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1. INTRODUCTION (1H) CONTENTS

1 Introduction (1h)

1.1 Closed and open systems in equilibrium

1.1.1 Classical

In classical Hamiltonian mechanics, the state of a closed system at a given instant
corresponds to a point in phase space, with generalised coordinates {~pi, ~xi}. Here i is
the label that identifies the particles/individuals, i = 1, . . . , N , ~xi is the position of the
ith particle in a d dimensional space, and ~pi the associated momentum. The physical
quantities characterising the system are functions of these coordinates and possibly also
time, f({~pi, ~xi}, t). Through Hamilton’s equations, one can then deduce – at least in
principle – the evolution of the system from the initial conditions and predict its state at
any future instant.

Classical mechanics usually deals with the evolution of a system of a few particles,
possibly in interaction and under the effect of some external potential. Imagine though
that the system is made of N → ∞ elements. We then enter the realm of Statistical
Physics. In cases in which one focuses on a (small) part of the whole isolated system
and treats the (large) rest as an environment, the selected system is now open and its
dynamics become dissipative and noisy, described by, a Langevin or master equation, the
Fokker-Planck formalism.

Figure 1.1: Ergodicity in classical systems

Under equilibrium conditions, ergodicity states that temporal averages of (non patho-
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logical) observables which depend on time only through the phase space variables, which
are performed over a sufficiently long time interval after a sufficiently long equilibration
time, coincide with statistical averages calculated as an average of the observable weighted
with a static distribution of the phase space variables, P ({~pi, ~xi}). The Gibbs-Boltzmann
equilibrium theory tells us which is the form of this probability depending on whether the
system is closed (microcanonical) or open (canonical, grand-canonical).

In practice, what this means is that an experimentalist can take two routes. On the
one hand, let a single system evolve in time and calculate from the trajectory the time
average of the desired observable. On the other had, take many copies of the same system,
let them evolve independently, and calculate, at a chosen time, the statistical average of
the observable over all those copies.

It is usually very difficult to prove ergodicity. It can only be assumed, used and the
consequences checked. Of course, there are many cases of great interest where it is clear
that it does not hold. This is the subject of classical out of equilibrium dynamics.

When the number of constituents of the system of interest diverges, that is, in the ther-
modynamic limit - be it isolated or in contact with an environment - collective effects can
emerge and lead to phase transitions and other unexpected behaviors like non-equilibrium
slow dynamics and the impossibility of reaching equilibrium in reasonable experimental
times. This is the content of the expression “More is different” coined by P. W. Anderson
to motivate the study of complex systems in general. This is what we are interested in.

1.1.2 Quantum

Do these consideration apply/vary quantum mechanically?

In quantum mechanics, when the state of a closed system is perfectly known, it is
represented by a state vector in a Hilbert space from which one can extract the expectation
values of operators which are related to the physical observables that characterise the
system.

In other cases, the state of the system is not perfectly known. One then adopts a
statistical description, based on the idea of copying the system many times. The equi-
librium hypothesis forces the density operator (similar to the probability distribution of
the classical problem) to be of the special Gibbs-Boltzmann form. The study of quantum
many-body problems at or very close to (linear response) equilibrium has concentrated
most analytic and experimental studies until a decade ago or so. Quantum phase transi-
tions, taking place at strictly zero temperature and driven by another control parameter
that basically measures the strength of the quantum fluctuations have been predicted and
measured both experimentally and numerically.

Since fully isolating a quantum system is extremely difficult, many relevant experimen-
tal situations concern open quantum systems rather than isolated quantum systems. It
is therefore necessary to build models of environments and couplings between the system
of interest and its surroundings. This is non-trivial and brings about many interesting

6



1. INTRODUCTION (1H) CONTENTS

features.
Out of equilibrium quantum systems also exist and they are the focus of very active

research nowadays.

1.2 Being out of equilibrium
Equilibrium is the exception rather than the rule in physical situations. Certainly,

there is only one way of being in equilibrium which is compatible with the conservation
laws. For instance, a fully isolated system is in the microcanonical ensemble, one that
exchanges energy with a thermal environment in the canonical one, and so on.

There are many ways to be out of equilibrium. Some, realizable in the classical limit
as well as under quantum fluctuations, are the following.

- Take a system in equilibrium and weakly perturb it so as to take it away from
equilibrium but not much. To treat these cases, linear response theory was built.
This is a very well established theory that captures correctly these weakly out of
equilibrium situations.

- Take an isolated system in (microcanonical) equilibrium and suddenly (or with
some time-dependent protocol) change a parameter of its Hamiltonian. The time
evolution under the new Hamiltonian will occur out of equilibrium and reaching
(or not) new equilibrium conditions may take very long. These procedures are
called quenches and they have mostly been studied in quantum settings, where they
are called quantum quenches. The putative stationary conditions reached could
be the standard equilibrium ones (as expected for interacting non-integrable many
body systems) or could take new forms, of Generalized Gibbs Ensemble form, for
integrable systems.

- Take an open system in (canonical) equilibrium and suddenly (or with some time-
dependent protocol) change a control parameter of the bath, be it temperature,
pressure, etc. The time evolution under the new conditions will take place out
of equilibrium. Reaching (or not) new equilibrium conditions may take very long.
These procedures are also called quenches for the instantaneous ones or annealing for
the time-dependent ones. They have been studied at length in classical statistical
physics, for example, in coarsening/domain growth problems, or in the context of
glassy systems.

- Strongly perturb an otherwise closed system with an external, for instance, a pe-
riodic time-dependent, force. These protocols can be performed on classical and
quantum systems as well. They have been fashionable in the quantum setting re-
cently and are associated with the name Floquet theory.

- Strongly perturb an open dissipative system with an external drive. These setting
arise in classical cases, for example, the physics of granular matter, and in quantum
cases like what is studied with quantum optics platforms. A question typically asked
in these setting is whether a non-equilibrium steady state is reached, how long does
it take to reach it if it is possible, and which are its characteristics.

7
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1.3 Classical examples
There are many classical system which evolve out of equilibrium.
The well-known phenomenon of Brownian motion or just diffusion is out of equilibrium.

Why so? Because the mean-square displacement of the Brownian particle grows with
no limit. The description of generic Brownian motion is typically done with a Langevin
equation where a model of the environment is assumed and a choice of friction and thermal
noise is made. The simplest one corresponds to a Markov process with memory-less
friction and white noise. Non-Markovian classical baths also exist. The deterministic
force can include quenched random effects in the form of a quenched random potential
or a random force (in both cases the values are taken from a probability distribution and
held fixed during evolution). In normal diffusion the growth is linear in time. In sub or
super diffusion the power is smaller or larger than one. The main point is that in none of
these cases a saturation limit is reached.

The simplest macroscopic example is the growth of order when a system is taken across
a second order phase transition. This can be done by changing abruptly a parameter in
the Hamiltonian of the system (e.g. in a simulation) or the temperature of the bath (e.g.
in an experiment). It is a quench. The standard example is the case of a magnetic system,
taken from a paramagnetic state to conditions under which it should magnetise. How does
it do it? By growing domains of the competing possible orderings. In an Ising model in
two or more dimensions, these are two oppositely magnetised equivalent low temperature
states. Locally the system choses one or the other and in the course of time it grows these
regions, ones at the expense of the other ones but in a symmetric way. Eventually, after
a time that diverges as a function of system size, the spontaneous symmetry breaking
mechanism takes place and one of the two equilibrium states is selected. But during this
very long term evolution the system remains far from equilibrium with vanishing averaged
magnetisation density. The description of this process can be done at a microscopic level,
with Monte Carlo simulations, for example. Analytically, one proposes a time-dependent
Ginzburg-Landau equation which is a Langevin equation on a field, the coarse-grained
magnetisation. A model for the environment is also necessary, to decide the functional
form of the friction and noise terms. Usually, a Markov choice is made.

Phase separation is also an out of equilibrium process. The difference with the magnetic
domain growth explained in the previous paragraph is that the order parameter of phase
separation is conserved. For example, if you consider a mixture of oil and water, the
mass of each of the phases remains constant in time since oil cannot be transformed into
water or vice versa. This imposes a conservation law and the microscopic dynamics or
mesoscopic Langevin equation have to respect it.

Glassy systems are ensembles of spins, atoms, molecules, polymers, or other con-
stituents with astronomically long relaxation times at low temperatures/high pressures.
Examples are spin-glasses, window glasses, plastics, etc. They do not reach their ideal
ordered (e.g. crystalline) equilibrium states in experimentally relevant time-scales. For
these samples/models, there is no clear growth of local order developing in the course of
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time and in this sense they are different (and more complex) than coarsening systems. The
slow relaxation is due to metastability, due to complex free-energy landscapes. Glasses
obviously exist in contact with surroundings.

Externally driven systems, as can be sheared liquids or periodically shaken granular
matter can reach non-equilibrium steady states that are, though, different from Gibbs-
Boltzmann equilibrium. Active matter is kept away from equilibrium thanks to the con-
stant injection of energy that is typically done on their borders.

Active matter is a very timely example of driven-dissipative out of equilibrium many-
body systems. The peculiarity of these “materials” is that the injection of energy is done at
the microscopic constituent level. They exist at very different scales, from the microscopic
to the macroscopic. Examples are bacteria colonies and flocks of birds on the natural side
and groups Janus particles or asymmetric grains on the artificial one. In usual cases they
reach a non-equilibrium steady state with peculiar properties. Several lectures in this
program discuss this problem in great detail.

1.4 Why quantum?
Strong experimental activity in condensed matter and atomic physics has relaunched

the interest in developing formalism for, and obtaining results on, out of equilibrium
situations in which quantum fluctuations pay a role.

Let us explore parallel examples to the ones presented in the previous Section, now in
their quantum realisation.

Consider a trapped cold atom system. For example, the atoms can be trapped in a
long (compared to the atomic scale) linear tube (approximately one dimensional space)
or on a finite sector of the plane. A few atoms of a given species can be inserted in these
spaces and be surrounded by many atoms of another species that act as a bath with
respect to the less numerous ones. This setting reproduces the classical Brownian motion
one, now under quantum fluctuations. The nature of the bath is more complex than
the classical one for which a Markov assumption is usually acceptable. Such quantum
Brownian motion has been realised by several experimental groups. Quenched random
potentials can also be at least approximately realised with light.

Quantum phase separation can also be studied in cold atom platforms by starting the
system in a, say, uniform mixture of two species which repulsive interaction between
different atoms. Magnets at very low temperatures undergo quantum domain growth.

Quantum spin-glasses and quantum glasses also exist and have similar slow relaxations
to classical ones. The former ones are systems of quantum spins placed at fixed random
positions in a host material. The quenched randomness in the distances between the
magnetic moments translates into quenched random interactions since the latter depend
on the former. In the case of quantum glasses, there are no quenched random couplings
but the atoms or molecules, which follow quantum mechanical rules, also display slow out
of equilibrium dynamics.

In atomic physics cold atom platforms as the one sketched in Fig. 1.2(b) have allowed
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one to study quantum systems with many (though not infinite) atoms in almost perfect
isolation. Light beams are used to generate periodic potentials that trap the atoms
in lattice structures. The magic of these systems is that the parameters (interaction,
hopping) can be tuned in real-time [16]. Questions about the equilibration of the samples
are posed. Periodic modulation of hopping (“shaking”) or the interactions can also be
controlled in these cases.

In analog quantum simulators, such as ultracold atom platforms, arrays of atoms with
long-range interactions, and trapped atomic ions, one can exert control over constituent
degrees of freedom by tuning the Hamiltonian governing their interactions. The possibility
of highly coherent and controllable Hamiltonian dynamics has led to important questions
about universality in the approach to thermal equilibrium.

Digital quantum simulators, formed by, e.g. formed of superconducting qubits, could
afford an even greater degree of control. Their time evolution would take place in discrete-
time through the application of unitary operations, measurements, and feedback. Suc-
cessful implementation of these operations is a stepping-stone towards the goal of building
a fault-tolerant quantum computer. Researchers are asking in this context which collec-
tive quantum phenomena, or dynamical phases of matter, could emerge in such quantum
circuits?

In the quantum realm, another possible out of equilibrium situation is the so-called
many-body localisation. It is the extension of Anderson localisation to problems with many
interacting electrons in a medium with quenched randomness. Though the existence of
these systems is still debated, the idea is that they would have neither diffusion nor
transport and quenched disorder could arrest thermalisation entirely. These localisation
properties would not resist coupling to an environment.

In condensed matter physics many pump-probe experiments as the one sketched in
Fig. 1.2(a) are being conducted to try to understand the behaviour of samples. Periodic
perturbation induced by strong (classical) light fields, with tuneable frequency and am-
plitude, have also been used. The typical question is ‘How rapidly (and radically) can we
change the property of a material with light?’

Both in condensed matter systems and atomic physics the idea to use non-equilibrium
perturbations as a new knob to control/stabilize/create new quantum phases of matter is
intensively being studied. This is called Floquet engineering. One can note that a similar
question was fashionable in the context of granular matter around 20 years ago.

The idea to use quantum mechanics to compute in a more efficient way than with
classical rules was put forward by Feynman in 1981. Concomitantly, it became necessary
to understand how to process quantum information.

The difficulty of factoring large integers into products of prime numbers is at the
basis of schemes for public key cryptography. The solutions of factoring can be easily
verified, once found. However, they are hard to find: if p and q are large prime numbers,
the product n = pq can be computed quickly (the number of elementary bit operations
required is about log2 p log2 q). The the time needed to give an answer to the reversed
question “given n, find the factors p and q” in the worst case is supposed (not proven)

10
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Figure 1.2: (a) Pump-probe experiments: electrons in solids under ultrafast optical fields. (b)
Neutral atoms trapped in optical lattices.

to grow faster than any power of n. Indeed, the faster algorithm known to date uses
exp[c(lnn)1/3(ln lnn)2/3] with c = (64/9)1/3 ∼ 1.9. Estimates are such that factoring a
400 digit number would take about 1010 years.

Shor proved in 1994 that a quantum computer can factor a large number efficiently, in
polynomial time O[(lnn)3]. Shor’s algorithm could factor a 400 digit number in less than
3 years.

Leaving aside the extensive experimental efforts to build controllable large-scale quan-
tum devices, many theoretical questions are posed in the context of quantum computation
and information. The following list is a selection of the ones given in the MIT Physics
Department website:

- Quantum algorithms and complexity. If a perfectly functioning quantum computer
were built, which problems could it solve faster than conventional computers, and
which problems do not admit any speedup?

- Quantum information theory. Meaning and limits of communicating classical and
quantum information over quantum channels How can we store, transfer, or ma-
nipulate quantum information in the presence of noise? How can we efficiently
communicate and compute in the presence of errors? What are the basic properties
of quantum entanglement and information?

- Measurement and control. How can we efficiently manipulate and characterize quan-
tum devices?

- Applications and connections. How can ideas from quantum information science
contribute to other research areas as diverse as convex optimizations, black holes,
and exotic quantum phases of matter? Is there a unified framework to efficiently
describe quantum entanglement and information in complex systems?

1.5 Aim of these lectures
These lectures are an introduction to some methods used in the study of many-body

quantum systems in and out of equilibrium.
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We will start reviewing the formalism of quantum mechanics in Sec. 2 and some generic
properties of correlation and linear response functions in Sec. 3. The classical limits of
these properties are important and will be discussed. While discussing quantum mechani-
cal concepts we will pay special attention to the essential property of entanglement. Open
classical and quantum systems will be dealt with in Sec. 4 (e.g. Langevin equations in the
classical case, Lindblad formalism in the quantum). The path integral formalism, useful
to establish perturbative expansions, renormalisation group analysis and self-consistent
approximations both in and out of equilibrium will be explained in Sec. 5. Finally, we
will study some elements of quantum chaos, and Anderson and Many-Body Localisation,
in Sec. 6.

1.6 General references
Several books describe part of the formalism that we will discuss in these lectures [1–5].

Review articles are more specific and touch upon more modern issues [6–9].
Interestingly enough, and not always known to everyone, the questions asked, for-

malisms used, and results obtained for quantum and classical many-body systems can be
very similar. We will stress these coincidences in these lectures. Of course, some aspects
are specific to quantum mechanics.

12
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2 Quantum mechanics
In this Section we introduce a bit of notation, and we recall concepts and postulates of

quantum physics [10,11]. We present them with the aim of giving a very basic introduction
to quantum information and quantum computation, following in part the presentation
in [12]. In Preskill’s words information is something encoded in the state of a physical
system and computation is something that can be carried out on an actual physically
realizable device. Both belong to the area of physics, theoretical and experimental.

2.1 Concepts and notation

2.1.1 Hilbert space, pure states and linear superposition

A pure quantum state is a mathematical entity, a vector with norm one in a Hilbert
space, that embodies knowledge of a quantum system. A Hilbert space is a (finite or
infinite dimensional) vector space equipped with an inner product that induces a distance
function.

Symbol Name, object, property
H Hilbert space (a complex vector space

with a scalar product)
|ψ〉 A vector - a ket - in H
c|ψ〉+ d|φ〉 with c, d ∈ C A linear combination, also in H
c∗〈ψ|+ d∗〈φ| Bra dual to c|ψ〉+ d|φ〉
〈ψ|φ〉 ∈ C Inner product
〈φ|ψ〉 = 〈ψ|φ〉∗ Complex conjugate
〈η|(c|ψ〉+ d|φ〉) = c〈η|ψ〉+ d〈η|φ〉 Associativity
〈φ|φ〉 ≥ 0 Postulate of definite metric
〈φ|φ〉1/2 Norm of |φ〉
〈ψ|φ〉 = 0 Orthogonality

{|ψn〉} with 〈ψn|ψm〉 = δnm Orthonormal basis of finite dim H
|ψ〉 =

∑
n

cn|ψn〉 with cn = 〈ψn|ψ〉 ∈ C Representation of |ψ〉 in the basis {|ψn〉}

Imagine that you have a classical system which has K energy levels (for simplicity,
suppose the spectrum is discrete). Classically it can be in one of these levels and one
can identify its state from the value of the index k which runs from 1 to K. In quantum
mechanics the linear superposition principle states that the system is placed in a linear
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superposition of these K states with complex coefficients. Concretely, if the K staes are
the orthonormal states |ψ1〉, . . . , |ψK〉, a generic pure state of the system is

|ψ〉 = c1|ψ1〉+ · · ·+ cK |ψK〉 (2.1)

with ck ∈ C and
∑K

k=1 |ck|2 = 1. This is a linear superposition of the basis states {|ψk〉}.
An informal way to think about the meaning of this statement is that the system has

not made its mind about which situation {|ψk〉} it is in (until it is measured).
One can define the dual of the ket |ψ〉, called the bra, 〈ψ|:

〈ψ| = c∗1〈ψ1|+ · · ·+ c∗K〈ψK | (2.2)

The squared modulus of the vector |ψ〉 is then

〈ψ|ψ〉 = (c∗1〈ψ1|+ · · ·+ c∗K〈ψK |)(c1|ψ1〉+ · · ·+ cK |ψK〉) =
K∑
k=1

|ck|2 = 1 (2.3)

Example
Take as an example a qubit or two state system, k = 1,K = 2. Classically, the qubit has two possible
configurations, 0 and 1. Quantum mechanically it is a vector in a two-dimensional complex vector
(Hilbert) space with inner product. A basis of this Hilbert space is

|ψ1〉 = |0〉 =

[
1
0

]
|ψ2〉 = |1〉 =

[
0
1

]
(2.4)

which are eigenvectors of the operator σ̂z with eigenvalue 1 and −1, respectively. The definition and
properties of the spin operators and Pauli matrices are recalled in App. A.

The duals of the kets above are

〈ψ1| = 〈0| =
[
1 0

]
〈ψ2| = 〈1| =

[
0 1

]
(2.5)

The two states are orthogonal 〈0|1〉 = 〈1|0〉 = 0 and normalized to one 〈0|0〉 = 〈1|1〉 = 1. For such a
system, a generic pure state with norm one is |ψ〉 = c0|0〉+ c1|1〉, with |c0|2 + |c1|2 = 1.

From a quantum information viewpoint, a quantum system can carry continuous in-
formation about the relative balance of each of the states in which it can be. For a qubit,
one can argue that the system has information about the relative balance of |0〉 and |1〉,
through the coefficients c0 and c1. Quantum algorithms can sometimes use this fact to
run more efficiently than their classical counterparts. Quantum information is also not
deterministic. When someone takes a look at a classical bit, it simply is a 0 or a 1, as
it was beforehand and as it will be afterward, apart from the possibility of error. This
is not so with qubits, the result of the measurement has a probabilistic meaning and the
state is affected by the measurement.

A pure state can be described by a single vector. A mixed state is a statistical ensemble
of pure states. Mixed states arise in two different situations: first, when the preparation

14



2. QUANTUM MECHANICS CONTENTS

of the system is not fully known, and one must deal with a statistical ensemble of possible
preparations; second, when one wants to describe a physical system which is entangled
with another, as its state cannot be described by a pure state. States can be described
by density operators, with the pure ones taking a very simple form. We will come back
to the description of mixed states and the meaning of entanglement in Sec. 2.2.3.

2.1.2 Operators

Given vectors and dual vectors we can define operators of the form

Ô = |ψ〉〈φ| (2.6)

Ô acts on a vector in H and produces as result another vector in H.
The Hermitian conjugate is

Ô† = |φ〉〈ψ| (2.7)

with the combined operation of transposition and complex conjugation which are easy to
visualise in the matrix representation of operators.

An operator is Hermitian if Ô† = Ô. A special case is the projector

P̂ † = |ψ〉〈ψ| (2.8)

which satisfies P̂ † = P̂ and P̂ 2 = P̂ .
Given the orthonormal basis of a finite dimensional Hilbert space H, {|ψn〉} with

〈ψn|ψm〉 = δnm, one has the closure relation∑
n

|ψn〉〈ψn| = I (2.9)

2.1.3 Measurement

It is postulated that a measurable physical quantity of a physical system is represented
by a linear Hermitian operator, termed an observable, that acts on vectors of the Hilbert
space representing the physical system.

The process of measuring an observable Â in a state |ψ〉 goes as follows.
− First, one needs to express the observable Â in terms of its eigen-basis. For that,

one needs to determine its eigenstates {|an〉} and eigenvalues {an}. The eigenstates
satisfy:

Â|an〉 = an|an〉.

The eigenvalues an are the possible outcomes of the measurement, and the eigen-
states |an〉 form another basis for the Hilbert space.

15
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Symbol Name, object, property

Â Observable - Operator
Â|ψ〉 = |ψ′〉 Action on a vector in H
Â(c|ψ〉+ d|φ〉) = cÂ|ψ〉+ dÂ|φ〉 Linearity
〈ψ|Â† with Â† the adjoint of Â bra associated to the ket Â|ψ〉
Â = Â† Hermitian
〈φ|Â|ψ〉 = 〈ψ|Â†|φ〉∗ Self-adjoint
Â†Â = ÂÂ† = I Unitary
ÂB̂ 6= B̂Â Non commutative (but associative)
(ÂB̂)† = B̂†Â† Hermitian
|ψ〉〈φ| Outer product: an operator
Â|an〉 = an|an〉 with an ∈ C Eigenstate |an〉 with eigenvalue an
Â = Â† =⇒ an ∈ R ∀n real eigenvalues
{|an〉} with an 6= am Orthonormal basis of H
|ψ〉 =

∑
n

cn|an〉 with cn ∈ C ket written in the basis {|an〉}

〈an|Â|am〉 = 〈am|Â†|an〉∗ Matrix representation of Â
Hermitian = transpose & conjugate

TrÂ =
∑
n

〈an|Â|an〉 Trace of Â

Â =
∑
n

an|an〉〈an| Representation of Â

If [Â, B̂] = 0 then 〈an|B̂|am〉 = δnm Compatible operators,
diagonal in same basis same eigenkets

〈(∆Â)2〉〈(∆B̂)2〉 ≥ 1
4
|〈[Â, B̂]2〉|2 Uncertainty relation

{|ψn〉} with 〈ψn|ψm〉 = δnm Orthonormal basis of finite dim H∑
n

|ψn〉〈ψn| = I Closure

− Next, express the system’s state |ψ〉 in terms of the eigenstates {|an〉} of A:

|ψ〉 =
∑
n

cn|an〉 ,

where cn = 〈an|ψ〉 are the expansion coefficients, which represent the projection of
|ψ〉 onto the eigenstate |an〉.

− The Born rule states that when one measures the observable Â, the system collapses
into one of its eigenstates |an〉, and the corresponding eigenvalue an will be the
measurement result. The probability P (an) of measuring the eigenvalue an is given

16
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by the squared modulus of the projection of |ψ〉 onto |an〉:

P (an) = |〈an|ψ〉|2 = |cn|2 .

It tells how likely it is to observe the outcome an when measuring Â in the state |ψ〉.
The outcome of a measurement is not deterministic, there is a probability element
to it. Note that |cn|2 are positive real values and

∑
n |cn|2 = 1. One cannot access

the phase of the coefficients cn in this way.

Note that it is assumed that the measurement of an observable somehow instanta-
neously changes the quantum state of the system into one of the eigenstates of that
operator.

There is, however, a way to access the phases of the coefficients ck by working in another
basis. Let us see how it works with an example.

Example
Take the two-level system, k = 1,K = 2 and consider the quantum state

|ψ〉 =
1√
2
|0〉+

eiθ√
2
|1〉 (2.10)

The standard measurement would yield |0〉 with probability p0 = 1/2 or |1〉 also with probability p1 = 1/2.
Let us change basis to

|+〉 =
1√
2

(|0〉+ |1〉) |−〉 =
1√
2

(|0〉 − |1〉) (2.11)

eigenstates of σx with eigenvalues 1 and −1, respectively, which implies

|0〉 =
1√
2

(|+〉+ |−〉) |1〉 =
1√
2

(|+〉 − |−〉) (2.12)

and use these expressions to rewrite |ψ〉 in this new basis:

|ψ〉 =
1

2
(|+〉+ |−〉) +

eiθ

2
(|+〉 − |−〉) =

1

2

(
1 + eiθ

)
|+〉+

1

2

(
1− eiθ

)
|−〉

=
1

2
(1 + cos θ + i sin θ) |+〉+

1

2
(1− cos θ − i sin θ) |−〉 (2.13)

Therefore, the probabilities of measuring |+〉 and |−〉 are

p+ =
1

4
| (1 + cos θ + i sin θ) |2 =

1

4
(1 + cos θ)2 + (sin θ)2 =

1

2
[1 + cos θ] = cos2

θ

2
(2.14)

p− =
1

4
| (1− cos θ − i sin θ) |2 =

1

4
(1− cos θ)2 + (− sin θ)2 =

1

2
[1− cos θ] = sin2 θ

2
(2.15)

and one can thus measure θ.

A special operator is the Hamiltonian, which is restricted by two postulates of quantum
mechanics:
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− The Hamiltonian must be a Hermitian operator so that its eigenvalues (energy levels)
are real.

− The spectrum must be bounded from below so as to have a finite ground state
energy.

After a measurement, the quantum state collapses to an eigenstate of the operator
measured. Other aspects of the state may be unknown. Repeating the same measurement
will not alter the state which is already an eigenstate of the operator. In some cases,
compatible measurements can further refine the state, causing it to be an eigenstate
corresponding to all these measurements. A full set of compatible measurements produces
a pure state.

Because of the uncertainty principle, non-commuting observables cannot simultane-
ously have precisely defined values. Performing a measurement of one observable Â will
necessarily influence the outcome of a subsequent measurement of an observable B̂, if Â
and B̂ do not commute. This is another way to see that the act of acquiring information
about a physical system inevitably disturbs its state. This does not happen in classical
physics.

Quantum information cannot be copied with perfect fidelity (no cloning principle, see
Sec. 2.3.6) and one cannot use the trick of measuring on a copy without disturbing the
original system in this way.

These are bad news when it comes to use quantum mechanics to build a quantum
computer: reading the output of a quantum computer - making a measurement - would
destroy most of the information it stores. Where once there was a superposition, the
measurement takes the measured qu-bit to be in one of its two states. There are ways
to avoid this problem, by introducing ancilla qubits, which are extra qubits added to
implement irreversible logical operations on them.

The spectrum of the operators which correspond to observables are the values that these
can take in a measurement. Since measurements should take real values, the operators
associated to observables should be self-adjoint, Â = Â† and have the same domain, thus
be Hermitian. The eigenvalues of a Hermitian operator are real and the eigenvectors
associated to different eigenvalues are orthogonal. The first statement reads as follows.

For Ĥ = Ĥ†, Ĥ|ψn〉 = En|ψn〉 with En ∈ R . (2.16)

Exercise 2.1 Prove the statement above.

Proof. Take the inner product of this expression with 〈ψm|, and use the orthonormality of
the eigenvectors to get 〈ψn|Ĥ|ψn〉 = En. Now, rewrite the left-hand-side as lhs=〈ψn|Ĥ†|ψn〉∗
and use the fact that Ĥ = Ĥ†, to get lhs=〈ψn|Ĥ|ψn〉∗ = E∗n. Equating to the right-hand-
side, En = E∗n.

Haydock and Kelly stated in 1975 that, while the Hermitian condition was sufficient
to ensure real eigenvalues, it was not necessary. Attempts have been made to relax the
Hermiticity condition, and work with non-Hermitian Hamiltonians (still with PT parity-
time reversal symmetry) which have only real eigenvalues. Many such non-Hermitian
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Hamiltonians were constructed and studied. This gave rise to the field of non-Hermitian
quantum mechanics which is quite fashionable nowadays.

Symbol Measurement
Â|ψ〉 = an|ψ〉 iff |ψ〉 = |an〉 Action on an eigenvector
|ψ〉 −→ |an〉 an eigenvector of Â Measurement of Â

System projected on |an〉
|〈an|ψ〉|2 Probability of collapse on |an〉 (|ψ〉 normalized)
〈A〉ψ = 〈ψ|Â|ψ〉 Expectation value of Â in the state

=
∑
n

an |〈an|ψ〉|2 |ψ〉 =
∑
n

cn|an〉 =
∑
n

〈an|ψ〉|an〉

{|ψ〉} Copies of the state Pure ensemble

2.1.4 Expectation values

The expectation value represents the average value of a measurement over many trials
for the given state. For a quantum state |ψ〉 =

∑
n cn|an〉 the expectation value of an

operator Â is given by:

〈Â〉ψ = 〈ψ|Â|ψ〉 =
∑
n

an|〈an|ψ〉|2 =
∑
n

an|cn|2 . (2.17)

The expectation value is a single number (real if Â is Hermitian because all an are real).
It represents an average over many measurements, not a single measurement outcome.
The process of calculating the expectation value does not alter the quantum state |ψ〉〈ψ|
contrary to a measurement. The expectation value calculation is a theoretical computa-
tion.

Example
Consider the state |ψ〉 = |0〉 (spin up). The expected value of the operator σ̂z is 〈0|σ̂z|0〉 = 〈0|0〉 = 1.
instead, if the state is a superposition of up and down |ψ〉 = a|0〉 + b|1〉, then 〈ψ|σ̂z|ψ〉 = (a∗〈0| +
b∗〈1|) σ̂z (a|0〉+b|1〉) = (a∗〈0|+b∗〈1|) (a|0〉−b|1〉) = (|a|2〈0|0〉−a∗b〈0|1〉+b∗a〈1|0〉−|b|2〈1|1〉 = |a2|−|b|2.
This means that the probability of measuring spin-up along the z axis is |a|2 while the one of measuring
spin-down along the same axis is |b|2.

2.1.5 Unitary operators

Unitary operators are specially important since the time-evolution operator has to be
unitary to ensure conservation of probability.
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A unitary transformation is a rigid body rotation (or reflection) of the Hilbert space,
which results in a transformation of the state vector that does not change its length.

Quantum gates

Take a qu-bit. A unitary operator can be represented by a two by two matrix with
complex entries U with complex transpose U †:

U =

[
a b
c d

]
U † =

[
a∗ c∗

b∗ d∗

]
(2.18)

with the condition UU † = U †U = I.
There are a number of well-known operations, called gates in the quantum computa-

tional context:

− Hadamard Gate. Can be viewed as a reflection around π/8, or a rotation around
π/4 followed by a reflection.

H =
1√
2

[
1 1
1 −1

]
(2.19)

H2 = I and H†H.
The Hadamard gate acts as

H|0〉 =
1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
=

1√
2

([
1
0

]
+

[
0
1

])
=

1√
2

(|0〉+ |1〉) (2.20)

and
H|1〉 =

1√
2

[
1 1
1 −1

] [
0
1

]
=

1√
2

[
1
−1

]
=

1√
2

([
1
0

]
−
[
0
1

])
=

1√
2

(|0〉 − |1〉) (2.21)

that is, it transforms the eigenstates of σ̂z in eigenstates of σ̂x.
− Rotation Gate. It rotates the plane by θ:

R =

[
cos θ − sin θ
sin θ cos θ

]
(2.22)

− NOT Gate. Flips the bit from |0〉 to |1〉 and vice versa

NOT =

[
0 1
1 0

]
(2.23)

− Phase flip.

Z =

[
1 0
0 −1

]
(2.24)

This gate is a NOT gate acting on the |+〉 = 1/
√

2 (|0〉+ |1〉), |−〉 = 1/
√

2 (|0〉−|1〉)
basis, Eq. (2.11): Z|+〉 = |−〉 and Z|−〉 = |+〉.

Proof.
Z|±〉 =

1√
2

[
1 0
0 −1

]
(|0〉 ± |1〉) =

1√
2

(|0〉 ± (−1)|1]〉) = |∓〉 (2.25)
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Figure 2.1: Notation used to represent various gates. Source: Wikipedia.

2.1.6 Density operator

It is postulated that to each physical state it is associated a single linear operator, the
density operator, ρ̂, such that the expectation value of any observable is given by a trace
of the operator in question times the density operator:

〈Ô〉 = Tr(ρ̂Ô) (2.26)

The expectation value 〈Ô〉 represents the average or mean value of the observable Ô over
many measurements of the quantum system. Specifically, it gives the average outcome
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if one were to perform many measurements of Ô on identically prepared systems in the
state with density operator sρ̂.

If Ô is a diagonalizable operator, its eigenvalues represent possible outcomes of a mea-
surement, and 〈Ô〉 is a weighted average of those outcomes, weighted by the corresponding
probabilities.

For non-diagonal operators, 〈Ô〉 might still be a real number, but it does not directly
correspond to the probability of obtaining a particular outcome. Instead, it is a kind of
average over all possible measurement outcomes, rather than a probability for a specific
outcome.

In certain special cases the expectation value of an operator can be interpreted as a
probability:

- If Ô = |on〉〈on| is a projection operator, then 〈Ô〉 = Tr(ρ̂|on〉〈on|) gives the proba-
bility of collapsing the system on the state |on〉 and measuring the associated value.

- If Ô corresponds to an observable that is specifically designed to represent the prob-
ability of a particular outcome (like a measurement), then 〈Ô〉 can be interpreted
as a probability.

This is Born’s rule as applied to mixed states. It provides the bridge between the abstract
quantum formalism and the actual physical outcomes observed in experiments.

Example
The average of the operator P̂0 = |0〉〈0| in the state with density operator ρ̂ is, in the case of a projector,
equal to the probability of obtaining the outcome corresponding to |0〉. The Born rule states:

p(0) = Tr(ρ̂ |0〉〈0|).

For a general density matrix,

ρ =

(
ρ00 ρ01
ρ10 ρ11

)
,

the probability becomes

p(0) = Tr
(
ρ00 ρ01
ρ10 ρ11

)(
1 0
0 0

)
= ρ00

which is indeed real and in [0, 1]. Similarly, the probability of measuring 1, is p(1) = Tr(ρ̂|1〉〈1|) = ρ11,
and ρ00+ρ11 = 1 ensure the conservation of probability. After the measurement, if the outcome associated
with |0〉 is obtained, the state of the system collapses to the normalized projection of ρ̂ onto |0〉

ρ̂post =
P̂0ρ̂P̂0

p(0)

Substituting P̂0, P̂0ρ̂P̂0 = |0〉〈0|ρ̂|0〉〈0| = ρ00|0〉〈0|. Therefore,

ρ̂post =
ρ00|0〉〈0|
ρ00

= |0〉〈0|.
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It is particularly important to use the density operator in the quantum theory of open
systems, where a quantum system interacts with an external system whose evolution is
unknown, and in the quantum theory of measurement and information.

Having said so, the dimension of the density matrix of the system is the square of
that of the system’s Hilbert space. This requirement may make their numerical solution
prohibitively expensive, even for moderately sized quantum systems.

Pure states

The density operator of a pure state |ψ〉 takes the form

ρ̂ = |ψ〉〈ψ| (2.27)

The pure state |ψ〉 can be expanded in a basis |ψn〉 of the Hilbert space, |ψ〉 =
∑

n cn|ψn〉
and then

ρ̂ =
∑
nm

cnc
∗
m |ψn〉〈ψm| (2.28)

In this same basis, the density matrix has elements

ρnm = 〈ψn|
∑
kl

ckc
∗
l |ψk〉〈ψl|ψm〉 =

∑
kl

ckc
∗
l δknδlm = cnc

∗
m (2.29)

The physical content of the density operator is more apparent when we compute the ele-
ments of the density matrix with respect to a complete, orthonormal basis. The diagonal
elements are real numbers and they are referred to as populations, give the measurement
probability of the system in each of the states, and add up to one. The off-diagonal
elements are complex conjugates of each other and they are referred to as coherences;
they give information about the relative phase of different components of the superposi-
tion. For example, if we write the state vector as a superposition with explicit phases,
cn = |cn|eiφn ,

ρnm = |cn||cm|ei(φn−φm) (2.30)

In another basis, say {|φn〉}, the elements will be different. The state |ψ〉 will have
different coefficients dn when expanded in this new basis, |ψ〉 =

∑
n dn|φn〉. Then,

ρnm = 〈φn|
∑
kl

dkd
∗
l |φk〉〈φl|φm〉 =

∑
kl

dkd
∗
l 〈φn|φk〉 〈φl|φm〉 = dnd

∗
m (2.31)

and dnd∗m 6= cnc
∗
m.

Example
Let us consider a pure state |ψ〉 of a two-level system, a particle with spin up or down, in a superposition,

|ψ〉 = c0|0〉+ c1|1〉 (2.32)
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The density operator is

ρ̂ = |ψ〉〈ψ| = c∗0c0|0〉〈0|+ c∗0c1|0〉〈1|+ c∗1c0|1〉〈0|+ c∗1c1|1〉〈1|
= |c0|2|0〉〈0|+ |c1|2|1〉〈1|+ c∗0c1|0〉〈1|+ c∗1c0|1〉〈0|︸ ︷︷ ︸

interference

(2.33)

In the |0〉, |1〉 basis the density matrix is [
|c0|2 c∗0c1
c∗1c0 |c1|2

]
(2.34)

The trace of this matrix is Trρ̂ = |c0|2 + |c1|2 = 1 by normalization. The interference terms are the
off-diagonal ones in the matrix. Decoherence usually refers to the destruction of the interference terms or
the off-diagonal elements in the matrix, leaving just the diagonal elements. Note however that whether
or not there is any interference (non-zero off-diagonal elements in ρ) depends on our choice of basis. Just
because a density matrix is diagonal in some basis does not mean the system is behaving classically. In
this simple problem ρ is diagonal only if |c0|2 = 0 or |c1|2 = 0.

Use now the basis of eigenstates of the operator σ̂x, |+〉 ≡ (|0〉+ |1〉)/
√

2 with eigenvalue 1 and |−〉 ≡
(|0〉−|1〉)/

√
2 with eigenvalue −1, and rewrite ρ̂ in this basis. One has the new elements ρ11, ρ12, ρ21, ρ22.

They read

2ρ11 = (〈0|+ 〈1|) (c∗0c0|0〉〈0|+ c∗0c1|0〉〈1|+ c∗1c0|1〉〈0|+ c∗1c1|1〉〈1|) (|0〉+ |1〉)
= c∗0c0 + c∗0c1 + c∗1c0 + c∗1c1 (2.35)

2ρ12 = (〈0|+ 〈1|) (c∗0c0|0〉〈0|+ c∗0c1|0〉〈1|+ c∗1c0|1〉〈0|+ c∗1c1|1〉〈1|) (|0〉 − |1〉)
= c∗0c0 − c∗0c1 + c∗1c0 − c∗1c1 (2.36)

2ρ21 = (〈0| − 〈1|) (c∗0c0|0〉〈0|+ c∗0c1|0〉〈1|+ c∗1c0|1〉〈0|+ c∗1c1|1〉〈1|) (|0〉+ |1〉)
= c∗0c0 + c∗0c1 − c∗1c0 − c∗1c1 (2.37)

2ρ22 = (〈0| − 〈1|) (c∗0c0|0〉〈0|+ c∗0c1|0〉〈1| − c∗1c0|1〉〈0| − c∗1c1|1〉〈1|) (|0〉 − |1〉)
= c∗0c0 − c∗0c1 − c∗1c0 + c∗1c1 (2.38)

The trace of this matrix is 2Trρ = [c∗0c0+��c∗0c1+��c∗1c0+c∗1c1]+[c∗0c0−��c∗0c1−��c∗1c0+c∗1c1] = 2|c0|2+2|c1|2 = 2
and Trρ = Trρ = 1. Can we choose the coefficients c0, c1 so as to make this matrix diagonal while keeping
ρ non diagonal? The requirement ρ12 = ρ21 = 0 implies

c∗0c1 = c∗1c0 and |c0|2 = 0 or |c1|2 = 0 (2.39)

so, it is not possible in this case. But this is not general.
One could have proceeded differently, that is, writing |ψ〉 in the |+〉, |−〉 basis. For that, we write

|0〉 =
1√
2

(|+〉+ |−〉) |1〉 =
1√
2

(|+〉 − |−〉) (2.40)

and then

|ψ〉 = c0|0〉+ c1|1〉 =
c0√

2
(|+〉+ |−〉) +

c1√
2

(|+〉 − |−〉) =
c0 + c1√

2
|+〉+

c0 − c1√
2
|−〉 (2.41)

We now construct the elements of the ρ matrix,

ρ11 = 〈+|ψ〉〈ψ|+〉 =
(
〈+|c0 + c1√

2
|+〉+

�������〈+|c0 − c1√
2
|−〉
)(c∗0 + c∗1√

2
〈+|+〉+

�������c∗0 − c∗1√
2
〈−|+〉

)
=

c0 + c1√
2

c∗0 + c∗1√
2

=
1

2
(|c0|2 + |c1|2 + c0c

∗
1 + c∗0c1) (2.42)
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which is the same expression we found above. Similarly for the other components.

The density operator is Hermitian: ρ̂† = ρ̂. The proof is simple.
Let us first have a look at the elements of ρ in the original basis. According to (2.29)

they are ρnm = c∗ncm. The elements of the matrix of the operator ρ̂† in the same basis are
(ρ†)nm = (c∗ncm︸︷︷︸

n↔m

)∗ = (c∗mcn)∗ = cmc
∗
n = ρnm.

To get fully convinced that Hermiticity holds for all ways of writing the density oper-
ator, we now write |ψ〉 in the basis {|ψn〉} and we sandwich the operator with respect to
the basis {|φn〉}. Taking the complex conjugate of those elements:

ρ∗mn =
∑
kl

ckc
∗
l 〈φm|ψk〉∗ 〈ψl|φn〉∗ =

∑
kl

ckc
∗
l 〈φk|ψm〉 〈ψn|φl〉

=
∑
kl

clc
∗
k 〈ψn|φl〉〈φk|ψm〉 = ρnm (2.43)

The diagonal elements ρnn represent probabilities associated with the quantum state’s
measurement outcomes. Since probabilities must be real and non-negative, this aligns
with the fact that the diagonal elements are real and non-negative.

The density operator has unit trace, Trρ̂ = 1 =
∑

n〈φn|ρ̂|φn〉 where {|φn〉} is a generic
complete orthonormal set of vectors, a basis of the Hilbert space.

Although the density matrix depends on the basis in which it is calculated, its trace is
independent of the basis chosen, since its diagonal elements represent the probabilities of
getting the different outcomes (eigenvalues) of a particular observable whose eigenstates
make up that particular basis. Their sum must add up to 1.

The density operator is positive semi-definite 〈ψ|ρ̂|ψ〉 ≥ 0 for an arbitrary vector |ψ〉,
and all eigenvalues are non-negative. (See Ex. 2.4 for a general proof.)

The fact that we could not have a diagonal density matrix in the basis of eigenvectors of
σ̂z and a non-diagonal one in the basis of eigenvectors of σ̂x in the example is not general.
One can have a diagonal ρ in a basis {|ψn〉} that becomes non diagonal en the basis {|φn〉}
In the new basis, the vectors {|φn〉} can be superpositions of the original basis vectors
{|ψn〉}. When expressed in the new basis, the off-diagonal terms may appear, representing
quantum coherences between the different states in that basis.

The expectation value of a generic observable Â in a state |ψ〉 equals

〈Â〉ψ = Tr(Âρ̂) (2.44)

where ρ̂ = |ψ〉〈ψ|.
Exercise 2.2 Prove the statement above.

Proof. Consider |ψ〉 =
∑
n cn|an〉 with |an〉 the eigenvectors of the operator Â. The rhs of
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(2.44) is

Tr(Âρ̂) =
∑
n

〈an|Âρ̂|an〉 =
∑
n

〈an|Â|ψ〉〈ψ|an〉 =
∑
n

〈an|Â
∑
m

cm|am〉
∑
r

c∗r〈ar|an〉

=
∑
m

cmam
∑
n

〈an|am〉
∑
r

c∗rδrn =
∑
m

cmam
∑
n

δnmc
∗
n

=
∑
n

cnanc
∗
n =

∑
n

an|cn|2 = 〈ψ|Â|ψ〉 (2.45)

Mixed states

Consider a system that is prepared in a pure state (i.e. one that is described by a
single wave function), but we do not know what this pure state is. It might be |ψ1〉 or
|ψ2〉 with (let us assume) equal probability (where the probability reflects our ignorance
rather than a property of the system itself). We express this ignorance as a mixed state
density matrix:

ρ̂ =
1

2
(|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|) (2.46)

where the factors of 1
2
are classical probabilities.

Example
An example would be the one of a spin which has been previously measured by a detector (prepared)
along the z-axis. It is thus in a pure state of either |0〉 or |1〉 but, if we do not know which of the states it
is in because, for example, we could not access the result of the measurement, we must describe it by a
mixed state, with density operator ρ̂ = 1

2 (|0〉〈0|+ |1〉〈1|), and equal probability 1/2 of being in |0〉 or |1〉.
The components in the basis |0〉, |1〉 are ρ11 = ρ22 = 1/2 and ρ12 = ρ21 = 0, so the matrix is diagonal.
The trace of the operator is Trρ̂ = 1. Instead the matrix squared has elements ρ211 = ρ222 = 1/4 and
ρ212 = ρ221 = 0 and its trace is Trρ2 = 1/2 < 1.
Note that this density operator is not the one of a pure state |ψ〉 = c0|0〉 + c1|1〉, since for such the
coefficients c0 and c1 are complex numbers with |c0|2+ |c1|2 = 1 and this implues Trρ2 = Tr(|ψ〉〈ψ|)2 = 1.
This density operator can also be expressed as ρ̂ = 1

2 (|+〉〈+| + |−〉〈−|) with |±〉 the eigenstates of σ̂x

with eigenvalue ±1, respectively. The same results apply, of course.

We can also use it to describe an ensemble of systems and the density operator de-
scribing a mixed state takes the form

ρ̂ =
∑
α

pα|ψα〉〈ψα| (2.47)

where 0 ≤ pα ≤ 1 ∈ R is the fraction of the ensemble in each pure state |ψα〉. They sat-
isfy

∑
α pα = 1. The density matrix can be thought of as a way of using the one-particle
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formalism to describe the behavior of many similar particles by giving a probability dis-
tribution (or ensemble) of states that these particles can be found in.

The density operator of a mixed state is still Hermitian, ρ̂† = ρ̂ as obvious from its
definition and the fact that pα ∈ R.
Exercise 2.3 Prove that the trace of a mixed state also equals one Trρ̂ = 1.

Proof. The trace density operator of a mixed state is Trρ̂ =
∑
n (
∑
α〈ψn|

∑
α pα|ψα〉〈ψα|)ψn〉

where {|ψn〉} is a basis of the Hilbert space. One has Trρ̂ =
∑
α pα

∑
n |〈ψn|ψα〉|2. Each

of the |ψα〉 can be expanded in the basis {|ψn}: |ψα〉 =
∑
m c

m
α |ψm〉 with

∑
m |cmα |2 = 1.

Then, |〈ψn|ψα〉|2 = |〈ψn|
∑
m c

m
α ψm〉|2 = |

∑
m c

m
α δnm|2 = |cnα|2. We can now replace tis

result in the above expression for Trρ̂ and find Trρ̂ =
∑
α pα

∑
n |cnα|2 =

∑
α pα = 1.

Another and shorter way of proving the same result is to write Trρ̂ = Tr
∑
α pα|ψα〉〈ψα| =∑

α pαTr|ψα〉〈ψα| =
∑
α pα = 1, which uses the fact that the trace of the density operator

of a pure state equals one.

The density operator of a mixed state is still positive definite, 〈ψ|ρ̂|ψ〉 ≥ 0 for an
arbitrary vector |ψ〉.
Exercise 2.4 Prove this statement.

Proof. One must show that 〈ψ|ρ̂|ψ〉 ≥ 0 for all states |ψ〉. The density operator is ρ̂ =∑
α pα|ψα〉〈ψα|, with |ψα〉 normalized pure states (〈ψα|ψα〉 = 1), and pα ≥ 0 probabilities

with
∑
α pα = 1. For any normalized state |ψ〉, consider the expectation value

〈ψ|ρ̂|ψ〉 = 〈ψ|

(∑
α

pα|ψα〉〈ψα|

)
|ψ〉 =

∑
α

pα〈ψ|ψα〉〈ψα|ψ〉

Since 〈ψ|ψα〉〈ψα|ψ〉 = |〈ψ|ψα〉|2 ≥ 0 and pα ≥ 0, the expectation value is a weighted sum
of non-negative terms:

〈ψ|ρ̂|ψ〉 =
∑
α

pα|〈ψ|ψα〉|2 ≥ 0.

Thus, ρ̂ is semi-positive definite.

Since the density matrix is Hermitian and semi-positive definite, its eigenvalues are
real and non-negative. Therefore, all physical density operators meet the semi-positive
definiteness criterion.

While the trace of the square of the density operator of a pure system still equals one,
the trace of the square of a mixed system is smaller than one.

Exercise 2.5 Prove Tr(ρ̂)2 = 1 if ρ̂ = ρ̂pure is the one of a pure system and Tr(ρ̂)2 < 1 if ρ̂ = ρ̂mixed is
the one of a mixed system.

Proof. If ρ̂ is the one of a pure system ρ̂pure = |ψ〉〈ψ| is a projector and the square of a
projector is equal to itself, (ρ̂pure)

2 = |ψ〉〈ψ|ψ〉〈ψ| = |ψ〉〈ψ|. Then Tr(ρ̂pure)
2 = 1.

Instead, if ρ̂ is the one of a mixed system ρ̂mixed =
∑
α pα|ψα〉〈ψα| with pα ≤ 1 and∑

α pα = 1, its square reads
(ρ̂mixed)2 = (

∑
α pα|ψα〉〈ψα|)(

∑
β pβ |ψβ〉〈ψβ | =

∑
αβ pαpβ |ψα〉〈ψα|ψβ〉〈ψβ | =

∑
α p

2
α|ψα〉〈ψα|.

The trace of this operator is Tr(ρ̂mixed)2 =
∑
α p

2
α < 1.
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A pure quantum state is a state that cannot be written as a probabilistic mixture of
other quantum states. There is only one pα = 1 and all the others vanish in (2.47).

Let us express the ensemble average (expectation value) of an observable Â in a mixed
state ρ̂ =

∑
α pα|ψα〉〈ψα| made out of the pure states

|ψα〉 =
∑
n

cnα|an〉 with cnα = 〈an|ψα〉 (2.48)

where an and |an〉 are the eigenvalues and eigenkets of Â and this is the representation of
|ψα〉 in this basis. It reads

〈Â〉ψ = Tr(ρ̂Â) =
∑
m

〈am|ρ̂Â|am〉

=
∑
m

am〈am|
∑
α

pα|ψα〉〈ψα|am〉

=
∑
α

pα
∑
m

am
∑
r

crα〈am|ar〉
∑
s

(csα)∗〈as|am〉

=
∑
α

pα
∑
m

am
∑
r

crαδmr
∑
s

(csα)∗δsm

=
∑
α

pα
∑
m

am|cmα |2 (2.49)

There are two types of averaging here: one is a weighted quantum superposition over the
basis kets |an〉 of the pure states, and the other is a statistical (said incoherent) average
with the probabilities pα of those states.

Example
It is important to emphasise the difference between a probabilistic mixture of quantum states and their
superposition.
Take a physical system with a two dimensional Hilbert space with basis |1〉 or |0〉, and consider that the

system can be in any of these two states with equal probability. The density matrix is ρ =
1

2

(
1 0
0 1

)
.

On the other hand, a quantum superposition of these two states with equal probability amplitudes results
in the pure state |ψ〉 = (|0〉+ |1〉)/

√
2, with density operator |ψ〉〈ψ| associated to the density matrix

ρ =
1

2

(
1 1
1 1

)
. Unlike the probabilistic mixture, this superposition can display quantum interference

(non-zero non-diagonal elements).

Exercise 2.6 Consider a mixture such that with probability 1/2 one prepares |0〉 and with probability
1/2 one prepares the state (|0〉 + |1〉)/

√
2. Find the density matrix in the {|0〉, |1〉} basis. Calculate

the eigenvalues, check that they are real and positive, that the trace equals one, and whether |ρnm|2 <
ρnnρmm.
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Solution
ρ =

1

2

(
1 0
0 0

)
+

1

2

(
1/2 1/2
1/2 1/2

)
=

(
3/4 1/4
1/4 1/4

)
(2.50)

The eigenvalues and eigenvectors of this matrix are λ± = 1/2±
√

2/4 and |φ±〉 =
√
λ± |0〉∓√

1− λ± |1〉. The trace of the matrix equals one, 3/4+1/4 = 1, and accordingly λ++λ− = 1.
|ρ12|2 = (1/4)2 = 1/16 < ρ11ρ22 = (3/4)(1/4) = 3/16.

When the density operator is just the projector on a pure state, the information content
of the density operator is equivalent to that of the state vector (except for the overall phase,
which is not of physical significance). Otherwise, it represents an incoherent superposition
of states and, through the definition, one assigns a probability or weight to each of them.
The density operator represents uncertainty ‘beyond the minimum required by quantum
mechanics’. Like in classical statistical physics, the density operator can be interpreted
as representing an ensemble of identical systems in possibly different states.

Exercise 2.7 Prove that in a generic mixed state, |ραβ |2 < ρααρββ .

Proof. This result is a consequence of the Cauchy-Schwarz inequality, which holds for any
density matrix, since they are all positive semi-definite.
The Cauchy-Schwarz inequality states that for any two complex vectors |ψ〉 and |φ〉, |〈ψ|φ〉|2 ≤
|〈ψ|ψ〉||〈φ|φ〉| and follows from ||ψ〉 − |φ〉|2 ≥ 0. This inequality is fundamental in linear
algebra and essentially says that the inner product squared between two vectors is bounded
by the product of the norms (magnitudes) of the two vectors.
Apply this inequality to the columns of the density matrix in the subspace α, β. The result
follows.

Symbol Name or property
ρ̂ Density (linear) operator

Trρ̂ = 1 Conservation of probability
〈Â〉 = Tr(Âρ̂) Expectation value of Â in ρ̂

ρ̂pure = |ψ〉〈ψ| Projector on a vector = Pure state
Trρ̂2

pure = 1 consequence of 〈ψ|ψ〉 = 1

ρ̂mixed =
∑
α

pα|ψα〉〈ψα| Mixed state with
∑
α

pα = 1

Trρ̂2
mixed =

∑
α p

2
α < 1 consequence of 0 ≤ pα ≤ 1

ρ̂microcanical = 1
N

∑
n

|ψn〉〈ψn| Ĥ|ψn〉 = En|ψn〉 and pn = 1
N

ρ̂canonical =
e−βĤ

Tre−βĤ
=
∑
n

e−βEn∑
m

e−βEm
|ψn〉〈ψn| Ĥ|ψn〉 = En|ψn〉 and pn =

e−βEn∑
m

e−βEm

Z = Tre−βĤ Partition function
F = −β lnZ Free-energy
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2.1.7 Statistical Physics

The density operator encapsulates the statistical properties of a system [13,14]. We will
discuss this in more detail after studying the quantum formalism for many-body systems,
but we can already introduce some special expressions for the density operator of systems
in thermal equilibrium.

Microcanonical ensemble

In quantum statistical physics, the microcanonical ensemble describes a closed quantum
system with fixed energy, volume, and particle number. This ensemble is used to model
isolated systems that are not in contact with any external environment or heat reservoir,
for example, an isolated atomic gas.

The system is confined to a narrow range of energy values, denoted as E. In practice,
this is represented by an energy shell [E,E + δE], where δE is very small. The micro-
canonical ensemble assumes equal probability for all quantum states within this energy
range. The density operator for the microcanonical ensemble is:

ρ̂ =
1

Ω

∑
n∈ shell

|n〉〈n|,

where |n〉 are the energy eigenstates, Ω = number of states in the shell is the total number
of accessible microstates. The entropy S in the microcanonical ensemble is given by the
Boltzmann formula:

S = kB ln Ω,

where kB is the Boltzmann constant and Ω measures the multiplicity of states at energy
E. The microcanonical temperature T is defined from the entropy as

1

T
=
∂S

∂E
.

For an observable Ô, its expectation value is computed as:

〈Ô〉 = Tr(ρ̂Ô) =
1

Ω

∑
n∈ shell

〈n|Ô|n〉.

The microcanonical ensemble embodies the principle of “equal a priori probabilities”: all
accessible microstates are equally likely since there is no external influence to favor one
state over another.

The fields of Quantum Chaos and Ergodicity explore how complex quantum systems
equilibrate and distribute energy among accessible microstates.

Exercise 2.8 Calculate the expected value of σ̂z for a qubit with Hamiltonian Ĥ = −(~ω/2)σ̂z, with ~ω
the energy splitting between the eigenstates of σ̂z (due to an external magnetic field), in microcanonical
equilibrium.
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Solution. In the microcanonical ensemble, the system is restricted to a specific energy
level E, meaning that only states with this specific energy contribute to the ensemble.
The eigenvalues of Ĥ are E0 = −~ω

2 (corresponding to the eigenstate |0〉), E1 = +~ω
2

(corresponding to the eigenstate |1〉). Thus, the system can be in one of two distinct energy
levels. The microcanonical ensemble assumes the system is strictly confined to one of these
energy levels. The expectation value of σ̂z takes two possible values:

- If the energy is E = −~ω
2 , the system is in the state |0〉, the eigenstate of σ̂z with

eigenvalue +1 and
〈σ̂z〉 = 〈0|σ̂z|0〉 = 1.

- If the energy is E = +~ω
2 , the system is in the state |1〉, the eigenstate of σ̂z with

eigenvalue −1 and the expectation value of σ̂z is

〈σ̂z〉 = 〈1|σ̂z|1〉 = −1.

Canonical ensemble

For a system in thermal equilibrium at temperature T , the density operator ρ is given
by the Boltzmann distribution (also called the canonical ensemble):

ρ̂ =
e−βĤ

Z
,

where H is the Hamiltonian of the system (the total energy operator), β = 1
kBT

, with kB
being the Boltzmann constant and T the temperature, Z is the partition function, defined
as:

Z = Tr(e−βĤ) =
∑
n

〈n|e−βĤ |n〉 =
∑
n

e−βEn ,

where En are the eigenvalues of the Hamiltonian H and {|n〉} is its associated eigenbasis.
The interpretation of this form is similar to the one of classical statistical physics:

- The partition function plays a central role in thermodynamics, as it helps calculate
thermodynamic quantities like free energy, entropy, and specific heat. It sums over
all possible states of the system, weighted by their Boltzmann factor e−βEn .

- The density operator ρ̂ describes the state of the system. In the canonical ensemble,
the density matrix ρ can be viewed as a weighted sum over the eigenstates of the
Hamiltonian, with the weights determined by the Boltzmann factor. Essentially, ρ̂
encodes the probability distribution of states in canonical thermal equilibrium.

The density operator gives the probability of the system being in a particular state.
For the canonical ensemble, the probability of the system being in the state corresponding
to energy En is given by the Boltzmann distribution

P (En) =
e−βEn

Z
.
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Thus, the density operator ρ̂ in the eigenbasis of the Hamiltonian can be written as

ρ̂ =
∑
n

P (En)|n〉〈n| = 1

Z
∑
n

e−βEn|n〉〈n|.

Here, {|n〉} are the eigenstates of the Hamiltonian, and the density matrix with elements
ρmn is diagonal in this basis with entries e−βEn/Z.

The partition function Z is used to compute the free energy F of the system:

F = −kBT lnZ.

The internal energy U is given by

U = 〈Ĥ〉 = Tr(ρ̂Ĥ) = − ∂

∂β
lnZ.

The entropy S can be derived from:

S = −kBTr(ρ̂ ln ρ̂).

The density operator ρ̂ and partition function Z are directly related through the statistical
mechanics framework, providing a complete description of the system’s thermodynamic
behavior.

Exercise 2.9 Calculate the expected value of σ̂z for a qubit with Hamiltonian Ĥ = −(~ω/2)σ̂z, with
~ω the energy splitting between the eigenstates of σ̂z (due to an external magnetic field), in canonical
equilibrium at inverse temperature β = 1/(kBT ).

Proof. The matrix representation of the σ̂z is σz =

(
1 0
0 −1

)
. In the canonical ensemble,

the density operator is given by

ρ̂ =
e−βĤ

Tr(e−βĤ)
,

where Tr(e−βĤ) is the partition function, which ensures the normalization of ρ̂. The eigen-
values of Ĥ are −~ω/2 and ~ω/2, corresponding to the eigenstates |0〉 and |1〉, respectively.
Thus

Tr(e−βĤ) = eβ
~ω
2 + e−β

~ω
2 = 2 cosh

(
β~ω

2

)
.

The expectation value of σ̂z is

〈σ̂z〉 = Tr(ρ̂σ̂z) =
Tr(e−βĤ σ̂z)
Tr(e−βĤ)

.

The matrix σz is diagonal in the eigenbasis of Ĥ, with eigenvalues +1 and −1. Thus, the
trace simplifies

Tr(e−βĤ σ̂z) = e−β
~ω
2 (1) + eβ

~ω
2 (−1) = e−β

~ω
2 − eβ ~ω

2 = −2 sinh

(
β~ω

2

)
.
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Putting together the two expressions for numerator and denominator

〈σ̂z〉 = − tanh

(
β~ω

2

)
.

At high temperatures (β → 0), 〈σ̂z〉 → 0, as the system becomes equally likely to be in
either state. At low temperatures (β → ∞), 〈σ̂z〉 → −1, as the system predominantly
occupies the lower-energy state. In the classical limit ~ → 0, lim~→0〈σ̂z〉 = 0, which is
obvious since Ĥ = 0 in this case.

2.2 Many-body systems

2.2.1 Hilbert space, pure states and linear superposition

The Hilbert space of a system made of two subsystems A and B is

H = HA ⊗HB (2.51)

An example with many subsystems is a system of spins sitting on a lattice, with the spins
labelled by an integer i = 1, . . . , N , and x = ia the position of each lattice site. Then,

H =
N⊗
i=1

Hi (2.52)

A pure state of a system made of N elements, each with K possible states, is

|ψ〉 =
K∑

k1=1

· · ·
K∑

kN=1

ck1...kN |ψ
k1
1 〉 ⊗ · · · ⊗ |ψ

kN
N 〉 (2.53)

with
∑K

k1=1 · · ·
∑K

kN=1 |ck1...kN |2 = 1. If we measure all N elements by projecting each onto
the {|ψk〉} basis, the probability of obtaining the outcome |ψk11 〉⊗ · · · ⊗ |ψ

kN
N 〉 is |ck1...kN |2.

The so-called computational basis is also often written as

|ψk1 . . . ψkN 〉 = |ψk11 〉 ⊗ · · · ⊗ |ψ
kN
N 〉 (2.54)

The pure state is a superposition of allKN basis states of the system, weighted by complex
coefficients that represent the amplitudes. The normalization condition ensures the total
probability is 1. This structure applies universally for any N and K.

Example
Take as an example a system made of two qubits or two-state systems.

Classically, each of the two qubits has two possible configurations, 0 and 1, and the system made of
the two qubits can be in any of the four possible states 00, 10, 01, 11.
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Quantum mechanically, the basis of the Hilbert space of each of them is

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]
(2.55)

A generic state of the combined set of two bits, is

|ψ〉 = c00|0〉 ⊗ |0〉+ c01|0〉 ⊗ |1〉+ c10|1〉 ⊗ |0〉+ c11|1〉 ⊗ |1〉 (2.56)

and its vector representation is 
c00
c01
c10
c00

 (2.57)

The measurement of the full system, obtained by sandwiching the projector |ψk1〉〈ψk1 | ⊗ |ψk2〉〈ψk2 |
between 〈ψ| and |ψ〉, can give four different outcomes, labeled by k1k2 = 00, 01, 10, 11, each with proba-
bility |ck1k2 |2. The system will then be projected on the state |ψk1〉⊗ |ψk2〉. What is the probability that
the first qubit equals |0〉 after such a measurement? It is |c00|2 + |c01|2 (the second qubit has not been
measured and it can still be in both states).

Imagine now that one measures just the first qubit applying σ̂z to it. The probability of measuring
its eigenvalue 1 in this way is also |c00|2 + |c01|2. The resulting state is

|ψ〉 =
c00|0〉 ⊗ |0〉+ c01|0〉 ⊗ |1〉

(|c00|2 + |c01|2)1/2
(2.58)

The probability that a subsequent measurement performed on the second qubit, by now applying σ̂z to
it, with the full system already set in this state |ψ〉, yields −1 is

P (1st meas on 1st qubit yields 1, 2nd meas on 2nd qubit yields -1) =
|c01|2

(|c00|2 + |c01|2)1/2
(2.59)

2.2.2 Reduced density operator

The reduced density operator on subsystem A of a total system A⊗B is

ρ̂red
A ≡ TrB ρ̂AB . (2.60)

Separable states

If the state describing a system made of two sub-systems A and B is separable

|ψAB〉 = |ψA〉 ⊗ |ψB〉 (2.61)

the density matrix is

ρ̂AB = |ψAB〉〈ψAB| = |ψA〉 ⊗ |ψB〉〈ψA| ⊗ 〈ψB|
= |ψA〉〈ψA| ⊗ |ψB〉〈ψB| = ρ̂A ⊗ ρ̂B (2.62)
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The reduced density matrix of A in this separable state is then

ρ̂red
A = TrB|ψAB〉〈ψAB| = TrB

(
|ψA〉 ⊗ |ψB〉〈ψA| ⊗ 〈ψB|

)
= TrB

(
ρ̂A ⊗ ρ̂B

)
= ρ̂ATrρ̂B = |ψA〉〈ψA| (2.63)

and it is the one of a pure state. Otherwise, for a non-separable state, it is not the one of
a pure state.

Mixed states reduced from pure states

Mixed states arise from pure states of multiple quantum systems, if we consider only
one of the systems by itself. Consider a pure non-separable state of two quantum systems
A and B. In general, we can write such a state as a superposition

|ψAB〉 =
∑
nm

cnm |an〉 ⊗ |bm〉 (2.64)

where {|an〉} and {|bm〉} are basis of the Hilbert spaces of A and B. The coefficients
cnm are complex numbers and the normalization implies

∑
nm |cnm|2 = 1. The density

operator of the full system is

ρ̂AB = |ψAB〉〈ψAB| =
∑

nmn′m′

cnmc
∗
n′m′︸ ︷︷ ︸

cnmn′m′

(
|an〉 ⊗ |bm〉

)(
〈an′ | ⊗ 〈bm′ |

)
=

∑
nmn′m′

cnmc
∗
n′m′ |an〉〈an′| ⊗ |bm〉〈bm′| (2.65)

The reduced density operator, by definition, is the trace of ρ̂AB over the states of B:

ρ̂red
A =

∑
m′′

〈bm′′ |ρ̂AB|bm′′〉 =
∑
m′′

〈bm′′|
∑

nmn′m′

cnmc
∗
n′m′ |an〉〈an′| ⊗ |bm〉〈bm′|bm′′〉

=
∑
m′′

∑
nmn′m′

cnmc
∗
n′m′ |an〉〈an′ | ⊗ 〈bm′′ |bm〉 δm′m′′

=
∑

nmn′m′

cnmc
∗
n′m′ |an〉〈an′ | δm′m

=
∑
nmn′

cnmc
∗
n′m |an〉〈an′|

=
∑
nn′

cnn′ |an〉〈an′| with cnn′ ≡
∑
m

cnmc
∗
n′m (2.66)

The initial state was a pure one but after the trace over B the resulting one is not (note
that the sum includes non-diagonal terms n 6= n′).

We recover the particular case of a separable state only if cnm = cncm,

ρ̂red−sep
A =

∑
mnn′

cncmc
∗
n′c
∗
m |an〉〈an′| =

∑
m

|cm|2
∑
nn′

cnc
∗
n′ |an〉〈an′ |

=
∑
nn′

cnc
∗
n′ |an〉〈an′| =

∑
n

cn|an〉
∑
n′

c∗n′〈an′| = |ψA〉〈ψA| (2.67)
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Example
Take the pure state |ψ〉AB = 1√

2
(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B) of a composite system AB. The density

operator is

2 ρ̂AB = 2 |ψ〉AB AB〈ψ| = |0〉A A〈0| ⊗ |1〉B B〈1|+ |0〉A A〈1| ⊗ |1〉B B〈0|
+|1〉A A〈0| ⊗ |0〉B B〈1|+ |1〉A A〈1| ⊗ |0〉B B〈0| (2.68)

Take now the trace over the B system and calculate the reduced density operator ρ̂redA . Only the first
and last terms survive after sandwiching with B〈1| . . . |1〉B and B〈0| . . . |0〉B , respectively. One has

2 ρ̂redA = 2 Tr
A
ρ̂AB = |0〉A A〈0|+ |1〉A A〈1| (2.69)

and this is a mixed state with Tr(ρ̂redA )2 < 1:

4(ρ̂redA )2 = (|0〉A A〈0|+ |1〉A A〈1|) (|0〉A A〈0|+ |1〉A A〈1|) = (|0〉A A〈0|+ |1〉A A〈1|) (2.70)

from where
Tr(ρ̂redA )2 =

1

2
(2.71)

Purification of mixed states

A mixed state can be purified i.e. treated as a pure state of a larger system.
Take the example of a qubit. To purify a mixed state of it, we need to represent

the mixed state as part of a larger Hilbert space in such a way that the mixed state is
recovered as the reduced density matrix of the pure state.

Consider the mixed state of a qubit given by:

ρ =

(
p 0
0 1− p

)
,

where p ∈ [0, 1]. This is a statistical mixture of the states |0〉 and |1〉 with probabilities p
and 1− p, respectively.

A purification of ρ is a pure state |Ψ〉 in a larger Hilbert space (e.g., HA ⊗HB) such
that the reduced density matrix of |Ψ〉〈Ψ| on subsystem A is ρ. We define:

|Ψ〉 =
√
p |0〉A ⊗ |0〉B +

√
1− p |1〉A ⊗ |1〉B,

where |0〉A and |1〉A are the basis states of the original qubit (system A), and |0〉B and
|1〉B are the basis states of an auxiliary qubit (system B) introduced for purification.

To check that this state purifies ρ, calculate the reduced density matrix of |Ψ〉 on
subsystem A by tracing out B:

ρA = TrB|Ψ〉〈Ψ|
Explicitly:

|Ψ〉〈Ψ| =
(√

p |0〉A ⊗ |0〉B +
√

1− p |1〉A ⊗ |1〉B
)

×
(√

p 〈0|A ⊗ 〈0|B +
√

1− p 〈1|A ⊗ 〈1|B
)
. (2.72)
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Tracing out B:

ρA = p |0〉〈0|+ (1− p) |1〉〈1| =
(
p 0
0 1− p

)
.

This is exactly the original mixed state ρ.
The purification introduces an auxiliary system B entangled with A in such a way that

the apparent mixedness of ρ on A arises from the entanglement with B. We will introduce
and discuss the concept of entanglement below.

Expected values in the reduced system

Calculate now the expected value of an observable ÔA on sub-system A:

〈ÔA〉 = Tr
AB
ÔA ρ̂AB =

∑
nm

(〈an| ⊗ 〈bm|) ÔA ρ̂AB (|an〉 ⊗ |bm〉)

=
∑
n

〈an|ÔA

∑
m

〈bm|ρ̂AB|bm〉 |an〉 =
∑
n

〈an|ÔA ρ̂
red
A |an〉

= Tr
A

(ÔA ρ̂
red
A ) (2.73)

where we used the definition of the reduced density matrix. We have performed a partial
trace, an integration over B.

Exercise 2.10 Let us see this calculation at work with an example. Take a system made of two qu-bits
and suppose it is in the state

|Ψ〉 =
1√
2

(|00〉+ |11〉)

Make a measurement on the qubit A.

To perform a measurement on qubit A using the reduced density matrix representation, we
first compute the reduced density matrix for qubit A by tracing out qubit B. Then, we
apply the measurement operators to this reduced density matrix.
The corresponding density matrix for the full system is

ρ = |Ψ〉〈Ψ| = 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 .

As the only non-zero elements are 〈00|ρ̂|00〉 = 〈00|ρ̂|11〉 = 〈11|ρ̂|00〉 = 〈11|ρ̂|11〉, that is, the
elements 00, 03, 30 and 33 in the 4 × 4 matrix above with elements ρnm and n = 0, . . . , 3
and m = 0, . . . , 3. The basis elements are ordered n = 0 7→ |00〉, n = 1 7→ |10〉, n = 2 7→
|01〉, n = 3 7→ |11〉.
These matrix elements can also be labelled ρab,a′b′ :

ρ =


ρ00,00 ρ00,01 ρ00,10 ρ00,11
ρ01,00 ρ01,01 ρ01,10 ρ01,11

ρ10,00 ρ10,01 ρ10,10 ρ10,11
ρ11,00 ρ11,01 ρ11,10 ρ11,11
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In this representation, a = 0 and 1 label the first and second line block, respectively. Then,
b = 0, 1 label the two lines within the block. Concerning the columns, a′ = 0, 1 determine
the first, second block columns, while b′ = 0, 1 the columns within the blocks.
The reduced density matrix ρA is obtained by tracing out the qubit B from ρ:

ρ̂redA = TrB ρ̂ = 〈a0|ρ̂|a′0〉+ 〈a1|ρ̂|a′1〉 = ρa0,a′0 + ρa1,a′1

with a and a′ the states of A not fixed. This yields a 2× 2 matrix, with elements ρaa′

ρredA =

(
ρ00 ρ01
ρ10 ρ11

)
=

(
ρ00,00 + ρ01,01 ρ00,10 + ρ01,11
ρ10,00 + ρ11,01 ρ10,10 + ρ11,11

)
=

1

2

(
1 + 0 0 + 0
0 + 0 0 + 1

)
=

1

2

(
1 0
0 1

)
.

Thus, ρredA = 1
2 I, representing a maximally mixed state.

We perform a measurement in the computational basis {|0〉, |1〉} on qubit A. The measure-
ment operators are

P̂0 = |0〉〈0| =⇒
(

1 0
0 0

)
, P̂1 = |1〉〈1| =⇒

(
0 0
0 1

)
.

The post-measurement state for outcome 0 is:

ρ
(0)
A =

P0ρ
red
A P0

Tr(P0ρredA )
.

Calculate the numerator

P0ρ
red
A P0 =

(
1 0
0 0

)
1

2

(
1 0
0 1

)(
1 0
0 0

)
=

1

2

(
1 0
0 0

)
.

and the denominator
Tr(P0ρ

red
A ) =

1

2
.

Thus:

ρ
(0)
A =

1
2

(
1 0
0 0

)
1
2

=

(
1 0
0 0

)
.

Probability of outcome 0:

p0 = Tr(P0ρA) =
1

2
.

Similarly, for P1:

P1ρAP1 =

(
0 0
0 1

)
1

2

(
1 0
0 1

)(
0 0
0 1

)
=

1

2

(
0 0
0 1

)
.

Trace:
Tr(P1ρA) =

1

2
.

Thus:

ρ
(1)
A =

1
2

(
0 0
0 1

)
1
2

=

(
0 0
0 1

)
.
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and the probability of outcome 1 is

p1 = Tr(P1ρA) =
1

2
.

The probabilities for outcomes 0 and 1 are both 1/2. The post-measurement states for qubit
A are |0〉〈0| and |1〉〈1|, depending on the measurement outcome.

2.2.3 Entanglement

Two particles (or systems) form a bound system and are entangled if their quantum
states are dependent on each other, regardless of the distance between them. Schrödinger
coined the term entanglement (Verschränkung) in 1935 [19].

Entangled systems can be perfectly correlated. For example, a subatomic particle
decays into an entangled pair of other particles. The decay events obey the various
conservation laws, and as a result, the measurement outcomes of one daughter particle
must be highly correlated with the measurement outcomes of the other daughter particle.
A concrete such case is the one of a pair of entangled particles generated such that their
total spin is zero. If one particle is found to have clockwise spin on a first axis, then the
spin of the other particle, measured on the same axis, should be anticlockwise.

Historical remarks

Einstein did not believe that quantum mechanics, which makes probabilistic predic-
tions, could be an ultimate and complete theory. He thought that it had to be completed
with hidden variables so far unknown that would yield a more precise description and
render the description deterministic. His claims along these lines, when applied to single
particle problems, were refuted by Bohr, especially during the 1927 Solvay conference.

Next he focused on the consequence of the laws of quantum mechanics for a two particle
system, like the one we described with words in the previous paragraphs, and that we
will explain technically in the rest of this subsection. Einstein, Podolsky and Rosen then
published a paper, in which they exposed the celebrated EPR paradox [17]. This EPR
paper was commented even by the New York Times.

The EPR claim was contradicted by Bohr [18] (in a paper that curiously has the same
title as the EPR one, see Fig. 2.2) and Schrödinger [19]. Bohm found a simpler way of
stating the EPR paradox which is the one that we will study [20, 21]. For many decades
the discussion could not be given a sharp answer.

In 1964 John S. Bell proposed a measurable way of distinguishing between the pre-
dictions of quantum mechanics and the one of the hidden variable theory of EPR [22],
an experiment that could rule out the existence of a local reality. Clauser was the first
to perform the test, which was later improved and perfected by Aspect and Zeilinger.
Finally, in the 80s a series of experiments conducted by Aspect and collaborators showed
that the hidden variable theory was incorrect [23–26]. These experiments showed that
there can be correlation without communication. Entangled systems should be thought
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of as being a single object. Details on how this works can be found in
https://scienceexchange.caltech.edu/topics/quantum-science-explained/entanglement
and will be discuss below, after introducing the Bell states. In Fig. 2.3 we display a cartoon
that illustrates the problem.

It is important to recognize that the peculiarity of quantum entanglement, its perfect
correlations independent of distance, motivated Feynman to propose to use it and launched
the field of quantum computation [27].

Figure 2.2: The EPR and Bohr papers.

Definition

Consider the bases |ψa〉A of HA and |φb〉B of HB. (In this section we use a notation in
which the subsystem label is written outside the 〈 or 〉 symbols in the bras and kets.) A
generic pure state of the full system is

|ψ〉AB =
∑
ab

cab|ψa〉A ⊗ |φb〉B (2.74)

A state |ψ〉AB is entangled if it cannot be written as a separable or product state

|ψ〉AB =
(∑

a

ca|ψa〉A
)
⊗
(∑

b

c′b|φb〉B
)

= |ψ〉A ⊗ |φ〉B , (2.75)

that is cab 6= cac
′
b. An entangled system can thus be defined to be one whose quantum

state cannot be factored as a product of states of its constituents.
A measurement made on either of the sub-systems collapses the state of the entire

entangled system - and does so instantaneously, before any information about the mea-
surement result could have been communicated to the other subsystem. Indeed, the inde-
pendent of the distance at which the two subsystems are, made Einstein-Podolsky-Rosen
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doubt about the correctness of quantum mechanics, since they thought that this conclu-
sion could imply propagation of information faster than the speed of light, and “spooky
action at a distance”. They proposed a hidden variable theory to solve the potential
inconsistency and maintain the idea of local reality. In a hidden variable theory, mea-
surement is actually fundamentally deterministic, but appears to be probabilistic because
some degrees of freedom are not precisely known.

Similarly, the density operator of two independent (non-entangled) systems reads

ρ̂ = ρ̂A ⊗ ρ̂B (2.76)

The density operator of a mixed entangled state is a probabilistic mixture of entangled
pure states:

ρ̂ =
∑
α

pα|ψα〉AB AB〈ψα| (2.77)

with |ψα〉AB are entangled states and 0 ≤ pα ≤ 1 and
∑

α pα = 1.
For a pure entangled state, the reduced density matrices ρ̂red

A and ρ̂red
B are the ones of

mixed states, indicating entanglement.
A density operator for a composite system is separable if and only if it can be written

in the form
ρ̂ =

∑
α

pα ρ
A
α ⊗ ρBα (2.78)

Unfortunately, given an arbitrary mixed density operator, it is difficult to tell if it corre-
sponds to an entangled state (this turns out to be an NP-hard problem).

Two entangled systems do not have local states that can be treated independently.

Symbol Name or property
(SA, SB) Composite system made of two parts
H = HA ⊗HB Hilbert space of composite system
{|ψAn 〉 ⊗ |ψBm〉} Orthonormal basis of H
|ψ〉 =

∑
nm

cnm|ψAn 〉 ⊗ |ψBm〉 State in H

6= |ψA〉 ⊗ |ψB〉
ρ̂pure = |ψ〉〈ψ| 6= ρ̂A ⊗ ρ̂B Pure state of composite system

Q̂A ⊗ IB Operator in A
IB ⊗ Q̂B Operator in B

The result of a measurement of a single qubit in a Bell state is indeterminate, but
upon measuring the first qubit in the z-basis, the result of measuring the second qubit is
guaranteed to yield the same value (for the Φ Bell states) or the opposite value (for the
Ψ Bell states). This implies that the measurement outcomes are correlated.
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Figure 2.3: Image credit NASA/JPL-Caltech

The Bell states are pure state, but the reduced density operator of the first qubit is a
mixed state. The mixed state implies that not all the information on this first qubit is
known.

Entanglement is broken when the entangled particles decohere through interaction with
the environment; for example, when a measurement is made.

The Bell states

The Bell’s states or EPR pairs are entangled quantum states of two qubits. Use the
basis {|0〉, |1〉} of eigenvectors with eigenvalues 1 and −1 of the σ̂z operator for each of

42



2. QUANTUM MECHANICS CONTENTS

the two qubits. The four Bell states of a system composed of two qubits are

|Φ+〉 =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) (2.79)

|Φ−〉 =
1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉) (2.80)

|Ψ+〉 =
1√
2

(|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉) (2.81)

|Ψ−〉 =
1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉) (2.82)

They are normalized basis vectors, 〈Φ|Φ〉 = 1 for all of them.

Exercise 2.10 Prove that the Bell states are normalized.

Take, for example, |Φ+〉 and calculate its inner product with itself. It reads 〈Φ+|Φ+〉 =
1
2 (〈0|0〉〈0|0〉+�����〈0|1〉〈0|1〉+�����〈1|0〉〈0|1〉+ 〈1|1〉〈1|1〉) = 1. Similarly, one proves the normal-
ization of the other three Bell states.

Exercise 2.11 Prove that the Bell states are entangled.

To prove that they are entangled one has to show that they cannot be written as |ψA〉⊗|ψB〉.
Let us work with |Φ+〉 and assume that it can be written in this separable way:

|Φ+〉 =
1√
2

(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
=
(
a |0〉A + b |1〉A

)
⊗
(
c |0〉B + d |1〉B

)
= ac |0〉A ⊗ |0〉B + bc |1〉A ⊗ |0〉B + bc |1〉A ⊗ |0〉B + bd |1〉B ⊗ |1〉B (2.83)

From here we need to set ad = bc = 0, ac 6= 0 and bd 6= 0. There is no solution to these
conditions.

Exercise 2.12 Prove that the Bell states cannot be factorized as in Eq. (2.75) and that therefore they
are entangled.

Take, for example, |Φ+〉 and try to equate it to the factorized form:

1√
2

(
|0〉⊗ |0〉+ |1〉⊗ |1〉

)
= c0c

′
0|0〉⊗ |0〉+ c0c

′
1|0〉⊗ |1〉+ c1c0|1〉⊗ |0〉+ c1c

′
1|1〉⊗ |1〉 . (2.84)

The conditions are
√

2c0c
′
0 = 1

√
2c0c

′
1 = 0

√
2c1c

′
0 = 0

√
2c1c

′
1 = 1 . (2.85)

The first and last imply that c0 6= 0, c′0 6= 0, c1 6= 0 and c′1 6= 0. Therefore, all coefficients
must be different from cero and the intermediate conditions cannot be satisfied. The proofs
for the other three Bell states follow the same lines of reasoning.

Exercise 2.13 Show that the Bell states are pure states satisfying (|Φ±〉〈Φ±|)2 = |Φ±〉〈Φ±|.

Bell states are either symmetric or antisymmetric with respect to the exchange of
the two subsystems. The exchange of the two subsystems corresponds to swapping the
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positions of the first and second qubits in each Bell state. Mathematically, this can be
viewed as applying the swap operator, which interchanges the states of the two qubits.
The |Φ+〉 and |Ψ+〉 states are symmetric. |Φ−〉 is also symmetric with respect to the
exchange of the two qubits while |Ψ+〉 is antisymmetric.

Exercise 2.14 Prove that |Φ−〉 is equal to 1/
√

2 (| + −〉 + | − +〉) and use this identity to prove its
symmetry with respect to the exchange of the two qubits.

In |Φ±〉 the two particles always have the same spin (both up or both down) while
in |Ψ±〉 the two particles always have opposite spins (one up and one down). This is
important for the use of Bell states to disprove the EPR arguments.

Exercise 2.15 Prove that in |Φ±〉 the two particles should have parallel spins in the z direction, while
in |Ψ±〉 they must have antiparallel spin in the z direction.

A way to prove this statement is to calculate the probabilities of the varios events. Take
|Φ±〉, we have

P00 = |
(
〈0| ⊗ 〈0|

)
|Φ±〉|2 = P11 = |

(
〈1| ⊗ 〈1|

)
|Φ±〉|2 =

1

2
(2.86)

while

P01 = |
(
〈0| ⊗ 〈1|

)
|Φ±〉|2 = P10 = |

(
〈1| ⊗ 〈0|

)
|Φ±〉|2 = 0 (2.87)

Instead, the states Φ±〉 have opposite spins:

P00 = |
(
〈0| ⊗ 〈0|

)
|Ψ±〉|2 = P11 = |

(
〈1| ⊗ 〈1|

)
|Ψ±〉|2 = 0 (2.88)

while

P01 = |
(
〈0| ⊗ 〈1|

)
|Ψ±〉|2 = P10 = |

(
〈1| ⊗ 〈0|

)
|Ψ±〉|2 =

1

2
(2.89)

Exercise 2.16 Prove that the four Bell states are eigenstates of the operators σ̂z ⊗ σ̂a with a = x, y, z.

Take |Φ+〉 and apply σ̂z ⊗ σ̂z:

σ̂z ⊗ σ̂z|Φ+〉 = σ̂z ⊗ σ̂z 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) =
1√
2

(|0〉 ⊗ |0〉+ (−1)|1〉 ⊗ (−1)|1〉)

=
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) = |Φ+〉 (2.90)

Take now |Φ−〉 and also apply σ̂z ⊗ σ̂z:

σ̂z ⊗ σ̂z|Φ−〉 = σ̂z ⊗ σ̂z 1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉) =
1√
2

(|0〉 ⊗ |0〉 − (−1)|1〉 ⊗ (−1)|1〉)

=
1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉) = |Φ−〉 (2.91)

Consider now |Ψ±〉 and σ̂z ⊗ σ̂z:

σ̂z ⊗ σ̂z|Ψ±〉 = σ̂z ⊗ σ̂z 1√
2

(|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉) =
1√
2

((−1)|0〉 ⊗ |1〉 ± (−1)|1〉 ⊗ |0〉)

= − 1√
2

(|0〉 ⊗ |1〉 ± (−1)|1〉 ⊗ |0〉) = −|Ψ±〉 (2.92)

The other cases can be treated similarly.
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Exercise 2.17 Calculate the expected value of σ̂z ⊗ I and σ̂z ⊗ σ̂z in the four Bell states.

Let us first consider

〈Φ±|σ̂z ⊗ I|Φ±〉 =
1

2
(〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) σ̂z ⊗ I (|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)

=
1

2
(〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) (|0〉 ⊗ |0〉 ± (−1)|1〉 ⊗ |1〉)

=
1

2
(1− 1) = 0 (2.93)

Next,

〈Ψ±|σ̂z ⊗ I|Ψ±〉 =
1

2
(〈0| ⊗ 〈1| ± 〈1| ⊗ 〈0|) σ̂z ⊗ I (|0〉 ⊗ 〈1| ± |1〉 ⊗ |0〉)

=
1

2
(〈0| ⊗ 〈1| ± 〈1| ⊗ 〈0|) (|0〉 ⊗ |1〉 ± (−1)|1〉 ⊗ |0〉)

=
1

2
(1− 1) = 0 (2.94)

Now, let us calculate

〈Φ±|σ̂z ⊗ σ̂z|Φ±〉 =
1

2
(〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) σ̂z ⊗ σ̂z (|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)

=
1

2
(〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) (|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)

=
1

2
(1 + 1) = 1 (2.95)

Similarly,

〈Ψ±|σ̂z ⊗ σ̂z|Ψ±〉 =
1

2
(〈0| ⊗ 〈1| ± 〈1| ⊗ 〈0|) σ̂z ⊗ σ̂z (|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉)

=
1

2
(〈0| ⊗ 〈1| ± 〈1| ⊗ 〈0|) ((−1)|0〉 ⊗ |1〉 ± (−1)|1〉 ⊗ |0〉)

= (−1)
1

2
(1 + 1) = −1 (2.96)

The other cases are 〈Φ±|σ̂x⊗σ̂x|Φ±〉 = ±1, 〈Ψ±|σ̂x⊗σ̂x|Ψ±〉 = ±1, 〈Φ±|σ̂y⊗σ̂y|Φ±〉 = ∓1,
〈Ψ±|σ̂y ⊗ σ̂y|Ψ±〉 = ∓1. Individually the particles appear to behave like classical mixtures,
but collectively they exhibit quantum correlations.

Exercise 2.18 Calculate the density operators |Φ±〉〈Φ±| and |Ψ±〉〈Ψ±|. The existence of off-diagonal
elements in these matrix operators is the quantum signature of an entangled superposition.

The special feature of Bell states is that when one of the two qubits is measured, it
takes on a specific value, and the second qubit is forced to also take on instantaneously
a specific value, as the state collapses. Because of the entanglement, measurement of one
qubit will “collapse” the other qubit to a state whose measurement will yield one of two
possible values. Because of this, Bell states are maximally entangled or fully correlated.
This means that when one traces over one subsystem, the reduced density matrix is
proportional to the identity.

Exercise 2.19 Calculate the reduced density matrices of the four Bell states and show that they are
maximally entangled.
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Proof. Take the Bell state |Φ+〉 = 1√
2
(|0〉A⊗ |0〉B + |1〉A⊗ |1〉B) as an example. Its density

operator is ρ̂ = ρ̂AB = |Φ+〉〈Φ+|. The reduced density operator of the first qubit (A) is
ρred1st = Tr2ndρ̂ = TrB ρ̂AB which reads

TrB ρ̂AB = B〈0|
[

1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) 1√

2
(A〈0| ⊗ B〈0|+ A〈1| ⊗ B〈1|)

]
|0〉B

+B〈1|
[

1√
2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) 1√

2
(A〈0| ⊗ B〈0|+ A〈1| ⊗ B〈1|)

]
|1〉B

= 1
2 (|0〉A ⊗ B〈0|0〉B)(A〈0| ⊗ B〈0|0〉B) + 1

2 (|1〉A ⊗ B〈1|1〉B)(A〈1| ⊗ B〈1|1〉B)

= 1
2 |0〉AA〈0|+

1
2 |1〉AA〈1| (2.97)

If we now calculate the elements of the operator matrix in the basis |0〉 and |1〉:

ρ =

[
1/2 0
0 1/2

]
=

1

2
I (2.98)

which is proportional to the identity indicating maximal entanglement.

Example
Take the first Bell state |Φ+〉 = 1√

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉). Measure the first qu-bit and say that the result

of the measurement is 0. The state Φ+ is then collapsed on the first term, |Φ+〉 7→ |0〉 ⊗ |0〉 and the
second qu-bit is therefore forced to be in the state |0〉, it has no more freedom to be in the other state.
The same argument applies to the other three Bell states.

But for an uncorrelated (unentangled) pair, measuring the spin of second particle tells us nothing
about the first one and just leaves it in its original superposition.

Note that in the examples above |0〉 and |1〉 are orthogonal. Let us consider a case in
which the quantum states of the two particles are each a superposition of different basis
states |ψi〉 and |φi〉, for the first and second particle, respectively, that do not necessarily
form orthonormal sets like spin states. For example, consider the general entangled Bell
state defined as

|Ψ〉 =
1√
2

(|ψ1 ⊗ |φ1〉+ |ψ2〉 ⊗ |φ2〉) (2.99)

Measure now an observable B̂ on the second particle. If |φ1〉 and |φ2〉 are orthogonal
eigenstates of B̂, then the measurement will yield |φ1〉 or |φ2〉 and the state of the first
particle will be fully determined after the measurement. This is the case discussed above
using the spin example.

However, if |φ1〉 and |φ2〉 are not orthogonal, that is they have non-zero overlap, then
we will only get partial information on the first particle after a measurement on the second
one. Take as an extreme case the one in which |φ1〉 and |φ2〉 are the same state, then

|Ψ〉 =
1√
2

(|ψ1 + |ψ2〉)⊗ |φ1〉 (2.100)

and by measuring on the second particle we do not learn anything about the first one. Thus
the more the elements of the superposition of particle 2 overlap, the less distinguishable
they are and the less information we get about particle 1 by measuring particle 2.
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Entanglement is a basis-independent result of superposition.

2.2.4 The EPR paradox & Bell’s inqualities

The EPR paradox

Consider Bohm’s formulation of the EPR paradox in which the systems A and B are
two spin-half particles in two different regions of space, with their spin degrees of freedom
initially in a spin singlet state.
− Let an atom with zero spin decay in two photons. Conservation of spin (polarisation

of the photons) implies that the spins of the two photons have to be opposite.
− Let these photons separate very very very far away.
− Recall that to measure a spin one has to first choose a direction in three dimensional

space and then measure the orientation of the spin along it. Say, if one chooses the
z direction, then the measurement of the spin can yield up or down along this
direction. If one chooses the x direction, the result of the measurement of the spin
can be left or right along this direction. Similarly for the y direction.

− Let Alice measure the spin of the first photon along the z direction. The result will
be up with probability 1/2 or down with probability 1/2. If, instead, she measures
the spin in the x direction, she will get right or left also with probability a half. The
same for the y component of the spin.

− Imagine that Alice does not measure but it is Bob who measures. Then he will get
similar results as Alice’s, that is, up or down in z with p = 1/2, right or left in x
with p = 1/2, and similarly for y.

− Now, if Alice and Bob make their measurements simultaneously, forcefully, Bob has
to measure the opposite value of the spin of his photon than the one that Alice gets.
Thus, if they measure in the z direction, if Alice measures up (with p = 1/2), then
Bob measures down with p = 1! Instead, if Alice measures down (with p = 1/2),
Bob measures up with p = 1.

− Note that the notion of probabilities makes full sense within an experiment, where
these measurements are performed a very large number of times.

− Whatever the direction in which they measure, their results are perfectly correlated.
− Consider that the measurements of Alice and Bob and made so close in time so that

not even light can travel between one photon and the other during the time lag.
Then, the fact that the two measurements necessarily yield the opposite result could
be interpreted as transfer of information faster than light, and this would violate a
principle of special relativity. See the sketch in Fig. 2.3.

− EPR claimed that this could not be correct. They argued that the states of the two
spins must have been imprinted in the photons when they were created, and that
they were attached to them in the form of hidden variables. This is contrary to
the Copenhagen interpretation of quantum mechanics which claims that the state
of the spin “is not determined” before it is measured.
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Another way of presenting the paradox, for the same system of two spins, is the fol-
lowing:

- Suppose σz is measured for A. The result allows one to predict σz for particle b,
since σzB = −σ̂zA.

- In the same way, the outcome of a measurement of σ̂xA allows one to predict σ̂xB since
σxB = −σ̂xA. Note, however, there is no way to measure σ̂zB and σ̂xB simultaneously
on the same system, and therefore no situation in this event and the previous one
can be applied to the same particle.

- B is isolated from A, therefore it cannot be affected by measurements carried out
on A.

- Consequently, one may conclude that B must simultaneously possess values for both
σxB and σzB, namely the values revealed by the corresponding measurements on A,
either of which could be carried out in any given experimental run.

- But this contradicts the basic principles of quantum theory, since in the two-
dimensional spin space one cannot simultaneously assign values of both σxB and
σzB.

You can look at the video https://www.youtube.com/watch?v=6p2jjLB4GNA where
this is explained in an online lecture by J. Preskill (Caltech).

Bell’s inequalities

In 1964 J. Bell figured out a way to distinguish between the hidden variables idea put
forward by EPR and the consequences of Bohr’s interpretation of quantum mechanics.
The idea is to take the point of view of the hidden variables proposal, argue in terms of
standard probabilities, and find an inequality that, if violated by the experiments, would
disprove this approach.

The spins can be measured in three directions, say x, y and z. If Alice could measure
along the three directions simultaneously, although quantum mechanically she cannot
since σ̂aA and σ̂bA do not commute for a 6= b, she would obtain the eight combinations
reported in Table 1 each with probability 1/8.

Imagine that Alice measures along x and Bob measures along y. This is allowed
quantum mechanically since the measurements are performed on different photons and
σ̂aA and σ̂bB do commute for a 6= b. Since we know that the result for Alice should be the
opposite from the result for Bob (since the two photons decayed from a spin-less atom),
the outcome of Alice for the y measurement, if she were doing it, should be the opposite
of the result obtained by Bob. Thus, one can ask, what is the probability that, for Alice,
the two measurements (along x and y) would be the same. This can occur because the
two Alice’s measurements are + (Alice + and Bob −) or the two are − (Alice − and Bob
+). z remains free and both possibilities have to be taken into account. So, reasoning
classically, with standard probability arguments, one has

Psame(x, y) = P (+,+,+) + P (+,+,−) + P (−,−,+) + P (−,−,−) . (2.101)
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E x y z

E1 + + +
E2 + + −
E3 + − +
E4 + − −
E5 − + +
E6 − + −
E7 − − +
E8 − − −

Table 1: The eight possible outcomes of Alice’s measurements labeled events 1 to 8. The
outcomes of Bob’s simultaneous measurements would be the opposite of these.

One can repeat this procedure for the directions y and z and get

Psame(y, z) = P (+,+,+) + P (−,+,+) + P (+,−,−) + P (−,−,−) . (2.102)

Finally, for x and z

Psame(x, z) = P (+,+,+) + P (x,−,+) + P (−,+,−) + P (−,−,−) . (2.103)

These probabilities concern Alice. Then, the sum of these probabilities yields:

Psame(x, y) + Psame(y, z) + Psame(x, z) = 1 + 2P (+,+,+) + 2P (−,−,−) ≥ 1 (2.104)

because a sum over all eight cases appears and it equals one. This is one of Bell’s inequali-
ties. It confirms that if there are three classical objects (coins) with two possibilities (head
or tail), and you throw them, at least two of them have to be equal: the left-hand-side is
larger than 1 since it is a sure classical event.

Quantum mechanical violation of Bell’s inequality

Let us now see how these probabilities take different values and Bell’s inequality is
violated in quantum mechanics.

We have seen in an exercise above that the states |Ψ±〉 are such that the spins of the
two particles should be opposite. We proved it for the z direction but the proof can be
extended to any other direction.

We will need to calculate probabilities of spin measurements, that is, sandwiches of
functions of the spin, within those states. We note that while |Ψ−〉 is the only Bell state
annihilated by (σ̂c ⊗ I + I⊗ σ̂c) |Ψ−〉 = 0 c = x, y, z, for all Bell states

〈Φ±| (σ̂c ⊗ I + I⊗ σ̂c) |Φ±〉 = 〈Ψ±| (σ̂c ⊗ I + I⊗ σ̂c) |Ψ±〉 = 0 (2.105)

Exercise 2.20 Prove that 〈Φ±|σ̂c ⊗ I|Φ±〉 = 0 for all c.
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2〈Φ±|σ̂z ⊗ I|Φ±〉 = (〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) σ̂z ⊗ I (|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)
= (〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) (|0〉 ⊗ |0〉 ± (−1)|1〉 ⊗ |1〉)
= 1− 1 = 0 (2.106)

2〈Φ±|σ̂x ⊗ I|Φ±〉 = (〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) σ̂x ⊗ I (|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)
= (〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) (|1〉 ⊗ |0〉 ± |0〉 ⊗ |1〉)
= 0 (2.107)

2〈Φ±|σ̂y ⊗ I|Φ±〉 = (〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) σ̂y ⊗ I (|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)
= (〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|) (i|1〉 ⊗ |0〉 ± (−i)|0〉 ⊗ |1〉)
= 0 (2.108)

Exercise 2.21 Show Eqs. (2.105)

Having proved the result of the previous exercise, this proof is immediate. We can however
do it in an slightly different way.

(σ̂z ⊗ I + I⊗ σ̂z) |Φ±〉 = 1√
2

(σ̂z ⊗ I + I⊗ σ̂z) (|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)

= 1√
2

(|0〉 ⊗ |0〉 ∓ |1〉 ⊗ |1〉+ |0〉 ⊗ |0〉 ∓ |1〉 ⊗ |1〉) =
√

2 |Φ∓〉

(σ̂z ⊗ I + I⊗ σ̂z) |Ψ±〉 = 1√
2

(σ̂z ⊗ I + I⊗ σ̂z) (|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉)

= 1√
2

(|0〉 ⊗ |1〉 ∓ |1〉 ⊗ |0〉 − |0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉) = 0

(σ̂x ⊗ I + I⊗ σ̂x) |Ψ±〉 = 1√
2

(σ̂x ⊗ I + I⊗ σ̂x) (|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉)

= 1√
2

(|1〉 ⊗ |1〉 ± |0〉 ⊗ |0〉) + (|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)

=

{ √
2 |Φ+〉

0

(σ̂y ⊗ I + I⊗ σ̂y) |Ψ±〉 = 1√
2

(σ̂y ⊗ I + I⊗ σ̂y) (|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉)

= i√
2

(|1〉 ⊗ |1〉 ∓ |0〉 ⊗ |0〉) + (−|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)

=

{
−
√

2 i |Φ−〉
0

(2.109)

where we used σ̂x|0〉 = |1〉, σ̂x|1〉 = |0〉, σ̂y|0〉 = i|1〉, and σ̂y|1〉 = −i|0〉. Then 〈Φ±|σ̂c ⊗ I+
I⊗ σ̂c|Φ±〉 = 0 = 〈Ψ±|σ̂c ⊗ I + I⊗ σ̂c|Ψ±〉.

Let us focus on the state |Ψ−〉 which has opposite spins for the two subsystems, and
for which we can write the first identity below. For any two directions ~m and ~n one has

〈Ψ−|~̂σ · ~m⊗ ~̂σ · ~n|Ψ−〉 = −〈Ψ−|~̂σ · ~m ~̂σ · ~n⊗ I|Ψ−〉 = −〈Ψ−|σ̂ama σ̂bnb ⊗ I|Φ−〉
= −manb 〈Ψ−|(δabI + iεabcσ̂c)⊗ I|Ψ−〉
= −mana 〈Ψ−|Ψ−〉 = −~m · ~n = − cos θ (2.110)

where we used σ̂aσ̂b = i
∑

c εabcσ̂
c for a 6= b and (σ̂a)2 = I for each a and the fact that

〈Φ±|σ̂c⊗ I|Φ±〉 = 0 for all c. The same applies to |Ψ±〉. Summation over repeated indices
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is assumed in the equation above. The angle between the unit vectors ~m and ~n was
called θ in the last equality. Thus, the measurement outcomes are always perfectly anti-
correlated when we measure both spins along the same axis (since ~m ·~n = 1 and cos θ = 1
in this case). We have also obtained a more general result that applies when the two axes
are different.

Exercise 2.22 Prove σ̂aσ̂b = iεabcσ̂
c for a 6= b with εabc the Levi Civita tensor (that is εabc = 1 if abc

are all different and (cyclically) ordered (with x < y < z), εabc = −1 if abc are all different and not
(cyclically) ordered), and εabc = 0 if two indices are equal.

Exercise 2.23 Prove 〈Ψ−|~̂σ · ~m⊗ ~̂σ · ~n|Ψ−〉 = −〈Ψ−|~̂σ · ~m ~̂σ · ~n⊗ I|Ψ−〉 for all ~m and ~n.

The Bell states we focus on are |Ψ±〉 = 1√
2
(|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉). The operators applied are

~̂σ · ~m = mxσ̂x +myσ̂y +mzσ̂z, where σ̂x, σ̂y, σ̂z are Pauli matrices, and ~m = (mx,my,mz)

is a unit vector, and similarly for ~̂σ ·~n. The tensor product ~̂σ · ~m⊗ ~̂σ ·~n means that the first
qubit is measured along ~m, and the second qubit along ~n, while the other tensor product
~̂σ · ~m ~̂σ · ~n ⊗ I involves both operators acting on the same qubit (via multiplication), with
the identity I acting on the second qubit.
For the Bell states |Ψ±〉 = 1√

2
(|0〉 ⊗ |1〉 ± |1〉 ⊗ |0〉), the left-hand-side reads

〈Ψ±|~̂σ · ~m⊗ ~̂σ · ~n|Ψ±〉

Let us do this calculation in detail (the other ones are similar). Using a compact notation
for the two quibit states, and expanding, the left-hand-side is

1

2

(
〈01|~̂σ · ~m⊗ ~̂σ · ~n|01〉+ 〈10|~̂σ · ~m⊗ ~̂σ · ~n|10〉 ± 〈01|~̂σ · ~m⊗ ~̂σ · ~n|10〉 ± 〈10|~̂σ · ~m⊗ ~̂σ · ~n|01〉

)
The first term reads

〈01|~̂σ · ~m⊗ ~̂σ · ~n|01〉 = 〈01|(mxσ̂x +myσ̂y +mzσ̂z)⊗ (nxσ̂x + nyσ̂y + nzσ̂z)|01〉

=
(
〈0| ⊗ 〈1|

)[(
mx|1〉+ imy|1〉+mz|0〉

)
⊗
(
nx|0〉 − iny|0〉 − nz|1〉

)]
= mz(−nz) = −mznz. (2.111)

Similarly, the second term reads

〈10|~̂σ · ~m⊗ ~̂σ · ~n|10〉 = (−mz)nz = −mznz.

The cross terms are

〈01|~̂σ · ~m⊗ ~̂σ · ~n|10〉 = 〈01|(mxσ̂x +myσ̂y +mzσ̂z)⊗ (nxσ̂x + nyσ̂y + nzσ̂z)|10〉
= 〈01|(mx|0〉 − imy|0〉 −mz|1〉)⊗ (nx|1〉+ iny|1〉+ nz|0〉)
= mxnx +mxiny − nximy +myny (2.112)

since the left-hand-side selects the terms |01〉. The other cross term is

〈10|~̂σ · ~m⊗ ~̂σ · ~n|01〉 = 〈10|(mxσ̂x +myσ̂y +mzσ̂z)⊗ (nxσ̂x + nyσ̂y + nzσ̂z)|01〉
= 〈10|(mx|1〉+ imy|1〉+mz|0〉)⊗ (nx|0〉 − iny|0〉 − nz|1〉)
= mxnx −mxiny + nximy +myny (2.113)
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since the left-hand-side selects the terms |10〉. Now, putting the four contributions together

1

2

[
−mznz −mznz ±

(
mxnx +mxiny − nximy +myny

)
±
(
mxnx −mxiny + nximy +myny

)]
=

1

2

[
−2mznz ±

(
mxnx +myny

)
±
(
mxnx +myny

)]
=
[
−mznz ±

(
mxnx +myny

)]
=

{
−mznz +mxnx +myny for |Ψ+〉
−~m · ~n for |Ψ−〉 (2.114)

Concerning the right-hand-side, when the operator ~̂σ · ~m ~̂σ · ~n ⊗ I acts on the same qubit,
the calculation in the main text yields

〈Ψ±|~̂σ · ~m ~̂σ · ~n⊗ I|Ψ±〉 = ~m · ~n.

Combining the two results:

〈Ψ−|~̂σ · ~m⊗ ~̂σ · ~n|Ψ−〉 = −〈Ψ−|~̂σ · ~m ~̂σ · ~n⊗ I|Ψ−〉.

The probability that the measurement yields up (down) spin along the m̂ direction
for Alice and up (down) along the n̂ direction for Bob is obtained by sandwiching the
projectors

1
2

(
I± ~m · ~̂σ

)
⊗ 1

2

(
I± ~n · ~̂σ

)
(2.115)

with the first factor acting on A and the second on B.

Exercise 2.24 Prove that 1
2 (I± σ̂z) is the projection operator for the eigenstates of σ̂z with eigenvalue

±1.

Proof. The operators 1
2 (I ± σ̂z) are

1
2

(
I± σ̂z

)
= 1

2

[
(|0〉〈0|+ |1〉〈1|)± (|0〉〈0| − |1〉〈1|)

]
=

{
|0〉〈0|
|1〉〈1| = P̂± (2.116)

which, as expected, are Hermitian, idempotent, and normalized.

We have

〈Φ±|1
2

(
I± ~m · ~̂σA

)
⊗ 1

2

(
I± ~n · ~̂σB

)
|Φ±〉

=
1

4
(〈0| ⊗ 〈0| ± 〈1| ⊗ 〈1|)

[(
I± ~m · ~̂σ

)
⊗
(
I± ~n · ~̂σ

)]
(|0〉 ⊗ |0〉 ± |1〉 ⊗ |1〉)

=
1

4
(1− cos θ) = Psame A,B measurement (2.117)

We have used

1

2

(
I± ~m · ~̂σ

)
⊗ 1

2

(
I± ~n · ~̂σ

)
=

1

4

(
I⊗ I ± ~m · ~̂σ ⊗ I± I⊗ ~n · ~̂σ + ~m · ~̂σ ⊗ ~n · ~̂σ

)
(2.118)
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There are therefore four terms, but the “cross” ones vanish as shown in an exercise above.
The double identity operator yields one, and the result of the product of the two non-
trivial operators has been calculated in Eq. (2.110) and yields the − cos θ (we noted ~m
and ~n unit vectors to avoid using a hat whch could be confused with an operator). Here
“same” means the same orientation (plus, right) for A and B, in their measurements along
~m and ~n, respectively. Similarly,

〈Φ±|1
2

(
I± ~m · ~̂σA

)
⊗ 1

2

(
I∓ ~n · ~̂σB

)
|Φ±〉

=
1

4
(1 + cos θ) = Popposite A,B measurement (2.119)

Now, we will choose three axes in the xz plane, with 120o angles between them:

n̂1 = (1, 0, 0) n̂2 =

(
−1

2
, 0,

√
3

2

)
n̂3 =

(
−1

2
, 0,−

√
3

2

)
⇒

n̂1 = (1, 0) n̂2 =

(
−1

2
,

√
3

2

)
n̂3 =

(
−1

2
,−
√

3

2

)
(2.120)

One checks that cos θ = n̂1 · n̂2 = −1/2, cos θ = n̂1 · n̂3 = −1/2, cos θ = n̂2 · n̂3 = −1/2.
Of course other choices are possible but this is convenient.

n̂1

n̂2

n̂3

Figure 2.4: Sketch of three vectors on a plane with 120o = 2π/3 angles between them.

We then have that the probability of Alice having the same result on the two axes is
equal to the probability of A and B getting different results:

PA same(n̂1, n̂2) = Popposite A,B measurement(n̂1, n̂2) =
1

4
(1 + cos θ) =

1

4

(
1− 1

2

)
=

1

8
(2.121)

One can then calculate the various quantum probabilities appearing in Bell’s inequality
and obtain

PA same(n̂1, n̂2) + PA same(n̂2, n̂3) + PA same(n̂1, n̂3) = 3
1

8
=

3

8
< 1 (2.122)
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Experimental verification

This violation was measured experimentally by A. Aspect (affiliation at the time of
the award: Institut d’Optique Graduate School - Université Paris-Saclay, Paris, France
and École Polytechnique, Palaiseau, France), who shared the 2022 Nobel Prize, testing a
slightly different version of Bell’s inequality and finding that it is violated by the polar-
ization of two entangled photons, see Fig. 2.5.

A. Aspect’s Nobel Lecture can be watched here
https://www.nobelprize.org/prizes/physics/2022/aspect/lecture/

Non-locality

The conclusion is that the two photons are characterized by a single wave function
all along the preparation and evolution. The state created quantum mechanically is non
local.

Figure 2.5: Aspect’s experimental set-up. Source: Wikipedia.

Construction of a Bell state

The idea is to use the (simple) quantum circuit in Fig. 2.6 to create a Bell state from
a simple initial state.

The first qubit is passed through a Hadamard gate and then both qubits are entangled
by a CNOT gate. If the input to the circuit is |ψ〉 = |0〉⊗ |0〉 then the circuit changes the
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Figure 2.6: The quantum circuit that builds a Bell state.

state to

CNOT H1|0〉 ⊗ |0〉 = CNOT

(
1√
2

(|0〉+ |1〉)⊗ |0〉
)

=
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)

= |Φ+〉 (2.123)

Exercise 2.24 Prove that the operations CNOT H1 on the inputs |0〉 ⊗ |1〉, |1〉 ⊗ |0〉 and |1〉 ⊗ |1〉 yield
|Φ−〉, |Ψ+〉, and |Ψ−〉, respectively.

2.2.5 Entanglement entropy

In classical physics, the entropy is kB ln of the number of microstates which are com-
patible with the macrostate of the system. It is a measure of uncertainty, or the lack of
information needed to identify the microstate of a system.

In quantum mechanics positive entropies may arise even without lack of information,
as we show below.

The most common definitions of entropy are the following. The Von Neumann entropy
associated to the density matrix ρ̂, i.e.

SvN = −Tr ρ̂ ln ρ̂ . (2.124)

The Rényi entropies are defined as

Sq = − 1

1− q
ln Tr ρ̂q . (2.125)

The entanglement entropy is a measure of the degree of quantum entanglement between
two subsystems constituting a composite quantum system. The entropy of entanglement
is the Von Neumann entropy of the reduced density matrix for any of the subsystems:

SvN = −Trρ̂red
A ln ρ̂red

A = −Trρ̂red
B ln ρ̂red

B . (2.126)

For a separable state, the entanglement entropy vanishes. If it is non-zero, i.e. the
subsystem is in a mixed state, it indicates the two subsystems are entangled.
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Let us show that for a separable state the entanglement entropy vanishes. A state ρ̂ is
separable if it can be written as a convex combination of product states:

ρ̂ =
∑
α

pα ρ̂
α
A ⊗ ρ̂αB,

where pα ≥ 0 and
∑

α pα = 1 are probabilities and ρ̂(i)
A and ρ̂(i)

B are the density matrices
for the subsystems A and B, respectively. The reduced density matrix for a separable
state:

ρ̂red
A = TrB ρ̂ =

∑
α

pα TrB(ρ̂αB) ρ̂αA =
∑
α

pα ρ̂
α
A

since TrB(ρ̂
(i)
B ) = 1 (each ρ̂(i)

B is a normalized density matrix). Thus, for a separable state,
ρ̂red
A represents a classical probabilistic mixture of the ρ̂αA states. In this case, the entropy
SA reflects the classical probability distribution pα, rather than quantum entanglement. If
the state is truly separable, the reduced density operator ρ̂red

A corresponds to a pure state
(or can be diagonalized into a single pure-state component with certainty). This aligns
with the intuition that separable states have no quantum entanglement, as entanglement
entropy measures correlations beyond classical ones.

Exercise 2.25
Take two qubits, each of them in the states:

|ψ1〉 =
3

5
|0〉+

4

5
|1〉 |ψ2〉 =

1√
2
|0〉 − 1√

2
|1〉 (2.127)

and claim that the joint state of the two qubits is

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 =

(
3

5
|0〉+

4

5
|1〉
)
⊗
(

1√
2
|0〉 − 1√

2
|1〉
)

=
1

5
√

2

(
3|0〉 ⊗ |0〉+ 4|1〉 ⊗ |0〉 − 3|0〉 ⊗ |1〉 − 4|1〉 ⊗ |1〉

)
(2.128)

Check that this state is correctly normalized. Calculate the entanglement entropy of one spin with respect
to the other and prove that it vanishes so that this state is not entangled.

Exercise 2.26
Consider now that the state of the composite system is the Bell state

|ψ〉 =
1√
2

(
|00〉+ |11〉

)
(2.129)

Note that Bell states are maximally entangled but not all entangled states are Bell ones. For example,

|ψ〉 = cos θ|00〉+ sin θ|11〉 with θ ∈ (0, π/4) (2.130)

are all entangled but are not Bell-states.

Properties
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Some properties of von Neumann and Rényi entropies are:
− S

(n)
A is insensitive to unitary transformations which act separately within A or the

complement of A which we call A, such as local changes of basis in the quantum
many-body system, since these leave the eigenvalues of the reduced density matrix
unchanged.

− 0 ≤ S
(n)
A ≤ lnD where D = min(DA, DA).

− S
(n)
A is zero if subsystem A is pure and may be described with ρ̂A = |ψ〉〈ψ| and

is maximized if the reduced density matrix for the smaller of the two subsystems
is ID/D where ID is the D × D identity matrix (in this case we say that this
subsystem is in a maximally-mixed state). In the former case, we will say that the
two subsystems are disentangled.

− Writing ρ̂A =
∑

α pα|ψα〉〈ψα| as a probabilistic mixture of orthonormal pure states,
with probabilities pα = λα, the von Neumann entropy SA = −

∑
α pα ln pα is the

classical Shannon entropy of this distribution.

The von Neumann entropy is often preferred to other Rényi entropies as a measure of
entanglement since it satisfies additional properties, such as sub-additivity, strong sub-
additivity, and concavity which are natural if we wish to give SA an information-theoretic
interpretation.

Heuristically, the entanglement entropy between complementary sets quantifies (the
logarithm of) the number of terms required to write a pure state as a superposition of
product states between A and A. Formally, |ψ〉 may be written in the Schmidt form
|ψ〉 =

∑
α

√
λα|φα〉〈ψα| where |φα〉 and |ψα〉 are orthonormal sets of states in the two

subsystems, and α runs over at most min(DA, DA) values. The distinct Rényi entropies
correspond to distinct “counts” of the Schmidt values that discount smaller values of λα
to a greater or lesser extent.

A key point is that low-entanglement states can be expressed (or approximated) by
keeping a number of Schmidt states that is much smaller than D. A generalization of this
idea to Matrix Product States for chains means that there is a direct relation between the
entanglement of a 1D quantum state and the cost of storing it as a Matrix Product State.

A typical quantum state will asymptotically satisfy a volume law, in which the en-
tanglement entropy scales with the volume of the selected subsystem. A quantum state
satisfies an area law if the leading term of the entanglement entropy grows at most pro-
portionally with the boundary between the two partitions (and not with the volume of
the selected part).

Area laws are remarkably common for ground states of local gapped quantum many-
body systems. These states are therefore non-generic. They emerge in the context of black
hole physics, quantum information science, and quantum many-body physics and have
been proven rigorously for lattice models in one and higher spatial dimensions. They
have important implications, especially on the numerical simulation of lattice models,
since they reduce the complexity of quantum many-body systems. The density matrix
renormalization group and matrix product states rely on such area laws.
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The holographic principle is the conjecture that the information contained in a volume
of space can be represented by a theory which lives in the boundary of that region. It
could be related to the area law of the entanglement entropy in microscopic theories.

The emergence of an area law [?] then provides support for the intuition that short
ranged interactions require that quantum correlations between a distinguished region and
its exterior are established via its boundary surface.

That a strict area law emerges is by no means obvious from the decay of two-point
correlators.

In contrast to thermal states this entanglement entropy does not originate from a lack
of knowledge about the microstate of the system. Even at zero temperature we will
encounter a non-zero entropy. This quite intriguing trait of quantum mechanics gives rise
to correlations even in situations where the randomness cannot be traced back to a mere
lack of knowledge.

In one dimensional systems the entanglement entropy can often be calculated exactly.
Whether an area law holds or not, will largely depend on whether the system is at a
quantum critical point or not.

The entanglement entropy can also be used to define a basis-independent measure of
correlations between subsystems A and B whose union is not necessarily the entire system.
This “mutual information” is defined as

IAB = SA + SB − SAUB (2.131)

Practical uses

The entanglement entropy is currently being used to

• In systems near criticality, the entanglement entropy often scales logarithmically:

S ∼ c

3
lnL

where c is the central charge of the underlying Conformal Field Theory.
• Characterise and distinguish quantum topological phases [73] with no order param-

eter [74], because it encodes information about both local and non-local quantum
correlations in a system and therefore the entanglement entropy that set them apart
from conventional phases. In systems with topological order (e.g., fractional quan-
tum Hall states or spin liquids), the entanglement entropy includes a universal,
non-local term:

S ∼ αL− γ
with α a non-universal coefficient related to boundary contributions, L the size of
the subsystem boundary (obeys the "area law"), and γ the “topological entangle-
ment entropy”, which is a constant and reflects the total quantum dimension of the
system’s topological excitations. The term γ is directly tied to the underlying topo-
logical phase and does not depend on microscopic details. Its value can distinguish
between different topological phases.
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• Characterise Anderson localised states in electronic systems with local disorder (like
random fields) and no interactions [75]. In these systems there is a transition be-
tween delocalized and localized phases at a critical disorder strength. The exact
value depends on the dimensionality of the system and the nature of the disorder. In
one-dimensional systems, even infinitesimal disorder can induce localization, while
in higher dimensions, a finite critical disorder strength is required.
The entanglement entropy of such systems depends on the disorder strength.

- For weak disorder, the system is in the delocalized phase, where entangle-
ment entropy grows according to the volume law, similar to extended states in
non-disordered systems. The entanglement entropy scales with the size of the
subsystem.

- As disorder increases toward the localization transition, the system enters a
critical regime. Here, the entanglement entropy growth deviates from the vol-
ume law and transitions toward the area law. This intermediate phase often
shows logarithmic or sublinear scaling with subsystem size.

- For strong disorder, the system becomes Anderson localized, and the entan-
glement entropy adheres to the area law. This means it is proportional to the
boundary of the subsystem rather than its volume. The localized nature of the
states limits quantum correlations to distances shorter than a characteristic
one ξ, reducing entanglement. This behavior reflects the exponential decay of
wavefunctions, preventing long-range entanglement. For finite size subsystem
with linear size L, there is a crossover. For L < ξ the entanglement entropy
scales as in a clean system. Instead, for L � ξ, disorder dominates and the
area law is recovered.

Summarizing, the entanglement entropy S typically behaves as:
- S ∼ Ld−1 (area law) in the localized phase.
- S ∼ Ld (volume law) in the delocalized phase.
- S ∼ lnL or sublinear scaling near criticality.
with L the linear size of the subsystem. Numerical studies of Anderson localization
often show a clear crossover from high entanglement in weak disorder to significantly
reduced entanglement in the strong disorder regime. Experimental realizations, such
as cold atomic gases in disordered potentials, have provided further evidence of these
trends.

2.2.6 Modern applications

Quantum computation

A quantum computation acts on an assemble of N qubits, the many-body system.
One prepares them in an initial state such as |1〉 ⊗ · · · ⊗ |1〉. One then applies a unitary
transformation Û to the N qubits. (The transformation Û is constructed as a product
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of standard quantum gates, unitary transformations that act on just a few qubits at a
time). One next measures all of the qubits by projecting onto the {|0〉, |1〉} basis. The
measurement outcome is the output of the computation.

The algorithm performed by the quantum computer is a probabilistic algorithm: one
could run exactly the same program twice and obtain different results, because of the
randomness of the quantum measurement process. The quantum algorithm actually gen-
erates a probability distribution of possible outputs. (This poses no problem since in
many cases it is easy to verify whether the solutions are correct.)

A classical computer can accomplish any task that a quantum computer does. The gain
can be in the time (in terms of number of operations) and storage needed to achieve the
goal. A state of N = 100 qubits would need 2100 ∼ 1030 complex numbers to characterize
it. It is huge.

Quantum circuits

Quantum circuits are collections of local quantum gates, which perform some unitary
operators on one qubit (or n qubits arranged in a lattice), interconnected by quantum
wires. The evolution occurs on discrete-time. In general, each local operation is not close
to the identity and energy is not conserved. These operations are followed by a local
quantum measurement element.

Quantum circuits are a fashionable playground for quantum many-body physics. They
allow one to explore universal collective phenomena far-from-equilibrium, and they shed
light on longstanding questions about thermalization and chaos, and on the underlying
universal dynamics of quantum information and entanglement. They also exhibit new
dynamical phases in quantum systems that are monitored by an external observer. They
allow for experimental progress in building digital quantum simulators.

Randomness in the circuit elements allows a high level of theoretical control, with a
key theme being mappings between real-time quantum dynamics and effective classical
lattice models or dynamical processes. Many of the universal phenomena that can be
identified in this tractable setting apply to much wider classes of more structured many-
body dynamics. A recent review is [15] and an example of a very simple quantum circuit
is shown in Fig. 2.7.

A minimally-structured unitary quantum circuit which lacks any symmetries or other
special properties will rapidly bring the system into a steady-state that is locally com-
pletely disordered, in the sense that local observables reproduce an infinite-temperature
statistical ensemble. The search for universal phenomena in this setting thus requires
going beyond traditional probes of quantum condensed matter involving correlations
between specially-chosen local operators. Instead, interesting universal features of the
evolving state can be usefully quantified with information-theoretic quantities such as the
entanglement entropy and the quantum mutual information, measures of correlations that
are non-linear in the reduced density matrix for a subsystem.
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Figure 2.7: An example of a quantum circuit, with the gates drawn according to the convention
in the figure where all the gates are listed, Fig. 2.1.

Example
What happens to the quantum state of two qubits when we apply a single qubit gate to one of them?
Suppose we apply a Hadamard gate (2.19) to the first qubit in the superposition:

|ψ〉 =
1

2
|00〉 − i√

2
|01〉+

1√
2
|11〉 (2.132)

We have

H|ψ〉 =
1

2

(
1√
2
|00〉+

1√
2
|10〉

)
− i√

2

(
1√
2
|01〉+

1√
2
|11〉

)
+

1√
2

(
1√
2
|01〉 − 1√

2
|11〉

)
=

1√
2

[
1

2
|00〉+

1

2
|10〉+

1− i√
2
|01〉 − 1 + i√

2
|11〉

]
(2.133)

Specific to a two qubit system is the CNOT gate. The first bit of a CNOT gate is the
“control bit”, the second one is the “target bit”. The control bit never changes, while the
target bit flips if and only if the control bit is in state |1〉.

Though the CNOT gate looks very simple, any unitary transformation on two qubits
can be closely approximated by a sequence of CNOT gates and single qubit gates.

Quantum information and technology

Quantum information is not local. Classical bits store information locally, and each
classical bit is independent of every other bit. Quantum information is typically stored
in the relationships between individual qubits, and a qubit is typically not independent
of the others.

For instance, engineers can prepare a pair of qubits in a state such that if we measured
one qubit as a 0, the other would have to be a 1, and vice versa. In theory, engineers can
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build up systems with as many qubits as they want, where each qubit’s state depends on
many other qubits’ states, and all are part of a complex entangled system.

Two sources of difficulties are inherent to quantum information. First, there are more
ways for errors to creep into the system. Second, coupling to an environment can corrupt
information stored, since entanglement with the surrounding can let the stored informa-
tion be lost. Moreover, quantum error correction is more challenging than the classical
one, since a problem that affects one qubit can end up corrupting the entire system.

The weird property of entanglement is at the basis of quantum technologies. For
example, in cryptography, the idea that safe key distributionmay profit from entanglement
is clear. If one produces a series of N entangled pairs atoms and sends each of the members
of the pairs to Alice and Bob, at their measurements they will get the same results, that
is, the same series of 1 and 0. Before their measurement, the series does not really exist
and that is why the transmission is safe [28].

2.3 Time evolution
We here discuss the description of the evolution of a quantum system using the two well-

known pictures: the one named Schrödinger, in which operators are time independent,
while states depend on time and the one called Heisenberg in which operators depend on
time, while states do not. The interaction picture, which is mixed and both states and
operators depend on time, is also useful to know.

2.3.1 Schrödinger picture

In the Schrödinger picture of quantum mechanics, the Schrödinger equation giving the
time evolution of states, is postulated:

i~
∂

∂t
|ψ, t〉 = Ĥ|ψ, t〉,

where Ĥ is the Hamiltonian operator, which encodes the energy of the system.
The time evolution operator, Û(t, t0), which describes the evolution of the quantum

state over time, is defined from

|ψ, t〉 = Û(t, t0)|ψ, t0〉.

can be derived. The linearity of the Schrödinger equation implies that the time evolution
operator Û(t, t0) must also be linear.

Reversibility

Quantum mechanics is time-reversible for closed systems, that if the evolution fromt0
to t is governed by Û(t, t0), the reverse evolution from t to t0 must also be possible.
Therefore Û(t, t0) must have an inverse

Û−1(t, t0)Û(t0, t) = Û(t, t0)Û−1(t, t0) = I
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Unitarity & conservation of probability

If the system is represented by a state, the conservation of its normalization implies

|〈ψ, t|ψ, t〉|2 = |〈ψ, t0|Û †(t, t0)Û(t, t0)|ψ, t0〉|2 = |〈ψ, t0|ψ, t0〉|2 , (2.134)

which is ensured by
Û †(t, t0)Û(t, t0) = Û(t, t0)Û †(t, t0) = I

Let us represent a state with an expansion on the eigenstates |aα〉 of an operator Â. At
times t0 and t:

|ψ, t0〉 =
∑
α

cα(t0)|aα〉 |ψ, t〉 =
∑
α

cα(t)|aα〉 (2.135)

Conservation of probability, ensured by the unitary evolution, implies∑
α

|cα(t0)|2 =
∑
α

|cα(t)|2 . (2.136)

In the more general case in which the state of the system is represented by a density
operator, in order to ensure probability conservation, its trace must equal 1. The evolution
of the density operator follows from the one of the states (see below):

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0)

Therefore

1 = Tr ρ̂(t) = Tr [Û(t, t0)ρ̂(t0)Û †(t, t0)]

= Tr [Û †(t, t0)Û(t, t0)ρ̂(t0)] = Tr [ρ̂(t0)Û(t, t0)Û †(t, t0)] = Trρ̂(t0) (2.137)

and this implies that the evolution operator must be unitary

Û †(t, t0)Û(t, t0) = Û(t, t0)Û †(t, t0) = I

Composition

Another requirement is the composition property

Û(t, t1)Û(t1, t0) = Û(t, t0) t ≥ t1 ≥ t0 (2.138)

Continuity

The continuity condition is
lim
dt→0

Û(t+ dt, t) = I (2.139)

Evolution equation
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These properties are satisfied by

Û(t+ dt, t) = I− i

~
Ĥ(t)dt Ĥ(t) = Ĥ†(t) (2.140)

One can now use this expression to derive the equation ruling the time evolution of the
evolution operator:

Û(t+ dt, t0) = Û(t+ dt, t)Û(t, t0)︸ ︷︷ ︸
composition

=

(
I− i

~
Ĥ(t)dt

)
︸ ︷︷ ︸

continuity, unitarity & Schrod

Û(t, t0)

= Û(t, t0)− i

~
Ĥ(t)Û(t, t0)dt

that implies

Û(t+ dt, t0)− Û(t, t0)

dt
= − i

~
Ĥ(t)Û(t, t0) ⇒ i~

dÛ(t, t0)

dt
= Ĥ(t)Û(t, t0) (2.141)

This is the Schrödinger equation for the time-evolution operator.

Explicit expression

The solution to Eq. (2.141) is, in complete generality,

Û(t, t0) = I +
∞∑
n=1

(
−i

~

)n ∫ t

t0

dt1

∫ t

t0

dt2· · ·
∫ t

t0

dtn Ĥ(t1)Ĥ(t2) . . . Ĥ(tn) (2.142)

where the Ĥ(t) could be time dependent and the factors evaluated at different times not
commute. In particular cases it simplifies considerably:

Û(t, t0) = e−
i
~ Ĥ(t−t0) Ĥ time independent (2.143)

Û(t, t0) = e
− i

~
∫ t
t0
dt′Ĥ(t′)

Ĥ time dependent but [Ĥ(t1), Ĥ(t2)] = 0 (2.144)

In the first case one can also express the evolution operator as

e−
i
~ Ĥt =

∑
α

e−
i
~Eαt|ψα〉〈ψα| Ĥ|ψα〉 = Eα|ψα〉 (2.145)

and this implies that the evolution of a generic ket reads

e−
i
~ Ĥ(t−t0)|ψ, t0〉 =

∑
α

e−
i
~Eα(t−t0)|ψα〉〈ψα|

∑
β

cβ(t0)|ψβ〉

=
∑
α,β

e−
i
~Eα(t−t0)cβ(t0)|ψα〉δα,β

=
∑
α

e−
i
~Eα(t−t0)cα(t0)|ψα〉

=
∑
α

cα(t)|ψα〉 with cα(t) = e−
i
~Eα(t−t0)cα(t0) (2.146)
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While the modulus of these coefficients do not change in time, their relative phases do.
For time-dependent Hamiltonians which do not commute at different times, the ex-

pression of the evolution operator is more complex and typically involves a time-ordered
exponential,

Û(t, t0) = T exp

(
− i

~

∫ t

t0

Ĥ(t′) dt′
)
,

where T is the time-ordering operator.
The fact that the evolution operator is unitary one can see now that it follows from

the fact that the Hamiltonian is Hermitian. For example, for the special case in which Ĥ
is time independent but commuting at different times, Û †(t, t0) = e

i
~ Ĥ
†(t−t0) = e

i
~ Ĥ(t−t0),

and then
Û(t, t0)Û †(t, t0) = Û †(t, t0)Û(t, t0) = I . (2.147)

For the more general case, the proof is similar.
Naturally, we can recover the Schrödinger equation for the states evolution from the

equation for the evolution operator. Indeed, multiplying Eq. (2.141) by |ψ, t0〉:

i~
dÛ(t+ dt, t0)|ψ, t0〉

dt
= ĤÛ(t, t0)|ψ, t0〉 ⇒ i~

d|ψ, t〉
dt

= Ĥ|ψ, t〉 (2.148)

Exercise 2.27 Take Ĥ(t) a Hamiltonian which can depend explicitly on time. Prove that the
evolution is linear, that is the superposition principle holds: if |ψ1,2, t〉 are two solutions of the
Schrödinger equation with initial conditions |ψ1,2, 0〉 then one can construct the state |ψ, t〉 =

c1|ψ1, t〉 + c2|ψ2, t〉 which is again solution of the Schrödinger equation with initial condition
|ψ, t〉 = c1|ψ1, 0〉+ c2|ψ2, 0〉.

Exercise 2.29 Obtain an expression for the time-derivative of the expectation of the Hamiltonian,
d〈Ĥ〉/dt. Does it vanish? Under which condition does it vanish?

2.3.2 Heisenberg picture

Here observables, rather than states, vary with time:

ÂH(t, t0) ≡ Û †(t, t0)ÂSÛ(t, t0) (2.149)

where ÂS = ÂH(t0) is the Schrödinger picture operator Â. The states, instead, remain
unchanged. (This will also apply to the density operator.)

The expectation value is the same in the two pictures

〈Â〉(t) = 〈ψ, t|ÂS|ψ, t〉 = 〈ψ, t0|Û †(t, t0)ÂSÛ(t, t0)|ψ, t0〉 = 〈ψ, t0|ÂH(t, t0)|ψ, t0〉 .(2.150)

Heisenberg’s equation
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The fundamental equation of motion in the Heisenberg picture is the following. Assume
that ÂS does not depend explicitly on time. Then,

dÂH(t, t0)

dt
=
dÛ †(t, t0)

dt
ÂSÛ(t, t0) + Û †(t, t0)ÂS

dÛ(t, t0)

dt

=− 1

i~
Û †(t, t0)ĤSÂSÛ(t, t0) + Û †(t, t0)ÂS

1

i~
ĤSÛ(t, t0)

=− 1

i~

(
Û †(t, 0)ĤSÛ(t, t0)Û †(t, t0)ÂSÛ(t, 0)

−Û †(t, t0)ÂSÛ(t, t0)Û †(t, 0)ĤSÛ(t, t0)
)

=
1

i~

(
− ĤH(t, t0)ÂH(t, t0) + ÂH(t, t0)ĤH(t, t0)

)
. (2.151)

We note that if Û(t, t0) = e−
i
~ Ĥ(t−t0), then ĤH = ĤS = Ĥ, and the equation becomes

dÂH(t, t0)

dt
=

1

i~

[
ÂH(t, t0), Ĥ

]
(2.152)

2.3.3 Interaction picture

The interaction orDirac picture is an intermediate representation between the Schrödin-
ger picture and the Heisenberg picture in which both states and operators carry part of
the time dependence of observables. Take a total time-independent Hamiltonian made of
the sum of two terms

ĤT = Ĥ0 + Ĥint (2.153)

Then

|ψI, t〉 = e−
i
~ Ĥintt|ψS, t〉 ÔI(t) = e

i
~ Ĥ0t ÔS e

− i
~ Ĥ0t (2.154)

where |ψS, t〉 and ÔS are a state and an operator in the Schrödinger picture. We set t0 = 0
for simplicity here. Typically Ĥ0 is a simple (e.g. quadratic) Hamiltonian and Ĥint carries
the non-trivial interactions.

The advantage of the interaction picture is that it separates the dynamics due to the
"free" Hamiltonian H0 (which is solved exactly) from the dynamics due to the interaction
Hamiltonian HI(t) (which is treated perturbatively).

2.3.4 The density operator

The time evolution of a generic density operator ρ̂(t, t0) =
∑

α pα|ψα, t〉〈ψα, t| of a
system with Ĥ = Ĥ† is

i~
dρ̂

dt
= [Ĥ, ρ̂] ≡ L̂ρ̂ (2.155)
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in the Schrödinger picture. This is called the Liouville-von Neumann or master equation.
L̂ is the Liouvillian superoperator called this way since it describes a linear transformation
on an operator: it operates on both sides of ρ̂. The proof is straightforward, it only uses
the Schrödinger equation for each of the states |ψα〉, i~d|ψα,t〉

dt
= Ĥ|ψα, t〉.

In the Schrödinger picture that we used above, although ρ̂ is an operator, it evolves in
time because it represents the state of the system, and not an observable. Instead, if we
worked in the Heisenberg picture it would be time-independent.

Exercise 2.30 Prove that the density operator transforms to the interaction picture as any other operator,
Eq. (2.154), ρ̂I(t) = Û†0 (t, 0)ρ̂SÛ0(t, t0) with the evolution operator involving Ĥ0.

Exercise 2.31 Prove that the evolution of the density operator in the interaction picture is given by

dρ̂I(t)

dt
= − i

~
[ĤI

int(t), ρ̂I(t)] . (2.156)

Exercise 2.32 Prove that the Hamiltonian dynamics does not change the purity of a system. This result
illustrates that the mixing rate of a state does not change due to the quantum evolution.

In the Schrödinger picture,

dTrρ̂2(t)

dt
= Tr

dρ̂2(t)

dt
= Tr 2 ρ̂(t)

dρ̂(t)

dt
= 2 Tr ρ̂(t)

(−i

~
[Ĥ(t), ρ̂(t)]

)
= −2i

~
Tr ρ̂(t)

(
Ĥ(t)ρ̂(t)− ρ̂(t)Ĥ(t)

)
= 0 (2.157)

using the cyclic property of the trace.

Exercise 2.33 Show that the entropy remains constant for unitary evolution with Ĥ(t). In particular,
show that for a pure state the entropy vanishes and remains zero under unitary evolution. The result
of the previous exercise and this one suggest that for closed systems the quantum information is never
really lost.

Exercise 2.34 Consider a two-level system with Hamiltonian Ĥ = e0|0〉〈0| + ~Ω(|0〉〈1| + |1〉〈0|) +

e1|1〉〈1|, where Ω is the frequency of driving that coherently switches between both states. Calculate the
populations ρ00 and ρ11 as a function of time. Show that system is driven between the states, and the
populations present Rabi oscillations.

2.3.5 Gibbs-Boltzmann

The density operator of a pure state representing a closed system vanishes and remains
zero henceforth under unitary evolution.

Consider a small subsystem of a large, interacting quantum system, in a pure state.
The subsystem can exhibit an apparent loss of information due to the spreading of entan-
glement between the subsystem and the rest. The reduced density operator can display

lim
t→∞

lim
NB→∞

ρ̂A(t) = ρ̂ stationary (2.158)
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In this stationary limit, ρ̂ must be independent of time and ρ̂ must commute with Ĥ,
because of the Liouville equation. This is true iff we can simultaneously diagonalize ρ̂ and
Ĥ. Hence, the eigenstates of ρ̂ can be assumed to be energy eigenstates.

Any function of Ĥ commutes with Ĥ. Furthermore, if the system has continuous
symmetries then there exist other operators that also commute with Ĥ. For example,
if the system is invariant under translations then the momentum operator will commute
with Ĥ. If it is invariant under rotations then the angular momentum operator will
commute with Ĥ. So, in equilibrium, the density operator can be a function of these
various operators. In practice, we are usually interested in systems for which boundary
conditions break translational and rotational symmetry e.g. a gas in a cubic box. In such
a situation, one can argue that any operator which commutes with Ĥ must be a function
of Ĥ only. So, in equilibrium, the density operator must be a function of the Hamiltonian
operator Ĥ.

Arguing in this way one justifies the equilibrium density operator in the canonical
ensemble

lim
t→∞

lim
NB→∞

ρ̂A(t) =
e−βĤA

Z
Gibbs− Boltzmann (2.159)

(with the addition in the exponential of other terms like µN̂ , etc if there are other finite
number of constants to consider).

2.3.6 No cloning theorem

The no-cloning theorem states that it is impossible to create an independent and iden-
tical copy of an arbitrary unknown quantum state. It turns out to be a consequence of
unitary evolution [63,64]. A dual of this theorem is called the no deleting theorem. They
both have deep consequences in the field of quantum computation. The no-cloning theo-
rem (as generally understood) concerns only pure states whereas the generalised statement
regarding mixed states is known as the no-broadcasting theorem.

Let us prove this statement. Take a system A which can be in two possible states, say
|0〉 and |1〉 and ask whether one can copy its state on another two-state system B, that,
without loss of generality we initialise in |0〉. Note that the two systems share the Hilbert
space and HA ⊗HB = H⊗H.

We can manipulate the composite system with two permissible quantum operations:
- Perform an observation, which irreversibly collapses the system into some eigenstate
of an observable, corrupting the information contained in the system.

- Evolve with a judicious choice of evolution operator constructed with the Hamilto-
nian of the combined system.

The first option is not what we want. Let us see how would the second one work.
First, consider that the system to be copied is in an eigenstate of σ̂z, that is |0〉A or

|1〉A, that we combine with another qubit in the state |0〉B. We evolve with a Û the full
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system, and we assume that there is a Û such that

Û(|0〉A ⊗ |0〉B) = |0〉A ⊗ |0〉B Û(|1〉A ⊗ |0〉B) = |1〉A ⊗ |1〉B (2.160)

that is, the state of B becomes identical to the one of A, and the state of A does not
change. We simplify the notation and we do not write the t0 and t for the initial and final
times.

Imagine now that the particle A is in a superposition state

|ψ〉A =
1√
2

(|1〉A + |0〉A) (2.161)

and ask whether the same Û operator above clones the state of A. Acting with Û

Û

[
1√
2

(|1〉A + |0〉A)⊗ |0〉B
]

=
1√
2

(|1〉A ⊗ |1〉B + |0〉A ⊗ |0〉B) (2.162)

which is the entangled Schrödinger-cat state, one if the Bell states, while the expected
cloning would have been

1√
2

(|1〉A + |0〉A)⊗ 1√
2

(|1〉B + |0〉B)

1

2
(|1〉A ⊗ |1〉B + |1〉A ⊗ |0〉B + |0〉A ⊗ |1〉B + |0〉A ⊗ |0〉B) (2.163)

Û acts non-locally, and thus induces entanglement between the two systems. Note that
there is no problem with the cloning of the basis states, the problem is in also cloning
more general states. In conclusion, there is no unitary operator to clone all states.

Another proof of the theorem can be found in the web site
https://en.wikipedia.org/wiki/No-cloning_theorem

2.3.7 Development of entaglement

Imagine that one starts with ρ̂(0) = ρ̂A(0) ⊗ ρ̂B(0) at t = 0, with ρ̂A(0) and ρ̂A(0)
the ones of two pure states. The subsystems A and B are initially uncorrelated (not
entangled).

As systems A and B become entangled with each other they will individually become
mixed states in the sense that we can no longer define either of them by a state vector.
However, the overall combined system described by ρ̂ will remain in a pure state.

Example
Let us consider a simple system of two qubits interacting via a time-dependent Hamiltonian. This example
demonstrates how the entanglement between two initially separable qubits develops over time. We start
with two qubits in an unentangled, separable state:

|ψ, 0〉 = |0〉 ⊗ |1〉 = |01〉
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where |0〉 and |1〉 are the standard computational basis states. Assume the qubits interact through an
exchange interaction, described by the Hamiltonian:

Ĥ =
~ω
2

(
σ̂(A)
x σ̂(B)

x + σ̂(A)
y σ̂(B)

y

)
,

where σ̂(A,B)
x and σ̂

(A,B)
y are the Pauli operators for qubits A and B and ω is the interaction strength

(frequency). This Hamiltonian generates entanglement between the two qubits over time. The time
evolution of the system is governed by the Schrödinger equation:

|ψ, t〉 = e−
i
~ Ĥt|ψ, 0〉.

To compute the evolution, note that the Hamiltonian acts in the basis of two qubits: |00〉, |01〉, |10〉,
|11〉. The interaction effectively couples these states. Applying the Hamiltonian, the time-evolved state
becomes

|ψ, t〉 = cos(ωt)|01〉 − i sin(ωt)|10〉.

and it is a superposition of |01〉 and |10〉. The degree of entanglement between the two qubits can be
quantified using the concurrence or the von Neumann entropy of the reduced density matrix. Tracing
out one qubit gives the reduced density matrix for the other qubit:

ρ̂A(t) = TrB
(
|ψ(t)〉〈ψ(t)|

)
.

After tracing over the second qubit:

ρA(t) =

(
sin2(ωt) 0

0 cos2(ωt)

)
.

This reduced density matrix correctly satisfies ρ00 + ρ11 = 1, and it is mixed for t 6= nπ/(2ω) with n ∈ Z,
indicating entanglement, since taking ρ2A(t) and its trace

Trρ2A(t) = Tr

(
sin4(ωt) 0

0 cos4(ωt)

)
= sin4(ωt) + cos4(ωt) < 1 if t 6= nπ/(2ω) (2.164)

The entanglement oscillates periodically due to the coherent interaction described by the Hamiltonian.
At t = π/(4ω), the state becomes |ψ(t)〉 = 1√

2

(
|01〉 − i|10〉

)
, a maximally entangled (Bell) state while at

t = π/(2ω) the state returns to a separable form.

2.3.8 Quantum quenches

Quantum quenches is the name given to the protocol such that a parameter in the
Hamiltonian, say λ(t), is changed from an initial value λ0 at times, say t < 0, to another
value λ1 at a later time t1 following some functional form, λ(t) such that λ(0) = λ0 and
λ(t1) = λ1. For example,

λ(t) = λ0θ(−t) + λ1θ(t) instantaneous quench . (2.165)

Two common choices for the system at time t = 0 are (i) the ground state of the Hamil-
tonian Ĥ(λ0) at time t = 0

|ψ, 0〉 = |ψ, λ0〉GS (2.166)

70



2. QUANTUM MECHANICS CONTENTS

or (ii) canonical equilibrium with the Hamiltonian Ĥ(λ0):

ρ̂(0) =
e−βĤ(λ0)

Z0

, (2.167)

with Z0 the partition function of the unperturbed system. The system is then evolved in
isolation with the Hamiltonian Ĥ(λ(t)) at times t > 0,

|ψ, t〉 = e−
i
~
∫ t
0 dt
′Ĥ(λ(t′))|ψ, λ0〉GS (2.168)

If λ(t) = λ0 there is no quench, the initial state is an eigenstate of the Hamiltonian and
the dynamics is trivial. The interesting cases are the ones that deviate from this case, for
which |ψ, λ0〉GS is not an eigenstate of Ĥ(λ(t)) and the dynamics is non-trivial.

A typical choice of Ĥ(λ(t)) is

Ĥ(λ(t)) = Ĥ0 + λ(t)Q̂(t) λ(t) = λ(t)θ(t) . (2.169)

The time-dependent parameter λ(t) couples to an observable Q̂ of the system.

Example
Let us examine a quantum quench in a single qubit. Before the quench (t < 0), the Hamiltonian is

Ĥi = −~ω
2
σ̂z,

where σ̂z is the Pauli z-operator and ω > 0 is a constant frequency. The qubit is initially in the ground
state of Ĥi:

|ψ, 0〉 = |0〉,

where |0〉 is the eigenstate of σ̂z with eigenvalue +1. At t = 0, the Hamiltonian is suddenly quenched to

Ĥf = −~ω
2
σ̂x,

where σ̂x is the Pauli x-operator. This represents an abrupt change in the direction of the external field.
The time evolution is governed by the Schrödinger equation:

i~
∂

∂t
|ψ, t〉 = Ĥf |ψ, t〉.

The eigenstates of Ĥf are the eigenstates of σ̂x, given by

|±〉x =
1√
2

(
|0〉 ± |1〉

)
,

with eigenvalues ∓~ω
2 , respectively. The initial state |0〉 can be written as a superposition of the eigen-

states of Ĥf :

|0〉 =
1√
2

(
|+〉x + |−〉x

)
.
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After the quench (t ≥ 0), the time-evolved state is

|ψ, t〉 =
1√
2

(
ei

ωt
2 |+〉x + e−i

ωt
2 |−〉x

)
.

Substituting back the eigenstates |±〉x into the computational basis

|ψ, t〉 =
1√
2

[
ei

ωt
2
|0〉+ |1〉√

2
+ e−i

ωt
2
|0〉 − |1〉√

2

]
= cos

(
ωt

2

)
|0〉 − i sin

(
ωt

2

)
|1〉.

The Probability of Measuring |0〉 and |1〉 are

P0(t) = |〈0|ψ(t)〉|2 = cos2
(
ωt

2

)
P1(t) = |〈1|ψ(t)〉|2 = sin2

(
ωt

2

)
At t = 0, P0 = 1, and the qubit is in state |0〉, as expected. Over time, the qubit oscillates between states
|0〉 and |1〉 due to the sudden change in the Hamiltonian. The frequency of oscillation is ω/2.

This example demonstrates a fully solvable case of a quantum quench applied to a single qubit,
highlighting the interplay between the initial and final Hamiltonians.

2.3.9 Quantum chaos

Since the discovery of deterministic classical chaos, it is known that reserving the ve-
locities of a system after a time t, and letting it evolve ‘backwards’ in time towards 2t, will
not recover the same initial state. Typical systems of many particles possess exponen-
tial sensitivity on the variation of initial condition. Arbitrarily small but non-vanishing
perturbations of the initial condition, or of the equations of motion (e.g. introducing a
small external force field like gravity), drive the returning orbit away and the trajectory
will not return back to the initial phase space point. The classical Lyapunov exponent, λ,
quantifies the rate of exponential divergence of nearby trajectories in phase space. It is a
key feature of chaotic systems, reflecting the sensitivity to initial conditions.

This, however, is not the case in quantum mechanics. First of all, the notion of a
trajectory in phase space does not strictly exist in quantum mechanics due to the uncer-
tainty principle. Moreover, due to the linearity and unitarity of the quantum dynamics,
the latter is always stable against small variations of the initial state. Yet, small variation
in the Hamiltonian can produce non-trivial effects.

Quantum chaos is characterized by properties such as:
- The first characterizations of chaos emerged from the analysis of the quantization
of classical chaotic systems such as billiards. It was observed that the statistical
distribution of energy levels differs being the Wigner-Dyson statistics of random
matrices for chaotic systems, and Poisson for integrable ones. This is the Bohigas-
Giannoni-Schmidt conjecture [61] which was found to apply to all known problems
so far.

- The behavior of quantum observables, such as the fidelity, the Loschmidt echo or the
out-of-time-ordered correlators (OTOCs), which are used to study quantum analogs
of classical chaos.
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We give the definitions and properties of these diagnostics below. Before doing it, let us
discuss some points.

The relationship between the Lyapunov exponent of a quantum chaotic system and
that of its classical counterpart is complex and depends on the context in which the
Lyapunov exponent is being considered.

In the semiclassical limit (~ → 0), the quantum system is expected to reflect the
behavior of its classical counterpart. Here, certain quantum quantities, like the decay
rate of the Loschmidt echo or the growth rate of OTOCs, can be linked to the classical
Lyapunov exponent. For example:

F (t) ∝ e−2λt,

for the Lodschmidt echo where λ is the classical Lyapunov exponent.
In the fully quantum regime (away from the semiclassical limit), the classical concept

of Lyapunov exponents becomes less meaningful. Quantum coherence, interference, and
the finite size of the Hilbert space alter the behavior. For instance, exponential divergence
is replaced by saturation or other forms of growth due to quantum effects.

The quantum Lyapunov exponent λQ approaches, in the semiclassical limit, λQ ≈ λ, the
classical Lyapunov exponent, but in strongly quantum regimes, λQ can differ significantly.
Maldacena, Shenker, and Stanford derived a universal bound for quantum Lyapunov
exponents in systems satisfying certain conditions (e.g., holographic systems): λQ ≤
2πkBT/~, where T is the temperature. This bound suggests that in certain cases, λQ is
constrained in ways unrelated to the classical Lyapunov exponent.

Instead, classical integrable systems, when quantized, exhibit a more stable behaviour
under perturbations due to the regularity of their dynamics. The decay of the Loschmidt
echo or growth of the OTOC should be qualitatively slower. For small perturbations,
power-law behaviour are expected

F (t) ∝ t−α,

where α depends on the perturbation strength and system specifics. The absence of
exponential divergence in the classical phase space is reflected in this slower decay. For
long times, saturation of the OTOC similarly to chaotic systems but at a higher value
due to the reduced sensitivity of the integrable dynamics to perturbations is expected.
In some cases, integrable systems may exhibit quasiperiodic revivals of fidelity due to the
coherent evolution of the quantum states.

The absence of exponential decay/growth in the Loschmidt echo/OTOCs indicates
that integrable systems do not "scramble" information efficiently, preserving local struc-
tures and correlations over time. This behavior contrasts with chaotic systems, where
information spreads rapidly and irreversibly.

Let us now present the definitions of the fidelity, Lodschmidt echo and OTOCs.

Fidelity

The fidelity is a measure of the closeness or overlap of two quantum states whether they
are pure or mixed. For two generic states with density operators ρ̂ and %̂, respectively,
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the fidelity is defined as

F (ρ̂, %̂) =

(
Tr

√√
ρ̂%̂
√
ρ̂

)2

. (2.170)

If one of the states is pure, say ρ̂ = |ψ〉〈ψ|, and the other one is not, the fidelity simplifies,

F (|ψ〉, %̂) = 〈ψ|%̂|ψ〉.

For two pure states it boils down to the overlap between the two states

F ( ψ〉, |φ〉) = |〈ψ|φ〉|2 . (2.171)

Some properties of the fidelity are the following.

- It is constant under unitary transformation,

F (Û ρ̂Û †, Û %̂Û †) = F (ρ̂, %̂),

where Û is a unitary operator. This property holds because unitary transformations
preserve the eigenvalues of the density matrices and the structure of the overlap
between quantum states. This invariance is a static property and is not directly
related to time evolution. It simply states that fidelity does not change if both
states are transformed in the same way.

- It is symmetric in its arguments, i.e. F (ρ̂, %̂) = F (%̂, ρ̂). The proof relies on the
following properties:

- The cyclic property of the trace Tr(ÂB̂Ĉ) = Tr(ĈÂB̂) = Tr(B̂ĈÂ), for any
set of operators Â, B̂, Ĉ (as long as the products are well-defined).

- The square root of a positive semi-definite Hermitian operator Â (denoted
√
Â)

and multiplied by another Hermitian operator as below satisfies: (
√
ÂB̂
√
Â)† =√

Â
†
B̂†
√
Â
†

=
√
ÂB̂
√
Â Thus,

√
ρ̂%̂
√
ρ̂ and

√
%̂ρ̂
√
%̂ are Hermitian.

- Equivalent Inner Products. Consider the expression
√
ρ̂%̂
√
ρ̂. Since ρ̂ and %̂

are density operators (positive semi-definite and Hermitian), there exists a
mathematical equivalence such that:√√

ρ̂%̂
√
ρ̂ and

√√
%̂ρ̂
√
%̂

have the same spectrum of eigenvalues. This equivalence arises because the
square roots of ρ̂ and %̂ commute under the trace and spectral decomposition
ensures symmetry between the two arguments.

Finally, since the fidelity depends only on the trace of the square root, we find that
the fidelity is symmetric with respect to its arguments. F (ρ̂, %̂) = F (%̂, ρ̂).

- F (ρ̂, %̂) lies in [0, 1] by the Cauchy-Schwarz inequality. F = 1 indicates that the
states are identical, and F = 0 means they are orthogonal (completely distinguish-
able).
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- The fidelity does not increase under any quantum operation E :

F (E(ρ̂1), E(ρ̂2)) ≤ F (ρ̂1, ρ̂2).

This property is called monotonicity under Completely positive trace-preserving
maps.

- It is related to the trace distance D(ρ̂1, ρ̂2) = 1
2
‖ρ̂1 − ρ̂2‖1 by

1−
√
F (ρ̂1, ρ̂2) ≤ D(ρ̂1, ρ̂2) ≤

√
1− F (ρ̂1, ρ̂2).

The definition of ||Â||1 is ||Â||1 = Tr
√
Â†Â.

- For product states ρ̂1 = ρ̂A ⊗ ρ̂B and ρ̂2 = %̂A ⊗ %̂B:

F (ρ̂1, ρ̂2) = F (ρ̂A, %̂A) F (ρ̂B, %̂B).

The fidelity measures how well a prepared quantum state matches the desired target state.
It can evaluate the quality of a quantum process, such as quantum gates in quantum
computing, it helps quantifying the impact of noise or decoherence on a quantum system,
it plays a role in determining the minimum time required to evolve between two quantum
states. It can reveal critical points in quantum phase transitions by measuring the change
in ground-state overlap.

The fidelity between two states, be them pure or mixed, evolves over time due to the
quantum evolution of the states. The fidelity remains constant in some special cases:
for evolution with identical Hamiltonians, or when the evolution is done with different
Hamiltonians Ĥ and Ĥ + δĤ, and δĤ commutes with Ĥ. Then, the dynamics do not
mix states in a way that reduces the fidelity, and F (t) can remain constant.

The fidelity decay provides insight into the stability of quantum dynamics against
perturbations. The key quantity is F (ψ, ψδ; t) = |〈ψ, t|ψδ, t〉|2 where |ψδ, t〉 is the state
evolved with the Hamiltonian used to evolve |ψ〉 but perturbed in some way that has
strength δ.

Example
If the system is a single qubit, ρ̂ and %̂ have 2× 2 matrix representations. The fidelity is then

F (ρ̂, %̂) = Tr(ρ%) + 2
√

det(ρ) det(%) (2.172)

This formula takes advantage of the small dimensionality of the Hilbert space, allowing for explicit
computation. The proof goes as follows. Any qubit density matrix ρ can be written in the Bloch
representation:

ρ =
1

2
(I + ~r · ~σ) ,

where ~r is the Bloch vector (|~r| ≤ 1), I is the 2 × 2 identity matrix, and ~σ = (σx, σy, σz) are the Pauli
matrices. For any density matrix ρ: Trρ = 1, and for the qubit det ρ = 1

4 (1 − |~r|2). Using the Bloch
representation, the fidelity simplifies to:

F (ρ, %) =
1

2

(
1 + ~rρ · ~r% +

√
(1− |~rρ|2)(1− |~r%|2)

)
,
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where ~rρ and ~r% are the Bloch vectors of ρ and %, respectively. This compact form is particularly useful
when working with two-level systems, as it directly relates the fidelity to the geometric properties of the
Bloch vectors.

Exercise 2.34 Calculate the fidelity between two pure states |ψ1〉 = cos θ2 |0〉 + sin θ
2 |1〉 and |ψ2〉 =

cos φ2 |0〉+ sin φ
2 |1〉.

Solution. F (|ψ1〉, |ψ2〉) = |〈ψ1|ψ2〉|2 =
(

cos θ2 cos φ2 + sin θ
2 sin φ

2

)2
. Using the trigonometric

identity cos a cos b+ sin a sin b = cos(a− b), the fidelity is

F (|ψ1〉, |ψ2〉) = cos2
(
θ − φ

2

)
.

Exercise 2.35 Calculate the fidelity between the pure state |ψ〉 = α|0〉 + β|1〉, and the mixed state
ρ̂ = p|0〉〈0|+ (1− p)|1〉〈1|.

The fidelity is F (|ψ〉, ρ̂) = 〈ψ|ρ̂|ψ〉 = p|〈0|ψ〉|2 + (1 − p)|〈1|ψ〉|2. For |ψ〉 = α|0〉 + β|1〉, we
have |〈0|ψ〉|2 = |α|2 and |〈1|ψ〉|2 = |β|2. Thus,

F (|ψ〉, ρ̂) = p|α|2 + (1− p)|β|2.

If |ψ〉 = |0〉 (α = 1, β = 0), then F = p, showing fidelity depends directly on the mixed
state’s weighting of |0〉.

Exercise 2.36 Let us calculate the fidelity between two mixed states

ρ̂1 = p|0〉〈0|+ (1− p)|1〉〈1|, ρ̂2 = q|0〉〈0|+ (1− q)|1〉〈1|.

Diagonal matrices simplify the computation. For ρ̂1 and ρ̂2, the fidelity simplifies to

F (ρ̂1, ρ̂2) =
(√

pq +
√

(1− p)(1− q)
)2
.

Exercise 2.37 Fidelity after a quantum gate. Suppose a qubit starts in the state

|ψ〉 = |0〉,

and undergoes a Hadamard gate

Ĥ|0〉 =
1√
2

(|0〉+ |1〉)

Calculate the fidelity between the final and initial state.

The fidelity between the initial state |0〉 and the final state |+〉 = 1√
2
(|0〉+ |1〉) is:

F (|0〉, |+〉) = |〈0|+〉|2 =
1√
2

(〈0|0〉+ 〈0|1〉)|2 =
1

2

Exercise 2.38 Fidelity after decoherence. Suppose a qubit starts in a pure state

|ψ〉 = α|0〉+ β|1〉,

and undergoes dephasing, resulting in the mixed state

ρ̂ = |α|2|0〉〈0|+ |β|2|1〉〈1|.

Calculate the fidelity between the final and the initial state.
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The fidelity between the initial state |ψ〉 and the dephased state ρ̂ is

F (|ψ〉, ρ̂) = 〈ψ|ρ̂|ψ〉 = |α|4 + |β|4,

since the cross-terms decay under dephasing. This reflects the loss of coherence.

Loschmidt echo

Let us focus on cases in which the Hamiltonian does not depend on time explicitly.
The Loschmidt echo is a measure of the revival occurring when an imperfect time-

reversal procedure is applied to a complex quantum system. It allows to quantify the
sensitivity of quantum evolution to perturbations. An initial quantum state |ψ, 0〉 evolves
during a time t under a Hamiltonian Ĥ1 reaching the state |ψ, t〉. Aiming to recover the
initial state |ψ, 0〉 a new Hamiltonian −Ĥ2 is applied between t and 2t. Perfect recovery of
|ψ, 0〉 would be achieved by choosing Ĥ2 = Ĥ1. This is not possible in realistic setups, and
there always appears a difference between Ĥ2 and Ĥ1, leading to a non-perfect recovery
of the initial state. The forward evolution between t and 2t under the Hamiltonian −Ĥ2

is equivalent to a backward evolution from t to 0 under Ĥ2, which embodies the notion of
time-reversal. The Loschmidt echo studies are focused on the cases where the dynamics
induced by the Hamiltonians Ĥ1 and Ĥ2 are non-trivial, or sufficiently complex (like that
of a classically chaotic one-particle system or a many-body system which is quantized).

0 t 2t time
Ĥ1 Ĥ2

Figure 2.8: Sketch of the Loschmidt echo procedure.

The Loschmidt echo is defined as

M(t) = |〈ψ, t|ψ, 0〉|2 = |〈ψ, 0|e
i
~ Ĥ2t− i

~ Ĥ1t|ψ, 0〉|2 (2.173)

It is the (square of the absolute value of) the overlap between the initial state and the
one recovered after the forward and backward evolution with the Hamiltonians Ĥ1 and
Ĥ2, respectively. It is a particular case of fidelity.

The Loschmidt echo is used to quantify quantum chaos but also the effects of decoher-
ence induced by a coupling to an environment.

Out of time order correlations

The Out of Time Order Correlators (OTOC) were first introduced in the analysis
of superconductors [65] and were recently considered as a measure of the magnitude
of quantum chaos [66]. They measure the sensitivity of a quantum system to small
perturbations and is a key quantity in studying quantum chaos and scrambling.
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The generic definition is

C(t) = 〈[Ŵ (t), V̂ (0)]†[Ŵ (t), V̂ (0)]〉 = Tr
(

[Ŵ (t), V̂ (0)]†[Ŵ (t), V̂ (0)]ρ̂
)

(2.174)

where Ŵ (t) and V̂ (0) are two operators in the Heisenberg representation and ρ̂ is the
density operator. They depend on time and temperature and can be used in systems with
or without classical analogue.

The definition above holds for an arbitrary pair of operators and density operator.
However, one typically restricts to Hermitian operators and works with

C(t) = −〈[Ŵ (t), V̂ (0)]2〉 (2.175)

Moreover, one uses a thermal density operator ρ̂ = Z−1e−βĤ and then C(t) depends on
time and tempeature.

Sometimes regularizations, that change slightly the definition above and are supposed
to not modify the long-time limit (though this is not obvious and sometimes not even
true) are used

Creg(t) = Tr
(
ρ̂1/2[Ŵ (t), V̂ (0)]†ρ̂1/2[Ŵ (t), V̂ (0)]

)
(2.176)

Creg(t) = Tr
(

[ρ̂1/4Ŵ (t), ρ̂1/4V̂ (0)]†ρ̂1/2[Ŵ (t), V̂ (0)]
)

(2.177)

The relation to chaos can be justified from the semiclassical limit. Consider position
and momentum operators, x̂(t) and p̂(t), in a quantum system. Their OTOC is C(t) =
−〈[x̂(t), p̂(0)]2〉. In the semiclassical limit one can replace the commutator by the Poisson
bracket

[x̂(t), p̂(0)] 7→ i~{x(t), p(0)} = i~
δx(t)

δx(0)
, (2.178)

which measures the sensitivity of x(t) to changes in the initial condition. For a classically
chaotic system with a Lyapunov exponent λ, one has δx(t)/δx(0) ∼ eλt. The reason to
include the square in the definition is that, assuming that one can replace the commutator
by the Poisson bracket in the semiclassical limit, the growth would be eλt but with no
definite sign. The thermal average would then yield a vanishing result as positive and
negative contributions would cancel. Thus, the analogy states that the OTOC should
grow as ~2e2λt and the Lyapunov exponent λ of the quantum system could be read from
it.

The growth of the OTOC is associated with the spread of quantum information. This
is shown by choosing Ŵ and V̂ to be operators that act locally in space-like separated
regions (so that [Ŵ , V̂ ] = 0). A visual example is the one of a chain with nearest-
neighbour interactions, Ŵ located at the middle of the chain, and V̂ ` sites away to the
left. The Baker-Campbell-Hausdorff formula for the expansion of Ŵ (t) yields the nested
commutator expression

Ŵ (t) =
∞∑
k=0

(it)k

k!
[Ĥ, . . . [Ĥ︸ ︷︷ ︸

k

, Ŵ ] . . . ] (2.179)
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The operator Ŵ spreads over the chain as time elapses. with an increasing number of sites
around the initial one being involved. There is a symmetric propagation cone. Eventually
the site of the operator V̂ is reached by the propagation. The OTOC is expected to
depend on x− vt with velocity v limited by the Lieb-Robinson bound [71] for the speed
of correlations spreading in non-relativistic quantum systems.

The OTOC of quantum systems does not grow unbounded but saturates at the Ehren-
fest time tE. The Ehrenfest time is defined by the time scale beyond which the wave
function spreads over the whole system. It is roughly characterized as a boundary be-
tween a particle-like behavior and a wave-like behavior of the wave function.

Maldacena, et al. conjectured in 2016 the existence of an upper bound to the growth-
rate of the OTOC, essentially given by the temperature of the system [67]. This bound
can be viewed as a consequence of the fluctuation-dissipation theorem [68]. Systems
saturating the bound, as black holes do, are called fast scramblers. In the Sachdev-Ye-
Kitaev model [69,70] (which is a kind of spin-glass model) for strongly correlated fermions
the bound is also saturated [70].

In summary,

- Integrable systems: The OTOC remains near its initial value or oscillates, indicating
little scrambling.

- Chaotic Systems: The OTOC decays exponentially at early times, indicating rapid
scrambling of quantum information. The decay rate is related to the system’s Lya-
punov exponent in the classical analog, a hallmark of chaos.

- Thermal Systems: The OTOC can saturate at long times, reflecting thermal equi-
librium and loss of detailed quantum information.

Example
Consider a single qubit, Ŵ = σ̂x and V̂ = σ̂z, with the qubit governed by the Hamiltonian

Ĥ =
~ω
2
σ̂z.

Using the Heisenberg equation of motion

dŴ (t)

dt
=

i

~
[Ĥ, Ŵ (t)],

we find that the Pauli operators evolve under Ĥ as:

σ̂x(t) = eiĤt/~σ̂xe−iĤt/~.

For Ĥ = ~ω
2 σ̂z, the commutator [Ĥ, σ̂x] gives:

[Ĥ, σ̂x] = −i~ωσ̂y.

Iterating the Heisenberg equation, we find

σ̂x(t) = σ̂x cos(ωt)− σ̂y sin(ωt).
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We now compute OTOC(t) for Ŵ = σ̂x and V̂ = σ̂z. Substituting the time-evolved Ŵ (t) = σ̂x(t):

OTOC(t) = 〈σ̂x(t)σ̂zσ̂x(t)σ̂z〉.

Substitute σ̂x(t) = σ̂x cos(ωt)− σ̂y sin(ωt):

σ̂x(t)σ̂z = (σ̂x cos(ωt)− σ̂y sin(ωt)) σ̂z.

Using the Pauli matrix commutation relations:

σ̂xσ̂z = −σ̂zσ̂x, σ̂yσ̂z = −σ̂zσ̂y

we find
σ̂x(t)σ̂z = −σ̂zσ̂x cos(ωt) + σ̂zσ̂y sin(ωt).

Squaring this:
σ̂x(t)σ̂zσ̂x(t)σ̂z = cos2(ωt) + sin2(ωt) = 1.

For this specific case, the OTOC is:
OTOC(t) = 1.

This indicates no scrambling of quantum information, as expected for a single qubit governed by a simple
integrable Hamiltonian. In more complex systems (e.g., multi-qubit systems with chaotic interactions),
the OTOC typically decays over time, indicating scrambling.

Example
A simple solvable example where the OTOC decays over time involves two interacting qubits with a
coupling term that can generate entanglement and quantum scrambling.
Consider a system of two qubits with the Hamiltonian:

Ĥ =
~ω
2

(σ̂(A)
z + σ̂(B)

z ) + Jσ̂(A)
z σ̂(B)

z ,

with the same notation as in the previous example, and J the interaction strength (Ising-type coupling).
This Hamiltonian is diagonal in the computational basis, making it solvable while still capable of exhibit-
ing non-trivial OTOC decay. Choose the operators: Ŵ = σ̂

(A)
x (acting on qubit A) and V̂ = σ̂

(B)
z (acting

on qubit B). The OTOC is
OTOC(t) = 〈σ̂(A)

x (t)σ̂(B)
z σ̂(A)

x (t)σ̂(B)
z 〉,

where σ̂(A)
x (t) = σ̂

(A)
x (t) = eiĤt/~σ̂

(A)
x e−iĤt/~ is the time-evolved σ̂(A)

x in the Heisenberg picture. Using
the commutator [Ĥ, σ̂

(A)
x ], we find

σ̂(A)
x (t) = σ̂(A)

x cos(2Jt) + σ̂(A)
y σ̂(B)

z sin(2Jt).

This shows that σ̂(A)
x (t) depends explicitly on the coupling J and introduces correlations with σ̂

(B)
z , a

necessary ingredient for OTOC decay. Substituting σ̂(A)
x (t) in the product of first two factors within the

OTOC:
σ̂(A)
x (t)σ̂(B)

z =
(
σ̂(A)
x cos(2Jt) + σ̂(A)

y σ̂(B)
z sin(2Jt)

)
σ̂(B)
z

and using the Pauli matrix commutation rules,

σ̂(B)
z σ̂(B)

z = I, σ̂(A)
y σ̂(B)

z = −σ̂(B)
z σ̂(A)

y ,

we find
σ̂(A)
x (t)σ̂(B)

z = σ̂(A)
x cos(2Jt)− σ̂(A)

y sin(2Jt).
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Squaring this expression to compute the full OTOC:

σ̂(A)
x (t)σ̂(B)

z σ̂(A)
x (t)σ̂(B)

z = cos2(2Jt) + sin2(2Jt)− [cross terms decay under expectation values].

For initial product states like |00〉, the cross terms vanish, and the OTOC simplifies to:

OTOC(t) = cos2(2Jt).

This demonstrates oscillatory decay of the OTOC, reflecting how the interaction strength J generates
scrambling of information between the two qubits. While not exponential (as in chaotic systems), the
decay shows sensitivity to the coupling and time evolution, making it a simple example of entanglement
and scrambling dynamics.
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3 Correlation functions
In this Section we introduce some generic points: the no-cloning theorem, correlation

and linear response functions and we discuss several of their properties.
Linear response functions are especially important since they are measured experimen-

tally. For example, the electrical conductivity is the response to a weak applied field, the
thermal conductivity the response to a thermal gradient, etc.

Some correlation functions have analytic properties that do not depend on the micro-
scopic model considered. It is very important to keep them in mind to check whether
approximation schemes satisfy these exact properties and, when formulating phenomeno-
logical models, be sure that they are consistent. Approximate calculations do not always
satisfy all known exact relations, and one then has to choose violating the less harmful
ones.

A detailed discussion of linear response theory and the symmetry properties of corre-
lations and Green functions can be found in [29].

Under equilibrium conditions linear response function are related to some correlation
functions. These relations are called fluctuation-dissipation theorems, and they also have
to be preserved in any treatment of model systems in equilibrium.

3.1 Expectation values and correlation functions
We focus on systems with time-independent Hamiltonians. Go to the Heisenberg pic-

ture in which the operators depend on time while states do not. A generic operator Â in
the Schödinger picture transforms into the Heisenberg one

Â(t) = eiĤt/~Âe−iĤt/~ = Û †(t)ÂÛ(t) . (3.180)

The expected value of Â is
〈Â(t)〉 = Tr[Â(t)ρ̂0] (3.181)

where ρ̂0 is the (already normalised) initial density operator. In Boltzmann equilibrium
at inverse temperature β,

ρ̂0 =
e−βĤ

Tre−βĤ
. (3.182)

In these cases, the evolution operators e±iĤt/~ in Â(t) commute with ρ̂0 and using the
cyclic property of the trace they cancel each other. Then,

〈Â(t)〉 = Tr[Âρ̂0] . (3.183)

A bit more generally, one-time observables are time-independent in any system with ρ̂0(Ĥ).
The term Green function refers specifically to correlators of field operators or creation

and annihilation operators. In this respect, correlation functions are more general as they
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correlate any kind of observables. Still, the two terms are sometimes used interchangeably.
The zero-temperature time-ordered self-correlation function of an operator Â is defined as

CAA(t, t′) ≡ 〈0|T [Â(t)Â(t′)]|0〉 (3.184)

where Â(t) and Â(t′) are time-dependent and |0〉 is the ground state of Ĥ which does not
depend on time. T is the time-ordering operator

T [Â(t)Â(t′)] = Â(t)Â(t′)θ(t− t′) + Â(t′)Â(t)θ(t′ − t) (3.185)

(θ(y) = 1 for y > 0, θ(y) = 0 for y < 0, and there is some freedom in the choice of θ(0)
which we take to be θ(0) = 1/2.)

The finite-temperature time-ordered self-correlation function of the operator Â is de-
fined as

CAA(t, t′) =
Tr {T [Â(t)Â(t′)]e−βĤ}

Tr e−βĤ
=

∑
n〈n|T [Â(t)Â(t′)]e−βEn|n〉∑

n e
−βEn

, (3.186)

where |n〉 is a complete set of eigenstates of Ĥ and each matrix element is weighted with
the corresponding Boltzmann factor.

Note that one could define time-ordered correlation functions in out of equilibrium
systems by using a ρ̂0 which is not the Boltzmann one.

These definitions can be straightforwardly extended to cases with two (or more) dif-
ferent operators Â and B̂.

The (equilibrium) two-time correlation is stationary, that is, depends only on t− t′, as
can be checked from its very definition. Take the generic case of two different operators Â
and B̂, and choose t > t′. Then, replacing the Heisenberg operators by their expressions
in terms of time-independent ones:

CAB(t, t′) =
Tr[eiĤt/~Âe−iĤt/~eiĤt

′/~B̂e−iĤt
′/~e−βĤ ]

Tre−βĤ

=
Tr[eiĤ(t−t′)/~Âe−iĤ(t−t′)/~B̂e−βĤ ]

Tre−βĤ

= CAB(t− t′, 0) = CAB(t− t′) . (3.187)

(The overline is just to indicate that the functional form is different from the starting
one, which was a function of two variables. This distinction is often ignored.) The cyclic
property of the trace, and the commutation of the evolution operator with the Boltzmann
factor (same Ĥ involved) allowed one to rewrite all evolution operators as functions of
t − t′. A similar procedure can be used in the case t′ > t. One usually uses the same
notation (CAB) for the function of two times in the left-hand-side and the one of only
one time-difference in the right-hand-side though these are two different functions. The
stationarity property is also called time translation invariance since

CAB(t, t′) = CAB(t+ δt, t′ + δt) for any δt (3.188)
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if CAB depends only on the time difference.
We note that the very much studied quantum quenches - both theoretically and exper-

imentally - consist in preparing an initial state with one Hamiltonian, Ĥ1, and evolving
it with another Hamiltonian, Ĥ2. in these cases, the correlation functions need not be
stationary.

The term Green function, is usually reserved to the correlation of fields, or creation
and annihilation operators. e.g. ĉ(t) and ĉ†(t′), with the latter creating an excitation at
t′ and the former destroying it at t. At zero temperature the two-point Green function or
propagator is

G(t, t′) = i〈0|T c(t)c†(t′)|0〉 (3.189)

and the finite temperature generalisation is obvious. A good summary of the properties
of Green functions is here
https://en.wikipedia.org/wiki/Green%27s_function_(many-body_theory)

3.2 Linear response and the Kubo formula
We start by giving the definition of the instantaneous linear response of an Hermitian

observable Â to a perturbation linearly coupled to another Hermitian observable B̂, in
such a way that Ĥ 7→ Ĥ − hB̂ between the instants t′ and t′ + ε with ε infinitesimal. We
then calculate it by treating the strength of the change, h, as a perturbation, taking the
full interacting Hamiltonian of the system Ĥ as the unperturbed Hamiltonian.

First, we write 〈Â(t)〉B with the evolution generated by Ĥ from time 0 to t′, Ĥ − hB̂
from t′ to t′ + ε, and Ĥ from t′ + ε to t. Note that we are assuming t ≥ t′. The full
evolution operator is then

Ûh(t, 0) = e−iĤ(t−t′−ε)/~e−i(Ĥ−hB̂)ε/~e−iĤt
′/~ ,

Û †h(t, 0) = eiĤt
′/~ei(Ĥ−hB̂)ε/~eiĤ(t−t′−ε)/~ .

(3.190)

Note that we used B̂† = B̂. We do not worry about the possible non-commutativity of Ĥ
and B̂ since both h → 0 and ε → 0 let us factorise the exponentials. Moreover, we can
Taylor expand the exponential of B̂ in the middle factor and get

Ûh(t, 0) ∼ e−iĤ(t−t′−ε)/~e−iĤε/~[1 + i(hε/~)B̂ +O((εh)2)]e−iĤt
′/~

∼ e−iĤ(t−t′)/~[1 + i(hε/~)B̂ +O((εh)2)]e−iĤt
′/~ (3.191)

and similarly for Û †h. Then,

δ

δεh
Ûh(t, 0)

∣∣∣∣
h=0

= e−iĤ(t−t′)/~ i

~
B̂e−iĤt

′/~ ,

δ

δεh
Û †h(t, 0)

∣∣∣∣
h=0

= −eiĤt′/~ i

~
B̂eiĤ(t−t′)/~ ,

(3.192)
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where we already dropped higher order contributions in h which vanish for h → 0. The
instantaneous linear response function is defined as

RAB(t, t′) ≡ δ〈Â(t)〉B
δεh

∣∣∣∣∣
h=0

=
δ

δεh
Tr[Û †h(t, 0)ÂÛh(t, 0)ρ̂0]

∣∣∣∣
h=0

, (3.193)

and the information about the coupling to B̂ is in the Ûh and Û †h. The first contribution
comes from the variation of the Û †h:

Tr

[
δ

δεh

(
Û †h(t, 0)

)
ÂÛ0(t, 0)ρ̂0

]∣∣∣∣
h=0

= − i

~
Tr
[
eiĤt

′/~B̂eiĤ(t−t′)/~ÂÛ0(t, 0)ρ̂0

]
= − i

~
Tr
[
eiĤt

′/~B̂eiĤ(t−t′)/~Âe−iĤt/~ρ̂0

]
= − i

~
〈B̂(t′)Â(t)〉 (3.194)

and the second one from the variation of Ûh

Tr

[
Û †0(t, 0)Â

δ

δεh

(
Ûh(t, 0)

)
ρ̂0

]∣∣∣∣
h=0

=
i

~
Tr
[
Û †0(t, 0)Âe−iĤ(t−t′)/~B̂e−iĤt

′/~ρ̂0

]
=

i

~
Tr
[
eiĤt/~Âe−iĤ(t−t′)/~B̂e−iĤt

′/~ρ̂0

]
=

i

~
〈Â(t)B̂(t′)〉 . (3.195)

In the end we have

RAB(t, t′) =
i

~
〈[Â(t), B̂(t′)]〉θ(t− t′) (3.196)

where we introduced the θ function that ensures causality, since the system cannot re-
spond to a perturbation which has not been applied yet. The square brackets denote
the commutator of Â and B̂ and we stress the fact that the right-hand-side is calculated
without the external perturbation. In cases in which the observables Â and B̂ are simply
replaced by say creation and annihilation operators, the right-hand-side is related to the
retarded Green function.

We note that this is a model independent Kubo formula. Nowhere in this derivation
we used a particular form of ρ̂0. This relation is actually valid beyond any equilibrium
hypothesis. The proof above can be applied to field theories, in which the perturbation
can be localised in space.

Linear response theory implies that the influence of two subsequent kicks of time-length
ε is equal to the one of a single kick of time-length 2ε, that is, the effect of the perturbations
is additive. In this way, one derives the time-delayed susceptibility

χAB(t, t′) =

∫ t

t′
dt′′ RAB(t, t′′) (3.197)

as the result of a perturbation applied during a finite (and not infinitesimal) time-interval
going from t′ to t.
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Another way of writing the linear response relation is

〈Â(t)〉B =

∫ ∞
−∞

dt′′ RAB(t, t′′)h(t′′) (3.198)

which is just the integral version of the instantaneous (3.193). If we focus on stationary
situations, the right-hand-side is a time convolution. In Fourier

R̃AB(ω) =

∫
dt eiωtRAB(t) , RAB(t) =

∫
dω

2π
e−iωtR̃AB(ω) , (3.199)

the relation above then reads

〈Ã(ω)〉B = R̃AB(ω)h̃(ω) (3.200)

and is local in ω: the response is at the same frequency as the external field. This feature
does not survive if higher order terms in the perturbation are kept to calculate non-linear
responses.

Under equilibrium conditions, ρ̂0 ∝ e−βĤ , one finds that the linear response is station-
ary, as any other correlation function.

3.3 Linear response and Onsager relations
The response function is expressed in terms of a commutator of Hermitian operators

times a theta function that imposes causality. Let us focus on the first factor and define

~R′′AB(t, t′) ≡ 〈[Â(t), B̂(t′)]〉 . (3.201)

The response′′ of the operator B̂ to an external perturbation that couples to Â is simply
related to the response′′ of Â to a perturbation that couples to B̂; in other words, the
operators have reversed roles:

~R′′AB(t, t′) = 〈[Â(t), B̂(t′)]〉

~R′′BA(t′, t) = 〈[B̂(t′), Â(t)]〉

}
=⇒ R′′AB(t, t′) = −R′′BA(t′, t) . (3.202)

These are Onsager’s reciprocity relations.

3.4 Causality and the Kramers-Kronig relations

The causality of the real-time linear response is ensured by the analyticity of ImR̃AB(ω)
in the upper half complex plane. This is proved as follows. Write

RAB(t, t′) =

∫
dω

2π
e−iω(t−t′)R̃AB(ω) (3.203)
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where we assumed that the linear response is stationary.1 Focus on t − t′ < 0, extend
ω → z ∈ C and close the contour in the upper half plane. The exponential e−iω(t−t′) ∝
e−iizI(t−t′) = ezI(t−t′) falls off exponentially and, if we take R̃AB(z) to be analytic in this
half plane, the resulting integral vanishes. This argument shows that analyticity is a
sufficient condition to get RAB(t, t′) ∝ θ(t− t′). One can also argue for necessity (we will
not show it here).

Assuming now that R̃AB(ω) is analytic in the upper half plane, and hence RAB(t, t′)
is causal, one can derive the Kramers-Kronig relations which relate real and imaginary
parts of the response functions and read

ReR̃AB(ω) = −P
∫
dω′

π

ImRAB(ω′)

ω − ω′
,

ImR̃AB(ω) = P

∫
dω′

π

ReRAB(ω′)

ω − ω′
.

(3.204)

The proof goes as follows. First,∫
dω′

π

1

ω′ − ω − iη
R̃AB(ω′) = 2i

∮
dz

2πi

1

z − ω − iη
R̃AB(z)

= 2iR̃AB(ω + iη) (3.205)

where we assumed that R̃AB(z) falls to zero sufficiently fast at infinity.
Next, the identity

lim
η→0

1

ω ∓ iη
= lim

η→0

ω ± iη
ω2 + η2

= lim
η→0

[
ω

ω2 + η2
± iη

ω2 + η2

]
= P

1

ω
± iπδ(ω) (3.206)

P is the principal part. (Take this as a definition of the principal part.)
Now, applying (3.206) to (3.205) in the limit η → 0, and taking the real part of the

result of the lhs:

lhs = Re lim
η→0

∫
dω′

π

1

ω′ − ω − iη
R̃AB(ω′)

= −P
∫
dω′

π

1

ω − ω′
ReR̃AB(ω′) + ImR̃AB(ω) (3.207)

and of the rhs
rhs = 2Im lim

η→0
R̃AB(ω + iη) = 2ImR̃AB(ω) . (3.208)

1In non-stationary cases one can rewrite the two time dependence as a dependence on t′ and t − t′
and Fourier transform with respect to the time difference. The results below also apply in these cases at
fixed t′.
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Thus, the equality between the two yields the first Kramers-Kronig relation in (3.204).
The imaginary part of the same operation yields

lhs = Im lim
η→0

∫
dω′

π

1

ω′ − ω − iη
R̃AB(ω′)

= −P
∫
dω′

π

1

ω − ω′
ImR̃AB(ω′) + ReR̃AB(ω) (3.209)

and of the rhs
rhs = 2Re lim

η→0
R̃AB(ω + iη) = 2ReR̃AB(ω) (3.210)

and hence the second Kramers-Kronig relation in (3.204).
For the spectral representation of the linear response see [29].

3.5 The KMS relations
The cyclic properties of the trace and a Boltzmann density operator yield the so-called

KMS (Kadanoff-Martin-Schwinger) relations. Take a canonical equilibrium correlation
between two operators measured at different times,

CAB(t, t′) = 〈Â(t)B̂(t′)〉 =
Tr[eiĤt/~Âe−iĤt/~eiĤt

′/~B̂e−iĤt
′/~e−βĤ ]

Tre−βĤ
. (3.211)

Inserting identities and moving the factors around one can show

〈Â(t)B̂(t′)〉 = 〈B̂(t′)Â(t+ iβ~)〉 = 〈B̂(−t− iβ~)Â(−t′)〉 (3.212)

which can also be written as

CAB(t, t′) = CBA(t′, t+ iβ~) = CBA(−t− iβ~,−t′) . (3.213)

As way of example, let us prove the first of these expressions.

CAB(t, t′) =
Tr[eiĤt/~Âe−iĤt/~eiĤt

′/~B̂e−iĤt
′/~e−βĤ ]

Tre−βĤ

=
Tr[eiĤt/~e−βĤeβĤÂeβĤe−βĤe−iĤt/~eiĤt

′/~B̂e−iĤt
′/~e−βĤ ]

Tre−βĤ

=
Tr[eiĤ(t+iβ~)/~

�
��eβĤÂe−iĤ(t+iβ~)/~e−βĤeiĤt

′/~B̂e−iĤt
′/~

���e−βĤ ]

Tre−βĤ

=
Tr[eiĤt

′/~B̂e−iĤt
′/~eiĤ(t+iβ~)/~Âe−iĤ(t+iβ~)/~e−βĤ ]

Tre−βĤ

= 〈B̂(t′)Â(t+ iβ~)〉 . (3.214)

The other relations follow from similar steps.
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Having assumed equilibrium conditions the correlation functions are stationary, and
depend only on the difference between the two times involved, e.g. CAB(t, t′) = CAB(t−t′).
They can then be Fourier transformed,

CAB(t− t′) =

∫
dω

2π
e−iω(t−t′)C̃AB(ω) (3.215)

as well as the full KMS relations (3.213), which in Fourier space read

C̃AB(ω) = eβ~ωC̃BA(−ω) . (3.216)

3.6 The fluctuation-dissipation theorem
Let us define symmetrized and anti-symmetrized correlation functions

C[A,B](t, t
′) =

1

2
〈[Â(t), B̂(t′)]〉 ,

C{A,B}(t, t
′) =

1

2
〈{Â(t), B̂(t′)}〉 ,

(3.217)

which we assume are also time-translational invariant. Fourier transforming

2C̃[A,B](ω) = [1− e−β~ω]C̃AB(ω) ,

2C̃{A,B}(ω) = [1 + e−β~ω]C̃AB(ω) .
(3.218)

Taking the ratio between these two,

C̃[A,B](ω) = tanh

(
β~ω

2

)
C̃{A,B}(ω) . (3.219)

We go back to the Kubo relation to replace the commutator by the linear response.
However, one has to be careful, because these two, though proportional to each other in
the time domain, have in front the theta function which ensures causality. Therefore, the
Fourier transform has to be taken with care. One can replace in the right-hand-side of
Eq. (3.196) the Fourier representation of the commutator, taken to be stationary since in
equilibrium,

RAB(t, t′) =
i

~
θ(t− t′)

∫
dω

2π
e−iω(t−t′) 2C̃[A,B](ω)

=
i

~
θ(t− t′)

∫
dω

2π
e−iω(t−t′) tanh

(
β~ω

2

)
2C̃{A,B}(ω) . (3.220)

This is the quantum fluctuation-dissipation theorem in a mixed time-frequency domain.
Applying now ∫ ∞

0

dt eiωt = lim
ε→0+

i

ω + iε
= πδ(ω) + i

P

ω
(3.221)
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with P the principal part, we deduce

R̃AB(ω) = −1

~
lim
ε→0+

∫
dω′

π

1

ω − ω′ + iε
tanh

(
β~ω′

2

)
2C{A,B}(ω

′) (3.222)

from which we derive the imaginary and real parts

ImR̃AB(ω) =
1

~
tanh

(
β~ω

2

)
C̃{A,B}(ω) ,

ReR̃AB(ω) = −1

~
P

∫
dω′

π

1

ω − ω′
tanh

(
β~ω′

2

)
C̃{A,B}(ω

′) . (3.223)

This is the statement of the fluctuation-dissipation theorem, linking a linear response to
its associated correlation function, in this case written in Fourier space. This relation is
valid under equilibrium conditions only.

One can now take the limit β~ → 0 to recover the classical limit. Let us focus on
Eq. (3.220)

RAB(t− t′) → i

~
θ(t− t′)

∫
dω

π
e−iω(t−t′)β~ω

2
C̃AB(ω)

= −βdCAB(t− t′)
d(t− t′)

θ(t− t′) . (3.224)

Another way of writing the fluctuation dissipation theorem, in the complex time do-
main, is

C{A,B}(tc) + C[A,B](tc) = C{A,B}(t
∗
c)− C[A,B](t

∗
c) (3.225)

where tc = t+ iβ~/2.
The fluctuation dissipation theorem is a model independent relation between two-time

correlation and linar response, written in the form of the expectation of the commutator
of two operators, which extend to the quantum realm the fluctuation dissipation relations
of classical statistical physics. It does not depend on the particular Hamiltonian of the
system but it does on the equilibrium assumption.
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4 Open systems
Closed systems are just an idealisation of real systems, as in Nature nothing can be

isolated (apart from the full Universe itself!). The interaction of the system of interest
with the environment cannot be avoided. The goal is to infer the equations of motions of
a reduced system, that is a selected part of the full isolated system, from the equations
of motion of the total system. For practical purposes, the reduced equations of motion
should be easier to solve than the full dynamics of the system. Several approximations
are usually made in the derivation of the reduced dynamics.

In this section we first revisit a few aspects of equilibrium classical statistical physics
that are not commonly discussed and that become important for our purposes. We also
present a derivation of the classical Langevin equation for the evolution of a system
in contact with an equilibrium environment. Properties of Langevin processes are also
discussed in the text but will not be presented in detail in the lectures since they are
taught in the Stochastic Processes lectures.

Next we move on to discuss the description of quantum open systems. In this context we
first discuss the dynamics of a system connected to several baths modelled by a Markovian
interaction (a strong assumption), the Lindblad master equation acting on the density
operator of the system of interest (also called Gorini-Kossakowski-Sudarshan-Lindblad
equation). This equation is used in quantum optics, condensed matter, atomic physics,
quantum information, and quantum biology. Then we introduce more general formalisms
that go beyond the Markovian assumption.

4.1 Coherence and decoherence
The first paper on decoherence written by Zeh dates from 1970 [30] and there is a nice

review by the same author published as Seminaire Poincaré proceedings in 2005 [31].
Quantum coherence describes the ability of a quantum mechanical system to stably

maintain its quantum mechanical states. This allows accurate measurement and control
of the quantum mechanical properties of the system. As long as there exists a definite
phase relation between between components in a superposition, the system is said to be
coherent.

However, interactions with the environment always cause incoherence. Such interac-
tions lead to phase shifts and uncertainty in the quantum mechanical states, causing the
coherence to fade and the system to become decoherent. Quantum coherence can only be
maintained for limited times in many quantum mechanical systems.

If a quantum system were perfectly isolated, it would maintain coherence indefinitely,
but it would be impossible to manipulate or investigate it. If it is not perfectly isolated,
for example during a measurement, coherence is shared with the environment and the
one of the system appears to be lost with time; a process called quantum decoherence or
environmental decoherence. As a result of this process, quantum behavior is apparently
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lost, just as energy appears to be lost by friction in classical mechanics.

Example
Consider a single qubit in the superposition state |ψ〉 = c0|0〉+ c1|1〉. The density matrix is[

|c0|2 c0c
∗
1

c∗0c1 |c1|2
]

(4.1)

The diagonal elements represent the probabilities of the qubit being in |0〉, |1〉, respectively. The off-
diagonal elements encode the coherence. These terms capture the relative phase and amplitude of the
superposition.

Decoherence can be viewed as the loss of quantum information from a system into the
environment (often modelled as a heat bath), since every system is loosely coupled with
the energetic state of its surroundings. Therefore, the system’s dynamics are always non-
unitary (although the combined system plus environment evolves in a unitary fashion).
Thus the dynamics of the system are irreversible. As with any coupling, entanglements
are generated between the system and the environment. These have the effect of sharing
quantum information with – or transferring it to – the surroundings.

Take a system described by a pure state |ψ〉 =
∑

n cn|ψi〉, where {|ψn〉} is a basis of
the Hilbert space. Its density operator is

ρ̂ = |ψ〉〈ψ| =
∑
nm

cnc
∗
m|ψn〉〈ψm| =

∑
n

|cn|2|ψn〉〈ψn|︸ ︷︷ ︸
diagonal

+
∑
i 6=j

cnc
∗
m|ψi〉〈ψm|︸ ︷︷ ︸

off diagonal

(4.2)

The first term (corresponding to just the diagonal terms in the density matrix) looks
like a mixed state, whereas the second term is the interference and gives the off-diagonal
elements. The second term tends to disappear during decoherence, turning a pure state
(quantum) with off-diagonal elements present to a mixed state (classical) with diagonal
elements only.

Preserving quantum coherence is critical for applications in quantum technology, in-
cluding quantum computing, quantum communications, and precision measurements. Re-
searchers are working on strategies to minimize decoherence, such as improved quantum
sensor isolation, error correction techniques, and quantum error tolerance protocols. Un-
derstanding and controlling quantum coherence are therefore key challenges in quantum
physics and for the development of powerful quantum-based technologies.

Under decoherence quantum systems convert to systems which can be explained by
classical mechanics. However, the way in which this transition occurs is complex and not
fully understood. The theory of decoherence treats how quantum superposition states
disappear at the macroscopic scale.

To experiment with the forms of quantum decoherence, scientists use “Schrödinger’s
kittens”. These are a collection of about ten photons that can be observed transitioning
from a quantum form with multiple states to a form with a single state, which is thought
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to result from decoherence. Such kittens are created in several ways, for example, with
a box inside which mirrors force photons to bounce billions of times. Serge Haroche,
received the Nobel Prize in Physics in 2012 for realizing such experiments. It is possible
to observe a photon in superposed states lose this characteristic more or less quickly; with
10 photons introduced into the box, decoherence is almost instantaneous.

The decoherence time depends on the size of the system, the size of the bath and the
coupling between the two. For example, nuclear spin relaxation can be from one-tenth of
a second to a year, whereas the decoherence time is more like 10−3 s in the case of electron
spin. It is approximately 10−6 s for a quantum dot, and around 10−9 s for an electron in
certain solid state implementations. The biggest quantum computing challenge, arguably,
is qubit decoherence. Qubits are extremely sensitive to their environment, and even small
disturbances can cause them to lose their quantum properties. Therefore, to overcome the
problem of quantum decoherence, it is necessary to be capable of performing error cor-
rection. This means analyzing the system to determine which disturbances have occurred
and then reversing them.

When the decoherence theory was proposed, there was no need to observe quantum
properties on a macroscopic scale, and this theory was not given much value. The need to
build a quantum computer and maintain quantum coherence for a certain period of time
to perform quantum calculations drove interest in investigating the factors that cause
decoherence on quantum systems and how to reduce it.

Quantum decoherence explains why we tend to see definite states rather than superpo-
sitions at the macroscopic level. Interactions quickly destroy coherence between superim-
posed states. The process can be seen as a transfer of information about the state of the
system to the environment. This information becomes inaccessible and coherence is lost.
The rate of non-uniformity depends on the strength of the interaction between the system
and the environment. Stronger coupling to the medium leads to faster misalignment.

4.2 Generic features
Consider a system of interest coupled to an environment with which it can exchange

energy. The total energy of the full system is conserved but the contributions from the
system, bath and interaction are not.

Classical and quantum environments are usually modelled as large ensembles of non-
interacting variables (e.g., oscillators [35], spins [36]) with chosen distributions of coupling
constants and energies.

4.3 The classical reduced partition function
We analyze the statistical static properties of a classical canonical system in equilibrium

at inverse temperature β and itself formed by two sub-parts, one that will be treated as an
environment (not necessarily of infinite size) and another one that will be the (sub-)system

93



4. OPEN SYSTEMS CONTENTS

Environment

System

Interaction

Figure 4.1: Sketch of the system and bath coupling.

of interest. We study the partition function or Gibbs functional, ZT :

ZT [η] =
∑

conf env
conf syst

exp(−βHT − βηx) (4.3)

where the sum represents an integration over the phase space of the full system, i.e. the
system’s and the environmental ones. η is a source. We take

HT = Hsyst +Henv +Hint +Hcounter = Hsyst + H̃env . (4.4)

For simplicity we use a single particle moving in d = 1: Hsyst is the Hamiltonian of the
isolated particle,

Hsyst =
p2

2M
+ V (x) , (4.5)

with p and x its momentum and position. Henv is the Hamiltonian of a ‘thermal bath’ that,
for simplicity, we take to be an ensemble of N independent harmonic oscillators [34, 35]
with masses ma and frequencies ωa, a = 1, . . . , N

Henv =
N∑
a=1

π2
a

2ma

+
maω

2
a

2
q2
a (4.6)

with πa and qa their momenta and positions. This is indeed a very usual choice since it may
represent phonons. (These oscillators could be the normal modes of a generic Hamiltonian
expanded to quadratic order around its absolute minimum, written in terms of other pairs
of conjugate variables; the bath could be, for instance, a chain of harmonic oscillators with
nearest-neighbor couplings.) Hint is the coupling between system and environment. We
will restrict the following discussion to a linear interaction in the oscillator coordinates,
qa, and in the particle coordinate,

Hint = x
N∑
a=1

caqa , (4.7)

with ca the coupling constants. The counter-term Hcounter is added to avoid the generation
of a negative harmonic potential on the particle due to the coupling to the oscillators (that
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may render the dynamics unstable). We choose it to be

Hcounter =
1

2

N∑
a=1

c2
a

maω2
a

x2 . (4.8)

The generalization to more complex systems and/or to more complicated baths and
higher dimensions is straightforward. The calculations can also be easily generalized to
an interaction of the oscillator coordinate with a more complicated dependence on the
system’s coordinate, V(x), that may be dictated by the symmetries of the system at the
expense of modifying the counter-term. Non-linear functions of the oscillator coordinates
cannot be used since they render the problem unsolvable analytically.

Having chosen a quadratic bath and a linear coupling, the integration over the oscil-
lators’ coordinates and momenta can be easily performed. This yields the reduced Gibbs
functional

Zred[η] ∝
∑

conf syst

exp

[
−β

(
Hsyst +Hcount + ηx− 1

2

N∑
a=1

c2
a

maω2
a

x2

)]
. (4.9)

The ‘counter-term’ Hcount is chosen to cancel the last term in the exponential and it avoids
the renormalization of the coefficient of the quadratic term in the potential due to the
coupling to the environment that could have even destabilized the potential by taking
negative values. An alternative way of curing this problem would be to take a vanishingly
small coupling to the bath in such a way that the last term must vanish by itself (say, all
ca → 0). However, this might be problematic when dealing with the stochastic dynamics
since a very weak coupling to the bath implies also a very slow relaxation. It is then
conventional to include the counter-term to cancel the mass renormalization. One then
finds

Zred[η] ∝
∑

conf syst

exp [−β (Hsyst + ηx)] = Zsyst[η] . (4.10)

For a non-linear couplingHint =
N∑
a=1

caqaV(x) the counter-term isHcount = 1
2

N∑
a=1

c2a
maω2

a
[V(x)]2.

The interaction with the reservoir does not modify the statistical properties of the
particle since Zred ∝ Zsyst, independently of the choices of ca, ma, ωa and N .

If one is interested in the dynamics of a coupled problem, the characteristics of the
sub-system that will be considered to be the bath have an influence on the reduced
dynamic equations found for the system, that are of generic Langevin kind, as explained
in Sect. 4.5.2.

Quantum mechanically the reduced partition function depends explicitly on the proper-
ties of the bath. The interaction with quantum harmonic oscillators introduces non-local
interactions (along the Matsubara time direction) and there is no physical way to intro-
duce a counter-term to correct for this feature. We will see these feature arise in the
Sec. ??.
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The dynamics of quantum systems has all these difficulties.

4.4 Classical dissipative processes (1h)
Examples of experimental and theoretical interest in condensed matter and biophysics

in which quantum fluctuation can be totally neglected are manifold. In this context one
usually concentrates on systems in contact with an environment: one selects some relevant
degrees of freedom and treats the rest as a bath. It is a canonical view. Among these
instances are colloidal suspensions which are particles suspended in a liquid, typically
salted water, a ‘soft condensed matter’ example; spins in ferromagnets coupled to lattice
phonons, a ‘hard condensed matter’ case; and proteins in the cell a ‘biophysics’ instance.
These problems are modelled as stochastic processes with Langevin equations [45, 46,
48–51, 54], the Kramers-Fokker-Planck formalism or master equations depending on the
continuous or discrete character of the relevant variables and analytic convenience.

The Langevin equation was originally proposed to model the motion of a colloidal
particle in a liquid but it was soon realised that generalisations of it can be used in a
much wider context to describe, e.g. the motion of ions in water of the reorientation of
dipolar molecules, or some collective variable of a macroscopic system. It is a stochastic
differential equation that describes phenomenologically a large variety of problems. It
models the time evolution of a set of slow variables coupled to a much larger set of fast
variables that are usually (but not necessarily) assumed to be in thermal equilibrium at a
given temperature. We first introduce it in the context of Brownian motion in Sect. 4.4.1
and we derive it in more generality in Sect. 4.4.2. A detailed description of Langevin
processes can be consulted in [50].

4.4.1 Langevin’s Langevin equation

The Langevin equation2 for a particle moving in one dimension in contact with a
white-noise bath reads

mv̇ + γ0v = F + ξ , v = ẋ , (4.11)

with x and v the particle’s position and velocity.
The fluctuating force ξ is supposed to come from occasional impacts of the Brownian

particle with molecules of the surrounding medium. The force during an impact is sup-
posed to vary with extreme rapidity over the time of any observation. Then the effects
of the fluctuating force can be summarised by giving its first and second moments, as
time averages over an infinitesimal time interval. ξ is then a Gaussian white noise with
zero mean 〈ξ(t)〉 and correlation 〈ξ(t)ξ(t′)〉 = 2γ0kBTδ(t − t′). The delta function in
time indicates that there is no correlation between impacts in any distinct time intervals
around t and t′. γ0v is a friction force that opposes the motion of the particle. The force

2P. Langevin, Sur la théorie du mouvement brownien, Comptes-Rendus de l’Académie des Sciences
146, 530-532 (1908).
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F designates all external deterministic forces and depends, in the most common cases, on
the position of the particle x only. In cases in which the force derives from a potential,
F = −dV/dx. The generalization to higher dimensions is straightforward. Note that γ0 is
the parameter that controls the strength of the coupling to the bath (it appears in the fric-
tion term as well as in the noise term). In the case γ0 = 0 one recovers Newton equation
of motion. The relation between the friction term and thermal correlation is non-trivial.
Langevin fixed it by requiring 〈v2(t)〉 → 〈v2〉eq. We will give a different argument for it
in the next section.

4.4.2 Derivation of the Langevin equation

Let us take a system in contact with an environment. The interacting system+environment
ensemble is ‘closed’ while the system is ‘open’. The nature of the environment, e.g.
whether it can be modeled by a classical or a quantum formalism, depends on the prob-
lem under study. We focus here on the classical problem defined by HT . A derivation
of a generalized Langevin equation with memory is very simple starting from Newton
dynamics of the full system [5,34,51].

The generalization to more complex systems and/or to more complicated baths and
higher dimensions is straightforward. The calculations can also be easily generalized to
an interaction of the oscillator coordinate with a more complicated dependence on the
system’s coordinate, V(x), that may be dictated by the symmetries of the system, see
Ex. 2.1.

Hamilton’s equations for the particle are

ẋ(t) =
p(t)

m
, ṗ(t) = −V ′[x(t)]−

N∑
a=1

caqa(t)−
N∑
a=1

c2
a

maω2
a

x(t) (4.12)

(the counter-term yields the last term) while the dynamic equations for each member of
the environment read

q̇a(t) =
πa(t)

ma

, π̇a(t) = −maω
2
aqa(t)− cax(t) , (4.13)

showing that they are all stable harmonic oscillators forced by the chosen particle. These
equations are readily solved by

qa(t) = qa(0) cos(ωat) +
πa(0)

maωa
sin(ωat)−

ca
maωa

∫ t

0

dt′ sin[ωa(t− t′)]x(t′) (4.14)

with qa(0) and πa(0) the initial coordinate and position at time t = 0 when the particle
is set in contact with the bath. It is convenient to integrate by parts the last term. The
replacement of the resulting expression in the last term in the rhs of eq. (4.12) yields

ṗ(t) = −V ′[x(t)] + ξ(t)−
∫

t

0
dt′ Γ(t− t′)ẋ(t′) , (4.15)
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with the symmetric and stationary kernel Γ given by

Γ(t− t′) =
N∑
a=1

c2a
maω2

a
cos[ωa(t− t′)] , (4.16)

Γ(t− t′) = Γ(t′ − t), and the time-dependent force ξ given by

ξ(t) = −
N∑
a=1

ca

[
πa(0)
maωa

sin(ωat) +
(
qa(0) + cax(0)

maω2
a

)
cos(ωat)

]
. (4.17)

This is the equation of motion of the reduced system. It is still deterministic.
ξ(t) is a sum of oscillating functions of time. The third term on the rhs of eq. (4.15)

represents a rather complicated friction force. Its value at time t depends explicitly on
the history of the particle at times 0 ≤ t′ ≤ t and makes the equation non-Markovian.
One can rewrite it as an integral running up to a total time T > max(t, t′) introducing
the retarded friction:

γ(t− t′) = Γ(t− t′)θ(t− t′) . (4.18)

Until this point the dynamics of the system remain deterministic and are completely
determined by its initial conditions as well as those of the reservoir variables. Two im-
portant points can be make here. On the one hand, one can check, by simple numerical
generation, that the function ξ at, say, fixed t resembles more and more a random variable
as the number of oscillators increases (for incommensurate frequencies ωa). The initial
conditions for the oscillators are the seeds of the random number generator. This is similar
to what happens with random number generators in the sense that these are, ultimately,
periodic functions with a finite recurrence time that, however, can be made sufficiently
long for computational purposes. Therefore, ξ is a pseudo random number. On the other
hand, one can directly introduce the statistical element into play when one realizes that
it is impossible to know the initial configuration of the large number of oscillators with
great precision and one proposes that the initial coordinates and momenta of the oscilla-
tors have a canonical distribution at an inverse temperature β. (Note that one needs to
assume that the oscillators interacted in the past to establish ergodicity and reach this
pdf, though they do not do any longer.) Then, one chooses {πa(0), qa(0)} to be initially
distributed according to a canonical phase space distribution:

P ({πa(0), qa(0)}, x(0)) = 1/Z̃env[x(0)] e−βH̃env[{πa(0),qa(0)},x(0)] (4.19)

with H̃env = Henv +Hint +Hcount, that can be rewritten as

H̃env =
N∑
a=1

[
maω

2
a

2

(
qa(0) +

ca
maω2

a

x(0)

)2

+
π2
a(0)

2ma

]
. (4.20)
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Again, the presence of Hcount here is for convenience. The randomness in the initial
conditions gives rise to a random force acting on the reduced system. Indeed, ξ is now a
Gaussian random variable, that is to say a noise, with

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = kBT Γ(t− t′) . (4.21)

One can easily check that higher-order correlations vanish for an odd number of ξ factors
and factorize as products of two time correlations for an even number of ξ factors. In
consequence ξ has Gaussian statistics. Defining the inverse of Γ over the interval [0, t],∫ t

0
dt′′ Γ(t− t′′)Γ−1(t′′ − t′) = δ(t− t′), one has the Gaussian pdf:

P [ξ] = Z−1e
− 1

2kBT

∫ t
0 dt

∫ t
0 dt
′ ξ(t)Γ−1(t−t′)ξ(t′)

. (4.22)

Z is the normalization. A random force with non-vanishing correlations on a finite support
is usually called a coloured noise. Equation (4.15) is now a genuine Langevin equation.
A multiplicative retarded noise arises from a model in which one couples the coordinates
of the oscillators to a generic function of the coordinates of the system, see Ex. 2.1.

The use of an equilibrium measure for the oscillators implies the relation between the
friction kernel and the noise-noise correlation, which are proportional, with a constant
of proportionality of value kBT . This is a generalized form of the fluctuation-dissipation
relation, and it applies to the environment.

About the bath

One last comment is in order here. A closed ensemble of harmonic oscillators is an
integrable system that does not equilibrate in strict sense. Still, we are using it as a
model for a thermal bath. One can argue that the oscillators were in interaction in the
past, before being connected to the system, and that this allowed them to reach the
Boltzmann probability distribution that is used for their initial states in this calculation.
Or else, one can follow the calculations by Mazur & Montroll and see that in the limit
of a large number of degrees of freedom the Poincaré recurrence time for the system of
non-interacting harmonic oscillators becomes so large that it lies beyond any relevant time
for the relaxation of the system that is coupled to the oscillator bath3.

About the counterterm.

Had we not added the counter term the equation would read

ṗ(t) = −V ′[x(t)] +
N∑
a=1

c2
a

maω2
a

x(t) + ξ(t)−
∫ t

0

dt′ Γ(t− t′)ẋ(t′) , (4.23)

that is like eq. (4.15) for V 7→ V − 1
2

∑N
a=1

c2a
maω2

a
x2, as we found with the analysis of

the partition sum. Note that, as we will take ca = c̃a/
√
N , with c̃a of O(1), the constant

3P. Mazur and E. Montroll, Poincaré cycles, ergodicity, and irreversibility in assemblies of coupled
harmonic oscillators, J. Math. Phys. 1, 70 (1960).
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resulting from the sum over a is O(1). For the distribution of the initial values we can still
use H̃env or we can choose a Maxwell-Boltzmann distribution with Henv +Hint alone. The
result will be the same, as the supplementary term goes into the normalisation constant
for Penv(0).

The bath kernel Γ.

Different choices of the environment are possible by selecting different ensembles of
harmonic oscillators 4. The simplest one, that leads to an approximate Markovian equa-
tion, is to consider that the oscillators are coupled to the particle via coupling constants
ca = c̃a/

√
N with c̃a of order one. One defines

S(ω) ≡ 1
N

N∑
a=1

c̃2a
maωa

δ(ω − ωa) (4.24)

a function of ω, of order one with respect to N , and rewrites the kernel Γ as

Γ(t− t′) =
∫ ∞

0
dω

S(ω)

ω
cos[ω(t− t′)] . (4.25)

The spectral density S(ω) is a weighted sum over the frequencies of the oscillators in
the bath. For all finite N it is then just a discrete sum of delta functions. In the limit
N → ∞ it can become, instead, a regular function of ω. Assuming this limit is taken,
several proposals for the resulting function S(ω) are made. A common choice is

S(ω)

ω
=

2γ0

π

(
|ω|
ω̃

)α−1

fc

(
|ω|
Λ

)
. (4.26)

The function fc(x) is a high-frequency cut-off of typical width Λ and is usually chosen
to be an exponential. The frequency ω̃ � Λ is a reference frequency that allows one to
have a coupling strength γ0 with the dimensions of viscosity. If α = 1, the friction is
said to be Ohmic, S(ω)/ω is constant when |ω| � Λ as for a white noise. This name is
motivated by the electric circuit analog exposed in Sec. ??. When α > 1 (α < 1) the bath
is superOhmic (subOhmic). The exponent α is taken to be > 0 to avoid divergencies at
low frequency. For the exponential cut-off the integral over ω can be computed for α = 1
and α 6= 1. In the former Ohmic case one finds

Γ(t) =
2γ0

π

Λ

[1 + (Λt)2]
. (4.27)

In the Λ → ∞ limit one approaches the Stratonovich limit and Γ(t) becomes a delta-
function, Γ(t) → 2γ0δ(t) such that

∫ t
0
dt′ Γ(t − t′) = 2γ0arctan(Λt) → γ0 for Λ → ∞. In

4See, G. W. Ford, M. Kac, and P. Mazur, Statistical mechanics of assemblies of coupled oscillators, J.
Math. Phys. 6, 504 (1965), for a detailed analysis.
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the latter non-Ohmic case the integral over ω yields

Γ(t) =
2γ0

π
ω̃−α+1 ΓE(α) Λα cos[α arctan(Λt)]

[1 + (Λt)2]α/2
(4.28)

with ΓE(α) the Euler Gamma-function. At long times, for any α > 0 and α 6= 1, one has

lim
Λt→∞

Γ(t) =
2γ0

π
ω̃ cos(απ/2)ΓE(α) (ω̃t)−α , (4.29)

a power law decay.

4.5 Quantum dissipative processes

4.5.1 The Ramsey interferometer

The Ramsey interferometer is a fundamental tool in quantum mechanics to measure
quantum coherence and is often used in experiments involving atomic or qubit systems.
When coupled to an environment, it serves as a prime example of how decoherence emerges

Take a single qubit and consider its evolution in isolation or coupled to another qubit
which acts as the bath. We will see how the latter may drastically modify the evolution
of the former, a very simple quantum system [33].

The unitary evolution of the isolated system is

|0〉 Û0−→ 1√
2

(
|0〉+ |1〉

)
Ûφ−→ 1√

2

(
|0〉+ eiφ|1〉

)
Û0−→ 1

2

[(
|0〉+ |1〉

)
+ eiφ

(
− |0〉+ |1〉

)]
= eiφ/2

(
−i sin

φ

2
|1〉+ cos

φ

2
|0〉
)

(4.30)

with

Û0 =
1√
2

[
1 −1
1 1

]
Ûφ =

1√
2

[
1 0
0 eiφ

]
(4.31)

This sequence of unitary operations, Û |ψ〉, realizes a Ramsey interferometer. Û0 corre-
sponds to a π/2 pulse and Ûφ to free evolution. The probability to obtain the spin-up
(spin-down) outcome is a sine (cosine) function of φ: Ramsey fringes are obtained when
measuring spin-up (spin-down).

Let us add now a coupling to the environment in between the first π/2 pulse (Û0) and
the free evolution (Ûφ) period. We suppose that the spin and the environment, which
is initially in |0〉E, evolve unitarily such that |1〉 ⊗ |0〉E → |1〉 ⊗ |e1〉E and |0〉 ⊗ |0〉E →
|0〉 ⊗ |e0〉E (the “system” does not change and the environment changes to two states for
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the moment not fixed). The full sequence becomes

|0〉 ⊗ |0〉E
Û0−→ 1√

2

(
|0〉 ⊗ |e0〉E + |1〉 ⊗ |e1〉E

)
Ûφ−→ 1√

2

(
|0〉 ⊗ |e0〉E + eiφ|1〉 ⊗ |e1〉E

)
Û0−→ 1

2

[
(|0〉+ |1〉)⊗ |e0〉E + eiφ (−|0〉+ |1〉)⊗ |e1〉E

]
=

1√
2

[
|↑x 〉 ⊗ |e0〉E − eiφ|↓x 〉 ⊗ |e1〉E

]
(In the last two steps only the system was modified.)

The final measurement can be decomposed as a projective measurement of the envi-
ronment followed by a projective measurement of the spin. There are two extreme cases
depending on the angle between the two environment states |e0〉E and |e1〉E. If the states
are identical, then the environment state can be factored out and the projective measure-
ment of the environment does not modify the state of the spin: Ramsey oscillations with
full contrast are still observed.

Instead, if the environment states are orthogonal and therefore perfectly distinguish-
able, the first measurement (|e0〉E) prepares the spin in

| ↑x 〉 ≡
1√
2

(|0〉+ |1〉),

an eigenvector with eigenvalue 1 of σ̂x. If, instead, the environment is projected on |e1〉E,
then

| ↓x 〉 ≡
1√
2

(|0〉 − |1〉)

the eigenvector with eigenvalue −1 of σ̂x. Both outcomes happen with probability 1/2.
The final measurement then leads to spin up and down outcomes with probability 1/2,
independently of the value of φ, and the Ramsey oscillations are washed out. This exem-
plifies some important features of an open quantum system:
• Once the environment is measured, the state of the system is, in general, in a mixture

of states. It cannot be represented as a ket of the Hilbert space but by a density
matrix.
• The evolution of a quantum system in the presence of an environment is, in general,

not unitary and is called a quantum map. Here, we have obtained a map where the
coherence is completely lost: the initial pure state |0〉 is mapped onto a fully mixed
state. This happens because the qubit and the environment have become maximally
entangled. This loss of coherence of the qubit is irreversible. There is no quantum
operation acting on the qubit alone that can restore the coherence and the fringe
contrast.
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4.5.2 The Lindblad master equation

The Lindblad master equation is a Markovian linear master equation which describes
the evolution of the density operator of an open quantum system. It should be noted that
there is no unique way of implementing a Markov approximation. Instead, there exists
a continuous family of distinct approximations that result in a Markovian dynamics, all
with error bounds of the same order in a control parameter.

The resulting dynamics is no longer unitary, but for some approximation is still trace-
preserving and completely positive for any initial condition (not for others in the lit-
erature). It results in dissipation of energy into the surroundings, causing decay and
randomization of phase.

The Lindblad equation takes the diagonal form

dρ̂red
S

dt
= − i

~
[Ĥ, ρ̂red

S ] +
N2−1∑
i=1

γi

(
L̂iρ̂

red
S L̂†i −

1

2

{
L̂†i L̂i, ρ̂

red
S

})
(4.32)

Here, Ĥ is a Hamiltonian describing the unitary aspects of the dynamics. It is not
necessarily equal to the bare system’s Hamiltonian since it may also incorporate effective
unitary dynamics arising from the system-environment interaction,

Ĥ = ĤS + Λ̂({γi}) (4.33)

The extra term Λ̂({γi}) is Hermitian. It has the same origin as the potential renormaliza-
tion that we saw arising in the derivation of the Langevin equation, after the integration
of the harmonic oscillators. The N2 − 1 operators {L̂i} (in a Hilbert space of N di-
mensions) are a set of jump operators, which describe how the environment acts on the
system and induce dissipation. (There need be no limitation on the number of terms
in the sum, but this can always be reduced to a sum of N2 − 1 terms.) They must ei-
ther be determined from microscopic models of the system-environment coupling or be
phenomenologically proposed. The damping rates γi ≥ 0 are real and non-negative. If
all γi = 0 the von Neumann equation ˙̂ρS = −(i/~)[ĤS, ρ̂S] describing unitary dynamics
with the systems’s Hamiltonian ĤS is recovered. Otherwise, tracing over the environment
introduces non-unitary effects on the system’s dynamics.

Sometimes the more general GKSL (for Gorini-Kossakowski-Sudarshan-Lindblad) equa-
tion is used

dρ̂red
S

dt
= − i

~
[Ĥ, ρ̂red

S ] +
∑
n,m

hnm

(
Ânρ̂

red
S Â†m −

1

2

{
Â†mÂn, ρ̂

red
S

})
(4.34)

where {Âm} are arbitrary operators and {hmn} are the elements of a positive semidefinite
matrix. The latter is a strict requirement to have trace-preserving and positive dynamics.
The number of {Âm} operators is arbitrary (but can be reduced as above), and they do
not have to satisfy any special properties. This equation can be reduced to Eq. (4.32)
after a diagonalization of the matrix h with elements hnm and a change of variables.
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Exercise 4.1 Establish the conditions under which Eq. (4.34) can be taken to the form in Eq. (4.32).

Properties

The Lindblad equation (or Lindblad master equation) conserves the positivity of the
density operator ρ̂red

S , ensuring it remains a valid quantum state during its evolution.
Important properties of the Lindblad equation are:
(a) The equation should conserve the Hermiticity of the density operator. This imposes

constraints on the coefficients γi or hnm in the more generic equation.
(b) Trace preservation: The total probability is conserved (Trρ̂red

S = 1).
(c) Positivity preservation: ρ̂red

S remains a positive semidefinite operator, meaning that
for all vectors |ψ〉, 〈ψ|ρ̂red

S |ψ〉 ≥ 0. The dissipative terms in the equation (L̂kρ̂red
S L̂†k−

1
2
{L̂†kL̂k, ρ̂red

S }) are constructed in a way that ensures positivity. The positivity of
the density operator is a key requirement for it to represent a quantum state, and
the Lindblad equation is explicitly designed to meet this requirement.

The operators {L̂i} are in general arbitrary. Their explicit form depends on the concrete
bath and interaction with the system that one wants to model.

Mathematical proofs of the Lindblad equation only use the properties listed above as
conditions and leave the form of the operators L̂i totally free.

Other proofs are start from a specific form of bath-system coupling and bath model and
derive it through a number of approximations. This is a “physical” in the sense that the
assumptions made, and hence the range of validity of the Lindblad equation, are clearer.

These two proofs are described in detail in [2]. We present the second derivation here,
since it is indeed very close in spirit to the derivation of the classical Langevin equation
that we have already discussed. First we present some examples.

Exercise 4.2 Prove the properties listed above.

(a) Hermiticity. Take the Hermitian transform of the Lindblad equation:

dρ̂†

dt
= +

i

~
(ρ̂†Ĥ† − Ĥ†ρ̂†) +

N2−1∑
i=1

γ∗i

[
L̂iρ̂
†L̂†i −

1

2

(
ρ̂†L̂†i L̂i + L̂†i L̂iρ̂

†
)]

where we did not write the upper-script red and lower-script S in ρ̂† to make the notation
lighter. Since the Hamiltonian Ĥ is Hermitian, for γ∗i = γi, the right-hand side is trans-
formed in the same operator as in the original equation acting now on ρ̂†. So ρ̂ and ρ̂†

satisfy the same equation and we can consider them equal at all times if they are initially.
(b) Trace. We know that the trace of the first term in the right-hand-side vanishes. What
about the trace of the second one? It vanishes for any {L̂i, L̂†i} as a consequence of the
cyclic property of the trace.
(c) Positivity. It can be seen that no negative eigenvalues can be generate in time, just from
the structure of each term in the right-hand-side.

Example. Unitary jump
Take a system characterized by a state |ψ, t〉 at time t and suppose that in the infinitesimal interval dt it
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has probability λdt of changing to e−iĜ|ψ, t〉 and probability 1−λdt of being unchanged. Ĝ is a Hermitian
operator and e−iĜ 6= Î.

The density operator at time t+ dt is

ρ̂(t+ dt) = (1− λdt)ρ̂(t) + λdt e−iĜρ̂(t)eiĜ,

so its evolution equation is
d

dt
ρ̂(t) = −λ[ρ̂(t)− e−iĜρ̂(t)eiĜ].

This is of the Lindblad form, with one Lindblad operator L̂ ≡
√

2λe−iĜ and γ = 1/2. Here and in the
next examples we denote the density operator of the system simply ρ̂ (and not ρ̂redS as in the main text).

For the density matrix components, if the operator Ĝ is diagonal with elements g1 and g2, the last
term reads [

e−ig1 0
0 e−ig2

] [
ρ11 ρ12
ρ21 ρ22

] [
eig1 0
0 eig2

]
=

[
e−ig1 0

0 e−ig2

] [
ρ11e

ig1 ρ12e
ig2

ρ21e
ig1 ρ22e

ig2

]
=

[
ρ11 ρ12e

i(g2−g1)

ρ21e
i(g1−g2) ρ22

]
(4.35)

Plugging this result in the master equation

dρii
dt

= 0
d

dt
ρ12(t) = −λρ12(t)

[
1− ei(g2−g1)

]
.

The diagonal elements remain constant but the off-diagonal elements decay at the fixed rate λ[1−cos(g2−
g1)] and their phases change.

Example. State exchange
Suppose that in time dt, with probability λdt, a state vector |ψ, t〉 in a two dimensional Hilbert space
becomes σ̂y|ψ, t〉 while it remains unchanged with probability 1 − λdt. Here, σ̂y is the second Pauli
operator, with matrix representation [

0 −i
i 0

]
(4.36)

In an infinitesimal interval
ρ̂(t+ dt) = (1− λdt) ρ̂(t) + λdt σ̂y ρ̂(t) σ̂y

which in the continuous time limit yields the differential equation which governs the evolution of the
density operator

d

dt
ρ̂(t) = −λ

[
ρ̂(t)− σ̂y ρ̂(t) σ̂y

]
This equation is of the Lindblad form,

dρ̂

dt
= − i

~
[Ĥ, ρ̂] +

N2−1∑
i=1

γi

(
L̂iρ̂L̂

†
i −

1

2

{
L̂†i L̂i, ρ̂

})
(4.37)

with one Hermitian Lindblad operator L̂ ≡
√

2λσ̂y. Indeed,

– Ĥ = 0,

– L̂ρ̂L̂† = 2λσ̂yρ̂σ̂y,

– {L̂†L̂, ρ̂} = 2λ[(σ̂y)2ρ̂+ ρ̂(σ̂y)2] = 2λ[Iρ̂+ ρ̂I] = 4λρ̂
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and with γ = −1/2 we obtain the expression above.
The density matrix elements therefore satisfy

d

dt
ρ11(t) = − d

dt
ρ22(t) = −λ[ρ11(t)− ρ22(t)] ,

d

dt
ρ12(t) = − d

dt
ρ21(t) = −λ[ρ12(t)− ρ21(t)] ,

obtained just by performing explicitly the matrix products in the last term. The diagonal density matrix
elements change in this example, decaying to 1/2. The off-diagonal matrix elements keep their real parts
while the imaginary parts decay to 0.

Example. OTOCs
Achieving exponential decay of the OTOC typically requires introducing decoherence, dissipation, or
chaotic dynamics. A simple solvable model that incorporates decoherence, leading to exponential decay
of the OTOC is the following.

Consider a single qubit subject to a pure dephasing channel. The qubit evolves under a Hamiltonian
combined with a dephasing term:

Ĥ =
~ω
2
σ̂z,

with dephasing described by the Lindblad operator L̂ =
√
γσ̂z, where ω is the frequency of the qubit

and γ is the dephasing rate and sets the timescale for decoherence. The system evolves according to the
Lindblad master equation

dρ̂(t)

dt
= − i

~
[Ĥ, ρ̂(t)] + γ (σ̂z ρ̂(t)σ̂z − ρ̂(t)) .

This dephasing channel causes the off-diagonal elements of the density matrix to decay exponentially at
a rate 2γ. We choose the operators Ŵ = σ̂x and V̂ = σ̂z. The OTOC is

OTOC(t) = 〈σ̂x(t)σ̂zσ̂x(t)σ̂z〉,

where σ̂x(t) is the time-evolved σ̂x in the presence of dephasing. The dynamics of σ̂x under the Lindblad
equation can be solved directly. Using the commutator [Ĥ, σ̂x] = i~ωσ̂y and the effect of the dephasing
term, we find

σ̂x(t) = σ̂xe
−γt cos(ωt)− σ̂ye−γt sin(ωt).

This result shows that the dephasing channel causes the decay of both σ̂x and σ̂y with a rate γ. Substitute
σ̂x(t) into the OTOC:

OTOC(t) = 〈σ̂x(t)σ̂zσ̂x(t)σ̂z〉.

Using σ̂zσ̂x = −σ̂xσ̂z and expanding

σ̂x(t)σ̂z =
(
σ̂xe
−γt cos(ωt)− σ̂ye−γt sin(ωt)

)
σ̂z.

Squaring this
σ̂x(t)σ̂zσ̂x(t)σ̂z = e−2γt

(
cos2(ωt) + sin2(ωt)

)
.

Since cos2(ωt) + sin2(ωt) = 1, the OTOC decays exponentially with a rate 2γ

OTOC(t) = e−2γt.

This example demonstrates that dephasing (or other forms of noise) can lead to exponential decay of the
OTOC. In this case, the decay reflects the loss of coherence due to the environment, rather than chaotic
dynamics. It provides a clear and simple case for teaching OTOC behavior in the presence of dissipation.
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The system-environment model

The Hamiltonian has three terms, one concerns the system, another one the environ-
ment, and finally an interaction term:

ĤT = ĤS ⊗ IE + IS ⊗ ĤE + αĤI , (4.38)

with ĤS acting onHS, ĤE acting onHE, and ĤI acting onHT . We assume, for simplicity,
that none of them is explicitly time dependent. The coefficient α is a measure of the
strength of the system-environment coupling. Without loss of generality, the interaction
term can be decomposed as

ĤI =
∑
i

γiŜi ⊗ Êi =
∑
i

γiŜ
†
i ⊗ Ê

†
i , (4.39)

with Ŝi and Êi Hermitian operators acting on HS and HE, respectively, and γi real
coefficients. Of course, one can absorb the parameter α in the individual γi, but we keep
it in explicit form since it is easier to follow in this way the order of the effect of the
bath-system interaction. Each term above is referred to as a (quantum) noise channel.
From now on we will not write the identity operators explicitly when they can be inferred
from the context.

Derivation

We derive the Lindblad equation for a system coupled to its environment or a mea-
surement apparatus. One first derives the Born-Markov master equation and then traces
out the degrees of freedom of the “surroundings”. The Lindbladian emerges naturally as
a consequence of the Markov approximation.

It is important to note that a decay of the environmental correlations, an assumption
that we will repeatedly use in the derivation, can only be strictly valid for an environment
which is infinitely large and involves a continuum of frequencies. In the typical situation,
like the one we discussed when we derived the Langevin equation, the reservoir is provided
by a collection of harmonic oscillator modes with frequencies ωn and the Êi are given by
linear combinations of the modes q̂n.

In the weak-coupling limit derivation that we discuss below, one typically assumes:

(a) The correlations of the system with the environment develop slowly.
(b) The excitations of the environment caused by the system decay very quickly.
(c) The terms which are fast-oscillating when compared to the system’s timescale of

interest can be neglected.

The names Born, Markov, and rotating wave are associated to these approximations as
indicated below.
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Take a total isolated system T and its Hilbert space HT . The evolution of its density
operator is given by the von Neumann equation:

dρ̂T (t)

dt
= − i

~

[
ĤT , ρ̂T (t)

]
. (4.40)

Consider now that the total system is made of our system of interest S with its Hilbert
space HS, and the environment E with its Hilbert space HE. As we are interested in
the dynamics of the system, without the environment, we will trace over the environment
degrees of freedom to obtain the reduced density matrix of the system ρ̂red

S = TrE ρ̂T and
search for the equation that rules its time evolution.

The goal is to write an equation for ρ̂red
S . There exists several approximation schemes

for obtaining it [2,54–59]. While useful in their respective regimes of applicability, each of
these methods has its limitations which can be due to physical limitations on the regime of
applicability, or because of practical issues associated with the numerical implementation.

It is useful to work in the interaction picture, in which any operator Ô evolves with
time with the system and environment Hamiltonian.

ÔI(t) = e
i
~ (ĤS+ĤE)t Ô e−

i
~ (ĤS+ĤE)t (4.41)

Here we signal with a subindex I the interaction picture. Some simple calculations lead
to the evolution equation of the total density matrix in the interaction picture

dρ̂T (t)

dt
= − i

~
α
[
ĤI(t), ρ̂T (t)

]
(4.42)

with

ĤI(t) = e
i
~ (ĤS+ĤE)t ĤI e

− i
~ (ĤS+ĤE)t (4.43)

ρ̂T (t)︸ ︷︷ ︸
Interaction

= e
i
~ (ĤS+ĤE)t ρ̂T (t)︸ ︷︷ ︸

Schrodinger

e−
i
~ (ĤS+ĤE)t (4.44)

We do not attach a subindex I to ρ̂T (t) to lighten the notation.

Exercise 4.3 Derive the von Neumann equation in the interaction picture.

The interaction picture density operator ρ̂I(t) is defined as

ρ̂I(t) = Û†0 (t)ρ̂(t)Û0(t),

where ρ̂ is the Schrödinger picture density operator (we do not write a sub-index S to lighten
the notation), Û0(t) is the unitary evolution operator for the “free” Hamiltonian

Û0(t) = e−
i
~ Ĥ0t

and Ĥ0 = ĤS + ĤE . We start with the Schrödinger picture equation for the total density
operator,

dρ̂(t)

dt
= − i

~
[ĤT , ρ̂(t)] ,
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where we substitute the total Hamiltonian ĤT = Ĥ0 + αĤI(t), and we obtain

dρ̂(t)

dt
= − i

~
[Ĥ0, ρ̂(t)]− i

~
α[ĤI(t), ρ̂(t)] . (4.45)

We now transform to the interaction picture using ρ̂I(t) = Û†0 (t)ρ̂(t)Û0(t). The time deriva-
tive of ρ̂I(t) is:

dρ̂I(t)

dt
=

d

dt

(
Û†0 (t)ρ̂(t)Û0(t)

)
.

that using the product rule becomes

dρ̂I(t)

dt
=
dÛ†0 (t)

dt
ρ̂(t)Û0(t) + Û†0 (t)

dρ̂(t)

dt
Û0(t) + U†0 (t)ρS(t)

dU0(t)

dt
.

Using now dÛ0(t)/dt = − i
~Ĥ0Û0(t) and dÛ†0 (t)/dt = i

~ Û
†
0 (t)Ĥ0:

dρ̂I(t)

dt
=

i

~
Û†0 (t)Ĥ0ρ̂(t)Û0(t) + Û†0 (t)

dρ̂(t)

dt
Û0(t)− i

~
Û†0 (t)ρ̂(t)Ĥ0Û0(t).

In the first and third terms in the right-hand-side we see the commutator [Ĥ0, ρ̂(t)] appear
between Û†0 (left) and Û0 (right). In the term in the middle there is dρ̂(t)

dt which we can
substitute using (4.45). The terms involving the commutator cancel and we are left with

dρ̂I(t)

dt
= − i

~
αÛ†0 (t)[ĤI(t), ρ̂(t)]Û0(t)

The operator ĤI and ρ̂ in the right hand side are still in the Schrödinger picture. But
opening the commutator and inserting identities Û0Û

†
0 one transforms them both into the

interaction picture. Then,
dρ̂I(t)

dt
= − i

~
α[ĤI(t), ρ̂I(t)]

where ĤI(t) is also in the interaction picture here (but we do not write the I to make the
notation less heavy. This equation shows that the dynamics in the interaction picture are
driven solely by the interaction Hamiltonian ĤI(t) in the interaction picture.

This equation can be formally time-integrated to yield

ρ̂T (t) = ρ̂T (0)− i

~
α

∫ t

0

ds
[
ĤI(s), ρ̂T (s)

]
. (4.46)

In principle one could trace over the environment here and obtain an exact expression for
ρ̂red
S (t) but this is in general unfeasible. It is also inconvenient (though unavoidable at the

exact level) that the resulting ρ̂red
S (t) will depend on the integration of the density matrix

over all previous times.
Equation (4.46) is the starting point of an iterative approach. Let us introduce it in

the right-hand-side of Eq. (4.42),

dρ̂T (t)

dt
= − i

~
α
[
ĤI(t), ρ̂T (0)

]
− α2

~2

∫ t

0

ds
[
ĤI(t),

[
ĤI(s), ρ̂T (s)

]]
. (4.47)
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By applying this method once more we obtain

dρ̂T (t)

dt
= − i

~
α
[
ĤI(t), ρ̂T (0)

]
− α2

~2

∫ t

0

ds
[
ĤI(t),

[
ĤI(s), ρ̂T (0)

]]
+O(α3/~3). (4.48)

After this substitution, the integration of the previous states of the system, ρ̂T (s) appears
only in the terms that are O(α3/~3) or higher.

Let us go back to the integro-differential equation (4.47), which is exact, and trace over
the environment degrees of freedom:

dρ̂red
S (t)

dt
≡TrE

[
dρ̂T (t)

dt

]
=− i

~
αTrE

[
ĤI(t), ρ̂T (0)

]
− α2

~2

∫ t

0

ds TrE

[
ĤI(t),

[
ĤI(s), ρ̂T (s)

]]
(4.49)

This is not a closed time-evolution equation for ρ̂red
S (t), because the full density matrix

ρ̂T (s) still appears in the right-hand-side. To proceed, we need to make some assumptions.
Assume now that at t = 0 the system and the environment are in a separable state of

the form
ρ̂T (0) = ρ̂S(0)⊗ ρ̂E(0) . (4.50)

This may be the case if the system and the environment have not interacted before t = 0
or if the correlations between them are very short-lived. Moreover, at the initial time
ρ̂S(0) = ρ̂red

S (0).
By using the assumption (4.50) and the factorized ĤI in (4.39), we can now focus on

the environment only. The first element of the r.h.s of Eq. (4.49) reads

TrE

[
ĤI(t), ρ̂T (0)

]
=
∑
i

{
Ŝi(t)ρ̂S(0)TrE

[
Êi(t)ρ̂E(0)

]
− ρ̂S(0)Ŝi(t)TrE

[
ρ̂E(0)Êi(t)

]}
.

We can now use that 〈Êi〉 = Tr[Êiρ̂E(0)] = 0 for all i. This looks like a strong assumption,
but it is not. If the total Hamiltonian does not fulfil it, we can always rewrite it as
ĤT =

(
ĤS + α

∑
i〈Êi〉Ŝi

)
+ ĤE + αĤ ′i, with Ĥ ′i =

∑
i Si ⊗ (Êi − 〈Êi〉). It is clear that

now 〈Ê ′i〉 = 0, with Ê ′i = Êi − 〈Êi〉, and the system Hamiltonian is changed just by the
addition of an energy shift that does no affect the system’s dynamics. Using the cyclic
property of the trace, it is easy to prove that this term vanishes.

The equation of motion (4.49) reduces to

dρ̂red
S (t)

dt
= −α

2

~2

∫ t

0

ds TrE

[
ĤI(t),

[
ĤI(s), ρ̂T (s)

]]
. (4.51)

In order to unravel the system from the environment in the r.h.s. we need a further
assumption. As we are working in the weak coupling regime, α� 1, we may assume that
the timescales of correlation of the environment with the system (τSE) and relaxation of
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the environment (τE) are much shorter than the typical system’s timescale (τS). This
Born approximation rests on the largeness of the bath and the relative weakness of the
coupling, and states that the environment state is always decoupled from the system’s
state,

ρ̂T (t) = ρ̂red
S (t)⊗ ρ̂E(0) (4.52)

and remains unaltered. The systems’ state does not and this is why we write here ρ̂red
S (t)

instead of ρ̂S(t) which would be the evolved density operator in the absence of coupling
to the environment. Equation (4.51) then transforms to

dρ̂red
S (t)

dt
= −α

2

~2

∫ t

0

ds TrE

[
ĤI(t),

[
ĤI(s), ρ̂

red
S (s)⊗ ρ̂E(0)

]]
(4.53)

This is a closed linear integro-differential for ρ̂red
S which is still very hard to solve. This

equation is still non-Markovian, as it displays an integration over time running from the
initial s = 0 to the measuring s = t in the r.h.s.

A further approximation, now going in the direction of Markovianity, is that one makes
the time derivative of the system’s density matrix depend only on its current state, and
not on its past. This assumption is valid under fast bath dynamics, wherein correlations
within the bath are lost extremely quickly, and amounts to replacing

ρ̂red
S (s)→ ρ̂red

S (t)

under the integral

dρ̂red
S (t)

dt
= −α

2

~

∫ t

0

ds TrE

[
ĤI(t),

[
ĤI(s), ρ̂

red
S (t)⊗ ρ̂E(0)

]]
. (4.54)

Another way of justifying this replacement is to invoke the weak coupling limit, recognizing
that that the time-derivative of ρ̂red

S is already O(α2/~2), hence ρ̂red
S (s) cannot change

much in the interval, and replace it by ρ̂red
S (t). This is sometimes called the Redfield or

Born-Markov master equation. It is now local in time, concerning ρ̂red
S (t). One should

notice, however, that it no longer guarantees the conservation of positivity of the density
matrix due to the approximations we have made, and it may therefore yield un-physical
solutions, with negative or diverging probabilities. This problem is corrected after making
an explicit choice for ĤI and working out its consequences.

We now change the integration variable from s to t−s, with no change of the integration
bounds,

dρ̂red
S (t)

dt
= −α

2

~2

∫ t

0

ds TrE

[
ĤI(t),

[
ĤI(t− s), ρ̂red

S (t)⊗ ρ̂E(0)
]]

. (4.55)

We can now understand that the time s indicates how far we go backwards in time to
account for memory effects, which can be the characteristic timescale over which correla-
tions in the bath decay, τE. Claiming that the bath correlation will decay sufficiently fast
we can extend the upper limit of the integral to infinity. We will not do it for now.
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The issue now is to perform the trace over the environmental states. We will do it in
two ways.

“White bath” approximation

We open the commutators.

−~2

α2

dρ̂red
S (t)

dt
=

∫ t

0

ds TrE

[
ĤI(t),

[
ĤI(s), ρ̂

red
S (t)⊗ ρ̂E(0)

]]
=

∫ t

0

dsTrE

{
ĤI(t)

[
ĤI(s), ρ̂

red
S (t)⊗ ρ̂E(0)

]
−
[
ĤI(s), ρ̂

red
S (t)⊗ ρ̂E(0)

]
ĤI(t)

}
=

∫ t

0

dsTrE

{
ĤI(t)ĤI(s) ρ̂

red
S (t)⊗ ρ̂E(0)− ĤI(t) ρ̂

red
S (t)⊗ ρ̂E(0) ĤI(s)

−ĤI(s) ρ̂
red
S (t)⊗ ρ̂E(0) ĤI(t) + ρ̂red

S (t)⊗ ρ̂E(0) ĤI(s)ĤI(t)
}

and we replace the explicit form of ĤI , using one form in one factor and the other (dag-
gered) form in the other factor. For example,

ĤI(t)ĤI(s) =
∑
i

γiŜ
†
i (t)⊗ Ê

†
i (t)

∑
j

γjŜj(s)⊗ Êj(s)

=
∑
ij

γiγjŜ
†
i (t)Ŝj(s)⊗ Ê

†
i (t)Êj(s)

One finds

−~2

α2

dρ̂red
S (t)

dt
=
∑
i,j

γiγj

∫ t

0

ds
{
Ŝ†i (t)Ŝj(s)ρ̂

red
S (t) TrEÊ

†
i (t)Êj(s)ρ̂E(0)

−Ŝi(t)ρ̂red
S (t)Ŝ†j (s) TrEÊi(t)ρ̂E(0)Ê†j (s)

−Ŝj(s)ρ̂red
S (t)Ŝ†i (t) TrEÊj(s)ρ̂E(0)Ê†i (t)

+ρ̂red
S (t)Ŝ†j (s)Ŝi(t) TrE ρ̂E(0)Ê†j (s)Êi(t)

}
(4.56)

Since we assumed from the start that Ŝi and Êi are Hermitian it may seem superfluous to
carry the daggers. We do it to find a more general expression for the Lindblad equation.
We now use the cyclic property of traces and propose

TrEÊj(s)ρ̂E(0)Ê†i (t) = TrE ρ̂E(0)Ê†i (t)Êj(s) = TrEÊ
†
i (t)Êj(s)ρ̂E(0) ≡ Γij(t, s)

TrEÊi(t)ρ̂E(0)Ê†j (s) = TrE ρ̂E(0)Ê†j (s)Êi(t) = TrEÊ
†
j (s)Êi(t)ρ̂E(0) ≡ Γji(s, t)

These correlations are not equal. Indeed,

Γji(s, t) = TrEÊ
†
j (s)Êi(t)ρ̂E(0) = TrEÊj(s)Ê

†
i (t)ρ̂E(0) = TrEÊ

†
i (t)ρ̂E(0)Êj(s) 6= Γij(t, s)
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Instead, (
Γji(s, t)

)†
= TrE ρ̂E(0)

(
Ê†j (s)Êi(t)

)†
= TrE ρ̂E(0)Ê†i (t)Êj(s)

= TrEÊ
†
i (t)Êj(s)ρ̂E(0) = Γij(t, s)

Assuming stationarity for the bath, a rather reasonable assumption in many relevant
cases, the correlations Γij(t, s) and Γji(s, t) depend on time-differences only:

Γij(t, s) = Γij(t− s) Γji(s, t) = Γji(s− t)

One can also suppose that they depend on the absolute value of the time difference,
Γji(|t− s|). Changing i↔ j in the second group of terms,

−~2

α2

dρ̂red
S (t)

dt
=
∑
i,j

γiγj

∫ t

0

ds
{[
Ŝ†i (t)Ŝj(s)ρ̂

red
S (t)− Ŝj(s)ρ̂red

S (t)Ŝ†i (t)
]

Γij(t− s)

+
[
−Ŝi(t)ρ̂red

S (t)Ŝ†j (s) + ρ̂red
S (t)Ŝ†j (s)Ŝi(t)

]
Γji(s− t)

}
=
∑
i,j

γiγj

∫ t

0

ds Γij(|t− s|)
{[
Ŝ†i (t)Ŝj(s)ρ̂

red
S (t)− Ŝj(s)ρ̂red

S (t)Ŝ†i (t)
]

+
[
−Ŝj(t)ρ̂red

S (t)Ŝ†i (s) + ρ̂red
S (t)Ŝ†i (s)Ŝj(t)

] }
(4.57)

At this stage one can redefine the bath correlations γiγjΓij 7→ Γij. In some cases, a
further assumption is made

Γij(t, s) = hij δ(t− s) Γji(s, t) = hji δ(t− s) (4.58)

that is, that correlations within the bath die out so quickly compared to the system’s
evolution that one ignores them completely. The hij factors are general numerical factors
which result from performing the trace over the bath. This is another consequence of the
weak system-bath interaction and the Markov approximation. The first and third terms
combine together and the second and fourth as well. The master equation simplifies to

−~2

α2

dρ̂red
S (t)

dt
=

∑
i,j

hij
2

[
Ŝ†i (t)Ŝj(t)ρ̂

red
S (t)− Ŝj(t)ρ̂red

S (t)Ŝ†i (t)

+ρ̂red
S (t)Ŝ†i (t)Ŝj(t)− Ŝj(t)ρ̂red

S (t)Ŝ†i (t)
]

=
∑
i,j

hij

[
−Ŝj(t)ρ̂red

S (t)Ŝ†i (t) +
1

2
{Ŝ†i (t)Ŝj(t), ρ̂red

S (t)}
]

(4.59)

The factor 1/2 in the first line comes from the fact that the integral goes until t the same
time at which the delta function is evaluated.
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After diagonalization of the matrix hij with an orthogonal transformation, we define
new coefficients Γiδij = Γij =

∑
kl dikhkld

∗
lj,

Γiδij =
∑
kl

dikhkld
∗
lj L̂i(t) =

∑
k

dikŜk(t) (4.60)

Moving back to the Schrödinger picture,

ρ̂red
S (t)︸ ︷︷ ︸

Schrodinger

= Û(t) ρ̂red
S (t)︸ ︷︷ ︸

Interaction

Û †(t) (4.61)

with Û(t) = e
i
~ ĤSt, the Lindblad equation takes its usual form:

dρ̂red
S

dt
= − i

~
[ĤS, ρ̂

red
S ] +

α2

~2

∑
i

Γi

[
L̂iρ̂

red
S L̂†i −

1

2
{L̂†i L̂j, ρ̂red

S }
]

(4.62)

ĤS is here the Hamiltonian of the system alone. Often a factor α/~ is absorbed in a
definition of the operators L̂i.

The delta functions in (4.58) for the environmental operator correlations is quite a
brutal approximation. Better ones are often used. We discuss them below.

Rotating wave approximation

One can be a bit more careful with the treatment of the bath correlation function and
not just assume they are delta-correlated in time.

Let us now look at the operators Ŝ acting on the system. Let us denote by |ε〉 the
eigenstates of ĤS and expand any of the Ŝ in the Schrödinger picture as

Ŝ =
∑
ε,ε′

Sεε′ |ε〉〈ε′| .

In the interaction frame, these operators are touched only by the exponential in ĤE and
we obtain

ŜI(t) =
∑
εε′

Sεε′ |ε〉〈ε′| e−i(ε−ε′)t/~ =
∑
ω

Ŝ(ω) e−iωt

where the sum over ω is over all the possible transition frequencies (ε− ε′)/~ that appear
in the spectrum of ĤS and Ŝ(ω) = Sεε′ |ε〉〈ε′| with ω thus defined. The operators Ŝ(ω)
are in general non-Hermitian, they satisfy Ŝ†(ω) = Ŝ(−ω).

Putting these two ingredients together, the interaction Hamiltonian in the interaction
picture can be rewritten as

ĤI(t) =
∑
i

γi
∑
ω

e−iωtŜi(ω)⊗ Êi(t) =
∑
i

γi
∑
ω

eiωtŜ†i (ω)⊗ Ê†i (t) (4.63)

with
Êi(t) = eiĤEt/~Êie

−iĤEt/~ (4.64)
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the operators acting on the environment in its own interaction picture. Replacing in the
master equation in the form (4.55) with the upper limit of integration extended to ∞,
and absorbing the parameters γiγj in the definition og Γij,

−~2

α2

dρ̂red
S (t)

dt
=

∑
ij

∑
ωω′

Γij(ω)ei(ω−ω′)t
(
Ŝ†i (ω)Ŝj(ω

′)ρ̂red
S (t)− Ŝi(ω)ρ̂red

S (t)Ŝ†j (ω
′)

+ρ̂red
S (t)Ŝ†i (ω)Ŝj(ω

′)− Ŝi(ω′)ρ̂red
S (t)Ŝ†j (ω)

)
(4.65)

The correlations Γij(ω) are defined as

Γtij(ω) ≡ γiγj

∫ ∞
0

ds e−iωsTrE
[
Ê†i (t)Êj(s) ρ̂E(0)

]
and similarly for the others. We note that the integration over s has been extended here
to ∞. These are, in general, time-dependent functions. However, one assumes that they
are not and drops the superindex t. In the typical situation in which the reservoir is
a collection of harmonic oscillator modes, if the frequency spectrum ωn of the reservoir
modes is discrete (as in the classical case) these correlation functions are quasi-periodic
functions of t. A rapid decay of the reservoir correlations therefore requires a continuum
of frequencies.

The secular approximation consists in neglecting all the terms that rapidly oscillate in
the sum over ω and ω′, that is the omission of all terms with ω 6= ω′. One keeps only the
contributions from ω = ω′, which leads to

−~2

α2

dρred
S (t)

dt
=
∑
ij

∑
ω

Γij(ω)

(
Ŝj(ω)ρ̂red

S Ŝ†i (ω)− 1

2
{Ŝi(ω)†Ŝj(ω), ρ̂red

S (t)}
)
.

We now split the real and imaginary parts of the bath correlations as

Γij(ω) =
1

2
γij(ω) + iπij(ω) (4.66)

with

πij(ω) = − i

2
(Γij(ω)− Γ∗(ω)) (4.67)

γij(ω) = Γij(ω) + Γ∗ij(ω) (4.68)

The real and imaginary parts γij(ω) and πij(ω) of the complex function Γij verify the
Kramers-Kronig relations.

Inserting the expression (4.66) of Γij in the last equation, we arrive at a master equation
in the Lindblad form

dρ̂red
S (t)

dt
= − i

~
∑
ω

∑
ij

πij(ω) [Ŝ†i (ω)Ŝj(ω), ρred
S (t)]

+
∑
ω

∑
ij

γij(ω)

(
Ŝj(ω)ρ̂red

S (t)Ŝ†i (ω)− 1

2
{Ŝ†i (ω)Ŝj(ω), ρ̂red

S (t)}
)
.(4.69)
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where we have absorbed a factor α/~ in each Ŝi. This master equation is still expressed in
the interaction picture, it can be transformed back to the Schrödinger picture by adding
the system Hamiltonian HS to the coherent part of the dynamics in the first line.

The coupling to the bath has two effects:

- The Hamiltonian of the system is shifted by a quantity
∑

ω πij(ω)Ŝ†i (ω)Ŝj(ω). This
term is often called the Lamb shift term by analogy to the shift of the atomic levels
that arises from the coupling of the atom to its electromagnetic environment. Note
the similarity with what happened when we derived the classical Langevin equation
and we found a renormlization of the quadratic potential due to the coupling to the
bath. It represents the small corrections to the energy levels of the system that arise
due to the coupling to the bath.

- Jump operators appear, which induce transitions between the eigenstates of ĤS. In
the secular approximation, the energy exchanged between the system and the bath
during a jump is perfectly defined. The rate associated with the jump where a
quantum of energy ~ω is exchanged between the system and the bath is given by
the functions γij(ω).

4.5.3 Interaction with the radiation field

In the case of an atom interacting with the quantized radiation field, the Hamiltonian
for the latter is given by a sum of harmonic oscillators,

ĤE =
∑
~kλ

ω~k â
†
~kλ
â~kλ, (59)

where λ is the polarization index [?]. If the wavelength of the radiation field is much
larger than the spatial extent of the atomic wavefunction, the dominant interaction term
is given by the electric dipole term,

ĤI = −~d · ~E = −~d · i
√

~ωk
V
~ελ(â

†
~kλ
− â~kλ)

where ~d is the dipole operator of the atom and ~E is the quantized electric field.
If the reference state of the bath, ρ̂E, is the vacuum without any photons, the reservoir

correlations are

〈a~kλa~k′λ′〉 = 〈a†~kλa
†
~k′λ′
〉 = 〈a†~kλa~k′λ′〉 = 0 〈a~kλa

†
~k′λ′
〉 = δ~k~k′δλλ′∑

λ

eikλe
j
kλ = δij −

kikj
k2

. (4.70)

The spectral correlation tensor becomes

Γij(ω) =
∑
~k

~ωk
V

(
δij −

kikj
k2

)
.

∫
ds e−i(ωk−ω)s
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Going to the continuum limit, we can use:∑
~k

→ V

(2π)3

∫
d3k =

V

(2π)3c3

∫
dωkω

2
k

∫
dΩ (4.71)

∫
dΩ

(
δij −

kikj
k2

)
=

8π

3
δij (4.72)

The spectral correlation tensor is in diagonal form. For the s-integration,∫ ∞
0

ds e−i(ωk−ω)s = πδ(ωk − ω) + PV
1

ωk − ω
,

where PV denotes the Cauchy principal value. We can thus split the spectral correlation
tensor into its real and imaginary parts to obtain the decay rate and the Lamb shift,
respectively. The Lamb shift is divergent as we have neglected relativistic effects that
become relevant for large values of ωk. Since this only gives a slight renormalization of
the energy levels of the atom, we neglect it in the following (this is similar to what was
done at the classical level when adding a counter-term in the derivation of the Langevin
equation).

We focus on the transition between two atomic levels differing by the frequency ω. The
Lindblad equation reads

d

dt
ρ̂S = γ

(
σ̂−ρ̂Sσ̂+ −

1

2
{σ̂+σ̂−, ρ̂S}

)
,

where we have used the spontaneous emission rate

γ =
4ω3d2

3~c3
,

and the spin flip operators:

σ̂± =
1

2
(σ̂x ± iσ̂y) .

The master equation can be solved by expanding it into Pauli matrices. The vector 〈~σ〉
is known as the Bloch vector, and the equations of motion for its components decouple

d

dt
〈σ̂x〉 = −γ

2
〈σ̂x〉 ,

d

dt
〈σ̂y〉 = −γ

2
〈σ̂y〉 , d

dt
〈σ̂z〉 = −γ(〈σ̂z〉+ 1) .

From this, we see that the off-diagonal elements of the density matrix decay exponen-
tially with the rate γ/2, a phenomenon called decoherence. The z-component of the Bloch
vector decays exponentially with the rate γ to a steady state of 〈σ̂z〉 = −1, i.e., the atom
ends up in the state with lower energy.
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5 Generating functionals
Concise presentations of the path integral formalism can be found in the lecture notes

by B. Simons [76] and D. J. Amit’s book [77]. The method was suggested by Dirac in the
30s and then developed by Feynman in the 40s.

The path integral method provides a way to write the matrix element of the evolution
operator, or amplitude to find the particle at x at time t knowing that it was at x′ at
time t′,

〈x, t|x′, t′〉 = 〈x|Û(t, t′)|x′〉 = U(x, t;x′, t′) , (5.73)

as an integral over classical paths. (Extensions to spins, fields or other kinds of variables
also exist.) Before presenting its construction we take a few paragraphs to explain how
functional integration methods were introduced in the context of stochastic processes

5.1 The Wiener construction for Langevin equations
We open a parenthesis and comment on a classical analogy of what Feynman did

quantum mechanically. It concerns the description of stochastic processes developed by
Wiener in the 20s. Consider a time-dependent random process as described, for example,
by the over-damped Langevin equation

dx(t)

dt
= ξ(t) . (5.74)

The right-hand-side is a random function, and its statistical properties have to be spec-
ified. A usual choice is Gaussian, as a zero mean white noise, that is, 〈ξ(t′′)〉 = 0 and
〈ξ(t′′)x(t′′′)〉 = 2kBTδ(t

′′ − t′′′) for all t′′ and t′′′. The angular brackets represent here
the average over the Gaussian probability distribution of the noise. This noise has no
memory or, in other terms, the process is Markovian. We will come back to what this
means below. The friction coefficient has been absorbed in a time redefinition and T is the
temperature of the bath. The particle has fixed initial condition x(t′) = x′ and it evolves
according to (5.74). Observables are noise averages of the particle’s position and can be
readily calculated from the solution of the above equation, x(t) = x(t′) +

∫ t
t′
dt′′ ξ(t′′). For

example, 〈x(t)〉 = x′ and 〈(x(t)−x(t′))2〉 = 2D(t− t′) with diffusion coefficient D = kBT .
Time is now discretized in infinitesimal steps of length δt = (t−t′)/N with tk = t′+k δt

and k = 0, . . . , N ; then t0 = t′ and tN = t. The evaluation of the position at the discrete
time will be denoted xk = x(tk). Equation (5.74) then reads

δxk ≡ xk+1 − xk = δt ξk . (5.75)

(We adopt here what is called Ito’s discretization scheme in which the noise is evaluated
in the pre-point.) The Gaussian white noise has joint probability distribution

P (ξ) ≡ P ({ξk}) =
∏
k

1

(2π 2kBT/δt)1/2
e
− 1

2
δt

2kBT
ξ2k . (5.76)
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This ensures that
〈ξk〉 = 0 , 〈ξkξk′〉 = 2kBT

1

δt
δkk′ (5.77)

giving the scalings ξk = O(δt−1/2) and xk+1 − xk = O(δt1/2) typical of over-damped (no
second time derivative) white noise processes. The weird normalization of the Kronecker
delta in the second relation ensures that it approaches the Dirac delta in the continuous
time limit. The noise average of a generic function O of the variable x is then,

〈O〉 =

∫
Dξ O(x(ξ))P (ξ) (5.78)

where O(x(ξ)) indicates that x has to be expressed as a solution of the Langevin equation,
in terms of the noise, the measure Dξ is just

∏
k dξk and all integrals over the noise run

from −∞ to ∞.
Thanks to the Markov property of the process, the probability to find the particle at

a position x = xN at time t = tN knowing that it departed from x′ = x0 at time t′ = t0 is

p(x, t|x′, t′)

=

∫ ∞
−∞
dxN−1 · · ·

∫ ∞
−∞
dx1 p(xN = x, tN = t|xN−1, tN−1) . . . p(x1, t1|x′ = x0, t0 = t′) . (5.79)

The evolution over an infinitesimal time step is ruled by Eq. (5.75). Take the first
time-step x1 = x0 + δt ξ0. x0 is fixed to x′, and x1 is just a linear function of ξ0. One has

p(x1, t1|x0, t0) =

∫
dξ0 δ(x1 − (x0 + δt ξ0))

1

(2π 2kBT/δt)1/2
e
− 1

2
δt

2kBT
ξ20

=
1

(2π 2kBT/δt)1/2

∫
dξ0 δ(x1 − x0 − δt ξ0)) e

− 1
2

δt
2kBT

ξ20

=
1

(2π 2kBT/δt)1/2

1

δt

∫
dξ0 δ(ξ0 − (x1 − x0)) e

− 1
2

δt
2kBT

(
ξ0
δt

)2

=
1

(2π 2kBTδt)1/2
e
− 1

2
δt

2kBT
(x1−x0δt )

2

. (5.80)

Replacing now in (5.79)

p(x, t|x′, t′) =
1

(2π 2kBT δt)(N−1)/2

∫ ∞
−∞

dxN−1· · ·
∫ ∞
−∞

dx1 e
− 1

2
1

2kBT
δt
∑
k

(
xk+1−xk

δt

)2

=

∫
Dx e

− 1
2

1
2kBT

∫ t

t′
dt′′
(
dx(t′′)

dt′′

)2

. (5.81)

The compact notation
∫
Dx represents∫

Dx . . . =
1

(2π 2kBT δt)(N−1)/2

∫ ∞
−∞

dxN−1 · · ·
∫ ∞
−∞

dx1 . . . (5.82)
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We have expressed the transition probability as a sum over all paths (in the x variable)
linking the initial value x0 = x′ to the final one xN = x.

For the generalization of this construction to stochastic Langevin equations with de-
terministic forces and also multiplicative noise, see [79,80].

5.2 The Feynman construction for quantum systems
Take an orthonormal complete basis of eigenstates, |x〉, of the position operator, x̂, that

is x̂|x〉 = x|x〉, with 〈x′|x〉 = δ(x− x′).
Going back to the quantum problem, the (forward) propagator is

〈x|Û(t, t′)|x′〉 = U(x, t;x′, t′) Û(t, t′) = e−iĤ(t−t′)/~ . (5.83)

The idea is to write it as a sum over all paths leading from, in the Lagrangian repre-
sentation, x′ = x(t′) to x = x(t) with t > t′ weighted with the exponential of the action
(times i/~). The formalism is well-suited to compute any type of time-ordered correlation
since the evolution is done towards the future.

The idea is to discretise the real time interval [t′, t], with the definitions

tk = t′ + k δt k = 0, . . . , N and δt = (t− t′)/N (5.84)

in such a way that t′ = t0 and t = tN . Eventually one takes δt → 0 and N → ∞ with
t− t′ fixed.

We first factorize the evolution operator

e−iĤ(t−t′)/~ = e−iĤδt/~ . . . e−iĤδt/~ (5.85)

in N factors such that Nδt = t− t′. The Hamiltonian Ĥ commutes with itself so this is
a licit expansion. Then we introduce resolutions of the identity in position space

I =

∫
dxk |xk〉〈xk| (5.86)

and we derive

e−iĤ(t−t′)/~ =

∫
dxN−1|xN−1〉〈xN−1|e−iĤδt/~

∫
dxN−2|xN−2〉〈xN−2|e−iĤδt/~ . . .

. . .

∫
dx1|x1〉〈x1|e−iĤδt/~ (5.87)

Sandwiched between 〈x| and |x′〉, this expression can also be written as

〈x, t|x′, t′〉 =

∫
dxN−1 . . .

∫
dx2

∫
dx1 U(x, t;xN−1, tN−1)

U(xN−1, tN−1;xN−2, tN−2) . . . U(x2, t2;x1, t1)U(x1, t1;x′, t′) . (5.88)
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Figure 5.2: Two paths out of many contributing to the path integral that represents the bracket
of the evolution operator between an initial and a final state at times ti and tf respectively.

Each factor in the product is

〈xk|Û(tk, tk−1)|xk−1〉 = U(xk, tk;xk−1, tk−1) . (5.89)

Inserting now identities in momentum space I =

∫
dpk
2π~
|pk〉〈pk|

U(xk, tk;xk−1, tk−1) = 〈xk|e−iĤδt/~|xk−1〉 =

∫
dpk
2π~
〈xk|pk〉 〈pk|e−iĤδt/~|xk−1〉

=

∫
dpk
2π~

exp

[
i

~
(pkẋk −H(pk, xk)) δt

]
(5.90)

where we have dropped any O(δt2) contribution. The matrix element is calcutaed in
detail in App. B. Inserting this expression in the product of evolution functions and using
a continuous time notation

U(x, t;x′, t′) =

∫
Dp
∫ x(t)=x

x(t′)=x′
Dx exp

{
i

~

∫ t

t′
dt′′ [p(t′′)ẋ(t′′)−H(p(t′′), x(t′′))]

}
(5.91)

If the kinetic energy is quadratic in p, the two p-dependent terms in the exponential can
be combined to form a Gaussian weight:

pẋ− p2

2m
= − 1

2m
(p−mẋ)2 +

m

2
ẋ2 . (5.92)

After translation p−mẋ 7→ p, the momentum can be integrated out and yields a simple
factor m/(2πi~δt)N/2 which can be absorbed in the measure Dx (similarly to what we
have done in the stochastic case). Then,

U(x, t;x′, t′) =

∫ x(t)=x

x(t′)=x′
Dx exp

{
i

~

∫ t

t′
dt′′
[m

2
ẋ2(t′′)− V (x(t′′))

]}
. (5.93)
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In the exponential we recognise the classical action,

S =

∫ t

t′
dt′′ L(ẋ, x) , (5.94)

with L(ẋ, x) the Lagrangian.

5.2.1 Wick’s rotation

Make now an analytic continuation from real to imaginary time

t 7→ −iτ (5.95)

This is also called a Wick rotation. The expression above becomes

U(x,−iτ ;x′,−iτ ′) =

∫ x(−iτ)=x

x(−iτ ′)=x′
Dx exp

{
i

~

∫ −iτ

−iτ ′
d(−iτ ′′)

[
m

2

(
dx(−iτ ′′)

d(−iτ ′′)

)2

− V (x(−iτ ′′))

]}
Renaming x(−iτ) 7→ x(−τ) and U(x,−iτ ;x′,−iτ ′) 7→ U(x,−τ ;x′,−τ ′), and noticing that∫ −iτ

−iτ ′
d(−iτ ′′) f(−τ ′′) = i

∫ τ

τ ′
dτ ′′ f(τ ′′) (5.96)

dx(−iτ ′′)

d(−iτ ′′)
=

1

(−i)

dx(−iτ ′′)

dτ ′′
7→ i

dx(τ ′′)

dτ ′′
= i ẋ(τ ′′) (5.97)

one derives

U(x, τ ;x′, τ ′) =

∫ x(τ)=x

x(τ ′)=x′
Dx exp

{
−1

~

∫ τ

τ ′
dτ ′′

[m
2

(ẋ(τ ′′))
2

+ V (x(τ ′′))
]}

and the expression in the exponential is just the classical energy integrated over time
(times −1/~). This form is also called the Euclidean action

SE =

∫ τ

τ ′
dτ ′′

[m
2

(ẋ(τ ′′))
2

+ V (x(τ ′′))
]

(5.98)

(in contrast with a Minkowskian one in which temporal and spatial contributions come
with different signs). Tracing over the “initial=final” states∫

dx

∫ x(τ)=x

x(τ ′)=x

Dx exp

{
−1

~

∫ τ

τ ′
dτ ′′

[m
2

(ẋ(τ ′′))
2

+ V (x(τ ′′))
]}

. (5.99)

That is, we must use boundary conditions such that the initial and final states are the
same state, and we need to sum over all such states. This is the reason why we integrate
over dx after setting x(τ ′) = x(τ) = x. We are getting closer to finding a representation
of the partition sum. But what about the times τ and τ ′?

• The choice of the “initial” time τ ′ is arbitrary. We can simply set it to zero, τ ′ = 0.
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Figure 5.3: Figure copied from [78], representing the elastic string (think of a polymer made of
individual beads labelled by τ). The translation is such that the coordinate along the string is
τ . The displacement of each “bead” is x(τ).

• What about the “final” time τ? We started by representing elements of the evolution
operator e−iĤt/~. If we want to obtain the partition function e−βĤ we need the
imaginary time τ = it to be related to the inverse temperature β as τ = β~.

The partition function is therefore

Z =

∫
dx

∫ x(τ)=x

x(τ ′)=x

Dx exp

{
−1

~

∫ β~

0

dτ ′′
[m

2
(ẋ(τ ′′))

2
+ V (x(τ ′′))

]}
. (5.100)

This problem is equivalent to the classical mechanics of an elastic string with x(τ) the
transverse displacement with respect to the internal coordinate along the string repre-
sented by τ . The length of the string is τ − τ ′ and its ends are forced to be at x(τ ′) = x
and x(τ) = x, but otherwise the string can fluctuate. Its elastic energy is

Eelast = m

∫ τ

τ ′
dτ ′′


[

1 +

(
dx(τ ′′)

dτ ′′

)2
]1/2

− 1

 ≈ m

2

∫ τ

τ ′
dτ ′′

(
dx(τ ′′)

dτ ′′

)2

, (5.101)

and it is added to the external potential V to get the full potential energy. Thus, the
analytic continuation to imaginary time has transformed the quantum mechanical problem
of a single particle moving in a one dimensional space into the statistical physics one of
a one dimensional object with transverse displacements. The generalisation to higher
dimensions is straightforward. This is another way of deriving the

d-dimensional quantum mechanics – d+ 1 dimensional statistical physics
correspondence with the association t 7→ −iτ and β ↔ 1/~

One can always interpret the imaginary time generating functional of the quantum
problem in d dimensions as the equilibrium Gibbs-Boltzmann partition function of the
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classical model at finite inverse temperature in d + 1 dimensions. The classical model,
though, is anisotropic, since the direction associated to the imaginary time has different
interactions from the truly spatial ones.

Mathematically, the imaginary time path integral is a better behaved object than its
real time counterpart, since it is a sum of positive quantities, the statistical weights.

In practice, the sum over trajectories which are periodic in imaginary time, can only be
done exactly for simple systems. In general, one has to resort to some form of perturbation
theory or other approximation scheme.

The Euclidean action is usually non-negative, which implies that if the action corre-
sponding to some x(τ) is large, its contribution is very small. This fact dramatically
improves the convergence of the path integral. The classical path is the one with the
maximal contribution since it yields the minimal value to the action.

Example. The ground state
Take a quantum system with Hamiltonian Ĥ in canonical equilibrium at inverse temperature β (to keep
the notation we were using so far). The elements of the (un-normalized) density matrix are

〈x|e−βĤ |x′〉 . (5.102)

Inserting a complete set of energy eigenstates |n〉,

〈x|e−βĤ |x′〉 =

∞∑
n=0

〈x|e−βĤ |n〉〈n|x′〉 =

∞∑
n=0

e−βEn〈x|n〉〈n|x′〉

=

∞∑
n=0

e−βEnψ∗n(x)ψn(x′) (5.103)

with En the energy of the nth state and ψn(x) its wave function. Taking the limit β → ∞ the sum is
dominated by the ground state contribution. One can then use

lim
β→∞

Z =

∫
dx lim

β→∞
〈x|e−βĤ |x〉 = e−βE0

∫
dx |ψ0(x)|2 = e−βE0 (5.104)

which implies

E0 = − lim
β→∞

1

β
ln Tr e−βĤ . (5.105)

We can now use the path integral expression for the trace of the density operator or partition function,
Eq. (5.100), and therefore get the ground state energy in this way.

5.3 Semi-classical calculation
In the correspondence limit, ~ → 0, the only history (or possibly histories) that con-

tribute significantly to the path integral must be those that leave the action S stationary.
Otherwise, the rapidly oscillating contributions would add up to zero. Thus, in the classi-
cal limit there is only one history xcl(t) linking xcl(t

′) = x′ and xcl(t) = x which contributes
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and it is the one that makes δS = 0, the least action principle. The classical trajectory
satisfies the Euler-Lagrange equation

δS

δx(t′′)

∣∣∣∣
xcl(t′′)

=
∂L

∂x(t′′)
− d

dt′′
∂L

∂ẋ(t′′)
= 0 (5.106)

with the condition
δ2S

δx(t′′)δx(t′′′)

∣∣∣∣
xcl(t)

positive definite . (5.107)

Since the classical action satisfies δS/δx = 0 by construction, the action of an arbitrary
trajectory satisfies

S[x(t)] = S[xcl(t) + δx(t)]

= S[xcl(t)] +

∫
dt′′

δS

δx(t′′)

∣∣∣∣
xcl

δx(t′′) +
1

2

∫
dt′′
∫
dt′′′

δ2S

δx(t′′)δx(t′′′)

∣∣∣∣
xcl

δx(t′′)δx(t′′′) + . . .

' S[xcl(t)] +
1

2

∫
dt′′
∫
dt′′′

δ2S

δx(t′′)δx(t′′′)

∣∣∣∣
xcl

δx(t′′)δx(t′′′) . (5.108)

In the last line we cut the expansion at the second order. The Gaussian integral char-
acterises the quantum quadratic fluctuations and it can be calculated interpreting the
Hessian as a differential operator acting in the space of functions y(t) with boundary
conditions δx(0) = δx(τ) = 0, since the boundary conditions are imposed on the classical
solution. The quadratic term can then be integrated over and the final calculation is put
in the form of the evaluation of a functional determinant:[

det
δ2S

δx(t′′)δx(t′′′)

∣∣∣∣
xcl

]−1/2

(5.109)

We will not carry out this calculation here since it goes beyond the scope of these lectures.

5.4 The harmonic oscillator
We now derive the quantum partition function of the harmonic oscillator using the

path integral formalism.
Take the quantum harmonic oscillator

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2 (5.110)

with Lagrangian

L(ẋ, x) = K(ẋ)− V (x) =
1

2
mẋ2 − 1

2
mω2x2 . (5.111)

The classical equation of motion is

ẍcl + ω2xcl = 0 . (5.112)
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A generic trajectory is x(t) = xcl(t) + δx(t). We impose the boundary conditions on the
classical trajectory xcl(t

′) = x′ and xcl(t) = x. Therefore δx(t′) = δx(t) = 0.
For the harmonic oscillator, terms of higher than quadratic order vanish and

S[x(t)] = S[xcl(t)] + S[δx(t)] (5.113)

with the second term being identical to the original action, but evaluated on the pertur-
bation of the classical trajectory. Then,

U(x, t;x′, 0) = e
i
~S[xcl]

∫ δx(t)=0

δx(t′)=0

Dδx exp

{
i

~

∫ t

t′
dt′′

[
m

2

(
dδx(t′′)

dt′′

)2

− mω2

2
(δx(t′′))2

]}
.

The calculation of the remaining functional integral can be found in the Feynman-Hibbs
book, for example, or other traditional references on path integrals. The real time prop-
agator reads

U(x, t|x′, t′) =

√
mω

2πi~ sin(ωt)
exp

{
imω

2~ sin(ωt)

[
(x2 + x′

2
) cos(ωt)− 2xx′

]}
(5.114)

where we already set t′ = 0. We now set x′ = x, t′ = 0 and t = −iτ , and we use
sin(−iz) = 1

2i
(e−iiz − eiiz) = − i

2
(ez − e−z) = −i sinh z and cos(−iz) = 1

2
(e−iiz + eiiz) =

1
2
(ez + e−z) = cosh z to obtain

U(x,−iτ |x, 0) =

√
mω

2π~ sinh(ωτ)
exp

{
− mω

~ sinh(ωτ)
[cosh(ωτ)− 1]x2

}
. (5.115)

Finally, at τ = β~,

U(x,−iβ~|x, 0) =

√
mω

2π~ sinh(ωβ~)
exp

{
− mω

~ sinh(ωβ~)
[cosh(ωβ~)− 1]x2

}
. (5.116)

The integral over x needed to calculate the partition sum Zq is just a Gaussian integral

Zq =

∫
dx U(x,−iβ~|x, 0)

=
1√

2[cosh(β~ω)− 1]

=
e−β~ω/2

1− e−β~ω

=
∑
n=0

e−β(n+1/2)~ω (5.117)

and we recover the well-known result.
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5.5 Tunneling and instantons
Consider a quantum particle in a double well potential V (x) as the one sketched in

Fig. 5.4. A particular formula with this form is the familiar λφ4,

V (x) =
r2

4u
+
r

2
x2 +

u

4
x4 , (5.118)

with r < 0. The minima and the maximum are at

xmin = ±(−r/u)1/2 ≡ ±x0 xmax = 0 . (5.119)

For convenience, we added the constant r2/(4u) so that V (±x0) = 0. Consequently,
V (xmax) = r2/(4u). We note that r2/u controls the height of the barrier and (−r/u)1/2

the distance between the two minima, that is, the thickness of the barrier. If one compares
the two, one sees that the larger r the “steeper” the barrier.

Some quantum mechanics

Classically, if the total energy of the particle is lower than the height of the barrier, the
particle’s motion is oscillatory within the well where it is placed initially. The minimal
energy configuration is doubly degenerate, and static at the bottom of each well, with
vanishing kinetic and potential energies.

Quantum mechanically, if there were no coupling across the barrier, the Hamiltonian
would have two independent, oscillator-like sets of low-lying eigenstates sitting in the two
local minima, see the parabola approximating the left well and the equidistant levels in
the sketch in Fig. 5.4, with energies En = (n + 1/2)~ω, as in (5.117). Allowing for a
weak inter-barrier coupling, the oscillator ground states (like all higher states) split into
a doublet of a symmetric and an antisymmetric eigenstate, |S〉 and |A〉 with energies ES
and EA, respectively. In this case, there is a small tunnelling probability and the particle
can be found with non-vanishing probability in the well where it was not initially. The
transition amplitudes between the left and the right well, and the one to remain in the
right well, from time 0 to an imaginary time −iτ are

U(x0,−iτ,±x0, 0) = 〈x0|e−Ĥτ/~| ± x0〉
∼ 〈x0|

(
|S〉e−ESτ/~〈S|+ |A〉e−EAτ/~〈A|

)
| ± x0〉 (5.120)

Setting

EA/S =
ω~
2
± ∆

2
, (5.121)

with ∆ the energy splitting between the symmetric and anti-symmetric states, and us-
ing the symmetry properties |〈x0|S〉|2 = |〈−x0|S〉|2 = C/2 and 〈x0|A〉〈A| − x0〉 =
−|〈x0|A〉|2 = −C/2,

U(x0,−iτ,±x0, 0) ∼ C

2

(
e−(~ω−∆)τ/(2~) ± e−(~ω+∆)τ/(2~)

)
= Ce−ωτ/2

{
cosh(∆τ/~)
sinh(∆τ/~)

(5.122)
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Figure 5.4: Figures copied from [78]. The left panel represents the double well potential V (x)
and its reversed −V (x). The minima/maxima have V = 0. The right panel plots a typical
instanton, with width |r|−1 taking the particle from the left well (top of the left hill) to the right
one (top of the right hill).

The splitting between the ground and first excited states ∆ determines the tunnelling
rate.

The path integral calculation

In the path integral calculation, we go to imaginary time in part because the evaluation
of the path integral by saddle point is better controled.

The transition amplitude between a point x′ at (imaginary) time τ ′ and another point
x at (imaginary) time τ is given by

U(x, τ ;x′, τ ′) =

∫ x(τ)=x

x(τ ′)=x′
Dx exp

{
−1

~

∫ τ

τ ′
dτ ′′

[m
2

(ẋ(τ ′′))
2

+ V (x(τ ′′))
]}

(5.123)

and one has to sum over all possible paths in imaginary time. In the literature one does
not write the (−i) in front of the time τ so we will henceforth not do it and follow the usual
notation, as already done above. For “thick” enough barriers, the leading contributions can
be obtained by a semi-classical ~ → 0 approximation, which corresponds to a quadratic
expansion around the trajectories with minimal action:

δS[x(τ ′′)]

δx(τ)

∣∣∣∣
xcl(τ)

= 0 and
δ2S[x(τ ′′)]

δx(τ)δx(τ ′)

∣∣∣∣
xcl(τ)

positive definite . (5.124)

Note that here there is no ambiguity about the need to look for a minimum of the action.
Writing x(τ) = xcl(τ) + y(τ), the result is

U ≈ e−
1
~S[xcl(τ)]︸ ︷︷ ︸ ∫ Dy exp

{
− 1

2~

∫ τ

τ ′
dτ ′′

∫ τ

τ ′
dτ ′′′ y(τ ′′)

δ2S[x(τ)]

δx(τ ′′)δx(τ ′′′)

∣∣∣∣
xcl

y(τ ′′′)

}
︸ ︷︷ ︸

= Ucl × Uq (5.125)

128



5. GENERATING FUNCTIONALS CONTENTS

and it is written as the product of a classical contribution Ucl and a quantum one Uq. The
Gaussian integral yields the one over the square root of the determinant of the Hessian
operator:

Uq ∝

[
det

δ2S[x(τ)]

δx(τ ′′)δx(τ ′′′)

∣∣∣∣
xcl

]−1/2

. (5.126)

The first equation in (5.124) imposes the extreme condition on the trajectory and yields

−md2xcl(τ
′′)

dτ ′′2
+ V ′(xcl(τ

′′)) = 0 τ ′′ ∈ [τ ′, τ ] . (5.127)

with the boundary conditions xcl(τ
′) = x′ and xcl(τ) = x.

Equation (5.127) is identical to:

– The equation for a domain wall in the Ginzburg-Landau field theoretical approach to
the one dimensional Ising model (with τ representing the spatial direction). We see,
once again, a connection between a quantum problem in d = 0 spatial dimensions in
this case with a classical one in d = 0+1 dimension. The domain wall corresponds to
a trajectory describing the tunnelling of the particle from one to the other potential
well.

– The saddle-point equation (5.127) describes the classical trajectory of a particle
moving in the inverted potential −V (x), see Fig. 5.4. At the initial instant the
particle is, say, at the top of the left hill. At the final time τ it should arrive at,
and stay there ever after, the top of the right hill. This classical trajectory should
let the particle roll down the hill to the right and climb up the second hill with just
enough kinetic energy to reach the top and stay there.

Note that this equation represents energy conservation in a system with potential
energy −V :

E =
m

2

(
dxcl(τ

′′)

dτ ′′

)2

− V (xcl(τ
′′)) = const τ ′′ ∈ [τ ′, τ ] . (5.128)

The procedure to obtain this condition is the following. Multiply the saddle-point equa-
tion d2xcl(τ

′′)/dτ ′′2 = V ′(xcl(τ
′′)) by dxcl(τ

′′)/dτ ′′. Then, (1/2) d(dxcl(τ
′′)/dτ ′′)2/dτ ′′ =

dV (xcl(τ
′′))/dτ ′′. Integrate now over τ ′′ to find Eq. (5.128). Now, we set the additive

integration constant to zero since ẋcl = V (xcl) = 0 at the extremes of integration, where
xcl = −x0 and xcl = x0, for the problem we want to study. Thus

m

2

(
dxcl(τ

′′)

dτ ′′

)2

= V (xcl(τ
′′)) . (5.129)
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This is equivalent to stating that we are interested in classical trajectories with E = 0
in the mechanical problem with inverted potential. Note that Eq. (5.129) is a first order
differential equation while the Euler-Lagrange, or Newton equations, are second order
ones.

Another way to obtain Eq. (5.129) - and in general first order differential equations -
for topological configurations in field theories, is the so-called Bogomol’nyi trick [?]. The
idea is to re-write the action as (possibly a sum of) square(s) plus a constant and then
minimize it by requiring that what is squared vanishes. In this problem, this method
amounts to rewriting the imaginary time action as

S =

∫ τ

τ ′
dτ ′′

m
2

(
ẋ∓

√
2V (x)

m

)2

±mẋ
√

2V (x)

m


=

∫ τ

τ ′
dτ ′′

m

2

(
ẋ∓

√
2V (x)

m

)2

±
√
m

∫ x0

−x0
dx
√

2V (x) . (5.130)

The last term yields a constant which depends on the potential energy form but not on
the trajectory. The first one is set to zero by the condition (5.129) when the upper sign
is selected which corresponds to the boundary conditions chosen.

A trivial solution to Eq. (5.129) would be the constant xcl(τ) = ±x0, but it does not
respect the boundary conditions xcl(τ

′) = −x0 and xcl(τ) = x0.
Another solution is one in which xcl(τ) smoothly connects xcl(τ

′) = −x0 and xcl(τ) = x0

with dxcl(τ)/dτ = 0 at τ ′ and τ . This so-called instanton is a topological trajectory, in
the sense that it interpolates between two inequivalent ground states −x0 and x0 and it
cannot be smoothly deformed to the trivial constant situations x0 or −x0.

From Eq. (5.129) the non-trivial trajectories are explicitly given by∫ x

x′

dxcl

[2V (xcl)/m]1/2
= τ − τ ′ . (5.131)

They have action

Scl = S[xcl] =

∫ τ

τ ′
dτ ′′

[
m

2

(
dxcl(τ

′′)

dτ ′′

)2

+ V (xcl(τ
′′))

]
(5.132)

with xcl solving the classical equation of motion. We have already shown that the first
and second terms are identical, thanks to Eq. (5.129). We then uncover that the classical
instanton action is

Scl = m

∫
dτ ′′

(
dxcl(τ

′′)

dτ ′′

)(
dxcl(τ

′′)

dτ ′′

)
= m

∫
dτ ′′

(
dxcl(τ

′′)

dτ ′′

)(
2V (xcl(τ

′′))

m

)1/2

= m1/2

∫ x0

−x0
dxcl [2V (xcl)]

1/2 = m1/2

∫ x0

−x0
du [2V (u)]1/2 , (5.133)
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which is the same as the last term in Eq. (5.130) and is fully determined by the form
of the potential. Surprisingly enough, it does not depend on the particular form of the
trajectory xcl, and it is finite.

For a generic double well potential V (x) one cannot find an explicit solution xcl. Still,
one can derive some generic features of it. Taylor expanding V (x) close to its minima,
V (x) ∼ (1/2)V ′′(±x0)(x− x0)2 ≡ mω2(x− x0)2/2, with ω the oscillator frequency of the
(symmetric) minima. When the particle is close to any of these minima the equation of
motion becomes dxcl/dτ ∼ −ω(xcl−x0) and the solution is xcl(τ) ∼ x0− e−ωτ . Thus, the
duration of the instanton is determined by ω2 = V ′′(±x0)/m. The instanton is therefore
confined to a narrow interval of time, τW ∼ 1/ω = [m/V ′′(±x0)]1/2. (We have already
seen some similar when studying the domain wall width in the Landau theory.)

For a quartic potential, Eq. (5.131) is solved exactly by

xcl(τ) = ±x0 tanh[(τ − τ0)/τW ] τW ∝ (m/r)1/2 , (5.134)

with x0 > 0, taking sign opposed values at the two limits τ → ±∞. One such solution,
with positive sign is shown in the right panel in Fig. 5.4. τW is the width of the instanton
which decreases with the thickness of the barrier, and is proportional to |r|−1/2. We note
that V ′′(±x0) = 2r + 3ux2

0 = 2r + 3u(−r/u) = −r, in agreement with the argument for
the generic potential, τW ∼ 1/[V ′′(±x0)]1/2. The instanton can occur at any imaginary
time τ0. Such parameters are called zero modes, as they do not change the zero energy
character of the trajectory.

The density in the classical action for a quartic potential can be evaluated explicitly.
It is (

dxcl(τ
′′)

dτ ′′

)2

=
x2

0

τ 2
W

sech4[(τ ′′ − τ0)/τW ] . (5.135)

It is located around the center of the instanton and rapidly vanishes away from it. The
total action, in the limit τ ′ → −∞ and τ →∞, reads

Scl =
x2

0

τ 2
W

∫ ∞
−∞

dτ ′′ sech4[(τ ′′ − τ0)/τW ] =
x2

0

τW

∫ ∞
−∞

du′′ sech4u′′ =
4x2

0

3τW
. (5.136)

Note that a naïve perturbation theory around one of the two minima of the double
well potential would never show the non-perturbative tunneling effect.

If one has to impose periodic boundary conditions, one has to combine this configura-
tion with the anti-instanton in which the particle transits back from x0 to −x0. This, of
course, can occur an even number of times in the considered time interval. Having noticed
the possibility of getting (approximate) solutions of the saddle-point equations, one can
build a gas of instantons and sum all possible combinations of them to evaluate the full
instantonic contribution to the partition sum. The detailed evaluation will be carried out
in TD6, see also [?, 78].

The Arrhenius law
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Going back to classical stochastic dynamics as described by, for example, a Langevin
process, a similar question can be asked: what is the probability of a particle, initialized
in a well of a double well potential, to jump over the barrier and move to the other well?
If temperature is non-zero, the thermal noise will kick the particle and increase its energy
until an eventual sufficiently strong one takes it to the other well. The time needed to do
is the so-called Arrhenius time which scales exponentially with the height of the barrier,
tA ∼ t0e

B/T . This time-scale can be estimated with an analysis of the path-integral for
the stochastic process similar to the one described above for the quantum one [43].

5.6 The reduced system
Imagine that you take a system of interest, say a quantum particle, in contact with an

ensemble of independent quantum harmonic oscillators, which could represent phonons.
One can be interested in, for example, calculating the partition function in sequential
way, in the sense of first integrating the degrees of freedom of the “bath”, that is to say,
the phonons, and only later the ones of the particle [35].

We follow the same route as in the derivation of the classical Langevin equation by
coupling the system to an ensemble of quantum harmonic oscillators,

[π̂a, q̂b] = −i~δab . (5.137)

The equilibrium density matrix reads

ρT (x, qa;x
′, q′a) =

1

ZT
〈x, qa| e−βĤT |x′, q′a〉 , (5.138)

with the partition function given by ZT = Tre−βĤT and the trace taken over all the states
of the full system. (Note that here and it what follows qa represents the ensemble of
oscillators.) The density matrix can be represented by a functional integral in imaginary
time,

ρT (x, qa;x
′, q′a) =

1

ZT

∫ x(~β)=x

x(0)=x′
Dx
∫ qa(~β)=qa

qa(0)=q′a

Dqa e−
1
~ST . (5.139)

The Euclidean action ST has contributions from the system, the reservoir, the interaction
and the counter-term: ST = SS + SE + SI + SC . The environment action is

SE =
N∑
a=1

∫ β~

0

dτ

{
ma

2
[q̇a(τ)]2 +

maω
2
a

2
[qa(τ)]2

}
, (5.140)

that is to say, we choose an ensemble of independent oscillators. For simplicity we take a
linear coupling with the couplings constants ca = O(1),

SE =

∫ β~

0

dτ x(τ)
1

N1/2

N∑
a=1

caqa(τ) (5.141)
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but others, are also possible. The path integral over the oscillators’ coordinates and
positions is quadratic. The calculation of expectation values involves a trace over states
of the full system. For operators that depend only on the particle, as A(x̂), the trace over
the oscillators can be done explicitly. Hence, if one constructs the reduced equilibrium
density operator ρ̂red

S = TrE ρ̂T that acts on the system’s Hilbert space, the expectation
value of the observables of the system is given by

〈A(x̂)〉 =
TrS A(x̂)ρ̂red

S

Trρ̂T
. (5.142)

In the path-integral formalism this amounts to performing the functional integral over
periodic functions qa(τ). From the point of view of the oscillators the system’s coordinate
is an external τ -dependent force. Using a Fourier representation,

qa(τ) =
∞∑

n=−∞

q(n)
a eiνnτ (5.143)

with
νn =

2πn

β~
(5.144)

the Matsubara frequencies, the integration over the qa(τ) can be readily done. A long
series of steps, very carefully explained in [81] allow one to obtain the reduced density
matrix:

ρred
S (x, x′) = 〈x|TrE ρ̂T |x〉

=
1

Zred
S

∫ x(~β)=x

x(0)=x′
Dx e−

1
~SS−

1
~
∫ ~β
0 dτ

∫ τ
0 dτ ′ x(τ)K(τ−τ ′)x(τ ′) (5.145)

where Zred
S is the partition function of the reduced system, Zred

S = ZT/ZE and ZE the
partition function of the isolated ensemble of oscillators. The interaction with the reservoir
generated a renormalization of the parameter in the quadratic in x2 term of SS – cancelled
by the counter-term – but also a retarded interaction in the effective action controlled by
the kernel

K(τ) =
2

π~β

∞∑
n=−∞

∫ ∞
0

dω
S(ω)

ω

ν2
n

ν2
n + ω2

eiνnτ , (5.146)

with S(ω) the spectral density of the bath,

S(ω) ≡ 1

N

N∑
a=1

c2
a

maωa
δ(ω − ωa) (5.147)

Just as in the derivation of the classical Langevin equation, different choices of the envi-
ronment are possible by selecting different ensembles of harmonic oscillators. A common
choice is

S(ω)

ω
= 2γ0

(
|ω|
ω̃

)α−1

fc

(
|ω|
Λ

)
. (5.148)
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The function fc(x) is a high-frequency cut-off of typical width Λ and is usually chosen to
be an exponential. The frequency ω̃ � Λ is a reference frequency that allows one to have
a coupling strength γ0 with the dimensions of viscosity. If α = 1, the friction is said to be
Ohmic, S(ω)/ω is constant when |ω| � Λ as for a white noise. When α > 1 (α < 1) the
bath is superOhmic (subOhmic). The exponent α is taken to vary in the interval (0, 2) to
avoid divergencies.

The last retarded interaction in (5.145) remains. The imaginary time dependence of
K varies according to S(ω). Power laws in S lead to power-law decays in K and thus to
a long-range interaction in the imaginary-time direction.

The effect of the quantum bath is more cumbersome than in the classical case and it
can lead to rather spectacular effects. A well-known example is the localization transition,
as function of the coupling strength to an Ohmic bath in the behaviour of a quantum
particle in a double well potential [82–84]. This means that quantum tunneling from the
well in which the particle is initially located to the other one is completely suppressed
by sufficiently strong couplings to the bath. In the context of interacting macroscopic
systems, e.g. ferromagnets or spin-glasses, the locus of the transition between the ordered
and the disordered phase depends strongly on the coupling to the bath and on the type
of bath considered [85,86].

5.7 Closed time path
We shall see that the distinction between the effect of a reservoir on the statistical

properties of a classical and quantum system is absent from a fully dynamic treatment. In
both classical and quantum problems, the coupling to an environment leads to a retarded
interaction. In classical problems one generally argues that the retarded interaction can
be simply replaced by a local one due to the very short correlation times involved in cases
of interest, i.e one uses white baths, but in the quantum problems one cannot do the
same.

5.7.1 Schwinger-Keldysh path integral

The Schwinger-Keldysh formalism [3,87] allows one to analyse the real-time dynamics
of a quantum system. The starting point is the time dependent density operator

ρ̂(t) = T e−
i
~ Ĥt ρ̂(0) T e

i
~ Ĥt . (5.149)

We have set the initial time to be to = 0. Introducing identities, an element of the
time-dependent density matrix reads

ρ(x′′, x′; t) =∫ ∞
−∞

dXdX ′ 〈x′′| T e−
i
~ Ĥt |X〉 〈X| ρ̂(0) |X ′〉

×〈X ′| T e
i
~ Ĥt |x′〉 . (5.150)
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The first and third factors are the coordinate representation of the evolution operators
e−iĤt/~ and eiĤt/~, respectively, and they can be represented as functional integrals:

〈x′′|T e−
i
~ Ĥt |X〉 =

∫ x′′

X

Dx+ e
i
~S

+

(5.151)

〈X ′|Te
i
~ Ĥt |x′〉 =

∫ X′

x′
Dx− e−

i
~S
−
. (5.152)

Interestingly enough, the evolution operator in eq. (5.213) gives rise to a path integral
going backwards in time, from x−(t) = x′ to x−(0) = X ′. The full time-integration can
then be interpreted as being closed, going forwards from t0 = 0 to t and then backwards
from t to t0 = 0. This motivates the name closed time-path formalism. A doubling of
degrees of freedom (x+, x−) appeared and it is intimately linked to the introduction of
Lagrange multipliers in the functional representation of the Langevin dynamics in the
classical limit. The action of the system has two terms, one evaluated in x+ and the other
in x−.

S±S [η+] = ±
∫ t

0

dt′
[ m

2

(
ẋ±(t′)

)2 − V (x±(t′)) + η±(t′)x±(t′)
]

(5.153)

where we have introduced two time-dependent sources η±(t), that appear in the exponen-
tial with the sign indeicated.

5.7.2 Green functions

We define the position and fermionic Green functions

GB
ab(t, t

′) ≡ −i〈TC xa(t)xb(t
′)〉 (5.154)

GF
ab(t, t

′) ≡ −i〈TC ψa(t)ψ
†
b(t
′)〉 (5.155)

where a, b = ± and TC is time ordering on the close contour.
The definitions (5.154) and (5.155) and the fact that the insertion evaluated at the

later time can be put on the upper (+) or lower (−) branch indistinctively *** GIVE
EXAMPLE WITH DRAWING *** yield the following relations between different Green
functions

G++(t, t′) = G−+(t, t′)θ(t− t′) +G+−(t, t′)θ(t′ − t) , (5.156)
G−−(t, t′) = G+−(t, t′)θ(t− t′) +G−+(t, t′)θ(t′ − t) , (5.157)

that hold for the bosonic and fermionic cases as well. We thus erase the superscripts B,F
that become superflous. Adding the last two identities one finds

G++ +G−− −G+− −G−+ = 0 for all t and t′ . (5.158)

In both cases one defines MSRDJ-like fields. For bosons these are
√

2 x(t) = x+(t) + x−(t) ,
√

2~ x̂(t) = x+(t)− x−(t) , (5.159)
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while for fermions they are
√

2 ψ(t) ≡ ψ+(t) + ψ−(t)
√

2~ ψ̂(t) ≡ ψ+(t)− ψ−(t)√
2 ψ†(t) ≡ ψ+†(t) + ψ−†(t)

√
2~ ψ̂†(t) ≡ ψ+†(t)− ψ−†(t) .

One then constructs the Green functions

GB
xx(t, t

′) ≡ −i〈TC x(t)x(t′)〉 =
1

2

(
GB

++ +GB
−− +GB

−+ +GB
+−
)

≡ −2i GB
K(t, t′)

GB
xx̂(t, t

′) ≡ −i〈TC x(t)x̂(t′)〉 =
1

2~
(
GB

++ −GB
−− +GB

−+ −GB
+−
)

≡ −GB
R(t, t′)

GB
x̂x(t, t

′) ≡ −i〈TC x̂(t)x(t′)〉 =
1

2~
(
GB

++ −GB
−− −GB

−+ +GB
+−
)

≡ − GB
A(t, t′)

GB
x̂x̂(t, t

′) ≡ −i〈TC x̂(t)x̂(t′)〉 =
1

2~2

(
GB

++ +GB
−− −GB

−+ −GB
+−
)

≡ − GB
4 (t, t′) = 0 , (5.160)

and the fermionic ones

GF
ψψ(t, t′) ≡ −i〈TC ψ(t)ψ†(t′)〉 =

1

2

(
GF

++ +GF
−− +GF

−+ +GF
+−
)

≡ −2iGF
K(t, t′) ,

GF
ψψ̂

(t, t′) ≡ −i〈TC ψ(t)ψ̂†(t′)〉 =
1

2~
(
GF

++ −GF
−− +GF

−+ −GF
+−
)

≡ −GF
R(t, t′) ,

Gψ̂ψ(t, t′) ≡ −i〈TC ψ̂(t)ψ†(t′)〉 =
1

2~
(
GF

++ −GF
−− −GF

−+ +GF
+−
)

≡ −GF
A(t, t′) ,

GF
ψ̂ψ̂

(t, t′) ≡ −i〈TC ψ̂(t)ψ̂†(t′)〉 =
1

2~2

(
GF

++ +GF
−− −GF

−+ −GF
+−
)

≡ −GF
4 (t, t′) = 0 , (5.161)

From the definition of GB
K it is obvious that

GB
K(t, t′) = GB

K(t′, t) ∈ Re . (5.162)

Using eq. (5.158) the ‘rotated’ Green functions are rewritten as

GK =
i

2
(G++ +G−−) =

i

2
(G+− +G−+) , (5.163)

GR = −1

~
(G++ −G+−) =

1

~
(G−− −G−+) , (5.164)

GA = −1

~
(G++ −G−+) =

1

~
(G−− −G+−) . (5.165)
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Using eqs. (5.156)-(5.157) one also finds

GR(t, t′) = −1

~
[G+−(t, t′)−G−+(t, t′)] θ(t− t′) , (5.166)

GA(t, t′) =
1

~
[G+−(t, t′)−G−+(t, t′)] θ(t′ − t) . (5.167)

which show explicitly the retarded and advanced character of GR and GA, respectively.
Moreover,

GB
R(t, t′) = GB

A(t′t) ∈ Re , (5.168)
GF
R(t, t′) = [GF

A(t′, t)]∗ , (5.169)
GF
K(t, t′) = [GF

K(t′, t)]∗ . . (5.170)

Inverting the above relations one has

iG++ = GK − i~(GR +GA)/2 , iG+− = GK + i~(GR −GA)/2 ,
iG−+ = GK − i~(GR −GA)/2 , iG−− = GK + i~(GR +GA)/2 .

(5.171)

Going back to an operational formalism

GB
R(t, t′) ≡ 2i

~
θ(t− t′) 〈[x̂(t), x̂(t′)]〉 , (5.172)

GB
K(t, t′) ≡ 〈{x̂(t), x̂(t′)}〉 , (5.173)

for bosons (see App. ??), where one recognizes the Kubo formulæ in the first two lines,
and

GF
R(t, t′) ≡ 2i

~
θ(t− t′) 〈{ψ̂(t), ψ̂†(t′)}〉 , (5.174)

GF
K(t, t′) ≡ 〈[ψ̂(t), ψ̂†(t′)]〉 , (5.175)

for fermions.

5.7.3 Generic correlations

A generic two time correlation that depends only on the system is given by

〈Â(t)B̂(t′)〉 =
1

Zred
S

(0) TrÂ(t)B̂(t′)ρ̂red
S (0) . (5.176)

Clearly 〈Â(t)B̂(t′)〉 6= 〈B̂(t′)Â(t)〉 and one can define symmetrized and anti-symmetrized
correlations:

C{A,B}(t, t
′) = 〈Â(t)B̂(t′) + B̂(t′)Â(t)〉/2 , (5.177)

C[A,B](t, t
′) = 〈Â(t)B̂(t′)− B̂(t′)Â(t)〉/2 , (5.178)
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respectively.
Within the Keldysh path-integral representation these correlations can be written as

C{A,B}(t, t
′) = 〈A[x+](t){B[x+](t′) +B[x−](t′)}〉/2 ,

C[A,B](t, t
′) = 〈A[x+](t){B[x+](t′)−B[x−](t′)}〉/2 , (5.179)

5.7.4 Linear response and Kubo relation

The linear response is defined as the variation of the averaged observable A at time t
due to a change in the Hamiltonian operated at time t′ in such a way that Ĥ → Ĥ−fBB̂.
In linear-response theory, it can be expressed in terms of the averaged commutator:

RAB(t, t′) ≡ δ〈Â(t)〉
δfB(t′)

∣∣∣∣∣
fB=0

=
2i

~
θ(t− t′)〈[Â(t), B̂(t′)]〉 . (5.180)

In the case Â = x̂ and B̂ = x̂ this implies Rxx(t, t
′) = GB

R(t, t′). The path-integral
representation is in terms of the Keldysh fields x+, x−:

RAB(t, t′) = i〈A[x+](t)
{
B[x+](t′)−B[x−](t′)

}
〉/~ . (5.181)

5.7.5 Quantum FDT

Proofs and descriptions of the quantum fdt can be found in several textbooks [?,5]. We
first present a standard derivation that applies to bosonic and fermionic Green functions
in the canonical and grand-canonical ensembles. We next show it for generic correlations
and linear responses in the bosonic case. In so doing we recall its expression in the time-
domain and in a mixed time-Fourier notation that gave us insight as to how to extend it
to the case of glassy non-equilibrium dynamics [88].

Canonical ensemble

Let us consider the canonical ensemble and let us write

iG+−(t, t′) = 〈TC φ+(t)φ−(t′)〉 (5.182)

where φ+ = x+ and φ− = x− (bosons) or φ+ = ψ+ and φ− = ψ−† (fermions). This is
equal to

iG+−(t, t′) = (−1)ζ 〈φ−(t′)φ+(t)〉 (5.183)

with ζ = 1 for fermions and ζ = 0 for bosons. Using the analytic properties of Green
functions, we have

iG+−(t+ iβ~, t′) = (−1)ζ 〈φ−(t′)φ+(t+ iβ~)〉 . (5.184)
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In the canonical ensemble, 〈· · · 〉 ∝ Tr · · · ρ0 ∝ Tr · · · e−βH and after expanding φ+(t +
iβ~) = ρ0φ

+(t)ρ−1
0 (in the Heisenberg representation) we get

iG+−(t+ iβ~, t′) = (−1)ζ
Tr [φ−(t′)ρ0φ

+(t)]

Trρ0

. (5.185)

Using the cyclic property of the trace

iG+−(t+ iβ~, t′) = (−1)ζ〈φ+(t)φ−(t′)〉 (5.186)

and we recognize

G+−(t+ iβ~, t′) = (−1)ζ G−+(t, t′) (5.187)

If the systen has reached equilibrium, time translational invariance implies

G+−(t− t′ + iβ~) = (−1)ζ G−+(t− t′) . (5.188)

After Fourier transforming with respect to t− t′ we get the KMS relation

G+−(ω)eβ~ω = (−1)ζ G−+(ω) . (5.189)

Using eqs. (5.171), we have on the one hand

~[GR(ω)−GA(ω)] = G+−(ω)−G−+(ω) . (5.190)

Inserting the KMS relation (5.189) we get

~[GR(ω)−GA(ω)] = G+−(ω)[1− (−1)ζeβ~ω] (5.191)

On the other hand,

GK(ω) =
i

2
[G+−(ω) +G−+(ω)] =

i

2
G+−(ω)[1 + (−1)ζeβ~ω] . (5.192)

Combining this relation with eq. (5.189) we obtain the quantum FDTs

GK(ω) =
i~
2

[GR(ω)−GA(ω)]

[
1 + (−1)ζeβ~ω

1− (−1)ζeβ~ω

]
(5.193)

Using GR(ω)−GA(ω) = R(ω)−R∗(ω) = 2iImGR(ω) for bosons and fermions:

GF
K(ω) = −i~

2
[GF

R(ω)−GF
A(ω)] tanh

β~ω
2

(5.194)

GF
K(ω) = ~ ImGF

R(ω) tanh β~ω
2
, (5.195)
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GB
K(ω) = −i~

2
[GB

R(ω)−GB
A(ω)] cotanh

β~ω
2

(5.196)

GB
K(ω) = ~ ImGB

R(ω) cotanhβ~ω
2
. (5.197)

In the case of bosons the FDT can be easily extended to

C{A,B}(ω) = ~ ImRB
AB(ω) cotanh

β~ω
2

. (5.198)

Grand canonical ensemble

In the grand-canonical ensemble, the proof remains essentially the same. The initial
density operator reads ρ̂0 ∝ e−βĤ+βµN̂ , where N̂ is the number operator which commutes
with Ĥ (the number of particules is conserved in non-relativistic quantum mechanics).
For concreteness, let us focus on fermions The three first steps in the proof presented
above imply

GF
+−(t+ iβ~, t′) = −Tr

[
ψ̂−†(t′)e−βĤψ̂+(t)eβµN̂

]
/trρ̂0 (5.199)

Since Ĥ and N̂ commute and since for any operator f(N̂), one has the property that
ψ̂f(N̂) = f(N̂ + 1)ψ̂, we have

ψ̂+(t)eβµN̂ = eβµ(N̂+1)ψ̂+(t) (5.200)

and so

GF
+−(t+ iβ~, t′) = −eβµ Tr

[
ψ−†(t′)ρ0ψ

+(t)
]
/Trρ0 . (5.201)

At this point, we can follow the same steps as in the proof for the canonical ensemble,
namely use the cyclic property of the trace, time-translational invariance and a Fourier
transform, to obtain the fermionic KMS relation in the grand-canonical ensemble

GF
+−(ω)eβ~ω = −eβµGF

−+(ω) . (5.202)

and the grand-canonical fermionic quantum FDT relation

GF
K(ω) = −i~

2
[GF

R(ω)−GF
A(ω)] tanh

(
β
~ω − µ

2

)
(5.203)

or, equivalently
GF
K(ω) = ~ ImR(ω) tanh

(
β ~ω−µ

2

)
(5.204)

FDT for generic observables in the time-domain
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If at time t′ the system is characterized by a density functional ρ(t′), the two-time
correlation functions are given by eq. (5.176), (5.177) and (5.178). In linear response
theory RAB(t, t′) and the correlation C[A,B](t, t

′) are related by the Kubo formula (5.180).
If the system has reached equilibrium with a heat-bath at temperature T at time t′, the
density functional ρS(t′) is just the Boltzmann factor exp(−βHS)/ZS. It is then immediate
to show that, in equilibrium, time-translation invariance, CAB(t, t′) = CAB(t − t′), and
the KMS properties

CAB(t, t′) = CBA(t′, t+ iβ~) = CBA(−t− iβ~,−t′) (5.205)

hold. Using now these identities and assuming, for definiteness, that t > 0 it is easy to
verify the following equation

C{A,B}(T ) +
i~
2
RAB(T ) = C{A,B}(T ∗)−

i~
2
RAB(T ∗) , (5.206)

where T = t+ iβ~/2. This is a way to express FDT through an analytic continuation to
complex times.

In terms of the Fourier transform defined in App. ?? the KMS relations read CAB(ω) =
exp(−β~ω)CBA(−ω) and lead to 2C[A,B](ω) =

(
1− eβ~ω

)
CAB(ω), 2C{A,B}(ω) =

(
1 + eβ~ω

)
CAB(ω)

and C[A,B](ω) = − tanh(β~ω/2)C{A,B}(ω). Back in the Kubo relation this implies

RAB(t− t′) = − i
~ θ(t− t

′)
∫∞
−∞

dω
π
eiω(t−t′) tanh(β~ω/2)C{A,B}(ω) . (5.207)

(recall C{A,B}(ω) = C{A,B}(−ω).) Using
∫∞

0
dt exp(−iωt) = limε→0+

i
−ω+iε

= πδ(ω) − iP
ω

one has

RAB(ω) = −1

~
lim
ε→0+

∫ ∞
−∞

dω′

π

1

ω − ω′ + iε
tanh

β~ω′

2
C{A,B}(ω

′) (5.208)

from which we obtain the real and imaginary relations

ImRAB(ω) =
1

~
tanh

β~ω
2

C{A,B}(ω
′) ,

ReRAB(ω) = −1

~
P

∫ ∞
−∞

dω′

π

1

ω − ω′
tanh

(
β~ω′

2

)
C{A,B}(ω

′) . (5.209)

If β~ω/2� 1, tanh(β~ω/2) ∼ β~ω/2 and eq. (5.207) becomes the classical FDT:

RAB(t− t′) = − 1

kBT

dCAB(t− t′)
dt

θ(t− t′) . (5.210)

5.7.6 The influence functional

As in the derivation of the Langevin equation we model the environment as an ensemble
of many non-interaction variables that couple to the relevant system’s degrees of freedom
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in some convenient linear way. The choice of the environment variables depends on the
type of bath one intends to consider. Phonons are typically modeled by independent
quantum harmonic oscillators that can be dealt with exactly. We then consider a system
(x̂, p̂) coupled to an environment made of independent harmonic oscillators (q̂a, π̂a). An
element of the total density function reads

ρ(x′′, q′′a ;x′, q′a; t) =∫ ∞
−∞

dXdX ′dQadQ
′
a 〈x′′, q′′a | T e−

i
~ Ĥtott |X,Qa〉 〈X,Qa| ρ̂tot(0) |X ′, Q′a〉

×〈X ′, Q′a| T e
i
~ Ĥtott |x′, q′a〉 . (5.211)

The first and third factors are the coordinate representation of the evolution operators
e−iĤtott/~ and eiĤtott/~, respectively, and they can be represented as functional integrals:

〈x′′, q′′a |T e−
i
~ Ĥtott |X,Qa〉 =

∫ x′′

X

Dx+

∫ q′′a

Qa

Dq+
a e

i
~S

+
tot (5.212)

〈X ′, Q′a|Te
i
~ Ĥtott |x′, q′a〉 =

∫ X′

x′
Dx−

∫ Q′a

q′a

Dq−a e−
i
~S
−
tot . (5.213)

The action Stot has the usual four contributions, from the system, the reservoir, the
interaction and the counterterm.

As usual we are interested in the dynamics of the system under the effect of the reser-
voir. Hence, we compute the reduced density matrix

ρred
S (x′′, x′; t) =

∫ ∞
−∞

dqa 〈x′′, qa| ρ̂tot(t) |x′, qa〉 . (5.214)

5.7.7 Initial conditions

Factorization

The initial density operator ρ̂tot(0) has the information about the initial state of the
whole system. If one assumes that the system and the bath are set in contact at the
initial time, the operator factorizes

ρ̂(0) = ρ̂S(0)⊗ ρ̂E(0) . (5.215)

(Other initial preparations, where the factorization does not hold, can also be considered
and may be more realistic in certain cases [81] and see below.) If the environment is
initially in equilibrium at an inverse temperature β,

ρ̂E(0) = Z−1
E e−βĤE , (5.216)
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the dependence on the bath variables is quadratic; they can be traced away to yield the
reduced density matrix:

ρred
S (x′′, x′; t) =

∫ ∞
−∞

dX

∫ ∞
−∞

dX ′
∫ x+(t)=x′′

x+(0)=X

Dx+

∫ x−(t)=x′

x−(0)=X′
Dx−

×e
i
~Seff 〈X| ρ̂S(0) |X ′〉 (5.217)

with the effective action Seff = S+
S − S

−
S + SB. The last term has been generated by the

interaction with the environment and it reads [81]

i

~
SB = −i

∫ T
0

dt′
∫ T

0

dt′′
[x+(t′)− x−(t′)]

~
4η(t′ − t′′) [x+(t′′) + x−(t′′)]

2

−
∫ T

0

dt′
∫ T

0

dt′′
[x+(t′)− x−(t′)]

~
~ν(t′ − t′′) [x+(t′′)− x−(t′′)]

~
. (5.218)

The noise and dissipative kernels ν and η are given by

ν(t) =

∫ ∞
0

dω S(ω) coth

(
1

2
β~ω

)
cos(ωt) , (5.219)

η(t) = θ(t)
dΓ(t)

dt
= −θ(t)

∫ ∞
0

dω S(ω) sin(ωt) . (5.220)

One can easily check that ν(t) = ν(−t) and η(t) is causal; moreover they verify the bosonic
FDT, as they should since the bath was assumed to be in equilibrium. η is like a response
and ν is a correlation One can also write the bath-generated action in the form

SB ≡ −
∑
a,b=±

1

2

∫ ∫
dtdt′ xa(t)Σab(t, t

′)xb(t′) , (5.221)

with

Σ++ = 2η − iν Σ+− = 2η + iν , (5.222)
Σ−+ = −2η + iν Σ−− = −2η − iν (5.223)

and Σ++ + Σ−−+ Σ+−+ Σ−+ = 0. Although these relation resemble the ones satisfied by
the Gabs a more careful analysis shows that the matricial Σ is more like G−1 than G (see
the discussion on the classical dynamics of the random manifold and the dependence on
k; the relation between G and Σ is the same here).

In these equations, as in the classical case, S(ω) is the spectral density of the bath:

S(ω) =
π

2

Nb∑
a=1

c2
a

maωa
δ(ω − ωa) , (5.224)
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that can also be taken of the form in (5.148),

S(ω) = 2γ0ω̃
(ω
ω̃

)α
e−ω/Λ . (5.225)

As usual, a counterterm cancels the mass renormalization. The η and Γ kernels are
independent of T and ~ and are thus identical to the classical ones, see eq. (4.28).The
kernel ν does depend on T and ~. After a change of variables in the integral, in the cases
in which S(ω) ∝ ωα,

ν(t) = t−(1+α)g

(
β~
t
,Λt

)
(5.226)

and
lim

β~/t→0
β~ν(t) = 2Γ(t) . (5.227)

The classical limit is realized at high temperature and/or long times.
Figure 5.5-left shows the time-dependence of the kernels ν in the quantum Ohmic case

for different values of T . In the right panel of the same figure we show the dependence
on α of the kernel ν.

Figure 5.5: The kernel ν. (a) Ohmic α = 1 case for different values of T (Λ = 5). (b)
T = 0 for different values of α (~ = 1 = γ0 = ω̃ = 1 and Λ = 5) in linear scale. (c) Same
as (b) but in logarithmic scale.

Upper critical initial conditions for the system

Next, we have to choose an initial density matrix for the system. One natural choice,
having in mind the quenching experiments usually performed in classical system, is the
diagonal density matrix

〈X| ρ̂S(0) |X ′〉 = δ(X −X ′) (5.228)

that corresponds to a random ‘high-temperature’ situation and that simplifies consider-
ably the expression in (5.217). As in the classical stochastic problem, Trρ̂red

S (0) = 1 and it
is trivially independent of disorder. Hence, there is no need to introduce replicas in such
a quantum dynamic calculation.

144



5. GENERATING FUNCTIONALS CONTENTS

Equilibrium initial conditions for the system

One might also be interested in using equilibrium initial conditions for the isolated
system

〈X| ρ̂S(0) |X ′〉 = Z−1
S 〈X| e

−βĤS |X ′〉 . (5.229)

This factor introduces interesting real-time – imaginary-time correlations [89].

5.7.8 Transformation to ‘MSR-like fields’

Newton dynamics

We use x± = x± (~/2) x̂. We first study the kinetic terms:

i

~

∫
dt
m

2

(
ẋ2

+ − ẋ2
−
)

=
i

~

∫
dt
m

2

[(
ẋ+

~
2

˙̂x

)2

−
(
ẋ− ~

2
˙̂x

)2
]

(5.230)

expanding the squares the integrand equals −2~ ˙̂xẋ and integrating by parts

−
∫
dt ix̂ mẍ . (5.231)

The potential term

The potential term is treated similarly

− i

~
[V (x+)− V (x−)] = − i

~

[
V

(
x+

~
2
x̂

)
− V

(
x− ~

2
x̂

)]
(5.232)

Note that this expression is specially simple for quadratic and quartic potentials:

=

{
−xix̂ quadratic V (y) = y2

−4xix̂
[
x2 − φ2

0 +
(~

2

)2
(ix̂)2

]
quartic V (y) = (y2 − y2

0)2

The noise terms

We introduce the variables x and ix̂ in the action terms generated by the coupling to
the environment and the classical limit of the kernel ν:

i

~
SE = −

∫ T
0

dt′
∫ T

0

dt′′ ix̂(t′) 2θ(t′ − t′′)dΓ(t′ − t′′)
dt′

2x(t′′)

+

∫ T
0

dt′
∫ T

0

dt′′ ix̂(t′)~ν(t′ − t′′)ix̂(t′′)

= 4

∫ T
0

dt′
∫ T

0

dt′′ ix̂(t′) γ(t′ − t′′) ẋ(t′′)

+

∫ T
0

dt′
∫ T

0

dt′′ ix̂(t′)~ν(t′ − t′′)ix̂(t′′) . (5.233)
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(Apart from a border term that can be treated more carefully and check that it disap-
pears.)

5.7.9 Classical limit

In the classical limit, ~→ 0, the Schwinger-Keldysh effective action reduces to the one
in the functional representation of a Newton classical mechanics (no bath) or a Langevin
process with coloured noise (bath). The kinetic term eq. (5.231) is already in the expected
form with no nead to take ~→ 0. The potential term

− i

~
[V (x+)− V (x−)] = −V ′(x)ix̂+O(~2) ' −V ′(x)ix̂ (5.234)

upto first order in ~. In the noise terms we just have to take the classical limit of the
kernel ν:

i

~
SE ' 4

∫ T
0

dt′
∫ T

0

dt′′ ix̂(t′) γ(t′ − t′′) ẋ(t′′)

+2kBT

∫ T
0

dt′
∫ T

0

dt′′ ix̂(t′) Γ(t′ − t′′) ix̂(t′′) (5.235)

with O(~) corrections (apart from a border term that can be treated more carefully and
check that it disappears.)
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6 Chaos & localization in quantum systems
*** This section is under construction. In 2024, Davide Venturelli will give these

lessons. ***
If you want to see notes on Random Matrices, check:

https://www.lpthe.jussieu.fr/ leticia/TEACHING/Master2020/random-matrices.pdf
https://www.lpthe.jussieu.fr/ leticia/TEACHING/Master2019/RandomMatricesAdvances.pdf

Intro: mention random matrices and more dynamical measurements

6.1 Chaos in classical & quantum systems
In classical Hamiltonian systems chaos is associated to the exponential divergence

δ~xi(t) ∼ eλit with {~xi(t)} and {~x′i(t)} two trajectories starting from nearby initial condi-
tions {~xi(0)} and {~xi(0)+δ~xi(0)}. (The difference can eventually saturate.) The Lyapunov
exponent is then defined as

λ = lim
t�t0

1

t
ln

∣∣∣∣ ∂xi(t)∂xj(0)

∣∣∣∣ = lim
t�t0

1

t
|{xi(t), xj(0)}| (6.236)

where the curly brackets represent the Poisson bracket. ** the above is not very precise,
treat indices better ***

If one wanted to generalize the definition above to quantum systems, one will need
to use the expectation values of the position operator. Indeed, nothing spectacular can
happen for a state (or wave function) which follows the linear Schr|’odinger equation. But
the expectation value of

λ = lim
t�t0

1

t
|[x̂i(t), x̂j(0)]| (6.237)

*** Expand *** The two-point correlation function of Heisenberg operators at different
times, establishing a departure from the corresponding classical correlator after a relatively
short time (Shepelyanskii 1981, Shepelyansky 1983). In systems with well defined classical
counterpart, this short scale corresponds to the Ehrenfest time.

6.2 Random matrices
Historically, the distribution of spacings in the energy level spectrum has been used

to quantify quantum chaos. The hypothesis, well verified in a large number of systems,
is that it is Poisson for integrable and satisfies the Wigner surmise for non-integrable
systems. The OTOC is expected to be another measure of quantum chaos.
https://www.lpthe.jussieu.fr/ leticia/TEACHING/Master2020/random-matrices.pdf

6.3 Anderson Localization
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6.4 Many-body localization
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A Pauli operators
We recall here definitions and properties of the spin 1/2 operators.

A.1 The spin 1/2

The spin (angular momentum) is a quantum observable, which in three-dimensional
Euclidean space is represented by a three component operator ~̂S = (Ŝx, Ŝy, Ŝz). The
states are represented by two component spinors.

The commutation relation of spin 1/2 operators are

[Ŝai , Ŝ
b
j ] = i~εabcŜci δij , (A.1.1)

with Latin indices taking values 1, 2, 3 and corresponding to x, y, z. We stress that spin
operators acting on different sites commute.

The spin 1/2 operators have eigenvalues ±~/2. For instance,

Ŝz | ↑ 〉 =
~
2
| ↑ 〉 Ŝz | ↓ 〉 = −~

2
| ↓ 〉 , (A.1.2)

and see the Pauli subsection to identify the eigenvectors of the other two operators, Ŝx,
and Ŝy. The states | ↑ 〉 and | ↓ 〉 are also represented as |+〉 and |−〉. In the main text
we use the notation |0〉 and |1〉, respectively, for up and down.

The Hilbert space of a single spin is two-dimensional: for instance a basis is {| ↑ 〉, | ↓ 〉},
the two eigenstates of Ŝz.

Raising and lowering, or ladder operators are defined as

Ŝ+
i = Ŝxi + iŜyi Ŝ+

i = Ŝxi − iŜ
y
i (A.1.3)

and act on the up and down state as

Ŝ+
i |−〉 = |+〉 Ŝ−i |+〉 = |−〉
Ŝ+
i |+〉 = |−〉 Ŝ−i |−〉 = |+〉

(A.1.4)

Exercise A.4 Show that
{Ŝ+

i , Ŝ
−
j } = δij (A.1.5)

with { , } the anti-commutator.

Equations (A.1.4) are thus similar to the action of creation and annihilation spinless
fermionic operators

ĉ†i |0〉 = |1〉 ĉi|1〉 = |0〉
ĉ†i |1〉 = |0〉 ĉi|0〉 = |1〉

(A.1.6)
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On different sites the spin operators commute and are then different from fermion opera-
tors.

A.2 The Pauli matrices
The spin operators are often represented by 2×2 complex Pauli matrices and the states

by two row columnar vectors. These matrices are labeled with numbers or directions,
σ1 = σx, σ2 = σy, σ3 = σz, with

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
(A.2.7)

In this representation ŝa = ~/2σa. We list below a number of important properties.

• They are Hermitian (σa)† = σa, for a = 1, 2, 3, with the † operation consisting in
the combination of a transposition and complex conjugate operation.

• Together with the identity matrix I (sometimes noted σ0) the Pauli matrices form a
basis for the real vector space of 2× 2 Hermitian matrices: any such matrix can be
written in a unique way as a linear combination of them, with all coefficients being
real numbers.

• Their inverses equal themselves, as they square to the identity, (σa)2 = I. In other
words, they are idempotent.

• They are unitary, (σa)†σa = σa(σa)† = I. This follows from (σa)2 = I for a = 1, 3
the real ones and (σ2)† = (σ2) and (σ2)2 = I for the one with imaginary entries.

• Their traces vanish, Tr σa = 0 and their determinants are all equal, detσa = −1,
for a = 1, 2, 3.

• Consequently, their eigenvalues are ±1.

• Their normalized eigenvectors are

σz : | ↑ 〉 ≡
(

1
0

)
| ↓ 〉 ≡

(
0
1

)
(A.2.8)

σy :
1√
2

(
1
i

)
1√
2

(
1
−i

)
(A.2.9)

σx :
1√
2

(
1
1

)
1√
2

(
1
−1

)
(A.2.10)

respectively.
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• Their commutation relations are

[σa, σb] = 2iεabcσ
c (A.2.11)

with εabc the Levi-Civita symbol, ε123 = ε231 = ε312 = 1, ε132 = ε321 = ε213 = −1,
and zero in all cases in which two indices are equal.

• They anti-commute: {σa, σb} = 2δabI.

• One readily checks σaσb = δab + iεabcσc.

• σx | ↑ 〉 =

(
0
1

)
= | ↓ 〉 and σx | ↓ 〉 =

(
1
0

)
= | ↑ 〉.

• σy | ↑ 〉 =

(
0
i

)
= i | ↓ 〉 and σy | ↓ 〉 =

(
−i

0

)
= −i | ↑ 〉.

B The matrix element
Let us start recalling a number of basic properties of quantum mechanics.
The combination of exponentials of non-commuting operators is given by the Baker-

Campbell-Hausdorff formula

eÂ eB̂ = eÂ+B̂+ 1
2

[Â,B̂]+... , (B.1)

where higher-order repeated commutators are shown by the dots.
The Trotter product formula applies to arbitrary n× n complex matrices or operators

and it reads
ei(Â+B̂) = lim

N→∞
(eiÂ/NeiB̂/N)N (B.2)

At least formally, the evolution operator Û(t, 0) = e−iĤt/~ can be expressed in terms of
the eigenstates |n〉 of Ĥ, Ĥ|n〉 = En|n〉,

Û(t, 0) = e−iĤt/~ =
∑
n

|n〉〈n|e−iEnt/~ . (B.3)

In the |x〉 basis,

〈x|Û(t, 0)|x′〉 =
∑
n

〈x|n〉〈n|x′〉e−iEnt/~ =
∑
n

ψn(x)ψ∗n(x′)e−iEnt/~ . (B.4)

One can check that U(x′, t;x, 0)→ δ(x− x′) for t→ 0.

Exercise B.1 Use the fact that for a free particle of massm, the states |n〉 are just plane wave momentum
states, and take the continuum limit of the sum over n (which becomes an integral over momenta) to show
U(x, t;x′, 0) = (m/2πi~t)1/2 exp[im(x− x′)2/(2~t)]. In this case it is clear that U(x′, t;x, 0)→ δ(x− x′)
for t→ 0.

– Take an orthonormal complete basis of eigenstates, |x〉, of the position operator, x̂,
that is x̂|x〉 = x|x〉, with 〈x′|x〉 = δ(x− x′).
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– Fourier transform each of these states,

|p〉 =

∫
dx√
2π~

eixp/~ |x〉 , (B.5)

and build another orthonormal complete basis of eigenstates, now of the momentum
operator, p̂|p〉 = p|p〉. Indeed,

〈p′|p〉 =
1

2π~

∫
dx

∫
dy eipx/~e−ip′y/~ 〈y|x〉

=
1

2π~

∫
dx

∫
dy eipx/~e−ip′y/~ δ(y − x)

=
1

2π~

∫
dx ei(p−p′)x/~

= δ(p− p′) . (B.6)

With these normalisations, two resolutions of the identity are

1 =

∫
dx |x〉〈x| =

∫
dp |p〉〈p| . (B.7)

Because of the orthonormality of the elements |x〉, the bra-kets

〈x|p〉 =
eixp/~
√

2π~
(B.8)

are plane waves. (As usual with Fourier transforms, there is some liberty in the placement
of the 2π~ factor. We use this convention.)

In the rewriting of the finite time evolution function we encounter factors which are
matrix elements of the kind

U(xk+1, tk+1;xk, tk) = 〈xk+1|e−i Ĥ δt
~ |xk〉 . (B.9)

This infinitesimal evolution operator can be factorised over the time-interval δt → 0,
since one can neglect the non-commutativity of the kinetic and potential energy terms
(the higher order terms are proportional to higher powers of δt, which is infinitesimal5),
and use Trotter’s formula:

e−iĤ δt
~ ≈ e−i p̂

2

2m
δt
~ e−iV (x̂) δt~ . (B.10)

Then,
U(xk+1, tk+1;xk, tk) = e−iV (xk) δt~ 〈xk+1|e−i p̂

2

2m
δt
~ |xk〉 , (B.11)

5While all this is fine for finite-dimensional matrices with finite matrix elements, it can be more
delicate for operators in Hilbert space which could have large or even singular matrix elements. Still, we
follow this route and neglect higher order terms in all the non-pathological cases we will deal with here.
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where the operator V (x̂) acting on the right ket gave rise to the function V evaluated at
the eigenvalue xk. The remaining factor is the free-particle propagator. Inserting now the
identity

I =

∫
dpk |pk〉〈pk| (B.12)

we have

U(xk+1, tk+1;xk, tk) = e−iV (xk) δt~

∫
dpk 〈xk+1|e−i p̂

2

2m
δt
~ |pk〉 〈pk|xk〉

= e−iV (xk) δt~

∫
dpk e

−i
p2k
2m

δt
~ 〈xk+1|pk〉 〈pk|xk〉 (B.13)

Using now that the free-particle wave function is

〈pk|xk〉 =
1√
2π~

e−
i
~ pkxk (B.14)

we have

U(xk+1, tk+1;xk, tk) =

∫
dpk
2π~

e−i
p2k
2m

δt
~ e

ipk

(
xk+1−xk

δt

)
δt
~ e−iV (xk) δt~ . (B.15)

(We note that one cannot evaluate this result from a Taylor series expansion in powers of
δt of the exponential of the kinetic energy operator, the result is singular in the δt → 0
limit.) The sign of the linear term in pk in the exponential can be changed to minus, after
a change of variables pk → −pk. If one now performs the integral over the momentum pk

U(xk+1, tk+1;xk, tk) =

(
−im

2πδt~

)1/2

e
i m

2

(
xk+1−xk

δt

)2
δt
~ −iV (xk) δt~ . (B.16)

The prefactor is included in the integral measure and no longer written.

C Stationary phase approximation
The stationary phase approximation extends the steepest descent of Laplace method

to integrals of rapidly varying imaginary exponentials. The idea is that sinusoids with
rapidly varying phase cancel under the sum over all of them.

Calling ~ the small parameter, when a function f of a single real variable x has only
one extreme x∗, f ′(x∗) = 0, the formula is

lim
“~�f(x)”

∫
dx eif(x)/~ = eif(x∗)/~ eiπ/4 signf ′′(x∗)

(
2π~
|f ′′(x∗)|

)1/2

(C.1)

The idea to prove this equation is the same as for the usual steepest descent of saddle-
point approximation. One expands the function in the exponential to second order in the
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distance from its extreme x∗:

f(x) = f(x∗) + f ′(x∗)(x− x∗) +
1

2
f ′′(x∗)(x− x∗)2 +O((x− x∗)3)

∼ f(x∗) +
1

2
f ′′(x∗)(x− x∗)2 (C.2)

The first term is a constant with respect to x and comes out of integral. The quadratic
corrections remain to be integrated over

lim
“~�f(x)”

∫
dx eif(x)/~ = eif(x∗)/~

∫
dx ei 1

2
f ′′(x∗)(x−x∗)2/~ . (C.3)

When ~ is small compared to f ′′(x∗), even a small difference x − x∗ will lead to rapid
oscillations within the integral and cancellations. Then one can integrate over x going
from −∞ to ∞. The result is Eq. (C.1).

If the function f has several stationary points, then one separates the integral in non-
overlapping intervals and approximates the result on each of them separately in the way
described above.

D Some subjects for final exam
• Random quantum circuits

Random quantum circuits are quantum circuits in which the sequence of gates is
chosen randomly according to certain rules or distributions. These circuits play
an important role in quantum information science and quantum computing, partic-
ularly for benchmarking quantum processors and studying properties of quantum
systems.

– Random Quantum Circuits
M. P. A. Fisher, V. Khemani, A. Nahum, and S. Vijay
Annual Review of Condensed Matter Physics 14, 335 (2023)

• Mpemba effect

The Mpemba effect is a counterintuitive phenomenon where, under certain condi-
tions, hot water can freeze faster than cold water. It has been observed in various
settings but remains a subject of scientific debate due to the complexity and vari-
ability of the underlying mechanisms.

– Multiple quantum Mpemba effect: exceptional points and oscillations,
A. K. Chatterjee, S. Takada, and H. Hayakawa,
arXiv:2311.01347

– Quantum Mpemba effect in a quantum dot with reservoirs,
A. K. Chatterjee, S. Takada, and H. Hayakawa,
arXiv:2304.02411, Phys. Rev. Lett. 131, 080402 (2023)
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• Entanglement entropy

Entanglement entropy is a measure of quantum entanglement in a system, quantify-
ing how strongly a subsystem is entangled with the rest of the system. It is widely
used in quantum information theory, condensed matter physics, and quantum grav-
ity.

– Generalised Hydrodynamics description of the Page curve-like dynamics of a
freely expanding fermionic gas,
M. Saha, M. Kulkarni, and A. Dhar,
arXiv:2402.18422

– J. Eisert, M. Cramer, and M.B. Plenio,
Area laws for the entanglement entropy - a review
arXiv:0808.3773, Rev. Mod. Phys. 82, 277 (2010)

– R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner,
Measuring entanglement entropy in a quantum many-body system
arXiv:1509.01160, Nature 528, 77 (2015)

– J. I. Latorre and A. Riera,
A short review on entanglement in quantum spin systems,
https://arxiv.org/pdf/0906.1499, J. Phys. A 42, 504002 (2009)

– N. Laflorencie,
Entanglement entropy and localization in disordered quantum chains,
arXiv:2112.09102, Chapter book in "Entanglement in Spin Chains - From The-
ory to Quantum Technology Applications", Bayat, A., Bose, S., Johannesson,
H. (eds)

• Engineering symmetries in time

Engineering symmetries in time refers to the deliberate design or manipulation of
temporal structures in physical or mathematical systems to exploit symmetry prin-
ciples, akin to spatial symmetries. This concept is often applied in physics, quantum
mechanics, and engineering to achieve desired dynamic behaviors, enhance perfor-
mance, or simplify problem-solving.

– Engineering Hierarchical Symmetries,
Z. Fu, R. Moessner, H. Zhao, and M. Bukov,
arXiv:2402.13519

• OTOCs and FDT

The Out-of-Time-Ordered Correlation (OTOC) is a quantum mechanical measure
used to characterize the growth of operator commutators and assess the scrambling
of quantum information in a system. It has become a key tool in studying quantum
chaos, thermalization, and the spreading of quantum entanglement.

– N. Tsuji, T. Shitara, and M. Ueda, Bound on the exponential growth rate of
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out-of-time-ordered correlators, Phys. Rev. E 98, 012216 (2018).
– S. Pappalardi, L. Foini, and J. Kurchan,

Quantum bounds and fluctuation-dissipation relations,
SciPost Phys. 12, 130 (2022).

• Loschmidt echo

The Loschmidt echo is a measure of the revival occurring when an imperfect time-
reversal procedure is applied to a complex quantum system.

– T. Gorin, T. Prosen, T. H. Seligman, and M. Žnidarič,
Dynamics of Loschmidt echoes and fidelity decay,
Physics Reports, 435, 33 (2006).

– A. Goussev, R. A. Jalabert, H. M. Pastawski, and D. Wisniacki,
Loschmidt Echo,
arXiv:1206.6348, Scholarpedia 7, 11687 (2012).

• Quantum Brownian motion

Quantum Brownian motion is a model describing the behaviour of a quantum sys-
tem interacting with a large environment, where the environment induces random
fluctuations and dissipation on the system, analogous to classical Brownian motion.
However, unlike classical Brownian motion, quantum Brownian motion incorporates
quantum effects such as coherence, superposition, and entanglement.

– J. Bonart and L. F. Cugliandolo,
From non equilibrium quantum Brownian motion to impurity dynamics in 1D
quantum liquids,
Phys. Rev. A 86, 023636 (2012)

• Dicke model

The Dicke model is a spin-boson model with the spin being the system and the
boson the bath. On can see effects like decoherence in simple terms here.

– D. Villaseñor, S. Pilatowsky-Cameo, J. Chávez-Carlos, M. A. Bastarrachea-
Magnani, S. Lerma-Hernández, L. F. Santos, and J. G. Hirsch,
Classical and Quantum Properties of the Spin-Boson Dicke Model: Chaos,
Localization, and Scarring
arXiv:2405.20381

• Models of baths

A quantum bath is a concept from quantum mechanics and quantum statistical
physics that refers to an environment or reservoir of quantum systems interacting
with a primary quantum system of interest. This "bath" provides a way to model
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how the primary system exchanges energy, particles, or information with its sur-
roundings, leading to effects like dissipation, decoherence, or thermalization.

– G. W. Ford, M. Kac, and P. Mazur,
Statistical mechanics of assemblies of coupled oscillators,
J. Math. Phys. 6, 504 (1965).

– N. Prokof’ev and P. Stamp,
Theory of the spin bath,
Rep. Prog. Phys. 63, 669 (2000).

• Localization by an Ohmic bath

An Ohmic bath consists of a continuum of harmonic oscillators (e.g., phonons,
photons, or other modes) with spectral density J(ω) = γω that interact with a
quantum particle under a two well potential. For γ > 1 tunnelling is inhibited and
the particle remains localized in the well it was initiated.

– A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and
W. Zwerger,
Dynamics of the dissipative two-state system,
Rev. Mod. Phys. 59, 1 (1987).

– A. J. Bray and M. A. Moore,
Influence of Dissipation on Quantum Coherence,
Phys. Rev. Lett. 49, 1545 (1982).

– A. O. Caldeira and A. J. Leggett,
Quantum tunnelling in a dissipative system,
Ann. Phys. 149, 374 (1983).
A. O. Caldeira and A. J. Leggett,
Influence of dissipation on quantum tunnelling in macroscopic systems,
Phys. Rev. Lett. 46, 211 (1981).

• The Bohigas-Giannoni-Schmidt hypothesis

The Bohigas-Giannoni-Schmidt (BGS) hypothesis is a conjecture in quantum chaos
that connects the statistical properties of quantum energy levels with the nature of
the underlying classical dynamics. It provides a framework for understanding how
classical chaos manifests in quantum systems.

– O Bohigas, M. J. Giannoni, and C. Schmit,
Characterization of chaotic quantum spectra and universality of level fluctua-
tion laws,
Phys. Rev. Lett. 52, 1 (1984).

– O Bohigas, M. J. Giannoni, and C. Schmit,
Spectral properties of the Laplacian and random matrix theories,
J. Physique Lettres 45, 1015 (1984).
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• Lieb-Robinson bound

The Lieb-Robinson bound is a theoretical upper limit on the speed at which infor-
mation can propagate in non-relativistic quantum systems. It demonstrates that
information cannot travel instantaneously in quantum theory, even when the rela-
tivity limits of the speed of light are ignored.
– E. H. Lieb and D. W. Robinson,

The finite group velocity of quantum spin systems,
Commun. Math. Phys. 28, 251 (1972).

– D. Ruelle, Statistical mechanics. Rigorous results,
(Benjamin, New York, 1969)

– R. Trivedi and M. Rudner,
A Lieb-Robinson bound for open quantum systems with memory,
arXiv:2410.15481

• Quantum disordered systems

Quantum disordered systems are physical systems characterized by the interplay
between quantum mechanical effects and disorder. Disorder typically arises from
impurities, defects, or randomness in the system’s structure, which can significantly
influence its physical properties. These systems are crucial for understanding a
range of phenomena in condensed matter physics and quantum mechanics.
– M. C. O’Brien and E. Fradkin,

Interplay of Quantum and Thermal Fluctuations in Two-Dimensional Ran-
domly Pinned Charge Density Waves,
arXiv:2410.16375
M. C. O’Brien and E. Fradkin,
An Exactly Solvable Model of Randomly Pinned Charge Density Waves in Two
Dimensions,
J. Stat. Mech. (2024) 013104

– G. Biroli and L. F. Cugliandolo,
Quantum Thouless-Anderson-Palmer equations for glassy systems,
Phys. Rev. B 64, 014206 (2001) .

– L. F. Cugliandolo, D. R. Grempel, C. A. da Silva Santos,
Imaginary-time replica formalism study of a quantum spherical p-spin-glass
model,
Phys. Rev. B 64, 014403 (2001).
L. F. Cugliandolo, D. R. Grempel, C. A. da Silva Santos,
From second to first order transitions in a disordered quantum magnet,
Phys. Rev. Lett. 85, 2589 (2000)

– L. F. Cugliandolo and G. S. Lozano,
Quantum aging in mean-field models,
Phys. Rev. Lett. 80, 4979 (1998)
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L. F. Cugliandolo and G. S. Lozano,
Real-time non-equilibrium dynamics of quantum glassy systems,
Phys. Rev. B 59, 915 (1999).
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