CROSSING A PHASE TRANSITION OUT OF EQUILIBRIUM

Alberto Sicilia Garcia

Phases of matter

Matter can be found in many different phases.

• Characterize the phases of matter is a central problem in many fields of physics.

Some examples:

- > Cosmology: Phases of matter in the first instants of the universe.
- > QCD: gluon-plasma phase transition.
- ➤ Biophysics: phases of polymers in a solution.
- > Condensed matter: insulator/conductor/superconductor.

Energy scale.

• Great advances have been made in the study of equilibrium properties of phase transitions.

• A natural step forward: what happens if we force the system to cross out of equilibrium a phase transition?

How?

- \succ Changing abruptly a control parameter (ex. the temperature).
- \succ Changing abruptly a microscopical parameter (ex. a coupling constant).

• The system will evolve on time until reaching its new equilibrium state. Slow dynamics ("aging"). • Great advances have been made in the study of equilibrium properties of phase transitions.

• A natural step forward: what happens if we force the system to cross out of equilibrium a phase transition?

How?

- \succ Changing abruptly a control parameter (ex. the temperature).
- \succ Changing abruptly a microscopical parameter (ex. a coupling constant).

• The system will evolve on time until reaching its new equilibrium state. Slow dynamics ("aging").

 Note that this is only a particular example of an out of equilibrium process. One can also study, for example, out of equilibrium stationary states:

- > Coupling the system at two thermal resevoirs at different temperatures.
- > Constantly injecting energy to the system ("shaking").

• Great advances have been made in the study of equilibrium properties of phase transitions.

• A natural step forward: what happens if we force the system to cross out of equilibrium a phase transition?

How?

 \succ Changing abruptly a control parameter (ex. the temperature).

 \succ Changing abruptly a microscopical parameter (ex. a coupling constant).

• The system will evolve on time until reaching its new equilibrium state. Slow dynamics ("aging").

 Note that this is only a particular example of an out of equilibrium process. One can also study, for example, out of equilibrium stationary states:

- > Coupling the system at two thermal resevoirs at different temperatures.
- ➤ Constantly injecting energy to the system ("shaking").

• When crossing a phase transition out of equilibrium, defects are created.

• On the subsequent time evolution, defects will progressively disappear until the system reaches the new equilibrium state.

• A possible way to study the out of equilibrium evolution of the system is then to focus on defect dynamics.

But...

- > What defects are?
- > Why are they created when crossing a phase transition?

Revising the classical KZ mechanism: a new proposal

Revising the classical KZ mechanism: a new proposal

Below Tc, the order parameter must choose a vacuum.

But in different regions of the space, the order parameter chooses different vacua...

 \Rightarrow Formation of TOPOLOGICAL defects.

Below Tc, the order parameter must choose a vacuum.

But in different regions of the space, the order parameter chooses different vacua...

 \Rightarrow Formation of TOPOLOGICAL defects.

> An Example of topological defects.

Domain Walls: Closed hypersurfaces in d-1 dimensions.

Below Tc, the order parameter must choose a vacuum.

But in different regions of the space, the order parameter chooses different vacua...

 \Rightarrow Formation of TOPOLOGICAL defects.

> An Example of topological defects.

Domain Walls: Closed hypersurfaces in d-1 dimensions.

Depending on...

- The nature of the order parameter (space and field dimensionalities, scalar/vector, real/complex...).

- How the symmetry is broken.
- ⇒ Different kinds of topological defects!
 - Domain walls.
 - Strings.
 - Monopoles.
 - Textures.

GOAL OF THIS THESIS:

"Gain some understanding in the dynamics of systems forced to cross a phase transition out of equilibrium."

In particular, study this problem from a geometrical point of view: focusing on defect dynamics.

Particular problems we studied

An equilibrium prelude:

> Geometrical properties of critical parafermionic models.

with R. Santachiara and M. Picco.

Out-of-equilibrium dynamics:

➤ Geometry of domain growth in 2d.

with J. Arenzon, A. Bray, LFC, I. Dierking and Y. Sarrazin.

▶ Relaxation in spatially extended chaotic systems: coupled map lattices.

with E. Katzav and LFC.

> Coarsening in the Potts model.

with J. Arenzon, A. Bray, LFC and M. Loureiro.

Revision of the classical Kibble-Zurek mechanism.

with G. Biroli and LFC.

> Equilibrium and out-of-equilibrium dynamics of the Blume-Capel model.

with C. Aron, M. Baitsy-Jessi and LFC.

Particular problems we studied

An equilibrium prelude:

> Geometrical properties of critical parafermionic models.

with R. Santachiara and M. Picco.

Out-of-equilibrium dynamics:

Geometry of domain growth in 2d.

with J. Arenzon, A. Bray, LFC, I. Dierking and Y. Sarrazin.

▶ Relaxation in spatially extended chaotic systems: coupled map lattices.

with E. Katzav and LFC.

> Coarsening in the Potts model.

with J. Arenzon, A. Bray, LFC and M. Loureiro.

Revision of the classical Kibble-Zurek mechanism.

with G. Biroli and LFC.

> Equilibrium and out-of-equilibrium dynamics of the Blume-Capel model.

with C. Aron, M. Baitsy-Jessi and LFC.

1.- Phenomenology of "domain growth" ("coarsening", "phase ordering dynamics").

2.- OUR WORK: Geometrical description of 2d domain growth.

3.- Conclusions.

1.- PHENOMENOLOGY OF DOMAIN GROWTH

> There exists a **characteristic length scale R(t)**:

If we measure all distances in units of R(t), the system is statiscally the same at any time.

 $R(t) \sim t^{1/2}$

> There exists a **characteristic length scale R(t)**:

If we measure all distances in units of R(t), the system is statiscally the same at any time.

 $R(t) \sim t^{1/2}$

Suggested by experiments and numerical simulations.

> There exists a **characteristic length scale R(t)**:

If we measure all distances in units of R(t), the system is statiscally the same at any time.

 $R(t) \sim t^{1/2}$

Suggested by experiments and numerical simulations.

Proven in:

- 1d Ising Model with Glauber dynamics.

(A. J. Bray, 1994).

- Langevin dynamics of O(N) model when N $\rightarrow \infty$

> There exists a **characteristic length scale R(t)**:

If we measure all distances in units of R(t), the system is statiscally the same at any time.

 $R(t) \sim t^{1/2}$

Suggested by experiments and numerical simulations.

Proven in:

- 1d Ising Model with Glauber dynamics.

(A. J. Bray, 1994).

- Langevin dynamics of O(N) model when N $\rightarrow ~\infty$

> There was no analitycal proof in 2d.

3.- OUR WORK: GEOMETRICAL DESCRIPTION OF 2D DOMAIN GROWTH

> Mathematical model we used: Langevin equation.

$$\begin{aligned} \frac{\partial \phi(\vec{x},t)}{\partial t} &= -\frac{\delta H[\phi]}{\delta \phi(\vec{x},t)} + \eta(\vec{x},t) \\ \langle \eta(\vec{x},t) \rangle &= 0 \qquad \langle \eta(\vec{x},t) \eta(\vec{x}',t') \rangle = 2T\delta(\vec{x}-\vec{x}')\delta(t-t') \\ H[\phi] &= \int d^d x \left[\frac{1}{2} \left(\nabla \phi \right)^2 + \frac{r}{2} \phi^2 + \frac{g}{4} \phi^4 \right] \end{aligned}$$

> There are other mathematical models one could consider.

Examples:

- Instead of a coarse-grained field, a more microscopical approach.
- Instead of a continuous order parameter, a lattice model.
- Instead of a Langevin equation, a master equation.
- Instead of stochastic dynamics, deterministic dynamics (Hamilton eqs.).
- Instead of a classical system, a quantum system.

Distribution of areas in quenches to T=0

Geometrical Description of 2D Domain Growth

- Our defects are the domain walls (a.k.a. "hulls").
- Two different areas associated to each domain wall.

> Domain area.

n_d(A,t)

There are 4 domains with areas:

> Hull enclosed area.

There are 4 hulls with enclosed areas:

 A_1 A_1+A_2 A_4 $A_1+A_2+A_3+A_4$ $A_1 \quad A_2 \quad A_3 \quad A_4$

> Area distributions densities and per unit area of the system).

n_h(A,t)

Distribution of areas in a quench to T=0

➢ From Langevin equation at T=0, Allen and Cahn (1979),

$$v = -\frac{\lambda_h}{2\pi} \kappa$$

> The velocity of a wall in each point is proportional to its local curvature.

> Velocity points in the direction of reducing curvature.

Coarsening does not proceed by coalescence of small domains.

Distribution of areas in a quench to T=0

> From Langevin equation at T=0, Allen and Cahn (1979),

$$v = -\frac{\lambda_h}{2\pi} \kappa$$

The velocity of a wall in each point is proportional to its local curvature.

Velocity points in the direction of reducing curvature.

Coarsening does not proceed by coalescence of small domains.

Integrating the Allen-Cahn eq. around a hull:

$$\oint v \, dl = -\frac{\lambda_h}{2\pi} \oint \kappa \, dl$$
$$\frac{dA_h}{dt} = -\frac{\lambda_h}{2\pi} \oint \kappa \, dl$$
???
Distribution of areas in a quench to T=0

$$\frac{dA_h}{dt} = -\frac{\lambda_h}{2\pi} \oint \kappa \, dl \qquad ???$$

> We can use the Gauss-Bonnet th.

$$\int_{M} K_g \, dS + \oint_{\partial M} \kappa \, dl = 2\pi \chi(M)$$

Hull-enclosed areas are flat 2d manifolds with no holes.

$$K_g = 0$$
 $\chi(M) = 1$ $\oint_{\partial M} \kappa \, dl = 2\pi$

Evolution equation for hull-enclosed areas:

$$\frac{dA_h}{dt} = -\lambda_h \qquad A_h(t, A_i) = A_i - \lambda_h(t - t_i)$$

Hull enclosed areas evolve independently one from another.

> They all shrink at a constant rate, independently of their size.

$$n_h(A,t) = \int_0^\infty dA_i \,\delta(A - A_i + \lambda_h(t - t_i)) \,n_h(A_i, t_i)$$

= $n_h(A + \lambda_h(t - t_i), t_i)$.

If you know the distribution at initial time, when the system is quenched, you know the distribution at any time during the evolution.

- > Remember, we are quenching our system to T=0.
- > Before the quench, the system is in equilibrium at some temperature $T>T_{r}$.
- > The two extreme cases are:

> We are lucky, because the equilibrium distributions for both initial cases are known (Cardy and Ziff, 2002):

$$n_h(A,0) \sim \begin{cases} 2c_h/A^2 & \text{Critical percolation} \Leftrightarrow \mathsf{T}_0 = \infty \\ c_h/A^2 & \mathsf{T}_0 = \mathsf{T}_c \end{cases} \qquad c_h = 1/8\pi\sqrt{3}$$

Pluging-in these initial distributions into the evolution equation:

$$n_{h}(A,t) = \frac{2c_{h}}{(A+\lambda_{h}t)^{2}} \qquad \text{Quench to T=0 from } \mathsf{T}_{_{0}} = \infty$$
$$n_{h}(A,t) = \frac{c_{h}}{(A+\lambda_{h}t)^{2}} \qquad \text{Quench to T=0 from } \mathsf{T}_{_{0}} = \mathsf{T}_{_{c}}$$

The distributions have the scaling form,

$$n_h(A,t) = t^{-2}f(A/t)$$

Scaling dynamical hypothesis is recovered from calculation!

Numerical verification of our exact result

Numerical verification of our exact result

Numerical verification of our exact result

Geometrical Description of 2D Domain Growth

What happens for the domain areas?

> The evolution of a domain area will depend, in general on the movement of several walls.

For example, the evolution of A_3 :

$$\frac{dA_3}{dt} = -\lambda_h + \lambda_h + \lambda_h$$

In general :

$$\frac{dA_d(t)}{dt} = -\lambda_h \left[1 - \nu(t)\right]$$

Domain can grow/shrink/remain constant.

Initial distributions are also known for domain areas.

$$n_d(A,0) \sim \frac{2c_d A_0^{\tau'-2}}{A^{\tau'}} \qquad \tau' = \frac{187}{91} \approx 2.055$$
$$n_d(A,0) \sim \frac{c_d A_0^{\tau-2}}{A^{\tau}} \qquad \tau = \frac{379}{187} \approx 2.027$$

> Taking advantage of the smallness of c_h one can (approximately) show:

$$n_d(A,t) \sim \frac{2c[\lambda t]^{\tau-2}}{[A+\lambda t]^{\tau}}$$

Two important sum rules:

$$N_d(t) \equiv \int_0^\infty dA \ n_d(A, t) = \int_0^\infty dA \ n_h(A, t) \equiv N_h(t)$$
$$\int_0^\infty dA \ A \ n_d(A, t) = 1$$

Effects of finite working temperature

Domain area distributions during coarsening at $T \neq 0$

time = 32 MCS

T = **0**

T = 1.5

Domain area distributions during coarsening at $T \neq 0$

time = 32 MCS

 $\mathbf{T} = \mathbf{0}$

 $\mathbf{T}=\mathbf{1.5}$

EFFECTS OF TEMPERATURE:

- > Roughens the domain walls.
- > Generates 'thermal domains' (not formed by coarsening).

Domain area distributions during coarsening at $T{\neq}0$

> Distribution of domains areas during coarsening at T=0.

$$n_d(A,t) \sim \frac{2c[\lambda t]^{\tau-2}}{[A+\lambda t]^{\tau}} \quad \text{where} \quad \tau = \frac{187}{91} \quad c = \frac{1}{8\pi\sqrt{3}}$$
$$\sqrt{A_{av}} \sim R(t) \sim [\lambda \ t]^{1/2}$$

Domain area distributions during coarsening at $\mathsf{T}{\neq}0$

> Distribution of domains areas during coarsening at T=0.

$$n_d(A,t) \sim \frac{2c[\lambda t]^{\tau-2}}{[A+\lambda t]^{\tau}}$$
 where $\tau = \frac{187}{91}$ $c = \frac{1}{8\pi\sqrt{3}}$
 $\sqrt{A_{av}} \sim R(t) \sim [\lambda t]^{1/2}$

- > Dynamical RG: dynamics at T<Tc controlled by T=0 fixed point.
- > Temperature dependence enters through prefactor $\lambda \rightarrow \lambda(T)$

Domain area distributions during coarsening at $T \neq 0$

> Distribution of domains areas during coarsening at T=0.

$$n_d(A,t) \sim \frac{2c[\lambda t]^{\tau-2}}{[A+\lambda t]^{\tau}}$$
 where $\tau = \frac{187}{91}$ $c = \frac{1}{8\pi\sqrt{3}}$
 $\sqrt{A_{av}} \sim R(t) \sim [\lambda t]^{1/2}$

- > Dynamical RG: dynamics at T<Tc controlled by T=0 fixed point.
- > Temperature dependence enters through prefactor $\lambda \rightarrow \lambda(T)$

Crossing a phase transition out of equilibrium

Δ

2.5

> Let us test our prediction:

$$n_d(A,t) \sim \frac{2c[\lambda(T)t]^{\tau-2}}{[A+\lambda(T)t]^{\tau}}$$
 where $\tau = \frac{187}{91}$ $c = \frac{1}{8\pi\sqrt{3}}$

Simulations in the 2d Ising Model.

Let us test our prediction:

$$n_d(A,t) \sim \frac{2c[\lambda(T)t]^{\tau-2}}{[A+\lambda(T)t]^{\tau}}$$
 where $\tau = \frac{187}{91}$ $c = \frac{1}{8\pi\sqrt{3}}$

Simulations in the 2d Ising Model.

Let us test our prediction:

$$n_d(A,t) \sim \frac{2c[\lambda(T)t]^{\tau-2}}{[A+\lambda(T)t]^{\tau}}$$
 where $\tau = \frac{187}{91}$ $c = \frac{1}{8\pi\sqrt{3}}$

Simulations in the 2d Ising Model.

> Let us test our prediction:

$$n_d(A,t) \sim \frac{2c[\lambda(T)t]^{\tau-2}}{[A+\lambda(T)t]^{\tau}}$$
 where $\tau = \frac{187}{91}$ $c = \frac{1}{8\pi\sqrt{3}}$

> Simulations in the 2d Ising Model.

Crossing a phase transition out of equilibrium

> Let us test our prediction:

$$n_d(A,t) \sim \frac{2c[\lambda(T)t]^{\tau-2}}{[A+\lambda(T)t]^{\tau}}$$
 where $\tau = \frac{187}{91}$ $c = \frac{1}{8\pi\sqrt{3}}$

> Simulations in the 2d Ising Model.

Crossing a phase transition out of equilibrium

Fractal structure of the domains

We know
➢ Distributions of areas
➢ Relation area - perimeter
→ Distributions of perimeters

Experiments in liquid crystals

Experimental application of our result

➤ "bent core" liquid crystals.

Quasi 2-d cell filled with the liquid crystal

> Application of an electric field \Rightarrow Growth of chiral domains

Right handed domains Left handed domains

Experimental application of our result

Experimental application of our result

CONCLUSIONS

Conclusions and Future Work

Proof of Dynamical Scaling Hypothesis in 2D.

- > Analytic, Numerical and Experimental results.
- Role played by different initial conditions.
- Role played by the working temperature.
- Geometrical Picture of 2D Coarsening.

Refs. for the results presented today:
98, 145701 (2007), PRE 76, 061116 (2007),
82, 10001 (2008), PRL 101, 197801 (2008).

PRL

Effects of weak quenched disorder

Effects of the disorder

Effects of the disorder

$$J_{ij} = ran\left[1 - \frac{\epsilon}{2}, 1 + \frac{\epsilon}{2}\right]$$

DISTRIBUTION OF DOMAIN SIZES

DISTRIBUTION OF DOMAIN PERIMETERS

