have been defined in the eight-vertex model [? ]. Among

them β̂ = β/ν = 1/8. Our analytic and numeric results sug-

gest that the sixteen-vertex model is in the same generalized

universality class with β̂ = 1/8 as well [? ? ]. Fixing this

value for the ratio of equilibrium exponents the NERM yields

zc = 2.35 ± 0.40. A more accurate computation of β̂ would

be needed to give further support to this result.
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Figure 4. (Color online.) Staggered magnetization M− (a) and spe-

cific heat C (b) as a function of the distance to the critiical inverse

temperature βc for system sizes L = 30, 40, 50, 60. The (red) solid

lines are the results of the analytic calculation on the Bethe-lattice of

plaquettes.

In Fig. ?? we display equilibrium CTMC data for M− (a)

and the heat capacity C = L−2(�E2�−�E�2) (b) as a function

of the distance to the critical inverse temperature, (β−βc)/βc.

These results are in agreement with the NERM analysis and

confirm the second order phase transition at βc ≈ 2.65. Fig-

ure ?? also displays the analytic results for M− and C (solid

red lines). The theory predicts a second-order phase transi-

tion with a systematic shift of the critical point by around 5%

towards higher temperature.

Figure ?? (a) displays the space-dependence of the corre-
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Figure 5. (Color online.) The space-time C(r, t) and equilibrium

Ceq(r) = limt→∞ C(r, t) correlation function close to the phase

transition (top panel, β = 2.65) and in the ordered phase (bottom

panel β = 3). The colored lines-points in the top panel are dynamic

data after a quench from infinite temperature. The equilibrium crit-

ical correlation function (black dots) is confronted to an algebraic

decay ∼ r−2.5
(dotted line). Isn’t η huge here? I am used to seeing

small values for this exponent, but we can check what was found in

other cases. It could mean that this is not the equilibrium limit and

but that you are still far away from, as I would expect for these times.

For the ice model the correlations decay as r−2
. Two-time correla-

tions vanish at t > 1000. Look at larger times. TO BE UPDATED.

The insets show two typical configurations in these conditions. Or-

ange regions are c-AF ordered, black dots correspond to FM vertices

(a and b), red and blue dots correspond to oppositely charged defects

of type e; d vertices are absent. Connected correlations in the ordered

regime agree with an exponential decay ∼ exp(−r/ξ) with ξ = 36.

Why have you cut the y-axis at 0.5? Why not use the more standard

linear-log scale, after subtracting the constant, and show the linear

decay with the slope determined by ξ? Use the same size for the two

panels.

lation function C(r, t) = (2L)−2�
�

i,j Si,j(t)Si+r,j+r(t)� at

different times after a quench from β → 0 to βc = 2.65 (in

log-log scale). The indices (i, j) denote a site of the 2L× 2L
square lattice made by all the arrows. Si,j = +1 if the arrow

points right or up and Si,j = −1 otherwise. With these defi-

nitions, r is given in units of a0/
√
2. The dynamic curves ap-

proach, for increasing times, the asymptotic equilibrium law

that close to the transition is a power-law with an exponential

cut-off. The figure also shows, in an insert, a typical configu-

ration (see the caption for the vertex color code). In the bottom

panel we present the equilibrium C(r) = limt→∞ C(r, t) in

the c-AF phase (linear scale) and an ordered configuration in

the insert. The equilibrium correlations decay exponentially

to a non-zero asymptotic value c0 ≈ 0.42. The approach to

such configurations is fast if the initial state is a completely

ordered T = 0 ground state but it is very slow and occurs via
the coarsening process if the initial condition is a disordered

one [? ]. cite here Budrikis?

Putting together the results of extensive NERM and CTMC

numerical simulations for a large range of parameters we ob-

tained the phase diagram shown in Fig. ??.

Experimental density of vertices. In Fig. ?? we plot the

vertex population of each vertex type as a function of the

canonical inverse temperature β = − ln a/�1. The results of

Numerics vs. Cavity calculation

Second order phase transition at βc ≈ 2.65

Compare with experiments

Levis, Cugliandolo, Foini, Tarzia In preparation (2012)
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fied in Fig. 2 (d). The details of the calculations, as they are
quite technical, will be presented elsewhere [23].

Phase diagram and critical properties. A single critical
power-law decay of M−(t) at βc = 2.65± 0.017 can be eas-
ily identified from Fig. 3, showing that the SL phase is broken
at finite temperature by the presence of defects. A generalized
set of critical exponents, independent of the choice of parame-
ters, have been defined in the eight-vertex model [18]. Among
them β̂ = β/ν = 1/8. Our analytic and numeric results
suggest that the sixteen-vertex model is in the same general-
ized universality class with β̂ = 1/8 as well [23]. Fixing this
value for the ratio of equilibrium exponents the NERM yields
zc = 2.35± 0.40 although a more accurate computation of β̂
would be needed to give further support to this result.
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Figure 4. (Color online.) Staggered magnetization M− (a) and spe-
cific heat C (b) as a function of the distance to the critiical inverse
temperature βc for system sizes L = 30, 40, 50, 60. The (red) solid
lines are the results of the analytic calculation on the Bethe-lattice of
plaquettes.

In Fig. 4 we display equilibrium CTMC data for M− (a) and
the heat capacity C = L−2(�E2� − �E�2) (b) as a function of
the distance to the critical inverse temperature, (β − βc)/βc.
These results are in agreement with the NERM analysis and
confirm the second order phase transition at βc ≈ 2.65. Fig-
ure 4 also displays the analytic results for M− and C (solid
red lines). The theory predicts a second-order phase transi-
tion with a systematic shift of the critical point by around 5%
towards higher temperature.

Figure 5 (a) displays the space-dependence of the correla-
tion function C(r, t) = (2L)−2�

�
i,j Si,j(t)Si+r,j+r(t)� at

different times after a quench from β → 0 to βc = 2.65 (in
log-log scale). The indices (i, j) denote a site of the 2L× 2L
square lattice made by all the arrows. Si,j = +1 if the arrow
points right or up and Si,j = −1 otherwise. With these defi-
nitions, r is given in units of a0/

√
2. The dynamic curves ap-

proach, for increasing times, the asymptotic equilibrium law
that close to the transition is a power-law with an exponential
cut-off. The figure also shows, in an insert, a typical configu-
ration (see the caption for the vertex color code). In the bottom
panel we present the equilibrium C(r) = limt→∞ C(r, t) in
the c-AF phase (linear scale) and an ordered configuration in
the insert. The equilibrium correlations decay exponentially
to a non-zero asymptotic value c0 ≈ 0.42. The approach to
such configurations is fast if the initial state is a completely
ordered T = 0 ground state but it is very slow and occurs via
the coarsening process if the initial condition is a disordered
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Figure 5. (Color online.) The space-time C(r, t) and equilibrium
C(r) = limt→∞ C(r, t) correlation function close to the phase tran-
sition (top panel, β = 2.65) and in the ordered phase (bottom panel,
β = 3). The colored lines-points in the top panel are dynamic data
after a quench from T → ∞. The equilibrium critical correlation
function (black dots) is confronted to an algebraic decay ∼ r−0.22

(dotted line); note that η = 1/4 for the Ising model. The insets show
two typical configurations in these conditions. Orange regions are c-
AF ordered, black dots correspond to FM vertices (a and b), red and
blue dots correspond to oppositely charged defects of type e; d ver-
tices are absent. Connected correlations in the ordered regime agree
with an exponential decay ∼ exp(−r/ξ) with ξ = 36.

one [8, 24].
Putting together the results of extensive NERM and CTMC

numerical simulations for a large range of parameters we ob-
tained the phase diagram shown in Fig. 6.

Experimental density of vertices. In Fig. 7 we plot the
vertex population of each vertex type as a function of the
canonical inverse temperature β = − ln a/�1. The results
of our MC simulations (colored lines-points) and BP calcu-
lation (solid black lines) are confronted to experimental data
from the British collaboration (data points) [16]. In this exper-
iment, spin configurations are visualized at the end of a sam-
ple preparation process in which the thickness of the magnetic
islands grow by deposition. The Ising spins flip by thermal
fluctuations during the growth process. However, as the time
scales for these moves increase with the growing size of the
islands, once a certain thickness is reached the flipping times
become too large and the spins freeze. Using ideas pioneered
by Edwards in the context of granular matter [25], the as-
sumption that with this procedure one samples configurations
from an effective equilibrium ensemble at an effective tem-
perature βE is hence made. Moreover, taking the vertices as
being independent (mean-field approximation) one concludes

3

fied in Fig. 2 (d). The details of the calculations, as they are
quite technical, will be presented elsewhere [23].

Phase diagram and critical properties. A single critical
power-law decay of M−(t) at βc = 2.65± 0.017 can be eas-
ily identified from Fig. 3, showing that the SL phase is broken
at finite temperature by the presence of defects. A generalized
set of critical exponents, independent of the choice of parame-
ters, have been defined in the eight-vertex model [18]. Among
them β̂ = β/ν = 1/8. Our analytic and numeric results
suggest that the sixteen-vertex model is in the same general-
ized universality class with β̂ = 1/8 as well [23]. Fixing this
value for the ratio of equilibrium exponents the NERM yields
zc = 2.35± 0.40 although a more accurate computation of β̂
would be needed to give further support to this result.
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cific heat C (b) as a function of the distance to the critiical inverse
temperature βc for system sizes L = 30, 40, 50, 60. The (red) solid
lines are the results of the analytic calculation on the Bethe-lattice of
plaquettes.

In Fig. 4 we display equilibrium CTMC data for M− (a) and
the heat capacity C = L−2(�E2� − �E�2) (b) as a function of
the distance to the critical inverse temperature, (β − βc)/βc.
These results are in agreement with the NERM analysis and
confirm the second order phase transition at βc ≈ 2.65. Fig-
ure 4 also displays the analytic results for M− and C (solid
red lines). The theory predicts a second-order phase transi-
tion with a systematic shift of the critical point by around 5%
towards higher temperature.

Figure 5 (a) displays the space-dependence of the correla-
tion function C(r, t) = (2L)−2�

�
i,j Si,j(t)Si+r,j+r(t)� at

different times after a quench from β → 0 to βc = 2.65 (in
log-log scale). The indices (i, j) denote a site of the 2L× 2L
square lattice made by all the arrows. Si,j = +1 if the arrow
points right or up and Si,j = −1 otherwise. With these defi-
nitions, r is given in units of a0/

√
2. The dynamic curves ap-

proach, for increasing times, the asymptotic equilibrium law
that close to the transition is a power-law with an exponential
cut-off. The figure also shows, in an insert, a typical configu-
ration (see the caption for the vertex color code). In the bottom
panel we present the equilibrium C(r) = limt→∞ C(r, t) in
the c-AF phase (linear scale) and an ordered configuration in
the insert. The equilibrium correlations decay exponentially
to a non-zero asymptotic value c0 ≈ 0.42. The approach to
such configurations is fast if the initial state is a completely
ordered T = 0 ground state but it is very slow and occurs via
the coarsening process if the initial condition is a disordered
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C(r) = limt→∞ C(r, t) correlation function close to the phase tran-
sition (top panel, β = 2.65) and in the ordered phase (bottom panel,
β = 3). The colored lines-points in the top panel are dynamic data
after a quench from T → ∞. The equilibrium critical correlation
function (black dots) is confronted to an algebraic decay ∼ r−0.22

(dotted line); note that η = 1/4 for the Ising model. The insets show
two typical configurations in these conditions. Orange regions are c-
AF ordered, black dots correspond to FM vertices (a and b), red and
blue dots correspond to oppositely charged defects of type e; d ver-
tices are absent. Connected correlations in the ordered regime agree
with an exponential decay ∼ exp(−r/ξ) with ξ = 36.

one [8, 24].
Putting together the results of extensive NERM and CTMC

numerical simulations for a large range of parameters we ob-
tained the phase diagram shown in Fig. 6.

Experimental density of vertices. In Fig. 7 we plot the
vertex population of each vertex type as a function of the
canonical inverse temperature β = − ln a/�1. The results
of our MC simulations (colored lines-points) and BP calcu-
lation (solid black lines) are confronted to experimental data
from the British collaboration (data points) [16]. In this exper-
iment, spin configurations are visualized at the end of a sam-
ple preparation process in which the thickness of the magnetic
islands grow by deposition. The Ising spins flip by thermal
fluctuations during the growth process. However, as the time
scales for these moves increase with the growing size of the
islands, once a certain thickness is reached the flipping times
become too large and the spins freeze. Using ideas pioneered
by Edwards in the context of granular matter [25], the as-
sumption that with this procedure one samples configurations
from an effective equilibrium ensemble at an effective tem-
perature βE is hence made. Moreover, taking the vertices as
being independent (mean-field approximation) one concludes

C(r, t) ∝ �
�

i,j

Si,j(t)Si+r,j+r(t)�
Two-point space-time correlations:

β ≈ βc

β > βc
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Figure 6. (Color online.) Three-dimensional projection of the phase
diagram of 2d spin ice on the square lattice for a = b. The thick
(red) line indicates the spin-liquid phase ending at the KT transition
point (d = e = 0 and a/c = b/c = 1/2). The c−AF phase is
indicated by the (blue) tetrahedron. Away from these regions and
d/c � 2(a/c) + 3(e/c) + 1 (where the system is expected to be
d-AF [? ] ) the system is a disordered paramagnet (PM).

our MC simulations (colored lines-points) and BP calculation
(solid black lines) are confronted to experimental data from
the British collaboration (data points) [? ]. In this experi-
ment, spin configurations are visualized at the end of a sam-
ple preparation process in which the thickness of the magnetic
islands grow by deposition. The Ising spins flip by thermal
fluctuations during the growth process. However, as the time
scales for these moves increase with the growing size of the
islands, once a certain thickness is reached the flipping times
become too large and the spins freeze. Using ideas pioneered
by Edwards in the context of granular matter [? ], the as-
sumption that with this procedure one samples configurations
from an effective equilibrium ensemble at an effective tem-
perature βE is hence made. Moreover, taking the vertices as
being independent (mean-field approximation) one concludes
�ni� = exp (−βE�i)/Z, where Z is the normalization con-
stant, and βE is extracted from the data for �ni� [? ]. This is
the way in which the data-points have been drawn.

Our model reproduces quantitatively the experiments at
temperatures far enough from the critical point. We argue that
at temperatures close to Tc the annealing time leading to the
frozen configuration is not long enough to sample the equilib-
rium distribution because of critical slowing down. It would
be interesting to explore the connection between the experi-
mental cooling procedure and a cooling rate in the numerical
simulations. Evidence for critical slowing down in this system
was already given in Fig. ?? (a) where the spatial correlation
at different times after a quench from T → ∞ to T close Tc

are shown.
Conclusion In conclusion, by comparing our results to ex-

perimental data we justified the relevance of the sixteen-vertex
model to describe ASI. In so doing, we confirmed that effec-
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Figure 7. (Color online.) Averaged density of vertices as a function
of inverse temperature. The points are data from the experiment in [?
] and β is estimated as explained in the text. The solid colored
lines are the fits to the CTMC data. The solid black lines are the BP
analytic results. The vertical dotted line indicates the critical inverse
temperature.

tive thermal equilibrium is attained by the as-grown protocol
proposed in [? ] away from the critical point. Furthermore,
we showed that static behavior of the model defined on a “dec-
orated” tree is notably close to the one of the 2d system.

*** Algo mas un poco mas general que abra posibles
vias para el futuro....***

Cite Bukridis somewhere. Possibly in dynamics at the start.
Domain growth with disorder.
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[] T. Fennell, O. Petrenko, B. Få k, J. Gardner, S. Bramwell, and

B. Ouladdiaf, Physical Review B 72, 1 (2005), ISSN 1098-
0121.

[] D. Levis and L. F. Cugliandolo, EPL (Europhysics Letters) 97,
30002 (2012), ISSN 0295-5075.

[] M. J. Harris, S. T. Bramwell, D. F. Mcmorrow, T. Zeiske, and
K. W. Godfrey, Phys. Rev. Lett. 79, 2554 (1997).

[] S. T. Bramwell and M. J. Gingras, Science (New York, N.Y.)
294, 1495 (2001), ISSN 0036-8075.

[] S. T. Bramwell, M. J. P. Gingras, and P. C. W. Holdsworth, in
Frustrated spin systems, edited by H. T. Diep (World Scientific,
2004), chap. 7.

Phase diagram of ASI (extensive numerics + cavity)

The criticality of the SL phase is lost as soon as d, e > 0



 Conclusion & outlook.

1. Investigate the variation of critical exponents in the 16V model by a real-
space Renormalisation Group approach. 

2. Extend the mappings between integrable vertex models (6V and 8V) into 
quantum spin chains (XXZ and XYZ resp. ) to the unconstrained 16V model. 
Then, use our understanding on the classical model to predict the behaviour 
of the quantum system?

3. Link between configurational temperatures in ASI and the canonical 
temperature?  In experiments: - properties of the domain walls?

- thermal equilibration?
- growth rate (link with a cooling rate)

                   



 Conclusion & outlook.
4. Defects’ motion in 2D (square or hexagonal). 
Prepare the system into an ‘ice-rule’ configuration, then follow the motion of a 
pair of defects. Interaction?
Model for collective transport properties?

5. Effect of boundary conditions on the dynamics of hardly constrained 
models.  

6. In particular, study the relaxation dynamics of the six-vertex model with 
fixed boundary conditions using local updates. Topological glass?

7. 1. Use the same BP and CTMC approach to study the 16V model in an 
external field. 
Extend the BP approach to deal with other geometrically frustrated stat. 
models (AF Ising, Kagome ice, colouring models, etc.). 
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