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Résumé

Ce cours présente une introduction aux applications de la mécanique statistique
à la théorie de champs, la physique des particules et la cosmologie. Chaque Section
est focalisée sur un sujet.

– Dans la première partie nous revisons les fondements de la mécanique sta-
tistique d’équilibre et nous discutons l’inéquivalence d’ensembles (microcano-
nique, canonique et macrocanonique) dans le problème du gaz autogravitant.

– Dans la deuxième partie nous étudions les transitions de phase et leurs réalisations
en théorie de champs.

– La troisième partie est dédiée à l’étude statistiques de la distribution de masse
(structures) en astrophysique.

– Dans la quatrième partie nous introduisons les processus stochastiques et nous
décrivons brièvement la méthode Monte Carlo, utilisée dans l’étude numérique
des théories de jauge sur réseau, ainsi que la quantification stochatique basée
sur la dynamique de Langevin.

– Finalement, nous analysons la dynamique des transitions de phase du deuxième
ordre et les processus de croissance des structures, un problème d’intérêt en
cosmologie.

Les notes du cours seront disponibles, en formats postscript et pdf, dans la page
web du Master ainsi que dans www.lpthe.jussieu.fr/̃ leticia/enseignement.html/



Le cours

Calendrier des cours

12 Octobre 9 :00 – 12 :00
20 Octobre 9 :00 – 12 :00
27 October 9 :00 – 12 :00
3 Novembre 9 :00 – 12 :00
10 Novembre 9 :00 – 12 :00
17 Novembre 9 :00 – 12 :00
1 Décembre 9 :00 – 12 :00

Exercises

À la fin des premiers quatre cours je rendrai une fiche d’exercises à résoudre à la maison
et à rendre à la prochaine séance. Ces exercises feront partie de la note finale du cours
(voir en bas de page).

Lecture d’un article scientifique

Pendant le cours les étudiants doivent lire et comprendre un article scientifique sur le
sujet de leur choix. Ils doivent préparer un rapport écrit sur ce sujet selon les consignes
données en bas. Ce rapport fera aussi partie de la note finale du cours (voir en bas de
page). Ce travail pourra être fait en binôme ; dans ce cas le rapport à rendre sera un seul.

Examen

Il n’y aura pas d’examen final traditionnel.

Remise des rapports

Le 15 Décembre dernier délai.
Fichier pdf à envoyer par email à l’adresse
leticia@lpthe.jussieu.fr
préparé selon les sonsignes décrites en bas.

Note finale

60% TDs ; 40% Rapport.

Notes du cours

Ces notes couvrent un nombre de sujets qui seront presentés en cours ainsi que quelques
approfondissement que nous n’aurons pas le temps de discuter en détails. Pour les distin-
guer on a marqué en rouge les titres des parties traitées en cours.
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5.2.8 The large N approximation . . . . . . . . . . . . . . . . . . . . . . 103

A Additivity in the fully-connected Ising model 106

B Some useful formulæ 106
B.1 Stirling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.3 Gaussian integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.4 Wick’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.5 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.6 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C The saddle-point method 110

D TD 1 : Notions de base 111

E TD 2 : L’approximation de champ moyen 113

F TD 3 : Analyse de champs aléatoires 114
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1 BASIC NOTIONS

1 Basic notions

1.1 Background

Equilibrium Statistical Mechanics is a very well-established branch of theoretical phy-
sics. Together with Quantum Mechanics, they form the basis of Modern Physics.

The goal of equilibrium statistical mechanics is to derive the thermodynamic functions
of state of a macroscopic system from the microscopic laws that determine the behaviour
of its constituents. In particular, it explains the origin of thermodynamic – and intuitive
– concepts like pressure, temperature, heat, etc.

In Table 1 we recall the typical length, time and energy scales appearing in the micro-
scopic (say, atomistic) and macroscopic World.

Micro Macro

dist (ℓ)
Solid Gas

10−10m 10−8m
10−3m

# part (N) 1
Solid Gas

(

10−3

10−10

)d=3
= 1021

(

10−3

10−8

)d=3
= 1015

energy (E) 1 eV 1J ≈ 6 1018eV

time (t)
Solid Gas

h̄/1eV ≈ 6 10−14 s 10−9 s
1 s

Tab. 1 – Typical length, energy and time scales in the microscopic and macroscopic
World.

A reference number is the number of Avogadro, NA = 6.02 1023 ; it counts the number
of atoms in a mol, i.e. 12gr of 12C, and it yields the order of magnitude of the number of
molecules at a macroscopic level. The ionization energy of the Hydrogen atom is 13.6 eV
and sets the microscopic energy scale in Table 1.

It is clear from the figures in Table 1 that, from a practical point of view, it would be
impossible to solve the equations of motion for each one of the N ≈ NA particles – we
keep the discussion classical, including quantum mechanical effects would not change the
main conclusions to be drawn henceforth – and derive from their solution the macroscopic
behaviour of the system. Moreover, the deterministic equations of motion may present a
very high sensitivity to the choice of the initial conditions – deterministic chaos – and
thus the precise prediction of the evolution of the ensemble of microscopic constituents
becomes unfeasible even from a more fundamental point of view.
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1.2 This course 1 BASIC NOTIONS

The passage from the microscopic to the macroscopic is then done with the help of
Statistical methods, Probability Theory and, in particular, the Law of Large Numbers.
It assumes – and it has been very well confirmed – that there are no big changes in the
fundamental Laws of Nature when going through all these orders of magnitude. However, a
number of new and interesting phenomena arise due to the unexpected collective behaviour
of these many degrees of freedom. For example, phase transitions when varying an external
parameter occur ; these are not due to a change in the form of the microscopic interactions
but, rather, to the locking of the full system in special configurations.

The main features of statistical mechanics are quite independent of the mechanics that
describes the motion of the individual agents (classical or quantum mechanics, relativistic
or not). Its foundations do need though different reasonings in different cases. For the sake
of concreteness in this set of lectures we shall focus on classical non-relativistic systems.

In Table I we mentioned energy scales and length scales typical of atomic physics.
Particle physics involves even shorter length scales and higher energy scales. Particle
physics is studied using field theories. While standard textbooks in Statistical Mechanics
do not use a field theoretical formulation, it is indeed pretty straightforward to apply
Statistical Mechanics notions to field theories – a theory with ‘infinite’ degrees of freedom,
one for each space-point.

Equilibrium statistical mechanics also makes another very important assumption that
we shall explain in more detail below : that of the equilibration of the macroscopic system.
Some very interesting systems do not match this hypothesis. Still, one would like to use
Probabilistic arguments to characterize their macroscopic behavior. This is possible in
a number of cases and we shall discuss some of them. Indeed, deriving a theoretical
framework to describe the behavior of macroscopic systems out of equilibrium is one the
present major challenges in theoretical physics.

1.2 This course

In this set of lectures we shall discuss some problems in equilibrium and dynamic statis-
tical mechanics that either are not fully understood or receive the attention of researchers
at present due to their application to problems of interest in physics and other areas
of science. We shall play special attention here to applications in particle physics and
cosmology.

The plan of the set of lectures is the following :
In the first Section we recall some aspects of Probability Theory and Statistical Mecha-

nics. Basic features of the foundations of Statistical Mechanics are recalled next together
with the theory of ensembles (microcanonical, canonical and macrocanonical). As an in-
teresting application, we discuss the self-gravitating gas, that is to say, a set of N classical
particles confined in a volume V and interacting through Newton’s law. Important diffe-
rences in the thermodynamic behaviour of this system when treated in different ensembles
are due to the long-range character of the forces. We discuss these features here.
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1.3 Elements in statistical mechanics 1 BASIC NOTIONS

In Sect. 2 we describe the theory of phase transitions : first we explain the mean-field
approach, and then we introduce fluctuations and show how the importance of these led to
the development of the renormalization group. We also introduce the standard models of
magnetic systems (Ising, xy and Heisenberg), and we discuss their symmetry properties.
We explain coarse-graining techniques and how these lead to field theories with different
symmetry properties. We pay special attention to the discussion of field theories at finite
temperature and how phase transitions occur in this context.

In Sect. 3 we use statistical methods to characterize mass distributions and, in parti-
cular, astrophysical structures.

In the last two Sections we introduce time into the discussion. First, in Sect. 4 we
define stochastic processes, the Langevin and Fokker-Planck formalisms and we briefly
discuss the dynamics of macroscopic systems close to thermal equilibrium. We explain
here Montecarlo techniques used for instance in the lattice gauge theory for QCD and the
method of stochastic quantization.

In Sect. 5 we treat the dynamics of phase transitions, discussing separately the case
of first and second order ones. We explain how this process has important implications
in cosmology with the problem of determining the number of topological defects left after
going through a phase transition.

It is clear that the correct explanation of all these problems and analytical methods
would require many more teaching hours than the ones we have. We shall only give here
the main ingredients of each of these subjects and provide the interested students with
references to deepen their knowledge.

1.3 Elements in statistical mechanics

Let us here recall some important features of Statistical Mechanics [3, 4, 5, 6, 7].
The state of a classical system with i = 1, . . . , N particles moving in d-dimensional real

space is fully characterized by a point in the 2dN dimensional phase space Γ. The coordi-
nates of phase space are the real space coordinates of the particles, qa

i , where i is the par-
ticle label and a = 1, . . . , d is the label of the real space coordinates, and the particles’ mo-
menta, pa

i . It is convenient to represent a point in phase space with a 2dN -dimensional vec-

tor, e.g. ~Y = ( ~Q, ~P ) = (q1
1, q

2
1, q

3
1,q

1
2, q

2
2, q

3
2,. . . , q

1
N , q2

N , q3
N , p1

1, p
2
1, p

3
1,p

1
2, p

2
2, p

3
2,. . . , p

1
N , p2

N , p3
N)

in d = 3.
The Hamiltonian of the system, H, is a function of the particles’ position and momenta.

It can be explicitly time-dependent but we shall not consider these cases here. The par-
ticles’ time evolution, (~Q, ~P )(t), starting from a given initial condition, (~Q, ~P )(t = 0), is
determined by Hamilton’s equation of motion that are equivalent to Newton dynamics. As
time passes the representative point in phase space, (~Q, ~P )(t), traces a (one dimensional)
path in Γ. Energy, E, is conserved if the Hamiltonian does not depend on time explicitly
and thus all points in any trajectory lie on a constant energy surface, H( ~Q, ~P ) = E.

But, can one really describe the evolution of such a system ? In practice, one cannot
determine the position and momenta of all particles in a macroscopic system with N ≫ 1

8



1.3 Elements in statistical mechanics 1 BASIC NOTIONS

with great precision – uncertainty in the initial conditions, deterministic chaos, etc. A
probabilistic element enters into play. What one really does is estimate the probability
that the representative point of the system is in a given region of Γ at time t given that
it started in some other region of Γ at the initial time. Thus, one introduces a time-
dependent probability density ρ( ~Q, ~P ; t) such that ρ( ~Q, ~P ; t)dΓ is the probability that the

representative point is in a region of volume dΓ around the point (~Q, ~P ) at time t knowing
the probability density of the initial condition.

Note that if initially one knows the state of the system with great precision, the initial
ρ will be concentrated in some region of phase space. At later times, ρ can still be localized
– perhaps in a different region of phase – or it can spread. This depends on the system
and the dynamics (Newton-Hamilton or else).

We now need to find an equation for the evolution of the probability density ρ kno-
wing the evolution of the phase space coordinates (~Q, ~P ). ρ can vary in time due to two
mechanisms : an explicit time variation, and the time variation of the coordinates and
momenta as the representative point wanders in phase space :

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂qa
i

q̇a
i +

∂ρ

∂pa
i

ṗa
i , (1.1)

with q̇a
i = dqa

i /dt and ṗa
i = dpa

i /dt, the summation convention over repeated indices (i

labels particles and a labels coordinates), and ρ( ~Q, ~P , 0) known.
Probability behaves like an incompressible fluid in phase space and one can then use

knowledge of fluid mechanics to analyze the equation above. The partial derivative is taken
at fixed (~Q, ~P ) : it represents the time-variation of ρ as the fluid passes by the chosen
point in phase space. The total derivative instead is the time-variation as we follow the
displacement of a ‘piece’ of fluid in phase space.

Liouville’s theorem states that the ensemble of systems (as represented by a point in
phase space) in the vicinity of a given system remains constant in time :

dρ

dt
= 0 . (1.2)

A detailed description of Liouville’s theorem is given in [8]. We shall not repeat it here
but taken for granted.

In statistical equilibrium one expects the systems to reach stationarity and then the
explicit time-variation to vanish

∂ρ

∂t
= 0 . (1.3)

In this case, the distribution ρ is constant on the phase trajectories. One may wonder
whether this solution is reached from generic initial conditions.

Liouville’s equation (1.2) is invariant under time-reversal, t → −t and ~p → −~p. Indeed,
the existence of a conserved current implies, via Noether’s theorem, the existence of a
symmetry. The symmetry is invariance under time translations, and the generator of the
symmetry (or Noether charge) is the Hamiltonian.
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1.4 The ergodic hypothesis 1 BASIC NOTIONS

The time-reversal symmetry implies that, for generic initial conditions the solutions to
Liouville’s equation oscillate in time and do not approach a single asymptotic stationary
solution that could be identified with equilibrium (∂tρ = 0). The problem of how to obtain
irreversible decay from Liouville’s equation is a fundamental one in Statistical Mechanics.
We shall come back to this problem in Sect. 2.10.5. We shall not deepen this discussion
here ; let us just mention that the main attempt to understand the origin of irreversibility
is in terms of flows in phase space, and this approach is called ergodic theory, as founded
by Boltzmann by the end of the XIXth century [5].

In the absence of a good way to determine the evolution of ρ and its approach to
a stationary state, one simply looks for solutions that are stationary without worrying
about how the ensemble reaches them. This can be restated as the following hypothesis :

– As t → ∞ one expects that the statistical properties of the system be independent
of time and hence ρ( ~Q, ~P ; t) → ρ( ~Q, ~P ).

Setting now ∂tρ = 0 one realizes that the remaining equation admits, as a solution,
any function of the energy. The characteristics of the ensemble are then determined by
the chosen function ρ(E).

1.4 The ergodic hypothesis

Finally, let us discuss Boltzmann’s and Gibb’s interpretation of averages and the ergodic
hypothesis. Boltzmann interpreted macroscopic observations as time averages of the form

A ≡ lim
τ→∞

1

2τ

∫ τ

−τ
dt A( ~Q(t), ~P (t)) . (1.4)

With the introduction of the concept of ensembles Gibbs gave a different interpretation
(and an actual way of computing) macroscopic observations. For Gibbs, these averages
are statistical ones over all elements of the statistical ensemble,

〈A 〉 = c
∫ N

∏

i=1

d
∏

a=1

dqa
i dpa

i ρ( ~Q, ~P )A( ~Q, ~P ) , (1.5)

with ρ the measure. In the microcanonical ensemble this is an average over micro-states
on the constant energy surface taken with the microcanonical distribution (1.8) :

〈A 〉 = c
∫ N

∏

i=1

d
∏

a=1

dqa
i dpa

i δ(H( ~Q, ~P ) − E)A( ~Q, ~P ) , (1.6)

and the normalization constant c−1 =
∫

∏N
i=1

∏d
a=1 δ(H( ~Q, ~P ) − E). In the canonical en-

semble the average is computed with the Gibbs-Boltzmann weight :

〈A 〉 = Z−1
∫ N

∏

i=1

d
∏

a=1

dqa
i dpa

i e−βH( ~Q, ~P )A( ~Q, ~P ) . (1.7)
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1.4 The ergodic hypothesis 1 BASIC NOTIONS

Z is the partition function Z =
∫

∏N
i=1

∏d
a=1 dqa

i dpa
i e−βH( ~Q, ~P ).

The (weak) ergodic hypothesis states that under the dynamic evolution the representa-
tive point in phase space of a classical system governed by Newton laws can get as close
as desired to any point on the constant energy surface.

The ergodic hypothesis states that time and ensemble averages, (1.4) and (1.5) coincide
in equilibrium for all reasonable observables. This hypothesis cannot be proven in general
but it has been verified in a large number of cases. In general, the great success of Sta-
tistical Mechanics in predicting quantitative results has given enough evidence to accept
this hypothesis.

An important activity in modern Statistical Mechanics is devoted to the study of ma-
croscopic systems that do not satisfy the ergodic hypothesis. A well-understood case is
the one of phase transitions and we shall discuss it in the next section. Other cases are
related to the breakdown of equilibration. This can occur either because they are exter-
nally driven or because they start from an initial condition that is far from equilibrium
and their interactions are such that they do not manage to equilibrate. One may wonder
whether certain concepts of thermodynamics and equilibrium statistical mechanics can
still be applied to the latter problems. At least for cases in which the macroscopic dy-
namics is slow one can hope to derive an extension of equilibrium statistical mechanics
concepts to describe their behavior.

Finally, let us remark that it is usually much easier to work in the canonical ensemble
both experimentally and analytically. Thus, in all our future applications we assume that
the system is in contact with a heat reservoir with which it can exchange energy and that
keeps temperature fixed.

1.4.1 The microcanonical ensemble

In the microcanonical ensemble one makes the following hypothesis :
– In the same long-time limit the system does not prefer any special region on the

constant energy surface in Γ – there is a priori no reason why some region in Γ should
be more probable than others ! – and thus ρ( ~Q, ~P ) is expected to be a constant on
the energy surface and zero elsewhere :

ρ( ~Q, ~P ) =

{

ρ0 if H( ~Q, ~P ) ∈ (E,E + dE) ,
0 otherwise ,

(1.8)

The constant ρ0 is the inverse of the volume of the constant energy surface ensuring
normalisation of ρ. This is indeed the simplest stationary solution to eq. (1.2).

These hypotheses can be valid only if the long-time dynamics is reasonably independent
of the initial conditions.

Even though it is very difficult to show, the solution proposed above is very smooth
as a function of (~Q, ~P ) and it is then the best candidate to describe the equilibrium state
– understood as the one that corresponds to the intuitive knowledge of equilibrium in
thermodynamics.
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This description corresponds to the microcanonical ensemble of statistical mechanics,
valid for closed systems with fixed energy E and volume V . Each configuration on the
constant energy surface is called a microstate. In the microcanonical ensemble all micro-
states are equivalent. We can think about all these microstates as being (many) inde-
pendent copies of the original system. This is Gibbs’ point of view : he introduced the
notion of ensemble as the collection of mental copies of a system in identical macroscopic
conditions.

The average of any phase space function A( ~Q, ~P ) can now be computed as

〈A 〉 =
∫ N

∏

i=1

d
∏

a=1

dqa
i dpa

i ρ( ~Q, ~P )A( ~Q, ~P )

=

(

1

N !g(E)

)

∫ N
∏

i=1

d
∏

a=1

dqa
i dpa

i δ[E − H( ~Q, ~P )] A( ~Q, ~P ) . (1.9)

The normalization constant c =
∫

∏N
i=1

∏d
a=1 dqa

i dpa
i δ[E − H( ~Q, ~P )] = N !g(E) is the

volume of phase space occupied by the constant energy surface itself. The quantity g(E)
is called the density of states :

g(E) ≡ 1

N !

∫ N
∏

i=1

d
∏

a=1

δ[E − H( ~Q, ~P )] . (1.10)

The microcanonical entropy is

S(E) ≡ kB ln g(E) . (1.11)

Maximization of entropy is thus equivalent to the maximization of the phase volume
available to the system.

Note that the nature of the interactions between the constituents has not been mentio-
ned in this discussion. There is no reason to believe that the microcanonical description
would fail for some type of interaction as the gravitational one, a case that we shall discuss
in detail below.

1.4.2 The canonical ensemble – short and long range interactions

Once the microcanonical ensemble has been established one usually goes further and
derives what is called the canonical ensemble describing the statistical properties of a
system that can exchange energy with its surrounding.

Let us consider a macroscopic system with volume V and divide it in two pieces with
volumes V1 and V2, with V = V1 +V2. The aim is to characterize the statistical properties
of the small subsystem (say 1) taking into account the effect of its interaction with the
rest of the macroscopic system (subsystem 2). It is clear that the energy of the subsystems
is not fixed since these are not closed : they interact with each other. The total energy,

12
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E, is then the sum of the energies of the two sub-ensembles plus the interaction energy
between the two pieces, E = E1 + E2 + EI .

If the interactions between the constituents of the system are short-ranged the inter-
action energy is proportional to the surface between the two pieces, EI ∝ S, while the
energy of each subsystem will be extensive and proportional to its volume, E1 ∝ V1 and
E2 ∝ V2. Thus, for a macroscopic system, EI is negligible with respect to E1 + E2.

If, instead, the interactions between the constituents are sufficiently long-ranged the
separation into volume and surface contributions to the total energy does not apply any
longer. This remark allows one to define :

– The additivity property,
E = E1 + E2 , (1.12)

for any two subsystems 1 and 2 of a macroscopic system. One defines systems with
short range interactions as those for which the additivity property applies and sys-
tems with long range interactions as those for which this property fails.

Let us review the derivation of the canonical distribution. Consider a system with
volume V , divide it in two pieces with volumes V1 and V2, with V = V1 +V2, and energies
E1 and E2. If we assume that the two systems are independent with the constraint that
E1 +E2 = E, i.e. the additivity property, the probability of subsystem 1 to get an energy
E1 is

P (E1)dE1 ∝
∫

dE2g(E1, E2)δ(E − E1 − E2)dE1

=
∫

dE2g1(E1)g2(E2)δ(E − E1 − E2)dE1

= g1(E1)g2(E − E1)dE1

= g1(E1)e
k−1

B S2(E−E1)dE1

≃ g1(E1)e
k−1

B S2(E)+k−1
B ∂ES2(E)(−E1)dE1

∝ g(E1)e
−βE1dE1 , (1.13)

and, after fixing the normalization :

P (E1) = Z−1(β) g(E1)e
−βE1 , with Z(β) =

∫

dE1 g(E1)e
−βE1 . (1.14)

Let us recap the assumptions made : (i) independence, g(E1, E2) = g(E1)g(E2), (ii) energy
additivity E2 = E − E1, (iii) small system 1 (E1 ≪ E), (iv) constant inverse ‘tempera-
ture’ kBβ ≡ ∂ES(E). Note that assumptions (i) and (ii) fail in systems with long-range
interactions. In these cases the microcanonical ensemble is well-defined though difficult
to use, and the canonical is not even defined !

Example : the power-law potential

In the field of particle systems with two-body interactions falling-off with distance as
a power law

V (r) ∼ r−α (1.15)
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1.4 The ergodic hypothesis 1 BASIC NOTIONS

one finds that the interactions are
– long-ranged if α < d,
– short-ranged if α > d,

with d the dimension of space. A simple way of showing this general result is the following.
Take a point particle with unit mass and place it at the origin of coordinates. Consider its
interaction with a homogeneous massive spherical shell with internal radius ǫ and external
radius R and density ρ. The total energy, e, felt by the particle is

e = −
∫

V
ddx

ρ

rα
= −Ωd

∫ R

ǫ
dr

rd−1ρ

rα
= − Ωd ρ

d − α

[

Rd−α − ǫd−α
]

, (1.16)

where we adopted the potential V (r) = r−α for all r. Ωd is the angular volume, Ωd = 2π
in d = 2, Ωd = 4π in d = 3, etc. One finds that for α > d the contribution from the
surface (r = R) is negligible while for α < d it diverges ! In the latter case surface effects
cannot be neglected and the energy is not additive.

Another way to express the same wierd fact is that the total energy on a volume
V ∝ Rd, that is to say E = V e, is super-linear on the volume :

E ≃ V Rd−α ≃ R2d−α = Rd(2−α/d) = V 1+1−α/d (1.17)

for 1 − α/d > 0.
This definition implies then that the gravitational interaction, VG(r) = −Gm2r−1

is long-ranged in three spatial dimensions while the Van der Waals interaction, VV W (r) ∝
r−6, is short-ranged. The long-ranged interactions are sometimes called non-integrable in
the literature. Plasma physics also provides examples of non-additive systems through
an effective description.

The failure of energy additivity is at the origin of the unusual equilibrium and dy-
namic behaviour of systems with long-range interactions. Surprisingly enough, one finds
that many usual thermodynamic results are modified with, for example, systems having
negative microcanonical specific heat ; moreover, the statistical ensembles (microcanonic,
canonic and macrocanonic) are no longer equivalent, as we saw above with the failure of
the derivation of the canonical ensemble from the microcanonical.

The statistical physics of self-gravitating systems falls into this class of bizarre
problems and there is much current research [9, 10, 11] to try to elucidate their properties.
We shall discuss some of the many interesting features of this system.

Note that that non-additivity also occurs in systems with short-range interactions in
which surface and bulk energies are comparable ; this is realised in finite size problems.

1.4.3 Negative specific heat and phase transitions

The probability distribution P (E) in the canonical ensemble, P (E) = g(E)e−βE/Z,
has a maximum at E = U , with U given by

∂ES(E)|E=U = kBβ = T−1 , (1.18)
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where S(E) ≡ kB ln g(E) is the entropy defined from the density of states g(E), see
eq. (1.11).

The Taylor expansion of ln P (E) around E = U yields

ln P (E) ∼ −β[U − TS(U)] +
1

2

∂2 ln P (E)

∂E2

∣

∣

∣

∣

∣

E=U

(E − U)2 + . . . (1.19)

∼ −β[U − TS(U)] − 1

2
β2 1

Ccan
V

(E − U)2 + . . . (1.20)

where we took the derivative of (1.18) with respect to β

1 =
∂2k−1

B S(E)

∂E2

∣

∣

∣

∣

∣

E=U

∂U(β)

∂β
(1.21)

to replace the coefficient of the quadratic term after defining the canonical specific heat :

Ccan
V ≡ −β2 ∂U(β)

∂β
. (1.22)

P (E) is a Gaussian centered at U (thus U = 〈E 〉) with dispersion σ = β−1Ccan
V

1/2. In
a macroscopic system with N particles and short-range interactions one expects E ∝ N
and Ccan

V ∝ N in which case the ratio between dispersion and typical energy, or relative
fluctuation, vanishes as σ/E ∝ N−1/2. In the large N limit, fluctuations are ‘killed’, the
energy in the canonical ensemble does not fluctuate, it is locked to the value U , and it is
related to the temperature through (1.18). One thus proves the equivalence between the
microcanonical and canonical results.

What happens when the equivalence fails ? What kind of peculiar effect can one expect
to find ? One of the simplest mismatches found is the possibility of having negative specific
heat in some region of parameters in the microcanonical description of systems with long-
range interactions. This is impossible in a canonical formalism. Indeed, the microcanonical
constant volume specific heat is defined as

Cmicro
V ≡ −β2 ∂E(β)

∂β
(1.23)

[one inverts β(E) = k−1
B ∂ES(E) to write E(β)] and this quantity is not positive definite.

Instead, in the canonical ensemble the constant volume specific heat

Ccan
V = −β2 ∂U(β)

∂β
= −β2 ∂〈E 〉(β)

∂β
= β2 ∂ ln Z(β)

∂β

= β2
(

〈E2 〉 − 〈E 〉2
)

= β2 〈 (E − 〈E 〉)2 〉 (1.24)

is positive definite. When the two ensembles are equivalent the micronanonical Cmicro
V

should be identical to the canonical one, Ccan
V , and thus positive. However, it is possible
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to construct models, for instance those with long-range interactions, such that Cmicro
V is

negative in some range of parameters. It turns out that when Cmicro
V < 0 the system

undergoes a phase transition in the canonical ensemble (see Sect. 2).

Examples

Computing the microcanonical distribution function of macroscopic systems with rea-
listic long-range interactions is usually prohibitly difficult. One then works with toy models
that are much simpler but capture the essential features of the realistic problems. Some
of the toy models that have been studied in detail are

– The self-gravitating two body problem :

H(P,Q,p, r) =
P 2

2M
+

p2

2µ
− Gm2

r
(1.25)

where P and Q are the momentum and coordinate of the center of mass and p and
q are the relative moment and coordinate, M = 2m is the total mass, µ = m/2 is
the reduced mass and m is the mass of the individual particles. One also restricts the
range of the r coordinate to the interval (a,R). The short-distance cut-off mimics
hard spherical particles of radius a/2. In the limits a → 0 and R → ∞ this is the
standard Kepler problem.
The statistical mechanics of this system are described in detail in [9]. The system
has two natural energy scales E1 = −Gm2/a and E2 = −Gm2/R with E1 < E2.
For E ≫ E2 gravity is irrelevant, there is a long distance between the particles
(r > R) and the system behaves like a gas, confined by a container. The heat
capacity is positive. As one lowers the energy the effects of gravity begin to be felt.
For E1 < E < E2 the box or the short-distance cut-off do not have an effect and
there is a negative specific heat. As E ∼ E1 the hard core nature of the particles
becomes important and gravity is again resisted, this is the low energy phase with
positive specific heat. The microcanonical specific heat is shown in Fig. 1. It must
be noticed that astrophysical systems are in the intermediate energy scales with
negative specific heat ; moreover, this range is pretty wide since E1 ≪ E2.
One can also analyze the canonical partition function – knowing already that it
should predict a different behaviour from the above in the region [E1, E2]. In par-
ticular, one can compute the mean energy and its relation with temperature to
compare with the microcanonical behaviour. The canonical result is also shown in
Fig. 1. One finds that at very low and very high energies the curves coincides. In
the intermediate region the canonical T (E) relation is almost flat and the canonical
specific heat takes a very large value, almost a divergent one. This is similar to a
phase transition (the theory of phase transitions will be discussed in detail in Sect. )
in which the specific heat would diverge. The divergence is smoothened in this case
due to the fact that there is a finite number of degrees of freedom in the two body
problem.

– The Lynden-Bell model is a model of (2N + 1) coordinates evolving through the
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Hamiltonian

H =
p2

2m
+

N
∑

i=1

1

2mr2

(

pθ
2
i +

pφ
2
i

sin2 θi

)

− Gm2

2r
(1.26)

with r constrained to take values in (a,R). In this model one can take the large N
limit and recover a true phase transition in the canonical formulation.

– The Thirring model is one with a set of N particles in a volume V . The particles
interact with a constant potential if they come within an interaction volume Vo. In
both the Lynden-Bell and Thirring models in the high energy regime the particles
occupy space uniformly : it is a homogeneous phase. In the low energy regime instead
the particles are close together in a collapsed phase.

– The self-gravitating gas. Consider a system of N particles interacting through Newto-
nian gravitational forces alone. The properties of this system depend on N . If N = 2
it is the exactly solvable Kepler problem, for N = 3 − 50, say, it cannot be solved
exactly but it can be tackled with a computer. For larger N , N = 105 − 1011, say,
one is interested in averaged properties and statistical methods should be used.
First, one must recall that a short-distance cut-off is necessary to render all phase
space integrals convergent. This is justified by arguing that at very short distances
not only the gravitational force acts on the particles and other forces regularize the
r → 0 behaviour of the total interaction potential.
It turns out that an interesting thermodynamic limit of the three ensembles (micro-
canonical, canonical and macrocanonical) is achieved in the very dilute limit [10, 11]

η ≡ Gm2N

V 1/3T
finite . (1.27)

In this limit the thermodynamic quantities (free energy, energy, etc.) are functions
of η and T and scale with N . Instead, the chemical potential and specific heat
are just functions of T and η. The system undergoes collapse phase transitions in
microcanonical and canonical ensembles though their location is different.

1.4.4 The macrocanonical ensemble

Finally in the macrocanonical ensemble one characterizes the macroscopic state with
the volume V , the temperature T , and the chemical potential µ.

Summarizing, in the microcanonical ensemble the system is isolated and temperature
is defined as T−1 ≡ ∂S

∂E
|E. In the canonical ensemble the system is in contact with a

reservoir – considered to be a much larger system – with which it can exchange energy to
keep temperature fixed to be the one of the external environment. In the macrocanonical
ensemble the system is in contact with a reservoir with which it can exchange energy
and particles. The equivalence between them is ensured only for systems with short-range
interactions.
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2 PHASE TRANSITIONS
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Fig. 1 – The temperature against the energy for the two-body problem with gravitational
interaction with cut-off a in a box of size R. The microcanonical curve is non-monotonic
with a negative specific heat in the region E ∼ [−0.4, 0]. The canonical curve is monotonic
and almost flat – as in a smoothened phase transition – in the region in which Cmicro

V < 0.

2 Phase transitions

Take a piece of material in contact with an external reservoir. The material will be cha-
racterized by certain observables, energy, magnetization, etc.. To characterize macroscopic
systems it is convenient to consider densities of energy, magnetization, etc, by diving the
macroscopic value by the number of particles (or the volume) of the system. The external
environment will be characterized by some parameters, like the temperature, magnetic
field, pressure, etc. In principle, one is able to tune the latter and the former will be a
function of them.

Sharp changes in the behavior of macroscopic systems at critical points (lines) in pa-
rameter space have been observed experimentally. These correspond to phase transitions,
a non-trivial collective phenomenon appearing in the thermodynamic limit. In this Sec-
tion we shall review the main features of, and analytic approaches used to study, phase
transitions.

We shall first use the language of magnetic systems, using the Ising model and its
variants as the working model. We shall then introduce field theories and briefly discuss
phase transitions in this context.

2.1 Standard models

2.1.1 Magnetic systems : the Ising model

Let us analyze, once again, a magnetic system. The Hamiltonian describing all micro-
scopic details is a rather complicated one, depending on the electrons magnetic moments
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giving rise the macroscopic magnetization of the sample but also on the vibrations of
the atomic crystal, the presence of structural defects, etc. If we call α a microstate, its
probability is Pα = e−βHα/Z with Z the partition function, Z =

∑

α e−βHα . It is, however,
impossible and not necessarily interesting to keep all details and work with all possible
physical phenomena simultaneously. Imagine that we are only interested on the magnetic
properties, characterized by the electronic magnetic moments.

The Ising model is a mathematical representation of a magnetic system. It describes
magnetic moments as classical spins, si, taking values ±1, lying on the vertices of a cubic
lattice in d dimensional space, and interacting via nearest-neighbor couplings, J > 0. The
energy is then

H = −J

2

∑

〈ij〉

sisj −
∑

i

hisi (2.1)

where hi is a local external magnetic field. Most typically one works with a uniform field,
hi = h for all sites. The justification for working with an Ising variable taking only two
values is that in many magnetic systems the magnetic moment is forced to point along
an ‘easy axis’ selected by crystalline fields.

There are two external parameters in H, the coupling strength J and the external field
h. J > 0 favors the alignement of the spin in the same direction (ferromagnetism) while
J < 0 favors the anti-alignement of the spins (antiferromagnetism). The magnetic field
tends to align the spins in its direction.

The Ising model is specially attractive for a number of reasons :
(i) It is probably the simplest example of modeling to which a student is confronted.
(ii) It can be solved in some cases : d = 1, d = 2, d → ∞. The solutions have been the
source of new and powerful techniques later applied to a variety of different problems in
physics and interdisciplinary fields.
(iii) It has not been solved analytically in the most natural case, d = 3 !
(iv) It has a phase transition, an interesting collective phenomenon, separating two phases
that are well-understood and behave, at least qualitatively, as real magnets with a para-
magnetic and a ferromagnetic phase.
(v) There is an upper, du, and lower, dl, critical dimension. Above du mean-field theory
correctly describes the critical phenomenon. At and below dl there is no finite T phase
transition. Below du mean-field theory fails.
(vi) One can see at work generic tools to describe the critical phenomenon like scaling.
and the renormalization group.
(vii) Generalizations in which the interactions and/or the fields are random variables taken
from a probability distribution are typical examples of problems with quenched disorder.
(viii) Generalizations in which spins are not just Ising variables but vectors with n com-
ponents with a local constraint on their modulus are also interesting. Their energy is

E = −J

2

∑

〈ij〉

~si~sj −
∑

i

~hi~si (2.2)
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with n = 1 (Ising), n = 2 (XY), n = 3 (Heisenberg), ... , n → ∞ (O(n)) as particular
cases. The local constraint on the length of the spin is

s2
i ≡

n
∑

a=1

(sa
i )

2 = n . (2.3)

Note that each component is now a continuous variable bounded in a finite interval,
−√

n ≤ sa
i ≤ √

n, that actually diverges in the n → ∞ limit. When n → ∞ it is
sometimes necessary to redefine the coupling constants including factors of n that yield
a sensible n → ∞ limit of thermodynamic quantities.
(ix) One can add a dynamic rule to update the spins and we are confronted to the new
World of stochastic processes (Sect. 2.10.5).
(x) Domain growth in these systems is the simplest example of coarsening (Sect. 5).
(xi) Last but not least, it has been a paradigmatic model extended to describe many
problems going beyond physics like neural networks, social ensembles, etc.

The spins lie on a d dimensional lattice that can have different geometries. For instance,
a cubic lattice is such that each vertex has coordination number, or number of neighbours,
z = 2d. Triangular, honeycomb, etc. lattices are also familiar.

In the rest of this set of Lectures we shall discuss the physics of this model and we
shall study its statics and dynamics with a number of analytic techniques.

2.1.2 Symmetries

Continuous

In the absence of an applied magnetic field the Hamiltonian (2.2) remains invariant
under the simultaneous rotation of all spins :

H[~s′] = −J

2

∑

〈ij〉

~s′i~s
′
j = −J

2

∑

〈ij〉

Rabsb
iR

acsc
j

= −J

2

∑

〈ij〉

RtbaRacsb
is

c
j = −J

2

∑

〈ij〉

sb
is

b
j (2.4)

since R is an orthogonal transformation, such that RtR = I. This symmetry is explicitly
broken by the external field.
Discrete

The Ising model with no applied field is invariant under si → −si, a discrete symmetry.

2.1.3 Field theories

A field theory for the magnetic problem can be rather simply derived by coarse-graining
the spins over a coarse-graining length ℓ. This simply amounts to computing the averaged
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spin on a box of linear size ℓ. In the limit ℓ ≫ a where a is the lattice spacing many spins
contribute to the sum. For instance, an Ising bimodal variable is thus transformed into a
continuous real variable taking values in [−1, 1]. Studying the problem at long distances
with respect to ℓ (or else taking a continuum spatial limit) the problem transforms into
a field theory. This is the route followed by Landau that we shall discuss later.

Field theories are the natural tool to describe particle physics and cosmology. Indeed,
the Big Bang leaves a radiation-dominated universe at very high temperature close to
the Planck scale. As the initial fireball expands, temperature falls precipitating a sequence
of phase transitions. The exact number and nature of these transitions is not known. It is
often considered that they are at the origin of the structures (galaxies, clusters, etc.) seen
in the universe at present, the original seeds being due to density fluctuations left behind
after the phase transition. We shall come back to this problem in Sects. 2.10.5 and 4.3.3.

The similarity between the treatment of condensed matter problems and high energy
physics becomes apparent once both are expressed in terms of field theories. It is however
often simpler to understand important concepts like spontaneous symmetry breaking in
the language of statistical mechanics problems.

2.2 Discussion

Let us discuss some important concepts, order parameters, pinning fields, broken ergo-
dicity and broken symmetry, with the help of a concrete example, the Ising model (2.1).
The discussion is however much more general and introduces the concepts mentioned
above.

2.2.1 Order parameters

An order parameter is generically defined as a quantity – the average of an observable
– that vanishes in one phase and is different from zero in another one (or other ones).
One must notice though that the order parameter is not unique (any power of an order
parameter is itself an order parameter) and that there can exist transition without an
order parameter as the Kosterlitz-Thouless one in the 2d xy model. In the rest of this
course we focus on problem that do have an order parameter defined as the thermal
average of some observable.

2.2.2 Thermodynamic limit

The abrupt change in the order parameter at a particular value of the external para-
meters (T, h) is associated to the divergence of some derivative of the free-energy with
respect to one of these parameters. The partition function is a sum of positive terms.
In a system with a finite number of degrees of freedom (as, for instance, in an Ising spin
model where the sum has 2N terms with N the number of spins) such a sum is an analytic
function of the parameters. Thus, no derivative can diverge. One can then have a phase
transition only in the thermodynamic limit in which the number of degrees of freedom
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diverges.

2.2.3 Pinning field

In the absence of a magnetic field for pair interactions the energy is an even function
of the spins, E(~s) = E(−~s) and, consequently, the equilibrium magnetization density
computed as an average over all spin configurations with their canonical weight, e−βH ,
vanishes at all temperatures.

At high temperatures, m = 0 characterizes completely the equilibrium properties of the
system since there is a unique paramagnetic state with vanishing magnetization density.
At low temperatures instead if we perform an experiment we do observe a net magnetiza-
tion density. In practice, what happens is that when the experimenter takes the system
through the transition one cannot avoid the application of tiny external fields – the ex-
perimental set-up, the Earth... – and there is always a small pinning field that actually
selects one of the two possible equilibrium states, with positive of negative magnetization
density, allowed by symmetry. In the course of time, the experimentalist should see the
full magnetization density reverse, however, this is not see in practice since astronomi-
cal time-scales would be needed. We shall see this phenomenon at work when solving
mean-field models exactly below.

2.2.4 Broken ergodicity

Introducing dynamics into the problem 1, ergodicity breaking can be stated as the fact
that the temporal average over a long (but finite) time window is different from the statical
one, with the sum running over all configurations with their associated Gibbs-Boltzmann
weight :

A 6= 〈A 〉 . (2.5)

In practice the temporal average is done in a long but finite interval τ < ∞. During this
time, the system is positively or negatively magnetized depending on whether it is in “one
or the other degenerate equilibrium states”. Thus, the temporal average of the orientation
of the spins, for instance, yields a non-vanishing result A = m 6= 0. If, instead, one
computes the statistical average summing over all configurations of the spins, the result is
zero, as one can see using just symmetry arguments. The reason for the discrepancy is that
with the time average we are actually summing over half of the available configurations of
the system. If time τ is not as large as a function of N , the trajectory does not have enough
time to visit all configurations in phase space. One can reconcile the two results by, in
the statistical average, summing only over the configurations with positive (or negative)
magnetization density. We shall see this at work in a concrete calculation below.

2.2.5 Spontaneous broken symmetry

1Note that Ising model does not have a natural dynamics associated to it. We shall see in Section 2.10.5
how a dynamic rule is attributed to the evolution of the spins.
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In the absence of an external field the Hamiltonian is symmetric with respect to the
simultaneous reversal of all spins, si → −si for all i. The phase transition corresponds to a
spontaneous symmetry breaking between the states of positive and negative magnetization.
One can determine the one that is chosen when going through Tc either by applying a small
pinning field that is taken to zero only after the thermodynamic limit, or by imposing
adequate boundary conditions like, for instance, all spins pointing up on the borders of
the sample. Once a system sets into one of the equilibrium states this is completely stable
in the N → ∞ limit. The mathematical statement of spontaneous symmetry breaking is
then

lim
h→0+

〈 si 〉 = − lim
h→0−

〈 si 〉 6= 0 . (2.6)

Ergodicity breaking necessarily accompanies spontaneous symmetry breaking but the
reverse is not true ; an example is provided by systems with quenched disorder that we shall
not discuss in these Lectures notes (see, e.g. [16]) Indeed, spontaneous symmetry breaking
generates disjoint ergodic regions in phase space, related by the broken symmetry, but one
cannot prove that these are the only ergodic components in total generality. Mean-field
spin-glass models provide a counterexample of this implication.

2.3 Energy vs entropy

Let us first use a thermodynamic argument to describe the high and low temperature
phases of a magnetic system.

The free energy of a system is given by F = U − TS where U is the internal energy,
U = 〈H〉, and S is the entropy. Here and in the following we measure temperature in units
of kB and then set kB = 1. The equilibrium state may depend on temperature and it is
such that it minimizes its free-energy F . A competition between the energetic contribution
and the entropic one may then lead to a change in phase at a definite temperature, i.e.
a different group of microconfigurations, constituting a state, with different macroscopic
properties dominate the thermodynamics at one side and another of the transition.

At zero temperature the free-energy is identical to the internal energy U . In a system
with ferromagnetic couplings between magnetic moments, the magnetic interaction is such
that the energy is minimized when neighboring moments are parallel. Thus the preferred
configuration is such that all moments are parallel and the system is fully ordered.

Switching on temperature thermal agitation provokes the reorientation of the moments
and, consequently, misalignments. Let us then investigate the opposite, infinite tempera-
ture case, in which the entropic term dominates and the chosen configurations are such
that entropy is maximized. This is achieved by the magnetic moments pointing in ran-
dom independent directions. For example, for a model with N Ising spins, the entropy at
infinite temperature is S ∼ N ln 2.

Decreasing temperature disorder becomes less favorable. The existence or not of a
finite temperature phase transitions depends on whether long-range order, as the one
observed in the low-temperature phase, can remain stable with respect to fluctuations, or
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the reversal of some moments, induced by temperature. Up to this point, the discussion
has been general and independent of the dimension d.

The competition argument made more precise allows one to conclude that there is
no finite temperature phase transition in d = 1 while it suggests there is one in d > 1.
Take a one dimensional ferromagnetic Ising model with closed boundary conditions (the
case of open boundary conditions can be treated in a similar way), H = −J

∑N
i=1 sisi+1,

sN+1 = s1. At zero temperature it is ordered and its internal energy is just

Uo = −JN (2.7)

with N the number of links and spins. Since there are two degenerate ordered configura-
tions the entropy is

So = ln 2 (2.8)

The internal energy is extensive while the entropy is just a finite number. At temperature
T the free-energy of the completely ordered state is then

Fo = Uo − TSo = −JN − T ln 2 . (2.9)

Adding a domain of the opposite order in the system, i.e. reversing n spins, two bonds
are unsatisfied and the internal energy becomes

U2 = −J(N − 2) + 2J = −J(N − 4) , (2.10)

for all n. Since one can place the misaligned spins anywhere in the lattice, there are N
equivalent configurations with this internal energy. The entropy of this state is then

S2 = ln(2N) . (2.11)

The factor of 2 inside the logarithm arises due to the fact that we consider a reversed
domain in each one of the two ordered states. At temperature T the free-energy of a state
with one reversed spin and two domain walls is

F2 = U2 − TS2 = −J(N − 4) − T ln(2N) . (2.12)

The variation in free-energy between the ordered state and the one with one domain is

∆F = F2 − Fo = 4J − T ln N . (2.13)

Thus, even if the internal energy increases due to the presence of the domain wall, the
increase in entropy is such that the free-energy of the state with a droplet in it is much
more favorable at any finite temperature T . We conclude that spin flips are favorable and
order is destroyed at any finite temperature. The ferromagnetic Ising chain does not have
a finite temperature phase transition.

A similar argument in d > 1 suggests that one can have, as indeed happens, a finite
temperature transition in these cases (see, e.g. [16]).
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2.4 Droplets and domain-wall stiffness

It is clear the structure of droplets, meaning patches in which the spins point in the
direction of the opposite state, plays an important role in the thermodynamic behaviour of
systems undergoing a phase transition. At criticality one observes ordered domains of the
two equilibrium states at all length scales – with fractal properties. Right above Tc finite
patches of the system are indeed ordered but these do not include a finite fraction of the
spins in the sample and the magnetization density vanishes. However, these patches are
enough to generate non-trivial thermodynamic properties very close to Tc and the richness
of the critical phenomena. M. Fisher and others developed a droplet phenomenological
theory for critical phenomena in clean systems. Later D. S. Fisher and D. Huse extended
these arguments to describe the effects of quenched disorder in spin-glasses and other
random systems ; this is the so-called droplet model.

Let us study the stability properties of an equilibrium phase under an applied external
field that tends to destabilize it. In the ferromagnetic case the free-energy density cost
of a spherical droplet of radius R of the equilibrium phase parallel to the applied field
embedded in the dominant one (see Fig. 2-left) is

f(R) = 2ΩdR
dhmeq + Ωd−1R

d−1σ0 (2.14)

where σ0 is the inter-facial free-energy density and Ωd is the volume of a d-dimensional
unit sphere. We assume here that the droplet has a regular surface and volume such that
they are proportional to Rd−1 and Rd, respectively. If the magnetic field is negative, h < 0,
the excess free-energy reaches a maximum

fc = Ωdσ
d
0

(

d − 1

2|h|meq

)d−1

(2.15)

at the critical radius

Rc =
(d − 1)σ0

2|h|meq

, (2.16)

see Fig. 2. This means that as long as the critical size is not reached the droplet is not
favorable and the system remains positively magnetized.

The study of droplet fluctuations is useful to establish whether an ordered phase can
exist at low (but finite) temperatures. One then studies the free-energy cost for creating
large droplets with thermal fluctuations that may destabilize the ordered phase, in the
way we have done with the simple Ising chain. Indeed, a fundamental difference between
an ordered and a disordered phase is their stiffness (or rigidity). In an ordered phase the
free-energy cost for changing one part of the system with respect to the other part far
away is of the order kBT and usually diverges as a power law of the system size. In a
disordered phase the information about the reversed part propagates only a finite distance
(of the order of the correlation length, see below) and the stiffness vanishes.

The calculation of the stiffness is usually done as follows. Anti-parallel configurations
(or more generally the two ground states) are imposed at the opposite boundaries of the
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Fig. 2 – Left : the droplet. Right : the free-energy density f(R) of a spherical droplet
with radio-us R.

sample. A domain wall is then generated somewhere in the bulk. Its free-energy cost, i.e.
the difference between the free-energies of the modified configuration and the equilibrium
one, is then measured and one tests when creating a wall is favorable.

Note that these arguments are easy to implement when one knows the equilibrium
states.

2.5 Classification

Phase transitions are commonly classified by their order. In Ehrenfest’s classification a
phase transition is of nth order if ∂nF/∂yn is the lowest discontinuous derivative where y
is any argument of f . The more common transitions are those of first and second order.

In first order phase transition the order parameter jumps at the critical point from a
vanishing value in the disordered side to a finite value right on the ordered side of the
critical point. This is accompanied by discontinuities in various thermodynamic quantities
and it is related to the fact that a first derivative of the free-energy density diverges. In
such a transition the high and low temperature phases coexist at the critical point. Well-
known examples are the melting of three dimensional solids and the condensation of a
gas into a liquid. These transitions often exhibit hysteresis or memory effects since the
system can remain in the metastable phase when the external parameters go beyond the
critical point.

In second order phase transition the order parameter is continuous at the transition,
i.e. it smoothly departs from zero at the critical point, but its variation with respect to
the conjugate field in the zero field limit, or linear susceptibility, diverges. This is a second
derivative of the free-energy density. At the critical point there is no phase coexistence,
the system is in one critical state ; the two phases on either side of the transition become
identical at the critical point.
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Fig. 3 – The magnetization against the applied field in a ferromagnet.

In disordered systems (problems with the interactions, Jij’s, or other parameters taken
from a probability distribution) a mixed case occurs in which the order parameter is
discontinuous at the transition but all first derivatives of the free-energy density are
finite. This is called a random first order transition and it provides a scenario for the
glassy arrest [40].

2.6 Mean-field theory (Ising class)

In spite of their apparent simplicity, the statics of ferromagnetic Ising models has been
solved analytically only in one and two dimensions. The mean-field approximation allows
one to solve the Ising model in any spatial dimensionality. Even if the qualitative results
obtained are correct, the quantitative comparison to experimental and numerical data
shows that the approximation fails below an upper critical dimension du. It is however
very instructive to see the mean-field approximation at work.

2.6.1 The naive mean-field approximation

The naive mean-field approximation consists in assuming that the probability density
of the system’s spin configuration is factorizable in independent factors

P ({si}) =
N
∏

i=1

Pi(si) with Pi(si) =
1 + mi

2
δsi,1 +

1 − mi

2
δsi,−1 (2.17)

and mi = 〈 si 〉, where the thermal average has to be interpreted in the restricted sense
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described in the previous sections, i.e. taken over one ergodic component, in a way that
mi 6= 0. Note that one introduces an order-parameter dependence in the probabilities.
Using this assumption one can compute the total free-energy

F = U − TS (2.18)

where the average is taken with the factorized probability distribution (2.17) and the
entropy S is given by

S = −
∑

{si}

P ({si}) ln P ({si}) . (2.19)

One can use this approximation to treat finite dimensional models 2 Applied to the d-
dimensional pure ferromagnetic Ising model with nearest-neighbor interactions on a cubic
lattice Jij = J/2 for nearest-neighbors and zero otherwise. One finds the internal energy

U = −J

2

∑

〈ij〉

〈sisj〉 − h
∑

i

〈si〉 = −J

2

∑

〈ij〉

mimj − h
∑

i

mi , (2.20)

and the entropy

S = −
∑

si=±1

N
∏

k=1

Pk(sk) ln
N
∏

l=1

Pl(sl) = −
N

∑

l=1

∑

sl=±1

Pl(sl) ln Pl(sl)

= −
∑

i

1 + mi

2
ln

1 + mi

2
+

1 − mi

2
ln

1 − mi

2
. (2.21)

For a uniformly applied magnetic field, all local magnetization equal the total density one,
mi = m, and one has the ‘order-parameter dependent’ free-energy density :

f(m) = −dJm2 − hm + T
[

1 + m

2
ln

1 + m

2
+

1 − m

2
ln

1 − m

2

]

. (2.22)

The extrema, df(m)/dm = 0, are given by

m = tanh (β2dJm + βh) , (2.23)

with the factor 2d coming from the connectivity of the cubic lattice. The stable states are
those that also satisfy d2f/dm2 > 0. This equation of state predicts a second order phase
transition at Tc = 2dJ when h = 0. This result is qualitatively correct in the sense that
Tc increases with increasing d but the actual value is incorrect in all finite dimensions.
In particular, this treatment predicts a finite Tc in d = 1 which is clearly wrong. The
critical behavior is also incorrect in all finite d, with exponents (see Sect. 2.6.3) that
do not depend on dimensionality and take the mean-field values. Still, the nature of
the qualitative paramagnetic-ferromagnetic transition in d > 1 is correctly captured. We

2Note that this approximation amounts to replace the exact equation mi = 〈tanh β(h+
∑

j Jijsj)〉 by
mi = tanh β(h +

∑

j Jijmj).
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postpone the study of the solutions to eq. (2.23) to the next Subsection where we shall
treat a similar, and in some respects, more general case. Having an expression for the free-
energy density as a function of the order parameter, that is determined by eq. (2.23), one
can compute all observables and, in particular, their critical behavior. We shall discuss it
below.

The Taylor expansion of the free-energy in power of m, close to the critical point where
m ∼ 0, yields the familiar cross over from a function with a single minima at m to the
double well form :

−βF (m) ∼ 1

2
(T − 2dJ)m2 +

T

12
m4 − hm . (2.24)

Indeed, below T = 2dJ = Tc the sign of the quadratic term becomes negative and the
function develops two minima away from m = 0.

Taking the derivative of m with respect to h and the limit h → 0± one easily finds that
χ diverges as |T − Tc|.

Another way of deriving the mean-field approximation is to write

si = m + δsi (2.25)

in one factor in the quadratic term in the energy, where m is the global magnetization
density and expanding the Hamiltonian in powers of δsi keeping only first order terms.
This leads to a model with N non-interacting Ising spins coupled to a field that depends
on m, H(m) = −∑

i si(Jzm + h), where h is a uniform external field, that one has to
determine self-consistently. This way of presenting the approximation makes the “mean
field” character of it more transparent.

One can see that the more spins interact with the chosen one the closer the spin sees
an average field, i.e. the mean-field. The number of interacting spins increases with the
range of interaction and the dimension in a problem with nearest neighbour interactions
on a lattice.

2.6.2 The fully-connected Ising ferromagnet

Let us now solve exactly the fully-connected Ising ferromagnet with interactions bet-
ween all p uplets of spins in an external field :

H = −
∑

i1 6=... 6=ip

Ji1...ipsi1 . . . sip −
∑

i

hisi , (2.26)

si = ±1, i = 1, . . . , N . For the sake of generality we use a generic interaction strength
Ji1...ip . The ferromagnetic model corresponds to

Ji1...ip =
J

p!Np−1
(2.27)

with 0 < J = O(1), i.e. finite, and p is a fixed integer parameter, p = 2 or p = 3 or ..., that
defines the model. The normalization with Np−1 of the first term ensures an extensive
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energy in the ferromagnetic state at low temperatures, and thus a sensible thermodynamic
limit. The factor p! is chosen for later convenience. This model is a source of inspiration
for more elaborate ones with dilution and/or disorder Using the factorization of the joint
probability density that defines the mean-field approximation, one finds

F ({mi}) = −
∑

i1 6=...6=ip

Ji1...ipmi1 . . . mip −
∑

i

himi

+T
N

∑

i=1

[

1 + mi

2
ln

1 + mi

2
+

1 − mi

2
ln

1 − mi

2

]

. (2.28)

Note that a Taylor expansion of the entropic contribution around mi = 0 leads to a
polynomial expression that is the starting point in the Landau theory of phase transitions
(see Sect. 2.6.3).

The local magnetizations, mi, are then determined by requiring that they minimize the
free-energy density, ∂f({mj})/∂mi = 0 and a positive definite Hessian, ∂2f({mj})/∂mi∂mj

(i.e. with all eigenvalues being positive at the extremal value). This yields

mi = tanh



pβ
∑

i2 6=... 6=ip

Jii2...ipmi2 . . . mip + βhi



 (2.29)

If Ji1...ip = J/(p!Np−1) for all p uplets and the applied field is uniform, hi = h, one can take
mi = m for all i and these expressions become (2.31) and (2.34) below, respectively. The
mean-field approximation is exact for the fully-connected pure Ising ferromagnet, as we
shall show below. [Note that the fully-connected limit of the model with pair interactions
(p = 2) is correctly attained by taking J → J/N and 2d → N in (2.23) leading to Tc = J .]

Let us solve the ferromagnetic model exactly. The sum over spin configurations in the
partition function can be traded for a sum over the variable, x = N−1 ∑N

i=1 si, that takes
values x = −1,−1 + 2/N,−1 + 4/N, . . . , 1 − 4/N, 1 − 2/N, 1. Neglecting sub-dominant
terms in N , one then writes

Z =
∑

x

e−Nβf(x) (2.30)

with the x-parameter dependent ‘free-energy density’

f(x) = − J

p!
xp − hx + T

[

1 + x

2
ln

1 + x

2
+

1 − x

2
ln

1 − x

2

]

. (2.31)

The first two terms are the energetic contribution while the third one is of entropic origin
since N !/(N(1 + x)/2)!(N(1 − x)/2)! spin configurations have the same magnetization
density. The average of the parameter x is simply the averaged magnetization :

〈x 〉 =
1

N

N
∑

i=1

〈 si 〉 = m (2.32)
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Fig. 4 – The free-energy density f(m) of the p = 2 (left), p = 3 (center) and p = 4 (right)
models at three values of the temperature T < Tc (light dashed line), T = Tc (dark dashed
line) and T > Tc (solid line) and with no applied field. (The curves have been translated
vertically.)

In the large N limit, the partition function – and all averages of x – can be evaluated
using the saddle-point method (see Appendix C)

Z ≈
∑

α

e−Nβf(xα
sp) , (2.33)

where xα
sp are the absolute minima of f(x) given by the solutions to ∂f(x)/∂x|xsp = 0,

xsp = tanh

(

βJ

(p − 1)!
xp−1

sp + βh

)

, (2.34)

together with the conditions d2f(x)/dx2|xα
sp

> 0. Note that the contributing saddle-points
should be degenerate, i.e. have the same f(xα

sp) for all α. The sum over α then just
provides a numerical factor of two in the present case (h = 0). Now, since

xsp = −∂f(x)/∂h|xsp = 〈x 〉 = m , (2.35)

as we shall show below, the solutions to these equations determine the order parameter.

High temperature

In a finite magnetic field, eq. (2.34) has a unique positive – negative – solution for
positive – negative – h at all temperatures. The model is ferromagnetic at all temperatures
and there is no phase transition in this parameter.

2nd order transition for p = 2

In the absence of a magnetic field this model has a paramagnetic-ferromagnetic phase
transition at a finite Tc. The order of the phase transition depends on the value of p. This
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can be seen from the temperature dependence of the free-energy density (2.31). Figure 4
displays f(x) in the absence of a magnetic field at three values of T for the p = 2 (left),
p = 3 (center) and p = 4 (right) models (we call the independent variable m since the
stationary points of f(x) are located at the magnetization density of the equilibrium and
metastable states, as we shall show below). At high temperature the unique minimum
is m = 0 in all cases. For p = 2, when one reaches Tc, the m = 0 minimum splits in
two that slowly separate and move towards higher values of |m| when T decreases until
reaching |m| = 1 at T = 0 (see Fig. 4-left). The transition occurs at Tc = J as can be
easily seen from a graphical solution to eq. (2.34), see Fig. 5-left. Close but below Tc,

the magnetization increases as m ∼ (Tc − T )
1
2 . The linear magnetic susceptibility has the

usual Curie behavior at very high temperature, χ ≈ β, and it diverges as χ ∼ |T−Tc|−1 on
both sides of the critical point. The order parameter is continuous at Tc and the transition
is of second-order thermodynamically.

1st order transition for p > 2

For p > 2 the situation changes. For even values of p, at T ∗ two minima (and two
maxima) at |m| 6= 0 appear. These coexist as metastable states with the stable minimum
at m = 0 until a temperature Tc at which the three free-energy densities coincide, see
Fig. 4-right. Below Tc the m = 0 minimum continues to exist but the |m| 6= 0 ones are
favored since they have a lower free-energy density. For odd values of p the free-energy
density is not symmetric with respect to m = 0. A single minimum at m∗ > 0 appears at
T ∗ and at Tc it reaches the free-energy density of the paramagnetic one, f(m∗) = f(0),
see Fig. 4-center. Below Tc the equilibrium state is the ferromagnetic minimum. For all
p > 2 the order parameter is discontinuous at Tc, it jumps from zero at T+

c to a finite
value at T−

c . The linear magnetic susceptibility also jumps at Tc. While it equals β on
the paramagnetic side, it takes a finite value given by eqn. (2.37) evaluated at m∗ on the
ferromagnetic one. In consequence, the transition is of first-order.

Pinning field, broken ergodicity and spontaneous broken symmetry

The saddle-point equation (2.34) for p = 2 [or the mean-field equation (2.23)] admits
two equivalent solutions in no field. What do they correspond to ? They are the magne-
tization density of the equilibrium ferromagnetic states with positive and negative value.
At T < Tc if one computes m = N−1 ∑N

i=1〈 si 〉 =
∑

x e−βNf(x)x summing over the two
minima of the free-energy density one finds m = 0 as expected by symmetry. Instead,
if one computes the averaged magnetization density with the partition sum restricted to
the configurations with positive (or negative) x one finds m = |msp| (or m = −|msp|).

In practice, the restricted sum is performed by applying a small magnetic field, com-
puting the statistical properties in the N → ∞ limit, and then setting the field to zero.
In other words,

m± ≡ 1

N

N
∑

i=1

〈 si 〉± =

(

1

βN

∂ ln Z

∂h

)∣

∣

∣

∣

∣

h→0±

= − ∂f(msp)

∂h

∣

∣

∣

∣

∣

h→0±

= ±|msp| . (2.36)
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Fig. 5 – Graphical solution to the equation fixing the order parameter x for p = 2 (left),
p = 3 (center) and p = 4 (right) ferromagnetic models at three values of the temperature
T < T ∗, T = T ∗ and T > T ∗ and with no applied field. Note that the rhs of this equation
is antisymmetric with respect to m → −m for odd values of p while it is symmetric under
the same transformation for even values of p. We show the positive quadrant only to
enlarge the figure. T ∗ is the temperature at which a second minimum appears in the cases
p = 3 and p = 4.

The limit N → ∞ taken in a field selects the positive (or negatively) magnetized states.
For odd values of p there is only one non-degerate minimum of the free-energy density

at low temperatures and the application of a pinning field is then superfluous.
The existence of two degenerate minima of the free-energy density, that correspond to

the two equilibrium ferromagnetic states at low temperatures, implies that ergodicity is
broken in these models. In pure static terms this means that one can separate the sum
over all spin configurations into independent sums over different sectors of phase space
that correspond to each equilibrium state. In dynamic terms it means that temporal and
statistical averages (taken over all configurations) do not coincide.

For any even value of p and at all temperatures the free-energy density in the absence
of the field is symmetric with respect to m → −m , see the left and right panels in Fig. 4.
The phase transition corresponds to a spontaneous symmetry breaking between the states
of positive and negative magnetization. One can determine the one that is chosen when
going through Tc either by applying a small pinning field that is taken to zero only after
the thermodynamic limit, or by imposing adequate boundary conditions. Once a system
sets into one of the equilibrium states this is completely stable in the N → ∞ limit.

For all odd values of p the phase transition is not associated to symmetry breaking, since
there is only one non-degenerate minimum of the free-energy density that corresponds to
the equilibrium state at low temperature.

The magnetic linear susceptibility is given by

χ ≡ ∂m

∂h

∣

∣

∣

∣

∣

h→0±

=
∂xsp

∂h

∣

∣

∣

∣

∣

h→0±

=
β

cosh2( βJ
(p−1)!

xp−1
sp ) − βJ

(p−2)!
xp−2

sp

. (2.37)
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For p = 2 the two magnetized states have the same divergent susceptibility, χ ∼ (kBT −
J)−1, at Tc. For p > 2 the magnetization takes the Curie form χ = β in the full high-T
phase and it jumps to a different value at the transition.

2.6.3 The Bethe lattice

Another way of achieving a model for which mean-field theory is exact is to use a
Cayley tree or a lattice with a tree-like structure (and no loops). A slightly different case
is the one of the Bethe lattice defined as a random graph with N nodes and M = 2zN
edges. On average, each node has z neighbours. In the N → ∞ limit the distribution of
the number of neighbours of a given node is a Poisson distribution. These lattices are
locally tree-like and loops have length ∼ ln N or longer. The name is based on the fact
that the Bethe approximation is exact for models defined on these lattices. In the pure
case the interactions are normalized in such a way that Jij ∼ z−1 and when z → ∞
one recovers the fully-connected ferromagnetic model. These models are now recieving
renewed attention since many combinatorial optimizations problems can be written as
disordered spin models on such lattices. We shall not develop this line here.

2.6.4 Landau theory : a field theory

The exercise in the last subsection is a fully solvable model for which mean-field theory
is exact. Now, can one attack more generic phase transitions in a similar manner ? Can
one also get an idea of the limit of validity of mean-field theory and when it is expected
to fail ?

Landau proposed an extension of Weiss mean-field theory for ferromagnets (Sect. 2.4)
that has a much wider range of application, includes space and allows to predict when it
applies and when it fails. In a few words, in Landau theory one first identifies the order
parameter for the phase transition, that is to say, a quantity with zero average in the
disordered phase and non-zero average on the ordered side. Next, one proposes a field
theory for a coarse-grained field that represents the averaged relevant variable – giving
rise to the order parameter – over a mesoscopic scale ℓ that is, by definition, much larger
than the interatomic distance a. In the case of an Ising spin system, the field in each
coarse-graining volume v = ℓd within the sample is defined as :

φ(~x) ≡ 1

ℓd

∑

j∈v~x

sj , (2.38)

see Fig. 6. The field φ is a continuous variable taking real values. One can construct
a field φ that takes a different value per lattice site (using overlapping coarse-graining
volumes) in which case the coordinates of the space variable ~x vary by steps of a, the
lattice spacing. Instead, one can use non-overlapping coarse-graining volumes in which
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case the coordinates of the space variable ~x vary by steps of ℓ, the coarse-graining linear
size.

L
Fig. 6 – Coarse-graning

The next step consists in constructing (or proposing) an effective free-energy of the
interacting system. One can procede as for the fully-connected Ising model, where we
transformed the sum over the N spin variables into a sum over possible values of the
averaged magnetization taking into account the associated degeneracy (entropy). In this
vein

Z =
∑

{conf}

e−βHconf =
∫

Dφ
∑

{conf/φ}

e−βHconf (2.39)

where the constrained sum runs over all microstates conf that are compatible with a field
value φ and the integral is a functional integral over all possible spatial realizations of the
field : Dφ =

∏

~x dφ(~x). The factor
∑

{conf/φ} e−βHconf is a positive definite function of φ.
We can then define a free-energy at fixed field, F (φ), using

e−βF (φ) ≡
∑

{conf/φ}

e−βHconf (2.40)

where
F (φ) = −kBT ln

∑

{conf/φ}

e−βHconf (2.41)

The partition function (2.39) became

Z =
∫

Dφ e−βF (φ) (2.42)

and we now have a statistical field theory that is described by a functional F (φ) that plays
the rôle of a generalized Hamiltonian.

In general, we do not know how to compute F (φ). Landau’s proposal is to expand F (φ)

in powers of φ and its gradients ~∇φ and then determine, depending on the problem at
hand, which terms vanish and which among the non-vanishing ones are the most relevant.
The first question is answered using symmetry arguments. Let us illustrate the argument
in the magnetic problem modelled by the Ising model.
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– The Hamiltonian under no applied field is invariant under simultaneous reversal of
all spins si → −si. The free-energy F (φ) should then be such that F (φ) = F (−φ).

– The expansion is expected to be valid close to Tc where 〈φ 〉 ∼ 0 and then φ ∼ 0
too (if ℓ is sufficiently large to avoid large local fluctuations). In this case, one keeps
only the first terms in the power expansion.

– The terms with high order derivatives, c′(∇2φ)2, should be negligible with respect
to the first one, c∇2φ. Indeed, writing φ(~x) using a Fourier expansion

φ(~x) =
∑

~q

ei~q~xφ(~q) (2.43)

where the sum runs over wave-vectors that satisfy q ≪ ℓ−1 due to the cut-off intro-
duced by the size of the coarse-graning box (we are here considering non-overlapping
boxes, otherwise the condition is q ≪ a−1. Since (c′/c)1/2 is usually of the order of
the microscopic interactions, c′/c ≪ ℓ2, for each q such that q ≪ ℓ−1 one has

c′q4|φ(~q)|2 ≪ cq2|φ(~q)|2 . (2.44)

Based on the arguments itemized above, the Landau free-energy reads

F (φ) =
∫

ddx

[

c

2
(∇φ(~x))2 +

λ

4!
φ4(~x) +

T − Tc

Tc

φ2(~x)

]

. (2.45)

The coefficients are chosen in such a way to reproduce a second order phase transition
when going through Tc. The first term mimics an elastic energy related to the ferromagne-
tic interactions. The second term can also be estimated as an expansion, upto fourth order,
of the entropic contribution in powers of T − Tc that is expected to be valid only close
to Tc. The entropic contribution in the fully connected model with p = 2, see eq. (2.31)
combined with the energetic term proportional to J (that is equal to Tc for p = 2) leads
to exactly this expansion. Note that this ‘order-parameter dependent’ free-energy is not
quadratic due to the term φ4. The averages can be computed by introducing an applied
field and adding the following term to the free-energy :

∫

ddx h(~x)φ(~x) (2.46)

and taking the corresponding functional derivatives (see App. C). The values of the para-
meters in the expansion of the free-energy are not known in general. They are determined
by comparison to experiments or from first-principle approaches.

If one realizes that the free-energy in the exponential is proportional to the volume of
the system, the integral over all φ configurations in the partition function can be evaluated
with a saddle-point approximation (expected to be accurate in the limit V → ∞). This
evaluation is what is usually called the Landau approximation or mean-field approximation.
Calling φsp the value of the field that renders the exponent minimum, i.e. the state of the
system, one has

Z ∼ e−βF (φsp) . (2.47)
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Including the fluctuations (see Appendix C) one can see when these ones become
too important and render the saddle-point evaluation invalid. This analysis is called the
Ginzburg criterion, see Sect. 2.6.3.

2.6.5 The correlation length

A very important concept in critical phenomena is that of a correlation length usually
denoted by ξ.

Discussion

The correlation length is the distance over which the fluctuations of the microscopic
degrees of freedom are significantly correlated. A simple way to understand its meaning
is the following. Take a macroscopic sample and measure some macroscopic observable
under some external conditions, i.e. temperature T and pressure P . Now, repeat the
measurement after cutting the sample in two pieces and keeping the external conditions
unchanged. The result for the macroscopic observable is the same. Repeating this proce-
dure, one finds the same result until the system size reaches the correlation length of the
material.

When the correlation length is finite, a fluctuation within a region of length ξ has no
effect outside of it. There is a separation of length-scales. When describing the system at
a short length scale, a ≪ ℓ ≪ ξ, the other boxes act as constant parameters with respect
to the chosen one. At a longer length scale, ξ ≪ ℓ, the microscopic details enter only
through average values like the mean density or the averaged magnetization.

Systems with finite correlation lengths look uniform, that is to say, they are statistically
translational invariant over distances ℓ ≫ ξ. The measurement of any observable on
different boxes of linear size ℓ is Gaussian distributed about its mean and the variance
decreases with ℓ/ξ (due to the central limit theorem). Global measurements do not reflect
the microscopic details.

At finite temperature, T < Tc, one can have droplets of the wrong phase within the
correct one, due to thermal agitation. The size of these droplets will be a function of
temperature and at a given instant, a snapshot of the system reveals the existence of a
number of them with different sizes. One expects though that they have a well-defined
average (taken, for instance, over different snapshots taken at different times). This ave-
rage size can be taken as a qualitative indication of the value of the correlation length
(we shall give a more precise definition below).

Systems with diverging correlation length have fluctuations, or droplets, of all sizes.
The fact that one finds coherent structures at all lengths at the critical point means that
there is no spatial scale left in the problem and then all scales participate in the critical
behaviour. These systems are no longer translational invariant over any finite length scale.
Instead, they are scale invariant under simultaneous rescaling of the quantities of interest
and the length, meaning that if one looks at it with different microscopes one essentially
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sees the same. Otherwise stated, the structure is self-similar. A localized fluctuation has an
effect over the whole system and no subsystem is statistically independent of the others.
Still, knowledge of the behaviour at a given scale allows one to derive what happens at
all scales through the scaling transformation.

In first order phase transition the correlation length is finite for all values of the para-
meters. In second order phase transitions, the correlation length is usually very short, of
the order of a few lattice spacing, at low temperature. It increases when approaching Tc,
it diverges at Tc, and then decreases again in the high temperature phase when getting
away from the critical point. See Fig. 7.

Fig. 7 – Two snapshots of an equilibrium spin configuration in a 2d Ising model. Left :
below Tc ; right : at Tc.

Definition

The actual definition of the correlation length is based on the use of the static sucep-
tibility sum rule.

A simple calculation allows one to show that the linear susceptibility is related to the
connected correlation function as

χ ≡ ∂mh

∂h

∣

∣

∣

∣

∣

h=0

= − ∂2f

∂h2

∣

∣

∣

∣

∣

h=0

=
β

N

∑

ij

G(~ri, ~rj) (2.48)

with the spin-spin connected correlation function

G(~ri, ~rj) ≡ 〈(si − 〈si〉)(sj − 〈sj〉)〉 = 〈sisj〉 − 〈si〉〈sj〉 . (2.49)

Nothing indicates that spatial translational invariance should be violated, thus, the
correlation should be a function of the distance between the points ~ri and ~rj only :

G(~ri, ~rj) = G(~ri − ~rj) . (2.50)
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One then has

χ ≡ ∂mh

∂h

∣

∣

∣

∣

∣

h=0

= β
∑

i

G(~ri) =
β

ad

∫

V
ddr G(~r) . (2.51)

This means that the divergence of the susceptibility at the critical point must be accom-
panied by a special behavior of the correlation function. Indeed, one finds that

G(~r) ∼ r2−d−ηf

(

r

ξ

)

with

{

f(0) = 1 ,
f(x → ∞) ∼ xηe−x ,

(2.52)

with η another critical exponent that takes a very small value. This expression is integrable
over the full volume unless the exponential factor disappears. This is indeed what happens
at Tc where the correlation length ξ diverges, again as a power law of the distance to the
critical point

ξ ∼ |T − Tc|−ν . (2.53)

Finally, one observes that the correlation function right at the critical point also diverges
as a power law :

G(~r) ∼ r−(d−2+η) . (2.54)

An example : the Ising chain

Let us discuss the correlation length in a simple solvable case, the Ising model in
d = 1 with, say, open boundary conditions. In this case, the finite temperature correlation
function is

Gkl = 〈sksl〉 − 〈sk〉〈sl〉 = 〈sksl〉 (2.55)

since 〈sk〉 = 0 at any T > 0. Introducing, for convenience, different coupling constants
Ki = βJi on the links, Gkl reads

Gkl = Z−1
∑

{si=±1}

e
∑

i
Kisisi+1sksl = Z−1 ∂

∂Kk

∂

∂Kk+1

. . .
∂

∂Kl−1

Z . (2.56)

At the end of the calculation one takes Ki = K = βJ for all i. Thus, at finite temperature
the connected correlation between any two spins can be computed as a number of deriva-
tives (depending on the distance between the spins) of the partition function conveniently
normalized. Using the change of variables ηi = sisi+1, one finds

Z =
∑

{ηi=1}

e
∑

i
Kiηi = 2

N−1
∏

i=1

2 cosh(Ki) → 2(2 cosh βJ)N−1 . (2.57)

Taking the distance between the chosen spins sk and sl to be k − l = r the correlation
function is then given by

G(r) = [tanh(βJ)]r = er ln[tanh(βJ)] = e−r/ξ (2.58)
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with

ξ =
1

ln coth(βJ)
∼ e4J/(T−Tc) , T ∼ 0 . (2.59)

In this one dimensional example we found an essential singularity, an exponential diver-
gence, of the correlation length when approaching Tc = 0. In general, in higher d, one has
a power law divergence of the form (2.54).

2.6.6 The Ginzburg criterium

The Ginzburg criterium states that the Landau mean-field theory breaks down when

〈 δφ2
coh 〉 ∼ 〈φ 〉2 (2.60)

where
δφcoh ≡ V −1

coh

∫

ddr (φ(~r) − 〈φ 〉) , (2.61)

Vcoh = ξd with ξ the coherence length, to be defined below, and 〈φ 〉 the equilibrium order
parameter. The left-hand-side in (2.60) is

〈 δφ2
coh 〉 = V −1

coh

∫

ddr G(~r) (2.62)

where G is the connected correlation function

G(~r, ~r′) ≡ 〈(φ(~r) − 〈φ(~r)〉) (φ(~r′) − 〈φ(~r′)〉) (2.63)

G(~r, ~r′) = G(|~r − ~r′|) = G(r) can be computed within the same Landau theory and com-
pared to the right-hand-side. Landau theory, thus, establishes its own limits of validity : it
is valid until the fluctuations of the order parameter become of the order of the order pa-
rameter itself when both are coarse-grained over a volume determined by the correlation
length.

For the lλφ4 problem one finds an upper critical dimension,

du = 4 (2.64)

above which the mean-field description of the ferromagnetic transition is exact ! Below
du mean-field theory fails. However, it does not fail everywhere in parameter space. It
just fails when very close to the critical point, in a system-dependent critical region. The
behavior away from the critical region is still well-described by the Landau-Ginzburg
phenomenological theory. A signature of the failure of the Landau-Ginzburg theory is
that it predicts the mean-field exponents in (2.93) for all d which is clearly incorrect for
small d.

Landau (1962) and Ginzburg (2003) got Nobel Prizes in Physics for their work along
these lines (Landau on superfluidity, Ginzburg on superconductors and superfluids). The
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strategy of Ginzburg and Landau proved to be very useful to describe phase transitions of
very different type using, as a starting point, the identification of the order parameter and
a proposal for the field theory describing the physical problem one is interested in. It is
particularly well-suited for problems with long-range interactions such as superconductors
and ferroelectrics since in these cases fluctuations are suppressed.

In the Ψ-theory of superconductivity that got Ginzburg the 2003 Nobel Prize a scalar
complex field Ψ is the order parameter and it is coupled to a vector electromagnetic field
potential ~A. A link between Bardeen-Cooper-Shrieffer’s microscopic theory of supercon-
ductivity and the Landau-Ginzburg phenomenological model can be established.

2.6.7 Euclidean quantum field theories and statistical systems in equilibrium

A very simple analogy can be drawn between quantum field theories defined in Eurcli-
dean space and statistical systems in equilibrium if one uses the path-integral formulation
developed by Feynman to describe the former [1]. Let us show this equivalence using
the quantum scalar field as an example. The expectation value of the n-point correlation
function

Cn ≡ 〈φ(~r1) . . . φ(~rn) 〉 (2.65)

where ~rj, j = 1, . . . , n are generic points in the 1 + d dimensional Euclidean space (with
the usual Euclidean metric such that r2 = x2

0 + . . . + x2
d and x0 is the Euclidean time) is

given by

Cn =

∫ Dφ e−
1
h̄

SE [φ] φ(~r1) . . . φ(~rn)
∫ Dφ e−

1
h̄

SE [φ]
. (2.66)

SE is the Euclidean action, h̄ is Planck’s constant, and Dφ is the measure in the path
integral. Note that working in Euclidean space-time there is no i in the exponential. If
we simply identify h̄ = kBT we can also interpret (2.66) as the statistical expectation
value of a classical field theory in equilibrium with an environment at temperature T . The
normalization constant is then the vacuum-to-vacuum permanence amplitude or partition
function

Z ≡
∫

Dφ e−
1
h̄

SE [φ] . (2.67)

In Sects. 4.3.3 and 4.3.3 we shall see how this remark allows one to develop the Monte-
carlo study of lattice field theory and a quantization method based on a stochastic
Langevin dynamics, the so-called Stochastic quantization method of Parisi and Wu.

2.7 Continuous broken symmetry and Goldstone modes

The energy of spin models with continuous variables, such as the XY, Heisenberg or
generic O(N) models introduced in (2.2) and (2.3) in the absence of an applied field

(~h = ~0), is invariant under the simultaneous rotation of all the spin variables by the same
angle. This is a continuous global symmetry to be confronted to the discrete global reversal
invariance, si → si, of the Ising case.
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The spontaneous magnetization at low temperatures can point in any of the infinite
equivalent directions constrained to satisfy (2.3). This gives rise to an infinite degeneracy of
equilibrium states that are translational invariant (in real space). These equilibrium states
are controlled by a continuous variable, determining the direction on the N -dimensional
hypersphere of radius 1.

2.7.1 The d-dimensional XY model : spin-waves

Let us consider one such equilibrium state and call it ~seq
i . It is clear that if one slightly

modifies the angle of the ~s vector on neighbouring space points, the energy cost of such a
perturbation would vanish in the limit of vanishing angle. More precisely, these configu-
rations are called spin-waves and they differ from the equilibrium state by an arbitrarily
small amount.

In the particular case of the XY model, the local spin has only two components (N = 2)
and it can be parametrized as

~si = (s1
i , s

2
i ) = |~si|(cos φi, sin φi) = (cos φi, sin φi) , (2.68)

where 0 ≤ φi ≤ 2π is the angle with respect to the x axis on each d-dimensional lattice
site i, and |~si| = 1. The energy (2.2) then becomes

E = −J
∑

〈ij〉

cos φij (2.69)

where φij = φi − φj is the angle between the spins at neighbouring sites i and j. It
remains invariant under the global change φi → φi + φ0. The ground state is the fully
aligned state φi = φ for all i, with φ in [0, 2π], and ground state energy E0 = −JNz/2
(z is the coordination number of the lattice). If one assumes that at low enough T the
angles change smoothly |φi −φj| ≪ 2π for all nearest-neighbours the cosine in the energy
can be approximated at second order and

E ≃ E0 +
J

2

∑

〈ij〉

(φi − φj)
2 = E0 +

J

4

∑

~r,~a

[φ(~r + ~a) − φ(~r)]2 . (2.70)

If φ(~r) is a slowly varying function of ~r one can approximate the finite difference by a
derivative, e.g. φ(~r + aêx) − φ(~r) ≃ a∂xφ(~r) the sum over lattice sites by an integral
∑

~r ≃ a−d
∫

ddr, and write

E ≃ E0 +
J

2ad−2

∫

ddr [~∇φ(~r)]2 . (2.71)

We ended up with a quadratic form that, if we relax the constraint φ ∈ [0, 2π], acts on a
field on the real axis, −∞ < φ < ∞.

The interest is in computing the correlation function

C(r) ≡ 〈~s(~r)~s(~0)〉 = Re〈ei[φ(~r)−φ(~0)]〉 = e−
1
2
〈[φ(~r)−φ(~0)]2〉 ≡ e−

1
2
g(r) , (2.72)
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where the second identity holds for Gaussian fields and C(r) plays a similar role to the one
in eq. (??) although it is not connected (we have not subtracted the average values 〈~s(~r)〉.
One should analyze whether at long distances it converges to a finite value (long-range
order) or zero (no long-range order). We shall not give the details of this calculation which
can be found in many textbooks (and your field-theory lectures, I presume) and just give
the results :

Ja2−d

T
g(r) ≃











Ωd/(d − 2) (π/L)d−2 d > 2 ,
(2π)−1 ln(r/L) d = 2 ,
r/2 d = 1 ,

that imply

C(r) ≃











e−const T d > 2 long-range order ,
(r/L)−η(T ) d = 2 quasi-long-range order ,
exp[−T/(2Ja) r] d = 1 short-range order .

The exponent η continuously depends on temperature, η = T/(2πJ). These results imply
that the order parameter is non-zero in d > 2 but vanishes in d ≤ 2. Interestingly enough,
we find that the 2d XY model does not support long-range order but its correlation
function decays algebraically at all temperatures. This is the kind of decay found at a
critical point, G(r) ≃ r−d+2−η, so the system behaves as at criticality at all temperatures.
This does not seem feasible physically and, indeed, we shall see that other excitations,
not taken into account by the continuous expansion above, are responsible for a phase
transition of a different kind. The low-T phase remains well described by the spin-wave
approximation but the high-T one is dominated by the proliferation of topological defects.

2.7.2 The 2d XY model : Kosterlitz-Thouless transition

The energy (2.70) has a local discrete symmetry that is lost in the continuous approxi-
mation (2.71) :

φi → φi ± 2π (2.73)

and permits the existence of vortices [20]. These are configurations, φ(~r), in which the
angle winds around a topological defect :

∮

d~l ~∇φ(~r) = 2πn ~∇φ(~r) =
n

r
θ̂ . (2.74)

Let us evaluate the energy of a vortex configuration

φ(~r) = φ(r, θ) = nθ (2.75)

where, without loss of generality, we set the origin of coordinates at the center of the
vortex, θ is the angle of the position ~r with respect to the x axis, and n is its strength
using the expression (2.71). Thus,

E1 vortex =
J

2

∫

d2r [~∇φ(~r)]2 = πJn2
∫ L

a
dr

1

r
= πJn2 ln

L

a
(2.76)
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with L the linear dimension of the system. The energy of a single vortex diverges in the
infinite size limit and one might conclude that these configurations are not favorable. Ho-
wever, as already discussed in the Ising chain (see Sect. ), at finite T one needs to estimate
the free-energy difference between configurations with and without a vortex to conclude
about their existance. The entropy of a single vortex is S = kB lnN = kB ln(L/a)2 since
in a 2d lattice the center of the vortex can be located on (L/a)2 different sites. Then

∆F = F1 vortex − F = (πJn2 − 2kBT ) ln(L/a) . (2.77)

This quantity changes sign at kBT = πJn2/2 therefore no isolated vortex occurs below
kBTKT = πJ/2. At higher temperatures, T > TKT , isolated vortices proliferate (favored
by the entropic contribution), destroy the quasi long-range order and correlations decay
exponentially on a length-scale given by the typical spacing between vortices

G(r) ≃ e−r/ξ(T ) ξ(T ) ≃ e−b|T−TKT |−1/2

(2.78)

close to TKT . This very fast decay of the correlation length, loosely |T − TKT |−ν with
ν → ∞, follows from an RG analysis that we shall not present here.

Below TKT vortices exist only in bound pairs with opposite vorticity (the arrows turning
in opposite direction) held together by a logarithmic confining potential

Epair(~r1, ~r2) = −2πJn1n2 ln(|~r1 − ~r2|/a) . (2.79)

This is proven by an electrostatic analogy that we shall not develop further. Note that the
energy increases if one tries to unbind – separate – the vortices in the pair. The correlation
still decays as a power-law and there is no spontaneous symmetry breaking in this phase
since the order parameter vanishes – in agreement with the Mermin-Wagner theorem that
we discuss below.

This argument shows that two qualitatively different equilibrium states exist at high
and low T but it does not characterize the transition. The order parameter vanishes on
both sides of the transition but there is still one, with the correlation decaying exponen-
tially on one side (high T ) and as a power law on the other (low T ).

2.7.3 O(N) model : Ginzburg-Landau field theory

Let us now focus on the generic O(N) model. Symmetry arguments à la Landau lead
to the free-energy

F [~φ] =
∫

ddr

[

[~∇~φ(~r)]2 +
T − Tc

Tc

φ2(~r) +
λ

4!
φ4(~r) − ~h~φ(~r)

]

(2.80)

where φ2 ≡ ∑N
a=1 φ2

a is the result of a sum over a N components.

In the XY case, N = 2, but with no constraint on the modulus of the vector field ~φ,
it is simple to derive a continuum limit of the lattice model in analogy with the Landau
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approach. Coarse-graining the two-component spin to construct a two-component field
~ψ(~r) = ℓ−d ∑

i∈V~r
~si, proposing a Landau ψ4 action for the field ~ψ, and parametrising the

field by its modulus and angle, ~ψ(~r) = φ0(~r)|(cos φ(~r), sin φ(~r)), one finds

E[φ0, φ] =
∫

ddr

[

(~∇φ0(~r))
2 +

T − Tc

Tc

φ2
0(~r) +

λ

4!
φ4

0(~r)

]

(2.81)

+
φ2

0

2

∫

ddr [~∇φ(~r)]2 (2.82)

The first term is just similar to the energy of a scalar field configuration in the Ising
model. The second-term quantifies the energy of the spin-wave configurations. The local
angle is simply a massless scalar field in d dimensional space. Its correlation functions
behave as (see the next Section)

〈φ(~r)φ(~r′) 〉 ∼ (2 − d)−1|~r − ~r′|2−d (2.83)

in the large |~r − ~r′| limit. The behaviour is logarithmic in d = 2 and it is long-ranged in
all other dimensions.

In the general N case the correlation functions, Cab = 〈(φa(~r)−〈φa(~r)〉)(φb(~0)−〈φb(~0)〉)〉
can be written as

Cab(~r) = δab [CL(r)δaN + CT (r)(1 − δaN)] . (2.84)

a and b label the components in the N -dimensional space. CL is the longitudinal correlation
(parallel to an infinitesimal applied field that selects the ordering direction) and CT is the
transverse (orthogonal to the applied field) one. A simple calculation shows that the
longitudinal component behaves just as the correlation in the Ising model. It is a massive
scalar field. The transverse directions, instead, are massless : there is no restoring force to
the tilt of the full system. These components behave just as the angle in the XY model,
CT (~r) ∼ r2−d (the power law decay becomes a logarithm in d = 2). These are called
Goldstone modes (in the field theory literature the name ‘Goldstone modes’ is sometimes
restricted to the massless excitations about a non-zero order parameter, i.e. when there
is spontaneous symmetry breaking).

2.7.4 The Mermin-Wagner theorem

What happens in d = 2 and below ? Indeed, the logarithmic behaviour of the angle
correlation function in the XY model or the transverse correlation in the generic O(N)
model is a signature of the fact that this is a special dimensionality. The Mermin-Wagner
theorem states that for any system with short-range interactions there is a lower critical
dimension below which no spontaneous broken symmetry can exist at finite temperature.
In other words, fluctuations are so large that any ordering that breaks a continuous
symmetry is destroyed by thermal fluctuations. dL = 1 for discrete symmetries and dL = 2
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for continuous symmetries. 3 The absence of long-range order in the 2d XY case, for
example, is demonstrated by the fact that the finite temperature correlation decays to
zero at long distances – albeit as a power law – and thus there is no net magnetization in
the system.

The Mermin-Wagner theorem is known as Coleman-Weinberg theorem/result in quan-
tum field theory for particle physics.

2.8 The Higgs mechanism

A particular feature of models with continuous symmetry breaking in gauge theories is
that gauge fields acquire a mass through the process of spontaneous symmetry breaking.
Take the classical Abelian field theory

L[Aµ, φ] =
∫

ddr
[

−1

4
FµνF

µν + (Dµφ)∗(Dµφ) + V (φ)
]

(2.85)

with Fµν = ∂µAν −∂νAµ, Dµ = ∂µ + ieAµ and φ a complex field that is to say a field with
two independent components (φR, φI). The potential is

V (φ) = µ(φ∗φ) +
λ

4
(φ∗φ)2 . (2.86)

L is invariant under any global rotation of the complex field, φ → eiǫφ with ǫ real (U(1)
symmetry) and local gauge transformation

φ(~x) → e−iǫ(~x)φ(~x)

φ∗(~x) → eiǫ(~x)φ∗(~x)

Aµ(~x) → Aµ(~x) + ∂µǫ(~x) . (2.87)

Let us forget about the gauge field for a moment and look for static and uniform
configurations that render V minimum. If µ > 0 and λ > 0 the only solution is φ0 = 0
and it is invariant under the transformation φ0 → eiǫφ0 = 0. Instead, if µ < 0 and
λ > 0 the φ configuration that renders V minimum is such that φ∗

0φ0 = −2µ/λ. V has

a continuum of minima lying on a circle of radius
√

−2µ/λ. Any such minima is not

invariant under global rotation by an angle ǫ. This is called an spontaneously broken U(1)
symmetry.

Without loss of generality one can choose φ0 to be real through a uniform rotation
over all space. It is easy to verify that replacing φ by (φ0 + δφ) + iφ2 where φ2 is an

3The fact that dL is smaller for continuous than for discrete symmetries is due to the fact that it is
easier to create interfaces in the latter than in the former and hence to destroy the ordered phase. Indeed,
in a continuous spin model the cost of an interface is proportional to its surface divided by its thickness
(note that spins can smoothly rotate from site to site to create a thick interface). The thickness of the
interface depends on the details of the model, temperature, etc. This means that interfaces are much
easier to create in continuous spin models than in discrete ones.
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Ising d = 1 Ising d > 1 XY d = 2 XY d > 2
Tc = 0 > 0 = TKT > 0 > 0

〈~φ〉 at T ≤ Tc 1 6= 0 ~0 6= ~0

Fluctuations droplets Pairs of vortices Goldstone modes ⊥ 〈~φ〉

imaginary part (playing the role of the transverse components in the analysis of the O(N)
model) one finds that the quadratic Lagrangian does not have a φ2 term (massless field)
but instead a quadratic term in A appears. The gauge field acquired a mass (there is also
a Aµ∂

µφ2 term that can be eliminated with a change of variables).
This phenomenon has been discovered in the study of superconductors, in particular

by P. W. Anderson, and later used in the context of particle physics by Brout, Englert
and Higgs.

2.9 Comments

Note that all the features we have discussed )phase transitions, spontaneous symme-
try breaking, Goldstone modes, HIggs mechanisms, etc.) have been found in classical
statistical physics and hence they are not due to quantum mechanics.

2.10 Towards an understanding of critical phenomena

The rest of the discussion will focus on second order phase transitions for which the
order parameter smoothly departs from zero when entering the ordered phase.

2.10.1 Critical exponents and universality

When studying the observables close to the critical point one realizes that they depend
on the distance from the critical point in the form of power laws

X ∼ θn (2.88)

where X is the observable, θ the distance to criticality and n the exponent. It is clear
that this and the other exponents measure the strength of the singularity at the critical
point in the sense that all derivatives dmX/dθm with m > n diverge and the smaller n
the sooner this happens.

For instance, in zero field the order parameter increases as

m ∼ (Tc − T )β . (2.89)

At Tc and as a function of the conjugate field it behaves as

m ∼ h1/δ . (2.90)
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The divergence of the linear susceptibility at Tc is characterized by two exponents

χ ∼
{

(T − Tc)
−γ T > Tc ,

(Tc − T )−γ′

T < Tc .
(2.91)

The specif heat also diverges at Tc :

CV ∼
{

(T − Tc)
−α T > Tc ,

(Tc − T )−α′

T < Tc .
(2.92)

While the values of Tc are material dependent, all ferromagnetic transitions of systems in
d = 3 with an order parameter of the same dimensionality can be described by the same –
within error bars – critical exponent ! This feature indicates the existence of universality
classes, i.e. groups of systems for which the details of the microscopic interactions do not
matter and whose macroscopic critical behavior is identical.

It is simple to compute the exponents in the naive mean-field approximation for any d
or for the fully connected model with p = 2. They read

α = 0 , β =
1

2
, γ = 1 , δ = 3 , η = 0 , ν =

1

2
, (2.93)

and they are independent of d. η and ν are exponents characterizing the correlation
function and the correlation length that we define in (2.96) and (2.53). These values are
to be confronted to the experimental values. In ferromagnetic phase transitions with Ising
symmetry they are

d β α γ δ ν η
2 1/8 0 7/4 15 1 1/4 exact
3 0.325 0.11 1.24 4.82 0.63 0.032 approx

Tab. 2 – Critical exponents in the Ising universality class.

The fact that very different systems share the same critical properties, the mere exis-
tence of universality classes, suggested that it should be possible to describe critical be-
havior of all these systems with a very general framework. The fact that the mean-field
critical exponents were slightly different from the ones observed was not very important
as a quantitative disagreement but it was from a fundamental point of view. Something
important was going on and needed an explanation.

In the rest of this Subsection we introduce and discuss the concepts that allowed one
to acquire a qualitative and quantitative understanding of critical phenomena. The ideas
and methods introduced actually go beyond this problem and have been exported to other
situations like dynamical processes in and out of equilibrium (see Sects. 2.10.5 and 4.3.3).
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2.10.2 Scaling

Scaling concepts are fundamental in describing the behaviour of systems made of a large
number of constituents, interacting non-linearly and according to laws that are sometimes
poorly understood. The idea is to isolate a few relevant variables that characterize the
behaviour at a certain length and time scale and to postulate simple scaling relations
between them. When there is only one independent variable, the scaling relations take
the form of power laws with exponents that are not rational numbers.

Systems that may be microscopically very different but share the same scaling relations
belong to the same universality class.

Scaling arguments apply to many different physical situations (in and out of equili-
brium) and they can be explained using renormalization ideas. In most cases, the re-
normalization approach does not have a formal basis yet. It is in the context of critical
phenomena in equilibrium that scaling and renormalization can be derived systematically.

Phenomenological relations

In the discussion of critical phenomena we have defined 6 critical exponents (α for the
specific heat, β for the order parameter, γ for the susceptibility, δ for the order parameter
at the critical point as a function of the conjugate field, η for the correlation function
and ν for the correlation length). But, actually, not all these exponents are independent.
It was soon observed that the experimental data pointed to simple relations between the
exponents, and one example is the Rushbrooke scaling law

α + 2β + γ = 2 . (2.94)

Let us first take a practical viewpoint and discuss a way to collapse data close to a
critical point, a property closely related to scaling. The power law expressions (2.89) and
(2.90) suggest Widom scaling for the order parameter :

m(t, h) ∼ |t|β Φ±

(

h

|t|βδ

)

t ≡ |T − Tc|
Tc

, (2.95)

with Φ±(0) = 1 and Φ±(x → ∞) ∼ x1/δ. With these limits, (2.90) is recovered on the
critical isotherm and (2.89) follows at strictly zero field and for |t| ≪ 1. An example of
data collapse is given in Fig. 8.

Surprisingly enough, all systems undergoing a ferromagnetic transition can be scaled
in this way using the same functions Φ± above and below the critical temperature, res-
pectively ! The way of checking this hypothesis is by plotting m/|t|β against |h|/|t|βδ for
different systems and looking for data collapse. Of course, we do not know the values of
the universal exponents β and δ and the material dependent critical temperature Tc a
priori, so we need to manipulate a bit the data before obtaining collapse. Note that the
scaling law (2.95) is independent of the dimension d.
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Scaling relations that involve the dimension are called hyperscaling. Again, it was phe-
nomenologically observed that the correlation function satisfies

G(~r; t, h) =
1

rd−2+η
g

(

r|t|ν , h

|t|βδ

)

. (2.96)

It is interesting to note that scaling holds on a much wider window than the power law
expressions defining the critical exponents.

Fig. 8 – Critical scaling in gas-liquid transitions at constant pressure. At very low density
and low temperature, at the left of the curve the system is a gas, at very large density
and still low temperature, at the right of the curve the system is a liquid. In the region
below the curve there is coexistence of gas and liquid. Above the curve the system goes
continuously from a gas to a liquid when increasing the density. The critical line behaves
as |ρl − ρg| ∼ |T − Tc|β with β ∼ 0.327 close to the maximum. Note that scaling holds as
far as T/Tc ∼ 0.55 !

Scale invariance

Kadanoff proposed that this quite incredible feature could be explained assuming that
near a critical point a system looks the same at all length scales. This is called scale
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invariance. More precisely, he showed that a diverging correlation length implies (under
some more or less mild assumptions) the scaling hypothesis, the ensuing scaling laws
postulated by Widom and the relations between critical exponents.

The idea is the following : take an Ising model in equilibrium at temperature T . Since
the system has a correlation length ξ(T ), spins lying on a region of linear size ℓa ≪ ξ are
strongly correlated and, basically, act as a single unit. One can then define N ′ = Nℓ−d

block spins,
sI ≡ |mℓ|−1ℓ−d

∑

i∈BI

si , mℓ ≡ ℓ−d
∑

i∈BI

〈 si 〉 , (2.97)

and these lie on a lattice with lattice spacing a′ = aℓ. Kadanoff then assumed that the
original Hamiltonian when written in terms of block spins keeps the same functional form
though with modified coupling constants

−βHℓ ≡ Kℓ

∑

〈 IJ 〉

sIsJ + hℓ

∑

I

sI (2.98)

with K ≡ βJ and h = βH (an assumption that is correct for the chain – see below – but
is incorrect in general). This means that the coupling constants vary with the observation
scale.

The correlation length in absolute units clearly remains unchanged under the change
of variables. However, if one measures it in units of the lattice spacing, it turns out that
the one for the block spin system is significantly reduced with respect to the original one :

ξ = ξℓ(ℓa) = ξ1a , ⇒ ξℓ = ξ1ℓ
−1 < ξ1 . (2.99)

Thus, one can interpret the block spin system as being farther away from criticality and
at a new reduced temperature tℓ. A simple calculation shows that the magnetic field
transforms as hℓ = hmℓℓ

d.
Equation (2.98) implies the following relation between the total free-enegies of the

block spin and original systems :

F (tℓ, hℓ) = Nℓ−df(tℓ, hℓ) = F (t, h) = Nf(t, h) . (2.100)

Within this approach we still do not know how the reduced temperature and external
field transform. If one now assumes a power law dependence on the scale :

tℓ = tℓyt , hℓ = hℓyh , (2.101)

with yt > 0 and yh > 0 (the renormalization group does indeed allow one to compute this
changes) then

f(t, h) = ℓ−df(tℓyt , hℓyh) . (2.102)

Upto now nothing fixes the block scale ℓ and we can then choose it at will ; taking ℓ =
|t|−1/yt and defining ∆ = yh/yt and 2 − α ≡ d/yt, one is simply left with

f(t, h) = |t|2−αFf (h/|t|∆) . (2.103)
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From this scaling form of the free-energy density one can derive the scaling relations and
the relations between the exponents characterizing the thermodynamic observables and
correlation functions.

This argument justifies the scaling relations but it has one flaw, the fact that one can
easily verify that the assumption in (2.98) does not hold in general, and a deficiency, that
is that the method does not provide a way to calculate the critical exponents or justify
universality. These two problems are solved by the renormalization group.

An example : the Ising chain

Before introducing the renormalization group, let us discuss one example where the
coarse-graining procedure can be done exactly, again the one dimensional Ising model
with N (even) spins in the absence of an applied field. The partition function reads

Z(N, J) =
∑

si=±1

eβJ
∑N−1

i=1
sisi+1 (2.104)

We shall call K ≡ βJ . The sum in the exponential is

s1s2 + s2s3 + s3s4 + s4s5 + . . . (2.105)

It is clear that s2 enters only in the first two terms, s4 enters only on the third and forth
term and so on and so forth. One can then sum over all configurations of the spins with
an even label. For example, the sum over s2 = ±1 yields

eK(s1+s3) + e−K(s1+s3) . (2.106)

One then obtains :

Z(N,K) =
∑

si=±1;i odd

N−1
∏

i=1

[eK(si+si+2) + e−K(si+si+2)] (2.107)

If we find a function κ(K) and a new coupling constant K ′ such that each of these terms
can be written as

eK(si+si+2) + e−K(si+si+2) = κ(K)eK′sisi+2 , (2.108)

the right-hand-side in eq. (2.107) would be proportional to the partition function of ano-
ther one dimensional Ising model with N/2 spins and a different coupling constant K ′ :

Z(N,K) = κ(K)N/2Z(N/2, K ′) . (2.109)

Indeed, the solution to (2.108) can be easily found ; it is enough to consider all the cases
si = ±1 and si+2 = ±1 to obtain :

K ′ =
1

2
ln cosh(2K) , (2.110)

κ(K) = 2 cosh1/2(2K) . (2.111)
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Now, we know that the free-energy, and in particular lnZ, should be linear in N ;

−βF (N,K) = ln Z(N,K) = Nζ(K) . (2.112)

Thus, taking the ln of eq. (2.114) and using (2.112)

ln Z(N,K) =
N

2
ln κ(K) + ln Z(N/2, K ′) , (2.113)

ζ(K) =
1

2
ln κ(K) +

1

2
ζ(K ′) . (2.114)

or equivalently

ζ(K ′) = − ln[2 cosh1/2(2K) + 2ζ(K)] (2.115)

Inserting a value of K on the right-hand-side one obtains the new coupling constant K ′

and the new free-energy ζ(K ′).
Equations (2.110) and (2.115) provide recursion relations for the coupling constant and

the partition function. Note that K ′ is always smaller than K. One can also solve for K
as a function of K ′ :

K =
1

2
cosh−1(e2K′

) (2.116)

ζ(K) =
1

2
ln 2 +

1

2
K ′ +

1

2
ζ(K ′) , (2.117)

obtaining now an increasing flow K(K ′).
One can use these results to compute the value of the partition function for any K.

The argument goes as follows. For very small K ′, i.e. very high temperature, the spins are
basically independent and Z(K ′) ∼ 2N and ζ(K ′) = ln 2. Using then (2.116) and (2.117)
one computes K and ζ(K). One then iterates using these values as starting points K ′ and
ζ(K ′). The agreement between the values generated this way and the results of the exact
calculation are quite amazing (see, e.g [21]).

The process described in the previous paragraph is a flow in the space of parameters.
Starting from any non-zero value of the coupling constant the iteration converges to K =
0. There are then two fixed points, a stable fixed point at K = 0 or infinite temperature (to
which trajectories are attracted) and an unstable fixed point K → ∞ or zero temperature
from which trajectories depart. The stable fixed point represents the high temperature
paramagnetic phase while the unstable fixed point is the critical T = 0 point. The critical
behavior can be obtained from the dependence of ζ(K) on the parameter K − Kc.

A similar procedure can be applied to the d = 2 problem. In this case, however, the
decimation of spins cannot be done exactly and one is forced to use some approximation.
There are a number of successful recipes in the literature.
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2.10.3 The renormalization group

The development of the renormalization group by K. Wilson in the early 70s gave
a totally new way of understanding condensed-matter and particle physics phenomena.
He transformed the picture of phase transitions that developed in the 60s – with the
understanding of concepts like scaling, universality and correlations – into a calculational
tool and got the Nobel Prize in Physics in 1982.

The renormalization group is ingeneered in such a way to explain how short-range
couplings generate a collective phenomenon observable at all length scales. It relates
different scales making the expected scale invariance appear. The method is general and
it does not rely on a special model, being thus adapted to treat very different models with
similar global behaviour, the universality property.

The procedure

The renormalization group procedure is based on the construction of block spins. First,
take the system with N spins, say a cubic lattice of linear size L, and divide it in blocks
of linear size ℓ. Define N ′ = Nℓ−d coarse-grained spin variables using, for example, (2.97).
Rescale the distance between the coarse-grained spins, that occupy the centers of the
blocks, from ℓa to a, a being the original lattice spacing.

Compute the Hamiltonian by expressing the original energy in terms of the coarse-
grained variables. If new terms are generated through the coarse-graing argue that they
are either irrelavant, that is to say, they become less and less important after successive
iteration of the coarse-graining, or that only a few such new terms are generated. Collect
all the coupling constants in [K] = (K1, . . . , Kn) and follow their renormalization, [K ′] =
Rℓ[K], calling Rℓ the renormalization tranformation using a coarse-graining scale ℓ.

The new coupling constants, [K], and the correlation length, ξ, become functions of
the previous ones

[K ′] = Rℓ[K] , ξ([K ′]) = ξ([K])/ell . (2.118)

With each iteration we are observing the system at a new scale – the scale of the blocks
instead of the original one – and we are deriving the effective energy that describes the
system at this scale. The flow generated in this way – in the space of models that trans-
lates into the space of parameters once new terms in the energy are no longer generated
– approaches a fixed point that represents the critical point. At the critical point the
renormalization procedure must reach a stable fixed point

[K ′∗] = Rℓ[K
∗] = [K∗] , ξ∗ ≡ ξ([K∗]) = ξ([K∗])/ℓ . (2.119)

The latter equation can be satisfied by

ξ∗ = 0 , or ξ∗ → ∞ (2.120)

only. The former is called a trivial and the latter a critical fixed point.
Critical behaviour is given by the behaviour of the trajectories in parameter space close

to the fixed points. Let us illustrate this with an example. Take a system that depends on
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a single parameter, say temperature, T . Linearizing the RG transformation close to the
fixed point T ∗ leads to

T ′ − T ∗ = RℓT − RℓT
∗ ∼ Λell(T − T ∗) + O((T − T ∗)2) (2.121)

where

Λℓ ≡
∂Rℓ

∂T

∣

∣

∣

∣

∣

T ∗

(2.122)

Since one expects that the renormalization transformations compose in such a way that
coarsening at distance ℓℓ′ can be achieved by coarsening first at distance ℓ′ and then
at distance ℓ, one must have ∆ℓℓ′ = ∆ℓ∆ℓ′ and thus ∆ℓ = ℓyt . Defining the reduced
temperature t as usual, t = (T − T ∗)/T ∗, (2.121) becomes t′ = tℓyt and after n such
iterations, t(n) = t(ℓyt)n. Now, to make contact with the critical exponents, let us study
the evolution of the correlation length :

ξ(t(n)) = ℓ−nξ(t) = ξ(tℓnyt) (2.123)

ℓ is still arbitrary. Choosing ℓn = (b/t)1/yt with b ≫ 1,

ξ(t) = (bt−1)−1/ytξ(b) ∼ t−1/yt (2.124)

If t > 0, ξ(b) is the correlation length at very high temperature and it does take some
finite small value. Since ξ(t) ∼ t−ν , from the definition of the critical exponent ν, one has

ν = 1/yt = ℓ−1 ln Λℓ = ℓ−1 ln
∂Rℓ

∂T

∣

∣

∣

∣

∣

T ∗

. (2.125)

This procedure can be applied to compute the free-energy close to the fixed point and
from it other critical exponents, etc.

Note that the renormalization procedure reduces finite size effects since at each step of
the iteration ξ is reduced while the lattice spacing is maintained.

2.10.4 Finite size effects

A real system is large but finite, 1 ≪ NA ∼ 1023 < ∞. Finite size effects will then play
a role in the phase transition that is rounded by the fact that NA < ∞. Finite size effects
become important when ξ ∼ L, the linear size of the system, say L ∼ 1cm for an actual
sample. A rough estimation of how close to Tc one needs to get to see deviations from
critical scaling shows that finite size effects are quite negligible in experiments but are
certainly not in numerical simulations and have to be taken into account very carefully
when trying to compare numerical data to analytical predictions.

Finite size effects are taken into account by introducing correcting factors in the scaling
laws, for example,

χL ∼ |t|−γg

(

L

ξ

)

(2.126)

55



2.10 Towards an understanding of critical phenomena 2 PHASE TRANSITIONS

with g(x → ∞) → 1 and g(x → 0) → xγ/ν .
Note that periodic boundary conditions suppress boundary effects and then reduces

finite size effects.

2.10.5 Fluctuations of macroscopic observables

A direct consequence of having a diverging correlations length is that the critical
measure-to-measure fluctuationf of global observables like, for instance, the magnetization
density, are not Gaussian. The reason is simple, if L < ξ, a global measurement is not the
result of an average over many uncorrelated regions and, thus, one cannot use the central
limit theorem to argue for a normal distribution of fluctuations. Recently, the study of
critical fluctuations of macroscopic observables received much attention. The best adapted
model for this analysis is the 2d XY model, that is critical on a finite interval of tempe-
ratures (and not only at a single precise value of Tc) [41]. This model, in the so-called
spin-wave approximation, is mapped onto an interface model, the Edwards-Wilkinson
one [?]

In the limit we are now interested in L is finite with respect to ξ and finite size effects
are important. Finite size scaling implies

pL(M) = Lβ/ν Π

(

MLβ/ν ,
ξ

L

)

. (2.127)
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3 Statistical analysis of cosmic structures

Cosmology aims at discribing the Universe at its largest scales. As it is well-known the
Universe has structures of very different types and sizes. Tools from Statistical Mechanics
have been used to describe them at different levels.

A first description of this problem can be purely statistical, in the sense that one can
be interested in performing a statistical analysis of the structures, mass distributions,
observed without discussing the physical mechanisms that lead to them. This is the kind
of approach followed in the description of any stochastic signal. Some questions one can
then ask at this level of description are :

– What is the present mass distribution ?
– What was the mass distribution in the distant past ?

This kind of analysis turns out to be intimately related to the discussion on phase tran-
sitions presented in Sect. . Indeed, the analysis of the mass density and its fluctuations is
very similar to the analysis of the order parameter. Concepts such as correlation lengths
and fractals naturaly appear.

Another, perhaps more interesting, level of description is to try to understand how a
self-gravitating system, with long-range interactions, can be thermodynamically stable.
(This takes us back to the first Section where we discussed the statistical mechanics of
systems with long-range interactions.) Another way of posing this question is

– What determines the particular configuration into which a self-gravitating system
settles ?

This is the statistical mechanics point of view. Chadrasekhar proposed that these are sim-
ply dictated by a maximum entropy principle, that is to say, that they are most probable
than any other configuration.

Finally, one can be interested in dynamics and wonder
– How can one obtain the present mass distribution from the evolution of an initial

one ?
Choosing a ‘correct’ initial mass distribution one can then see the formation of structures
by integrating (for example numerically) the equations of motion. However, this is not
so simple conceptually since one has to be careful, in this case, and take into account
relativistic effects. The causal limit essential to any Big Bang model implies that there is
a finite horizon for causal processes i.e. light can travel only a finite distance in the time
since the Big Bang. Using this limit Zeldovich [12] showed that there is a strong constraint
on the power spectrum (i.e. what is usually called the structure factor in statistical phy-
sics) describing mass fluctuations. It states that if fluctuations are built, starting from a
uniform distribution of matter, by causal physics (i.e. physical processes moving matter
and momentum coherently up to a maximal scale), then the small k form of the power
spectrum is P (k) ∝ k4. The importance of this argument is in its corollaries : it implies

57



3.1 Statistical methods 3 STATISTICAL ANALYSIS OF COSMIC STRUCTURES

that the spectrum considered to correctly describe the perturbations at very large scales
observed [13] in the microwave background, P (k) ∼ k, cannot be produced by causal
physics acting prior to the time when radiation decouples from matter. And it is one of
the motivations for and successes of the popular inflation model that it can produce such
fluctuations (by modifying the causal structure of the Big Bang model at early times).

Fig. 9 – Large-scale structures in the universe as observed with the Hubble space teles-
cope.

3.1 Statistical methods

We focus here on the first kind of description given in the introduction, the one that
is borrowed from the analysis of generic stochastic signals.

We shall present two types of methods : one group are intended to describe mass
distributions with small amplitude fluctuations about a finite average ; another group
treats mass distributions that are extremely irregular with an average that vanishes in
the infinite volume limit.

Take an electromagnetic signal with noise, the density of a fluid in thermal equilibrium,
the value of an asset in the stock market, etc. All these quantities fluctuate either in space
and/or in time. The average over a large spatial region or a very long time window takes a
finite value that remains finite for larger and/or longer sampling. A number of statistical
tools that serve to characterise such fluctuations are well documented. We shall describe
here the most important ones.
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Let us focus on time-independent quantities first. We distinguish different types of
stochastic processes :

– Continuous stochastic processes such that the stochastic field is continuous on space
and can take, in general positive and negative values. The density of a fluid in thermal
equilibrium is an example (though positive definite).

– A point process such as a distribution of point mass particles. In this case the sto-
chastic field is discontinuous. This problem can be rendered smooth by applying a
coarse-graining over a length ℓ, in the manner described in Sect. 2.6.3. When ℓ ≫ a
with a the typical interparticle separation the coarse-grained field becomes conti-
nuous and of the kind introduced in the previous item.

– Point distributions giving rise to fractal measures. In these cases the average mass
density vanishes in the infinite volume limit. The volume is asymptotically empty.
Taking an arbitrary occupied point in space the averaged density decays slowly as a
power of distance.

First, we review the definition of a space-dependent stochastic field (the generalization
to a space and time dependent field is straightforward). Take a d-dimentional volume V
and partition it into i = 1, . . . , N cells of volume dv (V = Ndv), that is to say, think
about a d dimensional lattice. A random field φ(~r) characterized by its probability density
function (pdf) P [φ(~x)] is such that on each cell a value of φ is drawn from P . The function
P can be interpreted as the joint pdf of the random variables φ on each cell.

A random field is said to be continuous if

lim
∆→0

〈 |φ(~r + ~∆) − φ(~r)|2 〉 = 0 ∀~r . (3.1)

The angular brackets indicate here and in the rest of this Section the average over P [φ(~r)].
A stationary, statistically translational invariant or statistically homogenous stochastic

field is such that its statistical properties do not depend on the spatial location studied.
More precisely, taking n points ~x1, ~x2, . . . , ~xn, the joint probability distribution of the
value of the random field at the translated points ~x1 + ~∆, ~x2 + ~∆, . . . , ~xn + ~∆ does not
depend on the translation vectors ~∆ :

P [φ(~x1 + ~∆), φ(~x2 + ~∆), . . . , φ(~xn + ~∆)] = P [φ(~x1), φ(~x2), . . . , φ(~xn)] . (3.2)

This means that it depends only on the relative distance between the selected points,
~x1 − ~x2, etc.

A statistical rotational invariant or isotropic stochastic field is such that its statistical
properties do not depend on the direction observed, that is to say, P [φ(~x)] is also invariant
under rotations.

In the cosmological context the last two properties are ensured by the cosmological
principle that states that there no preferential points or directions in the universe.

An example of the above, on which we shall focus in this section is given by a mass
point distribution. The density field is defined as

φ(~x) =
N

∑

i=1

mi δ(~x − ~xi) (3.3)
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where the index i = 1, . . . , N labels the particles and mi and ~xi are the mass and position
of the particle i. (In what follows we assume that particles are separated by a distance
that is longer than an infinitesimal dx.)

Having a stochastic field defined by its pdf one can now compute all interesting avera-
ged quantities, e.g. average, mean-square displacement, moments, etc. The average of a
stationary stochastic field is just

〈φ(~x) 〉 = φ0 . (3.4)

φ0 is independent of the position ~x. When φ0 > 0 the field is called homogenoeus and
all the machinery of usual studies of random variables applies. Instead, when φ0 = 0 one
faces a new situation to be discussed below.

In the generic context of a space-dependent stochastic process one can define ergodicity
as

〈F [φ(~x1), . . . , φ(~xn)] 〉 = lim
V →∞

∫

V
ddy F [φ(~x1 + ~y), . . . , φ(~xn + ~y)] (3.5)

(to be compared with the discussion in Sect. ). F is a generic functional of the random
field and φ is almost any realization of it. Ergodicity can be proven for some continuous
stochastic fields but it is not valid in full generality. Note that if the integral runs over
only a subvolume then the right-hand-side is just an estimator of the left-hand-side. In
cosmological application it is clear that one is forced to make observations over partial
volumes of the universe.

The homogeneity scale, λ, is the length scale above which the partial space average gets
sufficiently close to the ‘theoretical value’ for the average of the stochastic field (computed
with its pdf), φ0 :

∣

∣

∣

∣

1

v

∫

v
d3x φ(~x) − φ0

∣

∣

∣

∣

< φ0 ∀R > λ , ∀~x , (3.6)

with v = 4πR3/3. At smaller scales than λ the fluctuations are important and the partial
average deviates substantially from φ0.

3.1.1 Correlation functions and correlation length

The n-point correlation function is defined as

cn(~x1, . . . , ~xn) ≡ 〈φ(~x1), . . . , φ(~xn) 〉 . (3.7)

The stationary property of the process ensures that cn depends only on the relative dis-
tances |~x1 − ~x2|, etc.

The reduced n-point correlation function is defined as

Cn(~x1, . . . , ~xn) ≡ 〈 (φ(~x1) − φ0) . . . (φ(~xn) − φ0) 〉 . (3.8)

These correlation functions measure the spatial memory of the fluctuations of the random
field at the scales given by the distance between the selected spatial points. For n = 1, 2
the reduced correlation functions coincide with the connected ones.
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In the case of a stochastic field with a positive average value φ0. One can render the
correlation functions defined above adimensional by dividing by φn

0 .
As in any stochastic process one can also study the cumulant expansion.
A correlation length is introduced in analogy with the concept discussed in the context

of second order phase transitions (see Sect. 2.6.3). Several definitions exist and they all
lead to the same qualitative behaviour. We shall adopt the following

ξ2 ≡
∫

ddx x2 |C2(x)|
∫

ddx |C2(x)| . (3.9)

The correlation length serves to distinguish reduced correlations decaying slowly from
those decaying fast with distance x :

– Slow algebraic decay – long-range correlations :

C2(x) ∼ x−γ with 0 < γ < d (3.10)

at sufficiently large x. These correlations characterize the order parameter fluctua-
tions at second order critical points. The slow decay of the correlation at long dis-
tances implies that the correlation length defined in (3.9) diverges :

ξ → ∞ . (3.11)

– Exponential decay – short-range correlations :

C2(x) ∼ e−x/x∗

, (3.12)

again at sufficiently large x. This is the behaviour of the order parameter fluctuations
far away from a critical point (both in the ordered and disordered phases). The
correlation length is finite in this case

ξ ∼ x∗ . (3.13)

A fast algebraic decay (γ > d) belongs to this class.
As in critical phenomena, the coarse-grained field over a length ℓ larger than ξ (ℓ ≫ ξ)

becomes a Gaussian variable while coarse-graining over a shorter length (ℓ ≪ ξ) does not
have an important effect and the coarse-grained field keeps a strong memory of its original
pdf.

Note that these definitions of short and long range correlations are identical to the ones
discussed in Sect. when studying short and long range interactions.

3.1.2 The power spectrum
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The analysis of a stochastic process limited to the two-point correlation function (re-
duced or not) can be expressed in transformed Fourier space through the introduction of

the power spectrum (PS), structure factor, or Bartlett spectrum, S(~k) :

S(~k) ≡ 〈 |δφ(~k)|2 〉
V

(3.14)

where the angular brackets are the usual ensemble average. If the stochastic process is
isotropic one has S(~k) = S(k). In a stationary and ergodic stochastic process the PS
is simply related to the connected correlation. Indeed, using first ergodicity and then
stationarity

S(~k) =
1

V

∫

V
ddx

∫

V
ddx′ 〈 δφ(~x)δφ(~x′) 〉 e−i~k(~x−~x′) =

∫

ddx C2(~x) e−i~k~x . (3.15)

Conversely C2(~x) is the inverse Fourier transform of S(~k).
Let us now focus on the isotropic case of interest in cosmological applications. The

small k behaviour of the power spectrum is intimately related to the variance of mass
fluctuations. Without presenting the explicit calculation we simply quote that for

P (k) = Aknf(k) , (3.16)

with f(k) a long wave-length cut-off function, for instance, f(k) = e−k/kc and A a constant,
one has

σ2(R) ∼











R−(d+n) for − d < n < 1 ,
R−(d+1) ln R for n = 1 ,
R−(d+1) for n > 1 .

Therefore one has Super-Poisson statistics for −d < n < 0, Poisson-like (k independent)
for n = 0, sub-Poisson for n > 0. The latter plays an important role in cosmological
applications since the so-called Harrison-Zeldovich condition implies P (k) ∼ k at short k
and σ2(R) ∼ R−4 in d = 3.

3.1.3 An example : Gaussian continuous stochastic field

The properties of Gaussian random fields have been summarized in Appendix B. These
allow us to compute any n-th order correlation function. Indeed, the so-called Wick theo-
rem related the expectation value of higher order correlations to sums of products of the
two-point correlation functions only. The theorem is, indeed, a rather trivial property of
Gaussian integrals that happens to be extremely useful in perturbation theory – in any
conctext, field theory, equilibrium or non-equilibrium statistical mechanics, etc. where one
separates the quadratic part of the energy or action and treats the non-quadratic parts
perturbatively.
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As an example, if a density is characterized by a scalar field φ(~x) with a Gaussian
distribution with a space-independent mean φ0 and a two-point connected correlation
C2(~x, ~y) = 〈 (φ(~x) − φ0)(φ(~y) − φ0) 〉 one has

C2n(~x1, ~x2, . . . ~x2n) =
∑

C2(~xi, ~xj) . . . C2(~xk, ~xl) (3.17)

where the sum runs possible ways of linking the 2n spatial points in pairs ; and zero for
an odd number of points. One can thus easily express all higher order correlations.

3.1.4 Another example : Poisson point process

Take a volume V and divide it into n subvolumes dv, such that ndv = V . Place N
particles in V . The particle density over the volume V is then ρ0 = N/V . If the subvolumes
dv are small enough one can imagine that each of them can be either empty of occupied
by a unique particle. This defines a stochastic density field ρ(~r) :

ρ(~r) =

{

dv−1 with probability ρ0dv
0 with probability 1 − ρ0dv

where ~r is the center of the subvolume. Subcells are independent : the occupation of any of
them does not influence the occupation or not of another one. In each cell the probability
of occupation is given by the binomial distribution.

From the definition of the stocahstic process one now computes any correlation func-
tion. For instance

〈 ρ(~r1)ρ(~r2) 〉 =

{

ρ2
0 if ~r1 6= r2

ρ0/dV if ~r1 = r2

The definition of the correlation length (3.9) yield ξ = 0, as expected for a process with
no spatial correlations.

The probability of finding M particles with a volume V is the well-known Poisson
distribution law

P (M) =
〈M 〉Me−〈M 〉

M !
. (3.18)

with 〈M 〉 = ρ0V .

The structure factor is simply constant S(~k) = ρ0. This is also called a white noise

since every mode ~k has exactly the same weight.

3.2 Fractals

Fractals [42] are complex and irregular structures that appear :
– In termodynamical systems when the controlling parameter is fine tuned to be at

the critical point. For instance, clusters of aligned spins at the critical temperature
have fractal characteristics.
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– In more common structures observed in nature such as coast lines. The fractal pro-
perties developed in these systems as the result of a dynamic process.

In the case of mass point distributions we are here interested in one can examine whether
these present fractal characteristics too. The statistical analysis presented in the previous
Subsection needs to be modified to account for this possibility.

The question then arises as to how to describe a sufficiently irregular structure such
that the techinques used to study regular functions do not apply. A number of ne concepts
have to be introduced.

The most intuitive way of defining a fractal is through the mass vs. radius method.
The idea is to sit on an occupied point of the distribution and measure the mass M as a
function of the linear size R of an enclosing volume. If the mass scales as

lim
R→∞

M(R) = Rdf (3.19)

D usually coincides with more precise definitions of the fractal dimension. One finds
df ≤ d, with d the dimension of space (ordinary uniform mass distribution saturate the
bound). This definion can be used to study mass distributions from galaxy sureys and
df > d can be explicitly tested. Note that M(R) is a conditional probability since one
needs to see the mass distribution from an occupied point.

Since fractals have df < d the average density on the infinite voluem limit (V → ∞,
R → ∞) vanishes. A fractal set of points is asymptotically empty. Equivalently, if one
takes an arbitrary point within V and computes M(R) from it one finds a vanishing
result ! This implies that only conditional correlation functions of the mass density of a
fractal distribution may yield non-vanishing results.

Fractals are characetrised by voids and structures of any legnth scale with no upper
cut-off. The mass fluctuations with respect to the mean are independent of the spatial
length scale of observation.

Note that a fractal structure may have a finite length cut-off meaning that it might
crossover to a homogeneous structure at longer length scales.

We shall not further develop this analysis. The interested student can look at the
classical reference [42] or [25, 26] in the context of the analysis of galaxy structures.

3.3 Dynamics

A problem of current interest in this field is to generate point mass distributions that
correspond, in the continuum limit, to the power-spectrum expected from cosmological
observations, more precisely, S(k) ∼ k for small k.

Recent numerical studies use shuffled lattice initial conditions with S(k) ∼ k2 at small
k as the initial condition of a numerical integration of the Newtonian dynamics (a method
called molecular dynamics) of an ensemble of self-gravitating particles. One finds clustering
of structures that resemble the one in cosmological observations.
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Interestingly enough, researchers in this field have recently established collaborations
with people interested in liquid theory, close packing problems and so on, who have good
experience in generating particle configurations with strange structure factors at small k
– long distance in real space.
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4 Stochastic processes

Simultaneously to the development of equilibrium statistical mechanics, which assumes
that systems can be described in terms of Boltzmann-Gibbs probability distributions, the
question of how this equilibrium is reached was raised (in fact by Boltzmann himself),
and led to the well known debate about irreversibility and the arrow of time. Although
the conceptual issues are formidable, one can take a phenomenological point of view and
postulate the nature of the coupling between a given system and a thermal bath such
that equilibrium is, at least in principle, reached at long times. This is known as the
Langevin approach, which provides a consistent description of the dynamics of systems
subject to thermal noise, such that the stationary solution reproduces the Boltzmann-
Gibbs distribution.

On can be interested in situations such that the dynamics should lead at long times
to equilibrium, but the time needed to do so is either infinite or very large compared
to experimental time scales.4 These systems are usually referred to as ‘glassy’. In these
cases, equilibrium concepts are a priori useless ; the description of the system is inherently
of dynamical nature. The theoretical framework available to describe the dynamics of a
system subject to thermal noise is good for both cases.

Almost any physical system is subject to fluctuations that have an unknown origin
and/or can only be characterized only statistically. This noise is one of the manifestations
of the exchange of energy between the system and its environment ; the other accompa-
nying feature is, as we will see in more detail below, dissipation. The time evolution of a
system coupled to its environment can be described in two equivalent ways. One is the
Langevin approach that consists in studying Newton’s equations with the addition of two
terms representing friction and thermal noise. The other description is probabilistic and
is concerned with the evolution of the probability distribution of the relevant degrees of
freedom of the system. Both approaches turn out to be very useful to understand the
dynamics of model systems.

The environment is often assumed to be a heat bath in equilibrium at a given tempe-
rature. In these conditions, many systems do equilibrate with such an environment after
a short transient. The dynamics of equilibrated systems has several special features that
we also review in this Section. How these properties are modified in systems that never
reach equilibrium is a problem of current interest in research but we shall not develop it
here.

4There might of course be systems that never reach thermal equilibrium, such as driven dissipative
systems for example.
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4.1 The Langevin equation

The Langevin equation is a stochastic differential equation that describes phenome-
nologically a large variety of problems. It describes the time evolution of a set of slow
variables coupled to a much larger set of fast variables that are usually (but not necessa-
rily) assumed to be in thermal equilibrium at a given temperature. We first introduce it
in the context of Brownian motion and later derive it in more generality.

4.1.1 Brownian motion

The Brownian motion is the erratic motion of a mesoscopic colloidal particle (in the
micrometer range) immersed in an equilibrated fluid made up of much lighter molecules.
The jerky motion of the colloidal particle is due to the collisions with the molecules in
the liquid. Knowing that each individual collision deflects the trajectory of the particle
by a tiny amount, Langevin proposed to collect the effect of all molecules in the fluid in
a time-dependent random force. If the particle moves in d dimensions, has mass m, its
center of mass position at time t is represented by ~x = (x1, . . . , xd) and its velocity is
~v = ~̇x, Newton’s equation reads

m~̇v(t) = ~F (~x, t) + ~f(t) . (4.1)

The force ~F designates all external deterministic forces, and depends in general also
on the position of the particle ~x, while ~f represents the net force exerted by all the
individual molecules in the fluid on the massive particle. The latter depends on the time-
dependent positions of all the molecules and is a rapidly fluctuating function of time. The
characteristic time for the variation of this force is related to the time interval between
successive collisions, that we call τc, and can be estimated to be of the order of the
pico-second or even shorter for a typical liquid. 5

Due to its rapid fluctuations, the time-dependence of the force ~f cannot be specified.
One can, instead, make reasonable assumptions about its average over a large number of
identical macroscopic situations and characterize it in statistical terms. More precisely,
one considers an ensemble of n systems made of one tracer particle moving in a fluid and
that are prepared in identical conditions, and defines ensemble-average quantities

〈O(t) 〉 =
1

n

n
∑

k=1

O(k)
~f

(t) , (4.2)

with the label k identifying the copy in the ensemble and O is an observable that depends
on the force ~f . (Equivalently, one can consider a single experiment in which one uses n
identical non-interacting tracer particles moving in the medium.) Equation (4.1) implies
that the position and velocity of the particle are both fluctuating quantities that depend

5This does not mean, however, that the correlation function of this random force is short range in
time. Because of momentum conservation in the surrounding fluid, there appears a now well known ‘long
time tail’ in the force correlation function, only decaying as t−3/2 in three dimensions.
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on ~f . The aim is then to predict the average result (and the fluctuations) over a large
number of experiments performed in identical conditions, or equivalently over a large
number of particles provided these are non interacting.

In the absence of external forces, the problem is fully isotropic and the ensemble-
averaged velocity can only vanish. If however the particle acquires a non-vanishing velocity
~v, then the environment will react and induce a non zero force which, by symmetry, must
be in the direction of ~v. Thus, one can propose the following decomposition :

~f = f1(v)~v + ξ , (4.3)

where f1 is some function of the modulus of ~v, and ξ is an isotropic random force, the
thermal noise, that keeps the agitation of the particle (this name has its origin in the
random noise that one can actually hear in electric circuits). ξ has vanishing ensemble-

average at each instant t : 〈 ~ξi(t) 〉 = 0, for all i and all times. The average over different
realizations of the history of the system introduced in eqn (4.2) corresponds now to an

average over histories of the time-dependent random force, ~ξ. Thus, henceforth the angular
brackets represent :

〈O(t) 〉 =
∫ ∞

∞

Nt
∏

j=0

d
∏

i=1

dξi(tj) P [ξi(tj)] O~ξ(tj) ≡
∫

Dξ P (~ξ) O~ξ(t) ,

where P [ξi(tj)] is the probability of occurrence of ξi at time tj = jδ, with j = 1, . . . ,Nt,
and δ an infinitesimal time-interval. In the second term above we wrote it explicitly, and
in the third term we used a short-hand notation that we adopt hereafter. The subindex
~ξ in O indicates that it is evaluated in the solution to the Langevin equation and hence
depends on the thermal noise realization.

The simplest assumption for f1(v) is that it tends to a constant for small velocities,
leading to the familiar friction force :

f1(v → 0)~v = −γ~v γ > 0 , (4.4)

that opposes the motion of the particle. The friction coefficient, γ, is proportional to the
shear viscosity η of the medium6, γ = cη > 0, with c a constant of geometric origin that
depends on the size and shape of the colloidal particle. When the medium is a normal
fluid, and the particle is a sphere of radius a that is much larger than the mean free-path
of the molecules one has c = 6πa and one recovers the Stokes law for a spherical particle
in a viscous fluid. The friction coefficient γ is of the order of npℓτcT with np the density
of particles in the fluid, ℓ the mean free path, τc the average time between collisions, the
temperature T is measured in units of the Boltzmann’s constant kB. For a typical liquid,

6The shear viscosity of a system measures its resistance to flow. A flow field can be established by
placing the system between two plates and pulling them apart in opposite directions creating a shear

force. The rate at which the plates are pulled apart is called the shear rate. Other geometries are also
possible.
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like water in normal conditions, the viscosity is of the order of 0.01 Poise.7 With the choice
(4.4) eqn (4.1) becomes

m~̇v(t) = −γ~v(t) + ~F (~x, t) + ~ξ(t) . (4.5)

So far we have characterized the random force exerted by the fluid by giving its average
value, the friction force. In order characterize more completely the motion of the particle,
one also needs to know how the random force fluctuates in time. This information is (in
part) contained in its correlation function, defined by comparing the thermal noise at two
subsequent times t and t′, with t = t′ + τ . Since collisions are very irregular, one can
assume that the forces at two different times are statistically independent for long enough
time-separations period (but see footnote 5), i.e.

〈 ξi(t)ξj(t
′) 〉 = 〈 ξi(t) 〉〈 ξj(t

′) 〉 = 0 if τ ≡ t − t′ ≫ τc ∀ i, j, = 1, . . . , d .

The correlation between the same component of the random force evaluated at different
times is, by definition, a symmetric function of times, 〈 ξi(t)ξi(t

′) 〉 = 〈 ξi(t
′)ξi(t) 〉. In

addition, one assumes that the correlation between the same component of the force at
two different times is stationary, that is to say, that it only depends on the time-difference
τ . This is a property of the reservoir (the fluid in our case) in thermal equilibrium. Finally,
since we assume that all directions of space are equivalent, the components of the random
force in different directions are uncorrelated (even at time-differences that are shorter
than τc) :

〈 ξi(t)ξj(t
′) 〉 = δij g(|τ |) , ∀ i, j = 1, . . . , d . (4.6)

This comes from the fact that δij is the only rotationally invariant tensor. In the above
equation, 〈ξ2

i (t
′)〉 = g(0) > 0 and g(|τ |) sharply peaked around τ = 0 with a support of

the order of τc. At macroscopic time-scales, τ is actually much longer than τc, and one
can approximate g(|τ |) by a delta function of weight 2A

〈 ξi(t)ξj(t
′) 〉 = 2Aδij δ(τ) , ∀ i, j = 1, . . . , d . (4.7)

The Fourier transform of the stationary correlation of the noise defines its spectral density,
S(ω). In this case, S(ω) is independent of the frequency ω, defining a white noise.

Two-time correlations do not characterize time-dependent random variables comple-
tely. This is achieved either by giving all higher-order correlations or, equivalently, by
specifying its full multivariate probability distribution function. The simplest choice is
a multivariate Gaussian distribution compatible with the above two-time correlation. In
discrete time, we write :

P (~ξ) =
1

N exp



− 1

4A

Nt
∑

j=0

d
∑

i=1

ξ2
i (tj)



 , (4.8)

7The friction coefficient and the viscosity are measured in units of [mass]/[time] and Poise≡
[energy×time]/[volume] in the cgs system, respectively.

69



4.1 The Langevin equation 4 STOCHASTIC PROCESSES

with N the normalization constant. The Gaussian hypothesis is based on the central limit
theorem. Indeed, if one observes the thermal force acting on a sufficiently large particle,
with a time-grid that is much larger that τc, ~ξ is the result of a large number of random
forces with finite average and variance, all sharing the same distribution law. However,
one could imagine ‘sporadic’ thermal baths that would lead to deviations from a Gaussian
distribution of random forces, in particular in the tails.

The Gaussian hypothesis implies that all higher-order correlations can be expressed as
functions of the two-time correlation (4.6). This is the content of Wick’s theorem, which
states that :

〈 ξi2n(t2n) . . . ξi1(t1) 〉 =
∑

pairs

〈 ξi2n(t2n)ξi2n−1(t2n−1) 〉 . . . 〈 ξi2(t2)ξi1(t1) 〉 ,

with the sum running over all the different ways of separating the product of 2n variables
into n pairs. The average of a product of an odd number of noise factors vanishes identically
since the thermal noise has zero-average (remember that the average of the random force,
namely the friction force, has been subtracted off). So far the variance, 2A, is a free
parameter. We shall see later on that if the environment is assumed to be in equilibrium
at a temperature T , then A must in fact relate to γ and T .

Irreversibility and dissipation.

The friction force −γ~v in the Langevin equation (4.5) explicitly breaks the time-reversal
(t → −t) invariance, a property that has to be respected by any set of microscopic dynamic
equations. This is the well known paradox raised by the irreversibility of thermodynamics.
However, the Langevin equation is an effective equation that only describes the particle
and not the individual motion of the molecules of the surrounding fluid. Of course, New-
ton’s equation describing the whole system, the particle and all the molecules of the fluid,
must be time reversal invariant. However, time-reversal can be broken in the reduced equa-
tion, where the ability of the thermal bath to reach equilibrium is assumed from the start.
The Langevin approach is a clever way to hide the irreversibility problem under the rug
(by transferring the conceptual difficulties to the reservoir) and allows to investigate in a
phenomelogical way the dynamics of the particle alone. In Sect. ?? we shall study a simple
model where the assumptions behind Langevin’s equation can be made more transparent.

Note that the energy of the particle is not conserved and, in general, flows to the bath
leading to dissipation. At very long times however, the particle may reach a stationary
regime in which the exchange of energy becomes symmetric on average : the particle gives
and receives energy from the bath at equal rate.

Generation of memory.

The Langevin equation (4.5) is a first order differential equation on the velocity. The
full dynamics of the particle is determined by this equation together with ~v(t) = ~̇x(t)
which is also a first-order differential equation.

These features imply that the pair velocity-position of the particle at time t + δ, with
δ an infinitesimal time-step, depends on the pair velocity-position at time t and the value
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of the noise at time t. Thus, the full set of equations defines a Markov process, that is
a stochastic process that depends on its history only through its very last step. Notice,
however, that the pair of first order differential equations could also be described by a
single second-order differential equation :

m~̈x(t) + γ~̇x(t) = ~F (~x, t) + ~ξ(t) . (4.9)

Having replaced the velocity by its definition in terms of the position the Markov character
of the process is lost. This is a very general feature : by integrating away some degrees of
freedom one generates memory in the evolution. Generalizations of the Langevin equation,
such as the one that we present in Sect. 2.10.5, and the ones that will be generated to
describe the slow evolution of super-cooled liquids and glasses, do have memory.

Fluctuation – dissipation relation of the second kind.

In the heuristic derivation of the Langevin equation that we presented above the
constant A is not fixed. The simplest way of fixing the value of this parameter is to
study the velocity fluctuations of a Brownian particle in a constant external force. The
time-dependent velocity follows from the integration over time of eqn (4.5)

~v(t) = ~v0e
− γ

m
t +

1

m

∫ t

0
dt′ e−

γ
m

(t−t′) [ ~F + ~ξ(t′) ] ,

with ~v0 the initial velocity at t = 0. Using the fact that the noise has zero average one
finds

〈~v(t) 〉 = ~v0e
− γ

m
t +

~F

γ

(

1 − e−
γ
m

t
)

→
~F

γ
when t ≫ tvc ≡ m

γ
.

Using the noise-noise auto-correlation in eqn (4.7), and setting ~v0 = ~0 for simplicity, one
readily calculates the mean-square displacement of the velocity in each direction of space,
σ2

vi
(t) ≡ 〈 (vi(t) − 〈vi(t)〉)2 〉,

σ2
vi
(t) =

1

m2

∫ t

0
dt′

∫ t

0
dt′′ e−

γ
m

(2t−t′−t′′) 〈 ξi(t
′)ξi(t

′′) 〉 =
A

γm

(

1 − e−
2γ
m

t
)

.

Since the Langevin equation is a phenomenological description of the approach to thermal
equilibrium, we must impose for consistency that the above quantity saturates to the
expected value calculated with the canonical distribution at temperature T . Thus,

lim
t≫tvc

σ2
vi
(t) =

A

γm
= 〈 (vi − 〈vi 〉)2〉eq =

T

m
,

where 〈 〉eq denotes an average taken with Maxwell’s velocity distribution. For this
equality to hold one enforces that :

A = γT . (4.10)
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This relation is known under the name of fluctuation–dissipation theorem (fdt) of the
‘second kind’ in Kubo’s nomenclature. (The ‘first kind’ will be discussed below ; these
names are here a little unfortunate).

It is important to note that this fdt characterizes the surrounding fluid and not the
particle, since it relates the noise-noise correlation to the friction coefficient. In the case
of the Brownian particle this relation ensures that after a transient of the order of tc,
the bath maintains the mean kinetic energy of the particle constant and equal to its
equilibrium value. The Gaussian distribution of the noise and the linear relation linking
it to the velocity imply that the velocity of the particle is indeed distributed according
to Maxwell’s distribution. We shall see later that even when the environment satisfies a
fluctuation – dissipation relation (fdr) the system in contact with it does not necessarily
follow and satisfy an fdr itself. This is one of the main characteristics of non-equilibrium
systems in contact with equilibrated environments.

Diffusion in velocity space.

For the sake of simplicity let us focus in this section on a one dimensional problem.
The two-time velocity-velocity ‘variogram’, defined as : ∆vv(t, t

′) ≡ 〈 (v(t) − v(t′))2 〉 =
Cvv(t, t) + Cvv(t

′, t′) − 2Cvv(t, t
′) is a simple function of the two-time correlation of the

velocity Cvv(t, t
′) = 〈 v(t)v(t′) 〉 that itself is easily calculated to be :

Cvv(t, t
′) = v2

0 e−
γ
m

(t+t′) +
T

m

(

e−
γ
m

|t−t′| − e−
γ
m

(t+t′)
)

. (4.11)

The first term comes from the initial condition and the second term sometimes goes under
the name of Dirichlet correlator. When t + t′ ≫ tc the initial condition is forgotten, the
last term vanishes, and the correlation and displacement become functions of |t− t′| only,
as expected in equilibrium (see Sect. 4.3.1). The variogram crosses over from a diffusive
regime to saturation at the characteristic time tvc :

∆vv(t, t
′) ∼















2Dv|t − t′| when |t − t′| ≪ tvc with Dv ≡ Tγ

m2
,

4T

m
when |t − t′| ≫ tvc .

The coefficient Dv of the linear regime is called the velocity diffusion coefficient.

Diffusion in position space.

The position-position variogram is similarly defined as ∆xx(t, t
′) ≡ 〈 (x(t) − x(t′))2 〉

and measures the square of the typical displacement of the particle between t and t′.
Choosing x0 = v0 = 0 one finds :

∆xx(t, t
′) =

2Dvm
2

γ2

[

|t − t′| + 2m

γ

(

e−
γ
m
|t−t′| − 1

)

− m

2γ

(

e−
2γ
m

|t−t′| − 1
)

]

,
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and there is also a change in behavior at time-differences of the order of tvc :

∆xx(t, t
′) ∼















2Dv

3
|t − t′|3 when |t − t′| ≪ tvc ,

2Dx|t − t′| when |t − t′| ≫ tvc with Dx ≡ T

γ
.

At small times, the particle is subject to a random acceleration ; its velocity is thus of the

order of
√

|t − t′|, leading to a typical displacement of the order of |t − t′|3/2. For times
larger than tvc , the velocity saturates under the effect of friction, and normal diffusion sets

in, with a typical displacement given by
√

Dx|t − t′|.
Einstein relation.

The mobility of the particle is defined as

µ ≡ lim
F→0

lim
t→∞

〈 v(t) 〉
F

. (4.12)

Using the above result on Dx, we find :

µ =
1

γ
≡ Dx

T
when |t − t′| ≫ tvc , (4.13)

This identity between µ and Dx is known as the Einstein relation between the transport
properties of the particle, its diffusion in real space, and the temperature of the surroun-
dings. It expresses the fluctuation–dissipation theorem of the first kind, to be distinguished
from the one of the second kind by the fact that it now describes a dynamic property of
the particle induced by those of the bath.

Stokes-Einstein relation.

We have mentioned that in a normal fluid the viscosity and friction coefficient of the
frictional force exerted on an spherical particle of radious a are related by the Stokes law
γ = 6πaη. This relation, combined with (4.13) implies the Stokes-Einstein relation

6πaη =
T

Dx

linking the viscosity to the temperature and spatial diffusion constant. This prediction
first obtained by Einstein and then confirmed by Langevin was experimentally verified by
Perrin. Much more recently, though, it has been noticed that in liquids that are super-
cooled this relation ceases to be valid.

Smoluchowski (strong overdamped) limit.

In many situations in which friction is very strong the inertial term m~̇v can be dropped
from eqn (4.5) :

γ~̇x(t) = ~F (~x, t) + ~ξ(t) . (4.14)
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This limit is acceptable when the observation times are much longer than the characteristic
time for relaxation tvc = m/γ, such that the mean-squared displacement of the velocity
saturates and the position diffuses. The range of validity of this approximation can be
easily put to test in the example of a particle moving in a harmonic potential.

In the white-noise case the friction coefficient can be eliminated from the Langevin
equation in the Smoluchowski limit and the noise-noise correlation with the rescaling of
time : τ ≡ tγ−1, x̃(τ) ≡ x(tγ−1).
4.1.2 Generalized Langevin equations

Langevin-like equations are used to describe the dynamics of a much more general
microscopic or macroscopic systems coupled to environments. The applications in physics,
chemistry and engineering are numerous. One can cite, for instance, the description of the
dynamics of macromolecules in solution, with the analysis of the electrophoresis technique
as a particular case. The time required to dissociate molecules or the transition rate
between molecular configurations are subjects of great interest in chemistry that have
been attacked with the Langevin approach. Stochastic equations with damping and white
noise are also used to describe noisy electric circuits. To treat glassy problems that are
typically macroscopic systems constituted by particles (colloids, atoms, molecules, spins...)
in contact with an environment (the solution, phonons...) that is described statistically
we need to justify them beyond the simple Brownian motion problem.

Langevin equations with multiplicative noise.

So far the random force appeared as a separate term in the Langevin equation. Exten-
sions of the Langevin approach with multiplicative noise lead to the so-called non-linear
Langevin equations [30] in which the usually delta-correlated Gaussian noise ~ξ multiplies
a certain function e(~x, t) of the stochastic variable ~x itself :

m~̈x + γ~̇x = −~F (~x, t) + e(~x, t)~ξ(t) . (4.15)

However, as written, this equation is at best ambiguous. A proper prescription in a discrete
time setting must be specified. This is a very important point that we shall not discuss
here. It leads to what is called Ito and Stratonovich calculus, basically different prescrip-
tions as to how to interpret the continuous differential equation and how to discretize the
time-derivative.

Langevin equations with memory.

A derivation of a generalized linear Langevin equation with memory is very simple. In
general, one studies the coupled (closed) system made by the actual system of interest
in interaction with an environment. The description of the bath and of its interaction
with the system depends on the problem at hand. The simplest choice is that of an
independent ensemble of harmonic oscillators that couple linearly to each coordinate-like
degree of freedom in the system. This choice allows one to solve the dynamic equations for
the bath variables analytically. After introducing their solution in the dynamic equations
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for the system, one thus obtains the dynamics of the reduced system. Until this point the
dynamics of the system remains deterministic and is completely determined by its initial
conditions as well as those of the reservoir variables. The statistical element comes in when
one proposes that the initial coordinates and momenta of the oscillators in the bath are
distributed according to an equilibrium measure. This induces randomness and friction
in the dynamics of the reduced system. After performing explicitly these calculations one
ends up with the generalized Langevin equation :

m~̇v(t) = ~F (~x, t) + ~ξ(t) −
∫ t

0
dt′ γ(t − t′)~̇x(t′) . (4.16)

with the Gaussian thermal noise characterized by

〈ξi(t)〉 = 0 , ∀ i and ∀ t , (4.17)

〈ξi(t)ξj(t
′)〉 = T δijγ(t − t′) , (4.18)

and γ(t − t′) a retarded friction. A multiplicative retarded noise arises from a model in
which one couples the coordinates of the oscillators to a generic function of the coordinates
of the system.

Different oscillator reservoirs are characterized by different kernels γ(t−t′). The spectral
function of the colored bath is usually assumed to have the form

S(ω) = T γ̃(ω) = 2Tγ

(

|ω|
ω̃

)δ−1

fc

(

|ω|
Λ

)

. (4.19)

The function fc(x) is a high-frequency cut-off of typical width Λ and is usually chosen
to be an exponential. The frequency ω̃ ≪ Λ is a reference frequency that allows one to
have a coupling strength γ with the dimensions of a viscosity. If δ = 1, the friction is
said to be Ohmic, S(ω) is constant when |ω| ≪ Λ and one recovers a white noise. When
δ > 1 (δ < 1) the bath is superOhmic (subOhmic). The exponent δ is taken to vary in the
interval [0, 2] to avoid divergencies.

Time-dependent, ~f(t), and constant non-potential forces, ~fnp, as the ones applied to
granular matter and in rheological measurements, respectively, are simply included in the
right-hand-side (rhs) as part of the deterministic force. When the force derives from a
potential, Fi(t) = −∂xi

V (~x(t)).
In so far we have discussed systems with position and momentum degrees of freedom.

Other variables might be of interest to describe the dynamics of different kind of systems.
In particular, a continuous Langevin equation for classical spins can also be used if one
replaces the hard Ising constraint, si = ±1, by a soft one implemented with a potential
term of the form V (si) = u(s2

i − 1)2 with u a coupling strength (that one eventually
takes to infinity to recover a hard constraint). The soft spins are continuous unbounded
variables, si ∈ (−∞,∞), but the potential energy favors the configurations with si close
to ±1. Even simpler models are constructed with spherical spins, that are also continuous
unbounded variables globally constrained to satisfy

∑N
i=1 s2

i = N .
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4.2 Averages, correlations and responses

In Sect. 2.10.5 we analyzed several averaged properties of Brownian motion. In this
Section we introduce the averaged observables on which we shall focus in the rest of the
book. We use a vector ~x to encode all dynamic degrees of freedom in the system. These
can be position and momenta for a particle system, spins for a magnetic sample, or even
a field such as the local and time-dependent density.

4.2.1 One-time functions

The simplest dynamic observables depend only on one time and are defined by

〈A(~x, t) 〉 =
∫

D~ξ P (~ξ) A(~xξ, t) , (4.20)

where ~ξ symbolically denotes the noise at all times. The integral indicates a sum over
all possible noise history realizations, each counted with its weight P (ξ). This is a path-
integral and we shall not discuss it here. Even if A can in principle be any complicated
functional of the system’s degrees of freedom, in most cases of interest it is a simple
scalar function of these variables. Typical examples we shall examine later are the energy
density, the magnetization density in a magnetic system, the particle density in a liquid
or a glass, etc.

4.2.2 The correlation functions

Given any two functionals of ~x, say A(~x, t) and B(~x, t), one defines the correlation
function between A and B at two subsequent times t and t′ as

CAB(t, t′) ≡ 〈A(~x, t)B(~x, t′) 〉 =
∫

D~ξ P (~ξ) A(~xξ, t)B(~xξ, t
′) .

Note that the auto-correlations are, by definition, symmetric under exchanges of t and t′,
CAA(t, t′) = CAA(t′, t).

In a generic situation CAB(t, t′) is a function of both times t and t′. We shall see
that when the system reaches a steady state, and in particular the equilibrium measure,
CAB(t, t′) becomes stationary and a function of time-differences only CAB(t, t′) = Cst

AB(t−
t′) = Cst

AB(τ) with τ ≡ t − t′. In complete generality we write the two-time correlator as
CAB(t, t′) = CAB(τ, t′) and we define Fourier transforms with respect to the time difference
τ :

C̃AB(ω, t′) ≡
∫ ∞

−∞
dτ CAB(τ, t′) eiωτ

with the inverse Fourier transform given by

CAB(τ, t′) =
∫ dω

2π
C̃AB(ω, t′) e−iωτ .
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Fig. 10 – Sketch of perturbations of strength h ; a kick (left) and a step (right).

In the stationary limit these become the usual expressions

C̃AB(ω) ≡
∫ ∞

−∞
dτ Cst

AB(τ) eiωτ , Cst
AB(τ) ≡

∫ ∞

−∞

dω

2π
C̃AB(ω) e−iωτ ,

and C̃AA(ω) is the spectral density of A.
Sometimes it is useful to calculate the connected correlation functions in which one

correlates the fluctuations of A and B about their averages :

Cc
AB(t, t′) ≡ 〈 (A(~x, t) − 〈A(~x, t)〉) (B(~x, t′) − 〈B(~x, t′)〉) 〉 .

Other important two-time quantities in the analysis of dynamical problems with diffu-
sion are the displacement between observables :

∆
(1)
AB(t, t′) ≡

〈

(A(~x, t) − B(~x, t′))
2

〉

= CAB(t, t) + CAB(t′, t′) − 2 CAB(t, t′) ,

and the displacement between the fluctuations of these observables,

∆
(2)
AB(t, t′) ≡

〈

(A(~x, t) − 〈A(~x, t)〉 − B(~x, t′) + 〈B(~x, t′)〉)2
〉

= Cc
AB(t, t) + Cc

AB(t′, t′) − 2 Cc
AB(t, t′) .

4.2.3 The linear response

The application of an infinitesimal external force of strength h, possibly time-dependent,
that couples linearly to a generic function B of the system’s degrees of freedom, modifies
the Hamiltonian according to

H → H − h(t)B(~x, t) .

We represent the instantaneous infinitesimal perturbation h(t) as the kick between t2−δ/2
and t2 + δ/2 in Fig. 10-left and a step-like perturbation that is continuously applied after
time t2 in the right panel of the same figure.

The variation of the average of another generic function A evaluated at time t, due to
the applied force is

δ〈A(~x, t) 〉 =
∫ ∞

0
dt′ RAB(t, t′) δh(t′) . (4.21)
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This relation defines the instantaneous linear response RAB(t, t′).
It is important to notice that the perturbation can modify the particle’s position only

at future times. This is the reason why the integration in (4.21) can only span the time
interval going from the initial time t′ = 0 to the measuring time t′ = t. Otherwise stated,
the instantaneous linear response is causal and hence proportional to the Heavide theta
function :

RAB(t, t′) ≡ δ〈A(t)〉
δh(t′)

∣

∣

∣

∣

∣

h=0

= rAB(t, t′) θ(τ) τ ≡ t − t′ . (4.22)

Equation (4.21) then means that the change in the averaged function A due to the coupling
of B to the force h exerted during a finite time-interval is a linear superposition of the
changes due to spike-like perturbations applied at each instant in the same time-interval.

A very useful expression for the linear response of a Langevin process with additive
noise is a consequence of Novikov’s formula, which applies to general functions of Gaussian
random variables with zero mean and states that

〈x(t)ξ(t′) 〉 =
∫ ∞

0
dt′′ 〈 ξ(t′′)ξ(t′) 〉

〈

δx(t)

δξ(t′′)

〉

. (4.23)

Using the noise-noise correlation (4.18) and the fact that the second factor in the integrand
equals the linear response one finds

〈x(t)ξ(t′) 〉 = T
∫ ∞

0
dt′′ γ(t′, t′′) R(t, t′′) . (4.24)

For a white noise γ(t′, t′′) = 2γδ(t′−t′′) and the relation becomes : 2γTR(t, t′) =〈x(t)ξ(t′) 〉.
The Itô convention assumes that the noise term ξ(t) has a strictly zero correlation time
and is always slightly posterior to (and therefore independent of) any function G(x, t),
possibly determined by all previous values of ξ(t′), t′ < t. Therefore, 〈 ξ(t)x(t) 〉 vanishes.
The Stratonovich rule, on the other hand, assumes that the noise term ξ(t) has a very
small, but non zero correlation time, which is taken to zero after the continuous time limit
of the Langevin equation has been taken. This implies that the linear responses take the
boundary values :

Stratonovich R(t, t) = 1/2γ , R(t, t−) = 1/γ ,
Itô R(t, t) = 0 , R(t, t−) = 1/γ .

A function that we shall explore in great detail in future chapters is the integrated
linear response

χAB(t, tw) ≡
∫ t

tw
dt′′ RAB(t, t′′) . (4.25)

It represents the influence on the observable A of a perturbation applied at the waiting-
time tw and held constant until the measuring time t, as the one sketch in Fig. 10-right,
normalized by the strength of the applied field.
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The Fourier transform with respect to the time-difference τ of the response function
at fixed time t′ reads

χ̃AB(ω, t′) ≡
∫ ∞

−∞
dτ rAB(t′ + τ, t′) θ(τ) eiωτ , (4.26)

and defines a generalized ac-susceptibility. The real and imaginary parts of χ̃AB, are cal-
led χ′

AB and χ′′
AB, respectively. The generalized ac-susceptibility satisfies χ̃∗

AB(ω, t′) =
−χ̃AB(−ω, t′) and χ′

AB and χ′′
AB are, respectively, even and odd functions of ω :

χ′
AB(ω, t′) = χ′

AB(−ω, t′) , χ′′
AB(ω, t′) = −χ′′

AB(−ω, t′) .

In equilibrium χ̃AB(ω, t′) → χ̃AB(ω) since χAB(t, t′) → χst
AB(τ) for all observables A and

B.

4.3 Probabilistic formalism

In this Section we recall some features of the alternative approach to stochastic pro-
cesses that consists in studying the evolution of the time-dependent probability distribu-
tion of the system’s degrees of freedom, instead of writing a stochastic evolution equation
for their dynamics.

4.3.1 Time-dependent probabilities

Let us consider a stochastic processes characterized by a dynamic variable ~x. For sim-
plicity we use a notation in which we encode all dynamic variables in a single vectorial
degree of freedom ~x = (x1, x2, . . . , xd). Later we shall make explicit the case in which one
has position-like and momentum-like variables. The time-dependence of ~x can be dictated
by a Langevin equation of the kind discussed in the previous Sections or it can be deter-
mined by other stochastic dynamic rules. Since its evolution is not deterministic, it can be
known only in probabilistic sense. The knowledge of the joint time-dependent probability
density

P (~xn, tn; ~xn−1, tn−1; . . . ; ~x0, t0) ,

characterizes the process completely (we use a discretized description of all times, t0 ≤
t1 ≤ . . . ≤ tn, tn being the total time). In ?? we shall use a short-hand notation denoting
~X the complete trajectory of the process, ~X ≡ (~xn, tn; . . . ; ~x0, t0).

The conditional probability density

P (~xn, tn; ~xn−1, tn−1; . . . ; ~xk+1, tk+1|~xk, tk; ~xk−1, tk−1; . . . ~x0, t0)

=
P (~xn, tn; ~xn−1, tn−1; . . . ; ~xk+1, tk+1)

P (~xk, tk; ~xk−1, tk−1; . . . ; ~x0, t0)
(4.1)

allows one to know the probability of finding future configurations given that the process
took some specified previous values.

One can distinguish between processes for which their full history is needed to predict
their future (in a probabilistic sense) and processes for which the knowledge of the present
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is enough to do so. The former are called non-Markov while the latter are Markov. The
standard example of a Markov chain is a random walk on a d-dimensional square lattice : at
each time-step the walker can jump to any of its 2d neighboring sites with equal probability
1/(2d) that is totally independent of how the walker got to its present position. A self-
avoiding random walk on the same lattice is instead a non-Markovian stochastic process :
since the chain cannot cross on the lattice one needs to know the positions the walker
occupied at all previous times.8 In more technical terms, a Markov process is such that

P (~xn, tn; . . . ; ~xk+1, tk+1|~xk, tk; . . . ~x0, t0) = P (~xn, tn; . . . ; ~xk+1, tk+1|~xk, tk) .

This property implies that any joint probability density can be expressed in terms of
conditional probabilities that depend only on the present and immediately subsequent
configurations, called transition probabilities,

T (~xk, tk|~xk−1, tk−1) ≡ P (~xk, tk|~xk−1, tk−1) .

Hence,

P (~xn, tn; . . . ; ~x0, t0) = T (~xn, tn|~xn−1, tn−1) . . . T (~x1, t1|~x0, t0)P (~x0, t0) .

Clearly, the transition probabilities satisfy

∫

d~xk T (~xk, tk|~xk−1, tk−1) = 1 , T (~xk, tk|~xk−1, tk−1) ≥ 0 .

Chapman-Kolmogorov integral equations.

The probability density P of a generic (and not necessarily Markov) stochastic process
evaluated at t2 is related to the one at t1 by the integral equation

P (~x2, t2) =
∫

d~x1 P (~x2, t2; ~x1, t1) =
∫

d~x1 P (~x2, t2|~x1, t1)P (~x1, t1)

where the integration runs over all possible values of ~x1. Note that t1 and t2 are not
necessarily infinitesimally close to each other.

The conditional probabilities satisfy a similar integral equation. Indeed,

P (~x3, t3; ~x1, t1) = P (~x3, t3|~x1, t1) P (~x1, t1) =
∫

d~x2 P (~x3, t3; ~x2, t2; ~x1, t1)

=
∫

d~x2 P (~x3, t3|~x2, t2; ~x1, t1)P (~x2, t2; ~x1, t1)

=
∫

d~x2 P (~x3, t3|~x2, t2; ~x1, t1)P (~x2, t2|~x1, t1)P (~x1, t1) , (4.2)

8Note however that we refer here to dynamically generated self-avoiding walks, which does not define
the same statistical ensemble as that relevant for polymers in thermal equilibrium. On this point, see [?].
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from where we get

T (~x3, t3|~x1, t1) =
∫

d~x2 T (~x3, t3|~x2, t2)T (~x2, t2|~x1, t1) , (4.3)

if the process is Markov. This is the Chapman-Kolmogorov equation that links the tran-
sition probabilities.

Generation and elimination of memory.

Two points about the differences between Markov and non-Markov processes are worth
discussing before going on.

First, the minimum time-separation, δ = tk+1 − tk, that is physically observable may
play a role in the classification of a process as Markov or non-Markov. In most realistic
situations, if one investigated the dynamics with a sufficiently fine time grid, non-Markov
effects would be observable. However, for many practical purposes one can assume that
these fine details are overlooked by a sparse time-grid that is longer than the characteristic
memory time. Thus, the processes can be considered to be effectively Markov, in the same
way as the noise-noise correlations in the Langevin approach can usually be taken to be
delta functions (in time).

Besides, as we have already noticed when we rewrote the Langevin equation for the
Brownian particle as a function of the coordinate only, the elimination of some degrees of
freedom in the system, by integrating their dynamic equations and replacing the result in
the remaining ones, may transform a Markov process into a non-Markov one. The same
can occur at the level of the probabilistic description that we are discussing in this Section.

Thus, we conclude that the Markov or non-Markov character of a process may depend
on the level of description we want to obtain and on the approach we adopt.

Stationarity and ergodicity.

A stochastic process is stationary when the joint-probability distribution is invariant
under translations of time (tti) :

P (~xn, tn; . . . ; ~x0, t0) = P (~xn, tn + ∆; . . . ; ~x0, t0 + ∆) . (4.4)

In particular, this implies that the one-time probability is independent of time, P (~x, t) =
Pst(~x), and the two-time joint probability depends on the time-difference only, P (~x1, t1; ~x2, t2) =
Pst(~x1, t1 − t2; ~x2, 0). This immediately implies that the conditional probabilities are also
functions of the time-difference only : P (~x1, t1|~x2, t2) = Pst(~x1, t1− t2|~x2, 0). For a Markov
process the latter properties are sufficient to determine the stationary character of the
process since all joint probabilities can be expressed in terms of one-time and transition
probabilities only.

Property (4.4) immediately implies that in a stationary process the the correlation
between any number of observables, A1, . . . , An, evaluated at different times t1 ≤ . . . ≤ tn,
is invariant under translations of time, irrespective of the values of the time differences
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t2 − t1, . . . , tn − tn−1,

CAnAn−1...A1(tn + ∆, . . . , t1 + ∆) = CAnAn−1...A1(tn, . . . , t1) .

In particular, one has CAB(t, t′) = Cst
AB(t − t′). Similarly, one proves that the multi-time

linear responses are also stationary when (4.4) holds.
An ergodic Markov chain is such that all possible configuration, i.e. all possible values

of ~x, are accessible from any initial condition.

4.3.2 The master equation

Let us now focus on a Markov chain. The evolution of the conditional probability
density P (~x, tk|~x′, t0) on the time sequence t0, . . . , tn, is determined by the master equation

P (~x, tk+1|~x′′, t0) − P (~x, tk|~x′′, t0) = −
∑

~x′

T (~x′, tk+1|~x, tk)P (~x, tk|~x′′, t0)

+
∑

~x′

T (~x, tk+1|~x′, tk)P (~x′, tk|~x′′, t0) . (4.5)

Sometimes, one simplifies the notation and writes P (~x, t) for the unknown in this equation,
with the initial condition P (~x, t0) kept implicit. The lhs is the definition of the change
in the probability dentisty between the subsequent times tk and tk+1. The rhs has two
contributions : the first (negative) term represents the process of leaving the configuration
~x, the second (positive) term represents the process of reaching the configuration ~x.

The master equation (4.5) can be written in a matricial form. Indeed, one recasts it as

P (~x, tk+1|~x′′, t0) =
∑

~x′

W (~x, tk+1|~x′, tk)P (~x′, tk|~x′′, t0) (4.6)

with the matrix W written in terms of the transition probabilities, T .

Balance and detailed balance.

Any stationary solution to the master equation satisfies

∑

~x′

T (~x′, tk+1|~x, tk)Pst(~x) =
∑

~x′

T (~x, tk+1|~x′, tk)Pst(~x
′) ∀ ~x. (4.7)

This equation is called balance and it is a necessary condition to allow for a steady state.
The balance condition may admit many solutions. Detailed balance is a restatement of
the invariance of the dynamics under time-reversal in a probabilistic sense. It states that,
in the steady state, any transition is balanced by its time-reversed,

T (~x′, δ|~x, 0)Pst(~x) = T (~xR, δ|~x′R, 0)Pst(~x
′R) , (4.8)

and the stationary measure is also invariant under time-reversal,

Pst(~x) = Pst(~x
R) . (4.9)
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We classified the stochastic variables of a system depending on their parity properties
under time-reversal

xR
i (t) ≡ xi(−t) = ǫixi(t) with ǫi = ±1 ,

for even and odd variables, respectively. One can check that detailed balance implies
balance.

When the number of possible ‘microstates’ ~x is finite, detailed balance is sufficient
(though not necessary) to ensure that the stochastic process approaches its stationary
distribution function for long times.

As an example let us consider a particle system characterized by the positions and
momenta of each particle. A transition corresponds to modifying the position and mo-
mentum of one particle from (~r,~v) to (~r′, ~v′). Since the backwards motion from ~r′ to ~r
occurs in the opposite direction, the reversed transition corresponds to modifying (~r′,−~v′)
into (~r,−~v). Detailed balance requires that these two processes be equiprobable when the
system attained its stationary state, i.e.

Pst(~r
′, ~v′, δ;~r,~v, 0) = Pst(~r,−~v, δ;~r′,−~v′, 0)

T (~r′, ~v′, δ|~r,~v, 0)Pst(~r,~v) = T (~r,−~v, δ|~r′,−~v′, 0)Pst(~r
′,−~v′) . (4.10)

Note that these conditions ensure that the master equation admits a stationary solu-
tion. We still do not know if this solution is the only one or whether the process converges,
asymptotically, to it. We shall discuss these two questions in Sect. 4.3.3. Furthermore, we
have to determine, in as much generality as possible, when the stationary solution coin-
cides with the equilibrium measure Pst(~x) = Peq(~x). We shall come back to these very
important issues later. Finally, we have not discussed here the effect of external fields
on the time-reversal properties of a stochastic process. The external fields should also be
time-reversed in the rhs of the generalized (4.8).

4.3.3 The Fokker-Planck equation

The integral Chapman-Kolmogorov equation can be transformed into a differential
equation under certain assumptions. Several textbooks describe this derivation [28]. Here
we summarize some of the forms that this equation can take.

Kramers-Moyal expansion.

Starting from the Chapman-Kolmogorov equation, Kramers and Moyal derived a gene-
ral differential equation for the conditional probabilities. This equation involves a series in
which the coefficients are related to the momenta of the conditional probability. For non-
Markov systems these coefficients depend on the full history of the process. For Markov
processes the differential equation is local in time but it might involve an infinite number
of terms. When the Kramers-Moyal expansion stops after the second term, as happens
for Langevin processes with additive noise, we are left with a Fokker-Planck equation (see
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also below). In the case where the process does not ‘jump’, i.e. all displacements become
small in the limit δ → 0, one can write [28] :

∂P (~x, t|~x′, t′)

∂t
= − ∂

∂xi

[

D
(1)
i (~x, t)P (~x, t|~x′, t′)

]

+
∂2

∂xi∂xj

[

D
(2)
ij (~x, t)P (~x, t|~x′, t′)

]

(4.11)

The drift D
(1)
i (~x, t) and the diffusion constants D

(2)
ij (~x, t) are given by :

D
(1)
i (~x, t) = lim

δ→0

1

δ

∫

d~x′ (x′ − x)iT (~x′, tk+1|~x, tk)

D
(2)
ij (~x, t) = lim

δ→0

1

2!δ

∫

d~x′ (x′ − x)i(x
′ − x)jT (~x′, tk+1|~x, tk). (4.12)

The names given to these coefficients reflect their underlying physical nature, as will be
clear below. The above Fokker-Planck equation describes a Brownian motion process with
a local and time dependent drift and diffusion constants. There are however a much wider
class of processes that admit a continuous time limit, although they lose the property
of being continuous (in ~x). Suppose that the process can make jumps of non vanishing
amplitude, but more and more as δ → 0, such that the contribution to the transition
probabilities T (~x′, tk+1|~x, tk) corresponding to these jumps are proportional to δ. In this
case, the Kramers-Moyal expansion must contain non local spatial terms, corresponding
to these jumps, and reads

∂P (~x, t|~x′, t′)

∂t
= − ∂

∂xi

[

D
(1)
i (~x, t)P (~x, t|~x′, t′)

]

+
∂2

∂xi∂xj

[

D
(2)
ij (~x, t)P (~x, t|~x′, t′)

]

+
∫

d~x′′

[

T̂ (~x, t + δ|~x′′, t)

δ
P (~x′′, t|~x′, t′) − T̂ (~x′′, t + δ|~x, t)

δ
P (~x, t|~x′, t′)

]

,

(4.13)

where the last term describes the jumps in the trajectories of the stochastic process,
and T̂ the corresponding transition probabilities. That the above decomposition between
a (continuous) Brownian diffusion component and a jump component is unique in the
continuous time limit is the content of the work of P. Lévy on infinitely divisible pro-
cesses, and is called the Lévy decomposition. In some cases, the jump component admits
a fractional derivative representation, generalizing the second order diffusion term. This
corresponds to what is known as Lévy flight processes [39].

When the jump processes vanish, the Fokker-Planck equation can be recast in the form
of a local conservation law. Indeed, defining the probability current

Ji(~x, t|~x′, t′) ≡ D
(1)
i (~x, t)P (~x, t|~x′, t′) −

∑

j

∂

∂xj

D
(2)
ij (~x, t)P (~x, t|~x′, t′) ,

it becomes
∂P (~x, t|~x′, t′)

∂t
= −

∑

i

∂Ji(~x, t|~x′, t′)

∂xi

.
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Two special cases : Kramers and Smoluchowski.

The Kramers and Smoluchowski equations are particular cases that hold exactly for
a linear Langevin process with white additive noise. The probability distribution of the
thermal noise, P (ξ), induces a time-dependent probability distribution of the dynamic
variables ~x and ~v :

P (~x,~v, t) ≡
∫

Dξ P (ξ) δ (~x − ~xξ(t)) δ (~v − ~vξ(t)) , (4.14)

where we adopted the short-hand notation P (~x,~v, t) for the conditional probability
P (~x,~v, t|~x′, ~v′, t′).

In the overdamped limit, the velocity ~v is slaved to the local force and P (~x,~v, t) is
replaced by an exclusive function of ~x :

P (~x, t) ≡
∫

Dξ P (ξ) δ (~x − ~xξ(t)) (4.15)

that is determined by the following Fokker-Planck equation (also called Smoluchowski
equation in this context) :

γ
∂P (~x, t)

∂t
=

∂

∂xi

[

P (~x, t)
∂V (~x)

∂xi

]

+ T
∂2

∂x2
i

P (~x, t) , (4.16)

with the initial condition P (~x0, t0). [Note that this equation actually applies to the condi-
tional probability P (~x, t|~x0, t0).]

In the case where inertia cannot be neglected, and noise is additive, one can establish
that the probability density P (~x,~v, t) satisfies a first order differential Kramers equation :

∂P (~x,~v, t)

∂t
= − ∂

∂xi

(viP (~x,~v, t))

+
1

m

∂

∂vi

[(

γvi +
∂V (x)

∂xi

+
γT

m

∂

∂vi

)

P (~x,~v, t)

]

(4.17)

with the initial condition P (~x0, ~v0, t0).
It is very important to note that the balancing of factors on the rhs of the Kramers

and Smoluchowski equations is a direct consequence of the equilibration of the noise (see
Sect. 4.1.2) when the equations derive from a Langevin process. It is totally equivalent to
the relation (4.10) between the strength of the noise-noise correlator and the friction coef-
ficient. More generally, it is a particular case of the detailed-balance condition (4.8), that
calling Hfp(~x) the operator acting on P (~x, t) in the rhs of the Fokker-Planck equation,
reads

Hfp(~x)Pst(~x) = Pst({ǫixi})H†
fp({ǫixi}) . (4.18)

The Fokker-Planck equation for a stochastic field.
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A Fokker-Planck equation can also be deduced for a stochastic variable that is actually
a d-dimensional field, ~φ(~x, t) = (φ1(~x, t), . . . , φd(~x, t). It the natural generalization of the
equations presented in the previous section. In the Smoluchowski limit, and for additive
noise it reads

∂P (~φ, t)

∂t
=

δ

δφa(~x, t)

[

P (~φ, t)
δV [φ]

δφa(~x, t)

]

+ T
δ

δφ2
a

P (~φ, t) .

Approach to stationarity.

Under rather mild conditions one can prove that if a stochastic process governed by
a generic master equation admits a stationary state asymptotically, this one is unique.
We present a proof of this statement below. A very simple exception to this rule is given
by “decomposable” systems made of two or more non-interacting systems in which case
one can construct several stationary asymptotic solutions given by linear superpositions
with arbitrary coefficients of the stationary solution for each subsystem. Another case of
exceptions is given by certain problems with a continuous set of possible states. We shall
not discuss these special cases here but focus on the more generic situation.

Possibly, the simplest way to test under which conditions the time-dependent solution
to the Fokker-Planck equation approaches a stationary form asymptotically is to use the
“H-theorem’ [31, 30]’. The H-functional or Lyapunov-functional

HP1,P2(t) ≡
∫

d~x C

(

P1(~x, t)

P2(~x, t)

)

P2(~x, t) , (4.19)

measures a “distance” between the (normalised) pdfs, P1 and P2. C(y) is any strictly
convex function, i.e., it satisfies

∑

i C(ωiyi) >
∑

i C(yi)ωi for
∑

i ωi = 1 and ωi ≥ 0.
Customarily one uses C(x) = x ln x which suggests to relate H to a non-equilibrium
extension of the entropy concept via S(t) = So−H(t) with So the thermodynamic entropy.

Now, HP1,P2(t) is bounded from below and it is a monotonic decreasing function of

time when (a) the diffusion matrix D
(2)
ij is positive definite9, (b) the drift matrix does

not have singularities (that correspond to infinite high barriers that render the problem
decomposable) and (c) P1 and P2 are different from zero away from infinity. Thus, the
distance between any two normalized solutions vanishes asymptotically.

When the drift and diffusion matrices do not depend on time, the Fokker-Planck equa-
tion may admit a stationary solution. Based on the above argument, any other normalized
solution necessarily approaches the stationary one in the long-time limit. Two types of
stationary solution can be identified. The simpler ones have constant current Ji(~x) = Ji

fixed by the boundary conditions. Natural boundary conditions demand Ji = 0, when
xj → ∞ for all j, thus, Ji = 0 everywhere in space, in which case the stationary solution

9The argument needs to be slightly modified for the Kramers equation given that its diffusion matrix
is not positive definite ; still, one also proves that the asymptotic solution is unique in this case [30].
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takes the potential form

Pst(~x) ∝ e−φ(~x) , φ(~x) = −
∫

~x
dx′

k



D
(2)
ki

−1
(~x′)



D
(1)
i (~x′) − ∂D

(2)
ij (~x′)

∂xj
′









where a sum over repeated indices is assumed. In the simple case D
(1)
i (~x) = −∂xi

V (~x) and

D
(2)
ij (~x) = Tδij one easily checks that this expression becomes the Boltzmann factor. The

question then arises as to whether an explicit solution is possible when the drift term is
not of a potential form.

Another family of solution correspond to non-equilibrium steady states (ness) with a
divergenceless, time-independent current that is not necessarily constant in space. When
the drift term itself is divergenceless and D(2) is constant – corresponding for example
to tracer particles advected by a incompressible convection flow and subject to molecular
diffusion – then the ness is trivial and is given by Pst(~x) = 1/V , where V is the total

volume accessible to the particle. The local current is then given by Ji = D
(1)
i (~x)/V and is

by construction divergenceless. Another case that can be solved in full generality is when
the drift term is the sum of a potential part and a divergenceless part that are everywhere
orthogonal to each other. Then, the divergenless part simply advects the particles along
equi-potential lines and does not modify the standard equilibrium Boltzmann factor. In
the completely general case of an arbitrary drift and diffusion structure, there are in
general no explicit construction of the ness.

Approach to equilibrium.

Whether a stochastic process approaches equilibrium asymptotically depends on the
nature of the forces applied, the boundary conditions, etc. In the following we shall focus on
Fokker-Planck processes with no jumps. Among these, a subclass admit a spectral repre-
sentation of the Fokker-Plank operator with generic complex eigenvalues. The asymptotic
analysis has to be performed on a case-by-case basis.

A more restrictive class of systems are represented by self-adjoint fp operators. The
potential case, D

(2)
ij = Tδij and D

(1)
i = −∂xi

V , is a special problem in this class and one
proves that the process does indeed approach a stationary solution that is given by the
canonical equilibrium measure.

An easy and elegant proof of this statement, for a Smoluchowski potential problem relies
on a mapping of the Fokker-Planck equation to the Schrödinger equation [?]. Introducing

P (~x, t) ≡ c e−
β
2
V (~x) p(~x, t) (4.20)

with c a positive constant the Fokker-Planck equation becomes

∂p(~x, t)

∂t
=



T
∂2

∂x2
i

−


−1

2

∂2V (~x)

∂x2
i

+
β

4

(

∂V (~x)

∂xi

)2






 p(~x, t)

= −Lsp(~x, t) . (4.21)
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This is a Schrödinger equation in imaginary time. The potential energy term, say Vs, is a
function of the original potential V . p(~x, t) is related to the probability density and plays
the role of a wave function, while in true quantum mechanics it is the modulus squared
of the wave function which has a probability interpretation. The operator Ls admits a
spectral representation in terms of its eigenvalues λn and its eigenvectors ψn. Since the
potential Vs is independent of time, the eigenvectors, ψn, are time-independent, ψn(~x). If
the potential Vs grows to infinity sufficiently fast when xi → ±∞, for all i, the spectrum is
discrete and there is gap between the lowest eigenvalue, λ0, and the first excited state, λ1.
The ground state wavevector is everywhere positive and can hence describe a probability.
One can also show that the operator Ls can be written as the square of a certain operator,
and is thus positive semi-definite in a Hilbert space10 and the eigenvalues, λn, are real
and satisfy λn ≤ 0.

The solution to eqn (4.21) can be expressed as the series

p(~x, t) =
∑

n

cnψn(~x)e−λnt , (4.22)

with cn arbitrary numerical constants. When a stationary solution exists, the operator has
a vanishing eigenvalue, λ0 = 0, that, if the conditions mentioned in the previous subsection
are satisfied, is not degenerate. One has pst(~x) = c0ψ0(~x). The eigenstates associated to
non-zero eigenvalue can be degenerate in which case one needs a more refined notation
to distinguish their associated eigenvectors. We skip this detail and we continue to use
the simplified notation above. If there is a gap in the spectrum, λ1 > 0, in the long-time
limit only the contribution of the zero eigenvalue survives and p(~x, t) → pst(~x) = c0ψ0(~x).
The constant c0 is fixed to one by the normalization of the probability. Indeed, c0 =
∫

d~xψ0(~x)p(~x, 0) =
∫

d~xP (~x, 0) = 1.
Going back to the original pdf, P (~x, t), one has

lim
t→∞

P (~x, t) = ψ2
0(~x) = c2e−βV (~x) =

e−βV (~x)

∫

d~x e−βV (~x)

where we used the conservation of probability to compute c−2. Thus Peq is indeed the
asymptotic solution to the Fokker-Planck equation.

Note that this argument assumes that a sufficiently long t (t > teq) is reached such that
only the λ0 = 0 term survives in the sum. This hypothesis does not hold in the asymptotic
analysis for the relaxing models we analyze in the next Sections. If the next eigenvalue λ1

does not vanish, its inverse is the time-scale needed to equilibrate the model. If however,
there is no gap in the spectrum, one does not have a simple argument to estimate how
long one should wait until the asymptotic limit is reached. This is a question that will
be raised regularly in the treatment of glassy dynamics. Moreover, when non-potential or
time-dependent forces are exerted on the system the transformation (4.20) is not sufficient
to deal with their effect and equilibrium cannot be established.

10This space is defined via the scalar product (f, g) ≡
∫

d~xf(~x)g(~x)/Pst(~x) and an operator L is
self-adjoint if (f,Lg) = (Lf, g).
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Since the eigenvectors corresponding to excited states are not everywhere positive, one
cannot interpret ψ0ψn directly as a probability. Interestingly however, one can construct
linear combination of these that can be interpreted as metastable states, that can be
defined as states with lifetimes longer than a certain fixed but long time-scale.

4.4 Montecarlo

This is a numerical technique to simulate the temporal evolution of a system including
the stochastic effect of its coupling to a heat bath. It was introduced by Metropolis,
Rosenbluth, Rosenbluth, Teller and Teller in 1953 [J. Chem. Phys. 21, 1087 (1953)]

One uses a master equation with transition probabilities that satisfy detail balance.
At each step a spin in the sample, say si, is chosen at random. It is then turned with
probability

Wi =

{

e−∆Ei/T ∆Ei ≥ 0 ,
1 ∆Ei < 0 ,

(4.23)

where ∆Ei = E(−si)−E(si) where E is the energy of the system and −si is the reversed
value of the spin si. The spin flips whether Wi exceeds a random number taken from a
uniform distribution between 0 and 1. This rule implies that all updates that are favourable
in energy (∆Ei < 0) are accepted while some updates that increase the energy of the
system are also acceped [with probability (4.23)]. These a priori unfavourable moves
might help the system get out of metastable configurations and reach equilibrium. The
unit of time is defined as a Montecarlo sweep, that is to say, N attemps to flip a spin
(note that due to the random choice of spins, some will appear more than once and others
will not appear within the N chosen ones).

If the system at hand is such that the equilibration time is relatively short at the wor-
king temperature, T , after a short transient the configurations obtained with the Monte-
carlo sampling are typical of the the equilibrium measure at T . This means the Montecarlo
code generates configurations with probability the Gibbs-Boltzmann probability density.
This remark allow one to compute equilibrium averages using temporal averages :

〈O 〉eq ≈
1

∆t

∆t
∑

k=1

Ok (4.24)

where k labels the Montecarlo steps, ∆t is a sufficiently long Montecarlo time-interval
(after equilibration) and O is a generic observable. The average on the left is the theoretical
equilibrium one.

The equilibrium Montecarlo method is an importance sampling one in the sense that
instead of averaging over all the possible configurations of the system (of the order of
2N = eN ln 2 in an Ising spin system, where N is the number of spins in the sample) one
just averages over a much smaller number of configurations (typically of the order of N
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instead of the order of an exponential of N) obtaining still results that estimate rather
accurately the exact value.

The convergence of the Montecarlo method to the equilibrium measure is ensured by
the considerations presented in the previous Subsections (note that the dynamics satisfies
detailed balance). In some cases (glassy systems) the Montecarlo time needed to reach the
equilibrium measure can be a very rapidly growing function of the number of variables in
the problem and equilibration can fall beyond the reachable time-window. In these cases
it becomes interesting to study the dynamics of the system.

4.5 Lattice field theory

The definition of quantum gaude theories on an Euclidean space-time lattice was pro-
posed by K. Wilson in 1974. The lattice spacing provides a natural short length-scale
cut-off and the ultraviolet diverges are regularized. In this way the theory can be stu-
died both in the weak and strong coupling limits. This method is thus specially suited to
treat problems where perturbation techniques fail, such as QCD. In particular, essentially
strong-coupling phenomena like quark confinement can be searched and found in lattice
QCD.

Still, a difficult problem remains to be solved before achieving full success with this
approach : the lattice spacing has to be eventually sent to zero. In this process the bare
coupling constants, say g0, get renormalized (in complete analogy to the renormalization
group calculations of statistical models, such as the Ising chain discussed in Sect. 2.6.3).
In other words, a relation between a and g develops : g depends on the observation scale.
The continuum limit is well behaved only if the running coupling constants reach a stable
fixed point. This statement is rather difficult to prove analytically for generic theories –
including those of interest in particle physics. One then resorts to an alternative route,
computer simulations.

Indeed, having defined the theory on a lattice the similarity with statistical mechanics
and condensed matter problems becomes apparent. The lattice gauge theories can then
be studied with numerical simulations and, in particular, Montecarlo thechniques.

Let us sketch how a lattice gaude theory is defined. For concreteness we use again (cfr.
Sect. 2.6.3) a scalar (mass) field φ coupled to a gauge field A.

– Time is Wick rotated to construct an Euclidean 1 + d dimensional space-time.
– One identifies the Euclidean action SE(φ,A) that also depends on the coupling

constants (mass, coupling strength, etc.)
– The path-integral expression for the average of any observable O(φ,A) reads

〈O 〉 = Z−1
∫

DφDA O(φ,A) e−
1
h̄

SE [φ,A] , (4.25)

Z =
∫

DφφDA e−
1
h̄

SE [φ,A] , (4.26)

cfr. eq. 2.66. The quantity Z is called vacuum-to-vacuum permanence amplitude in
the quantum field theoretical context and it is just the partition function in the
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statistical sense.
– If one is interested in Minkowski space-time results the averages in (4.25) should be

continued back.
– Let us now define the theory on the lattice. We first focus on a purely scalar field

theory (ignoring, for the moment, the gauge field A). Space-time is defined as a
typically hypercubic lattice with lattice spacing a and finite volume V . The field is
defined on the vertices of lattice : φ(~x) → φi where i labels the lattice sites. The
derivatives in SE are replaced by finite differences. The functional integrals become
ordinary integrals.

– Without entering into the details, it turns out that to respect gauge invariance, one
is forced to define the gauge fields on the plaquettes (and not on the sites).

4.6 Stochastic quantization

The basic idea of the method of stochastic quantization is to interpret the factor

e−
1
h̄

SE [φ]

∫ Dφe−
1
h̄

SE [φ]
. (4.27)

as the stationary distribution of a stochastic process running on a fictitious time. The
steps to follow are then

– 1 + d-dimensional Euclidean space is enlarged to include a new coordinate t.
– The system of interest is assumed to be in contact with a (classical) heat bath at

temperature T = h̄/kB.
– The most natural stochastic evolution ensuring (for sufficiently well-behaved SE) the

approach to the equilibrium measure (4.27) is a Langevin equation

∂tφ(~x, t) = − δSE[φ]

δφ(~x, t)
+ η(~x, t) . (4.28)

SE a generalization of the original Euclidean action that includes an integration over
the fictitious time t :

SE =
∫

dt
∫

d1+dx L[φ(~x, t), ~∇xφ(~x, t)] . (4.29)

η is a white Gaussian noise with zero mean and variance proportional to kBT .
– Correlations are now defined by performing the averages over the thermal noise. For

well-behaved SE that ensure the approach to equilibrium one then has

lim
t→∞

〈φ(~x1, t) . . . φ(~xn, t) 〉 = 〈φ(~x1) . . . φ(~xn) 〉 (4.30)

where the right-hand-side is the expectation value of the n-point correlation function
in the quantum field theory. This result is just a consequence of the discussion in
this Section.
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Extensions of this approach to Abelian and non-Abelian gauge field theories,
fermionic field theories, supersymmetric field theories, field theories defined in
Minkowski space, etc. exist and have been discussed in [?, 33]. An advantage of sto-
chastic quantization with respect to other methods is that it is not necessary to fix the
gauge in a gaude field theory : the stochastic averages of gauge-invariant observables do
converge while non-invariant Green functions do not have an equilibrium limit. The equi-
librium expressions of the stochastic averages have always been found to agree with the
ones computed using ordinary gauge-fixed perturbation theory.
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5 Dynamics of phase transitions

An interface is a frontier separating two regions of space occupied by different phases. It
could be the border between water and oil in a liquid mixture, the border between regions
with positive and negative magnetization in a magnet, the limit of a fluid invading porous
media, etc. The static and dynamic properties of interfaces have many points in common
with the ones of (sometimes directed) manifolds with d internal dimensions embedded in
N + d dimensional spaces with N the dimension of the transverse space, see eq. (??).
In this way, one includes cases such as directed lines (d = 1) that mimic vortex lines in
N +d = 3 dimensional high-Tc superconductors, polymers in (N +d = 2 or 3-dimensional)
random media, etc.

A slighly different situation is the one of growth phenomena, as for instance, the burning
front in a forrest, the advance of a crack in a rock, fluid invation in porous media, the
growth of semiconductors via epitaxial beam, or even the growth of bacterial colony.

As a physicist one would like to characterize the static and dynamic properties of these
interfaces and surfaces. The analysis os the static properties of domain walls and inter-
faces corresponds, typically, to determining their equilibrium conformations (geometric
properties, numbers, degeneracies, etc.) The study of the dynamic properties of domain
walls and interfaces includes the analysis of their relaxation to equilibrium, response to
external driving forces, creep motion and the depinning transition.

Domain growth and interface frowth in the presence of quenched disorder is sometimes
considered to be a ‘baby’ spin-glass problem due to the presence of frustration given by
the competition between the elastic energy that tends to reduce the deformations and
quenched disorder that tends to distort the structure.

5.1 Scale invariance

In general, the morphology of an interface depends on the length scale of observation :
the Alps look rough on Earth but they look smooth seen from the Moon. However, a
number of surfaces called self-similar do not depend on the scale of observation ; they are
characterized by the absence of a characteristic scale. Such scale-invariance is ubiquotous
in nature, with the classical example of critical phenomena, and it is characterized by the
existence of power laws that characterize many quantities over many orders of magnitude.

5.2 Domain growth

Take a magnetic system, such as the ubiquitous Ising model, and quench it into the
low temperate phase starting from a random initial condition. In the course of time
neighbouring spins realize that their preferred configuration is an ordered one and domains
of the two ordered phases form and grow. At any finite time the configuration is such that
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(‘‘random bond’’)  

defect

‘‘random field’’

x

u(x)

Fig. 11 – Left : an experimental view of a domain wall. Right : a sketch of a domain wall
in a 2d Ising magnet.

both types of domains exist. The magnetization is zeroupto corrections in the inverse
system size.

The domain growth kinetics in systems undergoing an ordering process after a quench
is an important problem for material science applications but also for our understanding
of pattern formation in nonequilibrium systems. The late stage dynamics is believed to be
governed by a few properties of the systems whereas material details should be irrelevant.
Among these relevant properties one may expect to find the number of degenerate gound
states, the nature of the conservation laws and the hardness or softness of the domain walls.
Thus, classes akin to the universality classes of critical phenomena have been identified.

5.2.1 Discrete models

The dynamics of discrete spin models is defined via a stochastic rule, of the type intro-
duced in Sects. ?? and ??. Time-dependent macroscopic observables are then expressed in
terms of the values of the spins at each time-step. For instace, the magnetization density
and its two-time self correlation function are defined as

m(t) ≡ N−1
N

∑

i=1

〈 si(t) 〉 , C(t, tw) ≡ N−1
N

∑

i=1

〈 si(t)si(tw) 〉 (5.1)

where the angular brackets indicate an average over many independent runs of the dyna-
mic rule starting from identical initial conditions. Averages over different initial conditions
can also be taken.

This formulation of the domain growth process is very convenient to for computer
simulations.
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5.2.2 Continuous models

Coarsening occurs in lattice models with a phase transition from a disordered to an or-
dered phase. The Ising model is an example. In order to describe this process theoretically
it is convenient to introduce a coarse-grained description in terms of an order parameter,
the magnetization density,

φ(~x, t) ≡ 1

V

∑

i∈V~x

si(t) . (5.2)

For simplicity, we consider a scalar field φ but cases in which vectorial or even tensorial
order parameters are also of experimental relevance.

The Landau-Ginzburg free-energy functional that characterizes equilibrium is

F [φ] =
∫

ddx
{

c

2
[∇φ(~x, t)]2 + V [φ(~x)]

}

(5.3)

with
V (φ) = (φ2

0 − φ2)2 . (5.4)

The first term in (5.3) represents the energy cost to create a domain wall. It represents
the elasticity of the interface, see the discussion leading to eq. (??). The second term has
a double well structure with two minima, at φ = ±φ0, that correspond to the equilibrium
states at low temperatures.

In most cases, the domain wall and interface dynamics is overdamped. It is then gi-
ven by the time-dependent Ginzburg-Landau equation or model A in the classification of
Hohenberg-Halperin :

∂φ

∂t
= −δF

δφ
+ ξ . (5.5)

This equation does not conserve the order parameter (〈φ(~x, t)〉 is not constant but decays
as a function of time for generic initial conditions). ξ is a thermal noise usually taken to
be Gaussian distributed with zero mean and correlations

〈 ξ(~x, t)ξ(~x′, t′) 〉 = 2kBTδd(~x − ~x′)δ(t − t′) . (5.6)

Initial conditions are usually taken to be random with short-range correlations or simply

[ φ(~x, 0)φ(~x′, 0) ] = ∆δ(~x − ~x′) . (5.7)

5.2.3 Scaling hypothesis

The scaling hypothesis states that at late times and in the scaling limit

r ≫ ξ , R ≫ ξ , with r/R arbitrary , (5.8)

and r a distance between two points in the sample, r ≡ |~x − ~x′|, there exists a single
characteristic length, R(t), such that the domain structure is, in the statistical sense,
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independent of time when lengths are scaled by R(t). This hypothesis has been proved
analytically in very simple models only, such as the one dimensional Ising chain with
Glauber dynamics or the O(N) model in the large N limit.

Let us explain what the scaling hypothesis means in practice using the coarse-grained
notation. The two-time and two-point dependent order-parameter correlation function is

C(~x, t; ~x′, t′) = C(~r; t, t′) = 〈φ(~x, t)φ(~x′, t′)〉 (5.9)

where ~r ≡ ~x − ~x′ and we assumed that there is translational invariance in space. The
times t and t′ are measured from an origin that corresponds to the sample preparation
done, usually, with a quench from high temperature. Its Fourier transform is

S(~k; t, t′) = 〈φ(~k, t)φ(−~k, t′)〉 . (5.10)

In the late stages of the coarsening process the spherically averaged structure factor
S(k, t) at equal times t = t′ can be measured experimentally with small-angle scattering
of neutrons, x-rays or light. In the limits given in (5.8) it has been found to satisfy scaling :

S(k, t) ∼ m2
eq(T ) Rd(t) G[kR(t)] , (5.11)

with meq(T ) the equilibrium magnetization density. Correspondingly the real-space cor-
relation function is expected to behave as

C(r, t) ∼ m2
eq(T ) F [r/R(t)] . (5.12)

G is the Fourier transform of F . Similarly, the two-times pair correlation function satisfies

C(r; t, t′) ∼ f

(

r

R(t)
,
R(t)

R(t′)

)

(5.13)

As for the strictly local correlation one can argue that in the long waiting-time limit
t′ ≫ t0, it actually separates in two additive terms

C(t, t′) ∼ Cst(t − t′) + C(t, t′) (5.14)

with the first one describing thermal fluctuations within the domains,

Cst(t − t′) =

{

1 − qea(T ) = 1 − m2
eq(T ) , t − t′ = 0 ,

0 , t − t′ → ∞ ,
(5.15)

and the second one describing the motion of domain walls

C(t, t′) = fC

(

R(t)

R(t′)

)

=

{

qea(T ) = m2
eq(T ) , t′ → t ,

0 , t − t′ → ∞ .
(5.16)

Note that adding the two contributions one recovers C(t, t) = 1 as expected and C(t, t′) →
0 when t ≫ t′.
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5.2.4 The averaged domain length

Due to the scaling hypothesis, all information about the system dynamics can be ob-
tained from the knowledge of the time-dependent domain structure. Ideally, one would
like to know their size distribution, ρ(R, t), their geometric properties as given by their
radious of gyration, surface length, etc. These can only be obtained with numerical simu-
lations in generic d in some particular one-dimensional models. Still, it is very difficult to
extract detailed meaning information about all domains.

The average domain size R(t) entering the scaling forms is usually determined using
several indirect criteria the most common ones being :

– The ‘inverse perimeter density’

R(t) = −Eeq/[U(t) − Ueq] , (5.17)

where U(t) is the averaged energy at time t and Ueq is the equilibrium energy, both
measured at the working temperature T .

– The fluctuations of the order parameter in an N -spin system

R(t) = N

〈(

N−1
N

∑

i=1

si

)2〉

. (5.18)

– The check of the scaling hypothesis.
These quantities are computed with numerical simulations of lattice models or the

numerical integration of the continuous partial differential equation for the evolution of
the order parameter. In order to avoid finite-size effects, a rule-of-thumb states that the
growth has to be stopped when R reaches 0.4 L, with L the linear size of the system.
Another limitation is given by the fact that the true asymptotic behaviour may be veiled
by crossover effects.

5.2.5 The curvature argument

The time-dependent Ginzburg-Landau model allows us to gain some insight about the
mechanism driving the domain growth and the direct computation of the averaged domain
length.

Take a domain wall separating regions where the configuration is the one of the two
equilibrium states :

φ(~x, t) = ±φ0 + δφ(~x, t) (5.19)

Linearizing eq. (5.5) around ±φ0 one finds

δφ(~x, t) ∼ e−
√

V ′′(φ0)n (5.20)

where n is the distance along the normal to the surface. The order parameter appraoches
the asymptotic values very rapidly. This means that the free-energy of a configuration
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with an interface is concentrated in very narrow region close to it. In consequence, the
curvature is the driving force for domain growth in clean systems as this one. The evolution
is such that domain walls are render flatter and eventually disappear as time evolves.

The free-energy, F [φ], of a flat equilibrium interface can be simply evaluated. Its confi-
guration is obtained from eq. (5.5) with ∂φ/∂t = 0 with border conditions φ(~x → ∞) =
+±φ0. It reads (dφ/dn)2 = 2V (φ). Thus, the free-energy per unit area, or surface tension,
is

σ =
∫ ∞

−∞
dn (dφ/dn)2 =

∫ φ0

−φ0

dφ
√

2V (φ) . (5.21)

The growth law in clean systems with non-conserved order parameter dynamics can
be obtained using an argument that is similar to the one leading to the excess pressure
inside a bubble. Take a spherical domain of the equilibrium phase −φ0 inside the other
one φ0. Due to the surface tension, there is a force per unit area acting on the domain wall
that we call F . The total force on the spherical wall is then FAd where Ad is its surface.
The work done by this force when the radious of the domain goes from R to R + dR is
dW = FAddR. The decrease in surface energy is dE = E(R + dR) − E(R) = E ′(R)dR
and this can be expressed in terms of the surface tension using E(R) = σAd and then
E ′(R) = σA′

d(R). One finds dE = σA′
d(R)dR. Thus

dW = −dE , ⇒ F = σ
ln dAd

dR
(5.22)

Now, assuming a compact domain surface, Ad = ΩdR
d−1 with Ωd and angular factor, and

the
F = (d − 1) σ R−1 . (5.23)

Note that the force is proportional to the curvature of the wall. This force will drive the
walls. If the viscosity is η, neglecting the inertia, at zero temperature one has

η
dR

dt
= (d − 1) σ R−1 (5.24)

that leads to
R(t) ∼ t

1
2 . (5.25)

Note that the motion of the wall is determined by the local curvature only. The potential
is important to determine the two equilibrium states but not to select the velocity of the
domain walls.

*** PROVE η = σ ***
Let us show another way of obtaining the same result. In polar coordinates the equation

of motion reads
∂φ

∂t
=

∂2φ

∂r2
+

d − 1

r

∂φ

∂r
− V ′(φ) (5.26)

where r is a coordinate along the radious of the spherical domain (T = 0). If we introduce
the configuration φ(r, t) = f(r − R(t)) in the dynamic equation we find

0 = f ′′ + [(d − 1)/r + dR/dt] f ′ − V ′(f) (5.27)

98



5.2 Domain growth 5 DYNAMICS OF PHASE TRANSITIONS

Multiplying by f ′ and integrating over r yields

R2(t) = R2(0) − 2(d − 1)t (5.28)

This result is the same as the one above provided η = σ.

Summary of growth laws in clean systems

In pure and isotropic systems the domain growth is characterized by a power law

R(t) = Atφ (5.29)

with φ the growth exponent.
The averaged radious of the magnetic domains in clean ferromagnetic models has been

determined using computer simulation studies of Ising (and Potts) models and with field-
theoretical Langevin-like effective equations (the argument above). One finds the so-called
Lifshitz-Allen-Cahn growth law

R(t) = At1/2 (5.30)

with A a weakly temperature dependent coefficient, independently of the number of equi-
librium states (Ising or Potts models). The domain walls are sharp. The domains and
their surface are compact (i.e. they have dimension d and d − 1, respectively).

For systems with continuous variables, such as rotors or XY models, and no conserved
order parameter, a number of computer simulations have shown that the growth law is

R(t) ∼ t1/4 . (5.31)

These models support the formation of wider domain walls. This result was hardly debated
during some years, since several authors claimed that (5.31) was just a crossover towards
the asymptotic regime (5.30), at least at non-zero temperature.

Another question one may would be interested in is characterizing the distribution of
the sizes of these domains and its evolution. This is known in d = 1 but much less can be
said about the higher dimensional problem.

A different type of dynamics occurs in the case of phase separation (the water and
oil mixture). In this case, the material is locally conserved, i.e. water does not transform
into oil but they just separate. Determining the growth and geometrical properties of the
domains is already much harder in this case. After some discussion, it was established, as
late as in the early 90s, that for systems with conserved order parameter as the example
at hand, the growth is given by

R(t) ∼ t1/3 . (5.32)

5.2.6 Role of disorder : the activation argument

The situation becomes much less clear when there is quenched disorder in the form of
non-magnetic impurities in a magnetic sample, lattice dislocations, residual stress, etc.
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meq(T )�meq(T )

f(m)

m
Fig. 12 – Time evolution of a spin configuration ; two snapshots of a 2d slice in a 3d Ising
model on a cubic lattice at tw = 1000, tw = 10000 MC steps in a simulation.

Qualitatively, the dynamics is expected to be slower than in the pure cases. In general,
based on the Larkin argument explained in Sect. ??, one expects that in d < 4 the late
epochs and large scale evolutions is no longer curvature driven but that disorder controls
it. Indeed, disorder generates metastable states that trap the system in its evolution and
thus render its relaxation slower. Determining the precise growth law becomes a difficult
task.

A hand-waving argument to estimate the growth law in dirty systems is the follo-
wing. Take a system in one equilibrium state with a domain of the opposite equilibrium
state within it. One can mimic this configuration as corresponding to an excited state
with respect to the fully ordered one with absolute minimum free-energy. Call B(R) the
free-energy barrier between the excited and complete equilibrium states. An Arrhenius
argument implies that the time scale for the activated process corresponding to the decay
of the excited state (i.e. erasing the domain wall) is given by the Arrhenius law

τ ∼ τ0e
B(R)/(kBT ) (5.33)

If
B(R) ∼ Υ(T )Rψ (5.34)

for large R then after a time t one should find domains with an averaged – and typical –
size

R(t) ∼
(

kBT

Υ(T )
ln t/τ0

)1/ψ

. (5.35)

All smaller fluctuation would have disappeared at t while typically one would find this
size. The exponent ψ is expected to depend on the dimensionality of space but not on
temperature. In ‘normal’ systems it is expected to just d − 1 – the surface of the domain
– but in spin-glass problems, it might be smaller than d − 1 due to the assumed fractal
nature of the walls. The prefactor Υ is expected to be weakly temperature dependent.

The same argument applies to the reconformations of a portion of any domain wall or
interface where R is the observation scale.
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However, already for the (relatively easy) random ferromagnet there is no consensus
about the actual growth law. In these problems there is a competition between the ‘pure’
part of the Hamiltonian, that tries to minimize the total (d − 1) dimensional area of
the domain wall, and the ‘impurity’ part that makes the wall deviate from flatness and
pass through the locations of lowest local energy (think of Jij = J + δJij with J and
δJij contributing to the pure and impurity parts of the Hamiltonian, respectively). The
activation argument in eq. (??) together with the power-lwa growth of barriers in eq. (5.34)
implies a logarithmic growth of R(t). Simulations, instead, suggest a power law with a
temperature dependent exponent. Whether the latter is a pre-asymptotic result and the
trully asymptotic one is hidden by the premature pinning of domain walls or it is a genuine
behaviour invalidating (5.34) or even eq. (5.33) is still an open problem.

In the 3d RFIM the curvature-driven growth mechanism that leads to (5.30) is impeded
by the random field roughening of the domain walls. Indeeed, one observes that after a
quench to low temperature the spins rapidly coalesce and form small domains, these
domains expand and compact at the expense of their smaller neighbours but their growth
is partially stopped by the random fields that pin the interfaces. Much longer time scales
are needed to surmount the (free) energy barriers introduced by the local fluctuations
in the fields, and eventually reach the long-range order. Comparing to the pure Ising
model one notices that the initial growth follows a very similar time-dependence in the
two cases but the subsequent coarsening is much slower in the presence of random fields.
The precise behaviour of the growth law depends on time, temperature and the strength
of the random field. In the early stages of growth, one expects the zero-field result to hold
with a reduction in the amplitude

R(t) ∼ (A − Bh2) t1/2 . (5.36)

The time-window over which this law is observed numerically is smaller, the larger the field
strength. In the late time regime, where pinning is effective Villain deduced a logarithmic
growth

R(t) ∼ T

h2
ln t (5.37)

by estimating the maximum barrier height encountered by the domain wall and using the
Arrhenius law to derive the associated time-scale.

In the case of spin-glasses, if the mean-field picture with a large number of equilibrium
states is realized in finite dimensional models, the dynamics would be one in which all
these states grow in competition. If, instead, the droplet model applies, there would be
two types of domains growing and this phenomenological theory predicts that these will
have an average radious growing as

R(t) = (ln t)1/ψ , (5.38)

with the exponent ψ satisfying 0 ≤ ψ ≤ d − 1. Some refined arguments that we shall not
discuss here indicate that the dimension of the bulk of these domains should be compact
but their surface should be a rough with fractal dimension ds > d − 1.
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Fig. 13 – Schematic evolution of a pinned object on well separated time scales. On scale
t(ℓ1), the object reconforms by flipping a small portion of size ℓ1 from one favourable confi-
guration to another (a → b). On a much longer time scale t(ℓ2) ≫ t(ℓ1), the conformation
on scale ℓ2 (dotted lines) has evolved (b → c). The dynamics of the short wavelengths
happens on a time scale such that long wavelengths are effectively frozen.

Note that if one starts such a dynamics in a very large (L ≫ a) system with no biasing
magnetic field the system will never magnetize in finite times with respect to L. More
explicitly, if the growth law is the power law (5.30) one needs times of the order of L2

to grow a domain of the size of the system. For any shorter time, domains of the two
types exist and the system is out of equilibrium. This systems constitutes a first example
of a problem with slow dynamics. Whether all systems with slow dynamics, in particular
structural and spin glasses, undergo some kind of simple though slow domain growth is
an open question.

Another implication of the slow dynamics is that if one observes the decay of a corre-
lation function, as for instance the one in eq. (??), the contribution of the term C will be
very important even at long times t′ and t.

5.2.7 Separation of time-scales

The equation (??) also allows one to define a very important quantity which we call,
by analogy with the glass temperature Tg, the ‘glass length’ ℓg, through Υ(T )ℓψ

g = AT ,
introduced in this context in [?, ?, ?]. The factor A is rather arbitrary ; the choice A = 35
corresponds to a time of 1000 seconds if τ0 = 10−12 seconds. In analogy with the glass tem-
perature Tg, one sees that length scales larger than ℓg cannot be equilibrated on reasonable
time scales, while length scales smaller than ℓg are fully equilibrated. Qualitatively spea-
king, the equilibrated modes contribute to the stationary part of the correlation and/or
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response function, while the glassy modes ℓ > ℓg contribute to the aging part. There-
fore, the strong hierarchy of time scales induced by the exponential activation law allows
equilibrated modes and aging modes to coexist.

Finally, it is easy to understand that the logarithmic growth law, Eq. (??), leads to a
strong cooling rate dependence of the typical size of the domains [?] : since the growth
law is essentially that of pure systems as long as ξ ≪ ℓg(T ), a longer time spent at higher
temperatures (where ℓg is large) obviously allows the domains to grow larger before getting
pinned at lower temperatures.

5.2.8 The large N approximation

Let us study try to find a solution to eq. (5.5) with the Landau-Ginzburg free-energy
(5.3) and the double-well potential (5.4). It turns out that temperature does not play a
very important role in the domain-growth process, it just adds some thermal fluctuations
within the domains, as long as it is smaller than Tc. Therefore, we shall first set it to zero
and only later discuss its effect.

In the absence of temperature, eq. (5.5) is just a gradient descent in the energy land-
scape F . Two terms contribute to F : the bulk-energy term that is minimized by φ = ±φ0

and the elastic energy (∇φ)2 which is minimized by flat configurations. As a consequence
the system evolves with growing regions of constant field, φ(~x, t) = ±φ0, separated by
flatter and flatter walls.

Even if the qualitative behaviour of the solution to eq. (5.5) is easy to grasp, it is still
too difficult ot solve analytically. A very useful approximation is to upgrade the scalar
field to a vectorial one with N components

φ(~x, t) → ~φ(~x, t) = (φ1(~x, t), . . . , φN(~x, t)) . (5.39)

and modify the free-energy

F =
∫

ddx
[

1

2
(∇~φ)2 + (φ2

0 − N−1φ2)2
]

, (5.40)

with φ2 =
∑

α φ2
α, the dynamic equation becomes

∂tφα(~x, t) = ∇2φα(~x, t) − 4

N
φα(~x, t) [φ2

0 − N−1φ2(~x, t)] . (5.41)

In this way one makes contact with the random manifold problem defined in (??) though
the manifold is here in the presence of a ‘deterministic’ potential. Now, if one considers
the limit N → ∞ while keeping the dimension of real space fixed to d, the cubic term in
the right-hand-side can be replaced by

−φα(~x, t)N−1φ2(~x, t) → −φα(~x, t)N−1[ φ2(~x, t) ]ic ≡ −φα(~x, t) z(t) (5.42)
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since N−1φ2(~x, t) does not fluctuate, it is equal to its average over the initial conditions
and it is therefore not expected to depend on the spatial position if the initial conditions
are chosen from a distribution that is statistically translational invariant. If one keeps the
scalar notation the replacement (5.42) is just an approximation and it usually called the
Hartree approximation. The dynamic equation now becomes linear in the field φα(~x, t) :

∂tφ(~x, t) = [∇2 + a(t)]φ(~x, t) , (5.43)

where a(t) = φ2
0 − [φ2(~x, t)]ic has to be determined self-consistently. Equation (5.43) can

be integrated in Fourier space :

φ(~k, t) = φ(~k, 0) exp
(

−k2t +
∫ t

0
a(t′)dt′

)

(5.44)

and the self-consistency equation on a(t) reads :

a(t) = φ2
0 − ∆

∫ ddk

(2π)3
exp

(

−2k2t + 2
∫ t

0
a(t′)dt′

)

, (5.45)

where one used a delta-correlated Gaussian distribution of initial conditions with strength
∆. (Equation (5.45) is not singular at t = 0 since there is an underlying cut-off in the
integration over k corresponding to the inverse of the lattice spacing.) In the large times
limit in which the system tends to decrease its elastic and potential energies

[ φ2(~x, t) ]ic = ∆
∫ dk

(2π)3
exp

(

−2k2t + 2
∫ t

0
a(t′)dt′

)

(5.46)

must converge to φ2
0 and this imposes

2
∫ t

0
dt′ a(t′) ≃ 3/2 log(t/t0) with t0 = (∆φ2

0)
2/3/8π (5.47)

at large times, i.e.

a(t) ≃ 3

4t
for t ≫ 1 . (5.48)

Knowing the long-time behaviour of a we can compute asymptotic behaviour of the space
time correlation function :

[ φ(~x, t)φ(~x′, t′) ]ic = φ2
0

(

4tt′

(t + t′)2

)3/4

exp

(

−(~x − ~x′)2

4(t + t′)

)

, (5.49)

for t ≥ t′. This expression captures the main features of the domain growth process :
– For any finite and fixed (~x − ~x′), in the long t′ ≤ t limit the exponential factor

approaches one and one obtaines a function of t′/t only.
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5.2 Domain growth 5 DYNAMICS OF PHASE TRANSITIONS

– For any finite and fixed (~x − ~x′), in the long t′ and t limit such that t′/t → 1 the
time dependence disappears and the correlation between two points converges to φ2

0.
This holds for any two points in space and time provided that their distance in space
and time is kept fixed when the large time limit is taken. This means that, typically,
if one looks at a finite spatial region on a finite time-scale this region will be on one
of the two state ±φ0.

– Due to the exponential factor, for fixed but very large time t and t′ the magnetization
density correlation falls to zero over distance |~x− ~x′| ∝

√
t + t′. This means that, at

time t, the typical size of the regions in the states ±φ0 is R(t) ∝
√

t.
– For fixed |~x − ~x′|, the magnetization density correlation always falls to zero over a

time separation t − t′ which is larger than t′. This means that the time it takes to
the system to decorrelate from its configuration at time t′ is of the order of t′ itself.
The age of the system is the characteristic time-scale for the dynamical evolution :
the older is the system, the slower is its dynamics. If one waits a time of the order of
the age of the system a point ~x has been swept by different domain walls and thus
the magnetic correlation has been lost.
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J = 1 . (.50)

A Additivity in the fully-connected Ising model

This fact is shown by, for example, the fully-connected Ising model :

E = − J

N

∑

i6=j

sisj (A.51)

where the spins si, i = 1, . . . , N , take values ±1, J is a finite coupling strength and the
sum runs over all pairs of spins in the ensemble. Let us explore the additivity property
of the energy for a simple configuration that corresponds to all spins pointing in the
same direction, si = 1 for all i, i.e. the perfectly magnetized state. The total energy is
E = −J(N − 1). If we now divide the system in two subsystems with N/2 spins each
the total energy of each subsystem is E1 = −J(N − 2)/4 and E2 = −J(N − 2)/4 and
one notices that E 6= E1 + E2. More precisely, EI ≡ E − (E1 + E2) = −JN/2, still a
macroscopic quantity. One has

E ∼ E1 ∼ EI ∼ −JN (A.52)

all these energy are of the order of the number of spins in the sample. In the usual Ising
model defined on a d dimensional lattice with nearest-neighbour interactions the additivity
properties holds.

B Some useful formulæ

B.1 Stirling

Stirling formula for the factorial of a large number reads :

ln N ! ∼ N ln N − ln N , for N ≫ 1 . (B.1)

B.2 Moments

Introducing a source h that couples linearly to a random variable x one easily computes
all moments of its distribution p(x). Indeed,

〈xk 〉 =
∂k

∂hk

∫

dx p(x)ehx

∣

∣

∣

∣

∣

h=0

. (B.2)
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B.3 Gaussian integrals

The Gaussian integral is

I1 ≡
∫ ∞

−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 = 1 . (B.3)

It is the normalization condition of the Gaussian probability density written in the normal
form. One has

∫ ∞

−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 x = µ ,

∫ ∞

−∞

dx√
2πσ2

e−
(x−µ)2

2σ2 x2 = σ2 . (B.4)

From (B.3) one has
∫ ∞

−∞

dx√
2πσ2

e−
x2

2σ2 +µx

σ2 = e
σ2µ2

2 . (B.5)

The generalization to N variables

IN ≡
∫ ∞

−∞

N
∏

i=1

dxie
− 1

2
~xtA~x+~xt~µ (B.6)

with

~x =











x1

x2

. . .
xN











, ~µ =











µ1

µ2

. . .
µN











, A =











A11 . . . A1N

A21 . . . A2N

. . .
AN1 . . . ANN











,

and

−1

2
~xtA~x + ~xt~µ (B.7)

is the most generic quadratic form. Note that A plays here the role σ−2 in the single
variable case. One can keep the symmetric part (A + At)/2 of the matrix A only since
the antisymmetric part (A−At)/2 yields a vanishing contribution once multiplied by the
vectors ~x and its transposed. Focusing now on a symmetric matrix, At = A, that we still
call A we can ensure that it is diagonalizable and all its eigenvalues are positive definite,
λi > 0. One can then define A1/2 as the matrix such that A1/2A1/2 = A and its eigenvalues
are the square root of the ones of A. Writing ~xtA~x = (~xtA1/2)(A1/2~x) = ~y~y, the integral
IN in (B.6) becomes

IN =
∫ ∞

−∞

N
∏

i=1

dyiJe−
1
2
~yt~y+~yt(A−1/2µ) (B.8)
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where J = det(A1/2)−1 = (det A)−1/2 is the Jacobian of the change of variables. Calling
~µ′ the last factor one has the product of N integrals of the type I1 ; thus

IN = (2π)N/2(det A)−1/2e
1
2
~µtA−1~µ (B.9)

Finally, the functional Gaussian integral is the continuum limit of the N -dimensional
Gaussian integral

~x ≡ (x1, . . . , xN) → φ(~x) (B.10)

and
I =

∫

Dφ e−
1
2

∫

ddxddy φ(~x)A(~x,~y)φ(~y)+
∫

ddx φ(~x)µ(~x) . (B.11)

The sum runs over all functions φ(~x) with the spatial point ~x living in d dimensions.
The first and the second term in the exponential are quadratic and linear in the field,
respectively. In analogy with the IN case the result of the path integral is

I ∝ e
1
2

∫

ddxddy µ(~x) A−1(~x,~y) µ(~y) (B.12)

where we ignore the proportionality constant. Indeed, this one depends on the definition of
the path-integral measure Dφ. Usually, the actual value of this constant is not important
since it does not depend on the relevant parameters of the theory. The inverse A−1 is
defined by

∫

ddy A−1(~x, ~y)A(~y, ~z) = δ(~x − ~z) . (B.13)

B.4 Wick’s theorem

Take a Gaussian variable x with mean 〈x 〉 = µ and variance σ2 = 〈x2 〉 − 〈x 〉2. Its
pdf is

p(x) = (2πσ2)−1/2 e−(x−µ)2/(2σ2) . (B.14)

All moments 〈xk 〉 can be computed with (B.2). One finds

〈 ehx 〉 = e
h2σ2

2
+hµ (B.15)

and then

〈xk 〉 =
∂k

∂hk
e

h2σ2

2
+µh

∣

∣

∣

∣

∣

h=0

(B.16)

from where

〈x 〉 = µ , 〈x2 〉 = σ2 + µ2 ,
〈x3 〉 = 3σ2µ + µ3 , 〈x4 〉 = 3σ4 + 6σ2µ2 + µ4

etc. One recognizes the structure of Wick’s theorem : given k factors x one organises them
in pairs leaving the averages µ aside. The simplest way of seeing Wick’s theorem in action
is by drawing examples.
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The generalization to N Gaussian variables is immediate. Equation (B.15) becomes

〈 e
~h~x 〉 = e

1
2
~hA−1~h+~h~µ (B.17)

and the generalization of (B.16) leads to

〈xi 〉 = µi , 〈xixj 〉 = A−1
ij + µiµj , (B.18)

etc. In other words, whereever there is σ2 in the single variable case we replace it by A−1
ij

with the corresponding indices.
The generalization to a field theory necessitates the introduction of functional deriva-

tives that we describe below. For completeness we present the result for a scalar field in
d dimensions here

〈φ(~x) 〉 = µ(~x) , 〈φ(~x)φ(~y) 〉 = A−1(~x, ~y) + µ(~x)µ(~y) , (B.19)

etc.

B.5 Functional analysis

A functional F [h] is a function of a function h : ~x → h(~x). The variation of a functional
F when one changes the function h by an infinitesimal amount allows one to define the
functional derivative. More precisely, one defines δF ≡ F [h + δh] − F [h] and one tries to
write this as δF =

∫

ddx α(~x)δh(~x) + 1
2

∫

ddxddy β(~x, ~y) δh(~x)δh(~y) + . . . and one defines
the functional derivative of F with respect to h evaluated at the spatial point ~x as

δF

δh(~x)
= α(~x) ,

δ2F

δh(~x)δh(~y)
= β(~x, ~y) (B.20)

etc. All usual properties of partial derivatives apply.

B.6 Fourier transform

We define the Fourier transform (FT) of a function f(~x defined in a volume V as

f̃(~k) =
∫

V
ddx f(~x) e−i~k~x (B.21)

This implies

f(~x) =
1

V

∑

~k

f̃(~k) ei~k~x (B.22)

where the sum runs over all ~k with components ki satisfying ki = 2mπ/L with m an
integer and L the linear size of the volume V .
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In the large V limit these equations become

f̃(~k) =
∫

V
ddx f(~x) e−i~k~x (B.23)

f̃(~x) =
∫

V

ddk

(2π)d
f(~k) ei~k~x (B.24)

The Fourier transform of a real function f(~x) satisfies f̃ ∗(~k) = f̃(−~k).

C The saddle-point method

Imagine one has to compute the following integral

I ≡
∫ b

a
dx e−Nf(x) , (C.1)

with f(x) a positive definite function in the interval [a, b], in the limit N → ∞. It is clear
that due to the rapid exponential decay of the integrand, the integral will be dominated
by the minimum of the function f in the interval. Assuming there is only one absolute
minimum, x0, one then Taylor expands f(x) upto second order

f(x) ∼ f(x0) +
1

2
f ′′(x0)(x − x0)

2 (C.2)

and obtains

I ∼ e−Nf(x0)
∫ b

a
dx e−N 1

2
f ′′(x0)(x−x0)2 = e−Nf(x0)[Nf ′′(x0)]

−1/2
∫ yb

ya

dy e−
1
2
(y−y0)2 , (C.3)

with y0 ≡
√

Nf ′′(x0)x0 and similarly for ya and yb. The Gaussian integral is just an error
function that one can find in Tables.

This argument can be extended to multidimensional integrals, cases in which there is
no absolute minimum within the integration interval, cases in which the function f is not
positive definite, etc.

110



D TD 1 : NOTIONS DE BASE

D TD 1 : Notions de base

Le but de ce TD est de faire un rappel des notions de base en mécanique statistique
discutées dans le cours.

1. On étudiera la propriété d’additivité de l’énergie d’un modèle typique des magnétiques,
le modèle d’Ising.

Si le modèle est complètement connecté son énergie totale est définie comme

E = − J

N

∑

i6=j

sisj (1)

où les spins si, i = 1, . . . , N , sont des variables bimodales, si = ±1, J est une
constante de couplage finie, et la somme porte sur toutes les paires de spins de
l’échantillon (il y a ordre N2 termes dans la somme).

On explorera la propriété d’additivité de l’énergie pour une configuration simple, où
tous les spins pointent dans la même direction, si = 1 pour tous les i (c’est-à-dire
un état complètement aimanté).

(a) Calculer l’énergie totale.

(b) Imaginer le système total comme s’il était formé par deux sous-systèmes avec
N/2 spins chaqun. Distinguer les contributions à l’énergie totale de chaque
sous-système avec N/2 spins et de l’« interface » entre les deux. Discuter les
ordres de grandeurs des contributions.

(c) Discuter les résultats.

Si le modèle est défini sur un réseau carré avec des interactions entre plus proches
voisins seulement

E = −J
∑

〈 ij 〉

sisj (2)

avec J fini, que peut-on dire de la propriété d’additivité de l’énergie dans la limite
N ≫ 1 ?

2. Le théorème de fluctuation-dissipation statique

Prenons un système caractérisé par une énergie E en équilibre thermique avec un
reservoir à température T (ensemble canonique).

Montrer la relation
CV = kBβ2

(

〈E2 〉 − 〈E 〉2
)

(3)

où CV = −kBβ2∂β〈E 〉 est la chaleur spécifique à volume constant.

Ces résultats ne dépendent pas du système consideré. Ils sont différentes expressions
de ce qu’on appele le théoreme de fluctuation-dissipation.
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3. Étudier les propriétés thermodynamiques du gaz parfait classique dans l’ensemble
canonique.

(a) Calculer la fonction de partition.

(b) Calculer l’énergie libre.

(c) Calculer l’énergie interne et la chaleur spécifique CV . Quel est CV dans l’en-
semble microcanonique ?

(d) Comparer au comportement du gaz auto-gravitant.
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E TD 2 : L’approximation de champ moyen

On étudiera ce qu’on a appelé dans le cours l’approximation de champ moyen näıve du
modèle d’Ising en présence d’un champ magnétique externe et uniforme h. Le modèle est
défini sur un réseau carré de dimension d. On prend un système de N spins d’Ising, on
suppose qu’ils sont indépendants, et on caractérise sa distribution de probabilité jointe
par le simple produit des distributions de probabilité pour chaque spin. On prend

P (s) =
1 + m

2
δs,1 +

1 − m

2
δs,−1 (1)

où δxy est la fonction delta de Kronecker et m est un parametre |m| ≤ 1.

1. Montrer que P (s) peut être une distribution de probabilité ; c’est-à-dire, qu’elle est
une fonction définie positive et normalisée.

2. Calculer la moyenne du spin s.

3. Calculer l’énergie interne moyenne, U ≡ 〈H 〉.
4. Calculer l’entropie.

5. Donner l’énergie libre par dégré de liberté en fonction de m.

6. Trouver l’équation pour m.

7. Discuter ses solutions.
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F TD 3 : Analyse de champs aléatoires

Le but de ce TD est de se familiariser avec les propriétés statistiques des processus
stochastiques discret, continus et surtout avec les théorie de champs.

1. Prenons un champ scalaire ρ(~x) distribué selon la loi Gaussienne

P [ρ] ∝ e−
1
2

∫

ddx
∫

ddy [ρ(~x)−µ(~x)] A−1(~x,~y) [ρ(~y)−µ(~y)] (1)

(a) Quelle est la moyenne du champ ρ au point spatial ~z ?

(b) Calculer la fonction de correlation C(~u,~v) = 〈 ρ(~u)ρ(~v) 〉.
(c) Calculer la fonction de correlation reduite C(~u,~v) = 〈 (ρ(~u) − µ(~u))(ρ(~v) −

µ(~v)) 〉.
(d) Calculer la fonction de correlation à ‘trois points’ C(~u1, ~u2, ~u3) = 〈 ρ(~u1)ρ(~u2)ρ(~u3) 〉.
(e) Exprimer le théorème de Wick.

2. Prenons un variable aléatoire discrete, x = 0, 1, 2, . . ., distribuée selon la loi de
Poisson

p(x) =
µxe−µ

x!
(2)

(a) Calculer la moyenne et la variance.

(b) Prenez un gaz de N particles dans un volume V avec densité ρ0 = N/V finie.
Divisez le volume en sousvolumes de la même taille v avec v ≪ V . Calculer la
distribution de probabilité du nombre de particules dans chaque sous volume
v. Comparer le résultat à la lois de Poisson.
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G TD 4 : Dynamique stochastique

Nous allons travailler, par souci de simplicité, en dimension d = 1. La généralisation au
cas d dimensionnel est immédiate. Dans cette section nous étudierons quelques équations
de Langevin pour le mouvement d’une particule sur un axe sous l’effet d’un bain ther-
mique.

1. Transformation de l’équation de Langevin.

La forme générique de l’équation de Langevin est

γ
dx

dt
= F + ξ , (1)

où ξ répresente un bruit thermique qu’on prend, typiquement, Gaussien et blanc :

〈 ξ(t) 〉 = 0 , 〈 ξ(t)ξ(t′) 〉 = 2kBTγ δ(t − t′) , (2)

pout tous les temps t et t′. F est la force totale appliquée sur la particule.

Montrer qu’avec une transformation du temps, τ ≡ g(t), l’équation dévient

dx

dt
= F + η , (3)

avec η un bruit blanc Gaussienne avec moyenne et corrélation :

〈 η(τ) 〉 = 0 , 〈 η(τ)η(τ ′) 〉 = 2kBT δ(τ − τ ′) . (4)

Trouver g(t) et η.

2. Le mouvement Brownien forcé.

Dans plusieurs application d’intérêt on ‘tire’ de la particule avec un force constante ;
un exemple est l’électrophorèse où l’on fait avancer des particules chargées (typi-
quement de l’ADN) sous l’effet d’un champ électrique.

(a) Trouver la solution de l’équation stochastique

dx

dt
= ξ + f (5)

ou ξ est un bruit blanc et f est une force qu’on prendra constante, f(t) = f .
On prend comme condition initielle x(0) = x0.

(b) Calculer la position moyenne de la particule 〈x(t) 〉. Discuter la perte de
mémoire de la condition initielle.
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(c) Calculer le déplacement moyen quadratique ∆2(t, t′) ≡ 〈 (x(t) − x(t′))2 〉.
Avez vous trouvé un résulat stationnaire ? Dans quelle limite ?

Comparer le résultat à la forme diffusive normale. Peut-on identifier une constante
de diffusion ?

3. L’oscillateur harmonique.

On considère une particule en contacte avec un bruit blanc et sous l’effet d’une force
harmonique :

dx

dt
= −kx + ξ (6)

(a) Calculer la position moyenne 〈x(t) 〉.
(b) Calculer le déplacement moyen quadratique ∆2(t, t′) ≡ 〈 (x(t) − x(t′))2 〉.

Avez vous trouvé un résulat stationnaire ?

Comparer le résultat à la forme diffusive normale. Peut-on identifier une constante
de diffusion ? Discuter la limite k → 0.
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H Consignes pour l’ećriture du rapport

Le rapport sera écrit en 5 pages maximum.

Il doit avoir la structure d’un article scientifique ; il avoir :

– un titre,
– un auteur,
– un résumé (6 lignes maximum),
– un corps qui peut être séparé en sections,
– une conclusion,
– une bibliographie.

Bien évidement, le rapport ne doit pas être une traduction de l’article choisi. Le texte
doit montrer que l’étudiant a fait un travail de réflexion pour situer le problème étudié
dans le contexte du cours et dans une problématique générale. Il doit montrer également
que étudiant s’est posé et a donné réponse à la question “pour quoi on étudie ce problème”,
autrement dit, “pour quoi ce problème est intéressant”.

En ce qui concerne les développements analytiques présentés ou mentionnés dans les
articles, il n’est pas nécessaire de les reproduire dans le rapport ; il faut, pourtant, donner
les idées générales qui sont derrière les résultats obtenus.

Il est conseillé d’approfondir l’étude en consultant les références cités dans l’article
choisi où bien en cherchant des articles reliés.
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Papers

1. Inequivalence of ensembles in systems with long range interactions

Julien Barré, David Mukamel, Stefano Ruffo, Inequivalence of ensembles in a system
with long range interactions, cond-mat/0102036, Phys. Rev. Lett. 87, 030601 (2001).

We study the global phase diagram of the infinite range Blume-Emery-Griffiths model
both in the canonical and in the microcanonical ensembles. The canonical phase diagram is
known to exhibit first order and continuous transition lines separated by a tricritical point.
We find that below the tricritical point, when the canonical transition is first order, the
phase diagrams of the two ensembles disagree. In this region the microcanonical ensemble
exhibits energy ranges with negative specific heat and temperature jumps at transition
energies. These results can be extended to weakly decaying nonintegrable interactions.

D. Mukamel, S. Ruffo, N. Schreiber, Breaking of ergodicity and long relaxation times
in systems with long-range interactions, cond-mat/0508604.

The thermodynamic and dynamical properties of an Ising model with both short range
and long range, mean field like, interactions are studied within the microcanonical en-
semble. It is found that the relaxation time of thermodynamically unstable states di-
verges logarithmically with system size. This is in contrast with the case of short range
interactions where this time is finite. Moreover, at sufficiently low energies, gaps in the
magnetization interval may develop to which no microscopic configuration corresponds.
As a result, in local microcanonical dynamics the system cannot move across the gap,
leading to breaking of ergodicity even in finite systems. These are general features of sys-
tems with long range interactions and are expected to be valid even when the interaction
is slowly decaying with distance.

Alessandro Campa, Andrea Giansanti, David Mukamel, Stefano Ruffo Dynamics and
thermodynamics of rotators interacting with both long and short range couplings, cond-
mat/0510508.

The effect of nearest-neighbor coupling on the thermodynamic and dynamical proper-
ties of the ferromagnetic Hamiltonian Mean Field model (HMF) is studied. For a range
of antiferromagnetic nearest-neighbor coupling, a canonical first order transition is obser-
ved, and the canonical and microcanonical ensembles are non-equivalent. In studying the
relaxation time of non-equilibrium states it is found that as in the HMF model, a class
of non-magnetic states is quasi-stationary, with an algebraic divergence of their lifetime
with the number of degrees of freedom N . The lifetime of metastable states is found to
increase exponentially with N as expected.

Takayuki Tatekawa, Freddy Bouchet, Thierry Dauxois, Stefano Ruffo, Thermodynamics
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of the self-gravitating ring model, Phys. Rev. E 71 (2005) 056111, cond-mat/0501583.

We present the phase diagram, in both the microcanonical and the canonical ensemble,
of the Self-Gravitating-Ring (SGR) model, which describes the motion of equal point
masses constrained on a ring and subject to 3D gravitational attraction. If the interaction
is regularized at short distances by the introduction of a softening parameter, a global
entropy maximum always exists, and thermodynamics is well defined in the mean-field
limit. However, ensembles are not equivalent and a phase of negative specific heat in the
microcanonical ensemble appears in a wide intermediate energy region, if the softening
parameter is small enough. The phase transition changes from second to first order at a
tricritical point, whose location is not the same in the two ensembles. All these features
make of the SGR model the best prototype of a self-gravitating system in one dimension. In
order to obtain the stable stationary mass distribution, we apply a new iterative method,
inspired by a previous one used in 2D turbulence, which ensures entropy increase and,
hence, convergence towards an equilibrium state.

2. Equilibrium phase transitions

G. Fletcher, A mechanical analog of first- and second-order phase transitions, Am. J.
Phys. 65, 74 (1997).

A mechanical model that exhibits first- and second-order phase transitions is analyzed.
The possible configurations are found first by using Newtonian mechanics and second by
determining the minimum of the effective potential energy taken from the Lagrangian.
A comparison is made between the effective potential energy method and the Landau
theory of phase transitions. Phase diagrams are obtained for the mechanical system and
are compared with those of a ferromagnet.

D. Boyanovsky, H. J. de Vega, D. J. Schwarz, Phase transitions in the early and the
present Universe, to appear in Ann. Rev. Nucl. Part. Sci 2006, hep-ph/0602002.

The evolution of the Universe is the ultimate laboratory to study fundamental physics
across energy scales that span about 25 orders of magnitude : from the grand unification
scale through particle and nuclear physics scales down to the scale of atomic physics.
The standard models of cosmology and particle physics provide the basic understanding
of the early and present Universe and predict a series of phase transitions that occur-
red in succession during the expansion and cooling history of the Universe. We survey
these phase transitions, highlighting the equilibrium and non-equilibrium effects as well
as their observational and cosmological consequences. We discuss the current theoretical
and experimental programs to study phase transitions in QCD and nuclear matter in
accelerators along with the new results on novel states of matter as well as on multi- frag-
mentation in nuclear matter. A critical assessment of similarities and differences between
the conditions in the early universe and those in ultra- relativistic heavy ion collisions is

119



H CONSIGNES POUR L’EĆRITURE DU RAPPORT

presented. Cosmological observations and accelerator experiments are converging towards
an unprecedented understanding of the early and present Universe.

An improved apparatus for demonstrating first- and second-order phase transitions :
Ball bearings on a rotating hoop, Richard V. Mancuso and Guy A. Schreiber, Am. J.
Phys. 73, 366 (2005)

A working mechanical model for first- and second-order phase transitions and the cusp
catastrophe, Richard V. Mancuso Am. J. Phys. 68, 271 (2000).

We have modified a toy to demonstrate first- and second-order phase transitions. The
toy consists of a ball constrained to move on a rotating hoop. Analysis of the equilibrium
positions of the ball as a function of the angular velocity and location of the axis of
rotation shows that this system contains a cusp catastrophe.

On water, steam, and string theory, Christof Schmidhuber Am. J. Phys. 65, 1042 (1997)

At a pressure of 220 atm and a temperature of 374 C there is a second-order phase
transition between water and steam. Understanding it requires a key concept of both
condensed matter and elementary particle physics : the renormalization group. Its basic
ideas are explained with images from computer simulations of the lattice gas model. Then I
briefly review how the renormalization group is used to compute critical coefficients for the
water ?steam phase transition. The results of this calculation are in good agreement with
experiment. Finally, some applications in particle physics and string theory are mentioned.

A hand-held demonstration of cosmological phase transitions, David Lange, Marc Sher,
Joel Sivillo, and Robert Welsh, Am. J. Phys. 61, 1049 (1993).

Illustrating phase transitions with soap films, David R. Lovett and John Tilley, Am. J.
Phys. 59, 415 (1991).

First-order and second-order phase transitions are demonstrated using soap-film mo-
dels. The models consist of two-dimensional parallel plates or three-dimensional frame-
works in which film patterns are maintained. By making the sizes of the frameworks
variable, it is possible to induce switching between film patterns analogous to transi-
tions between phases. These phase changes are discussed thermodynamically and using a
catastrophe theory model.

A simple geometrical model of spontaneous symmetry breaking, P. K. Aravind, Am. J.
Phys. 55, 437 (1987).

A common, everyday phenomenon has a geometrical aspect that, in some respects, is
analogous to a second-order phase transition. Concepts such as spontaneous symmetry
breaking, order parameter, critical point, and critical exponent can thus be exhibited in a
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purely geometrical context. The purpose of the model, which is entirely pedagogical, is to
illustrate in an elementary and amusing way some of the concepts associated with phase
transition theory.

3. Statistical analysis of cosmological structures

Dynamics

T. Baertschiger, M. Joyce, A. Gabrielli, F. Sylos Labini Gravitational Dynamics of an
Infinite Shuffled Lattice of Particles, cond-mat/0607396.

We study, using numerical simulations, the dynamical evolution of self-gravitating point
particles in static euclidean space, starting from a simple class of infinite “shuffled lat-
tice” initial conditions. These are obtained by applying independently to each particle
on an infinite perfect lattice a small random displacement, and are characterized by a
power spectrum (structure factor) of density fluctuations which is quadratic in the wave
number k, at small k. For a specified form of the probability distribution function of the
“shuffling” applied to each particle, and zero initial velocities, these initial configurations
are characterized by a single relevant parameter : the variance δ2 of the “shuffling” nor-
malized in units of the lattice spacing ℓ. The clustering, which develops in time starting
from scales around ℓ, is qualitatively very similar to that seen in cosmological simula-
tions, which begin from lattices with applied correlated displacements and incorporate an
expanding spatial background. From very soon after the formation of the first non-linear
structures, a spatio-temporal scaling relation describes well the evolution of the two-point
correlations. At larger times the dynamics of these correlations converges to what is ter-
med “self-similar” evolution in cosmology, in which the time dependence in the scaling
relation is specified entirely by that of the linearized fluid theory. Comparing simulations
with different δ, different resolution, but identical large scale fluctuations, we are able to
identify and study features of the dynamics of the system in the transient phase leading to
this behavior. In this phase, the discrete nature of the system explicitly plays an essential
role.

M. Joyce, D. Levesque, B. Marcos, A method of generating initial conditions for cos-
mological N body simulations, Phys. Rev. D 72 (2005) 103509, astro-ph/0411607.

We investigate the possibility of generating initial conditions for cosmological N-body
simulations by simulating a system whose correlations at thermal equilibrium approximate
well those of cosmological density perturbations. The system is an appropriately modified
version of the standard “one component plasma” (OCP). We show first how a well-known
semi-analytic method can be used to determine the potential required to produce the
desired correlations, and then verify our results for some cosmological type spectra with
simulations of the full molecular dynamics. The advantage of the method, compared to
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the standard one, is that it gives by construction an accurate representation of both the
real and reciprocal space correlation properties of the theoretical model. Furthermore
the distributions are also statistically homogeneous and isotropic. We discuss briefly the
modifications needed to implement the method to produce configurations appropriate for
large N-body simulations in cosmology, and also the generation of initial velocities in this
context.

A. Gabrielli, M. Joyce, B. Marcos, P. Viot, Causality constraints on fluctuations in
cosmology : a study with exactly solvable one dimensional models, Europhys. Lett. astro-
ph/0303169

A well known argument in cosmology gives that the power spectrum (or structure
function) P (k) of mass density fluctuations produced from a uniform initial state by
physics which is causal (i.e. moves matter and momentum only up to a finite scale) has
the behaviour P (k) ∝ k4 at small k. Noting the assumption of analyticity at k = 0 of P (k)
in the standard derivation of this result, we introduce a class of solvable one dimensional
models which allows us to study the relation between the behaviour of P (k) at small k
and the properties of the probability distribution f(l) for the spatial extent l of mass
and momentum conserving fluctuations. We find that the k4 behaviour is obtained in
the case that the first six moments of f(l) are finite. Interestingly the condition that the
fluctuations be localised - taken to correspond to the convergence of the first two moments
of f(l) - imposes only the weaker constraint P (k) ∝ kn with n anywhere in the range
0 < n ≤ 4. We interpret this result to suggest that the causality bound will be loosened
in this way if quantum fluctuations are permitted.

A. Gabrielli, B. Jancovici, M. Joyce, J. L. Lebowitz, L. Pietronero, F. Sylos Labini,
Generation of Primordial Cosmological Perturbations from Statistical Mechanical Models,
Phys.Rev. D 67 (2003) 043506, astro-ph/0210033.

The initial conditions describing seed fluctuations for the formation of structure in
standard cosmological models, i.e.the Harrison-Zeldovich distribution, have very charac-
teristic “super-homogeneous” properties : they are statistically translation invariant, iso-
tropic, and the variance of the mass fluctuations in a region of volume V grows slower
than V. We discuss the geometrical construction of distributions of points in R3 with
similar properties encountered in tiling and in statistical physics, e.g. the Gibbs distri-
bution of a one-component system of charged particles in a uniform background (OCP).
Modifications of the OCP can produce equilibrium correlations of the kind assumed in the
cosmological context. We then describe how such systems can be used for the generation
of initial conditions in gravitational N -body simulations.

Force distributions

A. Gabrielli, T. Baertschiger, M. Joyce, B. Marcos, F. Sylos Labini, Force distribution
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in a randomly perturbed lattice of identical particles with 1/r2 pair interaction, cond-
mat/0603124.

We study the statistics of the force felt by a particle in the class of spatially correlated
distribution of identical point-like particles, interacting via a 1/r2 pair force (i.e. gravi-
tational or Coulomb), and obtained by randomly perturbing an infinite perfect lattice.
In the first part we specify the conditions under which the force on a particle is a well
defined stochastic quantity. We then study the small displacements approximation, giving
both the limitations of its validity, and, when it is valid, an expression for the force va-
riance. In the second part of the paper we extend to this class of particle distributions the
method introduced by Chandrasekhar to study the force probability density function in
the homogeneous Poisson particle distribution. In this way we can derive an approximate
expression for the probability distribution of the force over the full range of perturbations
of the lattice, i.e., from very small (compared to the lattice spacing) to very large where
the Poisson limit is recovered. We show in particular the qualitative change in the large-
force tail of the force distribution between these two limits. Excellent accuracy of our
analytic results is found on detailed comparison with results from numerical simulations.
These results provide basic statistical information about the fluctuations of the interac-
tions (i) of the masses in self-gravitating systems like those encountered in the context of
cosmological N-body simulations, and (ii) of the charges in the ordered phase of the One
Component Plasma.

Statistical mechanics

H. J. de Vega, N. G. Sanchez, Statistical Mechanics of the Self-Gravitating Gas : Ther-
modynamic Limit, Unstabilities and Phase Diagrams, Comptes Rendus Physique 7 (2006)
391-397, astro-ph/0601600.

We show that the self-gravitating gas at thermal equilibrium has an infinite volume
limit in the three ensembles (GCE, CE, MCE) when (N, V ) → ∞, keeping N/V 1/3 fixed,
that is, with η = Gm2N/[V 1/3T ] fixed. We develop MonteCarlo simulations, analytic
mean field methods (MF) and low density expansions. We compute the equation of state
and find it to be locally p(r) = TrhoV (r), that is a local ideal gas equation of state.
The system is in a gaseous phase for η < ηT = 1.51024... and collapses into a very dense
object for η > ηT in the CE with the pressure becoming large and negative. The isothermal
compressibility diverges at η = ηT . We compute the fluctuations around mean field for the
three ensembles. We show that the particle distribution can be described by a Haussdorf
dimension 1 < D < 3.

H. J. de Vega, N. Sanchez, Statistical Mechanics of the self-gravitating gas : thermo-
dynamic limit, phase diagrams and fractal structures, Lecture given at the 7th. Paris
Cosmology Colloquium, Observatoire de Paris, June 11-15, 2002 and at the 9 th Course
of the International School of Astrophysics ‘Daniel Chalonge’, Palermo, Italy, 7-18 Sep-
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tember 2002, NATO ASI, astro-ph/0505561.

We provide a complete picture to the self-gravitating non-relativistic gas at thermal
equilibrium using Monte Carlo simulations, analytic mean field methods (MF) and low
density expansions. The system is shown to possess an infinite volume limit in the grand
canonical (GCE), canonical (CE) and microcanonical (MCE) ensembles when (N, V )− >
∞, keeping N/V 1/3 fixed. We compute the equation of state (we do not assume it as
is customary in hydrodynamics), as well as the energy, free energy, entropy, chemical
potential, specific heats, compressibilities and speed of sound ; we analyze their properties,
signs and singularities. All physical quantities turn out to depend on a single variable
η = Gm2N/[V 1/3T ] that is kept fixed in the N− > ∞ and V − > ∞ limit. The system
is in a gaseous phase for η < ηT and collapses into a dense object for η > ηT in the CE
with the pressure becoming large and negative. At η ≃ ηT the isothermal compressibility
diverges and the gas collapses. Our Monte Carlo simulations yield ηT ≃ 1.515. We find
that PV/[NT ] = f(η). The function f(η) has a second Riemann sheet which is only
physically realized in the MCE. In the MCE, the collapse phase transition takes place in
this second sheet near ηMC = 1.26 and the pressure and temperature are larger in the
collapsed phase than in the gaseous phase. Both collapse phase transitions (in the CE and
in the MCE) are of zeroth order since the Gibbs free energy has a jump at the transitions.

H. J. de Vega, N. Sanchez, The Cluster Expansion for the Self-Gravitating gas and the
Thermodynamic Limit, Nucl. Phys. B 711 (2005) 604-620, astro-ph/0307318.

We develop the cluster expansion and the Mayer expansion for the self-gravitating
thermal gas and prove the existence and stability of the thermodynamic limit N, V to infty
with N/V 1/3 fixed. The essential (dimensionless) variable is here η = [Gm2N ]/[V 1/3T ]
(which is kept fixed in the thermodynamic limit). We succeed in this way to obtain
the expansion of the grand canonical partition function in powers of the fugacity. The
corresponding cluster coefficients behave in the thermodynamic limit as [η/N ]j−1cj where
cj are pure numbers. They are expressed as integrals associated to tree cluster diagrams. A
bilinear recurrence relation for the coefficients cj is obtained from the mean field equations
in the Abel form. In this way the large j behaviour of the cj is calculated. This large j
behaviour provides the position of the nearest singularity which corresponds to the critical
point (collapse) of the self-gravitating gas in the grand canonical ensemble. Finally, we
discuss why other attempts to define a thermodynamic limit for the self-gravitating gas
fail.

H. J. de Vega, J. A. Siebert, The Self-Gravitating Gas in the Presence of Dark Energy :
Monte-Carlo Simulations and Stability Analysis, Nucl. Phys. B 726 (2005) 464-480, astro-
ph/0410147.

The self-gravitating gas in the presence of a positive cosmological constant Lambda
is studied in thermal equilibrium by Monte Carlo simulations and by the mean field ap-
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proach. We find excellent agreement between both approaches already for N = 1000
particles on a volume V [The mean field is exact in the infinite N limit]. The domain
of stability of the gas is found to increase when the cosmological constant increases. The
particle density is shown to be an increasing (decreasing) function of the distance when
the dark energy dominates over self-gravity (and vice-versa).We confirm the validity of
the thermodynamic limit : N, V − > ∞ with N/V 1/3 and ΛV 2/3 fixed. In such dilute limit
extensive thermodynamic quantities like energy, free energy, entropy turn to be propor-
tional to N . We find that the gas is stable till the isothermal compressibility diverges.
Beyond this point the gas becomes a extremely dense object whose properties are studied
by Monte Carlo.

4. Monte carlo methods

A new approach to Monte Carlo simulations in statistical physics : Wang-Landau sam-
pling, D. P. Landau, Shan-Ho Tsai, and M. Exler, Am. J. Phys. 72, 1294 (2004).

We describe a Monte Carlo algorithm for doing simulations in classical statistical phy-
sics in a different way. Instead of sampling the probability distribution at a fixed tempe-
rature, a random walk is performed in energy space to extract an estimate for the density
of states. The probability can be computed at any temperature by weighting the density
of states by the appropriate Boltzmann factor. Thermodynamic properties can be deter-
mined from suitable derivatives of the partition function and, unlike ”standard” methods,
the free energy and entropy can also be computed directly. To demonstrate the simplicity
and power of the algorithm, we apply it to models exhibiting first-order or second-order
phase transitions.

Monte Carlo Calculations as an Aid in Teaching Statistical Mechanics, D. P. Landau,
R. Alben

A simple Monte Carlo sampling method is used to illustrate the principles of statistical
mechanics as applied to a simple magnetic system. The concepts of ensembles, statistical
averages, and responses are clarified particularly with respect to the role of statistical
fluctuations. The basic properties of magnetic phase transitions are also demonstrated
using small systems of interacting moments.

A simple algorithm for the transport of gamma rays in a medium, F. Arqueros and G.
D. Montesinos, Am. J. of Phys. 71 38-45 (2003).

A simple Monte Carlo algorithm for the simulation of the passage of gamma rays of
about 1 MeV in a medium is presented. In this energy range the only relevant processes are
Compton scattering and photoelectric absorption. The algorithm allows the visualization
of the photon tracks as well as the calculation of many quantities of interest. Several
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problems for a layer and a cylinder are proposed. In particular, the energy transferred to
electrons in a water cylinder as a function of depth and the line shape of a NaI scintillator
is calculated.

Study of radiation-matter interaction processes below 1 MeV from simulated data, Fer-
nando Arqueros and Sergio Martinez, American Journal of Physics 60, 232-238 (1992).

The passage of 1-MeV photons through thin and thick foils of Al and Pb has been
simulated. The results have been used to show the basic properties of the dominant
effects in radiation-matter interaction processes at energies just below 1 MeV. For the
interpretation of the data it is necessary to handle total and differential cross sections of
the involved processes, as well as the conservation laws, mainly of the Compton effect,
whose phenomenology is studied in depth. In particular, the effect of multiple interactions
in thick foils is studied and some results of the simulation are compared with suggested
theoretical approaches.

Interdisciplinary applications of computational statistical physics, Dietrich Stauffer,
Am. J. of Phys. 67, 1207-1211 (1999).

Biological and financial applications of computational methods in statistical physics are
discussed. Examples are given of evolutionary models of sexual reproduction and stock
markets.

Monte Carlo estimations of e, P. Mohazzabi, Am. J. of Physics 66, 138-14 (1998).

Three physical processes and the corresponding Monte Carlo algorithms are outlined,
in which the number e, the base of the natural logarithm, can be obtained. The value of
e is estimated in each case, and the three algorithms are compared.

Updating Monte Carlo algorithms, J. R. Drugowich de Felcio, Valter L. Lbero, Am. J.
Phys, 64, 1281-1285 (1996).

Using the long-range Ising model, we present modern Monte Carlo techniques2̆014single
and multiple histogram and entropic sampling2̆014which permit increasing the amount
of information obtained from a simulation. Numerical results for the density of states,
mean energy and specific heat are compared with exact calculations, easily handled in
this case. As a consequence of the simplicity of the model, the ability of those methods
to generate continuous plots of thermodynamical quantities can be appreciated even by
students taking basic courses of statistical physics.

Compton scattering, the electron mass, and relativity : A laboratory experiment, P. L.
Jolivette and N. Rouze, American Journal of Physics 62, 266-271 (1994).

Compton scattering in a semiconductor detector is used to “discover” the relativistic
relation between energy and momentum and to demonstrate the dependence of p, E
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and gamma on beta. The motivation is to measure the (rest) mass of the electron, and
this can be done to within 1 keV with a commonly available set of gamma ray sources.
To determine precisely where the Compton edge occurs in a spectrum, a Monte Carlo
calculation of detector response is described which also helps the student to understand
the physics of the detection process.

5. Relativistic Brownian motion

Jörn Dunkel, Peter Hänggi, One-dimensional nonrelativistic and relativistic Brownian
motions : A microscopic collision model Physica A (to appear), cond-mat/0606487.

We study a simple microscopic model for the one-dimensional stochastic motion of a
(non)relativistic Brownian particle, embedded into a heat bath consisting of (non)relativistic
particles. The stationary momentum distributions are identified self-consistently (for both
Brownian and heat bath particles) by means of two coupled integral criteria. The latter fol-
low directly from the kinematic conservation laws for the microscopic collision processes,
provided one additionally assumes probabilistic independence of the initial momenta. It
is shown that, in the nonrelativistic case, the integral criteria do correctly identify the
Maxwellian momentum distributions as stationary (invariant) solutions. Subsequently, we
apply the same criteria to the relativistic case. Surprisingly, we find here that the statio-
nary momentum distributions differ slightly from the standard Jüttner distribution by an
additional prefactor proportional to the inverse relativistic kinetic energy.

Jörn Dunkel, Peter Hänggi, Relativistic Brownian motion : From a microscopic binary
collision model to the Langevin equation Phys. Rev. E (to appear), cond-mat/0607082.

The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is
derived from a microscopic collision model. The model assumes that a heavy point-like
Brownian particle interacts with the lighter heat bath particles via elastic hard-core colli-
sions. First, the commonly known, non-relativistic LE is deduced from this model, by
taking into account the non-relativistic conservation laws for momentum and kinetic
energy. Subsequently, this procedure is generalized to the relativistic case. There, it is
found that the relativistic stochastic force is still δ-correlated (white noise) but does no
longer correspond to a Gaussian white noise process. Explicit results for the friction and
momentum-space diffusion coefficients are presented and discussed.

6. Domain growth

J. M. Kim, A. J. Bray, M. A. Moore, Domain growth, directed polymer and self-
organized criticality, Phys. Rev. A 45, 8546 (1992).

The nature of the roughness of the growing surface modeled by the Kardar-Parisi-Zhang
(KPZ) equation has been further studied by defining a ‘domain’ structure for it. This was
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done by mapping the height h(x, t) of the surface onto a ‘spin’ S(x, t) = sgn[h(x, t) −
〈h(t)〉], where 〈h(t)〉 is the mean height of the growing surface at time (t). It was then found
that the growth of the surface has useful analogies with the domain-coarsening process in
nonequilibrium systems quenched into an ordered phase. Thus, in d = 1 + 1, the average
size 〈l〉 of spin domains grows as t1/3 and the domain-size distribution P (l, t) is consistent
with l−3/2f(l/t2/3). We find that the autocorrelation function A(t) = 〈S(x, t)S(x, 0)〉
decays as t−α, with α(d = 1 + 1) = 1.00.08 and α(d = 2 + 1) = 1.50.1. The form of
P (l, t) in higher dimensions and the connection between the spin autocorrelation function
and the height autocorrelation function are discussed. For computational convenience, the
KPZ equation was studied by transforming it to the problem of directed polymers in a
random potential.

B. Derrida, C. Godrèche, I. Yekutieli, Scale invariant regimes in one dimensional mo-
dels of growing and coalescent droplets, Phys. Rev. A 44, 6241 (1991).

We consider several simplified models of breath figures in one dimension. For all these
models, the combined effects of growth and of coalescence of droplets lead to a scale-
invariant regime with a stable distribution of the distances between droplets. We show that
at the mean-field level there exist one-parameter families of such stable distributions, each
distribution being characterized by its decay at infinity. We explain how the mean-field
theory can be improved by taking into account the effect of pair or higher correlations. For
some models one can check that the pair and higher correlations are factorized, meaning
that correlations are absent and that therefore the mean-field theory is exact. Finally, we
show that a very simple model of domain growth related to spinodal decomposition, the
one-dimensional Potts model in the limit of an infinite number of states, also possesses
a one-parameter family of stable distributions analogous to what we obtained for breath
figures.
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