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The random field Ising model (RFIM) is defined as

Hh[{si}] = −J
∑
〈ij〉

sisj −
∑
i

hisi , (1)

with si Ising spin variables, J > 0, the sum running over nearest neighbours on a lattice
and each couple counted only once, and hi i.i.d. random fields taken from the Gaussian
probability distribution

P [{hi}] =
N∏
i=1

p(hi) =
N∏
i=1

1√
2πσ2h

e−h
2
i /(2σ

2
h) . (2)

General properties

1. Do you expect the free-energy density of this problem to be self-averaging?

2. It is convenient to rescale the random fields via the definition hi = σh ηi, with σh > 0.
What is the distribution of the ηi? In the following we will use this rescaling and
study the model

Hh[{si}] = −J
∑
〈ij〉

sisj − σh
∑
i

ηisi , (3)

with the ηi distributed in the way determined at the beginning of this question.

3. Consider the particular case σh = 0, which phases do you expect? And in the opposite
limit σh → ∞? Guess a topology of the phase diagram (T/J, σh/J) based on these
two limits.

4. Recall the Imry-Ma argument explained in the lectures. For which dimension d do
you expect the phase diagram guessed in the previous item? We could not discuss
this argument so avoid this question

5. Consider the mean-field limit in which we modify the first sum and we make it run
over all pairs of spins 1/2

∑
i 6=j . . . How does one have to rescale the ferromagnetic

coupling strength J to have an extensive first term?

The free-energy density according to the replica method

We will now calculate the disorder averaged free-energy density of the model defined
on the fully-connected graph with the replica method [1].
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1. Write −βN [fh] = [lnZh] using the Taylor expansion of the lnZh, where the square
brackets indicate the average over the quenched random variables for the Hamilto-
nian in Eq. (3).

2. Write the replicated partition function Znh for integer n.

3. Compute its average over the random fields {ηi}.
4. Have you introduced an interaction between the replicas by averaging over the fields?

5. What is the role played by the ferromagnetic term until this point?

6. To go beyond, we will change the ferromagnetic interaction from the nearest neigh-
bour (finite dimensional) one to the fully connected one (we are changing the mis-
croscopic model to make it Curie-Weiss-like). Use then the Hubbard-Stratonovich
(HS) identity or Gaussian decoupling

eλb
2

=

∫
dz√
2π

e−
1
2
z2+(2λ)1/2bz (4)

to decouple the site interaction (that is to say, to render the ferromagnetic term in
the exponential one in which a sum over a single site index appears). Note that the
one needs to use one HS identity per replica and that after performing the trick, the
site interaction has been traded for a replica interaction.

7. Rewrite the result as

[Znh ] =

(
1

2π

)n/2 n∏
a=1

∫
dza e

− 1
2

∑n

a=1
z2a+N lnZ1({za})

Z1({za}) =
∑

{sa=±1}
e

√
βJ
N

∑n

a=1
saza+

(βσh)
2

2

∑n

a,b=1
sasb

(5)

8. Rescale the auxiliary variables za in such a way to get an overall N factor in the
exponential and to render the single site partition sum Z1({za}) independent of N .

9. Now, we have rewritten [Znh ] is a form that is apt for evaluation using the saddle-
point or steepest descent method, in the limit N → ∞. Note that this step implies
an exchange of limits limN→∞ limn→0 = limn→0 limN→∞. Write the saddle-point
equation for the n auxiliary variables za and prove that these are proportional to
the spin average over the partition sum Z1, z

ext
a =

√
βJ〈sa〉Z1 .

10. Assume that zexta is independent of a. Decouple the replica indices in Z1(z
ext) intro-

ducing another Gaussian decoupling.

11. Compute the sum over the replicated spin variables sa and deduce the form taken
by Z1(z

ext).

12. Now, we arrived at a point at which the limit n→ 0 can be easily taken. Do it.

13. Replace the zext by
√
βJm, as from one of the items above we know it is proportional

to the averaged spin.

14. Show that the disorder averaged free-energy density is given by

[fh] = Jm2 − kBT
∫
dω p(ω) ln(2 coshβ(Jm+ ω)) (6)

with the magnetisation density m determined by

m =

∫
dω p(ω) tanh(β(Jm+ ω)) , (7)
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with p(ω) the Gaussian probability given in Eq. (2) (for any of the local fields).

15. Find the paramagnetic solution. Determine the range of parameters for which it is
stable.

16. Is there another solution of ferromagnetic kind, that is to say, with m 6= 0? For which
parameters?

17. Find the phase transition between paramagnetic and ferromagnetic solutions in terms
of the dimensionless variables (T/J, T/σh).

18. What happens at zero temperature? Is there an ordered low-temperature phase?

19. Deduce the order parameter critical exponent m(T ) ' (Tc−T )β. Is it modified with
respect to the mean-field value for the clean system?

The naive mean-field equations

Let us come back to the finite dimensional model defined on a regular lattice and study
it with a mean-field approximation [2]. Assume that there are N local order parameters,
mi = 〈si〉 and that the joint probability function of the spin configurations factorises and
takes the form

p({si}) =
N∏
i=1

pi(si) p(si) =
1 +mi

2
δsi,1 +

1−mi

2
δsi,−1 . (8)

1. Verify that pi(si) is normalised.

2. Compute the expected value of the Hamiltonian (1) and write it as a function of the
local order parameters {mi}.

3. Express the entropy S =
∑
{si=±1} P ({si}) lnP ({si}) as a function of the local order

parameters {mi}.
4. Combine the two expressions derived above and build the random-field dependent

free-energy density fh({mi}).
5. Write the N equations that extremise the free-energy density.
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