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CHAPTER

INTRODUCTION

Once upon atime...

U NTIL the second half of the nineteenth century, science studied macroscepicmh
ena that were directly perceptible by human senses, even though sciestistsften
led to enhance the sensory perception with the more objective measurefiestisiments.
For instance, microscopes allowed biologists to discover cells — the buildingsodd life
— and their inner structure. In the field of physics, scientists studied mieshalectricity,
optics, acoustics but also thermodynamics and states of matter. All these doneai
considered independent in the nineteenth century. In particular, thgnamicians were
far from imagining that their theory would take its roots in mechanics.

Despite its successes, macroscopic physics was condemned to evenseltg foin-
damental character to the benefit of microscopic physics. Indeed, th&eaith century
saw the accession at the scientific level of the antique philosophical idba atomic hy-
pothesis introduced by Leucippus and his student Democritus in the fifthrgeB.C. [1].
The quantitative study of chemical reactions revealed some stoichiometri¢Hatvdohn
Dalton and Amedeo Avogadro interpreted very convincingly within the frahtiesoatomic
hypothesis: reactants were aggregates of microscopic compog@ef}s This hypothesis,
which was first considered a convenient way of presenting resultse giwas impossible
at that time to directly prove the existence of atoms — progressively gaioeddduring
the nineteenth century.



James C. Maxwell, who was at first reluctant to take position in favor of gtaarsthe
first to introduce probabilistic methods to compute the distribution of particle iielein a
gasin 18604, 5]. In 1872, Ludwig Boltzmann set the building blocks of out-of-equilibrium
statistical mechanics by introducing the so-called Boltzmann equation thaibdssthe
generic transport properties in a gas by taking into account the dynamaasligions.

In 1877, he was the first to give a probabilistic interpretation of the sepondiple of

thermodynamics with its celebrated formtfar the entropyS = kg In Q [6]. This resolved
the paradox raised by Lord Kelvin (and relayed by Johann J. Loschthilt)it seemed
impossible to deduce irreversible phenomena from microscopic mechaystairs.

In 1902, Josiah W. Gibbs formalized and generalized the previous rexults C.
Maxwell and L. Boltzmann without the use of molecular models in the first modleaty
of statistical physics7]. Indeed, refusing to enter the debate about the very structure of
matter, he reformulated statistical mechanics by introducing the conceptsafical and
grand canonical ensembles. Statistical physics was born and it wastodael generalized
to the study of quantum systems.

In 1905, the same year he unified mechanics and electromagnetism with thedheo
special relativity and proposed the quantization of light, Albert Einsteirighdd an arti-
cle [8] devoted to the observable consequences of statistical physics thantsidered as a
fundamental theory. Phenomena that occur at our scale are more diréegs€onsequences
of underlying mechanisms involving microscopic constituents and their grepénat one
is entitled to study to get a fundamental understanding of the whole physizhd. wA.
Einstein was the first, together with Marian von Smoluchovski, to understandhi con-
tinual and irregular motion of small particles in water (observed first in 1828e botanist
Robert Brown with pollen particles, then with inorganic materi]}ig caused by the ther-
mal agitation of the water molecules. In his 1905 article, he computed the fluctsiafithe
Brownian particles and showed that they can be tested experimentally.€ankater, Jean
B. Perrin conducted a series of refined experiments in which he meaher¢djectories
and velocities of grains of different sizes and masses in solution. By ésifgnstein’s
theory, he showed, that one could obtain a precise estimate of the Aeogaaiber by dif-
ferent methods. His experiments put a definitive end to the controvesap@dthe atomic
hypothesis 10].

The first theoretical insight into non-equilibrium statistical physics is dueats IOn-
sager who, in 1931, worked out the classical thermodynamics of stateslase to equi-
librium [11, 12]. He established that the crossed effects in a physical system, fordestan
the coefficient that relates the heat flux to the pressure gradient andéhbat relates the
particle flux to the temperature gradient, are equal. These relations arknown as the
Onsager reciprocal relations. Herbert B. Callen and Theodore Aokvproved in 1951

This expression of the formula was given by Max K. E. L. Planck in 1900



the so-calledluctuation-dissipation theoremvhich predicts the non-equilibrium behavior
of a system — such as the irreversible dissipation of energy into heam-itsaeversible
fluctuations in thermal equilibriunip].

The development of far from equilibrium statistical physics had to wait urgisgcond
half of the twentieth century. The study of phase ordering dynamics b&egaoon as a
better understanding of the phase transitions was given by the theoey @ .LLandau 4]
and new field theoretical tools were borrowed from high energy physics

The interest in disordered systems began with Philip W. Anderson whaestgghin
1958 the possibility of electron localization inside a semiconductor, provicedtie de-
gree of randomness of the impurities or defects of the underlying atomic laititdoé
sufficiently large. In 1974, together with Samuel F. Edwards, he intexditice so-called
Edward-Anderson (EA) model to describe a class of dilute magnetic all@}sThis first
spin glass model lead to a new phenomenology and new theoretical concetbis same
paper, they introduced a new order parameter for the study of spireglassed on the
concept of replica. Replicas were later used in 1979 by Giorgio Parisilve ¢he statics
of the Sherrigton-Kirkpartrick (SK) model, introduced in 1975 by Davic®igton and
Scott Kirkpartrick [L7], which is the mean-field version of the EA mod&H]. Its out-of-
equilibrium dynamics after a quench in temperature were worked out in hp94ticia
F. Cugliandolo and Jorge Kurchahd. The techniques and concepts that have been de-
veloped in spin glass theory have led to several valuable applications irtltee areas
such as probability theory2D, 21], computer science, information science, biology and
economics 22-24].

A major breakthrough in out-of-equilibrium statistical physics took place the past
twenty years with the discovery of exact fluctuation relations in systemsrdfar from
equilibrium. These so-calleituctuation theoremdeal with the fluctuations of entropy or
related quantities such as irreversible work, heat or matter currents. pFafsosed and
tested using computer simulations by Denis Evans, Eddie G. D. Cohen apdiGaiss
in 1993 5], much mathematical and computational work has been done in the following
years to show that the fluctuation theorems apply to a large variety of situatichsas
isolated systems or systems in contact with a thermal bath, closed or opensydtessical
or quantum system26-30].

1.1 Systems coupled to an environment

Systems in nature are never isolated. In order to give an accuratéptiescof their prop-
erties or to be able to justify why they can be treated as isolated, one is ofterstedly the
impact of their environment. Both the environment and the system itself astitt@mts of
an energy-conserving global system (so-called universe) andiimef is supposed to have



many more degrees of freedom than the latter.

In some simple cases, like when the system and its environment are in equilibrium,
a few parameters are needed to characterize the influence of the em»itbso that one
can concentrate again on the system of interest solely. However, innleeagease one is
constrained to describe the environment and its coupling to the system ekintedetail.

We make the distinction between equilibrium environments and non-equilibrium en
vironments. All the internal variables of the former are in equilibrium. This redéan
particular that the fluctuation-dissipation theorem is satisfied for all possiotelators of
these variables and their corresponding responses. An equilibrivinoement is said to
be ‘good’ if its stays in equilibrium irrespective of the state of the system it oimact
with. This is typically achieved by environments with a large enough numbezgrees of
freedom so that their macroscopic properties do not fluctuate.

In the so-called canonical situation, the environment is made of one orat¢her-
mostats that are reservoirs of energy. The thermal contacts betweeystbm sand the
reservoirs allow for the exchange of energy, but particles canne¢ lgee system. In R.
Brown’s experiment of 1828, the pollen particles and the surroundingrwizolecules that
constitute the thermal bath interact through short-ranged and highly nesr-fiorces such
as Lennard-Jones forces. If the environment is composed of sdvemaostats at the same
temperature, they constitute an equilibrium environment. If they have difféeenpera-
tures, they constitute a non-equilibrium environment which induces a leatiftough the
system. Non-equilibrium environments are expected to drive any systeimi¢h tiney are
connected out of equilibrium. By extension, we also consider all typestefrel forces or
fields applied directly to the system as non-equilibrium environments.

The canonical set-up can be generalized to the grand canonical situéiéoe the sys-
tem also exchanges particles with its environment. This describes situatiortgdh &
fermionic system is connected to two electronic leads. As soon as they Hdifferant
chemical potential, they constitute a non-equilibrium environment and ant@seablishes
through the system.

Finally, we would like to stress the fact that the distinction between the syste nutzat
is treated as the environment is not always clear. Sometimes it is even possielat one
part of the system as an environment of another part. This has beerfatogxample in
cosmology with self-interacting quantum fields in which the short-wave lengttesserve
as thermal baths for longer wave-length modes with slower dynaiesSF.

Systems with disordered interactions

Disorder breaks spatial homogeneity such as translational symmetry. Inyabudy sys-
tem, disordered interactions can either be found in one-body interactiongs a magnetic



field or in two(or more)-body interactions between the particles. The fipgt ¢f disorder

is when some of the degrees of freedom of a system are coupled to anadsjeatially
disordered potential. We include the case of the coupling to a disordetéddiecalled
random field. It occurs in most ferromagnets where the underlying crystalline steictu
shows some defects randomly distributed in the sample that give rise to statonmrdo-
cal magnetic fields. In cold atom experiments, a spatially disordered poteapdbr the
atomic gas can be realized by using a laser speckle. The second typeraidis when
randomness is found in the interactions between the particles of the syatetorf bonds

It occurs for instance just after high temperature initial conditions wheadhfiguration of
this system is disordered. In glasses, the Lennard-Jones potentigiemeparticles has an
attractive and a repulsive part, depending on the inter-particle distahisecreates frustra-
tion in the sense that each particle receives from the surrounding partiolatradictory’
messages concerning where it should move to. In this example, the disoseéérinduced
and co-evolve with the positions of the particles. This is ca#ledealeddisorder. In the
case the time scale on which the competing interactions evolve is much longer than the
time of the experiment, they can be considered as constant and the disoreferred as
quenched

Quenched randomness may be weak or strong in the sense that the éysoypary to
the second, does not change the nature of the low-temperature plaasiniRfields in 8d
ferromagnet belong to the first type as the existence of an orderedtdiaieeaemperature
was proved rigorously3e, 37]. In the contrary, random bonds equally distributed between
positive and negative values belong to the second category and leadgiolyaffustrated
and disordered phase at low temperatures. This phase is widely beliebedatglassy
phase although it has not been proved analytically.

Glassy systems are systems whose relaxation time becomes extremely long when a
control parameteg.g. the temperature, is changed. Experimentally, the slowing down of
the dynamics manifests itself in the very fast growth (typically orders of madg)itof the
viscosity with decreasing temperature. A ‘glass transition’ is said to occenwtis sudden
growth is well localized around a characteristic temperaigreUnderT,, the relaxation
time grows beyond the experimentally accessible time scales and the systenmdistbou
evolve out of equilibrium. In conventional glasses, this temperature dspemthe history
of the sample, in particular on the rate at which the temperature has beed.cblgace
the glass transition is not a true thermodynamic transition but rather a dynaws&oger.
Disordered interactions is the characteristic ingredient believed to lead toetiésior.

AboveT, there are two typical phenomenological behaviors of the viscosity asca fu
tion of the temperature. In the so-called strong glasses, the viscosity fallowsrhe-
nius law as it grows asxp(A/T"), where A is some activation energy. The viscosity of
the so-called fragile glasses obeys a Vogel-Fulcher law, which is arediurs law with a
temperature dependent activation enertyy= BT /(T — Ty) whereTy is a material de-



pendent temperature around which the relaxation diverges even tlaatethe Arrhenius
law [38, 39].

Spin glasses are prototypical systems of glasses with strong quencbetbdisl inter-
actions. They are simple models of magnetic impurities randomly distributed in a static n
magnetic medium. The Ruderman-Kittel-Kasuya-Yosida (RKKY) interactiohsdsn the
impurities depend on their relative distances. Since the latter are randomidfraiions
take random values in sign and strength. In the case of spin glassesatbenany corrob-
orating facts supporting the idea that the glass transition is a true thermodytnansition
(e.g.the invariance of ;, with the cooling rate)40-44].

Quantum spin glasses are spin glasses where quantum fluctuationsgainaddition
to thermal fluctuations. These quantum fluctuations act as another disgréield which
usually reduces the transition temperature. In the vicinity of a phase tranaitimmzero
temperature, the critical behavior of a quantum spin glass model is the satra athe
classical model; thus the effect of quantum mechanics merely renormatinasniversal
guantities such as the transition temperatdée4 7).

Dynamics

Let us consider the most generic situation in which a system is prepared & timsome
initial condition and let us evolve with a given protocol. There are mainly twgswat
creating non-equilibrium dynamics.

Equilibrium environment. Quench.

The first one consists in evolving the system with an equilibrium environmentdibes
not correspond to that which is used to prepare the system. For instarzogienchone
prepares the system in equilibrium at a very high temperatame suddenly lowers the
temperature of the thermal bath. This very simple protocol is a good startingtpaen-
erate and study out-of-equilibrium dynamics. It turns out, as we shalltisaethere exist
well developed analytical methods to deal with it, from a classical and qoramtechan-
ics standpoint. The system subsequently relaxes on a time sgaleto an equilibrium
corresponding to the new values of the control parameters. More @hedisis so-called
thermalization is said to be reached when the density matrix of the system ishyitha
Gibbs-Boltzmann distribution. This puts three conditions on the final densityxn#tat
the final density matrix is constant in time, that it does not depend on the initiad stéte of
the bath (but rather on macroscopic characteristics such as the tem@eaatithat it does

Notice that it is not always possible to prepare a system in equilibrium aea t¢mperature. A prepara-
tion at very high temperature (compared to all the other energy scatdgeny is nevertheless always possible
to achieve.



not depend on the initial state of the system. Notice that a general prabiftnermaliza-
tion of quantum systems is still lacking although the first two conditions above heen
shown in 8]. Indeed the main difficulty emerges from the fact that quantum mechanically
even when we have complete knowledge of the state of a sységnt,is in a pure state and
has zero entropy, the state of a subsystem may be mixed and have nentzefy. This

is different classically where probabilities arise as a purely subjectikedaknowledge,
since in principle the knowledge of a whole system implies the knowledge ofw@vsys-
tem. Both classically and quantum mechanically, the question of knowing whatinet

a system thermalizes is not always of practical interest. The relevastiguén practice

is to know for instance how the typical time of the experiment,, compares withrjax.

As long as the number of degrees of freedanstays finite, the system always reaches the
equilibrium in a finite time. But in the thermodynamic limi — oo, one has to see how
Trelax SCales withV. For example, in th8d Ising model which is the simplest model for a
3d ferromagnet, the largest relaxation time scales@gcN?/3) with the constant > 0 of
order one 49].

If Trelax IS Much shorter than.,,, once equilibrium is established, the state of the system
depends only on the instantaneous values of the state parameters sutipestiere or
pressure and all equilibrium environments are equivalent no matter timeoiothe strength
of their coupling to the system. The statics of the system can be computed directly
the canonical ensemble with no need to model the environment. If a contemhpter €.9.
temperature) of the equilibrium environment is changed quasi-staticallpi a time scale
much larger tham,..), the system is expected to follow instantaneously the environment
and the tools of statistical mechanics can still be used in this time-dependbldmro

If Trelax IS Much longer tham.y,,, the statics are irrelevant since an equilibrium state is
never reached, at least within the time of the experiment.

Dynamics through a phase transition. If a quench is performed from a high temperature
equilibrium state to another temperature in the high temperature phase, cwsetpe
dynamics to quickly relax towards the new equilibrium state. However, if tlencju is
performed down to a temperature where the system is expected to shodesedphase,
non-trivial dynamics occur and the new equilibrium state may never baedac

This is for instance the case of the ferromagnet after a quench throegetiond or-
der phase transition. The order parameter has to choose between theadegenerate
minima of the free energy. Because different parts of the system carstahtaneously
communicate with each other, the order parameter takes simultaneouslyndiffeiees in
different regions of the sample. The relaxation proceeds by the annihilatithe walls
(topological defects) separating the domains of up spins and down $pithee thermody-
namic limit this yields a never-ending competition between domains and the ovegaiema



tization remains zero. A growing length scal&t), can be easily identified by measuring
the typical size of the domains. In the absence of disoRigpically grows as//t.

The picture is slightly different for a quench through a first order pheamnsition with
degenerate free energy minima in the low temperature phase. Domains darmang
stantaneously after the quench but there is a temperature-dependesttrygleation time
before the local order parameter chooses a free energy minimum. Gieetieé first stage
of the dynamics shows some domains forming and expanding freely. It iswdréy all
the sample is populated by domains that competition between them becomes tastrelev
process.

This out-of-equilibrium phenomena is known in this geometrical contexthase or-
dering dynamicsMore generally, the competition between two (or more) low temperature
ordered phases is namedaarsening

The two-time observables like two-time correlations or two-time response fasdi®
generally considered in experiments, theories and numerical simulatichsedrihey are
the simplest non-trivial quantities that give information on the dynamics ostesyp0-
52]. In equilibrium, correlation and response are linked through the fluctudigsipation
theorem which is broken out of equilibrium. Theoretically, they are usualated in a sim-
ple way to the Green functions for which an important artillery of computatioethods is
available. Experimentally or in numerical simulations, two-time correlations dte easy
to measure since they entail taking two snapshots of the system at diffienesstduring
the evolution. The behavior of the response function was shown to liedetageometric
properties of the domain walls such as roughness and topological pesges, 54]. How-
ever its measurement is usually not an easy task since it requires a |dtsifcstbaveraging
to get a good signal-to-noise ratio.

In the coarsening regime, the behavior of two-time observables can bendesed in
two steps. For short time differences, the observables probe theilosplace and in time)
properties of the sample. They are expected to behave as if equilibrivenagkieved. In
particular, they should be function of the time-difference only and the fltiotuaissipation
theorem is expected to hold in those short temporal windows. Howevearfger time-
differences, the non-equilibrium features are expected to show up kké4ds of time-
translational invariance. The time scalg that separates this two regimes is usually a
growing function of the age of the systdra. the time spent after the quench. The older
the system is, the longer it will take for two-time observables to relax. Thisgrhenon is
calledaging

Effect of disorder. In the presence of weak quenched disorder, dynamics are expected to
be slower than in the pure case due to the induced frustration and the pafrilmginter-
faces. At zero temperature, this can even lead to a complete cessatianti.gFor finite



temperatures, thermal fluctuations can release the pins, but in genetgpited length
R(t) grows slower than is the pure case (typically logarithmically in tins&}-57].

In the presence of strong disorder, such as in spin glasses, the sldaxinyg of the
dynamics is even more catastrophic. As the nature of the ground state lsdiotrinsically
disordered, the identification and the observation of such a growing Isngté remains an
important question because a diverging length scale at the glassy tramsitiichbe a key
argument in favor of a true thermodynamic transition scenario.

Non-equilibrium environment. Drive.

The second way to generate non-equilibrium dynamics is to couple the sis@mmon-
equilibrium environment such as those we mentioned earlier. When a cofwstam field

or drive is applied during the evolution of the system, a steady state may dsiaiddis a
transient if the system has the capacity to dissipate the energy that is injastaid example
of a classical drive, the rheometer is an instrument used to charactegizégblogical
properties of fluids such as viscosity. It imposes a constant sheanusfon to the fluid,
and one monitors the resultant deformation or stress once in a steady shateit\dbmes to
time-dependent non-equilibrium environments, the most important exampléseacyclic
protocols in the mechanism of heat engines used to produce or trarsfhengy.

1.2 Models and methods

In the following, we list the particular models we use to study the effect ofrdésoon
coarsening phenomena, the glassy dynamics and the effect of quantioafions. We
later briefly present the basic analytical and numerical tools to analyzedire@amics.

Models

Coarsening. The archetypal examples of coarsening phenomena are ferromadpietis w
can be simply described by tlig(n) lattice models. They are made uprfcomponent
vectors of fixed length (called spins) placed on the nodes ofd@adimensional lattice and
interacting through nearest-neighbor ferromagnetic interactigns- (0). Typically, we
think of a (hyper-)cubic lattice i dimensions where each spin Hasnearest neighbors.
Their Hamiltonian reads

H=-) TJsis;, (1.1)
(i)

with the constraints; - s; = n. Forn = 3 it corresponds to the Heisenberg model, for
n = 2 it is called theXY model whereas for. = 1 it reduces to the well known Ising
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model (; = +1). Notice the absence of a kinetic term in the Hamiltoniart){ This
is justified for processes in which inertia can be neglected or when stuthgnstatics in
which kinetic terms typically supply trivial contributions. Therefore therm @ intrinsic
dynamics and the relevant dynamics will be given by coupling the systeneiovenonment.

At a critical temperaturd,. depending on the values afandd, these models undergo
a phase transition from a high-temperature phase where the typical spiguations are
disordered to a low-temperature phase where all the spins tend to align anlealgection.

Although lattice models are quite amenable for numerical simulations, it is often diffi
cult to deal with the discreteness of the lattice analytically. A first possibility i®tsicler
the mean-field (or fully-connected) versions of the models that comelsfaothe Hamilto-
nian

1 N
H=—+ > Tsi-s;. 1.2)
i<j=1

Thel/N prefactor is there to ensure that energy scales Witthe total number of spins) in
the thermodynamic limiftV.— oo. This approximation is equivalent to taking the— oo
limit and wipes out the effects of small dimensionality. Another possibility is to write a
effective field theorya la Ginzburg-Landau for the coarse-grained other parameter (
the local magnetization). Theé-dimensionalO(n) non-linear sigma model is a coarse-
grained approximation of theg&(n) lattice models. The spatial dependence is given by the
continuousi-dimensional vectok and the spins are upgradedrtadimensional real fields
¢(x). The Hamiltonian reads
u
4n
The first term models the nearest-neighbor interactions. The field comisoren take any
real value. However the interplay between the quadratic and quartic tesithsu( g > 0)
favors thep(x) - ¢(x) = n g/u configurations.

1= [ aix [jv¢<x>~v¢<x>—g¢<x>-¢<x>+ (¢x)- 6?2 . (@3)

Weak disorder. Weak disorder can be introduced in the previous models by adding an
interaction with a spatially random magnetic fid#l For theO(n) lattice models this
yields the following Hamiltonian:

H=-) Jsi-sj—Y H;-s;. (1.4)
(i.4) i
We shall focus on the cage= 3 andn = 1, the so-called random field Ising modaki(

RFIM), with 6 nearest neighbors and a bimodal distribution for the ranfiels (H; =
+ H with equal probability).

The RFIM is relevant to a large class of materials due to the presenceeasitsi¢iat
cause random fields. Dilute anisotropic antiferromagnets in a uniform fielthe most
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studied systems expected to be described by the RFIM. Several revielesadescribe

its static and dynamic behaviob{] and the experimental measurements in random field
samples have been summarized3i8][ Dipolar glasses also show aspects of random field
systems$9, 60].

In the caseH = 0, the RFIM reduces to the pure Ising model with a phase tran-
sition from a paramagnetic to a ferromagnetic state occurring at a critical tatape
T, ~ 4.515J. Itis well established that id = 3 (not ind = 2) the ordered phase sur-
vives for finite H: there is a phase separating line on tlie /) plane joining(7., H = 0)
and (T = 0, H.) with H. ~ 2.215(35) J [61, 62]. At T" = 0 and small magnetic field,
it has been rigorously proven that the state is ferromagngécd7]. The nature of the
transition close to zero temperature has been the subject of some debates @la be-
ing first order B3] have now been falsified and a second order phase transition has been
proven p4, 65]. The presence of a spin glass phase closglte= 0, H.) [66] has been
almost invalidatedg7] although there is still a possibility it exist6§].

Quenched disorder can also be introduced inte) lattice models by considering
some random couplingd,;, between the spins:

H:—ZJMSZ'-SJ', (15)
(t.7)

where theJ;;’s are independent random variables. The familly of models this Hamiltonian
encompasses is calledndom bondmodels. If the couplings are ferromagnetic with a
finite probability to be zero, this gives the bond-diluted models (percolatigrigs). For

n = 1, the Random Bond Ising Model (RBIM), with ferromagnetic couplings itiated

on a small window of width/ around.J, > .J, is another typical model used to study the
domain growth in the presence of weak disorder.

Glasses. The case of strong disorder is realized when fh¢s are equally distributed
between positive (ferromagnetic) and negative (anti-ferromagnetigg¢saln this case the
models exhibit glassy behavior at low temperatures..Fer 1, the corresponding models
are often called the Ising spin glasses. The lower-critical dimension oé thaxlels is
expected to be two and fdr= 2 the transition occurs at zero temperature. We shall focus on
the casel = 3, the so-called Edwards-Andersdii(EA) model, with 6 nearest neighbors
and a bimodal distribution for the random couplings; (= +J with equal probability).
The 3d EA is in a sense complementary to théRFIM which has some weak disorder in
the local magnetic fields whereas tB& EA model has a strong disorder localized on the
bonds. This model undergoes a static phase transition from a paramagreespin glass
phase afl, ~ 1.14(1) J [69]. The nature of its low temperature static phase is not clear
yet and, as for the out-of-equilibrium relaxation, two pictures devel@pednd a situation
with only two equilibrium states as proposed in the droplet mod&I{1] and a much more
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complicated vision emerging from the solution of its mean-field version, the Skehjio#]
whose Hamiltonian reads

N
1
H=—— Z Jij SiSj - (16)
VN i<j=1
Notice thel//N prefactor that is needed to ensure a well defined thermodynamic limit.
More generally, the mean-field version of thén) lattice model reads

N
1
H= —77\] Z Jij S;-Sj, (17)

i<j=1
and is equivalentin the — oo limit to the the soft-spin version of SK model (so-called the
p = 2 spin glass) where the length constraint on each spin is relaxed andagfpche
global spherical constrairﬁ; EiNzl si-si = n[73, 74]. Thep = 2 spin glass model does
not have a true spin glass behavior but is more of a ferromagnet. Indeeshall see it has
a strong connection with the pusd O(n) ferromagnet model in the limit — oo.

Quantumness. Quantum mechanics determines the behavior of physical systems at atomic
and subatomic scales. The search for quantum effects at macroscalgis started soon

after the development of quantum mechanics. A number of quantum manifestatio
such scales have been found including quantum tunneling of the phassejph3on junc-

tions [75] or resonant tunneling of magnetization in spin cluster systefis [Quantum
fluctuations are expected to play an important role specially in the absettoerofal fluc-
tuations at zero temperature. A way to introduce quantum fluctuations in€d(thelattice
models (or their disordered versions) is to add a non-commuting term to the Haiamlto
Forn = 1, one can think of adding a transverse field to the quantum Ising model ygeldin
the following Hamiltonian ind = 3:

H=-) Jojo;—> Hol, (1.8)
(i) i

where thes!' (1 = z,y, 2) are the familiar Pauli matrices. This model was proposed to be
realized experimentally with LiHQY,_.F4 [77], an insulating magnetic material in which
the magnetic ions are in a doublet state due to crystal field splittingn FPerl, quantum
fluctuations can be put in by reintroducing a kinetic term to the Hamiltonian, ygpldie
family of so-called quantum rotor models. For instance the Hamiltonian abthg lattice

model is upgraded to
N

HZ%Z%L?—ZJSZ'-SJ'. (1.9)
=1 (i.4)

The spinss; are still n-component vectors (with; - s; = n) but are now called ‘rotors’

to avoid confusions with real quantum spins described by Pauly matrices. differ-

ence between rotors and quantum spins is that the components of the lattersaime
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site do not commute whereas the components; ao. L; is thei-th generalized angular
momentum operator which involves the momentum operator canonically conjagsgte

pi = —ihd/0s;. Thes;’'s and thepy's satisfy the usual quantum mechanical commuta-
tion relations.I" > 0 acts like a moment of inertia and controls the strength of quantum
fluctuations; wher®?I'/J — 0 the model approaches the classiCgh) lattice model. As
discussed in8] models of quantum rotors are non-trivial but still relatively simple and
provide coarse-grained descriptions of physical systems such asHBdsbard models and
double layer antiferromagnets.

We focus in particular on the mean-field version of the quantum rotor gladddmil-
tonian of which reads

1 AT 1 &
H==> -Li——— ) Jjsi's;. (1.10)
ni:12 \/Ni<j:1

The J;; couplings are taken randomly from a Gaussian distribution with zero meas’and
variance. We shall see that the connection to the pdi@(n — oo) ferromagnet holds for
the quantum models as well.

Analytical treatment
Classical

Master Equation. The microcanonical postulate (stating the equi-probability of all the
accessible microstates in a closed isolated system in macroscopic equilibriulvg gan-
eralized to non-equilibrium situations as the so-called evolution postulateastekequa-

tion. The Master equation is a first order differential equation describim¢jme-evolution

of an isolated classical system in terms of the probabiliilgs) for the system to be in

a given microstate at timet. It can be derived from the first principles of quantum me-
chanics (basically the Sabalinger equation) under the hypothesis that the quantum phases
of wave functions are randomized on a short time scale (quantum chae®dk external
processes/9). It reads

dPt(S)
dt

=Y [P(I)W(r—s) = P(s)W(s =), (1.11)
r#S

whereW (r — s) is the probability of transition from the microstateo the microstate.
These transition rates respect the energy conservdtign:— s) = 0if |E; — E,| < 0F
whered E is the incertitude on the energy at a macroscopic level. As a consequience o
the invariance of the underlying microscopic equations under time-réyvéiey are also
symmetric: W(r — s) = W(s — r). In the canonical set-up, one can write a similar
equation for the evolution of the system. The transition rates no longer stiesnergy
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conservation and are no longer symmetric. However, as a consecfg¢hedime-reversal
symmetry of the microscopic equations of the equilibrium bath variables, thisyystde
so-called detailed balance condition:

W(r—s)e Pl = W(s s r)e P | (1.12)

whereg is the inverse temperature of the bath and throughout this manuscript waitse
inwhichkp = 1. In order to satisfy the evolution postulate and evolve towards equilibrium,
the system must have the so-called mixing property that generalizes thiicepgociple

to non-equilibrium situations. For a given set of control parameters, aos@upic state

is characterized by a probability density that is non zero on a manifold oftasepspace.
During the evolution, the mixing property spreads the non-homogeneous digiebu-

tion on the whole manifold to finally reach the uniform microcanonical distributiémder

this mixing condition, one can show that the probabilitie$t) converge to the equilib-
rium Gibbs-Boltzmann distribution regardless of the initial conditioesany macroscopic
classical system evolves towards its equilibrium state.

Langevin Equation. It is often difficult to give a precise description of the environment
and its interactions with the system. And when it is possible, it is almost alwayssipe

to explicitly integrate out the degrees of freedom of the bath to computegasem the
system of interest. In the Master equation formalism, this difficulty lies in knowlieg
transition ratesV (r — s). To overcome this difficulty, one is led to find an heuristic way
of modeling the environment that should be guided by the symmetries of thensgstd
physical intuition.

In his study of Brownian motiorg0], Paul Langevin wrote in 1908 the following equa-
tion, that later took his name, for the positigrof a Brownian particle of mass:

mg = F(q) —y0q +&(t) - (1.13)

F(q) is the systematic interaction force due to the intramolecular and intermolecular in-
teractions. The interaction with the environment is modeled by two heuristiedoithe

first is a friction force term that introduces the dissipation and is hereoptiopal to the
particle’s velocity: (Stokes’ law). The second is a random fogceéaken to be a Gaussian
process, that models the rapid thermal excitations. If the environment islilibeigm, the

two terms are linked through a fluctuation-dissipation relation that A. Einstéableshed

in his 1905 article on Brownian motioi].

In many cases of practical interest the Langevin equation is given in tnelawped
limit (inertia is neglected) and with a white noise (the environment has a vanistligng
ation time). However, since there are other interesting instances in whicimtimeranent
exhibits retardation and motivated by the generalization to quantum systerkeepéner-
tia and introduce color for the noise. Moreover, to be even more gemegicpnsider the
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case in which the noise acts multiplicatively. This situation is expected to ocaem tile
environment is coupled non-linearly to the system.

This heuristic modeling of the interactions with the environment can be traed@ds
the (even more) mesoscopic level in terms of a coarse-grained ondengi@r fields(x, t).
Once again, the spatio-temporal coarse-graining procedure is raaetgtite but one ex-
pects the action of the environment to be similar to the one of the Langevin dynalmic
the so-called model A for non-conserved order-parameter, anavgred evolutionife. in-
ertia can be neglected, for instance when the short-time dynamics havedasa-grained
in time) is given by

At
dp(x,t)

whereF is the Ginzburg-Landau free-energy functional that one typicallytcocts using
symmetry and simplicity considerations together with physical intuition.

_'70(2)('%'7” +§(mvt) ) (1'14)

MSRJD formalism. It is possible to give a field theory representation of the stochastic
Langevin dynamics by use of the Martin-Siggia-Rose-Janssen-deDa@r(iMiSRJID) for-
malism. In a nutshell, the generating functional is obtained by first upgradenghysical
degrees of freedom of the system and the random noise into fields. drgelin equa-
tion of motion and its initial conditions are turned into a path integral and the acfion o
the corresponding field theory is evaluated on-shell, thanks to the introdwt one extra
Lagrange multiplier field for each physical degree of freedom. Since itaiss€ian, the
noise field appears quadratically in the action and can thus be integrate@woatis left
with a path integral over twice as many fields as number of physical degfde=edom.
The MSRJD formalism is particularly well suited to treating the dynamics of desect!
systems following a quench. Indeed, provided that the initial conditionsirzzerrelated
with disorder €.g. for very high temperature initial conditions), the generating functional
evaluated at zero sources is equal to one and can therefore be travaligged over the
disorder configurations without having to use the Replica Tiéd [

Quantum

Schrodinger equation. Quantum mechanically, the evolution of a system and its envi-
ronment is given by the Sabdinger equation. This microscopic equation is invariant under
time-reversal unless magnetic fields (or spins, or more generally cyragatsivolved. The
evolution for the reduced system, once the degrees of freedom oftthéda been some-
how integrated out, is however not unitary. Despite the lack of a geneval, it is widely
believed that equilibrium quantum systems in contact with a thermal bath tend etz

like in the classical case.
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Schwinger-Keldysh formalism. A convenient way to treat the out-of-equilibrium dy-
namics of a quantum system coupled or not to an environment is the use ffnite
tional Schwinger-Keldydh formalism which can be seen as the quantumaijgagon of
the MSRJD formalism. This was initiated by Julian S. Schwinger in 1961, antdes
further developed by Leonid V. Keldysh and many others. For the lagedfs, this tech-
nique has been used to attack a number of interesting problems in statistisadspagd
condensed matter theory such as spin syst@#s $uperconductivity §3-86], laser B7],
tunneling B8, 89, plasma P0], other transport processe%l] and so on. For equilibrium
problems, it has also been an alternative to the sometimes cumbersome Maéswdigtical
continuation.

For a system initially prepared at timg = 0, it involves a closed time-contodr that
goes from zero to plus infinity and then comes back to zero. This two-bremtour and
the doubling of the number of degrees of freedom that comes with it takertiodg in the
time evolution of an operator (let s&y) in the Heisenberg picture,

T{em il lal) L o) T et o dt o)}

whereT andT are respectively the time and anti-time ordering operatéis,(t) = H (t)+
Hipni (t)+ Heny is the total Hamiltonian of the system plus the environment. Once the system
and the environment have been encoded in this path integral, one has tateimger the
environment variables in order to obtain an effective action for the sysfems can be
performed in the case the environment is described by a Lagradgjarthat is quadratic

in its variables. The Lagrangiafy,; describing the interaction between the system and the
environment can be averaged over the environment variables by usiughation theory

in the coupling constant. Like in the classical case, a very simple model ofradhbath
consists in a set of non-interacting harmonic oscillators that are coupleé gystem of
interest. The interaction with the bath gives rise to non-local terms in the actiopldy a
similar role to the ones of a colored bath in the previous classical picture.

The Schwinger-Keldysh formalism, like its classical analog, is well suited &dirig
the dynamics of disordered systems after a quench from infinite temperature

Numerics: Monte Carlo

Equilibrium simulations. It is usually impossible to give an analytical treatment of in-
teracting statistical systems beyond the mean-field or fully-connectedxapation that
wipes out all the effects of the small dimensionality of the world in which we lR@em-
puter simulations provide a flexible way to tackle such problems. The taskudfoemgim
statistical mechanics is to compute averages of the }ype”.,(s)O(s) wheres runs over
all the configurations an, is the equilibrium Gibbs-Boltzmann probability proportional
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to e PH(s), The previous sum can never be computed exactly for the number ofjeonfi
urations grows exponentially with the number of degrees of freedom. Tdw heéhind
Monte Carlo simulations is to provide numerical estimates of these sim@sstochastic
trajectoryS in the configuration space. Since the Boltzmann faetat’ () vanishes for
most of the configurations, Nicholas Metropodét al. introduced the so-called ‘impor-
tance sampling’ algorithm@p] in which a configuratiors is chosen to be part of the sum
with probability P.,(s). The average then reduces to the arithmetical mean of the type
> scs A(s). The method Metropolis proposed to obtain this result is based on Markov the
ory. It generates a sequence of configuratiSns: sg — s; — s2 — ... in which each
transition has a probabilitj¥ (s; — s;+1) to occur. The probability for a configuration

to be selected at theth step,P;(s), converges to the equilibrium distributidf.,(s) re-
gardless of the initial conditior, provided that the detailed balance condition is satisfied:
W(si + s;)e PHE) = W(s; s s;)e A 5) A simple choice for the transition rates
W uses the energy variatiohE' = H(s;) — H(s;) by settingiV = 1if AE < 0 and

W = e PAF otherwise. The rapidity of the convergence to the equilibrium distribution and
the simplicity to computé\ £ depends on the choice of the transitions between two succes-
sive configurations but the final result is independent of that chéioea system of Ising
spins, the simplest transitions consist in flipping one single spin at a time bubihstenes
useful to implement cluster algorithms in which the transitions are collective gpsn fl is

only after the Markov chain has converged to equilibrium, that one cansteompute the
static averages.

Out of Equilibrium simulations.  The Monte Carlo method briefly explained aboveiis
priori not suited for out-of-equilibrium dynamics. If one measures obsersdigtore equi-
librium is achieved, we saw that the choice of the transition rates matters. Thecisely
the analogue situation of having the Master equation but not knowing th&tioanrates
since these depend on the details of the environment. If one wants to runpaitey sim-
ulation to study the out-of-equilibrium dynamics of a system connected to @hbeigim
thermal bath without any further information on the environment, the onlytinson the
choice of the transitions is that they must satisfy the detailed balance condition.

Fortunately, there are some dynamical properties of the system that aperdent
of the transition rules, at least within families of these. For example, the erporin
the Ising model appears to be the same for the Metropolis, the heat-bathcomtireuous
time algorithms. Such algorithms fall in the same dynamic universality class. tReless,
other algorithms like the Wolff cluster one or the simulated tempering do not. klusion,
when one is interested in the dynamics of a model to get a typical picture of sgatem
evolves to equilibrium, it is sensible to start by using the simplest dynamics. Tths is
philosophy we adopt.
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1.3 Questions

Equilibrium and time-reversal symmetry

Despite the invariance of the microscopic physics under time reveita well known
from the second principle that the evolution of out-of-equilibrium macrpscsystems is

not invariant under this transformation. However, when equilibrium istred, the sym-
metry is restored: it is experimentally impossible to determine whether a movie idplaye
forward or backward in time. This time-reversal symmetry, specific to equifiibr has
been addressed many times in the past. It was for instance one of the kegiémgs in

L. Onsager’s work of 19311[1, 12] to establish the reciprocal relations. Time-reversal is
also at the heart of fluctuation theorems that give relations betweenrtbemd backward
trajectories.

In Chapter2, we address this question one more time by identifying this symmetry in the

context of a field theory description of classical dissipative systems: 8RND formalism.

For equilibrium situations, we identify the field transformation corresponttirthe time-
reversal symmetry. It consists in a set of transformations for both th&qaiyields and the
Lagrange multiplier fields involving, as expected, a time-reversal of thekksfiThis sym-
metry is presented as a necessary and sufficient condition for equilidginamics. Indeed,

at the level of observables, we show that the corresponding Waahaahi identities lead

to all the well-known equilibrium properties and relations such as stationfwityuation-
dissipation theorem and the Onsager reciprocal relations. This symmetppvgeaful tool

to derive, in a rapid and systematic approach, all sorts of fluctuatioipdism relations.

In equilibrium, the MSRJD formalism can be written in terms of a super-symmetric
formulation. It involves the integration over a super-field whose comgsnamcode the
physical fields, the Lagrange multiplier fields and two extra fermionic fieldsogliuced
to give an integral representation of a functional determinant). This flation has been
introduced and derived for overdamped (no inertia) Langevin equatigih an additive
white noise environmen®B-96]. We generalize this approach to the case with inertia and
a multiplicative colored noise. The generating functional is invariant utvagicontinuous
super-symmetric field transformations that exchange the bosonic andthierie fields.

At the level of observables, the corresponding Ward-Takahashtiids lead to some of
the already mentioned equilibrium properties like stationarity or fluctuation dissipthe-

orems. However, they fail to generate relations involving a time-reversathi& Onsager
reciprocal relations. We discuss the relations these two super-symmaedvieswith the

previous MSRJD symmetry.

When the system is out of equilibrium, this symmetry of the MSRJD formalism is

3At least in non-relativistic theories.
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broken in a way that leads very naturally to fluctuation relations like the dskegquality
or even the underlying fluctuation theorem.

We identify another new symmetry of the MSRJD generating functional, whizlis
in but also out of equilibrium. At the level of observables, it generateatons of motion
coupling correlations and responses. These Schwinger-Dysoti@tgigrovide a nice way
to express all sorts of responses in terms of correlation functions widipglyging any extra
field. This has direct applications in computer simulations where the computétioear
responses using weak perturbations (to stay in the linear regime) is naswatask; besides
requiring two simulations (one with and one without the perturbation) it alseinesja lot
of statistical averaging to get a good signal-to-noise ratio.

Dynamical scaling and universality

Out-of-equilibrium dynamics deperal priori on the whole protocol used to prepare and
evolve the system. Therefore, finding universal features of therdipsadoes not seem
easy. However, in many situations the late stage dynamics are believed tedveegbby a
few properties of the system and environment whereas material details &fmirrelevant.
The renormalization group (RG) analysis is a powerful tool to detect andribe the uni-
versal features of models in equilibrium. In particular, it gives accessating relations.
Although there were many attempts to include the time evolution in the RG procéuene,

is no exact scheme to generalize this approach to dynamical problemsrawegriticality.
The difficulty arises as a result of the absence of a small parameterganaltoe = 4 — d

for critical phenomena: because of this, one cannot obtain explicit R@Gaes.

Coarsening. In the field of coarsening phenomena, motivated by experimental observa
tions and simulations, ttiynamical scaling hypothesitates that there exists, at late times,
a single characteristic length scakt) such that the domain structure is (in a statistical
sense) independent of time when lengths are scale®({®y [50]. In terms of observ-
ables, this predicts that the time dependence enters only thBugh For example, the
aging contributiofi of the two-time correlation functio®(t, ') is expected to scale as
Cag(t,t') = f(R(t)/R(t")). In a field theory description, such dynamical scaling can be
interpreted as consequences of symmetries of the effective dynantical @t describes

the late-stage dynamics.

This scenario has been proven analytically at zero temperature (with&slaumodel
A dynamics) in some mean-field models like tB¢én — oo) non-linear sigma modeB[/]
and in some very simple one dimensional models likeliddsing model P8, 99] or the
1d XY model [LOQ [both defined in eq.X.3)]. More recently it has been proven for the

“As opposed to the thermal contribution that is time-translational invariant.



20

distribution of domain areas in ti2el Ising model L01]. The dynamical scaling hypothesis
can be supplemented by the statement that the temperature dependereeltsorbed into
the domain scaléz(¢) such that the scaling functions are independent of the temperature.
This is somehow supported by equilibrium renormalization group analysigtidicts the
existence of a few fixed points controlling the low temperature phase. Thikden tested
numerically for instance in thd Ising model [L0Z] with Metropolis dynamics. Daniel S.
Fisher and David A. Huse pushed this idea a bit further, in the presémssag disorder in
which the coarsening picture is expected to hold. They conjectured tbatloa dynamical
scaling hypothesis is used to describe the long times dynamics, so that timesgihs le
are measured in units dt(¢), none of the out-of-equilibrium observables depend on the
guenched randomnesg( and their scaling functions are thus identical to those of the
pure limit. Notice that a typical lengthl,*, can be associated to disorder by matching
the energy barriers it creates and the thermal enefgyis by definition temperature and
disorder dependent. In this picture, whé&t) < L*, the dynamics are the one of the
pure system and wheR(¢) 2> L*, the dynamics are slowed down by activated escape
over the barriers. In103, it was argued in the context of thel and2d RBIM that the ratio
R(t)/L* should enter the scaling functions independently of the other scalingthd=wo-
time correlation function, this implies the scali6g, (¢,t') = f(R(t)/R(t'), L*/R(t)) that
violates the super-universality. However, for the late stage dynaR(ics>> L*, the ratio
L*/R(t) becomes negligible and the super-universality hypothesis is expectettitolho
has been tested numerically on some selected observables in a few Isirlg mitid@/eak
disorder. It has been shown to hold for the equal-times two-point funofitive 3d random
field Ising model (RFIM) 104 and the2d random bond Ising model (RBIM)LDS, 104.
More recently, the distribution of domain areas in this last mo#lé¥][and the integrated
response]08§ has also be shown to be super-universal.

In Chapter3, we test, by means of numerical simulations, the dynamical scaling and
the super-universality hypothesis in thé RFIM [defined in eq. {.4)] after a temperature
qguench in the coarsening phase. We place the emphasis on the spatiocaldtuptrations
by studying the distributions of local coarse-grained observables.

Spin glasses. The droplet picture of the out-of-equilibrium dynamics of spin glasses pre
dicts a single characteristic length scale that is developing in the system aftgrahch 0,

71, 109 110. Its existence is less clear than in the field of coarsening phenomena. Some
evidence for a growing length in ti3&€ EA model at low temperatures have been interpreted
within the droplet scenariolfL1-113, but other groups understand this length within the
other mean-field picturel[Ll4]. The studies of finite dimension structural glasses both from
numerical simulations and experimental probes have provided mountingheeidier the
existence of a growing length, at least in the super-cooled liquid phagke truly glassy
regime, the existence of a growing length scale is supported by the faatdiratation
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functions show some dynamical scalings which can be naturally explained scevzario.
Dynamics of glasses are believed to be heterogeneous in the senseféranhtifegions
of the sample age at different ratelsLf] and dynamic heterogeneities could be crucial to
understand the full temporal evolution. Therefore, considerable attelndéi® been paid to
the study of the local fluctuations of two-time observables such as two-timeaiions or
linear responses. In glasses, the average over disorder makestiaé smrrelation func-
tions short ranged. Spatially fluctuating quantities such as locally coaas®ed correlation
functions and their probability distribution functions are candidates to d#teajrowing
length.

We study, by means of numerical simulations, the dynamics o84heA model [de-
fined in eq. L.5)] after a temperature quench in the glassy phase. We focus in particular o
fluctuating local observables used to describe the heterogeneousidgndVe show that
the super-universality hypothesis does not hold and the comparison witkeghlts of the
quenched RFIM sheds a new light on the differences between domaithgrersus glassy
dynamics from the point of view of out-of-equilibrium scaling relations.

Effect of a drive

The effect of a non-equilibrium environment such as a drive on a rmeecpic system
close to a quantum phase transition is a by and large unexplored subjetie Buorks
have focused on non-linear transport properties close to an (equiijpquantum phase
transition [L16-118. Others have studied how the critical properties are affected by non-
equilibrium drives 119-121]. However, a global understanding of phase transitions in the
control parameter spade V, T, with T the temperaturé; the driving strength, antl the
strength of quantum fluctuations, is still lacking. Furthermore, to the bestrdénowledge,

the issue of the relaxation toward the quantum non-equilibrium steady stdteS®) has

not been addressed in the past.

In Chapter4, we address these questions by considering the fully-connected gquantu
rotor glass defined in eql(10. We prepare the system at very high temperature and then
suddenly couple it to two electronic lead$] at different chemical potentials but at the
same temperaturé. The voltage drog/ creates a current tunneling through the system.
In a first part, we study the properties of the non-equilibrium environroentposed by
the two leads. In particular we show that its effect on the slow modes of thanaigs is
the one of a thermal equilibrium bath. Then we study how the dynamical pizassition,
which separates the paramagnet and the ordering phase, survivespretience of the
drive by deriving the dynamical phase diagram of the model in Thé/(T", g) parameter
space wherg is the coupling constant to the environment. In a third part of this chapter,
we analytically solve the long-time dynamics in the coarsening phase and we bt
a generalized super-universality hypothesis holds for the long-timevioehaf two-time
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correlation functions since the scaling functions do not depenid ¢ime strength of disorder
J,T'nor V. As in the classicab = 2 spin glass, the response is found to loose memory
in the aging regime, corresponding to an infinite effective temperature. i¥¢es$ the
connection with real space coarsening by establishing the mapping 3a thén — o)
guantum pure ferromagnet. Finally, we compute the curfexst a function o/ and show
that it quickly saturates to a constant value.

In the concluding chapter, we present some lines for future research.
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THE stochastic evolution of a classical system coupled to a quite generic emarnin
can be described with the Langevin formalis®,[122-124] and its generating func-
tional, the Martin-Siggia-Rose-Janssen-deDominicis (MSRJD) path-aifdg5-128, 81].

In many cases of practical interest the effect of the environment isreaphy an additive
white noise and its memory-less friction, Brownian motion being the paradigmatin-ex
ple [80]. Nevertheless, there are many other interesting instances in which treisois
multiplicative and colored, and the friction effect is consistently descrilyed lmemory
kernel coupled to a non-linear function of the state variable. Such kamgguations ap-
pear in many different branches of physics (as well as chemistry amd stiences). In
magnetism, the motion of the classical magnetic moments of small particles is pheromeno
logically described by the Landau-Lifshitz-Gilbert equation in which thetdlatons of the
magnetic field are coupled multiplicatively to the magnetic mom&p®[130. Many other
examples pertain to soft condensed matter; two of these are confinesiaiffin which
the diffusion coefficient of the particle depends on the positiarnydrodynamic interac-
tions [L31], and the stochastic partial differential equation that rules the time-evolafion
the density of an ensemble of Brownian patrticles in interactiorlB2, 133. In a cos-
mological framework, they are effective equations of motion for the ogaltfiough close
to) equilibrium evolution of self-interacting quantum fields in which the shatevength
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modes serve as thermal baths for longer wave-length modes with slowamam 32—

34, 134, 135. Such type of fluctuations may yieldpriori unexpected results such as noise
induced phase transitions in systems in which the associated deterministic pateesa
not exhibit any symmetry breakin@36-139, 139, 140.

In order to better understand these processes it is useful to distingugsh i which
sources of fluctuations and dissipation can be different. On the one tlendoise and
friction term can have an ‘internal’ origin, like in diffusion problems. On tlileeo hand,
the stochastic fluctuations can be due to an ‘external’ sol#8.[In the former cases one
usually assumes that the variables generating the noise and friction anglibreqn and
the terms in the Langevin equation associated to them are linked by a fluctdasipation
theorem. In the absence of non-conservative external forces fbeBmn measure of the
system of interest is a steady state of its dynamics. In the latter cases nbidissipation
are not forced to satisfy any equilibrium condition and this translates intoabsilglity of
having any kind of noise and friction terms. For concreteness we slwai§fon the first
type of problems and only mention a few results concerning the latter.

In treatments of the examples mentioned in the first paragraph, the delichie donit
of vanishing fast variables relaxation time and noise correlation time is often.tdlkhese
lead to a first order stochastic differential equation with multiplicative whiteenoilés
interpretation in the @, Stratonovich or other sense requires a very careful analysis of the
order of limits, see e.g1§2 and references therein. In the body of this chapter we shall
keep both time scales finite and thus avoid the subtleties encountered in thevimibhing
limit.

We identify a number of symmetries of the MSRJD generating functional ofiaher
Langevin processes with multiplicative colored noise. One symmetry is only imadigui-
librium. The corresponding Ward-Takahashi identities between thelabore functions
of the field theory lead to various equilibrium relations such as stationarityuétion-
dissipation theoremd }3-148 or Onsager relations. Away from equilibrium, the symme-
try is broken giving rise to various out-of-equilibrium fluctuation relatio?§{ 149-151].
Another symmetry holds for generic out-of-equilibrium set-ups and implieswyc equa-
tions coupling correlations and linear responses. It allows in particulagpi@ss the linear
response in terms of correlations without applying a perturbing fiedd|{[ 153.

We are aware of the fact that some of the results we derive — especialig limit of
additive noise — were already known and we do our best to attribute thene tmuthors
of the original papers for review articles. Still, the presentation that weugilly develop
allows one to go beyond the simple cases and treat the multiplicative non-Wkamkaro-
cesses with the same level of difficulty. As far as we know, these constiémieresults.
Moreover, we discuss in greater detail than previously done the tramsfion of the mea-
sure and several Jacobians, and the domain of integration of the fields padir-integral.
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The importance of dealing with a colored noise, and to treat the transfornudtibe fields
in the complex plane, is enhanced by our purpose to extend this analysiarttugudissi-
pative problems.

2.1 Langevin equation

We consider @-dimensional fieldy) (e.g. a particle at position)) with massm driven

by a forcef’ and in contact with a thermal bath in equilibrium at inverse temperature
The initial time, g, is the instant at which the particle is set in contact with the bath and
the stochastic dynamics ‘starts’. We calltit = —7" and without loss of generality we
work within a symmetric time-interval € [T, T]. In this chapter, contrary to the rest
of the manuscript]” is not a temperaturel{ # 5~') but a time. The extension to higher
dimensional cases is straightforward.

Our conventions are given hA.

2.1.1 Additive noise

The Langevin equation with additive noise is given by

T
EQ([¢],1) = my(t) —F([w],t)+/Tdu n(t, u) (u) = &(t) (2.1)

with ¢)(t) = di(t)/dt andip(t) = d®y(t)/dt2. The force can be decomposed into con-

servative and non-conservative parfs{[¢)],t) = =V’ (¢ (), \(t)) + f2([¢],t). V is a

local potential the time-dependence of which is controlled externally thraugiotocol

A(t). V' denotes the partial derivative &f with respect top. f™°([¢],t) collects all the

non-conservative forces that are externally appligd®([¢],t) is assumed to be causal

in the sense that it does not depend on the future states of the systéjmwith ¢’ > ¢.

Furthermore, we suppose thar'([¢], t) does not involve second — nor higher — order time-

derivatives of the field)(¢). The last term in the left-hand-sidet(s) and the right-hand-side

(RHS) of the equation model the interaction with the bath. These two heuristic terms can

be derived using a model 4, 155 in which the bath consists in a set of non-interacting

harmonic oscillators of coordinatesthat are bilinearly coupled to the state variable of the

system of interest). The functiony is the retarded friction:[(¢,t') = 0 for ¢’ > t] and

the noise is a random force taken to be a Gaussian process. This assumption is quite

reasonable, for instance, for a Brownian particle with much larger masgtiraone of the

particles of the bath, its motion being the result of a large number of sueeessglisions,

which is a condition for the central limit theorem to apply. Since we assume thi®en

ment to be in equilibriumy (¢, ¢) is a function oft — ¢ and the bath obeys the fluctuation
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dissipation theorem of the ‘second kind'47):

Ethe=0,  (EDEW)e =" R(t-1), (2.2)

where (... )¢ denotes the average over the noise history. We introduced the symmetric
kernelX(t — ¢') = n(t — ') + n(t' — t) = R(¢ — ¢). If X has a finite support, the noise
is said to be colored in reference to optics (it has a non-constant Fepaetrum). In our
context a colored noise refers to a (Gaussian) stochastic processmatimary kernel. One
of the simplest examples is the Ornstein-Uhlenbeck process which exhilaigpanential
correlation function,

N(t— t) = Relt=tl/m (2.3)

Tn
wherer, is the correlation time of the noise angl > 0 is the friction coefficient. The white
noise limit, in which the bath has no memory, is achieved by sending zero or setting
n(t —t') = nod(t — t'). The Langevin equation then takes the more familiar form

EQ([¢].t) = map(t) — F([¢],t) + mot(t) = (), (2.4)

with (£(H)E(t)e = 26~ nod(t —t').

Notice that colored noises can be generated from underlying white noisegses. For
example the Ornstein-Uhlenbeck process given in2§) torresponds to the overdamped
relaxation of a particle of coordinatein a quadratic potential and in contact with a white
noise thermal bath:

mé(t) + () = ¢(0).
where( is a white noise following¢ (¢)¢(#))¢ = 2noB~16(t — t').

Newtonian dynamics, for which the system is not in contact with a thermal begh,
recovered by simply taking(¢) = R(¢) = 0 at all . Out of equilibrium environments can
be taken into account by relaxing the condition between the noise statistitiseafrattion
kernelX(t —t') = n(t —t') + n(t’ —t).

2.1.2 Multiplicative noise

We generalize our discussion to the multiplicative noise case in which the iGanssse
is coupled to a state-dependent functiahi(«)). The Langevin equation reads

EQ([¢],t) = mu(t) — F([], 1) + M'(4(1)) /du 0(t —w) M’ (¢ (u))i(u)
= M'(())&(t) - (2.5)

This equation can also be shown by using the oscillator model for the bath rmomatlinear
coupling of the formM (v)) >, c;q; wherec; are coefficients that depend on the details of
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the coupling andV/ () is a smooth function of the state variable with(0) = 0. By a
suitable renormalization af, one can always achiev®’(0) = 1. For reasons that will
soon become clear, we need to assume #igt)) # 0 V. These assumptions can be
realized with functions of the typ&/ (¢) = ¢ + L(v’) whereL is a smooth and increasing
function satisfyingL(0) = L’(0) = 0. The complicated structure of the friction term takes
its rationale from the fluctuation-dissipation theorem of the second kind xpat¢sses the
equilibrium condition of the bath. This equation models situations in which the fnictio
between the system and its bath is state-depengéals the same statistics as in the additive
case, see eg2(?2). The Langevin equation for the additive noise problem is recovered by

taking M (¢)) = 4.

2.1.3 Initial conditions

The Langevin equation is a second order differential equation thasreednitial values,
say the field and its derivative at timeT. We shall use initial conditions drawn from
an initial probability distribution?; (w(—T), ¢(—T)> and average over them. The initial
conditions are not correlated with the thermal najsén the particular case in which the
system is prepared in an equilibrium staejs given by the Boltzmann measure.

2.1.4 Markov limit

Langevin equations are often given in the Markov limit in which they appedetfirst
order stochastic differential equations. Second and higher order tnatives as well
as non-local terms such as memory kernels are not allowed. In otheswbhedeffect of
inertia is neglected (Smoluchowski limit) and the bath is taken to be white. This isgustifi
in situations in which the two associated time scales are sufficiently small commared
all other time scales involved. Concretely, the resulting equation is deriyeding an
adiabatic elimination procedure that consists in integrating over the fasblexiaf the
system (the velocities) and of the bath. However, this double limiting proeaeqguires a
careful analysis and leads to the well know@HEtratonovich dilemma.

The physics of the resulting equation may depend on how the relaxation tiowaesd
to inertia compares with the correlation time of the noise before sending the ttherof
to zero. In cases in which the latter is much larger than the former, the limitingastbhch
equation should be interpreted in the sense of StratonoYtif) 157]. TheRHS0f €q. 2.5
is given a meaning by stating thatin M’(«(t)) is evaluated at half the sum of its values
before and after the kick. Conversely, when the inertia relaxation time is hatgér than
the noise correlation time, the limiting equation should be interpreted indgtseitse 158
159. In this scenario, the rule is that/’(¢(t)) is evaluated just before the kick).
When the noise is additive the two conventions are equivalent&8) for all practical
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purposes. However, they are not for processes with multiplicative fbisg For these

it is possible to rewrite the &t stochastic equation in terms of a Stratonovich stochastic
equation by adding an adequate drift term to the deterministic force — arldwe@to use

the rules of conventional calculus. The Fokker-Planck equation iassddo the Markov
process does not depend on the scenario and the Boltzmann distributiote&dg state
independently of the convention used. However, the action of the dgamefanctional
acquires extra terms depending on the discretization prescrigi8in160.

In this article, we decide not to cope with the Markov limit and, unless otherstéged,
we always keep the inertia of the system in our equatiemnsA 0) and we use a colored
noise with a finite relaxation time.

2.2 The MSRJD path-integral formalism

The generating functionals associated to the equations of mdi@nand @.5) are given
by the Martin-Siggia-Rose-Janssen-deDominicis (MSRJD) path-integmathis Section
we recall its construction for additive noiséZg and we extend it to multiplicative noise
using a continuous time formalism. In App.B we develop a careful construction in the
discretized formulation.

2.2.1 Action in the additive noise case

The Langevin equation2(l) is a second order differential equation with sougceThe

knowledge of the history of the field and the initial conditions)(—7) and(—T) is

sufficient to construct)(¢). Therefore, the probability?[¢)] of a giveni history between
—T andT is linked to the probability of the noise histof, [£] through

PID[Y] = Rl¢] Dlg] P (4(=T), d(-T)) de(~T) di)(~T)

implying
Pl = RulEQll] |71l B (w(-T),(-T)) , (2.6)
whereJ[¢] is the Jacobian which reads, up to some constant factor,
7] = dety, | 3| = det, | “E2 ] = gy @7)

det[...] stands for the functional determinant. We introduced the notafign| for future
convenience and we shall discuss it in S2@.3 After a Hubbard-Stratonovich transfor-
mation that introduces the auxiliary real fielg the Gaussian probability for a given noise
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history to occur reads

Pn[g] _ N—l /D[lj]] e~ Jdu NZJ(u)ﬁ(u)—l-% Jfdudv i&(u)ﬁ’lN(u—v)id}(v) ’

with the boundary conditiong(—7) = ¢ (T) = 0 and where all the integrals over time
run from—T to 7. In the following, unless otherwise stated, we shall simply denote them
J. N is ainfinite constant prefactor that we absorb in a re-definition of the meagy).
Back in eq. £.6) one has

PW}] B /DW] i~ Jdu i@(u)Eq([w],u)Jr% [ dudv i (u) B~ 1R (u—v)ith(v)+In P+1n | Jo 4]

and we obtain
PIIDW] = Dly) [ DI S,
with the MSRJD action functional
S.dl = R (6-T),0-T)) - [duibee(y, )
+% //dudv W(u) B~ R — v) () + n | B[] . (2.8)
The latter is the sum of a deterministic, a dissipative and a Jacobian term,
Sl = S, ] + ST, ] + In ol
with
S = WA (-T)0-1)) - [dutd [mit) - Fu)w)]., @9
st = [duiie) [donw= o) [5750) - ) (2.10)

Sdet takes into account inertia and the forces exerted on the field, as well atd®ire of
the initial condition.S4* has its origin in the coupling to the dissipative bath. In the white
noise limit,n(t —t') = nyd(t — '), the dissipative action naively simplifies §'5[¢), ¢] =

no [ du it (u) [ﬂ—liqﬁ(u) - @&(u)} (see Sec2.1.4for additional details on this limit).

Notice that integrating away the auxiliary fiei,?zjyields the Onsager-Machlup action
functional [L1, 12, 161-163. However, we prefer to work with the action written in terms
of ¢ andiy as this is the form that arises as the classical limit of the Schwinger-Keldysh
action used to treat interacting out-of-equilibrium quantum systésis [ 64], that we shall
analyze along the same lines it6[.
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2.2.2 Action in the multiplicative noise case

To shorten expressions, we adopt a notation in which the arguments oflttednd func-
tions appear as subindices, = ¢ (u), n,—, = n(u — v), and so on and so forth, and the
integrals over time as expressedfas= [, du .

In the case of the Langevin equatichg) with multiplicative noise, the relatior2(6) is
modified and reads

EQ[+/]
M ()

Pl = Pn[ ]ww]|a<w_T,¢_T>,

with the Jacobian

R L e

0ty M ’(%)

and the generalization of the definition & in eq. €.7) to the multiplicative case:

SEQu[Y]  M"(¢u)

0ty M’ ()
The construction of the MSRJD action follows the same steps as in the addiiseegase,
complemented by a further transformation of the fi'&jd|—> i) M’(v), the Jacobian of
which cancels the first determinant factor in thes of eq. €.11). Therefore, the MSRJD
action reads

S, 0] = WmPG_r 1) - / 9 uEQu[t]

} B (@11)

Jol] = det,, [ EqulY] m] | (2.12)

//lqu/ 7/1u 6 1Nu v (%)I%Jrlnljo[ ”7 (213)

with 7y defined in eq.4.12 . The deterministic part of the action is unchanged compared
to the additive noise case and the dissipative part is now

s 0] = [ida [ M) ne @) [0 -0) . @1

2.2.3 Jacobian

In App. 2.C we prove that even in the multiplicative colored noise case that the Jacobian
Jo is a field-independent positive constant as long as the Markov limit is nehta®ne

can therefore safely drop the Jacobian term in the normalization. Howegedecide to
keep track of this term in our expressions. Furthermore, it will be usefgive an explicit
representation offy in which it is the result of a Gaussian integration over Grassmann
conjugate fields andc*,

_ / Dle, c*] 57l ¥ (2.15)
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with

« 0EQu[Y) - M7 ()
ewwl= [ [aeWe - [a i Meae, @6

and the boundary conditions{—T7") = ¢(—=71) = ¢*(T') = ¢*(T) = 0. Plugging in the
Langevin equation4.5), we arrive at

)
C c ,w // [ 62 Ou—v — ?w[w] +M/(¢u) ullu— vM,(WU) Cy

14
ct ]\]é/((:f:)) (MmO, — Fu[t]] cu - (2.17)
The Grassmann fieldsandc* that enter the integral representation of the determinant are
known as Faddeev-Popov ghosts and can be interpreted as spinteissife The two-time
fermionic Green function defined as

(Ciev)gs = /D[c, clciey S7lec" ¥l (2.18)

is related, by use of Wick’s theorem, to the inverse operat@E%M M7 (1;/’:) EQ[th]6;_y.
(cfev) g7 inherits the causality structure of the latter and it vanishes at equal timesgeesion
the Markov limit is not takeni(e. all fermionic tadpole contributions cance{}; ¢;/) g7 = 0

for t > t. The last statement can be easily verified by considering the discretirgdrve

of S (see App2.B.3and App2.C) and by checking that the diagonal terms of the inverse
operator vanish in the continuous limit. Notice tifat only involves combinations of the
form c*c, i.e. it conserves the fermionic charge a@g)gs = (c¢f)ss = 0. This implies
furthermore that [c, ¢*, 1] and more generally the MSRJD generating functional (at zero

sources) are invariant under the following field transformation

T7(a) = { 4T % yaect, (2.19)
c oA,
The Jacobian of the transformation is trivially equal to one and the me®&3ure*| is left
unchanged. One h&5; ()77 (8) = T7(ap).

The total MSRJD action given in ed2.(L3 can be written equivalently as a functional
of ¢, ¢, c andc* provided that the path-integral measure is extended to the newly introduced
fermionic fields:

Shp, b, ¢,c*] = S p, ] + S [, ] + ST [e, ¢*, ] . (2.20)
2.2.4 Observables
Measure.

We denote( ... ) the average over the thermal noise and the initial conditions. Within the
MSRJD formalism, the average is evaluated with respect to the action furlcsipfa)] or
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S[, 1, ¢, ¢*] and we use the notatign.. ):

(.)s

/Dw,q,z}] .. &S] (2.21)

= /D[w,zﬁ,c, c*] ... eSbec] equivalently. (2.22)

Local observable.

The value of a generic local observableat timet is a function of the field and its time-
derivatives evaluated at timei.e. a functional of the field) aroundt, A([¢],t). Unless
otherwise specified we assume it does not depend explicitly on time and deAdid?)].
Its mean is value

(Alp(®)]) = (Al @)])s - (2.23)

Time-reversal.

Since it will be used in the rest of this work, we introduce the time-reverssd i by
Y(t) = ¢(—t) for all t. The time-reversed observable is defined as

Ar([y], 1) = A([Y], ). (2.24)

It has the effect of changing the sign of all odd time-derivatives in tlpeession of local
observablese.g. if A[(t)] = dy)(t) then A,y (t)] = —0(t). As an example for non-
local observables, the time-reversed Langevin equafidi) (eads

EQ()t) = mi(t) — Fe({l.) - / dunu— ). (2.25)

=T

Notice the change of sign in front of the friction term that is no longer dissan this
new equation.

Generating functional
Formally, the generating functional reads
Z[J,J] = <efdu J(u)¢(u)+j(U)ilzf(u)>S ’ (2.26)

where.J and.J are the sources fap and+) respectively andZ|0, 0] is normalized to unity
by construction.
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Two-time correlation.

We define the two-time self correlation function as

Ct,t) = @) = Wt)wE))s . (2.27)
In terms of the generating functional it is expressed as

o 8221, ]
C(t,t) = SI06 () o . (2.28)

Given two local observables and B, we similarly introduce the two-time generic correla-
tion as

Clapy(t,t) = (AR®]BE)])s , (2.29)

The curly brackets are here to stress the symmetry that underlies this defi6itigs, (¢, ') =
C’{BA} (t/7 t)'

Linear response.

If we slightly modify the potential according t&'(y) — V(¢) — fyv, the self linear
response at timeto an infinitesimal perturbation linearly coupled to the field at a previous
timet' is defined as

Sp®)| )i
8fy(t') fu=0 fy(t) fyp=0 ‘

R(t,t) = (2.30)

Itis clear from causality that if’ is later thart, ((t))s,] cannot depend on the pertur-
bation f,,(t') so R(t,t') = 0 for ¢’ > ¢. At equal times, the linear respon&t, ¢) also
vanishes as long as inertia is not neglected=£ 0)1. More generally, the linear response
of A at timet to an infinitesimal perturbation linearly applied Bat timet’ < ¢ is

6fs(t) fB=0 a 5fB(t/) fB=0

with V(¢) — V(¥) — feB[y).

1In the double limit of a white noise and — 0, the equal-time response can slightly violate the causality
principle depending on the order in which the limits are taken. In thedenario it vanishes whereas in the
Stratonovich one it has a finite value.
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2.2.5 Classical Kubo formula

By computing explicitly the functional derivativg'é f,, in the path integral generating func-
tional, we get

5<>S[fw} — < 55[%1/;70» C*af@b}
0fu(®) s, T 0f(t) .
= (. ih(t))s + (.. mc*(t)c(t»S :

The first term in therHS comes from the functional derivative 6F°t. The second term
comes from the Jacobian term expressed with the fermionic gt®étsind vanishes iden-
tically (see the discussion on the equal-time fermionic Green function in2S&8. One
has

I RIS YETS B

(i(t)s = W i 0, (2.32)
N S S € D I B
<1¢(t)1¢(t )>S = m o =0. (2.33)

From the definition of the linear response, eg.30), we get the ‘classical Kubo for-
mula’ [147]

R(t,t") = ()i (t))s - (2.34)

The linear response is here written within the MSRJD formalism as a corretatioputed

with an unperturbed action. The causality of the response is not explieértheless fol-
lowing the lines of 31] one can check it is built-th Because of this expression, the
auxiliary field ¢ is often called the response field. Observe that we have not specified the
nature of the initial probability distributio®;, nor the driving forces; eq2(34) holds even

out of equilibrium. In terms of the generating functional it is expressed as

9 A

= 2 2ndl (2.35)
5T J ()

J=J=0

Similarly, by plugging eq.4.23 into eq. €.31), we obtain the classical Kubo formula

2In general, a multi-time correlator involvirig)(¢1) vanishes ift; is the largest time involved.
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for generic observables:

65[7#71&7676*;]03]
)|,
» o OBI()]

= (AW [t 3R

o~ oy OBIU()]
= (Alp(1)] Z_jo FO() g aman ) (2.:36)
This formula is valid in and out of equilibrium and allows us to write the respéursetions
associated to generic observablegy( functions of the position, velocity, acceleration,
kinetic energy, etc.) as correlatorslofzﬁ and their time derivatives. For examplehfis
just a function of the field (and not of its time-derivatives), only the- 0-term subsists in
the above sum, yielding

Rap(t,t') = (Alp(t)]

2 OB[Y ()]
/ _ /

Ran(t,t) = (AR =5 G )s (2.37)
As another example, if one is interested in the response of the accelerdtign)] =
d?71(t) to a perturbation of the kinetic enerd3ft(t)] = 1m(d,¥(t))* one should compute

Rap(t,t)) = m(d2(t)yih(t) O (t))s . (2.38)

Furthermore, it is straightforward to see that within the MSRJD formalism weeggend
all the previous definitions and formulee #obeing a local functional of the auxiliary field:

A[(t)]. For example, ifA[t(t)] = i (t) and B[(t)] = v(t), we obtain the mixed
response

Ry, (tt) = (W@)iw(t)s=0, (2.39)

where we used eq2(33).

2.3 Equilibrium

In this Section we focus on situations in which the system is in equilibrium. We iden-
tify a field transformation that leaves the MSRJD generating functionalu@ie at zero
sources) invariant. The corresponding Ward-Takahashi identitiegeba the expectation
values of different observables imply a number of model independeiitletum proper-

ties including stationarity, Onsager relations and the fluctuation-dissipatiorethg FDT).
These proofs are straightforward in the generating functional formatlsmpnstrating its
advantage with respect to the Fokker-Planck formalism or master equagsnwhen the
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environment acts multiplicatively and has a non-vanishing correlation time hefersport

soon [L65 on the extension to the quantum case where the Keldysh action also exhibits a
non-trivial symmetry for equilibrium dynamics. Similarly to the classical cass,9yim-

metry leads to the quantum FDT.

2.3.1 The action

Equilibrium dynamics are guaranteed provided that, apart from its intemactiith the
bath, the system is prepared and driven with the same time-independerdresahvative
forces ¢ = —V”). In such situations, the initial state is taken from the Boltzmann proba-
bility distribution

In P(¢_p,¢-1) = —fH[Y 7] —In Z ,

whereH[y,] = 2m¢t + V() is the internal energy of the system, afids the partition
function. The Langevin evolution of the system in contact with the bath cgubi the
form

L[ty , / _ /
u 5£Z | M Wt)/umuM (Yu)tpu = M ()& (2.40)

with L[1h,] = $mip2 — V(3,) being the Lagrangian of the system. In this equilibrium
set-up, the deterministic part of the MSRJD action functional reads

OL[Y,]
0y,

= ﬁ ( mwQT + V(’lﬁ T)) —InZ - /n&u {m% + V’(%) '(2'41)

S9U ] = —BH_7] —InZ + / i

The dissipative part of the MSRJD action functional remains the samegsée&). As
discussed in See@..2.3 the Jacobiag/ enters the action through the constant tény, or
it can be expressed in terms of a Gaussian integral over the ghostscfeshdis:*. In that
case, its contribution to the action reads

S§7e,c* ] = // ¢l [mo2dy—y + M' (1hu) Outu—o M’ ()] ¢

o Ly MU MG
[ v+ Sp g G v )| e 242

2.3.2 Symmetry of the MSRJD generating functional

We shall prove thaf D[4, ), ¢, ¢*] eSlediec] s invariant under the field transformation:

(2.43)

T. = ¢u — wfua Cy Ciu,
“ iy — W_y + B0y, CZ = —C_qy -
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This transformation is involutary7o, 7., = 1, when applied to the fields or i¢) and
the composite field*c. It does not involve the kernel and includes a time-reversal. It
is interesting to notice that the invariance is achieved independently by thendestic
(S4¢t), the dissipative§%%) and the Jacobiars(’) contributions to the action. This means
that it is still valid in the Newtonian limit:{f = 0).

In terms of the generating functional, the symmetry reads
Z[J,J) = 2T + oJ, J], (2.44)

whereJ(u) = J(—u) andJ(u) = J(—u).
The detailed proof that we develop here consists of two parts: we fiogt gt the
Jacobian of the transformation is unity, then that the integration domain of tiefdarened

fields is unchanged. Afterwards we show that the action functiﬁh&alg/}, ¢, c*]is invariant
underZg.

Invariance of the measure.

The transformatiof,, acts separately on the fielgsandit) on the one hand, and the fields
c andc* on the other. The Jacobian,, thus factorizes into a bosonic part and a fermionic
part. The bosonic part is the determinant of a triangular matrix:

I 6¢7u
_ 5(w7¢> — 1 'lg)v 0 ] 1 2
gb = det| Y| _ e © | = (det! [Busn))? = 1
q [5(7éq¢,7éq1/1)] T [ 515);“ 515);“ (det, [6urv])

and it is thus identical to onelf4q. It is easy to verify that the fermionic paﬁefq =1las
well.

Invariance of the integration domain.

Before and after the transformation, the functional integration on thedietdperformed
for values ofy, on the real axis. However, the new domain of integration for the field
is complex. For a given timg v is now integrated over the complex line with a constant
imaginary part—igdy;. One can return to an integration over the real axis by closing
the contour at both infinities. Indeed the integrand, goes to zero sufficiently fast at
1y — +oo for neglecting the vertical ends of the contour thanks to the @Yﬁm(iqﬂtﬁ
in the action. Furthermore the new field is also integrated with the boundadjtioms
d(=T) = (T) = 0.

The transformatiof,, leaves the measuf®[c, c*| unchanged together with the set of
boundary conditions(—7") = ¢(—T) = ¢*(T') = ¢*(T') = 0.
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Invariance of the action functional.

The MSRJD action functiona [, ¥, ¢, ¢*] = S [4h, ] + SUS[h, )] + ST (¢, ¢*, ) is
invariant term by term. The deterministic contribution given in @) satisfies

S T Tel] =0 P ) = [ [+ 000 [+ V(5]
= I R, ir) = [ e i+ V@] + 8 [ i [+ V(0]
— W R@r,dr) = [ i i+ V()] + 8 [ 0.
=S4, 4],

where we used the initial equilibrium measineP; (1, 1)) = —3H[¢] — In Z. In the first
line we just applied the transformation, in the second line we made the substitution v,
in the third line we wrote the last integrand as a total derivative the integvethich cancels
the first term and creates a new initial measure.

Secondly, we show that the dissipative contributistis[¢, 1], defined in eq.2.10), is
also invariant undef,,. We have

ST Tod] = [ [ist 0] [ 57 M) s M (0)
_ / [, — 6] / M () 10— M ()50,
= 5%y, q].

In the first line we just applied the transformation, in the second line we macke bstitu-
tion u — —wu and in the last step we exchangedndv.

Finally, we show that the Jacobian term in the action is invariant once it ieespd
in terms of a Gaussian integral over conjugate Grassmann fieltsdc*). We start from

eq. .42

ST (Toges Toac”, Togth) = — / / e [0y + M () Outas M (60)]
/

+/uc—u|: Vv (¢—u) + M/(lp—u) M/(w—u)
= / /C: [mai(sv—u - M/(wu)aunv—uM/(wv)} Cu

- [ v + G o+ v e

=S(c,c", ).

P + v’(w_uﬂ .
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In the first line we just applied the transformation, in the second line we egeldatihe
anti-commuting Grassmann variables and made the substitutions-u andv — —uv, in
the last step we usedn, ., = —0d,n,—» and exchanged andv.

2.3.3 Ward-Takahashi identities

We just proved that equilibrium dynamics manifest themselves as a symmeteyMB8RJID
action and more generally at the level of the generating functional. This sygnhrees di-
rect consequences at the level of correlation functiond.if a generic functional of and
1 we get the following Ward-Takahashi identity

(A, ] ..)s = (A[Teqth, Teq?] .. )5 - (2.45)

The use of this identity leads to all the possible equilibrium relations betweamatides
as we shall now describe in the following.

2.3.4 Stationarity

In equilibrium, one expects noise-averaged observables to be indepeidhe timet at
which the system was prepared (in our case- —7'). One-time dependent noise-averaged
observables are expected to be constanfi;]) = ct, and two-time correlations to be
time-translational invariant{A[y;| B[¢v]) = fi_y. Similarly, one argues that multi-time
correlations can only depend upon all possible independent time-diffesebetween the
times involved. These statements have been proven for additive white no@Espes using
the Fokker-Planckl67 or SUSY formalisms $4-96]. The use of the transformatich,,
allows one to show these properties very easily for generic Langeviegses.

One-time observables. Taking A = 1 and lettingB be a generic local observable, the
equal-time linear response vanishBs s (¢, t) = 0. Using the classical Kubo formul2.(36
we obtain

Ras(t.1) Zat g aa%

Applying the transformatiofl,,, we find
_ 7 1/] ] n-+1 [1/) t]
Rap(t,t) = Za 78%75 +ﬁza i 8%t>

TheLHS and the first term in th&Hs vanish identically at all times. One is left with the
second term in theHs that simply read$0; B, [v)—:]) = 0:(B:[¢—+]) = 0, proving that all
one-time local observables are constant in time.
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Two-time observables. Because we just showed that[)(¢)]) is constant in equilibrium,

the response45(t,t'), see its formal definition in eq2(31), can only be a function of
the time-difference between the observation time and the time at which the p¢idarts
applied. Therefore can it be written in the fol g (¢,¢") = f(t — t')0(t — t'). We shall

see in Sec2.3.7that the fluctuation-dissipation theorem relates, in equilibrium, the linear
responsei ap(t,t') to the two-time correlatiod’; 4 gy (¢, ') implying that this last quantity

is also time-translational invariant.

Similarly, (n + 1)-time correlators can be proven to be functions @fidependent time-
differences because they are related, in equilibrium, to responsesrog correlators that
are time-translational invariant.

2.3.5 Equipartition theorem

Let us consider the local observabld$y)(t)] = 0w (t) and B[y (t)] = (). In that
caseR p(t,t') = (Bubity)s = 8, (it )s and we recognizé, R(t,t'). Using the field
transformatiortZ.,, we get

HR(t 1) = O(W_iith_p)s + BOW—_1Optp_1r)s
= 8t<w—th/;—t’>5 + B(0 )1 Opthyr) s

If ¢ > ¢, the first term in therHS vanishes by causality. Considering moreover the limit
t' — t~ theLHs is 1/m as we shall show in Se2.4.2 Finally, we get the equipartition
theorem

Bm{(Oe)®) = 1. (2.46)

2.3.6 Reciprocity relations
If we useZ in the expression 29 of generic two-time correlation functions, we get
(Al Blow])s = (Ar[—e] B[ ])s
reading
Crapy(t.t") = Cpa,py (=t —t) . (2.47)
In the cases in whichl and B have a definite parity under time-reversal we obtain

C{AB}(T) = C{AB}(|7'|) if A andB have the same parity,
Ciapy (1) = —Crapy(—7) otherwise.
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2.3.7 Fluctuation-dissipation theorem (FDT)
Self FDT.

Applying the transformation to the expressi@d4) of the self responsg&(¢,¢’) we find
(Wity)s = (TeqrTeqithe)s = (Y_iith_y)s + B_10ptp_p)s
and we read
R(t,t") = R(—t,—t')+ BOC(—t,—t")
that, using the equilibrium time-translational invariance, becomes
R(r) = R(-7) = —p0:C(-7),
where we set = ¢ — t’. SinceC(7) is symmetric inr by definition, this expression can be
recast, once multiplied b§(7), as
R(r) = —-0O(1)po.C(1) . (2.48)
Equation .48 is the well-known fluctuation-dissipation theorem. It allows one to predict

the slightly out-of-equilibrium behavior of a system — such as the irreMerdibsipation of
energy into heat — from its reversible fluctuations in equilibrium.

Generic two-time FDTs.

We generalize the previous FDT relation to the case of generic locahalidesA and B.
Applying the transformatiofl,, to expressionZ.36) of the linear responsRAB(t, t')

Al Y Opidy a,[ff;t] = Zaw v %b
n=0

n+1 [wf ]

7t] goat/ T;Z) t/ aanwt/ >

Z pit Soreth)s + 8 0uAdv-Bilur s

Applying once again the transformatlon to the last term inRRs yields

wtz il Sors = 2 i SP=tl) 4 pou Al Bl
which reads
Rap(r) — Rap,(—7) = —B0:.Ciapy(7). (2.49)

By multiplying both sides by () we obtain the FDT for any locad and B
RAB(T) = —@(T)ﬂaTC{AB}(T) . (250)
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2.3.8 Higher-order FDTs: e.g. 3-time observables

We give a derivationyia the symmetry of the MSRJD formalism, of relations shown and
discussed ine.g.[167], within the Fokker-Planck formalism for stochastic processes with
white noise.

Response of a two-time correlation.

We first look at the response of a two-time correlator to a linear perturbagiplied at time
1

R(ts, to;t1) = w . (2.51)

5f/¢)t1 fw:()
In the MSRJD formalism, it can be expressed as the 3-time correlator

R(t37t2;t1) = <¢t3¢t2h/;t1>s . (252)

Causality ensures that the response vanishes if the perturbation iSgrast¢ine observa-
tion times: R(ts, to; t1) = 0 if ¢; > max(t2, t3). We assume without loss of generality that
ta < t3. Under equilibrium conditions, the response transforms ufigeas

R(t37 t27 tl) = <¢Lt3¢7t21¢37t1 >S + ﬁah <¢—t3¢—t2 @Z)ftl >S .

Multiplying both sides byd(¢3 — t1) and transforming once again the last term inries,
we get

B0, (Vi b, 0, ) s 1Tt <t <3,
R(ts, t2;t1) =  R(—t3, —to; —t1) + B0y (Ve Ve, )5 1 t2 < t1 < t3, (2.53)
0 ifto <tz <ty.

Second order response.

Let us now look at the response to a perturbation at tinw the linear responsB(ts, t2):

M ) (2.54)

R(t3;t2,11)
O fyr, 0.fy, fy=0

In the MSRJD formalism, it can be expressed as the 3-time correlator

R(tsito,t1) = (Yo ithe, iy, )s - (2.55)
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Itis clear from causality that the response vanishes if the observation tleéoie the two
perturbationsR(t3; t2,t1) = 0 if t3 < min(¢y,t2). The response transforms undey, as
R(ts;te,t1) = R(—t3;—t2, —t1) + B0 R(—t3, —t1; —t2)
+ B0, R(—t3, —ta; —t1) + 3200, O, (150101, )5 -

Let us assume without loss of generality that< ¢,. Using causality arguments and
applying once more th&., transformation to the remaining terms we obtain

0 ift3<t1<t2,
R(tg;tg,tl) = R(—t3; —t9, —tl) + ﬁath(tg,tl; tz) if 1 <tz <to, (256)
68t1R(t3,t1;t2) if t1 <ty < t3 .

2.3.9 Onsager reciprocal relations

Rewriting twice eq.2.49 as

Rap(T) = Ra,B,(—7) = —B0;Capy(7),
Rpa(=7) = Rp,a, (1) = B0:Cipay(—7) = B0:Ciapy(7) ,

and summing up these two equations with- 0 we get
Ruap(t) = Rpa(7).

These equilibrium relations, known as the Onsager reciprocal relaggpess the fact that
the linear response of an observaldldo a perturbation coupled to another observable
can be deduced by the response&3pfto a perturbation coupled td,.

2.3.10 Supersymmetric formalism
Generating functional.

The generating functional of stochastic equations with conservatices@dmits a super-
symmetric formulation. This has been derived and discussed for addiiive im a number

of publications P3-96]. We extend it here to multiplicative non-Markov Langevin pro-
cesses (seelpg for a study of the massless and white noise limits). To this end, let us
introduced andé*, two anticommuting Grassmann coordinates, and the superfield

M"<w<t>>> |
M'(¥(1))

The MSRJD actiort [see eq. 2.20] has a compact representation in terms of this super-
field:

(t,0,0%) = (t) +c*(t) 0 + 0% c(t) + 070 (iz&(t) + ¢ (t) e(t)

S = gdet 4 gdiss (2.57)

susy susy
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with
SeE[v] = —ﬁ/d@d&* 9*9H[\P(—T,9,0*)]—1n2+/dT LU(T)],

SdISS [ ]

susy

;/ AT’ dY M(U(Y)) D (Y, T) M(¥(Y))

H[W] = Lm¥? + V() and£[¥] = im T2 — V(¥). We used the notatiolf = (¢, 6, 0*)
anddY = dt df d#*. The ‘dissipative’ differential operator is defined as

0? — 0
(2) / _ r */  px o —1
DOMY,T) = 5t — 156" —6%)5(6' — 6) (25 e + S az:)

Wheres_iég is a short notation fo?ﬁ% — 1. Itis equal to 1 if there is & factor in the right
and to -1 otherwiseD(? can be written as

DAY, 1) =n(t' — )50 — 6*)5(¢' — 0) (DD — DD) ,

with the (covariant) derivatives acting on the superspace:

9 0,0

» — = -1 —
b= 00’ D=5 00 ot”’ (2.58)
that obef {D,D} = —£ and{D,D} = {D,D} = 0. In the white noise limit the
dissipative part of the actlon simplifies to
188 ]'
SESN = 5 4T M) D) M(¥() .

with the ‘dissipative’ differential operator

2

g + SI
9000~ ¥

8) — o (DD — DD) .

(2) _ 1
DY) = m (207 g

Notice that this formulation is only suitable situations in which the applied foreesar-
servative. The Jacobian terfiY contributes to both the deterministis{t ) and the dissi-
pative part £ ) of the action.

susy

Symmetries.
In terms of the superfield, the transformatidn(«) defined in eq.%.19 acts as

T7(a) = U(t,0,0%) — U(t,a 10,00*) VaeC*, (2.59)

3Covariant in the sense that the derivative of a supersymmetric esipnds still supersymmetric.
“Therefore thel? term in £[¥] can be written in terms of covariant derivatives(4®, D}\I/)2.
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and leaves the actiof[¥], see eq.4.57), invariant. The transformatiofi., given in
eq. .43 acts as
Toq = U(t,0,0%) — U(—t — 3070, —0%,0) , (2.60)
and leaves the actio$i[¥], see eq.4.57), invariant.
The actionS[¥] given in 2.57) has an additional supersymmetry generated by

that obey{Q,Q} = 2 and{Q,Q} = {Q.Q} = {D.Q} = {D,Q} = {D.Q} =
{D, Q} = 0. Both operator€) andQ are thus nilpotent anfiQ, Q} is the generator of the
Lie sub-group. They act on the superfield as

Q=

AU =T+ QU , QU =T +QU,

wheree ande* are two extra independeénGrassmann constants and

QU = c+40 (1@[} + C*CM//(w)> , (2.61)

M' ()
QU = —pler—0* <511¢ — Opp + ﬂlc*c]]\él((;f))

Expressed in terms of superfield transformatic#{d/] is invariant under both

> — 000, c" . (2.62)

U (t,0,0%) — W(t, 0,0 +¢€%), (2.63)
and

W(t,0,0%) — W(t+eb*,0+ 57 e, 0%) . (2.64)

Here again, the invariance of the action is achieved independently by térenil@stic
(S9¢t) and the dissipativeq"**) contributions. We would like to stress the fact that the
presence of the boundary term accounting for the initial equilibrium measuhe fieldy
as well as the boundary conditions for the fieidsc andc* are necessary to obtain a full
invariance of the action.

BRS symmetry.

The symmetry generated Iy is the BRS symmetry that generically arises when a system
has dynamical constraints (here we impose the system to obey the Langeuitioa of
motion). Applying the corresponding superfield transformatiolift, 6, 0*)) s gives

(U(t,0,0%)s = (VU(t,0,0%) +cQY(,0,0%))s,

S¢ ande* are independent in particular of the coordinatesido™.
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and therefordQW (¢, 6,0*))s = 0. This leads to

" * M//(’lvbt)
<Ct>S =0 N <1'lpt + Cy Ctm>s =0. (265)
Applying the transformation inside the two-point correlapdn(, 0, 0*)¥ (', 0, 6*')) s, we
get (QU(t,0,0%) W (', 0',0%))s + (t,0,0%) < (¢',6,0*) = 0. This leads in particular to
identify the two-time fermionic correlator as being the (bosonic) linear resgon
.7 * M/ / *

R(t,t") = (Y |y + ct,ct/]\/pl((qul)) )s = (cper)s - (2.66)
Corroborating the discussion in S€c2.3 this tells us in particular that;cy ) s (and more
generally the fermionic Green functidn;cy)¢s) vanishes for > ¢’ and also fort = ¢’
provided that the Markov limit is not taken. Using this result, the second relati(2.65
now yields(it;)s = 0.

FDT.

The use of the symmetry generated®@yon (¥(¢, 6, 6*)) s gives,

(s =0, (i — BObr)s =0. (2.67)

By use of(iqﬁgs = 0 (which was a consequence of the BRS symmetry), the second relation
become$),(y)s = 0. This expresses the stationarity and can be easily generalized to more
complicated one-time observableXy), by use of the supersymmetry e (7)) .

The use of the symmetry generated Qyon a two-point correlator of the superfield
reads

(U(t,0,0)U(t',0,0)) s = (U(t + e0*,0 + Be, VU (' + 0,0 + Be,0*))s ,
giving, amongst other relations,

.7 * Mll(w *
<1/Jt IQJ}t/ — ﬁ@t/q/;t/ =+ Ct Ct]w_,(wtt)) - Ct Ct’>S =0. (268)
As discussed in Se®.3.1Q (¢fc¢y)gs vanishes fort > t. Therefore, the term im; ¢,
disappears from eg2 (68 and the FDT is obtained by multiplying both sides of the equation
by ©(t — t')

R(t,t) = BouCt,t)OE-1).
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2.3.11 Link betweenZ,, and the supersymmetries

It is interesting to remark that both supersymmetries (the one genera®dang the one
generated byQ) are needed to derive equilibrium relations such as stationarity or the FDT.
All the Ward-Takahashi identities generated by the combined use of thpsesgmmetries
can be generated by, but the inverse is not true. The supersymmetries do not yield
relations in which a time-reversal appears explicitly such as the Onsaioeal relations.

Itis clear from its expression in terms of the superfield, @, that the equilibrium
transformatiorZ., cannot be written using the generator of a continuous supersymmetry.
However, the transformatiofi., can be formally written in terms of the supersymmetry
generators as

Toq =V = 12eQ 0 (2.69)

wherell is the time-reversal operatar{~ —t), = exchanges the extra Grassmann coordi-
nates § — —6* and#* — 6) and the generatdd is defined in terms 0§ andQ as

Q=-300{Q,Q} = we*e% . (2.70)

2.3.12 Newtonian limit: a phase space approach

For a system described by the time-independent Hamiltohian p), wherez is the co-
ordinate andy the conjugate momentum, the dynamics are given by the two Hamilton’s
equations:

EQx[z(t), p(t)] & — OpyH(z,p) =0,
EQP[z(t),p(t)] = p+ 0 H(z,p)=0.

(2.71)

For a given set of initial conditions; andp;, they have only one set of solutiong, (¢) and
psol(t). One can construct a path integral as

(Alz,p]) /D[{L‘7p] Alz, pld[z — z401]d[p 7psol]e—ﬁH(m(—T),p(—T))
x / Dz, p, &, 9] Ale, p)|T* PSP (2.72)

with the boundary condition8(—7") = p(—T) = z(T) = p(T) = 0. We averaged over
equilibrium initial conditions and introduced the action functional

Slz,p.2,p] = —BH((-T),p(-T))
- / 1Zy [Pu + Oz, H(2u, pu)] + iy [Tu — apuH(xwpu)] .
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Let us now assume th&{(z,p) = g(p) + f(x). It follows that the Jacobiang® =
det,, [‘WLande = det,, [%W} are field independent constants that
can be dropped in the normalization. The generating functional at zaroesois invariant

under the transformation

/ — xu — x—u ) p’u — _p—u 9 (2 73)
“a iy, = 12y + BOyx_y , ipy = —ip_y + ﬁaup—u s .

as long as the Hamiltonian is time-reversal invariaet,(z, p) = H,(z,p) = H(x, —p).

2.4 Out of equilibrium

We now turn to more generic situations in which the system does no longeeeauaaqui-
librium. This means that it can now be prepared with an arbitrary distributidntazan
evolve with time-dependent and non-conservative foff¢€s

We first show that the way in which the symmeffy, is broken gives a number of
so-called transieffluctuations relations?5]-[ 149-151]. Although fluctuation theorems in
cases with additive colored noise were studied in several publicatl@¥[[170, we are
not aware of similar studies in cases with multiplicative noise.

We then exhibit another symmetry of the MSRJD generating functional, valitdoat
of equilibrium. This new symmetry implies out-of-equilibrium relations betweenetar
tions and responses and generalizes the formul&bi}-[ 171] obtained for additive white
noise. Finally, we come back to the equilibrium case to combine the two symmetdes an
deduce other equilibrium relations.

2.4.1 Non-equilibrium fluctuation relations

Work fluctuation theorems.

Let us assume that the system is initially prepared in thermal equilibrium witlecesp
the potentiall’ (1), A\_7)’. The expression for the deterministic part of the MSRJD action
functional [see eq.Z.9)] is

SYp, s A, 27 = —BH([W-1], A\o1) —In Z(A_7)
_/izﬁu [m"zu'i‘v/(d]m)\u) - SCW)]] s

5As opposed tsteady-statdluctuation relations the validity of which is only asymptotic, in the limit of
long averaging times.

"This is in fact a restriction on the initial veIocitieérT, that are to be taken from the Boltzmann distribu-
tion with temperaturgg !, independently of the positions_r. The distribution of these latter can be tailored
at will through the\ dependence df".
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where H([¢x], \r) = Smap? + V (¢, \). The external work done on the system along
a given trajectory between timesT’ and T is the sum of the work induced by the non-
conservative forces and the one performed through the externatpta:

WA 1= [ W1+ [ 000 () (2.74)
The transformatiof, does not leav&®* invariant but yields
SO, Py A, f1) = S, i X, f1T 4+ BAF — W A, £ (2.75)
or equivalently
SO, Dy A, F2 + BAF — BW [ A, f2] v S, s X, 7] (2.76)

Sdet[q), z[z; A, £1¢] corresponds to the MSRJD action of the system that is prepared (in equi-
librium) and evolves under the time-reversed protodal) = A\(—u) and external forces

(W], u) = f([¢], —u). AF is the change in free energy associated to this time-
reversed protocol3AF, = —In Z(A(T)) + In Z(A(-T)) = —BAF between the initial
and the final ‘virtual’ equilibrium states. The dissipative part of the actists, is still
invariant undefZ.,. This means that, contrary to the external forégshe interaction with
the bath is time-reversal invariant: the friction is still dissipative after the foamstion.

This immediately yields
eBA}—<AW’u &]Q_BWW}\’PC]>S[>\,f“c] = (A[Teqt), qulz’bs[i,fgm} (2.77)

for any functionalA of ¢» and+. In particular for a local functional of the fieldi[)(2)], it
leads to the relationl[7Z]

P27 (A[p(1)]e PWIINTT) g1 pne) = (Ao (=) g5 pmey » (2.78)
or also
AT (A[p(1)] Bl (¢)]e PVIAT D) g1y ey
= (A (O] Be[ (—)]) s[5, fuey- (2.79)
SettingA[t), 9] = 1, we obtain the Jarzynski equality 13 174
AT (e WAy o1y ey = 1. (2.80)

Setting A[1h, ] = 6(W — Wi; A, *<]) we deduce the Crooks fluctuation theored, |
175 176

P(W) = P(=W) PW=AF) (2.81)

where P(1V) is the probability for the external work done betweeff’ and 7" to be W
given the protocol\(¢) and the non-conservative forg€°([¢],t). P.(W) is the same
probability, given the time-reversed protocobnd time-reversed forcg™. The previous
Jarzynski equality is the integral version of this theorem.
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Fluctuation theorem.

Let us now relax the condition that the system is prepared in thermal equitilania allow
for any initial distributionP;. We recall the corresponding deterministic part of the MSRJD
action functional given in Se€.2, eq. £.9)

S%p,y] = WP ($(-T),(-T))
= [auib(w) [mi + V(). Aw) - () w).

The transformatiorf, does not leavé&“°® invariant but one has
SU s A 1] =S S, £,

with the stochastic entrop§ = — [mpiw(T), —(T)) — In P((=T), ¢(—T))] yte)

The first term is the Shannon entropy whereas the second term is thaneeckntropy
defined through the heat transf@r = AH — W{y; A, f7°]. AH = H([¢(T)],\(T)) —
H([v(=T)], \(—T)) is the change of internal energy. The dissipative part of the action,
Sdiss s still invariant undef,. This immediately yields

(Al Ple5) s, pne) = (AlTeqth, Teq?]) g3 uey (2.82)

for any functional4 of ¢ and1). Setting A[v), 1[1] = 1, we obtain the integral fluctuation
theorem (sometimes referred as the Kawasaki ideritity,[178])

1= (%) (2.83)

S[p i\, foe] -

which using the Jensen inequality giv@)s[w Dix el > 0, expressing the second law of

thermodynamics. Setting[q/)?&] = 0(¢ — &) we obtain the fluctuation theorerq, 175,
174

P(¢) = Pi(=() e°, (2.84)

where P(() is the probability for the entropy created betweef andT" to be  given
the protocol\(¢) and the non-conservative forgé&“([¢],t). P.(¢) is the same probability,
given the time-reversed protocbland time-reversed forcge.

Similar results can be obtained for isolated systems by switching off the intaradgtio
the bathj.e. by takingn = 0. Itis also straightforward to obtain extended relations when the
bath is taken to be out of equilibrium, for example by ustig—t') # n(t —t') +n(t' —t),
and the contribution of the change in the dissipative action is taken into acddhis kind
of fluctuation relation may be specially important in quantum systems.
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2.4.2 Generic relations between correlations and linear ponses

A number of generic relations between linear responses and the avefagther observ-
ables have been derived for different types of stochastic dynamisgdvin with addi-
tive white noise 157, Ising variables with Glauber updates7[d, or the heat-bath algo-
rithm [180-183, and even molecular dynamics of hard spheres or Lennard-Jorédepa
systems 184]. Especially interesting are those in which the relation is established with
functions of correlations computed with the unperturbed dynamieg [L81] as explained

in [171]. The main aim of the studies in}9-[171] was to give the most efficient com-
putational method to obtain the linear response in the theoretical limit of no apigied
Another set of recent articles discusses very similar with the goal ofggavthermodynamic
interpretation to the various terms contributing the linear respdrs® 186-[187).

In the concrete case of Langevin processes this kind of relations caarpeimply
derived by multiplying the equation by the field or the noise and averagingloeeoise in
the way done in1527. We derive here the same relations within the MSRJD formalism, us-
ing a symmetry property that is more likely to admit an extension to systems with gquantu
fluctuations.

A symmetry of the MSRJD generating functional valid also out of equlibrium.

We consider the most generic out-of-equilibrium situation. We allow for attialiprepa-
ration (P;) and any evolution of the systen#’). fD[w,u}] eS¥¥] s invariant under the
involutary field transformatiofi...,, given by

Yy = Py,

. . 20 1 EQy[Y] (2.85)
e = et g N

The meaning of the subscript referring to ‘equation of motion’ will becomarcie the
following. For additive noise/[/’(¢)) = 1] the transformation becomes

Toom =

il&u — _h/;u + Q/B/Nuiv |:m7/1v - Fv[w] + / nv—w¢w:| s
and in the additive white noise limit simplifies to

iy = =it B [mdh — Fulv] + moth] - (2.86)

The proof is similar to the one of the previous equilibrium symmetry (seeSe®. The
Jacobian of this transformation is unity since its associated matrix is block ttangith
ones on the diagonal. The integration domaina$ unchanged while the one gfcan be
chosen to be the real axis by a simple complex analysis argument. In the faltnés
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we show that the actiofi evaluated in the transformed fields remains identical to the action
evaluated in the original fields. We give the proof in the case of an additise but the
generalization to a multiplicative noise is straightforward. We start from theession 2.9)

and evaluate

S[%om@%%om"ﬁ] = 111131@—7’,7/}— ) /|: _Qﬁ/Nu vEQv :|

y [EQu /ﬁ N, w< 1¢w+2ﬂ/Nw JEQ.[Y )]

= 1nR(¢—Tﬂb—T>+/ |:1¢u—25/N_1 EQ’U :| [;/ BilNu—’w 11&w:|
= S[w, 4]

Contrary to the equilibrium transformatici,, it does not include a time-reversal and is
not defined in the Newtonian limig(= 0).
Supersymmetric version.

In Sec.2.3.1Q in the equilibrium case, we encoded the fielsis, ¢ and¢* in a unique
superfieldP. In this fashion, the transformatidfi,,, given in eq. 2.85 acts as

20 [, Ny M (¥ (u, 0, 0%))EQ,[¥]
0, M (¥ (t,6,6%))

U(t,0,0%) — T <t+9*0 79,9*> . (2.87)

and leaves the equilibrium actidgf{V], see eq.4.57), invariant.

Out of equilibrium relations.

We first derive some relations in the additive cak& (/) = 1] and then we generalize the
results to the case of a multiplicative noise.

Additive noise. Using7 in the expression(34) of the self respons&(t, ¢') we find
(it = Toomtt Tamiths = —(biidu)s +28 | WL hEuful)s

giving an explicit formula for computing the linear response without peingrbeld:
R(t,t") = ﬁ/dUN (t' —v) (2.88)

X [m@%C’(t, v) + /du n(v — u)0,C(t,u) — (Y(t)F([¢],v)) | .
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Once multiplied byX,»_; and integrated ovef yields
mdAC(t,t') + /du n(t —u)0,C(t,u)

— WEOF( ) = 8 / duR(t' — w)R(tw),  (2.89)

with no assumption on the initid; (¢_7, ¥ 7).

If one now used in (Eq;[1/]ithy) s, one obtains

(Eq[)ite)s = (EQ[Teom®] Teomite)s
= (B Wide)s + 26 / N1 (EQEQ)s -

Since(EQ;[¥]EQu[Y])s = B~ 1R;_, this simplifies in

(EQ[Y]ivhy)s = S

that yields
molR(t, V') + /dv n(t —v)8,R(v, ') — (it F([¥], t))s = 6(t — t') (2.90)

with no assumption on the initidk. One can trade the last term in thies of eq. .90 for
B[, N1 (€(u)EF[])e by use of Novikov's theorem.

Notice that despite the fact that the transformafigyy, is not defined in the Newtonian
limit (n = 0), both eqgs. 2.89 and .90 are well defined in this limit. Therefore, in
order to compute out-of-equilibrium relations in a isolated system, one caa fictitious
equilibrium bath interacting with the system, u&g,, to compute the out-of-equilibrium
relations and then finally sengto 0.

Integrating both eqs2(89 and .90 aroundt = ¢’ we find the equal-time conditions

moyC(t,t)|, . =0, moR(tl =1, mOoR(tt)
t'=t

=0. (2.91)

t—t— t/—tt

The last two conditions above imply that the first derivative of the respdumsction is
discontinuous at equal timés

The use of this symmetry is an easy way to get a generalization oRe3f) for a
generic respons® 4. Indeed, applying this transformation to expressiar8) of the

81t is clear from the expressions given i8.91) that the overdampetgh — 0 limit allows for a sudden
discontinuity of the response function as well as a finite slope of the ctorefanction at equal times.
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linear response we obtain

Rastt.t) = 5 [an @ =03 {moreaon s

n=>0
0B[¢(t’)]>
o an(t'”?

=0 (AP F([¢], )

OB[p(t')]

+ [awn(u—va Ao gy

) s} . (2.92)
This formula gives the linear response as an explicit function of multiple-timeledors of
the fieldy. For example, ifB is a function of the field only (and not of its time-derivatives),
just then = 0-term subsists in the above sum:

OBU(Y),
oyt

Ras(tt) = 5 [aun™(¢ — {m B2 (A ()] (w)

~AwoIF (ol g s

B[ (t")]
dY(t')
As another example if one is interested in the self-response of the veldgity)] =

B[ (t)] = 0x(t), one obtains

+ [0 oo, awle) >s} (2.99)

Ruap(t,t) = / du XL — u) { m 803C(t,u) — 80u(Y(#)F([], )

—|—/dv n(u — v)d2C(t,v) } : (2.94)

Multiplicative noise. Similar results can be obtained in the case of a multiplicative noise.
Applying the transformation in the correlatfr Nt/_u<¢tM’(¢t/)M’(q/)u)i1ﬁu>s we get

(iEells = B [ No M )M i)
yielding
mORC( 1) + / e (M () M () D) s
= @Fels = 87 [ N W) M )i - (299

Applying now the transformation in the correlatdq, [¢/]it ), one obtains

(EQu[Y]ivhy)s = Gpp + 57 / Ry o (M () M () ithuitdy ) s (2.96)
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yielding
mOER(E) [ oM )M )0 i) s
— (Rli)s = o8 [ Moo M )M ()id) s 297
One can check from eq2.09 and @.97) that the equal-time conditions given in edg 1)
are still valid in the multiplicative case.
2.4.3 Composition ofZ,,,, and 7

For an equilibrium situation, the MSRJD action functional is fully invariantarrttie com-
position of 7o and7Ze,

Yy = Yy,
Teq © Teom = { .5 .7 203 1 EQU[@Z_J] (2.98)
w T Ty — au —u YIRS N, YT
v o= 0wt s [N
that simply reads in the white noise limit
Yy = Yo,
Toq © Teom = { 1772) s _w n B [m821/1 i V/(1/1 )] ‘ (2.99)
" M (o2

For simplicity we only show the implication of this symmetry in this limit and in the additive
noise case:

R(t,t) = —R(-t,—t)+ i [mdEC(—t,—t) + (W(=)V' (¥ (=t)))s] -
Using equilibrium properties,e. time-translational invariance of all observables and time-
reversal symmetry of two-time correlation functions of the fi¢ldgshown in Sec2.3.2),
and causality of the response, we get

R(1) = O(1)— [md2C(r) + A(7)] , (2.100)

with 7 = ¢ — t' andA(7) = (¥(t)V'(¥(t')))s which is eq. .89 after cancellation of the
LHs with the last term in th&hs when FDT betweeR andC' holds [also eq.4.90) after a
similar simplification]. Here again, one can easily obtain a generalization of thielation
for a generic responge 4z by plugging the transformation into the expressiar3f) of the
linear response.



59

2.5 Conclusions

In this chapter we recalled the path-integral approach to classical stactignamics with
generic multiplicative colored noise. The action has three terms: a determilNstidtd-
nian dynamics) contribution, a dissipative part and a Jacobian. We iddrdifiember of
symmetries of the generating functional when the sources are set torbermvariance of
the action is achieved by the three terms independently.

One of these symmetries applies only when equilibrium dynamics are assuiged. E
librium dynamics are ensured whenever the system is prepared with eiguiliimitial con-
ditions at temperaturé—! (a statistical mixture given by the Gibbs-Boltzmann measure),
evolves with the corresponding time-independent conservative f@adss in contact with
an equilibrium bath at the same temperatdre. The invariance also holds in the limit
in which the contact with the bath is suppressdd. under deterministic (Newtonian)
dynamics, but the initial condition is still taken from the Gibbs-Boltzmann measiis
symmetry yields all possible model-independent fluctuation-dissipation thecas well
as stationarity and Onsager reciprocal relations. When the field-tramegion is applied
to driven problems, the symmetry no longer holds, but it gives rise to diftekinds of
fluctuation theorems.

We identified another more general symmetry that applies to equilibrium anof-out-
equilibrium set-ups. It holds for any kind of initial conditions — they can bg statis-
tical mixture or even deterministic, and the evolution can be dictated by time-depen
and/or non-conservative forces as long as the system is coupled gqoidihreum bath. The
symmetry implies exact dynamic equations that couple generic correlatiorisyvaadre-
sponses. These equations are model-dependent in the sense thaiptbied dxplicitly on
the applied forces. They are the starting point to derive Schwingeoibiyge approxi-
mations and close them on two-time observables. Although the symmetry is ill-défine
the Newtonian limit, the dynamic relations it yields can nevertheless be evaluatied in
Newtonian case.

Finally, we gave a supersymmetric expression of the path-integral filgms with
multiplicative colored noise and conservative forces. We expresséaegtirevious sym-
metries in terms of superfield transformations and we discussed the relgtitasiveen
supersymmetry and other symmetries.
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Appendices

2.A Conventions and notations

O is the Heaviside step function. When dealing with Markov Langevin equatioashoice

of the value of the Heaviside step functiéxit) att = 0 is imposed by the choice of thedit
[©(0) = 0] or the Stratonovich conventio®[0) = 1/2]. However, away from the Markov
casej.e. as long as both inertia and the color of the bath are not neglected simultBneous
the choice 0©(0) is unconstrained and the physics should not depend on it. We recall the
identities

/ h i—freiw =4(y) and / ! dz §(z) = O(y) , (2.101)

—00 —00

whered is the Dirac delta function.

Field theory notations. Let ) be a real field. The integration over this field is denoted
/D[y . If Ais a functional of the field, we denote.i[]. If it also depends on one or
several external parameters, such as the tiued a protocol\, we denote itA([¢], A, t).
WheneverA is a local functional of the field at time (i.e. a function of«(t) and its
first time-derivatives), we use the short-hand notatiti(¢)]. The time-reversed field
constructed fromp is denoted): () = ¢(—t). The time-reversed functional constructed
from A([¢], A, t) is calledA,: A, ([¢], A, t) = A([¢], \, —t). Applied on local observables
of ¢, it has the effect of changing the sign of all odd time-derivatives in tipeession of

A.

To shorten expressions, we adopt a notation in which the arguments dflttedppear
as subindices); = ¢ (t), i,y = n(t — '), and so on and so forth, and the integrals over
time as expressed gs= [ dt .

Grassmann numbers. Let§; andf, be two anticommuting Grassmann numbers éhd
andd; their respective Grassmann conjugates. We adopt the following conveatithe
complex conjugate of a product of Grassmann numb@igh)* = 6;567.

2.B Discrete MSRJD for additive noise

In this appendix we discuss the MSRJD action for processes with addiive=d noise.
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2.B.1 Discrete Langevin equation

The Langevin equation is a stochastic differential equation and one garagiigorous
meaning to it by specifying a particular discretization scheme.

Let us divide the time intervgl-T', 7] into N + 1 infinitesimal slices of widthe =
2T /(N + 1). The discretized times atg = —7T + ke with & = 0,..., N + 1. The
discretized version of(t) is ¢ = ¥(tx). The continuum limit is achieved by sending
to infinity and keepind N + 1)e = 27 constant. Given some initial conditions andq)s,
we seti); = 1; andiy = 1; — ey meaning that the first two timegy(andt;) are reserved
for the integration over the initial conditions whereas ffidollowing ones correspond to
the stochastic dynamics given by the discretized Langevin equation:

EQr_1

€

k
. 21?6 e Fr(Yrs g1, ...) + EZW%
=1
L (2.102)

defined fork = 1,..., N. The forceF}, typically depends on the statg, but can have

a memory kerneli(e. it can depend on previous stateg 1, 1,_o, etc.). The notation
N Stands fomy; = €' [_du n(ty — t; + u). Theg, are independent Gaussian random
variables with variances,&;) = 3718, whereRy; = ni + . Inspecting the equation
above, we notice that the value ¢f, depends on the realization of the previous noise
realization{;,_; and there is no need to specfiyand{n .

In the white noise limit, one hag,; = ¢ 11w, (€x&) = 2103~ Le 195 whered is the
Kronecker delta, and

Eoe; =m0kt —kak,wkfl,.--)wo% g

€

2.B.2 Construction of the MSRJD action
The probability density? for a complete field historyi)g, ¥4, ..., ¥ +1) is set by the rela-
tion

P(tho, ¢1, s ont1) dpodehr...dn 41
= R(%»%) dwldwl Pn(fl;f% u-,fN) d€1dfgd§N .

P, is the initial probability distribution of the field. The probability for a given ndisstory
to occur between timeg andty is given by

Pa(€1,n€n) = Myte 2 ihim G & (2.103)

whereN,;l1 is the inverse matrix of; (and not the discretized version of the inverse operator
. . . . 2 _ (271-)1\’
of R) and the normalization is given byt = SN E) where det...) stands for the
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matrix determinant. From e (L03, one derives

Y1 — o

€

P(wOawla "'7¢N+1) - |jN|R(¢1,
with the Jacobian

8(wi7¢i7§17' 75]\7)) _ det(a(whlﬁi?EQO" . 'JEQN—1)>

)Pa(EQu, ..., EQn—_1) , (2.104)

8(¢07¢17"'7¢N+1) 8(w07¢17"'7¢N+1)

that will be discussed in Apj2.B.3. The expressior2(103 for the noise history probability
reads, after a Hubbard-Stratonovich transformation that introducesuttikary variables

@ij (k =1, --.,N),

IN Edet<

N Pa(€1s ) = [y e Dr st i
- / Atho...dipy 1 (h0)8 (1) e~¢ Tu BRI +3ATIE D Whikuiite (3 105)

with Ny = (27/¢)V. In the last step, we replaceg by Eq,_; and we allowed for sum-
mations overk = 0 andk = N + 1 as well as integrations ovef, and z[;NH at the

cost of introducing delta functions. The Hubbard-Stratonovich tramsftion allows for

some freedom in the choice of the sign in frontof, in the exponent (indeef, is real so

P, = P}). Together with eq.4.104 this gives

NP0, s oo ovst) = | T / oAby 5(50)5 ()

o Sk OREQ 1+ 307 Sy iRy Hn P (4, 21%0)

that in the continuum limit becomes

NP = UWHGIHP‘ /DW}] o~ Jdu i (w)EQ([W]u)+3 [fdudv i (w) 8~ R(u—v)it(v) :

with the boundary conditiong(—1") = ¢)(T") = 0 and where all the integrals over time run
from —T'to T'. In the following, unless otherwise stated, we shall simply denote thefn by
The infinite prefactoN = A}im (27 /€)™N can be absorbed in the definition of the measure:

N+1

Dy, 4] = lim (%)N I dwn die - (2.106)
k=0

N—oo

Markov case. Inthe Markov limit, the Langevin equation is a first order differential equa-
tion, therefore only the first tim&) should be reserved for integrating over the initial con-
ditions. Moreover, one has to specify the discretization:

EQut = no il pg) = & (2.107)

€
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whereyy, = ayy, + (1 — a)yp_1 with a € [0,1]. a = 0 corresponds to thedtinterpretation
whereast = 1/2 corresponds to the Stratonovich one (see the discussion ir2Sed.
Following the steps in App2.B.2, we upgrade eq.2(107) to the following a-dependent
actior?:

&j@ Yo (i) mkmwlw”—m%ﬂ—%ﬂ@».@ma

k

The last term in th&HS comes from the Jacobian:

1755 = L1 (2 -oricin) = (7)o 2.

k

In the I discretization scheme: (= 0) this Jacobian term disappears from the action.
Although Sy (a) seems to be-dependent, we now prove that all discretization schemes
yield the same physics by showing that the differefgga) — Sx(0) is negligible. The
Taylor expansion of,(¢y,) aroundyy_1, Fi(vr_1) + a (bx — Yr_1) F' (Yr—_1) + O(e)
[sinceyy, — ¢i_1 = O(/e)], yields

Sy (@) = 5n(0) = ae S Fune) [ie (6~ ) = | +0(). (2209
k

Although the first term within the square brackets looks smaller than the decm, they
are actually bothO(1) sincei, = O(1/1/€). Thus, each term in the sum in tReis is
O(e). We now compute the average$f;(a) — Sy (0) with respect ta5x (0) by neglecting
in the latter the termaiv;, F (1x—1 ) which is of order,/e whereas the others are of order
Since (i, (1 — VYr-1))sy(0) = 1/m0, itis easy to show thatSy (a) — Sn(0)) sy ) = 0
and therefore all th€'y(a) actions are equivalent to the simpleb tine.

®We omit the initial measure which is not relevant in this discussion.
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2.B.3 Jacobian
Discrete evaluation of the Jacobian.

In this Section we take the continuum limit of the Jacobian defined inZ2#09. In the
additive noise case, we start from

\.7N — det<a(wi7¢iaEQ07'"7EQN—1)>

a(wovwh cee ’¢N+1)

0 1 0...

—1/e 1/e O0...
OEQq O0EQy  JEQ 0

— det| &S S8 83 oea,

o oYn 02 O3 0..
.. 0
OEQN_1 OEQN_1
0o T YN 41
OEQ
8éb20 0...
1 0 Q1 BEQI 0
= Zdet| 92  Ovs 0 (2.110)
€ e
OEQN_1 OEQn_1
02 T OYN+1

Causality manifests itself in the lower triangular structure of the last matrix. @ne\al-
uate the last determinant by plugging €2102. It yields

1 N 8EQk_1 1 /m\N
IN = - :*<7> .
€21 OYr41 € \€

The Jacobiaryy = ]\}im Jn is therefore a field-independent positive constant that can be
— 00
absorbed in a redefinition of the measure:

N+1
1 +

~ N ~
Di, ] = lim - (2%6) I dvw ddy (2.111)
k=0

N—oo €

We show that this result also holds for multiplicative noise in Apg.

Continuous evaluation of the Jacobian.

One might also wish to check this result in the continuous notations. A very siaplar

proach can be found inlf(. In the continuous notationsj%im Jn reads up to some
— 00

constant factor

Tl = det,, | 25500

d9p(v)
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where def...] stands for the functional determinant. Definifify, asd F, [+] /5, the Ja-
cobian reads

jwj] = det,, [magduv +/ Th—w OwOw—v — E:v W]}
~ det,, [maiau_ﬁ [ awéw_v} det,, [5u_v -/ Gu_wF{w[w]]

= detw [magéqt—v + / Thu—w aw(Sw—v:| €xXp Truv In [5u—v - Muv]

=1
= det,, [m@iéu_v—i—/ Nu—w 8w5w_v] exp — g / MoMo...oM (2.112)
v n=1 " uu

n times

where we used the notatiodd,, = {Go '}, = [ Gu_wF,,[¢]. G is the retarded
Green function solution to

morG(u — v) + /dw N(u — w)0G(w —v) = 6(u —v) . (2.113)

Since both#,_, andF},, are causal, it is easy to see that the: 2 terms do not contribute
to the sum in eq.4.119). If the force F'([¢], t) does not have any local term (involving the
value ofy or ¢ at timet) then = 1 term is also zero. Otherwise the= 1 term can still
be proven to be zero provided th@tt = 0) = 0. This will be true, as we shall show in the
next paragraph, unless the white noise limit is taken together with the Smolskihlowit
(m = 0). Away from this Markov limit we establish

j[w] = detw |:mag(5(u - ’U) +/ Nu—w aw(sw—v] s

meaning that the Jacobian is a constant that does not depend on the field
We now give a proof that(¢ = 0) = 0. Taking the Fourier transform of e2.(13,

Gt =0) = /oo 4 ) = —/OO dw 1 (2.114)

0 27 oo 2T mw? + iwn(w)

G(w) andn(w) are the Fourier transforms of the retarded Green function and frictioey T
are both analytic in the upper half plang+P) thanks to their causality structure. The con-
vergence of the integrals aroupd — oo in eq. £.119 is ensured by either the presence
of inertia or the colored noise. For a white noigéy) = 7], it is clear that the mass term
renders the integrals in e.(14 well defined. In then = 0 limit the convergence is still
guaranteed as long as the white noise limit is not taken simultaneously. |ruoEeElse
n(w) is analytic in theuHp, it is hence either divergent on the boundaries of ue or
constant everywhere){w) = n]. In the first case, which corresponds to a generic colored
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noise, this renders the integrals in €g.1(149 well defined. In the second case, correspond-
ing to a white noise limit, they are ill-defined and require a more careful treatfh&then

the integrals in eq.2.114 are well defined on the boundaries, the absence of poles (or
branch cuts) in thesHp of G(w) gives, after a little deformation of the integration contour
in eq. .114 above thev = 0 pole, the resul&(t = 0) = 0.

Representation in terms of a fermionic field integral.

The determinant can be represented as a Gaussian integration ov@n@magn conjugate
fieldsc andc*. This formulation is a key ingredient to the supersymmetric representation
of the MSRJD path integral. Let us first recall the discretized expressitime Jacobian
obtained in eq.4.110:

1 OEQk—1
jN = 7delkl < )
€ M1
wherek and/ run from1 to N. Introducing ghosts, it can be put in the form
11 23 N-1 5 N+1 « 1 9EQy
IN = N/dc2d03-~dCN+1dC7V1e Zk=o Zi=2 e ou ¢
€€

11 , o s @SNV 1%
T eV deodeg...deyqideyy cypicycicoe Lo

where in the last step, we allowed integration owgr ci, ¢ andcy,, at the cost of
introducing delta functions (remember that for a Grassmann nuepbiee delta function is
achieved by itself). In the continuum limit, absorbing the prefactor into a redefinition of
the measure,

N+1 N+1

- . 1 A ao .
D[qﬂ,w]—]\}gnoowegdwk di, and Dle, ¢'] —]\}gnm]}:[()dck def , (2.115)

this yields

ﬂm=/9m&wWWW]

191n the white noise limitG () = ny* [1 - e‘""t/m] O(t) is a continuous function that vanishes at 0.

If we takem — 0 in the previous expression, we still ha@&0) = 0 andG(t) = ©(t)/no for t > m/no.

By choosing®(0) = 0, these two results can be collecteddift) = ©(t)/no for all t. The Jacobian is still
a constant. This limiting procedure where inertia has been sent to zerdheftehite noise limit was taken,
is the so-called & convention. However ifn is set to0 from the beginning, in the so-called Stratonovich
convention with®©(0) = 1/2, thenG(t) = ©(t)/no for all ¢t andG(0) = 1/(2n0). This can lead to a
so-called Jacobian extra-term in the action Fif[¢/], t) is a function ofy(¢) only (ultra-local functional), it
reads—1/(2no) [, F (). Itis invariant under time-reversal of the fiefd, — ¢, as long as” is itself
time-reversal invariant.
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with

o= | 4558,

and the extra boundary conditiong—7") = ¢(—T1') = ¢*(T) = ¢*(T) = 0. Plugging the
Langevin equation.1), we have

OEQu[Y] 2 OFu[Y]
5¢v - mau(su—v 6wv +/u)77w—vaw5w—v

The kinetic term inSY [, ¢*, 1] can be recast
//c 026, vcv—/czagcu—i-@o[ &e— il + 00do [

The last two terms in theHs vanish by use of the boundary conditions{ = ¢_p =
cp = ¢p = 0). The retarded friction can be recast

/ /CZ Ounu—v € — O / CZ [77u+T C—17 — Nu-T CT] )
U v U

where the second term vanishes identically for two reasons: the bquratatition ¢_ =

0) k kills the first part and the causality of the friction kerng), (= 0V« < 0) suppresses
the second one. If there is a Dirac contributiomtoentered at: = 0 such as in the white
noise case, the other boundary conditioh,{ = 0) cancels the second part. Finally, we

have
Sj[c,c*,zﬂ] —/c 820u // { Ty — ?w[w] Cy - (2.116)

2.C Discrete MSRJD for multiplicative noise

The discretized Langevin equation reads:

EQk,l = m@Dk—i—l - 2¢k +1/1k—1 . Fk(izkﬂ;kfh )

6
P — ¢l1

+M'(¢y,) anM’ () ——— = M' ()& -

=1
with ¢y, = ayy, + (1 — a)Yp_ andk = 1,..., N. In the Markov limit ¢n = 0 andr; =
e~ 'no6y;) the results depend an(see the discussion in Set1.4. In the additive noise
case, the choices = 0 anda = 1/2 correspond to the @ and Stratonovich conventions,
respectively. However, we decide to stay out of the Markov limit: the resulisthen
independent ofi and we choose to work witta= 1. The probability for a field history is

P — ﬂJo

P(lbo’wlu "'awNJrl) |jN|P(’¢17 ) (EQO)” 7/E\6N71) ) (2117)
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where we introduced the shorthand notatim, = Eqy, /M’ (¢, ). The Jacobian is

jN Edet<a(wiawi7£1a"'a£]\7)> :det<8(¢ia¢iyEQ07"'aEQN

~1)
. 2.118
0 (Yo, Y1, .., YN+1) 0 (Yo, Y1, .., YN41) ) ( )

P, is still given by expressior2(105 and P, (EQ, ..., EQy_1 ) reads, after the substitution
Vi = Y M (),

Nﬁl/d%...d¢N+15(¢0)5(1ﬁN+1) | Fiv| €€ o TOREQu-1t3 A7 Ep M ()R M (v0)idh

whereJy = dety (0x1 M’ () is the Jacobian of the previous substitution. The probabil-
ity for a given history is therefore

P, 1, oo oin) = N1 / Aol 1 [T ]

o Sk OB 1+ 5871 K M ()R M (1) Py (16, 140 )

The Jacobiaiy/y defined in eq.4.119 reads

1 1  OEQ_ M
IN = €de‘kl( el (d)k)z EQk—1 5kl+1>

M (Yr) Oy M ()
1 OEQu—1  M"(¢y)

= ~J'd ( -1 EQr_10 > 2.119
- Iy dety Torn M) SOk Okt ( )

wherek and/ run from 1 to N. Causality is responsible for the triangular structure of
the matrix involved in the last expression. The second term within the squackels
yields matrix elements below the main diagonal and these do not contribute t@theaia
Therefore, we find

- OEQg—1 1 /my\N
T = H e (3)

that is the same field-independent positive constant as in the additivecagis¢hat can be
dropped in the measure, see eq1(J).

A fermionic functional representation of the Jacobian can be obtainedtimgirting
ghosts, expressior2 (119 can be put in the form

A 11 T
S
ININ = ~N deodcf...dey1dey g v iChveico €78

with
N+1N+1 N+1
e O 3 M) g
¢ e OY MM (i) -

k=0 1=0 k=0
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In the continuum limit it becomes

ST = lim Sy = / / ch OEQulY] o — / c J\Jé’/’((;bu)) EQu[¢] cu ,

N—o00 (S"va

with the boundary conditiong(—7") = ¢(—7) = 0 andc¢*(T) = ¢*(T) = 0 and the
measure of the corresponding path integral is giverRihi(3.
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THE physics of domain growth is well understodid] 188. Just after the initial thermal
guench into the ordered phase, the spins in a ferromagnetic system tewet@od
form domains of the equilibrium states. In clean systems the ordering dynasmgiaeerned
by the symmetry and conservation properties of the order parameter. Mdparities are
present the dynamics are naturally slowed down by domain-wall pinbisieb[f]. The dy-
namic scaling hypothesistates that the time-dependence in any macroscopic observable
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enters only through a growing length scal¥;), either the instantaneoaseragedor typ-
ical domain radius. However, a complete description of the phenomenon is ladkitige
clean cases the scaling functions are not known analytically and no fui$fesdory ap-
proximation scheme to estimate them is know€] In presence of disorder the limitations
are more severe in the sense that the growth laws are derived by assuatiihg tielaxation
is driven by activation over free-energy barriers and the propeatite latter are estimated
with energy balancing arguments applied to single interfaces that are hautttwthe test.
Even in the relatively simple random bond Ising model (RBIM) the time depwredef the
growth law remains a subject of controverdy$-192.

The dynamics of generic glassy systems is less well understood bubh{zresene sim-
ilar aspects to those mentioned above. The droplet model of finite-dimehspinglasses
is based on the assumption that in the low-temperature phase these systamdeaigo do-
main growth of two competing equilibrium state&)]. In the mean-field limit spin glasses
have, though, a very different kind of dynamid®]193 that cannot be associated to a sim-
ple growth of two types of domains. Numerical studies of3idedwards-Anderson (EA)
model [L194, 111-113 195-199 have not been conclusive in deciding for one or the other
type of evolution and, in a sense, show aspects of both. A one-time dapeoadherence’-
length, R(t), has been extracted from the distance and time dependenceexjubktime
overlap between two replicas evolving independently with the same quedddwdered
interactions 196, 197, 199. A power-law R(t) ~ t/*(T) with the dynamic exponent
z(t) = 2(T.)T./T fits the available data for th&/ EA andz(7.) = 6.86(16) with Gaus-
sian [L99 and z(T.) = 6.54(20) with bimodal [L96, 197] couplings. Still, it was claimed
in [199 that the overlap decays to zero as a power law at long distances aniiht@sgsuch
thatr/R(t) is fixed, implying that there are more than two types of growing domains in the
low temperature phase.

A two-time dependent lengtlg(t, ¢'), can be extracted from the analysis of the spatial
decay of the correlation between two spins in the same system at distancedifferent
timest andt’ after preparationJ00, 201]. The latter method is somehow more powerful
than the former one in the sense that it can be easily applied to glassy probitost
quenched disorder. If there is only one characteristic length scale inytredcs R(t)
should be recovered as a limit ©ft, ¢') but this fact has not been demonstrated.

The mechanism leading to the slow relaxation of structural glasses is alsmader-
stood. Still, molecular dynamic studies of Lennard-Jones mixti@g pnd the analysis
of confocal microscopy data in colloidal suspensiddy show that two-time observables
have similar time dependence as in §itEA model. Two-time correlations scale using
ratios of one-time growing functions that, however, cannot be asso¢@sedomain radius
yet. A two-time correlation length with characteristics similar to the one in th¢ EA can
also be defined and measured.
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The understanding of dynamic fluctuations in out-of-equilibrium relaxirgiesys ap-
pears as a clear challengg0f]. In systems with quenched randomness different sample
regions feel a different environment and one expects to see theit sfeifest in different
ways working at fixed randomness. In structural or polymer glasses éne no quenched
interactions instead, but still one expects to see important fluctuations in gremic
behavior both in metastable equilibrium and in the glassy low temperature regihe. T
question of whether the fluctuations in generic glassy systems resembléticosesening
systems has only been studied in a few solvable cases such as the madebmihnetic
coarsening in the large limit [ 205 and the Ising chainZ06, 207).

We study ferromagnetic ordering in tBé RFIM following a quench from infinite tem-
perature and we compare it to the dynamics of3ti&=A spin glass. Our aim is to signal
which aspects of their out-of-equilibrium evolution differ and which are sintijafocus-
ing on freely relaxing observables — no external perturbation is applietetsure linear
responses. We test the scaling and super-universality hypothesis Ri-thveand we ex-
plicitly show that the latter does not apply to the EA model. We analyze the spatjmstal
fluctuations in the coarsening problem and we compare them to the ones ifospin
glasses198, 200, 201], the O(n) ferromagnetic coarsening in the largdimit [ 205, and
other glassy system&(3 208 209.

The organization of the chapter is the following. In Sd¢.we define the models and we
describe the numerical procedure. Sec@iahis devoted to the study of the growing length
scale,R, the scaling and super-universality hypothesis, and the two-time growngghle
¢. In Sec.3.3we focus on the local fluctuations of two time observables. We study two-
time coarse-grained correlations and we analyze their statistical propestiiese evolves.
Finally, in Sec.3.4we present our conclusions.

3.1 The models

Two varieties of quenched disorder are encountered in spin modeldomaress in the
strength of an externally applied magnetic figlmhdom field and randomness in the strength
of the bondsrandom bongl. The RFIM and the EA spin glass are two archetypal examples
of these which were introduced in S&c2 In this Section we briefly recall their definitions
and some of their main properties.

3.1.1 The Random Field Ising Model
The3d Random Field Ising model (RFIM) is defined by the Hamiltoniah(j

H=-J> sisj— > Hs;. (3.1)
(i) i
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The first term encodes short range ferromagneficx{ 0) interactions between nearest
neighbor Ising spins;; = +1, placed on the nodes of a cubic lattice with linear dize7;
represents a local random magnetic field onsitdfe adopt a bimodal distribution for these
independent identically distributed random variablds £ + H with equal probability).H
guantifies the strength of the quenched disorder. Hereafter in this Chapteet/ = 1.

In the cased = 0, the RFIM reduces to the clean Ising model with a phase transition
from a paramagnetic to a ferromagnetic state occurring.at- 4.515. Ind = 3, the
ordered phase survives for finifé: there is a phase separating line on {fie H) plane
joining (17, H = 0) and(T" = 0, H.) with H. ~ 2.215(35) [61, 62].

3.1.2 The Edwards-Anderson spin glass

The 3d Edwards-Anderson (EA) spin glass is defined by

H=— Z Jl'jSiSj . (32)
(i.4)

The interaction strengthg; act on nearest neighbors on a cubic three-dimensional lattice
and are independent identically distributed random variables. We aduptaalal distri-
bution, J;; = £J with equal probability. Hereafter in this Chapter, we det= 1. This
model undergoes a static phase transition from a paramagnetic to a spirplyesss at

Ty ~ 1.14(1) [69. The nature of the low temperature static phase is not clear yet and,
as for the out-of-equilibrium relaxation, two pictures developed arousduation with

only two equilibrium states as proposed in the droplet model and a much mogicated
vision emerging from the solution of the Sherrington-Kirkpatrick model, its rfesd ver-

sion [72].

3.1.3 Methods

We study the relaxation dynamics with non-conserved order parameter (i thed) fer-
romagnetic phase of the RFIM at relatively low temperature and small appielcafier a
quench from very high temperature.

It is difficult to give an accurate analytical treatment for the dynamics o8thRFIM.
A continuous coarse-grained version of the model can be given with thel non-linear
sigma model [defined in eql )] (i.e. a ¢* theory) with an extra random field. One can
write down a Langevin equation for the dynamics of this model. The simpleatecfar the
environment is a thermal bath with a non-correlated noise in time (white noidejpate:
E(z,)&(z,t))e = 287 1yp6(x — 2')5(t — ¢'). In the MSRJID formalism, the action reads
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after integration over the noise

Slp, )] = — //dm du ig(z, u) ['yoﬁu(b(x,u) + JAP(x,u)
+ gp(x,u) — ug?(z,u) + h(x)
+67 1y //dxdu (iq%ar:,u))2 ) (3.3)

We omitted the initial measure since the system is supposed to be preparenlitat ief-
perature ¢ = 0). The fieldh(z) is spatially random and taken from a Gaussian distribution
with (h(x));, = 0 and(h(x)h(z')), = H?5(x — 2'). Therefore, after integration over the
random field, one get2[L1]

Sl = - / / A du i(z, u) [10dud(z,w) + TAG(, u) + g, u) — ud®(z, u)]

+8 10 //dxdu (ié(x,u))2+%ﬂ2 ///dxdudv io(z,u)ip(x,v) .

Due to the interaction termg£¢3, the action is not quadratic, and one has to use perturbation
theory in powers of: in order to be able to compute anything.

Instead of working with approximate expressions, and since the RFIMrikarly
well suited to using numerical simulations (lattice model with short-range interactio
a discrete set of configurations), we follow the dynamics by means of Moaiti® simu-
lations. The instantaneous quench from infinite temperature at the initial time0, is
realized by choosing a random initial condition(t = 0) = 41 with probability one half.
The order parameter is not conserved during the evolution. For therdgsawe use the
continuous time Monte Carlo (MC) procedulpP-214]. This algorithm, which is nothing
else but a re-organization of the standard Metropolis transition rulegeiion free. This
makes it spectacularly faster than standard Metropolis algorithm which hawlela rejec-
tion rate close td in the ferromagnetic phase of the RFIM. Times are expressed in usual
Monte Carlo steps (MCs)t MCs corresponds t&V = L? spin updates with the standard
Metropolis algorithm. The way to translate from the continuous time MC to staridérd
units, in which we present our results, is explainedzhZ-214.

Interesting times are not too short — to avoid a short transient regime -oaiabriong
— to avoid reaching equilibration (in ferromagnetic coarsening a non+pagnetization
density indicates that the coarsening regime is finished and other moredrefetbods
are used in the spin glass ciseWe delay equilibration by taking large systems since
the equilibration time rapidly grows with the size of the lattice. A reasonable nuaheric

A way to check whether a spin glass model gets close to equilibration is to ftiewvolution of spin
replicas with the same quenched randomness and testing when the aistidqoition develops a non-trivial
structure. Some papers explaining and using this techniqu@ a5e216, 193.
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time-window is[10%,107] MCs. We show results obtained using lattices with= 250
(N = 1.5 x 107 spins) in the RFIM and. = 100 (N = 10° spins) in the spin glass.
We checked that finite size effects are not important in any of these &t@asaseraged
guantities.

3.2 The typical growing length

In this Section we study the typical growing length (a geometric object) in th&Rifid
the EA model. We establish scaling and super-universality relations fa types of corre-
lations functions (statistical objects). Two of them involve either two spaceggand one
time, or one space point and two times, and are the usual observables stutharsening
phenomena. The third one is commonly used in the study of glassy systengstwbgoint
correlations are not sufficient to characterize the dynamics of the sy$i&§<200-203
and allows for the definition of a two-time dependent length that we can cenpére one
obtained in thé§d EA model and glassy particle systems.

3.2.1 The RFIM

During the ferromagnetic coarsening regime, there are as many posithagatve spins

in such a way that the magnetization density stays zero in the thermodynamic limit and
weakly fluctuates around zero for finite size systems. Everywhere irathels, there is

a local competition between growing domains. Eventually, after an equilibratenr

(that diverges with the system size), one of the two phases conquevhdiesystem scale.

In the coarsening regime (times shorter thay) dynamic scaling30] applies and the
growth of order is characterized bytgpical domain radiusR(¢; T, H), that increases in
time and depends on the control parametérsind H, and the dimension of spacé?.
While in the absence of impurities it is clearly established that, for non-ceedarder
parameter dynamics, the domain lendttyrows asR ~ t'/2 independently off [50] with
a prefactor that monotonically decreases upon increasing temperadd}ethe functional
form of R is less clear in random cases. Scaling arguments based on the enefgetigkeo
interfaces $5-57, 217-221] predict a crossover from the clean case result at short time
scales when it is easy to inflate, to a logarithmic growth,

R(t; H,T) = % In(t/7(T,H)) . (3.4)

The fact that the prefactor grows wifh (as opposed to what happens for clean curvature
driven dynamics102) is due to the activated character of the dynamics. Several proposals

2Note that some coarsening problems have a distribution of domain radiilavithtails, see 101] and

[107].
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for the characteristic time exist: 7 ~ (7/H?)? [217, 218, 18§ and 7 ~ 7oe 1)/ H* with
A(T') a weakly temperature dependent functi@f4]. To ease the notation in what follows
we do not write explicitly th&” and H dependence aR.

From the point of view of the renormalization group (RG), all points within thieofe
magnetic region of théT', H) phase diagram flow to the stable, zero-temperature, zero-
disorder sink. Hence, randomness and temperature should be irtaleesquilibrium at
T < T.. The super-universality hypothesis states that for non-equilibriurariorgl dy-
namics, once lengths are scaled with the typical lengtlgquenched random fields are
irrelevant and all scaling functions are the ones of the ciaising system afl’ = 0
with non-conserved order paramet@f] It has been tested numerically on some selected
observables in a few Ising models with weak disorder. It has been stotwid for the
equal-times two-point function of thl random field Ising model (RFIM)1[04] and the2d
random bond Ising model (RBIM) with disordered ferromagnetic interast{®05, 106.
More recently, the distribution of domain areas in this last mo#ié¥][and the integrated
response]08 has also be shown to be super-universal.

In the context of theld and2d Random Bond Ising Model (RBIM) with disordered
ferromagnetic couplings, it was argued based on numerical simulatiorisa tiaorder
typical lengthL* should enter the scaling functiowi the ratioR(¢)/L* independently of
the other scalingslp3. For theld case, the two-time correlation function was measured
after a quench in the critical region (just abde= 0) and the data were shown to obey the
following scaling: C(¢,t') = f(R(t)/R(t'), L*/R(t)) which violates super-universality.
For thed = 2 case, other simulations deep in the ferromagnetic phase also showed-a supe
universality violation for the two-time correlation. However, super-ursgéty was showed
to be restored for spatio-temporal correlatioig:; ¢, ') as soon as is sufficiently large (a
few lattice spacings)1[0g. This could be interpreted by a scaling of the fofir; ¢, ') =
g(R(t)/R(t"), L*/R(t), L* /r) which would saturate to(R(t)/R(t'), L*/R(t),0) as soon
asr > L* and therefore restore the super-universality property. Forithe 2 case,
notice that even in equilibrium at the critical point, where the irrelevancesoirder was
shown rigorously222-225, numerical simulations are rather inconclusive since one needs
very large lattices to observe the convergence of the RG flow to the mowddr fixed
point [224].

The equal-time spatial correlation.

A careful analysis of the field and time dependence of the growing lenglke sagether
with tests of the scaling hypothesis applied to the equal-time correlation

Ca(r;t) = (si(t)si ()7 —7;)=r » (3.5)



78

25

20

I IT
= PO 4
(& owm
————

o n
RPNR e

15

H2/T R(Y)

10

5t (b)

o ke
‘ ‘ ‘ ‘ o
10 10° 10° 10% 10° 10° 10

t tH

102 10° 10*
3

5

10

Figure 3.1:(a) With line-points (red), the growing lengf(t) at7 = 1 and H = 1. The green curve is the
power law+/¢ that describes well the data at short times, right after the temperatenelyuThe blue line is a
logarithmic law apt to describe the behavior at longer time scales. In thie theesame data in a log-log scale
to highlight the quality of the,/z behavior at short times. (b) Study of the dependenc® oh the parameters
T and H for two values ofl” and three random field strengthsgiven in the key.

where the average runs over all spins in the sample, appeared4r2R7]. In the coarsen-
ing regime, at distances< r < L with a the lattice spacing and/ R(¢) finite, Ca(r; t) is
expected to depend onand timet only through the ratior/ R,

Co(r;t) = mey fo(r/R(t)) (3.6)

with m., the equilibrium magnetization density (that decreases with incredsiagd/or
H), lim,_, f2(z) = 1 andlim,_,~, f2(z) = 0. Since the spatial decay is approximately
exponentialCy (r; t) oc e="/E® for not too longr, we use this functional form to extraft
from the data fit at each set of parametéfsH, t). Figure3.1(a) shows that the growing
length R has two regimes: shortly after the quenglgrows ast'/? like in the clean case
and it later crosses over to a logarithmic growth. This is consistent with previomerical
studies in2d [105 228 and 3d systems 104, 227]. In Fig. 3.1 (b) we test the dependence
onT andH by plotting HTQR versust/T forT'=1, 2andH = 0.5, 1, 1.5. We found the
best collapse using ~ H 3 but the precision of our data is not high enough to distinguish
between this and thes proposed in417, 21§ and [L04]. Our numerical results tend to
confirm theT'/ H? dependence aR even in the early stages of the growth.

Since the work of 104, it is now clear thatf; in Eq. 3.6) is independent off, and
very similar to the one of the clean system. In B we also find that the scaling functions
f2 at differentT fall on top of one another. Thug is independent off andT.
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Figure 3.2:(a) The scaling functiorfz(r/R) for T = 0.5,1,2 and H = 1,1.5. (b) The same data in a
linear-log scale showing thét is close to an exponential at shoptR.

The two-time self-correlation.

It is commonly defined as
| N
N — /

Clt.t) =+ ;<si<t>si(t ) (3.7)
and quantifies how two spin configurations of the same system, one take(waiting-
time) and the other one at> t/, are close to each other. The angular brackets here indicate
an average over different realizations of the thermal noise. In the Migeit, this quantity
is self-averaging with respect to noise and disorder induced fluctuatibhis two-time
function has been used as a clock for the out-of-equilibrium dynamidaséygsystemsip,
193 and we shall use this property again, in the study of the two-time growingHeagl
fluctuations.

The behavior ofC is well understood for coarsening systems. As long as the domain
walls have not significantly moved betwegrandt(> t') (that defines what we shall call
later short time delay), the self-correlation is given by the fluctuationsiokgpat are in
thermal equilibrium inside the domains. As any other equilibrium two-time functtza,
self-correlation depends then only ba- t'. Later, for longer time delays, the displacement
of domain walls cannot be neglected any more @hlboses its time-translational invari-
ance. The self-correlation can be written as a sum of two terms repres#mtinhermal
and aging regimes:

C(t, ) = Con(t — t') + Cag(t, 1) (3.8)

with the limit conditions

Cth(o) - 1 - QEA 9 t/hr?f Cag(ta t/) - qEA )

. gl _ . / _
tlgnt,Cth(t t)=0, tlgnt,Cag(t,t) 0.
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Figure 3.3: The global correlatiorC vst — t'. (@)T = 1 and H = 1 and differentt’ given in the key.
(b) ¢’ = 10 at various pairs ofT, H) given in the key.

gra IS a measure of the order parameter and in a ferromagnetic phase it simplsm@y
the magnetization squared.

In Fig. 3.3(a) we show the decay of the two-time correlat@ms a function of the time
delayt — ¢/ for ¢/ = 103, 10*, 10° at7 = 1 and H = 1. On each of these curves, one
can distinguish the two dynamic regimes. The longer the waiting-tirtie later the aging
regime appears. In Fig.3(b) we show the decay of the two-time correlation as a function
of time-delay fort’ = 10% and five pairs of paramete(¢’, H) given in the key. It is clear
that the full relaxation depends strongly on the external parametersigr#ie temperature
or reducing the random field strength speeds up the decay. For tHass @fl’ and H,
gea does not change much but the decay in the aging regime does.

Dynamic scaling implies that in the aging regime

Cusltt) = aen £ (7 ) 39)

with R the typical length extracted froifis, f(1) = 1 and f(c0) = 0. For our choice of
parameter$?’, H), gra is close to unity so we can easily compytérom the measured’

by usingf = Cag/qra ~ C/qra. Super-universality states thatdoes not depend ofi

and H. In Fig. 3.4 we show that both hypotheses apply to this quantity. In panel (a) we
use a linear-linear scale while in panel (b) we present the same data ible ttgarithmic
scale. Although the scaling functigfilooks like a power law it is not. One expects that
its tail [R(t) > R(t")] becomes a power-law with an exponeéntThe actual functiory is

not known. Most of the analytic efforts in domain growth studies are deviatelevelop
approximation schemes to deriye fo and other scaling functions but none of them is fully
successfulg0].
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Figure 3.4:Test of the scaling and super-universality hypothesisf (&) Cag /qra VS. R(t)/R(t') at various
pairs of (T, H) andt’ given in the key. (b) The same data in log-log scale.

The four point-correlation function.

In order to successfully identify a growing correlation length in glassyesys including
the 3d EA spin glass, one defines the two-time two-site correlation functl®® [200-
203 229

Ca(r;t, t") = (si(t)si(t)s;(t)s; ()5 —r; =r - (3.10)

We extracté from its approximate spatial exponential decay;(r;t,t') — C?(t, ') o

e~ /£t at relativelyshortr /€. (Other methods, such as defining the connected four spin-
correlation and extractingfrom its volume integral yield similar qualitative results though
slightly different quantitatively.) Results of this analysis are shown in&ig(a) where we
plot&(t, ¢') as a function of for differentt’ at7T = 1 andH = 1. We identify a short — ¢/
regime that is independent 8f(thermal regime), whereas for lomg- ¢/, time-translational
invariance is broken (aging regime). In F&5(b) we ploté(¢, ¢') versusl — C(t, t') for the
three same values ¢f usingt as a parameter. The dependencé e’ andt’ is monotonic
and very similar to the one obtained in tB& EA model [L99 (see Fig.3.8). The thermal
regime is almost invisible here since it is contained betw@es 1 andC' = ¢ga, With
qea ~ 1 for this set of parameters. We then propose

Ett)=R({) g(C). (3.11)

The limitg(C = 1) = 0is found by taking = ¢, that corresponds t0' = 1 [extending the
scaling form 8.11) to include the thermal regime]. In this caSg(r;¢,t) = 1. If one uses
Cyu(r;t,t) = Cy(r/€,C(t,t) = 1), see Sec3.2.], thené(t,t) must vanish to obtaid in-
dependent from, and this imposeg(1) = 0. In the other extreme, whens ¢’ andC' = 0
one expectg(0) = 1. The reason is the followindims.y Cy(r;t,t") = Co(r,t)Co(r,t'),
for the temporal decoupling @&, can be done in the> ¢’ limit. Recalling thatCs(r, t)
f2(r/R(t)) with lim,_, fo(z) = 1, the only spatial contribution tdims.,s Cy(r;¢, ")
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Figure 3.5: The two-time correlation lengttg, in the RFIM. (a)¢ as a function of time-delay, — ¢’ for
several values of given in the key afl’ = 1 andH = 1. (b) ¢ as a function of the global correlation in a
parametric plot af’ = 1 andH = 1. (c) Scalingé(¢,t") = R(t') g(C) at two temperatures and two values of
the random field using three waiting-timggor each set of parameters. The clean cHse- 0,7 = 1 is also
included with a very short to avoid equilibration.

comes from the terms(r, t') o< fo(r/R(t')). Usinglimgs.y (¢, t') = R(t')g(0) and fur-
ther assuming that the functional forms@f(z) and f2(z) are, to a first approximation, the
same we deducg(0) = 1.

Figure3.5(c), where we plog (¢, t")/R(t") versusl — C(t, ') for differentt’, illustrates
the validity of the scaling hypothesi8.(1). We see that, as expectedC' = 1) = 0
and it seems plausible thhtne, .o g(C') = 1. The scaling functiory is found to satisfy
super-universalityi.e. it is independent off andT'.

Cy and super-universality.

Using the monotonicity properties 6f as a function of — ¢’ andt’, and of¢ as a function
of t and1 — C we can safely exchange the dependenc€pfon the two times by a
dependence ofi andC. In other wordsCy(r, &, C') where, again for simplicity, we did
not write explicitly the dependence dnand H. Now, a reasonable scaling assumption is
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that one can measurdn units of¢ such that

Cu(r,t, 1) = Cu(r/E(t, 1), C(t, 1) . (3.12)

In Fig. 3.6we put this scaling form to the test and we examine the possible supersalitye
of 6‘4. We use different values of the parametens, T', H such that” = 0.57 in all cases.
Both scaling and super-universality relations are well satisfied. Notéhthataling relation
in Eg. 3.12 can also be transformed into

Cy(r;t,t') = Cy(r/R(H), R(t)/R(t)) (3.13)

by using Eq. 8.9. This last scaling form was also found for the XD(ferromagnetic
model in the largéV limit although the scaling function does not have a simple exponential
relaxation p05.

3.2.2 3dEA

A detailed analysis of the relaxation properties of similar correlations i3dHeA model
appeared in198. The spatial one-time correlatiodjs(r, t), vanishes identically in this
model due to the quenched random interactions. It seems pretty cleantdirosrical studies
CITE that the scenario given in e.8) for the two-time correlation function in coarsening
phenomena is valid for the case of th¢ EA model. In Fig.3.7 (a) we give the typical
behavior of the two-time correlation functid@ri(¢, ¢') at a given temperature, for different
waiting-times. Moreover, the aging part is found to scal€gagt,t') = gra f(t/t") (so-
calledsimple aging as illustrated in Fig3.7 (b) (see also199). If there is a dynamical
growing length scale in the system, the dynamical scaling hypothesis statésstinatld
therefore grow ag ~ t'/*(T). The question as to whether the scaling functjois super-
universal is not well posed since tfflédependent powet/z(T') can be absorbed iif.
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Figure 3.7:(a)3d EA: the global two-time correlatiofi'(t, ') atT /T, = 0.6 is plotted v&—t' in logarithmic
scale for different’ given in the key. (b) Test of the simple aging scaling, the scaling fungtienC.. /qra is
plotted vst/t’ for the same values a¢fandt’.

The four-point correlation allows for the definition of a two-time growing lkngcale
that behaves qualitatively as in E®.11). In Fig. 3.8 we present(¢, ') for the 3d EA.

Its behavior is very similar to the one of the RFIM exposed previously, Ervauld like

to stress the fact that this quantity reaches much lower values it case (around
2a) than in the RFIM (around5a). Figure3.8 (c) demonstrates that the super-universality
property does not hold in thed EA model. We used?(t) « t*% for both temperatures
and the resulting/(C) curves are significantly different. It is important to remark that no
T-dependent power-law i would make the two curves collapse. Turning back to the
scaling of the two-time correlation and fixing the power l&w,x f[(t/t')%%3] one finds
f(z) ~ 2=%5 (atT/T, ~ 0.6) a much faster decaying power than in the RFIM. Note that
previous estimates of the dynamic exponent using the one-time replica o2& {197
yield 1/z(T = 0.31,) ~ 0.045 a slightly larger value; the reason for the discrepancy could
be traced to the lack of accuracy in the determinatiof afid thenk.

3.2.3 Colloidal glasses

The structure factor of colloidal suspensions and Lennard-Jonesresxéue obviously
very different from the one of a sample undergoing ferromagnetiaioigleStill, two-time
self-correlations satisfy scaling with(¢) o ¢!/ although a clear interpretation &fis not
available.

Castillo and Parsaeian studi€dn a Lennard-Jones mixture of particles undergoing a
glassy arrest. One notices that, at short time delayst( ~ 10 molecular dynamic units),
£ is monotonic with respect to— ¢’ and ¢’ in this system, while one needs to reach much
longer time delays (and indeed go beyond the simulation window) iBdHieA and RFIM
cases ¢fr. Figs.3.5(a) and3.8 (a) to the first panel in Fig. 2 in2DZ]. A form such as
(3.11) describeg in this case too withR(t) ~ t'/# and1/z ~ 0.1.
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The two-time correlation length of colloidal suspensions was analyze20ig} {ising
a mapping to a spin problem. The data foremains, though, quite noisy and although a
similar trend in time emerges the precise functional form is hard to extract.

3.2.4 Summary

In short, the macroscopic correlations in all these systems admit the sanmmeidytaling
analysis although there is no clear interpretatioi@fs a domain size in the case of the
EA and colloidal suspensions.

3.3 Fluctuations

An approach apt to describe problems with and without quenched ramdesnfimcuses on
thermally induced fluctuation2p4. The local dynamics can then be examined by studying
two-time spin-spin functions which, instead of being spatially averagediogaevhole bulk,
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are only averaged over a coarse-graining cell with volline- (2()* centered at some site
r [200, 201): .
Co(t, ) = v ; si(t)si(t)) . (3.14)
i €Vy
One can then characterize the fluctuations by studying their probability disbmfunction

(pdf) p(Cy;t,t',1, L, T, H) with mean value”' (¢, t').

In general, the variation ¢f(C,.) with the size of the coarse-graining boxes is as follows.
For! < R the pdf is peaked aroung:s and has a fat tail towards small values ©f
including negative ones. Indeed, well in the coarsening regime, mosé antiall coarse-
grained cells fall inside domains and one then expects to find mostly a theruilibgm
distribution — apart from the tail. For larger values @uch ad ~ R, a second peak close
to C' appears and the one @i progressively diminishes in height. For still larger values
of [, the peak aypa disappears and a single peak centered gthe mean value of the
distribution) takes all the pdf weight.

At fixed temperature and field, the pgdtC,;¢,¢',1, L) in the RFIM depends on four
parameters, two timesand¢’ and two length$ and L. In theagingregime the dependence
ont andt’ can be replaced by a dependence(tin, t') and&(t,t'), the former being the
global correlation and the latter the two-time dependent correlation lengteedhC (¢, t')
is a monotonic function on the two timesff Fig. 3.3 (a)] and¢ is a growing function
of ¢ (cfr. Fig. 3.1), thus allowing for the inversiofit,t') — (C,¢). Note that we do not
need to enter the aging, coarsening regime to propose this form. One wamai@ the
natural scaling assumption that the pdfs depend,dhe coarse-graining lengthand the
system linear sizé through the ratiog/¢ andi/L. In the end, the pdfs characterizing the
heterogeneous aging of the system read

p(Cr§C(tat/)vl/g(mtl)?l/l’) : (3.15)

We numerically test this proposal by assuming that the thermodynamic limit apptiebe
last scaling ratio vanishes identically. Figl#® (a) shows the pdfs at two pairs of times
andt’ such that the global correlatiafi(¢, ') is the same, antl= 9. It is clear that the two
distributions are different. In panel (b) we further chodse that//¢ ~ 0.7 is also fixed.
The two distributions now collapse as expected from the scaling hypothgds. E). Note
that another peak @' = —1 exists, though with a lower weight. FiguBel0(a) and (b)
show the scaling fot/¢ ~ 1.4 andi/¢ ~ 2.9, respectively. While the collapse is still good
in the case of panel (a), it is not satisfactory in panel (b). Indeedptbisuffers from the
fact that the thermodynamic limit is far from being reachigd.(~ 0.15 is not so small).

In Fig. 3.10(a) we used several values’Bfand H and we found that all pdfs collapse
on the same master curve. We conclude that as long as coarse-grairjtigg lare not too
close to the system size, the pdf of local correlation satisfy the scalitigyfvith a scaling
function that is super-universal.
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Fig.3.9andC = 0.6 as well. (a)l/¢ ~ 1.4. (b) /€ ~ 2.9.

Let us now compare the forms of the pdfs in the RFIM addEA model. In the RFIM
the peak ayg, is visible untill/¢ ~ 2. Given that in this modef is quickly rather large
(€ reachedl5a in the simulation time-window) one has a relatively large interval fufr
which the peak agpa can be easily seen. Instead, in theEA the two-time correlation
length grows very slowly and reaches ogly- 2q in similar times, meaning that the peak
atgga is hardly visible as soon as one coarse-grains the two-time observabis [

Figure3.11demonstrates that the pdf of local correlations is not super-univertal
respect tdl’ in the 3d EA model, and compares the functional form at two temperatures,
T/T, = 0.3 andT /T, = 0.6, with the one in the RFIM. The global correlatiofi, and
the ratio of coarse-graining to correlation lengthsg, are the same in all curves. Although
qualitatively similar, the pdf in the RFIM angli EA models are different, with the RFIM
one being more centered around the global value.
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Figure 3.11:Pdf of local correlations in thed EA model atT’/T, = 0.3 andT'/T, = 0.6, for two waiting-
timest’ such thalC = 0.6 andl/¢ = 2.9. The solid line (red) displays the super-universal pdf in the RFIM.

The study of Lennard-Jones mixtures RO used a constant coarse-graining length
and the pdfs of local correlations at const@hshowed a slow drift that should be cured by
taking into account the variation @f In colloidal suspensions the scaling foré15 is
well satisfied P0J. In the context of coarsening phenomena these pdfs are to be cammpare
to the ones calculated for thi@(n) model in its largen limit [ 205.

3.4 Conclusions

We performed an extensive analysis of the dynamics of the RFIM in its eoiag regime.
We showed that the equal-time correlation functions, global two-time cornelfatiwtions,
and the four point correlation functions obey scaling and super-tgaiy relations in the
aging regime. The scaling relations, by means of the typical growing lefgth,In ¢/,
reveal a non-trivial time-invariance for these statistical objects. Supgersality encodes
the irrelevance of quenched randomness and temperature on the sgatitigrfs and it is
demonstrated by the fact that they are the same as for the clean Ising case.

In the 3d EA, similar scaling forms were found for global two-time correlations and
four-point correlations199. The function R(¢) could be associated to a domain radius
though a clear-cut confirmation of this is lacking. On the contrary, thdtsesfurecent large
scale simulations have been interpreted as evidence for an SK-like dyreenari® [L99.

The one-time function playing the role of the domain radius is a very weakrdawg:’-%3
atT/T, ~ 0.3 — 0.6, and, in consequence, the two-time correlation length reaches much
shorter values than in the RFIM in equivalent simulation times. Super-aiNgr (with
respect to temperature) does not apply in this case.

A similar scenario applies to the Lennard-Jones mixtue@§][and colloidal suspen-
sions P03. The two-time correlation length remains also very short in accessible ieaher
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and experimental times.

In all these systems the analysis of local fluctuations of two-time functions lead
scaling of their probability distribution functions. In the RFIM these also yesiiper-
scaling with respect t@” and H. In the3d EA they do not. The intriguing possibility of
a kind of super-scaling in colloidal suspensions (with respect to coratem) has been
signaled in P03 and deserves a more careful study.

We conclude that all these systems, watlpriori very different microscopic dynamic
processes admit a similar dynamic scaling description of their macroscopicesascopic
out-of-equilibrium evolution.
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DYNAMIC issues in isolated quantum many body systems are the focus of active re-
search. Some of the problems that are currently being studied theoreticlltha
time evolution of the entropy of entanglement in spin syste$§][ the nature of non-
equilibrium steady states in small quantum systems driven out of equilib&i8iZ32 due
to their relevance for nano-devices, quantum annealing technig88s234], and the den-
sity of defects left over after a gradual change in a param2gt.[ The influence of an envi-
ronment on the dynamics of quantum systems was also dealt with in a numisesesfsuch
as the spin-boson modélq], disordered spin chains coupled to bosonic ba?23§,[237], or
an electronic ring coupled to leads and further driven by a time-depehdei238-240.

Once the interest is set upon macroscopic systems, the question as tonilinetbain-
dergo phase transitions naturally arises. The theory of equilibrium céhssid quantum
phase transitions is well developeNon-equilibriumphase transitions in which quantum
fluctuations can be neglected are also quite well understood. Thesahzed when a sys-
tem is forced in a non-equilibrium steady state (by a shear rate, an exdarrent flowing
through it, etc.) 241244 or when it just fails to relaxd.g after a quench) and displays
aging phenomen&f5, 52]. In contrast, the effect of a drive omaacroscopisystem close
to a quantum phase transition is a rather unexplored subject. Some wek$ocased
on non-linear transport properties close to an (equilibrium) quantunegressition L 16-
119. Others have studied how the critical properties are affected by qoitisgium drives
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Figure 4.1: Non-equilibrium phase diagram of the fully connected dropgemtum rotor
model with an infinite number of components.

[119-121]. However, a global understanding of phase transitions in the cordralnme-

ter spacel’, V, T', with T' the temperaturel the driving strength, an@l the strength of
quantum fluctuations, is still lacking. Furthermore, to the best of our krigyelethe issue

of therelaxationtoward the quantum non-equilibrium steady state (QNESS) has not been
addressed in the past.

In this chapter we study a class of analytically tractable models, systemsarhponent
N quantum rotors that encompass an infinite range spin glass and its thresidina¢pure
counterpart modeling coarsening phenomena. As discussé&d]impdels of quantum ro-
tors are non-trivial but still relatively simple and provide coarse-gihidescriptions of
physical systems such as Bose-Hubbard models and double layerranidégnets. The
system is coupled to two different external electron reservoirs thattteacturrent flow-
ing through it and driving it out of equilibrium. (For a two dimensional model ¢carrent
flows perpendicular to it, see the sketch in Fig. 1 bf9.) In the simplest settingl[1l9
each rotor is coupled to independent reservoirs; more realistic cougnegdiscussed in
[12]]. Using the Schwinger-Keldysh formalisrg5, 246, 247] we obtain the complete out
of equilibrium dynamics of these models in the larg¥ limit. We show that at sufficiently
low T, V., I, see Fig. 1, the system never reaches a QNESS and coarsens withateimark
universal properties. We study the critical properties of the phassitiars, in particular
in the vicinity of the (drive-induced) quantum out-of-equilibrium criticalrgd/, atT" = 0,
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T = 0 and the “usual” quantum critical poift. atV = 0, T = 0. We analyze in detail
the relaxation in the coarsening regime and uncover the scaling propdrtesrelation

functions and linear response. We derive a general formula for thertilowing through
the system under such a voltage drop and we analyze its dependeneadygndimics of the
system. Some of these results were announced receniyiéh [

4.1 The model

4.1.1 System of disordered quantum rotors

The model we focus on is a quantum disordered system madé ofcomponent rotors
interacting via random infinite-range coupling$[249.

The quantum rotors should not be confused with true quantum Heigesiies present
in any isotropic antiferromagnet; the different components of the rotaahlas all com-
mute with each other, unlike the quantum spins.

We consider a fully-connected (mean-field) model where there is nalyimdegeom-
etry: each rotor is equivalently coupled to all the others. The Hamiltoniawvéndiy

N

H:%Z ——Z:JUSZ Sj - (4.2)
i=1

2]<z

st (u = 1...n) are then components of thé-th rotor. The coordinates,’ constitute a
complete set of commuting observables. The scalar pragust; is given byzﬂ | st s]
In order to better apprehend the largémit, we slightly changed the writing of the Hamil-
tonian compared to the one given in efl.10 by rescalings; — +/ns;. The length of
rotors is now fixed to unitys; -s; = 1V i = 1... N, at the price of an extra factor in
front of the potential term. The strengtlis’s are taken from a Gaussian distribution with
zero mean and variancg. .J controls the strength of disordek,; is thei-th generalized

angular momentum operator whielin — 1) /2 components are given by
0

L = 1h< aal’ _Slilasf> forl<pu<v<M, (4.2)

L} =3, (L") [78, 45,249,

I" acts like a moment of inertia and controls the strength of quantum fluctuatidwesy w
R*T'/J — 0 the model approaches the classical Heisenberg fully-connected sp# tia
the largen limit it is equivalent to the quantum fully-connectgd= 2 spin glass250, 251].
The classical mapping to ferromagnetic coarsening ir3th@ (n) model withn — oo [52]
holds, as we shall show in Set4.5 for the quantum model as well.
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Figure 4.2:Density of states (DOS) of type A reservoifs, anduo + eV are the left and right Fermi levels,
respectively. The left reservoir is half-filled.

4.1.2 Reservoirs of electrons

The system is coupled to two, ‘leftl{) and ‘right’ (R), reservoirs of electrons. These inde-
pendent reservoirs are both in equilibrium at inverse tempergiuend 5z. The situation

81, # [Br would create a heat flow from one reservoir to the other. We are intdrigstiee
simpler case in whicl;, = Sz = 8 = T~'. An electric current is forced by imposing
different chemical potentialg,;, = o andur = po + eV (where—e is the electric charge

of one electron)eV is the strength of the drive. AS//.J — 0, the effect of the reservoirs
on the system approaches the one of an equilibrium bath at tempefatiige details of
the reservoir Hamiltonian& ;, and H i are not important since only the electronic Green’s
functions matter in the small rotor-environment coupling we concentrate enconsider
the simple case in which left and right fermionic reservoirs have the sansgylehstates
(DOS)pr, = pr = p. Moreover, we focus on simple cases in which the shape of the DOS is
controlled by only one typical energy scale. In the rest of this chapter, we often consider
the limit in which ez is much larger than all the other energy scales involved. In this limit
the results become independent of the detailed functional form of the D@%ilso give
some results for finiter using the specific DOS that we introduce below.

DOS with a finite bandwidth

We first consider regular DOS which have a finite typical width (finite badthycontrolled
by er andyy is set around the maximum of the distribution. In the limit wherds very
large, they can be seen as almost flat distributions. Weegallthe finite energy cut-off
beyond which the DOS vanishes(|¢| > e..t) = 0. Since the DOS we consider have a
single energy scaler, e..; should scale witler. Notice that a finitec.; constrains the
voltage not to exceedl;,.x = €cut — 1o Since the right reservoir is then completely filled
and therefore it cannot accept more fermions.
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Figure 4.3:An example of type A reservoir: the semi-circle density of states (haltijille

We call reservoir of type A a half-fillédreservoir the DOS of which has a finite band-
width controlled byer and is symmetric and derivable in the vicinity of its maximum (see
Fig. 4.2). The simplest example of a type A reservoir is given by the semi-circule® DO
(see Fig4.3),

pale) = — 1—(6 F) 7 (43)

TER Fa
that is symmetric and centered around Heree.,. = 2¢r. We choosgiy = e so that the
reservoirs are half-filled at zero drivel = 0). In this case, ai’ = 0, the voltage applied
between both reservoirs cannot exce&f.x = €cut — o = €F-

Type B reservoirs have finite bandwidth but no energy cut@ff; = eVipax — 0o0. A
realization of these reservoirs is given by the following DOS [see#&#fa)]

pp(e) = ec;\/ge_;(f;) ; (4.4)

wherea =~ 0.97 is a numerical constant fixed by normalization. The maximum of this
distribution is located atr/v/2. This reservoir is half-filled fory ~ 0.95 ep. This
distribution resembles the semi-circular one in the sense that they both stad sethare
root behavior, have a maximum, and a bandwidth of oeder In contrast, the DOS in
eg. @.4) is different from zero at all finite and one can exploit this feature to apply strong
voltages.

DOS at low energy

In the previous exampleg f andpp), we focused on values @f; corresponding to high
energy states where the DOS is regular. We are also interested in studgegyveherg is

'Half-filled means that half the total number of available states are occuffiéddep(e) = 3 atT = 0.
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Figure 4.4:Two examples of typeB reservoirs. (a) The distributions vanishes asymptotically. (b) The
square root distribution diverges asymptotically.

centered around low energy states. To analyze these cases, werficeX¥OS which reads

[see Fig4.4(b)]:
pc3d(e) =1 \/?)»EF \/? (4.5)

This square root behavior is actually the one of 3ddree fermions reservoir. In this case
er is of the order of the hopping term for the free fermions. Since we shallifonus on
the low energy states of the reservoir, we can neglect the non trivialdnigrgy structure
of the reservoir and take the DOS equal to zerc:for 2¢ .

For the2d free fermions, the density of states is given by

(4.6)

1
pc2d(€) = 2o
€

whereas for thad free fermions, the density of states is given by

1 (S
pcid(€) = 2\f€F\/> 4.7)

and, as fopcsq, We take these two densities of states to be equal to zero¥d2e .

4.1.3 Coupling between the system and the reservoirs

An electron hop from thd.(R) reservoir to theR(L) reservoir is linearly coupled to each
rotor component:

n

\/» N N M
Hiy = F Z Z Z Z kk/ 5 %kl Ull’ Yriwr + L < R], (4.8)
i=1 p=1kk'= =

wherey| . is thel-th component of ai/-component spinor operator that creates an ad-
ditional fermion with energyiwy, in the L reservoir associated to thigh rotor. & labels the
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electron energy inside the reservoilg, is the total number of states in each reservett.
are the generalized Pauli matrices f8l7 (M) of dimensionM x M with M? — 1 = n.
They are chosen to be normalized such that"ix” = §,,,,. Vi are the rotor-environment
coupling parameters chosen to be constéjpt: = hw.. Hin iIs O(n) andO(N) invariant.

4.2 The dynamics

4.2.1 Quench setup

The system is initially prepared (at times< 0) in such a way that its initial configuration
(at timet = 0) is neither correlated with disordes,(’s) nor with the reservoirs. This
can be realized, for instance, by coupling the system to an equilibrium bemperature
Ty > J, T so that any correlation in the system is suppressed. Attime) the quench is
performed by suddenly coupling the system to thend R reservoirs. These are supposed
to be “good reservoirs” in the sense that their properties are notedféy the state of the
system.

This setup generates non-equilibrium dynamics at titnes 0 for multiple reasons.
First of all, the rapid quenching procedure puts the system in a non-equililnitial con-
dition with respect to its new environment. Moreover, the latter is not an equitibbath
but a bias drive the role of which is to constantly destabilize the system. Fiaslfyconse-
guence of its disordered interactions, the system of rotors experigndasic difficulties
to reach equilibrium. Indeed, even if it were embedded within an equilibriumamment
it would show a glassy phasgj1-253 in some parts of the phase diagram.

Since system and reservoirs are decoupled at ttmed), the initial density matrix of
the whole system is given by

N N

ot =0)tot = 0(t=0) ® 0Li ® ORi - (4.9)
i=1 i=1

ori/ri corresponds to the equilibrium density matrix of ther reservoir associated with
the i-th rotor. The system of rotors being prepared at very high temperatarmitial
density matrix is the identity in the rotors space:

o(t=0)ocI. (4.10)

All these density matrices are normalized to be of unit trace. {The0 evolution of the
whole system plus environment is encoded in

oot (t) = U(£,0) 0101(0) [U (2, 0)]" (4.11)
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where the unitary evolution operator is given®yt, 0) = Te~n Jo 4’ Heot ) with H,o, =
H + H;, + Hi + Hiyne andT the time-ordering operator (see AppA). We analyze the
non-equilibrium dynamics using the Schwinger-Keldysh formalism (8€6, [247] for a
modern review) that we briefly introduce in the following lines.

4.2.2 Schwinger-Keldysh formalism

The Suzuki-Trotter decomposition of the two unitary evolution operatorsibaear in
Z = lim TrU(r,0) 040t (0) [U(7,0)]T =1, (4.12)
T—00

yields a path-integral involving two sets of fields with support on two diffel@anches.

The first ones are time-integrated on a forward branch fres to +oo. In the following,

these fields carry & superscript. The other ones are time-integrated on a backward branch
from +o0 to 0 and carry a- superscript. These two branches constitute the Keldysh contour
C, see Fig4.5. The identity @.12) can now be expressed as a path integral,

z= / Dls*, o, 7] enSier (s7(0), 957 (0)| 0w (0)s(0), 967 (0)) , (413

where we collected all the!"” fields into the notatiors®, and all the fermionic fieldg?,
and their Grassmannian conjugates igitband” (with o = +).

(sT(0), 1Z+(0)\gtot(0)]s*(0),¢*(0)> is the matrix element of the density matrix which
has support at time= 0 only. The actionS;.t is a functional of all these fields:

Stot = Zia/ooo dt £([s*, ¥, P ];t) . (4.14)
The Lagrangian is given bélto: =L+ Liny + L + L With
L([s;¢ ZFZS +—2J1jn a(t) (4.15)
ij<i
Ling([s*, 9%, 9"]; 1) \f Z Wi (t) oy Vi (t) + L R] (4.16)
mkk’ll’

L, and Ly are the Lagrangians of the free fermions in fhand R reservoirs. The index

¢’ at the bottom of the integral sign in egt.(3 is here to remind us that the integration
is performed over fields satisfying the constraint that each rotor hasa fixit length:
s;?(t)2 = 1V a,i,t. The path-integral formalism gives a nice way to restore an uncon-

strained integration over all field$ by the introduction of Lagrange multipliet$:

/C Dls?] = / Dls? T[ 601 st (4.17)
_ /D[sa,z“] exp (; /Ooodt ay YA (1—sg(t)2)>. (4.18)
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Figure 4.5:The Keldysh contou€ goes from0 to +oco and then back td. The Keldysh action involves
forward fields (that live on the-branch ofC) that are time-integrated frotto +oo and backward fields (that
live on the—branch ofC) and are time-integrated fromoco to 0.

where we used the integral representation of the delta function (seelAQm@and collected
the new auxiliary real fields; into the notatiore®. In terms of a Lagrangian, this gives rise

to the new term
n

Lim([s®, 2:t) = 5 DA -0 (4.19)

7

4.2.3 Macroscopic observables

We are interested in the macroscopic dynamics of the rotors after an infiraftyquench
and we wish to give an answer to the following questions (among othersys e sys-
tem reach a steady state? Does a steady state current establish? Whatlang-time

dynamics? We first obtain an effective generating functional for thesdipexpanding the
system-drive interaction up to second order in the coupling, integrating thegermionic

degrees of freedom, and averaging over the disorder distribution.

Introducing the external real fields, () that we collect in the notatioh®(t) (a = %),
the generating functionad [h*] reads

Zh* = /D[si,ziﬂl)tﬂl—’i] o Storlst 2 P R
% (s7(0), %" (0)] 0wt (0)][s7(0),557(0)) ,  (4.20)

where we introduced the source term
h
Stot = Stot + T Z /dt Z Z st ()Rl () (4.21)
a==% i "

The generating functional obeys the normalization prop@r{iyjE =0] = Z = 1whichis
a fundamental feature of the Keldysh formalism in this setup (seé&d) @nd Sec4.4.]).
One has

1 6 Z[h¥

(s7(1)) = Z Sh) ; (4.22)

ht=0
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where we introduced the notation
- /D[ 55, 2 gt ] e oS (st (0), % (0)] ot (0)]s(0), 15 (0)) (4.23)

Notice that one can distinguish this bracket notation from the quantum stdtesterage
that we denote similarly by the occurrence of Keldysh indices inside th&disadHowever,
they coincide in the case of one time observaldas,

(si(1) = (7" (1)) , (4.24)

with @ = + or — equivalently if the observable is time-reversal invariant.

Keldysh Green’s functions

We introduce the two-time Green’s functio W,( t'), defined on the Keldysh contour
(a,b=+), as
1 82z
PO )) = 5 ihG 0, (1,1) . 4.25
<SZ ( )8] ( )> z 6hi¢a(t)5h3,b(t/) e =1 7,]“1/( ) ( )

si'" being real fields, one has the following time-reversal property

G, (1) =Gl (). (4.26)

ij pv Jivp

In the operator formalism, the Keldysh Green'’s functions read

inG b, () = Tr [Te sty (t,a) siu(t',b) 0wt (0)] (4.27)

wheres!; (¢, a) denotes the Heisenberg representation of the opesgtat timet and on
the a-branch of the Keldysh contoutl¢ is the time-ordering operator acting with respect
to the relative position oft, a) and (¢, b) on the Keldysh contouf (see App4.A).

We define the macroscopic Keldysh Green’s functions by summing ove¥ trwors
and each of thein components

G (t,t) Z Z Gib (¢, (4.28)

i=1 p=1

From the identity 4.27), one establishes two relations between the four Green'’s functions
GtH(t,t) = G T, et —t)+ G (t,t)0 —t), (4.29)

G (t,t') = G (et —t)+G T(t,tho —t), '

leading to

GTt"+G~ = G +G T,

G Gt = sig -6 - e &)
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Self correlation

We define the macroscopic two-time correlation as

N

c(t,t) = %Z %(sj(t) csT(t) + s () - sT(t)) (4.31)
=1

- ? [G+_(t;t/) + G_+(t,t/)] = % [G__(t,t/) + G++(t,t/)] . (4.32)

Itis symmetric in its time arguments(¢, t') = C (¢, t). Given the constrain(t)-s(t) = 1,

it is one at equal timeg”(¢, t) = 1. The two-time correlation function is the simplest non-
trivial quantity giving information on the dynamics of a system. In particuldosa of its
time translational invariance (TTI) is a signature of aging.

Self linear response

The response at timeof the observable! to an infinitesimal perturbation performed at a
previous time’ on an observablé! linearly coupled tos!' is defined as

a(sy(t)
Off () g

Rt ) =

7

(4.33)

with the modified Hamiltonian
H+—— H — f;‘sy . (4.34)

Causality ensures that the response vanishes<ift’. We define the macroscopic linear
response as

N n
1
A i /
R(t,t)—NZZRi (1) . (4.35)
i=1 p=1
The functional derivative with respect §'(¢') in eq. @.33 can be written in terms of the
source fieldshfi(t’) sincef!" appears to play a similar role in the action functional:

0 i 4] 4]
- — : 4.36
Sff () h <5h§‘+(t’) Shi (t’)) (4.36)
Therefore we obtain a Kubo relation, stating that the response can kEseggd in terms of
two-time Green’s functions:

R(t,1') = 1%% 11 °2[h*] 827
’ N & hZ \ ShE(oR (1) |,._, OB (B (#) ], .
= G (t,t') — G (t,t') with a = + or — equivalently
= % (G (t, )+ GT(t,t)) = GTH(t,t) — G H(t,1)]

= [GT(t,t) -G () eu—-t), (4.37)
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where we made use of the relatiods29).

Finally the four Keldysh Green'’s functiorg®* (¢, ') can be re-expressed in terms of a
couple of physical observables (namely correlation and response):

ihG®(t,t) = C(t,t') — ? [aR(t',t) + bR(t, )] . (4.38)

Keldysh rotation

The Keldysh rotation of the fields is a change of basis that simplifies the ssipns of
the physical observables such as the correlafiand the responsR in terms of Green’s
functions. One introduces new fields as

M — o 4o
2s:; = s' +s,;
[ ¢ v 4.39
{ ih 52(2) = s;r -s; , ( )
and the inversion relation
st =siV 4 a?sl@) . (4.40)

We define the Green’s functions of these new field$ha&™* (¢, ') = 1/N SV (si(t) -
s7*(t')) with r, s = (1), (2). The star ** * denotes complex conjugation. We have

ihGM (¢, ¢) = C(t, '), kG2 (t,t') = R(t, 1),

4.41
ihGED(t,t') = —R(t',t), ihG*(t, ') =0. (4.41)

The fact thatG(?) vanishes identically is very general and can be tracked back to be a
consequence of causality. The unit length constraint imposed on thecateodinates,
s?(t) - s%(t) = 1, becomes an orthogonality constraint between the fields in the new basis,

: ' 2 2
sgl)(t) . s§2) (t) = 0, and a relation between their nornél.)(t) - %2s§2) (t) =1.

After the Keldysh rotation, the connection with the classical MSRJD gengrhtirc-
tional presented in Chapt@ris straightforward 246, 247, 252, 253. Indeed, comparing
the relations 4.41) with eqgs. @.27) and @.34) reveals a very strong resemblance between
the ﬁe|dSSZ(1) andt on the one hand, and betwe'xs[f?) and®) on the other hand. We shall

come back to this connection in Sdc4.5

Bosonic FDT

When the system of rotors is in equilibrium at a given temperafure the fluctuation-
dissipation theorem holds (in its bosonic version) giving an extra relatibneles the
Green's functions. In Fourier space (see App for our Fourier conventions) it reads

C(w) = h coth (Bhw/2) Im R(w) . (4.42)

For completeness, we derive this theorem in App.2
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4.3 The influence of the fermionic environment

4.3.1 Self-energy

We treat the interactions with the environment in perturbation theory up tondemaler

in the coupling. After the fermionic degrees of freedom are integratedtieitresulting

effective action for the rotors acquires an extra term encoding thetef the reservoirs.
The detailed computation, given in App.D.1, yields

Seff =5+ SLM + Sl(jt) ) (443)

with

Ls@s®, 5] = —n Py // drdt’ S5, (10) Y s(1) i) (4.44)

and the four self-energy components

23 = 2(w)?Re|GEGE — 124 (G1GE +GRGE )| = -k, . 4.49)
SE) = —2hw.)?Re|GEGE + GEGE | =k, (4.46)
S0 = 2(hw)?Re|GLGE +GEGE| = -, (4.47)
s = 0. (4.48)
The fact thato!LY) vanishes identically is a consequence of causality. Similarly to what we
have done in Sed.2.3we renamed??, 22V andx{l? into XX, & andyA4, . These

real functions are usually referred to as the Keldysh, retarded aratheeld components of
the self-energyGX, GZ andG4 are the Keldysh, retarded and advanced Green’s functions
of the free electrons in the-reservoir respectively (see App.B.1). Using their properties
under time reversal (see App.B.2), we establish

Eglv( ) Zgl{w( ) ) Z:fnv( ) _E?nv( ) : (449)

These relations reduce the number of independent self-energy contpoméwo (namely
»E andXZ ). By plugging the expressions of the fermionic Green’s functions giwen

env env

App. 4.B.1, we obtain

2K, (r) = —%(m)?« [tanh(ﬁeL SHE) tanh (3 FE) - 1] cos (q > 6RT>>L>R,

2R, (r) = %(hwc)2<< [tanh(ﬁeL SHE) — tanh(3 “R)} sin <€L%€RT> )L)RO(T).
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The notation(( - - ).) x stands for[de;, deg pr(e)pr(er) --- . The Fourier transforms
read
ShLw) = —gmh(wo?(( [tanh(ﬂeL SHE) tanh (3 EE) 1]
< [3(hw — exr) + 0w + eLr))i)n (4.50)
Ref], (w) = —(we)(( [tanhw“;“) ~ tanh (6~ ”Rﬂ PV a7 e
M) = panted?([rann(3E ) — tann(s R |
% [3(hw — ezr) = 8w + eLr))r)r | (4.51)

whereerr = ef — eg. SinceXk (1) is areal and even function of =X

oy oy (w) is also areal
and even function ab. X% _(7) being real X2 (w) is Hermitian: X2 (w) = B8 (—w)".

env

4.3.2 Some limits

Expressions4.50 and @.51) of the Keldysh and retarded self-energies are somehow cum-
bersome. We simplify them here in some physical limits. These expressiohgarity
used in the rest of this work.

Zero drive

The L and R reservoirs constitute an equilibrium bath for the rotors as soon as they sha
the same temperature and the strength of the drive is set to;zete (ur, eV = 0). In this
case, the fluctuation-dissipation theorem applies to the environment variabtégives an
extra relation between the environment self-energy components. # read

»E (w) =h coth <5h;"> Im22 (w). (4.52)

Ultimately the number of independent self-energy components reduces.tdvechecked
in App. 4.D.2that the expressiongd 60 and @.51) comply with the FDT in the equilibrium
case.

Low frequency

Let us consider the low frequency limib(— 0), or long time-difference in real time, of
the self-energy components of a generic non-equilibrium environma&ht4£ 0 a priori).
Parity considerations on%  andXZ  show thatoX  (w) approache&X  (w = 0) which

depends o, eV ander whereas I (w) o« w. The low frequency limit, which can

env
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also be seen as the classical linfit:(< T') of the quantum fluctuation-dissipation theorem
in eq. @.52 gives a way to express the temperature of an equilibrium bath as

1 B (w)
=S oim st () (4.53)

By analogy with the equilibrium case, we introduce for non-equilibrium sitnatio

1 2K (w)
T = lig + _ ew(@) 4.54
2202 d,lm 2B _(w) (4.54)

env

We expect that the effect of the reservoirs on the long time-differeyicardics of the rotors
is the one of an equilibrium bath at temperatilite

er much larger than all other energy scales

The reservoirs act as @hmicbath in the limit in whichez is much larger than the temper-
ature, the drive anflw (eV, T, hw < ep). Equation £.51) with Ae = ¢;, — e reads

ImsE (W) = %w(m)? / ae / dAe p(€)ple — A€) [3(w — M) — 8(hw + Ae)]

I _ ! _ _ —
X [tanh(ﬁe 2“0) _ tanh (5™ A€)2 Ko eV)} . (4.55)
In the limit hw < ep, we usep(e’ + hw) ~ p(¢’) and we derive
Im2E (w) ~ %W(M)Q / de’ p*(€') (4.56)

€ +hw—pg—eV
2

) — tanh(f

X [tanh(ﬁ 5

€ — hw — g —ev)}

The factor within the square brackets in the integrand is peak€d=atu, + ¢V. Hence
we can approximatg?(¢') ~ p?(uo) and then compute the remaining integral exactly to
obtain an Ohmic (in the sense that it is proportionab}dehavior for the imaginary part of
the retarded self-energy:

Im n2

env

(w) = 27mh(hwe)? p* (o) w - (4.57)
Interesting enough, this expression is independefitafdV’. Similar calculations give

eV sinh(feV') — hw sinh(Shw)

R () 2 2l 0% pi0) = 5 A (B

env

(4.58)

In order to determin&/™, we investigate the low frequency limit &% (w) given in
eq. 4.59.
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Zerodrive. ForeV < T < e, eq. ¢.59 yields

K
Eenv

(w) =~ 21h? (hw,)? p* (p1o) w coth (Bhw/2) . (4.59)

Equations 4.57) and @.59 are linked through FDT. In the low frequency limit{, eV <«
T < ep) it reads

K
2env

(w) ~ drh(hwe)?p* (o) T, (4.60)

yielding 7" = T as expected in this equilibrium situation.

Finite drive. As soon as the drive is not negligible compared to temperature, in the low
frequency regimefiw < T' < ep andeV < er)

YE () ~ 2nhi(hwe)? p* (o) €V coth (BeV/2) , (4.61)
yielding
T = % coth (5eV/2) . (4.62)

An “FDT like” relation is verified in these limits

»E (w) = heoth (hw/2T*) Im B (w) . (4.63)
A similar interpretation of the effect of a two-leads environment in these limits emlyh

namics of a single localized spin was given 25{] and [255].

Furthermore, in the low temperature limit{ < T < eV < ep)

K
Eenv

(w) ~ 2wh(hwe)?p* (po) leV] (4.64)

yielding T* = |eV|/2.
Finally in the zero temperature limi = T < hw, eV < €p)

K
Eenv

2 20 { eV if [hw| < [eV], (4.65)

= 2 h(hw, ,
(@) = 2mhihwe) o™ (1) Y 5t ol > eV

In the low frequency regime, we recover expressiih4). In the zero temperature and zero
drive limit (0 = T = eV « hw < €p) the Keldysh component of the environment self-
energy read&k  (w) = 2nh(hw.)?p? (o) |hw| that goes linearly to zero in thieo — 0
limit.
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Zero temperature

IntheT = 0 limit, we obtain for finite values of the other parameter¥, (iw, e )

pno+eV+hw
vE (W) = mh(hw,)? [sign(eV + hw)/ de p(e)p(e — hw)
110
po+eV —hw
+ sign(eV — hw) / de p(e)p(e + hw)} (4.66)
110
po+eV+hw
im =5, () = (e | [ de p(O)ple — w)
1o
po+eV —hw
- / de p(e)p(e + hw)} . (4.67)
1o
In the low frequency limit( = 7" < hw < eV, ex) they yield
po+ev
»E (w) ~ 27h(hw,.)?signeV) / de p?(e) , (4.68)
1o
Im 8, (W)~ wh(fwe)? [p*(1o) + p* (1o + V)] w , (4.69)
so that
fuo-i-evde ,0

Ho
p* (o) + p? (uo+ev) '

(T = 0) = sign(eV) — (4.70)

Some specific reservoirs

For the half-filled semi-circular DOS (type A), at zero drive and zero &natpire, we es-
tablish the following analytical results at finitg:

2 J2(7e — S2(Te

i = 2() AT, @
8 [ hw,. 2 Ii(rep/R)S (ter /R

hin = 5 () 2 e, @2

with & (7 = 0) = 0, SE (7 = 0) = L (7w.)?. J; andS; are the Bessel and the Struve
functions of first kind and first order, respectively. From eds/J) and @.72), we see that

the temporal extent of botiZ . andX X is of orderi/ep. In the limitin whiche is much
larger than any other energy scale, a numerical analysis shows thatapexty holds for
finite values of the temperature and the drive as well. As a way of summaryg.id B
(@) we plotxX as a function ofrex for ez = 10.J,100.J and at(T = J,V = 0) and

(T =0,V = J). In the case in whiclp is finite, one can computé* for the half-filled
semi-circular DOS at zero temperature:

leV|1—1/3 (eV/er)?
2 1-1/2 (eV/ep)?

T(T =0) = for|eV] < eVinax = € . (4.73)
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Figure 4.6:(a) 2k, (for the half-filled semi-circle DOS) as a functionod in the regime wherey is much

larger than any other energy scale: farr = 100 andfSer = 1000 ateV = 0 and also foreV/2 = er /100

atT = 0. The three curves are indistinguishable. This shows Xt{at is indeed a function of¢r in this

regime and shows furthermore that/2 plays the same role &. (b) Im ©£, (w) is represented in a double

logarithmic scale for the three following DOS wiler = ¢ /eV = 100: the half-filled semi-circle 4 (¢), the
half-filled type B with pz(€) and the3d free electrons DO$c34(€). The straight line above all is a guide to
the eye for a pure Ohmieq( w) behavior. The rapid decay aboke ~ ¢ is a signature of the energy cut-off,
€cut X €, Of the DOS.

In Fig. 4.6 (b) we give a numerical integration of Il (w) for the three types of
reservoirs we introduced in Seé¢.1.2and in the case in whichy is the largest energy
scale. This shows that the self-energy is indeed the one of an Ohmic ba¢hfadt that
their Ohmic behavior is approximately valid untib = e supports the property that the
temporal extent of the self-energies (in real time) is of the ordéy/ef.

4.4 Results

In this Section we present our results. We first complete the calculationarfidisaveraged
generating function and, from it, we derive Schwinger-Dyson equafiamihe two-time
correlation and linear response valid for all values of the parameteraeXtelerive the dy-
namical phase diagram as a function of the temperature of the resefVpitsd strength of
quantum fluctuationdY), the voltage £1") and the coupling to the leads for which we intro-
duce the new dimensionless parametet fw./er. We distinguish two phases separated
by a second order phase transition. For high values of the temperatlior attong drive
and/or strong quantum fluctuations, we find a non-equilibrium steady stdtegproaches
the usual paramagnet whelw — 0. Whereas for low temperatures and/or low drive and/or
guantum fluctuations we find a coarsening phase.
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4.4.1 Average over disorder

At this stage, after tracing out all fermionic degrees of freedom, theteféeaction of our
system is quadratic in the fields and reads

- nZ/dt{ (1) (1) - SZ@)(t)

\ﬁZJU U s 0+ 5P ) 50 0] (4.74)

1<t

;/ﬁt%;u—t>?k>s9<> /Ht2;<—ws9a»éWw

o X0 [1 5 (40) sl -0+ (:200)] |

Given that the initial condition for the rotors is taken to be uncorrelated witltig@der
configuration (theJ;;’s), neither the initial density matrix(0) nor the generating functional
without sourcesZ[h* = 0] = 1) depend upon disorder. This property allows us to write
dynamic equations by averaging over disorder the generating funciiselihence without
resorting to the use of replicag42 253. As in other quantum systems with quenched
disorder P51-253 256-258, 46, 47, 259-263, we are therefore interested in

—J
ZipE] = / I a5 P(Jy) | 204, (4.75)
i,j<i
where P(J;;) is the Gaussian density distribution for the rotor couplings with zero mean

and variance/%. The disorder average over a random Gaussian potential can bk read
done and the effective action of the system is quartic in the fields and reads

1
2/@234 — )5 0) st - /wzﬁﬁ—w£%>éWw

+% Z azi(t) [1 — % (sz(.l)(t)>2 — aih sgl)(t) . sz(»z) (t) + 712 (sl(?) (t))? } )
a==+
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4.4.2 Schwinger-Dyson equations

In the largen limit, we show that the Lagrange multipliers are homogeneous,

() =2 (t) = 2(t) Vi, t. 4.77)

(2

See App4.Efor a detailed computation. Moreover, introducing

K =rc+xK,, SR=JR+3R,,

(4.78)

we obtain the Schwinger-Dyson equations which fully determine the dynarhibe sys-
tem:
[1 0?

t t
T o8 —l—z(t)} C(t,t") = / dt” SE ¢, "Rt t") +/dt” s, e ), (4.79)
0 0

2 t
Eaaﬁ + z(t)] R(E4)) = 5(t—t') + / " S, YR, 1), (4.80)
t/
t 19%°C
2(t) = / dt” S5t " R(t, ") + B¢, ") O(t, ") — fW(t,zﬁ’ —t7). (4.81)
0

We remark that the expression for the response is decoupled fromlfticerselation apart
from a residual coupling through the Lagrange multiplier. This is actuallynseguence
of two features of the model: the disordered potential is quadratic in thesratai the
coupling to the reservoirs is linear in the rotors. The “initial” conditions avergby

Ct,t)=1, R(tt)=0 Vt. (4.82)

Moreover, integrating eqs4(79 and @.80 over an infinitesimal interval around = ¢,
one sees that the first derivative of the correlation is continuous at 8oques

lim 9,C(t,t') = lim §,C(t,t') =0, (4.83)

t—t— t'—tt+

whereas the one of the response function is discontinuous

lim O;R(t,t') =T, lim O;R(t,t')=0. (4.84)

t—t— t'—tt

The structure of these equations is the same as the one in other out-ofraquifiboblems
studied in P51-253 256-258, 46, 47, 259-264).

4.4.3 Quantum non-equilibrium steady state (QNESS) phase

One expects that if the system is quenched into the high temperature phese, short
transient it should relax toward a quantum non-equilibrium steady statE 83N The sys-
tem of rotors cannot be in equilibrium since, figr # 0, an electronic current is passing
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through it. Nevertheless the dynamics are still stationary (time translationallsianta

This implies thatC(¢,t') and R(¢,¢') are only functions of — ¢'. Guided by a numerical
analysis (see Sed.4.5, we make the assumption (that we later check to be consistent) that
the quantityz(¢) is a one-time observable that converges toward a finite vatueln this
situation, one can Fourier transform the Schwinger-Dyson equationd @nd @.80 with
respect tad — ¢ to find

1
Rw) = s e T (4.85)
Clw) = SFWIRW, (4.86)
K
Clw) = &%lm]{(w), (4.87)

Using the fact thatlim R(w) has to vanish, eq4(85 implies

wW—00

1
Rw) = — <—F1w2 + 22 - 2B (W) + \/(—F—1w2 + 20— BR (w))? — 4.2

Ve
(4.88)
We note that in the cases in which the DOS of the reservoirs have an enggf c..,

Cw)=ImRw)=3E (w)=ImXE (w)=0for hw > ey . (4.89)

4.4.4 Critical manifold
Equation for criticality

Approaching the putative critical manifold from the disordered phaseFgge 4.1, where

after a short transient the system should be time translationally invariantpkédoa sin-

gularity in the Fourier transformed Schwinger-Dyson equations that waritte signature
of the loss of time translational invariance and ultimately of a phase transitiomdawma
out-of-equilibrium behavior. Anticipating a second order phase transsiienario where
the onset of criticality is characterized by long-wavelength instabilities, weetisghese
equations av = 0.

The constraint that rotors have a unit lengtty, t) = 1 implies

/OO dw Cw) = 1 (4.90)
0o 27

and replacing”’(w) with its expression in eq4(87):

*dw XK (w) 1
& Zewl®@) 1 Ry == . 4.91
/0 rim (o) @) =3 (4.91)
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Equation ¢.89 atw = 0 reads

R(w=0)= % (zoo — 2B (w=0)+ \/(zoo — ¥R (w=0))— 4J2> . (4.92)

R(w = 0) = [;°d7 R(r) has to be real sinc&() is reaf. However, it is clear from
eq. ¢.92 thatz>® = :° = 2J + & (w = 0) is a singular point (a minus sign would be

incoherent with the approach in Séc4.5. This is the signature of the phase transition we
were looking for. At criticality,

R(w = 0)] oo = 1/J . (4.93)

Concomitantly, the value af’(w = 0) blows up. Inserting2° in eq. @.91), we obtain the
equation for the critical manifold,

©dw TE (w 1
/0 27Tlmezngv(i})lm R(w)|zee= 3 (4.94)
The parameters are the strength of quantum fluctuafiotise temperatur&’, the voltage
applied between the two reservoirs We recall that/ is the typical interaction between
two rotors. The energy variation scale of the reservoirs is charadebige, and hw,
quantifies the coupling strength of the rotors to their environment througfintfensionless
small parametey = hw./ep.

In the rest of this section, we use e4.94) to uncover the phase diagram of Fig. 1
The critical surface is parametrized in theI" V' space byl I';, V. (g is kept constant).
We introduce the critical point§, = T.(I' = V = 0), V. = V,(T =T = 0), . =
I'.(T =V = 0). Anticipating the coming results, we introduce the dimensionless reduced
parameterd = T/J, v = eV/2J, v = (4h/37)? T/J. In the planeV = 0, where the
reservoirs act like an equilibrium bath, we recover the resultg5d][ In the classical limit
V =T =0, we recover the ones irR5, 264.

In the limit in which ez is much larger than any other energy scale, using €qgs7)(
and @.58), the equation for the critical surface reads
* dw 1 eV sinh(BeV) — hw sinh(Bhw) 1
/0 21w cosh(BeV) — cosh(fhw) Im Rlw)lsz== 2 (4.99)

Critical points on the I' = 0 plane

Taking thel’ — 0 limit of expression 4.88 one has

m R = {},\/1_(1—(#/2)2 for o' €[0,v2], (4.96)

0 for W' >2,

2yl (w = 0) is real for the same reason.
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Figure 4.7:Study of the behavior of the = 0 critical line with the ratioc /.J for the half-filled semi-circle
DOS. (a) They = 0 critical line 6.(v) is given for four different values of the ratig-/.J. The analytical
expression of ther/J — oo curve is given in eq.4.99. Forer/J < 3/2 the critical pointo. is rejected to
infinity. (b) o. = v.(0 =« = 0) is plotted againstr/.J. All thesey = 0 results are independent of the value
g.

where we introduced’ = w/v/2JT. The expression of Ink(w) does not involve the
reservoirs: the time scale of the rotors (controllediBytotally decouples from the one of
the reservoirs in such a way that the rotors only couple with the zero maelsi¢iwest) of
the reservoirs. Using e ©4), we write the equation of the critical manifold in tiie= 0
plane

b
hmw2F dw —VI- (WP Yen (V2ITw) :%. (4.97)

-0 Im SR (vV2JTw')

env

Using the definition4.54) of T*(T, eV) introduced in Sect.3.2 this simply reads
T(T.,eVe) = J . (4.98)

At eV = 0, the reservoirs constitute an equilibrium bath and the ffig /Im X% is
given by the FDT and we find a temperature-induced classical criticat ppig 7.(I' =
V = 0) = J. In terms of the reduced temperature this re@ds= 1. In the next two

paragraphs we look at how this critical point is affected by a finite daVe £ 0).

Infinite ex. We first consider the limi¢z — oo, using the explicit expressiod .62 for
T* one finds:

Te(eV) = e;//arccoth (;i) . (4.99)

From this equation we find a drive-induced critical point&/2 = J. In terms of the
reduced voltage this reads = 1. The departure from the classical critical temperature on
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Figure 4.8:Phase diagram in terms of the reduced parameters analytically deterimitiedlimit g — 0.
(a) Critical line forV = 0. (b) Critical line forT = 0 in the limiter — co.

they = 0 plane is quadraticd. ~ 1 — 1/3 v? for v < 1. Instead, on the zero-drive plane,
v = 0, the critical line leave8, linearly: 6, ~ 1 —3m2/16  for v < 1. More details on the
critical line~.(t) atv = 0 are given in §i5, 249. Close too. on thed = 0 andy = 0 planes
the departure of the critical lineg.(v) andf.(v), respectively, are non-analytical and thus
very steep [see Figd.7(a) and4.8(b)].

Finite ez. Let us now investigate th& = 0 critical point V. for finite values ofep. For
our simple DOS depending on a unique parametelt, is controlled byer/.J. Plugging
the expressior4( 70 for 7 (T = 0) into the expressior4(99 we obtain

fﬂ0+€Vc d€ p )

T p2(p0) + 02 (o + €Ve)

The existence and the value of the solutidndepend on the details of the DQe). If
the DOS has an energy cut-eff,;, the existence of a solution is guaranteed if the cut-off is
larger than the solutiog%" of

sign(eV.)~ (4.100)

min

/ e 02(6) = Tp (o) - (4.101)
o

0

For the type A half-filled semi-circle distributiom§ = ep, ecut = 2€r), it turns out that
eq. ¢.100 admits a finite solution as soon ag/J > 3/2. Forer/J = 3/2, one finds
eVe = 3/2 J (0. = 3/4) . Forer/J > 3/2, the finite solutionv. goes to one as one
increases the ratiep/.J. Forer/J < 3/2 the critical point is rejected to infinity and the
critical line in theT' = 0 plane converges to the asymptotic valiu¢v > 1) = 1/2 as
er/J — 0. See Fig4.7.

For the distribution B, if,g # 0, the scenario is the same as for the semi-circle distri-
bution there is a finite value of the ratig-/J under which, the critical point. is rejected
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to infinity, and above whichy,. has a finite value that goes toin the limit ez — oo. If
1o = 0 theno, remains finite.

For the distribution of type C, e (100 always admits a finite solutiof. independent
of ep. For the distributior’3d, v. = 1 regardless ofi, e and.J. For the distributiorC2d,
we also get, = 1. For the distributiorC'1d, one can show that as long as > 0, there is
a finite o, function only ofu = J/ug: 0. = [exp (u + L(ue™")) — 1] /2u, whereL(x) is
the only solution of the equatiobe” = z that is analytic ir0. For (e — oo) — oo, we
recovero, = 1.

Quantum critical point

Weak coupling limit. We first consider the limit of the weak coupling to the reservoirs
g — 0 after the long-time limit such that the asymptotic regime has been established. It
is actually in thisg — 0 limit that the self-energy was computed (we expanded the total
action up to second order i) in Sec.4.3. g = fw./ep can be sent to zero by sending the
coupling parameters to zero, but for our simple DOS, it can also be re&lzeending »
to infinity.

In equilibrium (V' = 0) atT = 0, the FDT gives

Seny (W)
Im 22 (w)

env

=hfor0 < hw < eyt - (4.102)

By turning off the coupling to the reservoirg - 0) in eq. @.92 on has

Im R(W')|.ee = { gV (-wf)? for W'e 0V, (4.103)

0 for o' >V2,

where we introduced’ = w/+/2JT'. Plugging eqs.4.102 and ¢.103 in the equation for
the critical manifold 4.94) gives the quantum critical point

_ 3r\? . . 3 . .
BT, = <I> J if ecut > 77?‘] and no solution otherwise. (4.104)

For type A reservoirs in ther — oo limit, one can prove that the critical surface is
parabolic close to the quantum critical pofti.e. 7. ~ 1 — 16/372 6% at§ < 1 and
v =0,andy. ~ 1 —16/37% v? forv < 1 andf = 0.

Finite coupling. When the coupling to the electronic reservajris finite this quantum
critical point (actually the whole critical surface) moves upwards whereasing the cou-
pling constant (see Figt.9). The coarsening phase is thus stabilized when increasing the
coupling to the reservoirs. In thg: — oo limit, one has fory <« 1

3T

2
Yo 142 (4> (hwe)?p? (o) - (4.105)
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g

Figure 4.9:Numerical study of the evolution of the critical poift = ~.(f = 0,v = 0) with the coupling
parametey (here forer/J = 10).

Le(V=0) ~ Tc=T T.(l=0) ~ NA Ve(T=0) ~ (Te-T)"?

[ (T=0) ~ NA T.(v=0) ~ (T.-1)"? Vor=0) ~ (Te—T)"*

Table 4.1: Behavior of the critical manifold close to the critical points for~ 0 ander — oo. Close to the
critical pointV . = V(T = I' = 0) the critical lines are non-analytical@).

In the case of the type A half-filled semi-circle distribution this reads~ 1 + 9/2 ¢°.
This is similar to what was found for other quantum spin models embedded irnanicO
harmonic oscillator bath and is due to a spin-localization-like eff@gf,[256, 257]. This
similitude is not surprising since we showed in S&8.2 eq. @.57), that the mixed elec-
tronic reservoirs behave like an Ohmic bath in the— oo limit.

Summary of the phase diagram

Let us summarize the key features of the critical manifold in the case of a DS w—

oo. When the coupling to the reservagifs set to zero, the values of three critical poiris, (

., eV.) are only controlled by/ that measures the disorder strength. Figtidegathers

all theg — 0 results in thel’, T', V space. The increase of either the thermal or quantum
fluctuations, by raisind’ or the temperatur@’, respectively, leads to the destabilization of
the coarsening phase. The same occurs for an increase of the bigg Valtehe summary

of the behavior of the critical manifold close to the critical poiits I'. andV is given in
Table4.1l Furthermore, an increase of the rotors-reservoirs couplipglls the quantum
critical point T, upward (as indicated in Figt.1 by a vertical arrow) enlarging the low
temperature phase.
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4.45 Coarsening phase

We study the dynamics in the lo/, weakI’, weak V' region of the phase diagram by
solving the Schwinger-Keldysh equations in two ways: with an exact nualejpproach
and using analytic approximation in the long-time dynamics. We prove that in tharef
the phase diagram there is coarsening and that the aging dynamics tinaazaniversal
and equivalent to the ones of the classical (and undriven) limit of oureimadk.a. the

p = 2 spherical model with quenched disorder).

Numerical solution

Our numerical analysis consists in solving the Schwinger-Dyson equgtor, (4.80
and @.81) after a quench into the low temperature, weak quantumness, weak Hese.p
Thanks to their causal structure, the equation€’o® andz can be integrated step by step
in time, with a Runge-Kutta method. Apart from arbitrarily small numerical sgrdris
approach is exact.

We concentrate on reservoirs at temperafuthat have a type A semi-circle DOS (both
L and R reservoirs).L reservoirs are kept half-filled while a voltadeis applied between
L and R reservoirs.ep is chosen to be the largest energy scale. Typically, we consider the
following values for the parameterg: ~ I' ~ eV ~ 0.1J ander ~ 10.J.

The analysis shows (analytical arguments are given in &dc9 that the dynamics
after the quench below the critical surface do not reach a QNESSe Tharseparation of
two-time scales typical of aging phenomefd][ The data in Figs4.10-4.12were obtained
using the algorithm briefly described.

Mapping to Langevin dynamics

The goal of this subsection is to map our quantum field theory descriptioreafotrs
dynamics, which involves the two field$!) ands(® (see Sec4.2.3, to an equivalent de-
scription in terms of Langevin dynamics. In the long-time limit of the coarsenimguatycs,

we establish that the equation of motion for the field) is actually a Langevin equation
driven by a colored noisé the statistical characteristics of which are controlled by the
self-energies of the fermion reservoirs.

Let us take a step back and rewrite the effective action as it was beferaging over
disorder. Making the assumption (we later check its consistency) that trarhge multi-
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pliers satisfyz;" (t) = z; () = z(t) ¥ i, , the effective action reads
i N 1 N
Sanls V5,2 = 3" [ { S ROERORD SV RORUR0
: P
+y A she—o)sP @) 5P ) - [ar sEe- 1) 570 )
+zi(t)sz(.1)(t) . sl@) (t)}

where introduced the real and symmetric matfixdefined by.7;; = in/\/ﬁ if j <1,
Jij = Jj if j > 4. Like the other components of this matrix, we ggf to be taken
from a Gaussian distribution with zero mean and variaficeV [we saw that the constraint
sit)? =1 yi9|dSS(1)(t) : Sz@) (t) = 0]. The total effective action adopts the quadratic form

%

. N
Tg @ ). Eou(f) + 1 Ps@ () nE () @y
hSeg—n;/dtsi (t) EQZ(t)+2//dtdt sV (t) - SE (t—t) s (1),

where we introduced the notation

EQ(t) = ﬁ; / v’ { K%aﬁ + zi(t)> 55 — jj] St—t)—xB (¢t t’)aij} s ().
(4.106)

By comparing this action with the action of the MSRJD formalism [see for exangpl@ &)],
the quantityEQ; can be interpreted as a Gaussian random process and can theesfoie b
ten as a set of coupled Langevin equations

EQ;(t) = &(t), (4.107)

with &;(t) a Gaussian random noise with statistigg(t) - £;(t'))e = d;; 55, (t — ¢'). This
mapping is possible since the action of the rotor system, once the constraatlmotor
has been imposed through(t) and z;(¢) is treated independently, is quadratic. In more
general models the mapping is not exact, sgethe discussion inJ67-270.

Under the further assumptiof(t) = z(t), justified in the largeV limit, the stochastic
equations 4.109 are rendered independent — apart from a residual coupling thriney
Lagrange multiplier — by a rotation onto the basis that diagonalizes the interacéitvix
J. Indeed,J being real and symmetric, it ha$ real eigenvalues with corresponding
eigenvectorsr that constitute a complete and orthonormal basis of the space of rotor sites:
oeo’ = §,, Wheres is the usual scalar product in this space. Let us collect all the rotors in
the vectors = {SEI)}ie[l,N} and introduce its projections on the eigenvecteys= s e o.

If we project eq. 4.106 ontoo, we are left withV uncoupled Langevin equations reading

(;af —o+ z(t)> o (t) — /dt’ SR (t—ts,(t") =€&,(t), (4.108)
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with
E)e=0, (&) &ut))e = boo Dh (E— 1) . (4.109)

There areclassicalLangevin equation for the fields,. The noise statistics is controlled
by ¥X and is peculiar because of the quantum origin of the environment: it has memor
(colored), and depends o eV, h. X appears like a friction kernel. BecauZg!
andX do not satisfy a classical fluctuation-dissipation relation, it is a non-eqjuitibr
environment even in thel” = 0 case.

env

Two-time self correlation. Within the effective Langevin formalism, the two-time self
correlation function defined in eq4.(31) reads

Ot 1) = (5.(8) - 5. (1)), (4.110)

where the average over disorder is realized by

MJE/dO' pilo) -, (4.111)

andp; (o) is the probability density of the eigenvalues of the interaction mafrixFor
our case of an infinite{' — oo) and symmetric random matrix with Gaussian elements of
varianceJ?/N it is given by the Wigner semi-circle distribution:

pro) =1 (Z) for  oe[2r27], (4.112)

and zero elsewhere.

Following the analysis in465 266, the correlation function4.110 is expected to
show a separation of time scales (at least in some parts of the phase diafham usual
in coarsening phenomena and corresponds to a stationary regime tatirakedifference
and an aging one at long time-difference with respect to a waiting-time depeodarac-
teristic time. The stationary part of the correlation approaches a plateaa Btthards-

—J .
Anderson order parametef;p = (s, )? , that measures the of frozen rotor fluctuations on

é‘ ’
time scales much smaller than this characteristic time. The valgg oflepends on all pa-
rametersT, eV, T, g). Itis non-vanishing in the spontaneously symmetry-broken phase and

continuously goes t6 on the critical surface. In certain cases it can be computed exactly.

It is reasonable to expect that the long-time aging dynamics is determined lpwthe
frequency (or long time) form of the Langevin equations only. The simpliioaarising in
this asymptotic limit are discussed below.
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Long-time dynamics

In the low-frequency, long time-difference limfiw < T, the Keldysh self-energy can be
approximated by a constant [seeg, eq. @.61) in Sec.4.3.2for its exact expression in the
ep — oo limit]

K

env

(1) ~6(7)2E (w=0)>0. (4.113)

Similarly, we keep the leading contributions in the derivative expansiaifigf:

R
Eenv

(1) ~ nE

env

(w=0)d(1) +nod ()07 , (4.114)

with o = 9,Im ©£ (w = 0) > 0. The Langevin equations read in this limit

env

1
iﬁﬁ4w+m@%@y:@_z@+qg¢w:mpaw+ggw, (4.115)
wheren plays the role of a friction coefficient argd.(¢) has white noise statistics:

(&5 (1) - £/ (1)) = Gpord(t — ') B, (w0 =10) . (4.116)

In the Langevin formalism, the kernel of an equilibrium white bath is given byHimstein
relation (known as the FDT of the second kindj{t)&(t))e = 2noTo(t — t'). Thus, the
temperaturel” of the bath can be seen as the ratio of the diffusion coefficient of a particle
embedded in that bath with the friction coefficieptof the bath on the particle. For our
reservoirs, in the low-frequency long time-difference limit, one can aatothis ratio to an
equivalent temperaturg*

e 1 B (W)

T = i%§ mYE () (4.117)
the properties of which were discussed in S&€8.2 Thus, we confirm here thgt* acts
like a temperature in the sense that the effect of the (out-of-equilibriureju@iss on the
long-time dynamics is the one of aguilibrium dissipative (Ohmic) bath at a temperature
T*. This has been reported in different works and is at the root of thigatien of the
stochastic Gilbert equation for a spin under bizs4.

We expect that as far as the long time dynamical behavior is concernédettial term
in eq. @.115 can also be dropped, thus leading to the equations:

@&xw::AAwsga)+7;gUu), (4.118)

where we introduced the shorthand notatiorit) = [0 — Az(t)] /no andAz(t) = z(t) —
s (w=0).

This particular Langevin equation has been analyzed intensively in thg sfuithe
classical spherical Sherrington-Kirkpatrick model (or spherjcat 2 spin glass model)
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and the results inZ65, 264 apply to our problem witll” — T™. The solutionto eq4.119
for a given disorder realization and noise history is

t t t
So(t) = s,(0) exp (/ dr )\U(T)> + 1 / dr &,(7) exp </ dr’ /\U(T’)> . (4.119)
0 Mo Jo T
Copying results ing65, 266, the aging part of the correlation (in the lintit>> ¢t — oo)
shows a simple aging scaling behavior

(t/1)"*

t,t') ~ 2v2 —_—
C(7 ) \fQEA (].—l—t/t/)?’/z

=C(t/t) . (4.120)
The solution to eqs.4(119 leads togga = 1 — T*(eV,T)/J. However, this result is
obtained by taking the limit of relatively close times — with respeat te whereas, as we
stressed, eq4(119 is valid for the long time’ and long time-differenceé — ¢’ properties
only. As a consequence, we expect the scaling result4eR@, to hold at long times with
the value of the Edwards-Anderson parameter not necessarily giwen-til™ (eV,T")/J.
Its computation requires a full solution of the equations of motion.

We now focus on the aging dynamics in different parts of the phase diagmnd argue
that the Langevin dynamicg (115 indeed provide a correct description of the dynamical
evolution.

Dynamics in theelV = 0 plane. In this case, the Edwards-Anderson order paramgter
measures the static order parameter. Static calculations yield the followintjoegjizd 9

1= / do pJ(U)wfi_gcoth <ﬁ V;;_") : (4.121)

that gives in principle the value af° (T, eV') for any temperature and strength of the quan-
tum fluctuations. It is large fof’,eV > J and decreases with bofhandel’. However,
because of the square roots in the above equation, it cannot go belovititted value fixed

by the upper edge* of the distribution of eigenvalues;. In the case of the Wigner semi-
circle distribution [see eq4(1139)], this corresponds te° = ¢* = 2.J and the critical line

is given by

I'. 1
1= d —~ —  coth I'iv2J —o. 4,122
(/Um@2éﬁﬁw s VTev2T =0 (4.122)

Under the critical line, there is some sort of Bose-Einstein condensatioeetl, in order
for the constraind_, (s?) = >__(s2) = N to be satisfied, the weight of the edge eigenvalue
o* = 2J has to become macroscopic aigh is a measure of the fraction of ‘frozen’
rotors in the condensate. In the classical limit €q121) simplifies considerably yielding
1= [do ps(0)-=Z— and one identifiegea = % (so+) = 1 — T/T..

2 —0
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The dynamic calculations based on the use of the quantum FDT to relate tékaton
to the linear response in the stationary regime detaile@5d]] or the replica equilibrium
computation in 256, 257, can be easily extended to deal with a generic electronic bath in
equilibrium. One confirms thajza = 1 at7T =T' = eV = 0 and continuously approaches
0 on the critical linel'.(7") for all values ofg. The precise variation ofga within the
coarsening phase depends on the bath kernels. lagthe oo limit, the results in P51]
apply also to our problem. The solution of the Schwinger-Dyson equatiotiseiaging
regime confirms that the scaling result, e§1¢0, holds.

Dynamics in the' = 0 plane. Another interesting case is the effective overdamped
Langevin limit obtained fol® — 0 and (eV,T) in the coarsening phase. In this case
dropping the inertial term in eg4(119 is exact and not an approximation.

Here the resuliga = 1 — T*(eV,T')/J can be shown to hold. The Edwards Anderson
parameter approaches one fBr= V = I' = 0 and goes continuously to zero on the
critical line, as in a second order phase transition. Consistently with thesimalfythe
critical surface derived from the QNESS phase (see &dc4), one findsT*(T,,eV,) =
J. Numerical integration of the integro-differential equations of motion cordithat the
scaling result, eq.4(120, holds in the aging regime.

Despite the fact that dropping the inertial term is exact, the equatibhg are still
not exact at all times. In particular, the initial conditions for this approximatgeation of
motion should be given by the state of the system a short while after thelguehen the
long-timescale description starts to be valid. Apparently, this delay seems wmt keffi-
cient to significantly correlate the rotors with the interaction maffiand, to any practical
purposes,(0) can still be considered “random”, at least as far as the Edwardsréonle
parameter is concerned.

Dynamics in theT = 0 plane. The zero-temperature plane is more difficult to deal with
analytically. One is not entitled to use FDT since the system is driveri/bgor dropping
the second time-derivative is exact. Furthermore, this is the case whesgripiication
leading to eq.4.119 are more dangerous because of the power law tails appeaflhg dt

in correlation and response functions.

In order to check that the scaling result, e,.10, holds we numerically integrate the
full set of Schwinger-Dyson equations.

In Fig. 4.10(a) we show the decay of the two-time correlation function. For short time
differences — ¢’ with respect to the waiting timg&, there is a stationary regime depending
on all control parameters in which the correlation approaches a platgaptadically in
the time-difference. The plateau valuegisy and measures the fraction of frozen rotor
fluctuations on time scales much smaller thtanAfterwards, there is an aging regime in
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Figure 4.10:Dynamics in the driven coarsening regime: numerical solution to Scrervibgson eqs.4.79

and @.80 where the reservoirs have a half-filled semi-circle DOS with= 10.J. (a) The self correlation
C(t,t") after aquench td = 0.02,v = 0.02, v = 0.2, g = 1 (in reduced quantities) shows first a stationary
regime for shortt — ¢’, then a slow aging regime where the time translational invariance is lost. hip) T
self correlationC' is plotted versug /¢’ for two waiting times after two quenches into the coarsening region:
0 =0.02,v =0,7=0.2andd = 0,v = 0.02,y = 0.2. There is a double collapse of the curves. The collapse
for the differentt’ proves the simple aging scalin@(t'/t) and the collapse for the two different quenches
shows thatl™™ ~ eV//2 plays the role of a temperature. The theoretical curve is the solutiod d@( with

qEA = 0.6.

which C depends on the two times explicitly. In Fig.10(b), we plotC againstt/t’ to
prove that the simple aging scaling predicted analytically with éd.20 holds at these
long times. Moreover, we show that the dynamics after a quengh=0.02, v = 0 are the
same that the ones after a quencif te 0, v = 0.02, illustrating the fact thaf™ ~ eV//2
acts here like a temperature.

Super-universality. It is remarkable that in the large/N limit, the long-time dynamics
of our model are exactly the ones of the classical fully conneptee 2 spherical spin
glass. The latter being a classical model in contact with an equilibrium bath({, eV =
0), the former being its quantum version in contact with a non-equilibrium enmient
(' # 0,eV # 0). The fact that the scaling functions asaper-universalin the sense
that they do not depend on the external paraméeierd/,T" onceqgg, iS extracted as a
factor, can be understood as follows. First the fact that the non-edguiticenvironment
of our model give rise to the same long-time dynamics than an equilibrium envénan
can be seen as a consequence of the Ohmic behavior of the reseelfogsesgy kernels
at small frequencies (see Sec3.2. Secondly, the fact that our quantum model shows
a classical behavior at late times can be understood as a consequeleoeluérence due
to the dissipative (and Ohmic) bath. Furthermore, the effect of the tempef@aton the
long-time dynamics being irrelevant (in a RG sense) in the classical limit, onexgaatt
the same to hold in the quantum case with respect to all parameters.
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We found quite naturally that the long-time dynamics correspond to a Bostekfin
like condensation process of thén-dimensional ‘vectorss, on the direction of the edge
eigenvector. The relaxation is controlled by the decay g#) close to its edge*. For
Gaussian i.i.d. couplings .

We now prove the strong connection with the dynamics of the pdr&(n — o)
models. For the8d O(n — oo) non-linear sigma model [defined in ed..§ and after
rescalings; — +/ns;], the equations of motion are rendered independent in Fourier space
and read

(%aE—JkQ—gZ|sq<t>\2—1]>sk<> [ S - mt) —&n(0) (4129

E = —k? are the Laplacian eigenvalues the distribution of which is givemb{yF) =
k)| 4%| wherepy,(k)dk ~ d%k ~ ki=dk. This yieldspa(E) ~ (—E)¥*~1 which
c0|nC|des ford = 3 with the edge of the distribution of eigenvalues of tfig matrix,
ps(a) X" (2J — o)/2. For this reason all models with a square root singularity of the
distribution of “massest, such as the ferromagnetic rotor modekiin= 3 and the com-
pletely connected spin glass rotor model, are characterized by the saméterdynamics.

This result has an interesting consequence. In the case of (lageantum3d coars-
ening the classical-quantum mapping extends to space-time correlationsaed the ex-
istence of a growing coherence lengtki) o t'/2 over which the rotors are oriented in the
same direction. This real-space interpretation of aging unveils the conmegtiocoarsen-
ing that was announced all along this manuscript.

Linear response

It has already been noticed in Séc4.2that the response function was somehow peculiar
since its equation of motion is decoupled from the one of the self correlat@vinglargued
that the long-time dynamics are governed by their classical counterpartmehr response
should also scale as in the classical limit. Therefore, the quantum fluctudisisipation
relation between integrated linear respongg, t') = ff, dt” R(t,t") and self correlation
C(t,t") approaches the classical oner~ ct+ (¢gpa — C)/Teq, With aninfinite effective
temperature471], T, — oo, as shown in Fig4.11 The relations between integrated
responses and correlation functions in other quantum problems thapalsmaah classical-
like form in the aging regime were shown 892, 253 258 46, 47, 259-263.

The Lagrange multiplier

One should check the validity of a key assumption that was used to deriyghéise di-
agram: the convergence oft) to an asymptotic value on the critical manifold. We first



126

0.9

(b)

0.8 :
0.55 0.6 0.65

C

Figure 4.11:The integrated linear response(t, ') = [, drR(t, ) againstC(t,t'), for ¢’ = 1024 and
usingt as a parameter. The curved part corresponds to the stationaryaletay regime with(t —¢") /t’ — 0
while the straight line is for times in the monotonic aging decag'of

derive analytically the asymptotic behavior (within our long-time approximatién)© in
theT" = 0 coarsening phase showing that this is indeed the case. Then we giveicaime
evidence that(¢) converges in the whole phase space.

The conditionC(t,t) = [do ps(o) (s;(t) - s¢(t))e = 1 reads after taking its time
derivative and assuming furthermore tkat0) is uncorrelated withr (s, (0) = sp,V o),
that is valid for random initial conditions (coming from infinite temperature fetance)

0 = [ 4o ps0) @15 (0)- (0 (4.124)

t * t t ” 7
= / do py(o) {S(Z)/\g(t)eQIO drdo(m) ¢ I [1+2)\0(t) / dr’ e2 ) A" Ao(r >]} .

Tlo 0

Taking the derivative with respect 3 yields
0= / do py(o)Ae(t) €2Jo 97 Ao () (4.125)
that can be recast into

Az(t) = % Oy ln/da py(0) et/mo. (4.126)

Asymptotic behavior of z(¢). By plugging in p; the Wigner semi-circle distribution
givenin eq. 4.112, we get

1 4
Az(t) = %at ln;—ggh (%t) , (4.127)



127

3 3
- 5 \/ - I
1 *n
<, <,

@ (b)
O L L O L L
1 10 100 0 1 2
t 6,v

Figure 4.12:(a) Az(t) = z(t) — ©&.(w = 0) quickly converges towarl.J, the largest eigenvalue of the
Ji; matrix (herel' = eV =T = 0.1J, g = 1 ander = 10J). (b) Dependence of> with T' (plain curve)
andeV (dashed curve).

where I; is the modified Bessel function of the first kind and first order. we obthia,
pre-asymptotic behavior far> ny/J

(w=0)—no 3 (4.128)

~ 2 »i .
z(t) J + m

env
We just showed that inside the coarsening phase, the Lagrange multiglieeaches an
asymptotic value which is actually the critical valugs = 2.J + £ (w = 0), calculated

in Sec.4.4.3from the QNESS phase TTI equations without neglecting any term. The co-
herence between those two results somehow justifies the approximations readegly.

In theep — oo limit (reservoirs acting like an Ohmic bath)z(w = 0) vanishes and we
recover the same mechanism as in the classical @&8e766.

These analytical results are supported by the numerical analysis. Cahgfteethe
quench, the Lagrange multiplief¢) quickly converges to an asymptotic vale®. As an
example, we plot in Figd.12(a) the behavior of(t) after a quench into the QNESS phase.
The oscillations and the zero initial slope are signatures of the secondigtmel lorder
derivatives in eq.4.109. These terms were dropped in the analytical study of the long-
time limit, see eq.4.119, but the numerical integration does not neglect them. We give in
Fig. 4.12(b) the dependence of° with 7" andeV'. Itis quite clear that> is constant (and
equal tozZ°) inside the critical surface and increases Vilithl' andeV as soon as entering
the QNESS phase. This justifies the assumptions made i 3e8.

To summarize the results, in the whole phase diagrémalways rapidly reaches an
asymptotic value°. Inside the QNESS phasg?y is a growing function of the parameters
T,T',V whereas on the critical surface and inside the coarsening region, igstox2°.
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Link between z(¢) and the potential energy density One is interested in computing the
energy density(¢) of the effective Brownian particle. It is given by

N
()=~ Y. Fsil0s;0) = [ da ps(o)osiv. (4.129)

= 2
2,7=1

Using the solution4.119 for s, (¢) at7* = 0, one has
2¢(t) = —s? e 0 Jo dr 22() /da op(o) e2ot/m (4.130)
By use of eq.4.126, we obtain
2e(t) = —%at In / do p(o) e2ot/m . (4.131)
We recognize eq4(127 in therhs of this last expression, giving finally
() = —%Az(t) . (4.132)

This result is valid for any disorder densityo). For a non-zerd™, similar calculations
give, see 265 264,

() = % T — Ax(t)] . (4.133)

45 The current

The physics of electric currents through mesoscopic quantum impurities-of-@guilibrium
settings has attracted a lot of attention in the recent years. The Kondo imipthigycanoni-
cal example of a strongly correlated system that has both been tackkedresptally P72
274 and theoretically by non-perturbative methodg$-27g. It is, to our knowledge, the
first time that some fermionic reservoirs are coupled to a macroscopic disdrduantum
system. In the previous sections we analyzed the effects of the voltag@uithe system
dynamics. In this Section we study the properties of the current that ebblietween
the two reservoirs. In particular we are interested in the possible influghnites rotors
on the current. Is the current, that is rather easy to measure experimealddiyto give
information about the dynamics of the rotors ?

We recall the expression of the interaction Hamiltonian given in£&&):(

N n N M
hw -
Hu =~V %0 Y Y st [y ofy bravw + Lo R (4134)

S =1 p=1kk'=11=1
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From the point of view of the electric current, our model consists in twavegs coupled
through time-dependent tunneling constasit§). It is different from the usual quantum
impurity problems in the fact that the electrons cannot stay on the rotor shstisonly hop
directly from one reservoir to the other. Furthermore, the quantum clearaf the system
is not expected to play any significant role since its level spacings are sthalteany other
energy scale in the largeN limit. The computation of the current will therefore lead to
Landauer formulag79, 28( a priori dependent on the rotors states.

The electric current carried by the fermions flowing from the right to thieréfervoirs
is
I = —e (N8 = B Vi) = < (VL) . (@235)
where —e is the electric charge of a fermion and, = )., T/’L‘kﬂ/’ukl is the number
operator of the left reservoirgd;,; is the part of the total HamiltoniaA;.: that couples the
system and the reservoirs, see €qgd); After straightforward algebra, we obtain

ie hw,
IR_>L(t) = _%<\/EF Z 0';;,554 {wziklejk/l/ — L « R:|> . (4136)
5 ipkk!ll

In the Keldysh field theory formalism, this corresponds to the quantity

IR—>L(t) (IE—J,( ) + I}E-»L(t)) ’ (4137)
with
T (t) = e \F Z opsi () (0T (O Vhjy () — L < R]) . (4.138)
N ipkk!ll

Expanding the action up to first order in the coupling consjamte obtain an average over
the rotors and the free fermions that are now uncoupled, that we note;,

i

Ip_r(t) = ;<([Z!R() +1; g(1)) gSint)iﬂt

B 2ﬁ2 ( )Z > X / At ol o (51 ()7 () (4.139)

ab ipkk'll jvqq'mm’
X [0 (O 0gaor () = L R) [0 jgun (V) (#) + L = R Jin

Averaging over the free fermions, we obtain

Tp_p(t) = %mv(hwcﬁ Yoo / dt’ ihG(t, t') [ihG‘,{b(t,t’)ihG%l(t’,t) Lo R} .
ab==+

G are the macroscopic Keldysh Green’s functions for the rotor% are the Green’s
functions of the free fermions in thie/ R-reservoirs. This reads, after Keldysh rotations,

Ip_r(t) :—an/Oth C(t,t —7) TR (7) + R(t,t —7)TIE (7)), (4.140)
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ng = —2(%6)2 Im Gng* — Ez (Gng* +GéGg*):| ’
4 (4.141)
2 = —2(hwe)?Im Gfag*ﬂ;g(;g*} ‘

The expression for the current given in ed.1¢40Q is quite generic. It is valid as soon as
the system and the fermionic leads are coupled with an interaétign The details of the
system and the leads enter in the formula through their respective Gfarat®ons. The
formula was obtain after a first order expansion in the coupling congtaithe second
order term like all the even order terms are zero by use of Wick’s theoréhe third
and higher odd order terms would have involved higher order correlatimtions of the
system. Plugging the expressions of the fermionic Green’s funcidhsG%, G2 (o =
L, R) that are given in App4.B.1, we get

1

X (1) = 5 (we)(( [tanh (3L _2 PL)y tanh (g@) - 1] sin <€L ; ERT>>L>R,

T, (1) = e 2 ean (525 ) — e (522 cos (257 ) 1) ),

where the notatioi( - - - ) 1,) g stands for[ [de de’ py.(e)pr(€') ---. One can check that the
current vanishes when the bias voltag¥ (= i1z — p1) IS set to zero.

Linear conductance. We develop the current formuld.(L40 to the first order irelV and
compute the linear conductance

Ipor(t) = —%nN eV (4.142)
t drZ (1) dITE (1)
A€t t — [ S APA Y - T i AR
XA ( ) T)‘eV—O deV ej;:()( T)’eV—O deV V=0

One can derive for a flat half-filled DOB(¢) ox O(ep — |e — e|), in the limiter — oo (in
that limit we expect the results to depend very little on the precise shape ofa¢ D

dHf () 2
—env 17/ = —7g?% 4.143
eV | Tg~o(T) (4.143)
diX  (7) 5 1
env - _p— 4.144
deV V=0 g 27 ( )

Therefore the linear current very quickly goes from zero to

t t _
Inop(t) = %nNgQ eV (w +h /O dr R(t77)> : (4.145)
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The dependence on the history of the two-time correlation function hageiaesd and the
second term in eq4(149 goes to zero due to the rapid decay of the response function.
Finally the current quickly takes an asymptotic value

2., = %wm\rg2 eV . (4.146)

From this computation, it appears that the current only probes the \&rghfaamics of the
system it passes through and does not give information on the long-tinaenitys Since the
short-time dynamics of the system are equilibrium ones even in the coarsegintg, the
current cannot be used to tell in which regime the system is. An exact reahiategration

of eq. @.140 supports these findings for other types of DOS, for finite values @nd far

from the linear regime.

4.6 Conclusions

In this chapter we presented a detailed study of the quantum fully-cohestte model
driven out of equilibrium by a fermionic drive. We determined analyticallyghase dia-
gram of the model and we showed that a critical manifold, controlled by the & the
disorder strength, separates a QNESS with zero order parameter firondexing phase
with non-zero order parameter. We solved the equations that descridgrtamics in the
different phases with a numerical integration and analytically by usinguws@approxima-
tion schemes that give valuable physical insights. In particular, we shtivae this (quasi)
gquadratic model maps to a set of Langevin equations with additive colotied titat de-
scribes the dynamics of the rotors. The nature of the noise is determinee lypth of
electron baths used and, in the driven case, the friction kernel ang-noise correlation
are not linked by any fluctuation-dissipation relation. By using this effedtangevin de-
scription we established the connection with tdee8arsening dynamics of th@(n) model
and we showed that the long-time ordering dynamics are in the class of tsecaldsnit
of our model without a drive,e. with the typical length growing as/2.

Finally, we derived a generic expression for the current flowing tindhe system that
involves a time-convolution between the characteristics of the system (thitsugprrela-
tion and linear response) and the ones the leads (through their retadtiédldysh kernels).
Interestingly enough, for the type of density of states used in the &rdjenit the current
depends only on the short-time difference (stationary) regime in whiclseoigg is not
relevant.
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Appendices

4.A Conventions

© is the Heaviside step function. We cho@3@) = 1/2, sothatd(z) +O(—z) = 1Vz €
R. We recall the identities

/ T AT ey 5(y) and / e §(z) =0(y), (4.147)

oo 2T oo

whered is the Dirac delta function. In particulq’rf)Oo dz d(x) =1/2.

4.A.1 Fourier transform

The convention for the Fourier transforfthat we use is

FUOI@) = @) = [ ar e (),
gy (4.148)
| S i),

—0o0

The Fourier transform of the step function is
1
FlOm)(w) =ipv—+mé(w), (4.149)

where ‘pv’ denotes the principal value. Convolutions in real and Fospace are defined
by

(Foo)) = [a {290 =) = F (T D@)(0)
dw’ (4.150)
(Fog)e) = [5G f@glo =) = FIF)I)
4.A.2 Heisenberg representation
In the Heisenberg representation the operators evolve as
Ag(t) = UT®) AU (t) . (4.151)
with the unitary operator _
U(t) = Te i Jodt' HE) | (4.152)

and thus/t (t) = Te~# /i 4" H®) T andT are respectively the time and anti-time-ordering
operators (see Appt.A.3). For HamiltoniansH that do not explicitly depend on time we
get

Ag(t) = VP A(t)e HY R (4.153)



133

4.A.3 Time-ordering operator

On the real time axis, the time-ordering operalorearranges operators with ascending
times to the left:

T Au(t)Bu(t') = Au(t) Bu(t)O(t — ') + ( Bu(t)Au(t)O(t' — 1) , (4.154)

with ( = —1 if both A and B are fermionic operators, = 1 otherwise. The anti-time-
ordering operatoll rearranges operators the other way round:

T Au(t)Bu(t) = Au(t) Bu(t')O (' — ) + ¢ Bu(t)Au()O(t —t') , (4.155)

On the Keldysh contou€, the position of an operator is specified by both the time and
the branch index. By the notatiofi(t,a), we denote the operatot in the Heisenberg
representation at time(t € [0, +o0[) on the branchu (a« = +). One can similarly define

a time-ordering operatof. that rearranges operators along the contbuepresented in
Fig.4.5. The rules are

Te Au(t, —)Bu(t', +) (t)BH(t') ;

Te Au(t,+)Bu(t',—) = (¢ Bu(')An(t) , (4.156)
Te Au(t,+)Bu(t', +) = H(t)BH(t/)G(t —t') +{ Ba(t)Au(t)O(t' —t),"

Te An(t,—)Bu(t', ) An(t)Bu (O —t) + ¢ Bu(t)Au(t)O(t - t') .

4. A.4 Green's functions

Let ¢ and¢! be respectively (bosonic or fermionic) annihilation and creation operhtor
the field theory formalism of the Keldysh approach, we define the Gréam$ions as

WG (t, 1) = (¢%(t)P° (1)) . (4.157)

a,b = =+, ¢ is either the complex conjugate (for bosons) or the Grassmannian conjugate
(for fermions) of¢ and the average is understood as

= / D[¢*, ¢*] -+ exp ( Sle™, ¢>i1) (4.158)
In the operator formalism the Green'’s function read
ihGab(t, 1) = Tr [Tc on(t,a) ol (¥, b) on (0, i)] , (4.159)

where¢y (¢, a) denotes the Heisenberg representation of the opepabtimet on thea-
branch of the Keldysh contous; (0, £) = ¢(0) is the initial density matrix (normalized to
be of unit trace) and its location on theor —-branch does not matter thanks to the cyclicity
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of the trace.T¢ is the time-ordering operator acting with respect to the relative position of
(t,a) and(t’, b) on the Keldysh contour (see App.A.3).

One has, independently of the bosonicity or fermonicity of the field
GOt 1) = —GY(t, )" (4.160)

where the star indicates complex conjugate @ —a.

4.B Fermionic reservoir

We define the fermionic Keldysh Green’s functions
WG (t,) = (P () () (4.161)

wherea, b = +. Like for bosons [see eqst.@9 , one has
Gt (t,t) = G T(t,)elt—t)+G (e —t),

4.162
G (t,t) = G\t —-t)+ G Tttt —1t), (4.162)
leading to the relation between Keldysh Green’s functions
Gr"+G =G +G 7. (4.163)
4.B.1 Keldysh rotation
We introduce the new fermionic fields
290 = yr4y=, 290 = g4y,
4.164
{iﬁw@) = Yt -y, —ihg® = gt -, (4464
These definitions leads to
Gty = (W)Y E) =in/4 [GHT 6 +G G =68,
G2 (t,t) = OOA ) =-1/2 [GT -G~ +6t -G6T7] =G~
GOt = PNy =12 [GTT -G~ -G T +GT] =64,
G (¢, t) = D)) =i/h [T +G6G -G -G ] =0.

Where we defineden passantthe KeldyshG¥, the retardedz* and the advanced4
Green'’s functions in the same manner that we didf@ndR in Sec.4.2.3 Using relation
(4.163 we get

GE = in/2 [GTT +G"} =in/2 [GTT + G, (4.165)
GF = - [G++ = [G+— Gl e(r), (4.166)
G* = [GTT -G~ } =[G “fle(-r), (4.167)

which are inverted as "
ihGe = GF + 2( aGh—b Gl . (4.168)



135

4.B.2 Symmetry properties undert « ¢’

Using eq. ¢4.160, one establishes

GH(r)=-G*-1)", GN(r)=G"(-)". (4.169)
And hence in Fourier space
Giw)=-GAw)", GEw)eRr. (4.170)
4.B.3 Free fermions
Single free fermion
The free fermion Hamiltonian is
H=¢eyplyp. (4.171)

Starting from the expression in terms of operators of the Keldysh Graercsons,
ihG(t,t') = Tr | Te g (t, a)p (', b)o(0) | (4.172)
with a, b = & and the grand-canonical density mati%) oc e~ ?(#=#N) one computes

ihGH (e;7) —npe R
ihG~t(e7) = (1—np)e n .

(4.173)

np is the Fermi factor given by (e) = (1 + eﬁ(““))_l. After the Keldysh rotation we
get

1 — i
G%(e;7) = Z=tanh < 6”) e T
GRe;1) = —e 770O(7), (4.174)

GA(E;T) = fe_#T@(—T).

Collection of free fermions

For our left and right reservoirs, we consider continuous distributtamgity of states)
pr(e) andpr(e) of these free fermions. This yields to the Keldysh Green’s functions

ng(T) = /de pa(e)GZb(e;T) , (4.175)
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with o = L, R. After a Keldysh rotation it yields

Gi(r) = /de p(e) étanh[ﬁ(e —p)/2 e T = %(tanh[ﬁ(e _w)/2e ey,
G = / de p(e) %e_%g@m =+ (77T O(r) (4.176)
M) = facpa et -

—

where we introduced a short-hand notation for the integration overetergls. In terms
of the Fourier transforms gf(¢) it reads

Gl (1) = % 27p(T/R)O(T) , GA(r) = % 27p(T/h)O(—T) . (4.177)

Fourier transforms

hw —

GX(w) = mhtanh (ﬁ > p(hw) € R, (4.178)
GR(w) + GMw) = 2imp(hw) € iR .

Sincep(e) is real, one computes
ImGE(w) = mp(hw) . (4.179)

Thus we get, as a check, the grand-canonical fermionic fluctuatioipaligs theorem that
is established generally in SetC.

G¥(w) = hitanh (57”2_ “) Im GB(w) . (4.180)

4.C  Fluctuation-Dissipation Theorem

In this Section we give a proof of the fluctuation-dissipation theorem both fiogsnic and
fermionic versions. This theorem only holds in equilibrium and gives a reldieiween
the Green’s functions. In the grand-canonical ensemble, the initialtgeperator reads
0(0) o< exp (—B(H — uN)), whereN is the number operator commuting wikh (in non-
relativistic quantum mechanics),is the chemical potential fixing the average number of
particles. One can obtain the theorem for the canonical ensemble by fosatihg;, = 0.

Let us consider a pair of either bosonic or fermionic operators, fornostareation and
annihilation operatorg! and¢. Let us write the following Keldysh Green’s function

G () = Tr [TC du(t, +)ol, (¢, —)o(0)] . (4.181)
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By resolving the time-ordering we get
G (8, ) = CTr ol () ()e(0) | | (4.182)

with ( = +1 in the bosonic case arfd= —1 in the fermionic case. Using tranalyticity of
the Green'’s functions and then expanditg(t + i8h) = exp (—BH) ¢u(t) exp (+6H),
we get

WG (t+iBht) = CTr [¢L(t')¢H(t+iﬁh)g(0)} (4.183)
o CTr [l () exp (~BH) on(t) exp (BuN)] . (4.184)

SinceH and N commute and since for any operafft\V), one hasy f (N) = f(N + 1),
we have

ou(t) exp (BulN) = exp (Bu(N + 1)) ¢u(t) , (4.185)
and so
G (¢ + 150, ') = Cexp(B) Tr [of(£)0(0)du ()] - (4.186)
Using thecyclicity of the trace, we come to
NG (t+18h,¢) = Cexp(F) Tr [ou(®)6](#)o(0)] (4.187)
= exp(Bu) ihG™T(t, ) . (4.188)

If the system is in equilibrium, theéme translational invariancef the previous equation
gives the KMS relation:

Gt (w) exp(Bhw) = Cexp(Bp) G~ (w) . (4.189)
Using eqs.4.166 and @.16%), we have on the one hand
G (w) + G w) = GT (W) (1 = ¢ exp(B(hw — p)) - (4.190)
On the other hand eg4 (163 implies
() = TG @)1+ Cexp(B(he — )] (4.191)

These two last relations yield the grand-canonical quantum FDT:

~
G (w) = I tanh (5 h“’; ”) Im GR(w) . (4.192)
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4.D Computing the self-energy

4.D.1 Derivation within the Schwinger-Keldysh formalism

In the Schwinger-Keldysh path-integral representation we had (s¢¢.2Q) for the whole
system (rotors and environment)

EISE / D[ s, g, e STV B (54 (0), 5 (0)] 01or (0) 57 (0), 5 (0))

Attimet = 0, just after the quench, the initial density is assumed to be factorizged) =
I ® or*e(0) @ oftee(0) (see Sec4.2.]) yielding

(s%(0), %" (0)] 0101 (0)|s ™ (0), % (0))
= 3(s7(0) — s7(0)) (P (0)]0F*(0) 45, (0)) (1 (0)]eF°(0) |4 (0)) -
The generating functional reads

Z[hi} — / D[ S+,s—]e%Stoc[S+,S_,h] << e%sitlt[s+7¢+71/_)+)s_71/)_71/;_] >L>R . (4193)

The indexc’ at the bottom of the integral is here to remind the constraints on the field
integration, namelys; (t)* = s (1)> = 1 ands; (0) = s; (0) ¥ i. We introduced the
average over the free environment composed of the two reservoirs:

(- Vi)p = /D[Qbi,l;ﬂ ... oFSLerSh
X (P, (0)]0F°°(0)[4 1 (0)) (PR (0)|0f(0)|1h(0)) . (4.194)

We now develop the couplir‘@%Sint up to the second order,

((erSmt)pyp o 14 ih« Sint )L)R — 2%2« St VLR - (4.195)

The first order term is zero. The second order term reads

<<S?m>L>R=n(’j‘V":)2;iab//ooodtdt’i >y

ij=1kk'qq’=1 pr=11I'mm’/=1

< sl () SE () ol ot (4.196)
X [ () + L o B) [0V () + L= R] Yidr
Developing the term on the second line, we obtain
[P (8o () + L = B] [0 joun (0 () + L= B Y1)
= (( him OV OV jgm () hjgrn () + L = R) 1) R
= _<w%ik’l’(t)1;%qu(t/)>L <¢%jq'm' ) hi()r+ L — R
= 610k0 kg D1t Ot 12 [Gﬂ, (t, )G (¢, ) + L R} . (4.197)
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With the free fermionic Green’s functions defined on the Keldysh contoulrG, (,¢') =
(P(t) P8 (¢))a fora = L, R, a, b = & and wherek labels the electron’s energy. Expression
(4.199 now reads

) > ab// dt dt’ i i Zn: > st b)) ooy

ab==+ i=1 kk/=1 pr=11l'=1

[GLk,(t #)GY (1) + L R} . (4.198)

<Smt >LR = h2n <

By using the property To#o” = §,,,, we get

<Si2nt>LR:nh2< ) Zab// dtdt’ ZS

ab=+

xS G )G ) + L R} . (4.199)
kk'

Finally expression4.195 can be recast into

((ehSin YV g o o Siut | (4.200)
with
+o00
SP st s~ ——fn dtdt' 0% (1, ¢)S s¥(t)-si(t),  (4.201)
int env 7
ab=-+

where the exponer{2) is here to recall that we developed until second order and with the
self-energy
env

» (t,t') = —abih (hw,)? [G%”(t,t’)G’ﬁ(t’,t) + Gt G (1),  (4.202)

where the Keldysh Green'’s functions of the fermions in dheeservoir & = L, R) are
given by

G(t,t) = / deq po(€a)G%(eq;t —t) = Gt —t) . (4.203)

pa(€) is the density of states im-reservoir and>%°(¢; 7) are the Keldysh Green’s functions
of a free fermion with energyin equilibrium in thea-reservoir (see Appt.B.3):

IhGE~(e;7) = —nale)e” ’I’LIGT_

Gt (e7) = [1—nale)]e n, (4.204)
WGyt (er) = WG (67)O(7) +1hGE (6 7)O(-T) |

WG, (67) = G (61)O(r) +ihG, (6 7)0(=7)
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with the Fermi factom,,(¢) = (1 + ef(<=#a))=1 |t is clear then that the self-energy is

time translational invariant? (t,¢') = ¥ (7) with 7 = t — ¢'. Moreovers% (7) is a
symmetric matrix with respect to time and Keldysh indices:
Sene(T) = ey (=7) (4.205)

Using the time reversal property egt.160 of the Keldysh Green’s functions one also
establishes )
S (r) = =32 (1), (4.206)

env env

where we note = —a.

After a Keldysh rotation of the rotors coordinates, it yields

. o N
PSR s® = <50 S0 [[Carar e Yosiwsie) . 420m)
) i=1

rs=(1),(2

with
Sew = —ih/2 [B5 + Zan]
(21) ++ +—
2env - Eenv + Eenv ’
(12) [ o 7+] (4.208)
z:env = - [Zenv + Eenv] ’
2 SRO NN VT S RIS S sl D S D 3 e )
which is inverted as
ihD®, = —abh?2() — ? (azg}g + bzg;?) . (4.209)

4.D.2 FDT check

We checked that the fermion-reservoir self-energy satisfies the fodSB. This is only
valid when the reservoirs constitute an equilibrium bath,5;, = fr = fandur = ur =

po (V= 0). Note that distribution functionsy, (w) andpr(w) can be different although the
proof given below useg;, (w) = pr(w) = p(e) for simplicity reasons. The goal is to check
hw) [Béy + Sw] W)

hw
St ) = corh (557) 1m St ) = oot (57 >

(4.210)
We first develop the term in theds, then we do the same with thieHs to prove their
equality.

ZK

env

(W) = TF35.(7)
= —2(hw.)® TF {GKGK* — 1?/4 [GAG* + GRG™]}
= —2(hw.)? TF{GXG** — 1?/4 [GR + G4 [G™* + GM]}
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where we used the nullity of cross terms of the typ@G“ sinceG" x O(r) andG4
O(—7).
SR (W) = —2(hwe)? {GF o GF* — B2 /4 [GE + G4 o [GR* + G*]} , (4.211)

env

whereo is the symbol for the convolution (see AppA) andG*(w) stands for the Fourier
transform ofG(7)*. Since we easily obtain

GR(W)+GAw) = 2imp(hw) |

GR* (W) + GM*(w) = —2imp(—hw) , (4.212)
and

GX(w) = mhp(hw)tanh (ﬁw>’ o1y

GF*(w) = Wﬁp(—ﬁw)tanh(ﬁ_m*;—li())’

we get by replacing in4.217)

(w) = —2(hwe)?(mh)?

x {[ () tann( 82250 ) [ o p(~ ) tani (815712 ) | — [p(w)]o[p(— )]}
= —2(hw,)?(mh) %—;/p(e’)p(e’ — hw) {tanh <ﬁ6 “0) tanh (ﬁ%) - 1}

— —nh(hwe)? coth (B12) [de’ p(e')p(e’ — hw) {tanh (ﬁw) ~ tanh (ﬂ*T“O)} ,

where we used the trigonometry relation

EK

env

(4.214)

tanh x — tanhy

tanh (z —y) = '
anh (z — y) 1 — tanh z tanhy

Let’'s now calculate thehs of @.210.

R A
[Eenv + Eenv] ( ) _ i(hwc)z TF {GRGK* + GAGK* + GKGR* + GKGA*}

2i
= i(hwe)? TF {(G" + GNGK* + GK (G + ™))
= i(hwe)? {[GF 4+ GA] o [GK7] 4 [GF] o [6F + 6]}

giving

x [p [ o) hezwo)| — [ p(iw) tanh (522522 | o [p(~ 1))}
= —7h(hw.)?(27h) coth (8%) [ de’ p(e )p(e — hw)

x { tanh (ﬁH""%W) — tanh (ﬁel*%)} .
We recognize here the developmeh(14 of =X . We just proved that the bosonic FDT is

satisfied provided that the two fermionic reservoirs have the same temeesiatichemical
potential. They can have a different density of states.
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4.E Dynamics

4.E.1 Quadratic effective action

One can render the effective action quadratic at the price of introduewdields. For a
giveni and a given pair ofr, i, t) and(s, v,t’), the identity

/ AQ.TS (1) 6 (s ()7 () — Qo (1.1)) | (4.215)

becomes, after using the integral representation of the delta distribut®Agged.A),

Loc [AQ ()N (1 F) exp (SN (Y (57 (O5°(F) ~ Qi (t.t))

Introducing similar identities for all possible pairs @f, ¢, t) and (s,v,t’), we obtain a

path integral over twdfields Qs (t, ') and A5 (¢, 1) that are symmetric in the Keldysh

indices, times and rotor componendg;”, (¢, t) = Q.7 (t,t') andA;7 (', 1) = A5 (¢, 1),

The effective action is now also a functional@fand\ and reads

Low =2 Y //dtdt'zz (1) (O (8, 1) + i 8, #)] 515 (¢)

r,s=(1),(

2,,2
J Z// dt dt’ ZQZ;:) Q2 (t,t) + Q0 (1. 1)Q, ) (1, 1)

"‘**Z /dt Zz +1Z//dtdt ;Z)‘wv )Qirs (t,1)

+ boundary terms

where we introduced the operatop;;,;,(t,t') defined as

Opl(lz?) (t7 t/) = _5IJV6(t - t/) latg + % Z Z?(t) + 5#1’ env(t t)

a=+
Opin) (1) = Opl(H.e) e
Opz(21/2)( t,) = lh(sﬂll(s t_t Z CLZ - 5 ng( /) ) ( . )
Opa)(t,t) = %5 Z az?

Opi;;f,(t, t') is symmetric in the Keldysh indices, times and rotor components;, (t't) =
Op;7s (t,t'). The functional integration oves;” is now quadratic and can be performed,

*There areN (n>K? + nK)/2 of each of these fields, whe#§ = 2 is the number of possible Keldysh
indices.
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leading to

i

=St = —lTr Inn (Op + 1)) (4.217)
2,2
J Z//dtdt ZQW £ Qe (0 8) + Q) (1 )Q ) (0.1
+7,Z /dt Zz +1Z//dtdt ZZAW )Qira (t,1)

where the trace in the first term is spanning the whole space of indices|ynantwe sites,
Keldysh indices, times and rotor components.

4.E.2 Saddle-point evaluation

In this subsection, we evaluate in the limiv — oo the saddle-point equations with respect
to the dummy fields we introduced previously, namely, (¢, '), Q;.;,(t,') andz{(¢). The
fluctuations around the saddle are neglected. In particular, using.245(we have the
identity (see the definition of Green’s functions in S&2.3

i (1 "N =e ihGin (1, t' . (4.218)

with e, = 1if v = (1) ande, = —1if v = (2). Along the lines we prove that the solution
in the saddle i$)(NN) andO(n), like the starting Hamiltonian.

The saddle-point with respect /7 (¢, t') yields

0 Seft B 1 ) ) n /
W = T 5)\21;@ 7 Inn (Op +iX) + ig uw(t t)=0, (4.219)

giving in matrix notations
Hop+iN 't =nQ, (4.220)

where the symbdl represents the transposition. Since all operators in the last equation are
symmetric by definition, we get

1
Op+i\ = EQ—l . (4.221)

The saddle-point equation with respecngy(t, t') yields

i\ (1) Z Qo (t Vi, (4.222)
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where(2) = (1) and(1) = (2). TheRrhs of this last equation being site-independent,
Aipo (¢, ') does not depend on e (t,t') = A3 (t,¢). Equations 4.22]) and @.222
imply

TS J2n 5 1 —-17rs _
The saddle-point equation with respectfdt) yields to the two equations:

12 21

> ([Op+ iMl)il(w) (t,t) + ([Op—l— i/\]l);u) (t,t) =0,
p

) (4.224)

> ([Op+ i/\]l)::) (t,t) — % ([Op+ iA]l)fj) (t,t) =n.
5

This is nothing more than the constraint that rotors should have a unit leiHgthever,A
being site-independent, it is clear from these equations that it has to bartteeferOp.
Finally at the saddleQp, Q andz are site-independent (homogeneous) so we can get rid
of the sites indicesOp,;;, (¢, ') = Opj;, (¢,1'), Q0 (8. 1) = Q)5 (¢, ') and2f(t) = 2°(t).
Equation ¢.223 becomes

735 1 rSs
Op™ — J*nQ™ — Hcrl =0. (4.225)

Since from its definition4.216 Opfj,(t,t’) x d., the previous equation tells us that it

has to be the same fap); (t,¢') so we can get rid of all the rotor component indices.
Multiplying by Q**(¢',¢"), and summing oves andt’, we get

- 1
/dt’ > 0pT (L, )Q 7 (H ") = JPnQTE (1) Q* (¢ 1) — 5cS,nvé(t—t”) =0. (4.226)
The macroscopic Green'’s function readinghG™ (¢,t') = nQ"*(¢,t') we obtain

ev/dt’ ZOst(t,t’)ihGS”(t’,t")—EgevJQithg(t,t’)ihGS”(t’,t")—5rv(5(t—t”) =0.
’ (4.227)

4.E.3 Schwinger-Dyson equations

The(r = (2),v = (1)) component of eq4(227) gives a complex equation the real part of
which yields

) =2"(t)=2() YV, (4.228)
and the imaginary part of which is the dynamic equation for the self-correlation

2 t/ t
[11“86152 + z(t)]C(t,t’) = / dt” 2K, t"\R(t', ") +/dt” SR, O ", t'),(4.229)
0 0
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where we introduced
sK=sc+3E,, SE=sR+3l . (4.230)

Similarly, the(r = (2),v = (2)) component of eq.4.227) yields the equation of motion
for the self-response:
1 62 / / ! " R " /)
Tog +z(t)| R(t,t")=6(t—t' )+ [ dt" 27(t, t")R(t", 1) . (4.231)
t/
The (r = (1),v = (1)) component of eq.4.227 leads to the same equation and the
(r = (1),v = (2)) component express@s= 0. Settingt’ = ¢ in eq. @.229 we obtain the
expression for the Lagrange multiplier
t 19%C
2(t) = / dt” SR (¢, ) R(t, ") + S (¢ Ot — Fap (bt —17) . (4232)
0
Equations 4.229 and @.23]) together with eq.4.232 constitute the Schwinger-Dyson
equations that fully determine the dynamics of the interacting system.






CHAPTER

CONCLUSIONS AND OUTLOOK

I N this manuscript, we studied some aspects of the dynamics of systems coupied to a
environment. We first had some formal considerations on the classidgdbagm dy-

namics. We started from the Langevin equation which gives a heuristic mgdwlithe

interactions between a system and its thermal environment. We did not resisetives

to the Markovian case and to additive noise, but we coped with inertialmgsteupled

to a generic multiplicative and colored bath. By considering the associatéd)M$ath-
integral formalism, we showed that equilibrium dynamics can be seen as a synatbe

level of the MSRJD action and more generally as a symmetry of the corraisigogener-

ating functional. At the level of observables, the corresponding Wak@dhashi identities

yield all the equilibrium theorems.

We then turned to out-of-equilibrium situations where we showed how thesbreym-
metry naturally gives rise to all the fluctuation theorems at the level of ohskers. Fur-
thermore, we exhibited another symmetry of the MSRJD generating functiatial put of
equilibrium, that yields Schwinger-Dyson-type equations which correlaaol responses.
They are of particular interest for numerical simulations where the possitalitpmpute
responses without applying any extra-field —iatcorrelations — is often of great help.

From the third chapter and on, we left these formal and system-indeptcalesid-
erations to focus on some of the aspects of out-of-equilibrium dynamicslod¥ed at
the scaling relations in the dynamics that take place after a quench that thessystem
through a phase transition. We placed the emphasis on scaling relations imdhinte
dynamics, and more specifically, on the super-universality conjectyrmd&ins of numer-

147
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ical simulations, we compared the aging dynamics 8# dsing ferromagnet with random
fields (RFIM) to the ones of &d Ising spin glass (EA). The former is an archetypal model of
coarsening phenomena with weak disorder whereas the latter is probablyniiest model
for a3d glass. In both cases we showed that global observables obey sding sslations
once lengths and times are measured in units of a growing length we exhihiteddio
case. We also proved that the distribution of a local observable — namedgdihge-grained
two-time correlation function — exhibits the same kind of scaling property. Mewas far

as super-universality is concerned, both models differs since the kg does not show
super-universal scalings contrary to the ferromagnet.

In the fourth chapter, we analytically studied the impact of both quantum &tiohs
and a non-equilibrium environment — a fermionic drive — on the dynamicsdigadered
system of rotors that shows aspects of a ferromagnet in many reddedgave a detailed
description of the influence of the two-lead environment that creates timéofec current
tunneling through the system. In particular, we showed that the fermionie dehaves
like an equilibrium thermal bath on the long-time dynamics of the rotors. By solhieag
mean-field dynamics, we determined the full dynamical phase diagram dafttive.rin the
ordering phase, we gave an expression for the long-time limit of two-timelation, and
showed its scaling function does not depend on the temperature, thetlstoémtisorder,
the strength of quantum fluctuations nor the strength of the drive. Ther-sunversality
feature of the long-time dynamics allowed us to extend the well-know mappingbetw
the classicap = 2 spherical model and the cle&d coarsening ferromagnet to this driven
out-of-equilibrium quantum case.

In models of quantum coupled rotors, there are visible effects when thesarmomen-
tum states are restricted to even or odd symmetry. This is the case for instémeenodels
used for Josephson junctior&dl, 287 or systems like solid hydrogen where homonuclear
molecules (H and D,) can assume only even or odd values of the rotational quantum num-
ber j, depending on the parity of the nuclear spin. At low pressure or high textye,
evens species are found in a paramagnetic state. Increasing the presssge aauncrease
of the molecular coupling and eventually leads to a orientationally ordered sDate-j
species on the other hand are orientationally ordered at low temperatdraswient pres-
sure and remain ordered as pressure is increased. The strongardenol odds species
to order can be traced back to the fact that thei 1 lowest rotational state allows for a
spherically asymmetric ground state unlike yjhe 0 ground state of even-species283.
Noteworthy enough, when all the rotational states are allowed, and whagaghbetween
the ground statg = 0 andj = 1 is not to large, small thermal excitations can induce the
ordering by populating th¢ = 1 level. The order is lost when the thermal fluctuations
become too large. This phenomenon is responsible for a reentrant gibgsam. In our
language this means that the critical paihtis rejected to infinity in the case of odd-
species. By implementing such restrictions on the angular momenta, it would kestirtg
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\/

Figure 5.1:The complex-time contouy.

to study their effects on the phase diagram of our disordered modeleanidl they yield
similar effects in equilibrium and predict out-of-equilibrium features.

In order to complete the work presented here, we intended to generalidstiission
around the equilibrium symmetry of the Langevin generating functionals todke of
gquantum interacting systems. Unfortunately, we were not able to finish theamd make
in presentable in time, but we give here some of the main ingredients. The M@&RE-
integral has a natural quantum extension in the Schwinger-Keldysh lisrmdor systems
described by a time-dependent Hamiltoniiit) and prepared at timg = 0 in thermal
equilibrium with respect td7 (0), the expectation value of an operatora timet is given
by

(O()) = Tr [T {e—% Ji du HW)} omT {e—% Jy du HW} e—ﬁH@)] /2,  (5.1)

whereg is the inverse temperature of the initial preparation &ngt Tr [e=##©)]. T and
T are respectively the time and anti-time-ordering operators (see Appérds). Reading
the arguments in the above trace from the right to the left, one sees thahvdesign an
complex-time contou¢ with a branch going fromy34 to 0 along the imaginary axis then a
forward branch frond) to ¢ along the real axis and then coming backward.t@his contour
is illustrated in Fig5.1. Letting the variable; run along this same contour, €§.1) can be
formally recast as

o) =Tr [T {er ke @owm}) /2, (5.2)

whereT . is time-ordering operator that rearranges operators along the cantdbe trace
over the operators can be recast into a path integral using the stancltamdjtees (Suzuki-
Trotter decomposition). Let us consider the simple case of a time-depétaeiltonian of
the formH = % +V(¢,t) wherer is the momentum conjugated to the coordinatdhis

yields a path-integral whose action reasig] = fc du L([¢(u)],u) whereL is the time-
dependent Lagrangian. The fieldu) has support on the complex-time contquiThanks
to the unitary evolution, we are free to deform this contour in the complex platheng as
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it passes trough, where the operatdp has to be evaluated. Under the condition of a time-
independent Lagrangiand. equilibrium dynamics), and for particular contours, we were
able to exhibit some field transformations that leave the corresponding actarant. At
the level of observables, the corresponding Ward-Takahashi identigl relations such
as reciprocity relations or the quantum fluctuation-dissipation theorem. Y toaeport
soon on these.

The out of equilibrium quantum fluctuations theorems have not reachesdithe level
of understanding obtained for the classical systems. We believe ounambpbased on
symmetries in a field theory description is a powerful tool not only to deglations in a
systematic manner but also to better understand the underlying physicsowdarthe iden-
tification of these symmetries is fundamental to construct a theory of dynafinicialations
in and out of equilibrium. It should serve as guide to select self-consigpgmoximations
which do not violate important physical symmetries, to construct approximatbemes
for interacting problems such as mode-coupling methods.
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renseig® sur les dtails de I'environnement et de son couplage avec l&sysipour écrire
les situations hors dedguilibre thermodynamique.

Nous distinguons deux types d’environnements. Les premiers soniiesrerements
a I'equilibre, comme par exemple un bain thermiguene temprature3—. Les variables
internes qui les &crivent olgissent, entre autres, aletieme de fluctuation-dissipation.
Les seconds sont les environnements in&@guement hors @quilibre qui estabilisent
le syseme en injectant (ou en pompant) dénérgie. lls sont, par exemple, I'ensemble
constitle par deux bains thermiquésdes temgratures difrentes. Nous congderons
aussi le cas de deugservoirs celectrons qui, sous l'effet d’'une diffence de potentiel,
peuvent passer de I'ua I'autre par effet tunneh travers le sysime. Par extension, nous
incluons dans les environnements horaddiilibre le cas des forces éxteures appligees
sur le systme.

6.1 Synetries autour deséquations de Langevin

6.1.1 Equation de Langevin

Dans le chafire 2, nous nous aétons sur le cas des sgsies classiques en interaction
avec un environnemeat 'équilibrea la temg@rature3—'. La dynamique du sysime peut
étre tes gereralement dcrite par une&quation de Langevin. Dans nhombre d’applications,
I'inertie peutétre regligée et I'effet du bain peugtre captug par un bruit blanc. Toute-
fois, motives par une gréralisation aux syémes quantiques des effets de moire du
bain sont incontournables, typiquement sur des temps de I'ordé#)Jenous conservons
le terme de masse et considns le cas @érique d’'un bruit colog et multiplicatif. En
toute geréralite, I'équation de Langevin pour une masseeperée par la coordorée) est
donrée par

map(t) — F([¥],t) + M'((t)) /du 0t —u)M'((w)d(u) = M'(D()E®R) . (6.1)

oulaforceF ([¢)],t) = =V’ (¢, A(t))+ (2], t) rassemble les contributions conservatives
et non-conservative$. est un potentiel dont laghendance temporelle est catée, s'il y
alieu, par le protocola(t). M est une fonction bien compée qui cara@rise le couplage
non linéairea I'environnement §/(0) = 0 et M’(0) = 1). Le cas du bruit additif est
retroue en prenant un couplage &aire, M (¢)) = 1. Le dernier terme du membre de
gauche de Bqg. 6.1) ainsi que le membre de droite ndisent les interactions avec le
bain. La friction visqueuse est doe@ par une iriigrale temporelle sur le noyau de friction,
n(t,t"). Celui-ci, causali oblige, est nul pour < ¢'. Le cas du bruit blanc est retroeren
prenanty(t,t') = ~od(t — t'). £ est une force @latoire, issue d'un processus stochastique
gaussien, qui mdgise I'agitation thermique. Puisque le bain est supobéquilibrea la
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temperature3—!, le noyaux;(t, t') est une fonction de— ¢ et il est relé a la statistique du
bruit £ par un ttleoeme de fluctuation-dissipation :

(EDE))e =B7IR(E~ 1), (6.2)

ol nous avons introduit la notatiat(t — ¢') = n(t — ¢') + n(t' — t).

6.1.2 Fonctionnelle gnératrice

Nous construisons la fonctionnell@mggratrice assoék a cette lequation de Lange-
vin (6.1) dans le formalisme de Martin-Siggia-Rose-Jassen-deDominicis (MSR2B) [
126, 81]. Nous travaillons dans un intervalle de temps éjmiquet € [T, T']. Nous pétons
une attention particudire aux conditions initiales dont la distribution statistique est emeod
dans la mesuré’ (v, ¢). Si au temps initial{ = —T) le syskme est gEpaé a I'equilibre
thermodynamiquel’, est donge par la mesure de Gibbs-Boltzmann.

Action de MSRJD

L'action de MSRJD crit avec I'aide d’'un champ auxiliaire (souvent quali de
champ de&ponse) comme la somme de trois termsg/:, 1] = St[y), ] + SI5[yh, )] +
ST 4], avec

sl = WR (0-1).0-1)) - [duid) [mit) - Flw)].  ©3)

Sdiss[y 1)) / du ith(u) / dv M (¢ (u)) n(u — v) M’ (¢(v)) [ﬁ‘lizﬁ(v) - ¢(v)} '

Sdiss provient de l'interaction avec le bain tandis g8i&* regroupe toutes les autres forces
appligLees au sysime ainsi que la mesure initialg. S7 est issu du jacobierésultant du
changement du champ d'ggration au champy. Dans le cas @réral, on montre que le
jacobien est une constante positive dont on peugbauidasser dans une euahition de la
mesure de I'inkgrale fonctionnelle. On peut aussi choisir de I'exprimi@rune inggrale
gaussienne sur deux champs de Grassman*. Enétendant l'inégrale fonctionnelle de
MSRJDa ces deux nouveaux champs, la contribution jacobierteetion secrit alors :

§7e,c" 9] = //duduc*(u)[maga(u_v)_‘w

M ((w)) Bl — v) M (1(0)|e(0)

- uc*uw mo>(u) — u)|c(u
Jaue ) g ot — F( e . 64
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Observables

Dans le formalisme de MSRJD, la moyenne prise sur les conditions initiales et les
histoires thermiques d’une observabl@)] au tempg s’exprime de mamire transparente
comme

(AL())s = / D, b, e, ¢*] Afp(t))eS¥dec] (6.5)

Entre autres, la fonction d’auto-céfation a deux temps et la fonction d’autéponse
linéaire s’expriment comme

A~

Ct,t)=@ty(t))s et REtt)=(@)ivE))s . (6.6)

6.1.3 Equilibre
Symétrie de I'équilibre

Il y a deux conditions pour qu’un syshe soit assérd'évoluer avec une dynamique
d’équilibre : il doit étre pepagé dans unétat déquilibre et sonévolution doit se faire
avec les remes forces (autres que celles provenant du baquilibre) qui ont particip
a sa peparation. Plus @ciement, il doitévoluer avec les émes forces conservatives (et
indépendantes du temps) que celles qui ont sesa peparation et les seules forces non-
conservatives autoégs sont celles de l'interaction avec I'environnement. Celui ciétogt
al'équilibre et sa temfrature doit correspondada tem@rature de @paration du sysme.

Nous montrons que sous ces conditiongadiilibre, la fonctionnelle grératrice de
MSRJD est invariante sous la transformation des champs suivante :

o v e, c) = c(—u),
: ip(u) = ip(—u) + BO(u)y(—u), ¢(u) — —c(-u).
Cette transformation comporte un renversement du temps etpend pas de ce qui, en

particulier, la rend valable dans la limite newtoniemne 0, c’esta dire pour legvolutions
isolees.

(6.7)

Les identiés de Ward-Takahashi qui correspondenette transformation&ctrivent

A@s = (A1)
WO = (=91 69
WORE))s = (H(=0i(—t))s + B0 (b(~p(—t)s |

Nous montrons que ces idegtdonnent lied tous les thoemes @réraux de lequilibre
tels que la stationnaét le tteoeme déquipartition de Energie, les relations déciprocie
d’Onsager, le thoreme de fluctuation-dissipation, etc.
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Super-synetrie

Dans le cas de forces conservativgd®(= 0) et independantes du tempa & 0),
la fonctionnelle @rératrice assoée auxéquations de Langevin admet une éEg@ntation
super-syratrique. Cela &t dmonté et discué pour le cas du bruit additif dans nombre
de publications$3-96]. Nousétendons le champ d’application de ce formalisme au cas du
bruit multiplicatif et colog. L'action correspondante&irit S = Sdet 4 §diss gyec

susy T Osusy
Sdet [w) = ﬁ/d@de* 0*0 H[U(~T,0,0%)] — an+/dT LlT(Y)], (6.9)
Sisw] = % //dT’ dY M (T) DA (T, T) M(¥(T)), (6.10)
ol U est le champ composite (super-champ) feenpartir des champs, v, ¢ etc* selon
U(T)=(t) +c*(t) 0+ 0" c(t) + 070 (iq&(t) +c*(t) e(t) m) :

0 etf* sont deux coordorées de Grassmann su@plentaires regro@es dans les notations
T = (¢t,0,0%) etdY = dtdfdé*. Z est la fonction de partitiort{[V] = %m\ifz +V(¥) et
L[¥] = %m\ifz — V(). Lopérateur diferentiel correspondaatlinteraction avec le bain
est done par

DAY, 1) = n(t' —)s(8*" — 6*)5(¢' — 0) (DD — DD) , (6.11)

ou les operateurs

0 0
— 60— 6.12
00* ot’ 6.12)
obgissent aux relations d’anticommutation suivant@®;D} = — 2 et{D,D} = {D,D} =
0.

Sous couvert d’avoir une mesure initiale déerpar la distribution @&quilibre de Gibbs-

Boltzmann E.f. le premier terme de&q. 6.9)], I'action est invariante sous les transforma-
tions engendres par

_ 9 _ g1

Qza(z* et Qzﬁ_l%—l-G*%,
qui okeissent aux relations d’anticommutation suivantd€; Q} = % et {Q,Q} =
{Q.Q} ={D,Q}={D.Q} ={D,Q} ={D,Q} =0.

Cette super-sy#gtrie de I'action donne liewia les identies de Ward-Takahashi cor-
respondantesy certains thoemes déquilibre comme la stationnagitou le tleoeme de
fluctuation-dissipation mais elle ne permet pas de montrer les relations contpotan
plicitement un renversement du temps comme, par exemple, les relatiogsigmcie
d’Onsager. Nous explicitons le lien entre la $tne discuée pec@demment et cette super-
symétrie.
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6.1.4 Hors déquilibre

Nous abordons ensuite le cas des dynamiques héruiibre. Le systme peuttre
maintenant pggpaé de margre arbitraire eévoluer avec des forces non-conservatives et
dépendantes du temps. Nous n’envisageons pas le cas d’'un bain &gudidie mais la
géréralisation desasultatsa ce cas est imatdiate.

Theoremes de fluctuation

La synetrie déquilibre discute peccdemment est bierlis briste. La transformation
des champ¥., appliqiee a 'action S[d;,&,c, c*] gérere des termes qui brisent explici-
tement la syratrie. Nous montrons que ces termes donnent lieu dearatés naturelle
aux diverses relations de fluctuationsg@eme de fluctuation de Crook&7, 175, 174,
egalie de Jarzynskil73 174, identitt de Kawasaki177, 17§, theoreme de fluctua-
tion [27, 175 17€]). Le cas des systnes isds peutttre facilement retro& en prenant
la limite n = 0.

Symétrie hors d’équilibre

Nous exhibons ensuite une nouvelle €frie valable cette fois hors &fjuilibre. Nous
montrons que la fonctionnelleegératrice de MSRJD est invariante sous la transformation
des champs suivante :

Toom = 28 EQl,0)  (6.13)

_ v -1 U—V)————= .
() Jam Sy

ou EQ([¢], t) désigne l'inegralie du membre de gauche déd. €.1). Cette fois-ci, la limite
newtonienne:f = 0) n’est pas bien &finie. Les identis de Ward-Takahashi correspondant
a cette transformation donnent liaudeséquations dynamiques du type Schwinger-Dyson
couplant les co#lations et les@ponses. Ces relations permettent en particulier d’exprimer
la reponseR(t,t') en fonction de coélations ce qui a une application directe dans les
simulations nurariques hors @quilibre, ai le theoreme de fluctuation-dissipation ne peut
étre utili, et au le calcul direct de laégponse est souvent préphatique car il acessite
une moyenne sur un grand nombre d’histoires thermiques.

ih(u) — —i(u) +

Dans les chdijres 3 et 4, nous laissons ces considtions formelles pour se pencher
sur quelques aspects plus concrets de la dynamique Hagsilibre. Nous portons princi-
palement notre i@t sur lois déchelles dynamiques qui séwkloppent agrs une trempe
brutale d'un systmea travers une transition de phase du second ordre. Plus pantauknt
nousétudions leurs caragtes super-universels, c’éstlire leur @pendance aux paratnes
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de contbles tels que la tengpature, le dsordre, les fluctuations quantiques oame les
forcages exdrieurs.

6.2 Lois d’echelle dynamiques et super-universal

Dans le chapitre3, nous effectuons unetude comparative des loiséthelles dyna-
miques et des prog#ies de super-universditen dimension 3 en confrontant le cas de la
croissance de domaines ferroméatigues en firsence de&bordre ged faible et celui de la
dynamique vitreuse d'un verre de spin (avec ésatdre ge fort).

6.2.1 Modckles

Pour le cas de la croissance de domaines, nous choisissons de stiagddion lente
du mockle d’Ising3d soumisa un champ maggtique akatoire — le3d Random Field Ising
Model (RFIM) — apes une trempe en teramture. Le hamiltonien du mete est doné par

H=-J SiS5 — ZHlSZ . (614)
(4,5) i

Less; = +1 sont des spins d'lsing plés sur les nceuds d’uégeau cubique de volume
L3. Le premier terme &kcrit des interactions ferromagtiques ¢ > 0) a courte poke
entre plus proches voisingl; repesente un champ magtique localig sur le sitel. Nous
choisissons une distribution bi-modale pour ces variableataires,H; = +H avec la
méme probabilé. H quantifie I'intensié du cesordre gé. Dans le ca$l = 0, le RFIM se
ramene au moéle d’lsing3d avec une transition de phase d’'une phase paraétiagea
une phase ferromagtiquea la temggrature critiquel. ~ 4.415.J. En piesence de&sordre
(H > 0), la phase ordorge estéduite mais survit jusqa’ H,. ~ 2.215(35).J [61, 62].

Pour le cas de la dynamique vitreuse, nous choisissons lelenddEdwards-Anderson
(EA) 3d défini par le hamiltonien

H=- Z JijSiSj . (615)
(i,)

Less; = +1 sontencore des spins d’lsing péascsur les nceuds d’'uaseau cubique de taille
L3. Les couplages entre plus proches voisins so@és tdelon une distribution bi-modale,
Jij = +J avec la néme probabilié. Dans ce maogle, c’estJ qui quantifie I'intensié du
desordre gd. A la temperatureT, ~ 1.14(1)J [69], le mockle passe d'une phase para-
magretiqguea une phase vitreuse. La nature exacte de la phase de bas&zakemgpest
encore soumisa@ interpetation et I'on distingue deugcoles quana la relaxation hors
d’équilibre. La vison en termes de gouttelet®plet picturg repose sur une corgfition
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entre dewétats fondamentaux'p, 71], alors que I'autre interg@tation repose sur les solu-
tions du moeéle de Sherrington-Kirkpartrick qui est la version en champ-moyen delaod
d’EA[72].

Nous suivons la relaxation de ces deux ®led au moyen de simulations de Monte
Carlo. La trempe depuis une teérature initiale infinie estéali®e en prenant des condi-
tions initiales adatoiress; = +1 avec la nime probabili. Pour le cas du ferromagtique,
nous utilisons une version revigsé de I'algorithme de Metropoli®g], le continuous time
Monte Carlg qui permet d’avoir un taux de rejet n@12-214]. Les paramgtres de confiles
pertinents sont!/.J etT'/.J pour le3d RFIM, T'/J pour le3d EA.

6.2.2 Croissance d'unéchelle de longueur

Dans le3d RFIM, nous extrayons une longueur typighé€) de I'analyse de la&crois-
sance spatiale de la fonction de @&ationa un tempsCs(r; t) = (s;(t)s;(t)) 7, —m|=r- LE
comportement d& dépend des paragtresH /.J etT/J. En particulier, poui = 0 R croit
commet!/? alors qu’en pesence de&sordre sa croissance est logarithmique (&eiv

Pour le3d EA, il est impossible d’extraire une quelconque longuepeartir de la fonc-
tion Co(r; t) car celle-ci est strictement nulle pour> 0. Toutefois, I'analyse d’une fonc-
tion de corélation plus complexel’s (r; ¢, t") = (si(t)si(t')s;(t)s; (') - =, PErMEL la
détermination d’'unechelle de longueur deux tempg(¢,t'). Celle-ci cepend del’/J et
est tes lentement croissante en ses deux temps (ell€pasde pas 2 fois le pas dseau
sur des simulations d&® pas de Monte Carlo).

6.2.3 Lois déchelle dynamique

Nous suivons le comportements de quelques observables pendantddioeldes deux
mockles. Nous en distinguons les contributions thermiques des contributions saitks.
Lorsque cette distinction est difficilemeréalisable, nous travaillorés basse tengrature
ou les effets thermiques sont moindres. Nous montrons que les contribuigiliissantes
sont invariantes dans le temps une fois que les temps et les longueurs soiEsea unis
de R ou det.

Observables globales

Dans le cas du RFIM, nougrifions que les parties vieillissante de la fonction de&orr
lationa deux temps('(¢,t') = (si(t)si(t')) = Cn(t—t')+Cag(t,t'), obkitalaloi d'échelle
dynamiqueCis (t,t') = Cag (R(t)/R(t')). En extrayant dans ce mekg, comme dans (&1
EA, une longueua deux tempg(¢,t') a partir de la fonction de caghation Cy(r;¢,t'),
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nous montrons qu’elle @t a(t,t') = R(t')g(C(t,t')) ou g est une fonction &croissante.
Nous montrons plus&@réralement qu€y(r; ¢, t') = Cy(r/R(t'), R(t)/R(t")).

Dans le cas du made d’EA, la corélationa deux temps est connue p@agaheler selon
la loi du « vieillissement simple : C,.(t,t') = Cag(t/t") [199; ce qui incitea penser
que s'il y a une longueur typiquB(t) qui se @veloppe, elle doit citre selon une loi de
puissanceR(t) ~ t'/#, ol 'exposant dynamique dependa priori de T/T,. En faisant
cette hypotbse et en ajustanta la main, nous obtenons laéme loi dechelle que dans le
cas de la croissance de domaines ferrorgtigones £(¢,t') = R(t')g(C(t,t")). Cela peut
etreégalement vu comme une nouvell&tinode pour @terminer I'exposant dynamique
dans le cas des verres de spin.

Observables locales

Pour les deux magles, nou€tudions les dynamiques locales par le biais d’'observables
qui ne sont plus moye@es sur tout Bchantillon (de volumé?) mais seulement sur un petit
volume!?. Leurs fluctuations spatiales peuveéire decrites par des denéi de probabilé.

En particulier, nous nous concentrons sur la moyenne dans un volumided&tde la
fonction de corelationa deux temps(,.(¢,t'), et nous mesurons sa degsite probabilié
p(Cr;t,t',1). Pour les deux magles considres, nous montrons que celle-ci@ba la loi
d’échellep(C,; C(t, t'),1/£(t, ).

6.2.4 Super-universalié

La longueur typiquer ou¢ dépend des paragires de conéiles que sont la ten@pature
T et l'intensie du cesordrefl . Nous testons I'hypotise de super-univers@iselon laquelle
les lois deéchelle sont indpendantes d€ et H [70] en faisant varier ces derniers. Dans le
cas du modle de croissance de domaines, nous montrons que toutes lesdoieiEs
mentionrees pecdemment, y compris celles sur les fluctuations des observables locales,
sont super-universelles au sens qu’elles sont identiques all eag/ = 0. En revanche,
dans le cas du verre de spin, aucune des |l@stilles disciétes peccdemment ne gisente
de caradtre super-universel.

6.3 Dynamique forcce de roteurs quantiques ésordonres

Dans le chajire 4, nousétudions I'impact des fluctuations quantiques et d’un forcage
extéerieur sur la dynamique d’un sgshe de roteurs en@sence d’interactionsedordonges.
Plus péci€ment, la dynamique horséljuilibre est c2ée en peparant le sysimea tres
haute temprature puis en le couplant brutalemeéntin environnement constéule deux
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réservoirs de fermions — ulmgauche et ua droite du systme. La diference de potentiel
chimiqueV entre les deuxaservoirs @rere un courant qui gtablita travers le sysime et
le maintient hors de &quilibre.

6.3.1 Mockle

En ce qui concerne les roteurs, nous coasids le hamiltonien comglement conneét
suivant :

N
r 9 n
H:znizglLi—\/N E JijSZ‘~Sj. (616)

1,7<1i

Less; sont des roteurdn composantes dont la longueur eséi& I'unité (s; -s; = 1). Les
couplages entre les roteurs sonksiselon une distribution gaussienne de valeur moyenne 0
et d’écart type/. J quantifie I'intensié du cesordre. Led.; sont les oprateurs de moment
angulaires gréralisan dimensions. Les composantésobeissent aux relations de com-
mutation standards avec les moments congsgif qui interviennent dans I'expression des
L;.T joue le Ble d’'un moment d’inertie et quantifie I'intenéitles fluctuations quantiques;
lorsquer?T’/.J — 0, le mockle tend vers la version classique du verre de spin d’Heisenberg
compktement conneét Dans la limite @ » est grand, le maele esgquivalent la version
quantique du verre de sp= 2 splterique R50 251] dont la temg@rature critique clas-
sique " = 0) estT. = J. La connection avec la croissance de domaines ferroatagres

du mockleO(n — o) en3d [52] se geréralised notre cas quantique et horgduilibre.

Ce moctle a eja éte étudié dans le cadre d’'un couplageun bain dequilibre R51].
Pour des fortes fluctuation thermiqué9 et quantiquesli), les roteurs sont dans une phase
paramagatique. En revanche pour des valeurs plus faibleg' @tT, il y a une transition
de phase du second ordre vers une phase o&o(itordre met d’ailleurs un temps infini
pour seétablir).

Notre environnement hors&tjuilibre est compd@sde deuxé&servoirs celectrons libres.
La difference de potentiél entre les deux quantifie I'intengidu forcage. Pour simplifier
la discussion, nous choisissons de travailler avec Expes temeratures et les émes den-
sites détats pour le&servoir de droite que pour celui de gauche. De plus, nous @osisl
des densiéts détats conilées par une une unigéaergie typigue » comme, par exemple,
une distribution semi-circulaire de rayen. La limite ez — oo correspond au casides
électrons qui participerit la dynamique (ceux qui sontgs du niveau de Fermi) voient une
densié d'états constante. Nous choisissons une interact@msimple entre les fermions
et les roteurs en couplant éairement chaque composasfeau processus qu’un fermion
passe d’'un@servoira l'autre. Les constantes de couplages sont prises toutes identiques et
égalesafiw,.. g = hw./ep quantifie I'intensié du couplagé I'environnement.
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6.3.2 Influence de I'environnement

L'influence de cet environnement intrimguement hors @quilibre esétudie en pertur-
bationsa l'ordre g2. Nous Ealisons unétude @taillee de la selénergie selon la forme
des densis detats et les valeurs des partnes de conéile. En particulier, nous montrons
que I'environnement se comporte sur les modes lents des roteurs commia ohingue
T4 o N , _ eV
al'équilibrea la temg@raturel™ = - coth (BeV/2).

6.3.3 Diagramme de phase

Nous utilisons le formalisme de Schwinger-Keldysh, parteréliment adagtpour trai-
ter la dynamique aps une trempe des sgghes quantiques avec désibrdre gé. Dans
la limite nN — oo, nousétablissons leéquations de Swchwinger-Dyson qui couplent la
corrélationa deux temps et le&éponse ligaire. Pouyy — 0, nous calculons le diagramme
de phase dans I'espace des pates de conéile que sonf’, T', V. Nous prouvons l'exis-
tence d’une transition de phase dynamique entre une phase stationnaireétguiilibre et
une phase ordo@ea basse ten@rature, faibles fluctuations quantiques et faibleadéhce
de potentiel. Pour des valeurs déinies, la phase ordoe gagne du terrain ergplacant
le point critique quantiqu€.(7T' = V = 0) vers le haut. Nous&montrons I'existence d’'un
nouveau point critique sur I'axe (le forcage) et la ligne critiqual’ — 0 obéita la simple
équationl = J ce qui corrobore I'i@e que I'environnement agit comme un bain ohmique
al'équilibrea la tem@raturel™ sur les modes lents des roteurs.

6.3.4 Dynamique

En exploitant une similitude entre I'action de Keldysh et celle de MSRJD, @&cnixons
la dynamique sous la forme d’uiggjuation de Langevin avec inertie et bruit céloNous
étudions la relaxation lente dans la phase oréenbans la limite des temps longs, la cou-
leur du bruit est agligeable efl™ appar# alors naturellement comme la tegrpture d’'un
bain dequilibre. Lorsque par ailleurs, I'inertie (codtee pal’) est regligeable, lequation
de Langevin devient iggrable analytiquement et nous montrons que tout se passe comme
dans la version classique (et sans inertie) du &g = 2 splhérique coup a un bain
d’équilibrea la temggratureT™. En particulier, la fonction de cafationC,,(t,t’) est une
fonction super-universelle dg/'t’ au sens 0 elle ne @pend deT’, J et V que par I'in-
termeédiaire d’'un pefacteur nurérique (qui se trouvétre le pararatre d'ordre de Edwards-
Anderson). La fonction deéponse elle aussi se comporte comme dans le caslavec
I' = V = 0. Le theoeme de flucutation-dissipation est laride la néme facon, avec une
temperature effective du syste infinie. Dans le caud” est fini, nous &solvons la dyna-
mique nunériguement et montrons que leés@rio pecedent est encore valable : I'inertie



162

n'intervient que par une renormalisation deéfacteurs des lois dthelle dynamiques.

Finalement, nous calculons le courant fermionique qéfadilita travers le sysime.
Nous montrons gu’il converge rapidement vers une constante quinredgmas d’informa-
tion sur I'etat dynamique des roteurs.

Le travail pesengé dans cette tse a dona lieu aux publications suivantes :

— C. Aron, G. Biroli and L. F. Cugliandolo, “Symmetries of Langevin piss&s gene-
rating functionals,” arXiv :1007.5059 (2010).

— C. Aron, G. Biroli and L. F. Cugliandolo, “Coarsening of disordegedntum rotors
under a bias Voltage,” arXiv :1005.2414 (2010).

— C. Aron, G. Biroli and L. F. Cugliandolo, “Driven Quantum CoarseyjiiPhys. Rev.
Lett. 102 050404 (2009).

— C. Aron, C. Chamon, L. F. Cugliando and M. Picco, “Scaling and Sujmérersality
in the Coarsening Dynamics of the 3D Random Field Ising Model,” J. StathMec
P05016 (2008).
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Résunt Cette tlese traite de la dynamique de syses coug@sa un environnement.
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trique aux cas d’un bruit coléret multiplicatif et exhibons une syatrie qui gerere tous les
théoemes déquilibre. Brige, elle donne lieu aux défents tkoemes de fluctuations. Une
autre synétrie, valable aussi hors &fjuilibre, fournit de€quations dynamiques couplant
corrélations et eéponses. Par ailleurs noatgendons le formalisme super-sgtrique au cas
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Nous suivons, par des simulations de Monte Carlo, la croissance de asdans le
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migue vieillissante qui estéatrite par des lois @chelle super-universelles.

Mots-clefs physique statistique hoksyuilibre ; fluctuations ; croissance de domainé- d
sordre ; verre de spin; loi echelle dynamique ; super-universalit

Laboratoire Laboratoire de Physique €brique et Hauteénergies, LPTHE, Univergit
Pierre et Marie Curie — UMR 7589 du CNRS, 4 Place Jussieu, 75005 Peaaisce.






Title Classical and quantum out-of-equilibrium dynamics. Formalism and apphsatio

Abstract This thesis deals with the dynamics of systems coupled to an environment.
We review the symmetries of the Martin-Siggia-Rose-Janssen-deDomirmitialfsm asso-
ciated to Langevin equations. In equilibrium, we generalize the supersymrioetrialism

to the case of a colored multiplicative noise and we exhibit a symmetry yieldingeall th
equilibrium theorems. If broken, it naturally gives rise to all sorts of flubtuatheorems.
Another symmetry, valid also out of equilibrium, yields dynamical equationglowgicor-
relations and responses.

We follow, by means of Monte Carlo simulations, the coarsening dynamics 8titRan-
dom Field Ising Model after a temperature quench. By studying the dynbsaigiings, we
confirm the super-universality conjecture. On the contrary, it fails ircdse of the glassy
dynamics of the&dd Edwards-Anderson model despite the existence of a growing length that
is shown to scale both global and local observables.

We analytically study the dynamics of disordered quantum rotors after santaseous
coupling to an environment which creates an electronic current tunnelioggh the sys-
tem. We show the existence of a dynamical phase transition between a ubbriegn
stationary phase and an ordering phase at low temperature, weak qutumtions and
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have super-universal scaling properties.
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