Advanced Statistical Physics

Leticia F. Cugliandolo
Sorbonne Université

Institut Universitaire de France

leticia@lpthe. jussieu. fr
www.lpthe.jussieu.fr/ leticia

2073

Disorder
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Randomness

Impurities

No material is perfect and totally free of impurities

(vacancies, substitutions, amorphous structures, etc.)

Second distinction

— Annealed : fluctuating (easier)

— Quenched : frozen, static (harder)
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Pinning by impurities

Competition between elasticity and quenched randomness

d-dimensional elastic manifold in a transverse /V -dimensional quenched

random potential.

Interface between two phases;
vortex line in type-Il supercond;
stretched polymer.

Distorted Abrikosov lattice
S » T 19 .9 =

Goa et al. 01
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Quenched disorder

Variables frozen in time-scales over which other variables fluctuate.

Time scales 7o K tobs K T
Teqo‘f could be the diffusion time-scale for magnetic impurities the magnetic

moments of which will be the variables of a magnetic system;

or the flipping time of impurities that create random fields acting on
other magnetic variables.

Weak disorder (modifies the critical properties but not the phases) vs.
strong disorder (that modifies both).

e.g. random ferromagnets vs. spin-glasses.



First distinction
— Weak randomness : phase diagram respected, criticality may change

— Strong randomness : phases modified

Weale VS STRoAG
D SoNDER



Geometrical problems

Random graphs & Percolation
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Spin-glasses

Magnetic impurities (spins) randomly placed in an inert host

r; are random and time-independent since
the impurities do not move during experimental time-scales =

quenched randomness

RKKY potential

Magnetic impurities in a metal host

cos 2kpri;

3
i

V(Tij) X

S;S;
r J

very rapid oscillations about 0
positive & negative

spins can flip but not move
slow power law decay.



Spin-glasses

Models on a lattice with random couplings

Ising (or Heisenberg) spins s; = 1 sitting on a lattice
J;; are random and time-independent since
the impurities do not move during experimental time-scales =

quenched randomness

Magnetic impurities in a metal host Edwards-Anderson model

Hjl{si}| = ZJZJSS]

Jij drawn from a pdf with

spins can flip but not move zero mean & finite variance
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Neural Networks

Real neural network

b Dendrites ° Microtubule

Neurofibrils

Synaptic vesicles
Neurotransmitter

Synapse (Axoaxonick N
. S
Synaptic cleft 2

Rough ER Axonal terminal i

(Niss| body)

Polyribosomes Node of Ranvier

Ribosomes
Golgi apparatus

Myelin Sheath

(Schwann cell)

Nucleus -
Nucleolus J = s Nucletis
Membrane / 2 = (Schwann cell)

Microtubule — -

Q;’f' Microfilament
Microtubule
Axon

Ondrion

Smooth ER

I Synapse
(Axadendritic

Neurons connected by synapsis on a random graph

Figures from Al, Deep Learning, and Neural Networks explained, A. Castrounis



Neural networks

Models on graphs with random couplings

The neurons are Ising spins s; = &1 on a graph
J;; are random and time-independent since
the synapsis do not change during experimental time-scales =

quenched randomness

The neural net Hopfield model

Hyl{si}] = = > uj Jijsis;

memory stored in the synapsis

Jig = 1/Np T2, €l

the patterns &'

are drawn from a pdf with

spins can flip but not move zero mean & finite variance
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Neural Networks

Sketch & artificial network

Hidden
Inputs Output(s)
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The connections in WT

may have a random component
The state of the neuron up (firing), down (quiescent) is a result of the calculation

In the artificial network on chooses the geometry (number of nodes in internal

layer, number of hidden layers, connections between layers)

Figures from Al, Deep Learning, and Neural Networks explained, A. Castrounis
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Optimization problems

Constrained satisfaction problems

Problems involving variables which must satisfy some constraints
e.g. equalities, inequalities or both
studied in computer science to
compute their complexity or develop algorithms to most efficiently solve them

Typically, /N variables, which have to satisfy /\/ constraints.

e.g. the variables could be the weights of a neural network, and each constraint
imposes that the network satisfies the correct input-output relation on one of M
training examples (e.g. distinguishing images of cats from dogs).

Statistical physics approach

thermodynamic limit N' — oo and M — oo with o« = M /N finite



Optimization problems

K-Satisfiability

The problem is to determine whether the variables of a given Boolean formula F'

can be assigned in such a way to make the formula evaluate to TRUE (satisfied)
Example. Call the variable =

We use x for the evaluation & = TRUE and & for the requirement = = FALSE
Take the formula /' = (' : 1 OR 75 made by a single clause ('

it is satisfiable because one can find the values x1 = TRUE (and x5 free) or
29 = FALSE (and 27 free), which make C : 21 OR 75 TRUE

This formula is so simple that 3 out of 4 possible configurations of the two variables
solve it. This example belongs to the £ = 2 class of satisfiability problems since the
clause is made by two literals (involving different variables) only. It has // = 1 clauses

and N = 2 variables.



Optimization problems

K-Satisfiability

Harder to decide formulae are made of /\/ clauses involving £ literals re-
quired to take the true value () or the false value () each, these taken from a
pool of /V variables. An example in & = 3-SAT is

2

Cl . I OR EQ OR X3
CQ . Ix OR X7 OR L9
03 : 1 OR 74 OR x~

04 . X9 OR 55 OR I8

\

All clauses have to be satisfied simultaneously so the formula has to be read
F:(C7 AND C5 AND C3 AND C}y

When @ = M/N > 1 the problems typically become unsolvable while many
solutions exist for & << 1. A sharp threshold at .. for N, M — oo



Optimization problems

Random K-Satisfiability

An instance of the problem, i.e. a formula F', is chosen at random with

the following procedure :

First one takes k£ variables out of the /V available ones.

Second one decides to require x; or x; for each of them with probability 1/2
Third one creates a clause taking the OR of these £ literals.

Forth one returns the variables to the pool and the outlined three steps are
repeated /V/ times.

The M resulting clauses form the final formula.

Change of focus from worse case (most difficult formula) to typical case (just

one such constructed formula)



Optimization problems

Random K-Satisfiability as a physical model

Boolean variables = Ising spins
x; evaluated to TRUE (FALSE) corresponds to s; = 1 (—1)

The requirement that a formula be evaluated TRUE by an assignment of va-
riables (i.e. a configuration of spins) = ground state of an adequately chosen

energy function = cost function

In the simplest setting, each clause will contribute zero (when satisfied) or one

(when unsatisfied) to this cost function.

There are several equivalent ways to reach this goal. The fact that the variables
are linked together through the clauses suggests to define k-uplet interactions

between them.



Optimization problems

Random K-Satisfiability as a physical model

A way to represent a clause in an energy function, for instance,

Cl . I OR fg OR I3 sz
as an interaction between spins. In this case
(1— 51)(1 + 52)(1 — s3)/8 (1)
This term vanishes if s; = 1 or sy = —1 or s3 = 1 and does not contribute to

the total energy, that is written as a sum of terms of this kind.

It is then simple to see that the total energy can be rewritten in a way that
resembles strongly physical spin models,

K
ZKHJ[{SZ}] =M + Z(_l)R Z ‘]’i1---iRS’i1 o Sip
R=1

11<--<iR
Z Jaiy -+ Jain and Jg; = *£1 according to x; or T; in clause a

and zero otherW|se
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Optimization problems

K-Satisfiability & complexity theory

Special interest in computational complexity theory
K-Sat for K> 3 is in the NP complexity class

No algorithm (as yet) has been found that can find an assignment for the

variables x; in polynomial time

one can verify in polynomial time whether an assignment satisfies the given

formula
K-SAT is an NP-complete problem

all other problems in the NP complexity class can be formally reduced to

the K-SAT problem
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Randomness

Properties

— Spatial inhomogeneity
— Frustration

(spectrum pushed up, degeneracy of ground state)

— Probability distribution of couplings, fields, etc.

— Self-averageness



Frustration

Properties
Hyl{s}t = =D uj Jijsis; Ising model
+ +
+ + + + — A — + A+
— + — +
Disordered Geometric
Ejrest > prM and Sprust > SIM

Frustration enhances the ground-state energy and entropy

One can expect to have metastable states to0

One cannot satisfy all couplings simultaneously if Hloop Ji; <0
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Heterogeneity

Each variable, spin or other, feels a different local field, /2; — Zj.:l JiiS;,
contrary to what happens in a ferromagnetic sample, for instance.
A A A ‘ A A f A ‘ A
Homogeneous Heterogeneous
h; =4J V. h; = —2J h, =20 h; = 2J.

Each sample is a priori different but,
do they all have a different thermodynamic and dynamic behavior ?
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Self-averageness

The disorder-induced free-energy density distribution approaches a Gaussian

with vanishing dispersion in the thermodynamic limit :

my oo fN (8, J) = foo(B) independently of disorder

— Experiments : all typical samples behave in the same way.

— Theory : one can perform a (hard) average of disorder, |. . . |,

—BN foo(8) = imyeo[In Zn (8, J)]

From here, we see that, e.g., the energy density is self-averaging

Replica theory

ZN (8, )] — 1
Nn

_Bfoo (5) = lim 00 limy, 40

T0 Ae DAcuSsen lare.



Self-averageness

The question

Given two samples with different quenched randomness
(e.g. different interaction strengths Jijs or random fields £;)
but drawn from the same (kind of) distribution
is their behaviour going to be totally different ?

Which quantities are expected to be the same and which not ?



Self-averageness

Observables & distributions

Given a quantity A ;, which depends on the quenched randomness ./, it

Is distributed according to

P(4) = [ 47 p(7) 54 - 4y
This pdf is expected to be narrower and narrower (more peaked) as
N — o0
Therefore, one will observe Ay, = A s.t. maxy P(A)

However, it is difficult to calculate Ay,,, what about calculating

Al = [dAP(A)A?



Self-averageness

a( 2 Warm-up exercise

Exercise 5.1 This exercise provides a useful example of the distinction between fypical and
average values of random variables. Consider a random variable z that takes only two values
z1 = VN and 29 = €PN with a and /3 two positive and finite numbers with o unconstrained and
3 > 1. The probabilities of the two events are p; =1 — e " and py = e~ V. First, confirm that
these probabilities are normalised. Second, compute the average (z), where the angular brackets
indicate average with the probabilities pq, p2, and evaluate it in the limit N — oc. Third,
calculate the most probable value taken by z, that we call zyy,, for typical (indeed, if we were to
draw the variable we would typically get this value). Compare and conclude. Now, let us study
the behaviour of the quantity In z that is also a random variable. Compute its average. By which
value of z is it determined? Does (Inz) = (In z)¢yp in the large N limit? Is (Inz) = In(z)? The
last result demonstrates the difference between what are called quenched and annealed averages.
Which value is larger? Does the comparison comply with Jenssen’s inequality? (See App. 5.A
for its definition.)

A function is convex function iff V1, zo and t € [0, 1] :

flz1+ (1 =t)z—2) <tf(z1) + (1 —1)f(z2) .



JenSch'S  inEDua "T?

¥
ey 4
Coavex
T Tomeron
—f-(m + «—
X
. —_—

A L Yo
te ro.4]
Ty & (a-) %y

-f-[-‘. % + (-9 Yz) £ * 'f-(x.) +G-B) -Ff&)

SEcanT IS ABNE  Foncrion iTSaLR , iR THE Funcriow

IS conVex #s in THE  DaAwING

iN PloR n&‘ong P X is A4 DANDOM VARABKE AND tp 4

Toncriod o K =)

E [\P[x):‘?/ P [Elx)]

iIF We AMY T TO  QueNCHED VS. ANWERLED



—[Wz] 7 -& (2]

o S@. BNACUETS Meamn AVEN.
oVEL 22%0Ndev. HELE

=

o X is THe PAT TOACT-

o s is THe ouencten AVENL
of T™He THIEE- amsa

LoGANITHMIs ConCAVE
— loGANITHM IS

Con VEX

Foenciey > Famvenes
unDEL £STVNATED
THe TRve fer
T Sot.. T THE EXK S BELowW



Self-averageness

Warm-up exercise




Self-averageness

Warm-up exercise




Self-averageness

Example : the disordered Ising chain

Hjyl{s;}] = ZJ S;Sia1 J; distributed p(.J;) with any pdf

Compute the partition function Z s by introducing o; = s;5;11

Zrl{si}] Z P i Jisisit1 — Z P 2 J‘”-HQcothﬁJ

s, ==+1 o;,==x1
(boundary condition effects negligible for N — ©0)

It is a product of /V random numbers

The free-energy is — 0 F7[{s;}| = Zf\;l Incoth 5J; + N In2

It is a sum of NV random numbers



Self-averageness

Example : the disordered Ising chain

Hjyl{s;}] = ZJSZSZ_H J; distributed p(.J;) with any pdf

The partition function & the free energy density are different objects

Zil{si}] = HQCothBJ —Bfil{si}t] = ZlncothBJ +1n 2

=1

Take .J; to be i.id with zero mean [.J;] = 0 & finite variance [J?] = ¢ and

use the Central Limit Theorem :

X = + 5. x; is Gaussian distributed with average (X ) = (z;) and variance
(X — (X)) =0?/N

Therefore [ ; is Gaussian distributed and its variance vanishes for N — oo

Moreover, [ 7" = [f/]



Self-averageness

Systems with short-range interactions

Divide a, say, cubic system of volume V' = L% in n sub-cubes, of volume
v = (Y with V = nu

A A A 73 =
I O 4 Surface

A A ry ry =

= _ a a a Bulk

yy = 7y = yy /

- >A AN A H P I é




Self-averageness

Systems with short-range interactions

For short-range interactions the total free-energy is the sum of two terms, a
contribution from the bulk of the subsystems and a contribution from the inter-

faces between the subsystems :

_BFJ — In 75 = In Z e—ﬁHJ(Conf) ~ In Z G_BHJ(bUIk)—BHJ(SUI'f)

conf conf

— In Z 6—5Hj(bulk) + In Z G—BHJ(surf) _ —BF})ulk o 5F3urf
bulk surf

where the ~ indicates that we dropped the contributions of interactions between

the bulk and the interfaces (surf)



Self-averageness

Systems with short-range interactions

If the interaction extends over a short distance [ and the linear size of the boxes
is / > [, we also assume that the surface energy is negligible with respect to

the bulk one (same for possible entropic contributions) and
_BF; ~ _6F})ulk —In Z o—3H 7 (bulk)
bulk

The disorder dependent free-energy is a sum of n = (L //)? independent
random numbers, each one being the disorder dependent free-energy of the

In the limit of a very large number of subsystems (L. > £ or n > 1) the CLT

—> the free-energy density is Gaussian distributed with

PP =1fs]



Self-averageness

Systems with short-range interactions

The dispersion about the typical value of the total free-energy vanishes in the
large n limit, o, /[ Fy] oc /n/n=n""? =0

The one of the free-energy density, or intensive free-energy, f; = F; /N, as
well, o7, /[f7] = O(n='/?)

In a sufficiently large system the typical free-energy density f}y P is then very
close to the averaged | f | and one can compute the latter to understand the

static properties of typical systems.

Much easier to do analytically. More later.



Self-averageness

Failure and quenched vs. Annealed

Go back to the one dimensional disordered Ising chain and show that

the partition function and the spatial correlations
are not self-averaging.
The annealed free-energy is defined as — 3 Fannealed — n[ 7]
The quenched free-energy is defined as — 3 Faverched — [y 7]
Jenssen’s inequality applied to the convex function — In 7/ implies
—In|Z;] < —|In Z;]
and for the free-energies one deduces

Fannealed _ _5—1 IH[ZJ] < —5_1[1I1 ZJ] _ Fquenched



THE PUNTED ENSEMA\E

>

IMAGINE THAT ou  WANT A &1 ven
confiCunaTiod o Be 4n EPwLIBRIVM

oNg of J@WL ?Jsrem_

THenN, cenenafe THE disoabell
Unpen TS ConNdITioV .

%7. ea A PARTICE  FolowiNG

LANGEVIN 'S DY

VI A

AGs
ﬁM |'N|'M v
| Hene |




AND NOT ELSewfcrie,

THe ReIT of THE BT MAa CHANGE
BuT THE Minimum  SHoud BE THeNE:

oA A PN MoDEL =D

X :S'J SuCH  THAT

237‘0& & AN EBUIL. STATE

usehuL W CoMP.  Sclenice .



Methods

disordered systems

Statics

N
TAP Thouless-Anderson-Palmer > fully-connected (complete graph)
Replica theory ) Gaussian approx. to field-theories
Cavity or Peierls approx. } dilute (random graph)

)
Bubbles & droplet arguments

> finite dimensions

functional RG!

/

Dynamics

Generating functional for classical field theories (MSRJD).
Schwinger-Keldysh closed-time path-integral for quantum dissipative models
(the previous is recovered in the /o — 0 limit).

Perturbation theory, renormalization group techniques, self-consistent approx.



Randomness

Properties

— Spatial inhomogeneity
Not all sites behave in the same way
— Frustration
Impossibility to satisfy all conditions imposed by the Hamiltonian
(spectrum pushed up, degeneracy of ground state)
— Annealed vs quenched
Couplings, fields, etc. fluctuate or are frozen
— Quenched disorder : static pdfs of couplings, fields, etc.

fannealed < fquenched

— Self-averageness

th—>oo[ — th—>oo ftyp

— Complex free-energy landscapes

fquenched]



Self-averageness

Systems with short-range interactions

d

Divide a, say, cubic system of volume V' = L“ in n sub-cubes, of volume

v =/(Twith V = nv

— 4 Surface L/E
*d___w,.ﬂ-—*‘ —5FJ ~ Z 1n Z e—BHJ(bulkk)
el k=1 bulky
Bulk
: / For L > / the CLT
; | ¢ = f is Gaussian distributed and
t
Jyp — [f J ]



THS WAS THe end of THe 2vd

le=cTRE

IN THe  3d Lectunes we W

TANT20Z2UE 2 Jse
T™He TAPLP ApPproAcH



Randomness

Properties

— Spatial inhomogeneity
Not all sites behave in the same way
— Frustration
Impossibility to satisfy all conditions imposed by the Hamiltonian
(spectrum pushed up, degeneracy of ground state)
— Annealed vs quenched
Couplings, fields, etc. fluctuate or are frozen
— Quenched disorder : static pdfs of couplings, fields, etc.

fannealed < fquenched

— Self-averageness

th—>oo[ — th—>oo ftyp

— Complex free-energy landscapes

fquenched]



Low temperature phases

Phenomenology : homogeneity vs inhomogeneity

In a ferromagnet in equilibrium at temperature 7" < T, (s;) = m(T) Vi
or (s;) = —m(T") Vi in the two homogeneous, symmetric and degenerate

equilibrium states



Low temperature phases

Phenomenology : homogeneity vs inhomogeneity

In a ferromagnet in equilibrium at temperature 7" < T, (s;) = m(T) Vi

or (s;) = —m(T") Vi in the two homogeneous, symmetric and degenerate

equilibrium states

If one were to follow the time evolution of each spin in one of the two equilibrium
states at ' < T, one would see 5;(t) = m(T) + 6;(t) with 9;() small
time-dependent fluctuation and the overline states for a running time average
si(t) =711 [T dt s (t)
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Low temperature phases

Phenomenology : homogeneity vs inhomogeneity

In a spin-glass in equilibrium at temperature 7" < 7T, one expects (s;) =
m.;(T"), with a different value for each 7, in each inhomogeneous and degenerate

equilibrium state.

There may be many different ensembles {1;(7")} that are equilibrium states
(degeneracy, similar to what we saw in the frustrated magnets for the ground

states but here in the full low 7" phase)

There is also the up-down symmetry {1, (1)} — {—m; (1)}



Low temperature phases

Phenomenology : homogeneity vs inhomogeneity

In a spin-glass in equilibrium at temperature 7" < 7T, one expects (s;) =
m.;(T"), with a different value for each 7, in each inhomogeneous and degenerate

equilibrium state.

If one were to follow the time evolution of each spin in one of the possibly many
equilibrium states at 7" < T}, one would see 5;(t) = m;(T") + 0;(t) with
0; (1) small time-dependent fluctuation and the overline states for a running time
average 5;(1) = 7! tt+T dt’ s;(t')

m;

3
??‘/_\
T@ﬂi’?l




Randomness

Properties

— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {1 }
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen
— Quenched disorder : static pdfs of couplings, fields, etc.

annealed quenched
f </

— Self-averageness

th—>oo[ — th—>oo ftyp

— Complex free-energy landscapes

fquenched]



Randomness

Properties

— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {1 }
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen
— Quenched disorder : static pdfs of couplings, fields, etc.

fannealed < fquenched

— Self-averageness

th—>oo[ — th—>oo ftyp

— Complex free-energy landscapes

fquenched]



Mean-field theory

Fully connected Ising models

General model
Hyl{si}] = =5 > Jijsis; withlsing variables s; = +1
17]

O(1) scaling of the local fields = scaling of .J;

What is a local field ?

It is the field felt by a selected site

hz' :% Z Jz'ij
J(#4)

and we require it to be O(1)



Mean-field theory

Fully connected Ising models

General model

Hyl{si}] = _% > Jijsis;  with Ising variables s; = =1
i7]
O(1) scaling of the local fields = scaling of .J;

In the Curie-Weiss ferromagnetic case

J J
7 (#12

in the two ferromagnetic s;, = 1 Vi or s; = —1 Vi phases



Mean-field theory

Fully connected Ising models

General model
Hyl{si}] = =5 > Jijsis; withlsing variables s; = +1
oy

O(1) scaling of the local fields = scaling of .J;

In the Curie-Weiss ferromagnetic case

J
Jij = N such that h; = N >, s;=0(1)
J(#%)
in the ferromagnetic s; = 1 Vi or s; = —1 V1 phases

In the Sherrington-Kirkpatrick disordered case

J
Jij = O(\/—N

in the PM or spin-glass phases s; = +1 V1

) such that h; ~

si = O(1
2\/7](23752) .



Mean-field theory

Fully connected Ising models

General model
Hyl{si}] = =5 > Jijsis; withlsing variables s; = +1
17]

O(1) scaling of the local fields = scaling of .J;

In the Sherrington-Kirkpatrick disordered case

J J
J;i = O(——=) suchthat h; ~ —— s;i = O(1
] (\/N) v 2\/N ](Z;éz) J ( )
in the PM or spin-glass phases, say, s; = =1 with equal probability

One can use a Gaussian pdf

P(Ji;) = (2mo?)~1/2 exp[—J,L-Qj (20%)] with o> = J?/N



Mean-field theory

Fully connected Ising models

Even more general models (recall the K-sat problem)
Hyl{si}] = =3 > Jijusisjs,  with Ising variables s; = +1
i#j 7k
(1) scaling of the local fields = scaling of J;,,

In the p = 3 Curie-Weiss ferromagnetic case

TS s = O(1)

such that h; ~
AN p—1
ZNP™ k(i)

Jijk = N1

in the two ferromagnetic s; = 1 V72 or s; = —1 V7 phases

In the p = 3 disordered case

J J
————) suchthat h; ~ Y. sisp =0(1)
VNP /NPT ity

in the PM or spin-glass phases s; = =1 with equal probability

Jz’jk = O(



Randomness

Properties

— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {1 }
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen
— Quenched disorder : static pdfs of couplings

Gaussian pdf of .J;; with 0 = J*/N
— Self-averageness

limpy oo = limpy_yoo [PP

— Complex free-energy landscapes

fquenched]



Randomness

Properties

— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {1 }
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen
— Quenched disorder : static pdfs of couplings

Gaussian pdf of J;; with o = J*/N
— Self-averageness

limpy oo = limpy_yoo [PP

— Complex free-energy landscapes : beyond Ginzburg-Landau

fquenched]



Mean-field theory for PM-FM

Fully connected Curie-Weiss Ising model

Normalize .J by the size of the system /V to have (1) local fields
J
= —55 Zi;éj sisj — h) ;s

The partition function reads 2 = f_l du e PN with Ny = 57 s,

f(u) = —Zu® — hu+ T [L5¢ In 12u 4 12w o)

Energy terms and entropic contribution stemming from N ({s; } ) yielding

the same u value.

Use the saddle-point, limy . fx(5J, 5h) = f(us,), with
ugy, = tanh (BJug, + fh) = (u) =m
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Ginzburg-Landau for PM-FM

Continuous scalar statistical field theory with local aspects

Coarse-grain the spin

O(r) = VF_l Z’L'EV,,—: Si
Seth =0

|

The partition function is Z = f Do e PVEP) with 1V the volume and

f(¢) = [dir {1[Vo(P)? + 5520*(F) + 36" (M)}

Elastic + potential energy with the latter inspired by the results for the fully-

connected model (entropy around ¢ ~ () and symmetry arguments.

Uniform saddle point in the V' — oo limit : ¢, (7) = (o(7)) = m
The free-energy density is limy . fi/ (3, J) = f(@s))



2nd order phase-transition

Continuous scalar statistical field theory

bi-valued equilibrium states related by symmetry

upper
critical ===~ 2|  |.....
lower =====+f" + | | Tl
f N -
o) g
Ginzburg-Landau free-energy Scalar order parameter

g=pJ



Features

Spontaneous symmetry breaking below 7.
Two equilibrium states related by symmetry ¢ — —¢
The state is chosen by a pinning field

If the partition sum is performed over the whole phase space (¢) = 0

(a consequence of the symmetry of the action)

Restricted statistical averages, running over half phase space, yield

(@) # 0

Under a magnetic field the free-energy landscape is tilted and one of

the minima becomes a metastable state

The barrier in the free-energy landscape between the two states
diverges with the size of the system implying ergodicity breaking



Features

The function(al)s f(u) (f(¢(7))) are large deviation function(al)s determi-
ning the probability of finding an equilibrium system with . or ¢ (7°)

NT

The system spends i1 >~ ¢ " close to each minima and it makes rapid

transitions between the two
These results were not fully accepted as realistic at the time
Recall. the discussion on phase transitions & ergodicity breaking

With p > 2-uplet interactions one finds first order phase transitions (rele-

vant for glasses & K-sat like problems)



MFT for disordered spin models

Fully connected SG : Sherrington-Kirkpatrick model
lg=4

H=—3 D izj JijSis; — 2 isi

with .J;; i.i.d. Gaussian variables, [.J;;| = O and [J;;| = J°/N = O(1/N).

One finds the naive free-energy landscape

({mz} QZJz]mzm] _I_ TZ 1—|—mz lﬂ 1‘|_mz _I_ 1— mz ln ms
1#£] 1=1

and the (naive) TAP equations

that determine the restricted averages 1m; = (s;) = 1M,




MFT for disordered spin models

Fully connected SG : A simple proof \Bg "

The more traditional one assumes independence of the spins,

P({si}) = 11;pi(s:)
with p;(s;) = 2526, 1 + %0, 1 = ik Sé-IYhL
and uses this form to express (H) — T'(S) with S = In N/ ({s;})

The energetic contribution is straightforward to evaluate

The entropic contribution is the one we already computed for the Curie-Weiss

model, taking care of keeping the indices

A more powerful proof expresses f as the Legendre transform of — /3 F'(h;)
with 1m; = N~ L0[—BF (h;)]/Oh; and takes care of a “problem” to be solved

in the next slides Georges & Yedidia 91



I (4
Awm smanr THe U tecwv
[ 4
Ps-enmaﬂ gonee'S 2wl Aw %%fa”
LeC , Hene ’

o A R
N T~ ON Mu«y STATEG ToaA M
SONAeNeDd Y?*a T WrH  TAL F

ter's  penife THe
TAP eps.



EXeRruse on THE BlAckBoaaD

Pove w~NaNe TP ERS. Uswe
THe Facropizen pdf

L 0Bs5) - T pite)

QenenaAU WG THE one Tea THe  FM - MoBer

of o <
f' [S;): M' g&';,ﬂ_ + 4."_W'|. gg -1
2 2
oL
= A+mS:
57
WHAT S o2 i ageas " Puve sTATES
- RPH
z

1

); w, P%(3%%)
‘L WeieHT OF Pune STATE &

c_?(p M T<Te =12 Wy = /o



THe VAWES TAked  BY wm?® Ditden 1w
+ Pune STATES

&
3. w M T2Te mp=lm|  Fea o

N‘?(= -—'Aul o ol=2

i A BEoNRENED CASe D;M.?(f AL £ 0

ANO N
N =y N ->p00

N /'6-87 Ao THe Followws  Solurion
A M ModeL
=D EXTEND TD DR e28efled ONE.



MFT for disordered spin models

Missing : the Onsager reaction term

These equations are not completely correct. i

The Onsager reaction term is missing. < )

This term represents the reaction of the spin 7 to itself

The magnetisation in 2 produces a field h;(i) = Jjim; =J;;jm; onspin j

This field induces a magnetisation m;(i> =Xjj ;.(Z.) =j-Jijm; on the spin J.

This magnetisation produces a field h;(j) = Jijm;.(z.) =Jijx;;Jijm; on site i.
The equilibrium fluctuation-dissipation relation between susceptibilities and connec-

ted correlations implies x;; = 3 ((s; —(s;))?) = (1 —m?) and one then

J
has h;(j) = B(1 —m3)J m;
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MFT for disordered spin models

The Onsager reaction term

The idea of Onsager — or cavity method — is that one has to study the ordering

of the spin 7 in the absence of its own effect on the rest of the system.

The total field produced by the sum of h;(j) = B(1 — m?)J%mZ over all
the spins 7 with which it can connect, has to be subtracted from the mean-field

created by the other spins in the sample, i.e. the total local field should be
hio¢ = Z Jiymj — Bm Z J2 1 —

recall that .J;; = O(1/+/ V). Finally, the TAP equations read

m; = tanh{ Z [6Jijmj — 52miJ¢2j(1 — m?)} }
7 (#1)



MFT for disordered spin models

Orders of magnitude

The Thouless-Anderson-Palmer (TAP) equations read
m; = tanh{ Z [ﬁ(]@]m] — 52m2J5(1 — m?)} }
j(#1)

The first term in the rhs > ;) Jijm; = v N = O(1) because of the

2~

central limit theorem.

1
The second term > ) J2 (1 — ) ~ N = O(1) because all terms

in the sum are positive definite (11, < 1 V)

Exercise K A
Check that in the Curie Weiss model .J;; = J/N < ) (/ \\.k

there is no need of Onsager terms



MFT for disordered spin models

Orders of magnitude

The Thouless-Anderson-Palmer (TAP) equations read

m; = tanh{ Z BJiym; — 52mz‘Ji2j(1 - m?)]}

3 (F#4)
1
The first term in the ths ) _ .,y Jijm; =~ \/—N\/N — (1) because of the
central limit theorem.
1
The second term > .y J,L-Qj(l — m?) ~ N = O(1) because all terms

in the sum are positive definite (11, < 1 V)

Recall that m; = (s;)



MFT for disordered spin models

Orders of magnitude

The Thouless-Anderson-Palmer (TAP) equations read

m; = tanh{ Z [ﬁl,;jmj — 52mz‘Ji2j(1 — m?)} }

3 (F#9)
1
The first term in the ths ).,y Jijm; =~ \/—N\/N — (1) because of the
central limit theorem.
1
The second term > ) ij(l — m?) ~ N = O(1) because all terms

in the sum are positive definite (11, < 1 V)

Exercise
Check that higher order loops are negligible, (/ \&.k
since sub-leading in powers of /V 3 o
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Landscape

Free-energy density at fixed randomness

The TAP equations are the extremization conditions on the TAP free-energy

F'*P({m;}) = ——ijjmzmj Zﬂ (1 —m3)(1 —m?)
i 7] wﬁj

In + In

1+ m; 1+ m; 1 —m; 1 —m;
T
iy S

Ms - low ms

Free Energy

Conformational coordinate

At low temperatures {mz}



Summary

Local & global order parameters
m; = (S;)
—Qatl >1.
~0atl < T,
Magnetization

m = % Z m; = 0 at all temperatures

7

Edwards-Anderson order parameter
dEn = N Ez_i(m?f =3 ;Mi
—Qat/ " >1.
~0atl < T,



CAW"Z MeT#on

' SHNS
TAks 4 %Z«t'rm WwTH
Sl‘ £= 11"'1/\/

N ERUL. WTH 4 BATH AT heT

~ (B B35
B (s8) = AR

) S
ADD onle C‘A\/ﬂy SOHN o

2 ComveeT T 70 THe otHen. NSPws



., [%364]= Hy [3s47- & <

N

ol
=4 1 1 Jpe ss
2 h=o leo e <k ¢

Cete)

WITH THE Locat AELD AcTMG oal So

EPULItrRAym ofF THe S'a'c'r of AN+ SPnS

P [Se.3¢:§]) = 4 e-(');u"'” [s0,§8 ]
ot

— H‘N-H [90‘33"5]
el



Joinr Pack. of (o, Ro )

Plsole) = S(ﬁo._ P 3; Zﬂ XS 5]
N %gaiﬁ d

— (é'uw-H [%39;6]
Z

AS AROVE

Ro locse FeEwn
ClenTes
N seas 4§}

we Oeline :EN ( aoj A EQRUIL \M“r'ﬁoduv’ So

B)=X  §(f-T Fs)R D]
Dﬁ{zi's &\.'

3“ [%QS]; e-—(L-L\m[%%LJ
! Z,




GowGE- BAck TO —[?\OH (J‘a,ao) ABoE AnD
VSNG THS TERNT N

‘eoS'o
J?N-H (en.S'O) = :Pn ['90) e,F _é
;[
CoMes Fiom “‘NH':'H‘N“ Ro So

Tue RATIO of PANT Funcrious is

PN —H 5547 + Bl So
¥-H ’Jf)"é'.(} s%::n € (L " l& F

2w Y ~ R4 1367

N =41 <

;7)%‘*'5 e——(-’*‘hf?ﬂ'ﬁ] ZCQ(LQO

~ B 1347

ety €



N
Recau THar o= L Toi s Devenns

| = J
o The 39‘3 “ NS'P/N J(\;x'rsm

= < 2d (zﬁo>N

S AVerutee
oven. N-Iw

éJ("TE*M
THeN

:B\Hl (emgo) = IM ('eo) e
<2ch (2% %

(5%0 So

NOE  THAT So s avy w0 exp Facral.

AUENAGE of THe CAW/? SON S
N+H - Sy&‘TBM
Two WA*(’& o~ WRITIVG



4So Yy
o Vs =
pu So ~PN+I Lo, 3%5\]

o= Jg=1g

- L
go N dao Z['Ro So) So

DN
=, So S&P,w (o) Q(;&,so
< 2cb (2>J«?w>M

o (a0 Bi) o
| S,
<2k (2ho ) £

{ S
o g

ANENA GE
¢ /\:)f— e Llocat H
+H SPn Syﬁ"l'El”lELa gﬂ ’w



490> = DI 2 [se §5¢ 1

M So=12I 39.' i'j

S&&p Botho) of Mo%
< 2el (5‘&0 3

h

So= £l

_ Jdao Put0o) ho 2 (R0
< 2ch (o Dy

<R, 2w = S *Qodm(lgw >n
< ko 7y

StAn<Stes of tocac Few 'Qo

N THe SZ&TEM witd N sSPwS

WE ANEED T TO CoMmfute THE
AVENAGET ABOVE <SSy & <ho Dwss




N
<Qo?\, = X ;Y“ 2S5,
J=‘ 1

< <g‘eo)l>n = Iid::‘;i IJ 4SS Sgd>ﬂ

gg; = g,‘ —<g">"

Now USE onoenl OF MAGA of 7;;'3
DePend on MOBIL AT HAm0.

Sk MoseL  Joi & L [%]=0

\T
NB  Jo: ,ILJ‘ ano £ 8S; S'S’)' O iaeP
- ¢
dov & SeE So

( & PN Na  Asume



ConrrfLib !#J : I». zo] 2GS SS' >
™o aechetsc it

L/v\l\/- \r N WouLd ge (1)

SQ. RooT Because oF IS%/V\S.

ke owiy =i conmia o (SR )

A
<(§Ro) >, ~ ;J;; FL LSS ED>,
- T 7 ((sh\, -49;>2>
l N N
3"2 Q-— L I<¢:>z )
N T n

1
(), = 7y

J

1]




ASSUME  (S4ussran  STarisrics

2

(E — (ﬁﬂ‘- 4RO>~ )
“+nl (Qo) = 4 (=) 2((99‘0')2>
Va0 ’
WiTH A4veEnAGe 4wod DsPencion Eivew
ARo\E
TAP eEns

WE HAD DeENIVED

{Se %y = & sh o Sw
<l B Sy

WE CAw AW USE _EN (QQ) 10 ©VAWATE
Tdc AVeENABeS

s o dho Talta) sh@ho




2
.g di e’-é{“'%ﬂ e G%-Q—Gﬁ
(owe” z .
—(z-¢a>)? -
du 5o pz (2
Vore? e e
2
=__) ole TeaM
2
5 — (3-¢27) 7N
e(é Jd% e 267 N (Zé )
\one?
2,2
- (M&> iz?— CoMPrering
e e THE Spuane

m THe ExP.
Ap THes SAMe <SrlucT
W AU TEMMC rv UM R e

TS



i . (Me) - /5&2—>

. (5&-2% . e—(56%>

A<= H (54-2>

BACk 0 ‘PloB\eM

THe oTHen Un‘envownN

2 B0 < %c&p&,w

. < ko 4



—
-

é_‘% ‘SN" Q-AMo-zzfg,;o {z l, (wo _.(suo'-(

(oh & C A% )~ [ee‘%o... e'M"]

2 £(&ho)*>

dfo
\( 2w 4he)*s

Df, =

Exendse

Th=e Wu Bt A ComMon Facrofl

¢BoSy
c 2 £(Eh)’ > CoMNG- Flom AU
TEwWMS =>
‘m?a CANCEL

[e ( +<<C5ﬁo\?) @a"z % Fea.-F)]

¢Roda \ C(Sho
e ( " < (EhoY >) 2 +q>e-a.-F)]



TAkNG THE DElvaTive =p Theroag  ra Aumenaren

Ro Dy
[(’34- 240 ) ¢ () >, ( +<<(m ) >~
<CSRo)z>,,,
+ (B =
(!:2 4(8’&0\2 >N + (‘ew>:
e & 2 ¢ (Bha)2 5

[({MC&% +¢%,>,, e #,42,3,. -r—([b—»—(s)]

5 )3y 4 Choda
= € 2 2 LCARY

[/b <@&a§2 e 2 %Awﬂ) + Choy z%d’wm)]

Dol NATOR

(32 4@,)2>,, + 480>,,,2
- e 2, 2 2 ch (Acé{oz,,




Mw"l (;,—xp tacoes \ | WHAT Remains

¢S = WA AEMaswI
= <ol i peloby + chony
o~
<SSy

Lo = (J((Seo)2>~ 2SSy +ho,

LS = 2hodun (av’ (1-94) <S>
NH



¢ RoSnrg

<hoy + /6<(SR0)2>N £So Spy

Kow M‘W THS 710
<g°>N+I = M@i?m}q
= ‘,'9\ (D 'Qw>~+| —(‘ST‘Z[I-Q,)490> ~+|>

= 4 (33 (3:33 <<l' ?\m —(b':rz(l-gf) 2% >m_,>

-Lk(%( » dt\m\ (BZ((l—gr)/m>

The T2P ews Y/ Reacriov TEnm



Today’s Plan

How do we know that the TAP equations are correct ?
Phase transition in the SK model

Back to landscapes

Statistical averages

Real replicas

Replica method



MFT for disordered spin models

Phase transition

2 L1721 — 72 T
For large V' one expects .J;; ~ || = J/N with J = O(1)

Simplification m; = tanh {B Zj(#i) Jijm; — BQWiJWZ (1 - m?)}
j(#1)

A 2nd order phase transition = m; ~ 0 at’[’ N T, then using tanh y ~ vy
The TAP equations become 11; ~ 3> ;) Jijm; — B32J*m;
Diagonalize this eq. going to the basis of eigenvectors of the Jij maitrix

The egs read 1m ) ~ B(JA - 6J2>m>\

The notation we use is such that

J\ is an eigenvalue of the .J;; matrix associated to the eigenvector v

—

M., represents the projection of 172 on the eigenvector Uy, m = Uy - m

with 172 the /N -vector with components m;, 1. = (my, ..., my)



MFT for disordered spin models

Phase transition

If we add a weak external field the eqs read 1\ ~ [3(Jy — BJ%)m + Bhi"t
The variation with respect to the field at linear order is

8mA
Ohs*

6’mA
Ohs

and the staggered susceptibility (of the projection on 7))

+ 5

}_iext :6

= B(Jx — BJ7)

ﬁext :6

Random matrix theory tells us that the eigenvalues of the random matrix Jij —
O(1/+/ N ) are distributed with the Wigner semi-circle law and the largest ei-

genvalue is J"** = 2.J

The staggered susceptibility of staggered magnetization in the direction of

the largest eigenvalue diverges at ../ = 1 the correct value




MFT for disordered spin models

Phase transition

If we add a weak external field the egs read m ~ (5(J) — 5J2)m>\ + Bh‘;\Xt
The variation with respect to the field at linear order is

6’777,)\
OhSXt

am)\
— B(Jy — BJ?
flext:6 /B( >\ 6 ) ahi}(t

P

hext :6

and the staggered susceptibility (of the projection on 7))

8m,\

0= G| =B (1=Bh+ ()7

—

hext :6

Random matrix theory tells us that the eigenvalues of the random matrix .J;; are

distributed with the Wigner semi-circle law
For J;; = O(1/+/ N ) the largest eigenvalue is J\"** = 2.J
The staggered susceptibility for the largest eigenvalue diverges at 5..J = 1

Without the reaction term the divergence is at the inexact value 1™ = 27,
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Today’s Plan

How do we know that the TAP equations are correct ?
Phase transition in the SK model

Back to landscapes

Statistical averages

Real replicas

Replica method



Landscape

Free-energy density at fixed randomness

The TAP equations are the extremization conditions on the TAP free-energy

Om; t
. . - . 52Fjap({mi}>
The stability of the solutions is determined by the Hessian

om;omy,

Ms - low ms

Free Energy

Conformational coordinate

At low temperatures {mz}
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Features

At fixed randomness

There are N local order parameters, m;, 1 = 1,..., N
The saddle-points are heterogeneous: 1m,; differ from site to site
At high temperatures only one trivial solution {7; = 0}

At low temperatures the TAP equations have many solutions {2, }, which

are extrema of the TAP free-energy landscape, i.e. saddles of all types,
a=1,...,N;

For each solution {1m;“ }, there is also { —m;“ } but apart from this trivial

doubling, the remaining solutions are not related by symmetry

The TAP free-energy can take different values at different {1m,“ } = f toép



Features

All this is reshuffled for another realization of disorder

Still /V local order parameters, m;, 1 =1,..., N

The TAP equations have other solutions {72;“ }, extrema of the TAP free-

energy landscape, F}ap, labelledby ov = 1,... . N7

1 N
A global order parameter ? The simplest guess N Z ms' cannot be since
1=1

it is = 0 One expects as many positive as negative 11;s and similarity in

all respects. Another try
1 N
=g

“Typicality expected” (though see below for equilibrium states)



Features

Numbers of metastable states

N local order parameters, m;, 1 =1,..., N

The TAP equations have many solutions {mzo‘} extrema of the TAP free-

energy landscape, « = 1, ..., N}

One can count how many saddles of each kind exist and their complexity

N 1
Ny 22:1;[1 f_l dm; d(m; — m) M ln/\/{r
how many of tﬁése at each level of free-energy density, by inserting a delta-

function 0 ( [P ({m$}) — f) = N (f)

How many with a given stability N ( f, /) with /' the number of positive

eigenvalues of the Hessian, with adequate delta-functions
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Statistical averages

At fixed interactions

The average of a generic observable is

(0) = 2 o Wal0)a

In the FM case, each state ((¢) = =+¢) has weigth w = 1/2 and the sum
s (0) = 2(0)+ + £(0)_ with (O) . the average in each of the states. For

2

instance, the averaged magnetization vanishes if one sums over the = states or

it is different from zero if one restricts the sum to only one of them.

upper
critical
lower

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FM case
The dashed blue line with
two minima =g

If we have many more ?



Statistical averages

At fixed interactions

The average of a generic observableis | (O) = > w,(O),

In the FM case, each state ((¢)) = =+ ¢() has weigth w4 = 1/2 and the sum
s (0) = 5(0)+ + £(0)_ with (O) . the average in each of the states. For
instance, the averaged magnetization vanishes if one sums over the == states or

it is different from zero if one restricts the sum to only one of them.

c?ﬁf;z FM case f+ — f —
ower —BNf+
o 1
f - T2
w4 6—5Nf_|_ + e_BNf— —+ G_BNfO N 2
,,,,,,,,,,,,,,,,,,,,,,,, e—BNfo
wo < W+

" BNy { o—BNf- 1 ¢—BNfo



Statistical averages

At fixed randomness

The average of a generic observableis | (O) = > w,(O),

For systems with quenched randomness w: =

where we added a super-script to the weight w

/ indicates that the weights depend on the the disorder realization

and , is a label that identifies the TAP solution

One can sum over all saddles irrespec-
tively of their stability. Higher lying ones

will be exponentially suppressed or

will dominate depending on > 7 ( f, /)




Statistical averages

At fixed randomness

The average of a generic observableis | (O) = > w,(0)q

: J e BNy
For systems with quenched randomness wy,

— J
Z,Y e—ﬁNf,y

The sum over ¢, in the case in which there are an exponential in /N number of

TAP solutions, can be replaced by an integral over f

(0) = 271(8, 7) [ df e PNTTTRAVEAT OF, )

N is the number of solutions to the TAP egs. with free-energy density f.

For N — o0 the integral is dominated by the saddle point
1 1 0lnNy(f, 5) 1 0% ;(f, )

S — lexit
T N of [T P

fop



Statistical averages

Consequences

The equilibrium free-energy | is given by the saddle-point evaluation of the

partition sum:

T

f:fsp_ Nlan(fspaB)

The rhs is the Landau free-energy of the problem, with fsp playing the role of
the energy and V! In A/ (£, 3) of the entropy

The contribution of the complexity or configurational entropy contribution is ne-
gative and in some cases higher lying extrema (metastable states) can dominate

the partition sum with respect to lower lying ones if In s (fs,,, 5) oc V

This feature is proposed to describe super-cooled liquids.



A global observable

Effect of multi-states

What is the expression of the global order parameter once one takes into ac-

count the multi-states ?

(\)

1

an overlap between different states

and | Ps(¢') = 3 wiws 6(¢ — qap)

we obtain q = % Z<3i>2 = qu/ PJ(CI/) q




Today’s Plan

How do we know that the TAP equations are correct ?
Phase transition in the SK model

Back to landscapes

Statistical averages

Real replicas

Replica method



Real replicas

Overlaps between replicas

Take one sample and run it, with e.g. Monte Carlo, until it reaches equilibrium,

measure the spin configuration {s; }.

Re-initialize the same sample (same Jz-j), run it again until it reaches equili-

brium, & measure the spin configuration {o; | .
Construct the overlap s, = N ! Zf\il S;0;.

In a PM system the overlap will typically vanish as, say, N—1/2

upper
critical
lower

Many repetitions
for a system with /V > 1

..............

P(qss) = 0(Gso)




Real replicas

Overlaps between replicas

Take one sample and run it, with e.g. Monte Carlo, until it reaches equilibrium,

measure the spin configuration {s; }.

Re-initialize the same sample (same Jij), run it again until it reaches equili-

brium, & measure the spin configuration {o; }.
Construct the overlap s, = N ! Zfil $;0;.

In a FM system there are four possibilities

. . . . . . N
. N . ° . L . "
. " . N . N . N
. . .
. . . .
. . . .
B 5 2 e L - - ) e N e ) s. f) . La R T
. . & - - . . .
Can?® tav MU R Taw Cas?® Tasw M R Yaw

(ow = m2 2 2

Many repetitions | P (¢s,) = 50(qso — m?) + £0(qse + m?)




Real replicas

Pdf of overlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with N = 4096 at 7" = 0.4 T,

Hyl{si}] = —3 ; Jijsis;
i#J
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Real replicas

Ooverlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with NV = 4096 at’/" = 0.4 7,

Hjyl{si}] = —% > JiiSis; Iso = % Z Si0; Pi(qs0)

)
2 peaks 8 peaks 4 peaks
1600 1400 N 1200
1400 1 - 1200 ) | .
1200 ! ‘J“A ) [f 1 I ‘J (2) i 1000 LJ (3) P N
‘ 1000 ‘ .
1000 1} [ 800 [ 50 f |
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Data in each panel for a different realization of the random couplings

Each sample has peaks at ¢, = =qpa >~ £0.75:

two configurations in the same (or the spin-reversed) state




Real replicas

Overlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with NV = 4096 at’/" = 0.4 7T,

Hyl{si}] = —3 ; Jij5i8; Iso = ~ D $i0i Pr(qso)
177 i
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Data in each panel for a different realization of the random couplings

0.75 >~ qra < 1 and the width of the peaks at ¢s, = *=grA:
dueto O < 1" < I, and finite /V, respectively




Real replicas

Overlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with V = 4096 at 7" = 0.4 T,

Hjyl{si}] = —% Z JijS8iS; Iso = ~ Z Si0; Pj(qs0)

7]
2 peaks 8 peaks 4 peaks
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Data in each panel for a different realization of the random couplings

Most samples also have peaks at ]qsa\ < gEA:

replicas {s; } and {o; } falling in different states




Real replicas

Overlaps between replicas at fixed randomness

SK model with NV — oo at’l' < T,

PJ (q)

EA

EA

What happens if one averages PJ(q) over disorder



Real replicas

Disordered averaged pdf of overlaps P (q) — [PJ(q)]

Parisi 79-82 prescription for the replica symmetry breaking Ansatz yields

PM ——

M ——

High temperature

FM

p-spin

|

-1 -Qea

0

Jea 1

Structural glasses

SK ——

'\J

-1 -Gea O Jea 1
q

Spin-glasses

Thermodynamic quantities, in particular the equilibrium free-energy density are

expressed as functions of P(q).
The equilibrium free-energy density predicted by the replica theory was confir-

med by Guerra & Talagrand 00-04 indepedent mathematical-physics mthods.



Today’s Plan

— How do we know that the TAP equations are correct ?
Phase transition in the SK model

— Back to landscapes

— Statistical averages

— Real replicas

— Replica method
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Typical vs. averaged

TAP vs. Replicas

Precursors

Look at an integer parameter n,

and its 7 — 0 limit

In 1972 Fortuin and Kasteleyn studied the Potts model with 7 components :

n = 2 Ising
n = 1 percolation

n = 0 random resistors

Use the identify 2" = exp(n In x) and expand around 2 = 0 :

lim, 02" =1+ nlnx + O(n?)



Replica method

A sketch

Bl = fim ENBD gy RG]

N —00 N N—00 n—0 Nn

Z v partition function of 7 independent copies of the system : replicas.

Gaussian average over disorder : coupling between replicas

> a Zi;éj Jijsis; = Zz‘;«éj ( a 3?5?)

Quadratic decoupling with the Hubbard-Stratonovich trick

1
ab 15?32? T §Q62Lb

()1 is @ 0 x 0 matrix but it admits an interpretation in terms of overlaps

2

The elements of (), can evaluated by saddle-point if one exchanges the
limits V. — oo n — Owithn — 0 N — oo.



Replica method

In more detail

Z  partition function of 7 independent copies of the system : replicas.

Z}%f(ﬁw]): Z Z e_ﬁzgzlzi#‘]@'ﬁ?s?

(sW=t1}  {W=t1}

\

-~

notation Tr{sg}

One can exchange the order of the trace and the average over disorder

[Z]?%f(ﬁv J)} — Tr{sf;} f 1;[ dJZJP(JZ) 6_52321 2 iy Jijsis]
7]

Z3(B, )] = Trggey e PHenllst)

H.i|{s?}| does not have any randomness but couples the replicas

S iy Jigsist = S (3, s8s9)°




Replica method

In more detail

238, )] = Triey e~ PHealst]

Hg|{s?}] does not have any randomness but couples the replicas
2
a oa _ a oa b b a b a b
Zz’;éj ( a % Sj) = Zi;éj D0 Db Si 558;5; ~ D ab 2i 5§ S Zj 555

One sees (), here, introduce their definition via a delta or apply Hubbard-

Stratonovich
Once this done, one can exchange the trace (the sum over spin configurations)

and the integral over (),;, and end up with

(Z7(8, J)] o fHabdQ peF(Qab)



Replica method

For the SK model

Qab = qapand p = 2

2 72
P (Gw) = _N62J !_qub-i-n

a#b

C(Qab) = Z e_'BH(QGb,Sa) ,
H(qab’ Sa) = —J Z QabSaSb — h Z Sa
ab a

o NlnC(Qab) 3




Replica method

In more detail

Z3(8,J)] = Trisa) e~ BHea[{s{}] ~ f L. anbe_F(Qab)

Heg|{s?}] and ()4 do not have any randomness but couple the replicas

The elements of ()., can be evaluated by saddle-point if one exchanges the
limits V. — oo n — Owithn — 0 N — oo.

At the saddle-point level one identifies ()77 = N~ 1(>". s7s?)

()

The spin glass transition is from the paramagnetic state with Qa# = O toa

spin glass state with (), # 0 as the temperature is decreased.



Replica method

SK model: replica symmetric Ansatz

Permutation symmetry between replicas =
Insert (), = g and (), = 1 in the effective Hamiltonian

Saddle-point with respect to ¢ and n — 0

o0 z —Zz 2
q = f_oo j% e~ /2 tanh (BJ\/@Z)

Note the similarity with the equation for 12 in the Curie-Weiss model

g=0forl'">1T.=J
qg#0forT'<T,.=J

Problem | Is this solution stable ? No
Problem Il Does it have a zero-temperature vanishing entropy ? No

Problem lll Ground state energy density ¢ = —0.77 == 0.01 while the replica symme-
tric value e = —0.798, is three standard deviations smaller (in units of .J)



Replica method

SK model: one step replica symmetry breaking

Permutation symmetry broken

n X n matrix divided in diagonal blocks of size m X 1 and the rest



Replica method

SK model: one step replica symmetry breaking

Problem | Stability : improved but not solved
Problem Il Zero-temperature entropy : improved but not solved

Problem Ill e closer to numerical value



Replica method

SK model: two step replica symmetry breaking

Permutation symmetry broken

mo m1 n —mi

q2|__ 1
Tl 4
9, 4, qO
(o]
0
(0]

q qz:
0 ---:-q-z g,
_ a )

n X n matrix divided in diagonal blocks of size m9 X M9, and the rest in blocks

of size M1 X m1 and the rest



Replica method

SK model: two step replica symmetry breaking

4
A
q} %) qO
0
(0]
(o)
qO g,
192
_ a )

Problem | Stability : improved but not solved
Problem Il Zero-temperature entropy : improved but not solved

Problem Ill e closer to numerical value



Replica method

SK model: full replica symmetry breaking

Blocks of size m; with parameter g;
e.g. for replica symmetric case one block a single g.
o0 number of breaking steps, that is, of blocks

m; — x and the parameter ¢; — q(x)

zf(;ldwq(w)zfg—xdqq quP

dx
dq

with | P(q) =

Problem | Stability : solved

Problem Il Zero-temperature entropy : solved S = 0
Problem lll e in agreement with numerical value
within numerical accuracy e = —0.7633
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