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2 PHASE TRANSITIONS

2 Phase transitions
Take a piece of material in contact with an external reservoir. The material will be

characterised by certain global observables, energy, magnetisation, etc.. To characterise
macroscopic systems it is convenient to consider densities of energy, magnetisation, etc, by
diving the macroscopic value by the number of particles (or the volume) of the system. If
the system is coupled to its surroundings, this external environment will be characterised
by some parameters, like the temperature, magnetic field, pressure, etc. In principle,
one is able to tune the latter and measure the former as a function of them. In isolated
systems, the temperature can also be defined from the entropy-energy relation following
the microcanonical prescription, and it can be used as one of the axis in the phase diagram.

Sharp changes in the behaviour of macroscopic systems at critical points (lines) in
parameter space have been observed experimentally. These correspond to phase transi-
tions [1, 2, 3, 4, 5, 6, 7, 8, 9], a non-trivial collective phenomenon arising in the thermo-
dynamic limit, N →∞ and V →∞. Phase diagrams as the one in Fig. 2.1 are used as a
visual help to identify the global behaviour of a system according to the values that the
order parameters (relevant observables) take in different regions of variation of the control
parameters that give the axes to the phase diagram.

Figure 2.1: A quite generic phase diagram.

The phase diagram in Fig. 2.1 is bidimensional: the temperature-pressure plane. Both
temperature and pressure can be thought of as parameters externally controlled. In recent
years, it has become popular in atomic physics, in particular in cold atoms experiments,
to work in isolation and study the statistical properties of the systems for different values
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2.1 The standard models for magnetic systems 2 PHASE TRANSITIONS

of the relevant coupling constants in the Hamiltonian, which can be tuned with smart
experimental techniques.

Macroscopic models of agents in interaction may have static and dynamic phase tran-
sitions. The former are the usual ones studied with statistical physics methods. For
example, in the canonical ensemble, one finds the phase transitions by looking for non-
analyticities of the free-energy density (or another relevant thermodynamic potential) as
a function of the control parameters, say just β = 1/(kBT ),

−βf(β) = N−1 lnZ(β) with Z(β) =
∑
C

e−βH(C) (2.1)

where C represents all the system configurations. One is interested in identifying the
order parameter (in some cases this is easy, in others it is not), finding the critical curves
of the control parameters in the phase diagram, studying the critical phenomenon that
is to say the behaviour of the order parameter and other properties close to the phase
transition, etc.

Dynamic phase transitions correspond to sharp changes in the dynamic evolution of a
macroscopic system. We will not discuss them in these notes.

Mean-field theories have been notably successful in capturing much of the global be-
haviour of many macroscopic systems. Of course, they cannot reproduce the details such
as the functional form of the order parameters or the peculiarities of the critical phenom-
ena. Still, they are notably useful to understand what is going on and get a first feeling
of the quantitative behaviour of real systems.

We showed in the figure a phase diagram of a particle system with the usual gas, liquid
and solid phases. For the sake of simplicity, it is better to discuss phase transitions in the
context of magnetic systems. This is what we shall do in the rest of this Chapter.

2.1 The standard models for magnetic systems

Let us analyse a magnetic system. The Hamiltonian describing all microscopic details
is a rather complicated one. It depends on the electrons’ magnetic moments giving rise
to the macroscopic magnetisation of the sample but also on the vibrations of the atomic
crystal, the presence of structural defects, etc. If we call α a microstate, in the canonical
ensemble its probability is Pα = e−βHα/Z with Z the partition function, Z =

∑
α e
−βHα .

It is, however, impossible and not necessarily interesting to keep all details and work with
all possible physical phenomena simultaneously. Imagine that we are only interested on
the magnetic properties, characterised by the electronic magnetic moments.

The Ising model is a simplified mathematical representation of a magnetic system. It
describes the magnetic moments as classical spins, si, taking values ±1, lying on the
vertices of a cubic lattice in d dimensional space, and interacting via nearest-neighbour
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2.1 The standard models for magnetic systems 2 PHASE TRANSITIONS

couplings, J > 0. The energy is then

H[{si}] = −J
2

∑
〈ij〉

sisj −
∑
i

hisi (2.2)

where hi is a local external magnetic field. Most typically one works with a uniform field,
hi = h for all sites. The justification for working with an Ising variable taking only two
values is that in many magnetic systems the magnetic moment is forced to point along an
easy axis selected by crystalline fields. We then need a model that focuses just on these.

There are two external parameters in H, the coupling strength J and the external field
h. J > 0 favours the alignment of the spin in the same direction (ferromagnetism) while
J < 0 favours the anti-alignement of the spins (antiferromagnetism). The magnetic field
tends to align the spins in its direction.

In finite dimensional cases, the spins lie on a d dimensional lattice that can have different
geometries. For instance, a cubic lattice is such that each vertex has coordination number,
or number of neighbours, z = 2d. Triangular, honeycomb, etc. lattices are also familiar.

The Ising model is specially attractive for a number of reasons:
(i) It is probably the simplest example of modelling to which a student is confronted.
(ii) It can be solved in some cases: d = 1, d = 2, d → ∞. The solutions have been

the source of new and powerful techniques later applied to a variety of different
problems in physics and interdisciplinary fields.

(iii) It has not been solved analytically in the most natural case, d = 3!
(iv) In d ≥ 2, it has a phase transition at a finite value of the control parameter T/J , an

interesting collective phenomenon, separating two phases that are well-understood
and behave, at least qualitatively, as real magnets with paramagnetic disorder at
high T/J and ferromagnetic order at low T/J .

(v) There is an upper, du, and a lower, dl, critical dimension. Above du mean-field
theory correctly describes the critical phenomenon. At and below dl there is no
finite T phase transition. Below du mean-field theory fails.

(vi) One can see at work generic tools to describe the critical phenomenon like scaling
and the renormalisation group.

(vii) The phenomenon of frustration is illustrated by the antiferromagnetic Ising model
on the triangular lattice.

(viii) Generalisations in which the interactions and/or the fields are random variables
taken from a probability distribution are typical examples of problems with quenched
disorder.

(ix) Generalisations in which spins are not just Ising variables but vectors with n com-
ponents with a local constraint on their modulus are also interesting. Their energy
is

H[{~si}] = −J
2

∑
〈ij〉

~si · ~sj −
∑
i

~hi · ~si (2.3)

with n = 1 (Ising), n = 2 (XY), n = 3 (Heisenberg), ..., n→∞ (O(n)) as particular
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2.2 Concepts 2 PHASE TRANSITIONS

cases. The local constraint on the length of the spin is

s2i ≡
n∑
a=1

(sai )
2 = n . (2.4)

Note that each component is now a continuous variable bounded in a finite interval,
−
√
n ≤ sai ≤

√
n, that actually diverges in the n → ∞ limit. When n → ∞ it is

sometimes necessary to redefine the coupling constants including factors of n that
yield a sensible n→∞ limit of thermodynamic quantities.

(x) One can add a dynamic rule to update the spins. We are then confronted to the
kinetic Ising model (or its multi-component extensions) and more generally to the
new World of stochastic processes.

(xi) Dynamic phase transitions occur in the properties of the system’s evolution. We
will not discuss them in these Lectures.

(xii) In the low temperature phase of clean models or even weakly frustrated/disorderd
ones, the progressive order is reached via domain growth, the simplest example of
coarsening.

(xiii) Last but not least, it has been a paradigmatic model extended to describe many
problems going beyond physics like neural networks, social ensembles, etc.

Note the difference between the two parameters, N and n. N is the number of spins
in the system. n is the number of components that each spin vector has. There is still
another dimension, the one of real space, that we call d.

2.2 Concepts

Let us now discuss some important concepts, symmetries, order parameters, pinning
fields, broken ergodicity and broken symmetry [1, 2, 3, 4, 5, 6, 7, 8, 9], with the help of the
concrete example of the Ising model. The discussion applies, though, in greater generality.

2.2.1 Symmetries

Let us treat separately the case of continuous and discrete symmetries.

Continuous

In the absence of an applied magnetic field the Hamiltonian (2.3) remains invariant
under the simultaneous rotation of all spins:

H[{~si ′}] = −J
2

∑
〈ij〉

~si
′ · ~sj ′ = −

J

2

∑
〈ij〉

RabsbiR
acscj = −J

2

∑
〈ij〉

RT baRacsbis
c
j

= = −J
2

∑
〈ij〉

sbis
b
j = −J

2

∑
〈ij〉

~si · ~sj = H({~si}) (2.5)
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2.2 Concepts 2 PHASE TRANSITIONS

since R is an orthogonal transformation, such that RTR = I. The model is O(n) symmet-
ric. This symmetry is explicitly broken by the external field. (Summation over repeated
a, b indices is assumed.)

Discrete

The Ising model with no applied field is invariant under the simultaneous reversal of
all spins, si → s′i = −si, for all i, a discrete symmetry. The model is invariant under a Z2

symmetry.

2.2.2 Order parameters

An order parameter is generically defined as a quantity – the statistical average of an
observable – that typically vanishes in one phase and is different from zero in another one
(or other ones). One must notice though that the order parameter is not unique (e.g.,
any power of an order parameter is itself an order parameter) and that there can exist
transitions without an order parameter as in the topological Kosterlitz-Thouless transition
in the 2d XY model that we will study later.

In the ferromagnetic Ising model the order parameter is the global magnetisation den-
sity

m =
1

N

N∑
i=1

〈 si 〉 and 〈 si 〉 = Z−1
∑
C

si e
−βH(C) (2.6)

where N is the total number of spins and the angular brackets represent the thermal
average in the canonical ensemble (that we adopt henceforth unless otherwise stated).

In Ising antiferromagnetic models one can define staggered magnetisations that take
into account the periodicity between two possible orientations of the local spins. Gener-
alisations to systems with different internal dimension of the spins are straightforward.

2.2.3 Thermodynamic limit

The abrupt change in the order parameter at particular values of the external param-
eters, say temperature and magnetic field (T, h), is associated to the divergence of some
derivative of the free-energy (we use the canonical ensemble) with respect to one of these
parameters. The partition function is a sum of positive terms. In a system with a finite
number of degrees of freedom (as, for instance, in an Ising spin model where the sum
has 2N terms with N the number of spins) such a sum is an analytic function of the
parameters. Thus, no derivative can diverge. One can then have a phase transition only
in the thermodynamic limit in which the number of degrees of freedom diverges.

2.2.4 Pinning field

In the absence of a magnetic field, and for pairwise (two-body) interactions, the energy
of an Ising model is an even function of the spins, H({si}) = H({−si}) and, consequently,
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2.2 Concepts 2 PHASE TRANSITIONS

the equilibrium magnetisation density computed as an average over all spin configurations
with their canonical weight, e−βH(C), vanishes at all temperatures:

〈 si 〉 = 0 ∀ i if hi = 0 ∀ i . (2.7)

At high temperatures, m = 0 (see Eq. (2.6)) characterises completely the equilibrium
properties of the system since there is a unique paramagnetic state with vanishing mag-
netisation density. At low temperatures instead if we perform an experiment in a, say,
ferromagnetic sample, we do observe a net magnetisation density. In practice, what hap-
pens is that when the experimenter takes the system through the transition he/she cannot
avoid the application of tiny external fields – the experimental set-up, the Earth... – and
there is always a small pinning field that actually selects one of the two possible equi-
librium states, with positive or negative magnetisation density, allowed by symmetry. In
the course of time, the experimentalist should see the full magnetisation density reverse,
to ensure m = 0 in equilibrium. However, this is not seen in practice since astronom-
ical time-scales would be needed. We shall see this phenomenon at work when solving
mean-field models exactly.

To see 〈 si 〉 6= 0 one needs to compute

lim
h→0

lim
N→∞

〈 si 〉h = m 6= 0 , (2.8)

that is to say, the average under an applied field that is taken to zero only after the infinite
size limit.

2.2.5 Broken ergodicity

Introducing dynamics into the problem,1 ergodicity breaking can be stated as the fact
that the temporal average over a long (but finite) time window

At = lim
t0�τ�t

1

2τ

∫ t+τ

t−τ
dt′A(t′) (2.9)

is different from the static statistical one, with the sum running over all configurations
with their associated Gibbs-Boltzmann weight:

At 6= 〈A 〉 . (2.10)

In practice, the temporal average is done in a long but finite interval τ <∞. During this
time, the system is positively or negatively magnetised depending on whether it is in “one
or the other degenerate equilibrium states” (see Fig. 2.2). Thus, the temporal average of
the orientation of the spins, for instance, yields a non-vanishing result At = mt 6= 0. If,
instead, one computes the statistical average summing over all configurations of the spins,

1Note that Ising model does not have a natural dynamics associated to it. Convenient dynamic rules
can be attributed to the evolution of the spins ensuring the system’s approach to canonical equilibrium.
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2.2 Concepts 2 PHASE TRANSITIONS

the result is zero, as one can see using just symmetry arguments, explained in Sec. 2.2.4.
The reason for the discrepancy is that with the time average we are actually summing over
half of the available configurations of the system: if the averaging time-window controlled
by τ is not as large as a function of N , the trajectory does not have enough time to visit all
configurations in phase space. One can reconcile the two results, in the statistical average,
by summing only over the configurations with positive (or negative) magnetisation density
and recovering in this way a non-vanishing result. We shall see this at work in a concrete
calculation below.

Note that ergodicity breaking is a statement about the dynamics of a system.

Figure 2.2: Time dependence of the global magnetisation in a magnetic system, with sudden
switches from one state to another.

2.2.6 Spontaneous broken symmetry

In the absence of an external field the Hamiltonian is symmetric with respect to the
simultaneous reversal of all spins, si → −si for all i. The phase transition corresponds to a
spontaneous symmetry breaking between the states of positive and negative magnetization.
One can determine the one that is chosen when going through Tc either by applying a small
pinning field that is taken to zero only after the thermodynamic limit, or by imposing
adequate boundary conditions like, for instance, all spins pointing up on the borders of
the sample. Once a system sets into one of the equilibrium states this is completely stable
in the N →∞ limit. The mathematical statement of spontaneous symmetry breaking is
then

lim
h→0+

lim
N→∞

〈 si 〉 = − lim
h→0−

lim
N→∞

〈 si 〉 6= 0 . (2.11)

Ergodicity breaking necessarily accompanies spontaneous symmetry breaking but the
reverse is not true; an example is provided by systems with quenched disorder. Indeed,
spontaneous symmetry breaking generates disjoint ergodic regions in phase space, related
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2.2 Concepts 2 PHASE TRANSITIONS

by the broken symmetry, but one cannot prove that these are the only ergodic compo-
nents in total generality. Mean-field spin-glass models provide a counterexample of this
implication, in which many ergodic components not related by symmetry exist.

2.2.7 Landau scheme

Without getting into the details of the Landau description of phase transitions (that
you will certain study in the Statistical Field Theory lectures) we just summarise here,
in Figs. 2.3 taken from [2], the two scenarii corresponding to second order (the panels in
the first row) and first order phase transitions (the next six panels). The figures show
the evolution of the free-energy density as a function of the order parameter η when
temperature (called T in the first three panels and t in the next six ones) is modified.

Figure 2.3: Second order (first line) and first order (second and third lines) phase transitions.
Figures taken from [2].

In the Landau formalism, the order parameter is determined by a saddle-point equation
which typically takes the form x = a sigmoid function. The difference between second
order and first order transitions is the way in which the sigmoid function changes when
the control parameter is modified. Figure 2.4 shows two sketches of this evolution for
second order (labelled2 p = 2) and first order (labelled p = 3) transitions.

2the origin of this name lies in a family of models realising this phenomenon and changing character
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In a second order phase transition the non-vanishing solutions split from the vanishing
one in a continuous way. A possible strategy to find the critical parameters is, then, to
look for the values at which the slope of the sigmoid function close to zero equals one.

In a first order phase transition the sigmoid function touches the diagonal axis at a
non-vanishing value when the local minimum at x 6= 0 first appears. Further changing
the parameters this point splits in two and the sigmoid function crosses the diagonal at
three points, say x = 0, x1 (a maximum of the free-energy density) and x2 (the non-zero
minimum of the free-energy function). Other two crossings are symmetrically placed on
x < 0 values if the model is invariant under x 7→ −x.

Figure 2.4: Sketch of the graphical solution of the mean-field equation for the order parameter
in the ferromagnetic p = 2 (left) and p = 3 (right) models. The curves represent the sigmoid
function (labelled eq) as a function of the order parameter m (in the horizontal axis).

Exercise 2.1 Take the p-spin ferromagnetic Ising model, defined by the Hamiltonian

H({si}) = −J
∑

i1 6=···6=ip

si1 . . . sip (2.12)

where p is an integer parameter and the sum runs over all p-uplets of spins that one can construct among
the N ones. The variables si are Ising like and take two values si = ±1. Consider separately the cases
p = 2 and p > 2. Study the canonical equilibrium properties of the two models. Think about the
necessary rescaling of the coupling strength J > 0 with the system size N to make the energy extensive.
Construct the free-energy density as a function of the global ferromagnetic order parameter m. Identify
and study the stability of its extremes. Find the phase transitions and determine their order. Derive the
equations that determine the order parameter m and compare them to the plots in Fig. 2.4.

2.2.8 Energy vs. entropy - the Peierls argument

Let us use a thermodynamic argument to describe the high and low temperature phases
of a magnetic system and argue that for short-range interactions a one dimensional system

depending on a parameter p that takes integer values.
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with short-range interactions cannot sustain an order phase a finite temperature while one
with sufficiently long-range interactions can.

The free-energy of a system is given by F = U − TS where U is the internal energy,
U = 〈H〉, and S is the entropy. The equilibrium state may depend on temperature and it is
such that it minimises its free-energy F . A competition between the energetic contribution
and the entropic one may then lead to a change in phase at a definite temperature, i.e.
a different group of micro-configurations, constituting a state, with different macroscopic
properties dominate the thermodynamics at one side and another of the transition.

At zero temperature the free-energy is identical to the internal energy U . In a system
with nearest-neighbour ferromagnetic couplings between magnetic moments, the magnetic
interaction is such that the energy is minimised when neighbouring moments are parallel.

Switching on temperature thermal agitation provokes the reorientation of the moments
and, consequently, misalignments. Let us then investigate the opposite, infinite temper-
ature case, in which the entropic term dominates and the chosen configurations are such
that entropy is maximised. This is achieved by the magnetic moments pointing in random
independent directions.

The competition between these two limits indicates whether a finite temperature tran-
sition is possible or not.

Short-range interactions

At zero temperature the preferred configuration is such that all moments are parallel,
the system is fully ordered, and for nearest-neighbour couplings U = −J# pairs.

For a model with N Ising spins, the entropy at infinite temperature is S ∼ kBN ln 2.
Decreasing temperature magnetic disorder becomes less favourable. The existence or

not of a finite temperature phase transitions depends on whether long-range order, as the
one observed in the low-temperature phase, can remain stable with respect to fluctuations,
or the reversal of some moments, induced by temperature. Up to this point, the discussion
has been general and independent of the dimension d.

The competition argument made more precise allows one to conclude that there is no
finite temperature phase transition in d = 1 while it suggests there is one in d > 1. Take
a one dimensional ferromagnetic Ising model with closed boundary conditions (the case
of open boundary conditions can be treated in a similar way),

H[{si}] = −J
N∑
i=1

sisi+1 , (2.13)

and sN+1 = s1. At zero temperature it is ordered and its internal energy is just

Uo = −JN (2.14)

with N the number of links and spins. Since there are two degenerate ordered configura-
tions (all spins up and all spins down) the entropy is

So = kB ln 2 (2.15)

10
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Figure 2.5: Left, a domain wall in a one dimensional Ising system and right, two bidimensional
domains in a planar (artificial) Ising system.

The internal energy is extensive while the entropy is just a finite number. At temperature
T the free-energy of the completely ordered state is then

Fo = Uo − TSo = −JN − kBT ln 2 . (2.16)

This is the ground state at finite temperature or global configuration that minimises the
free-energy of the system.

Adding a domain of the opposite order in the system, i.e. reversing n spins, two bonds
are unsatisfied and the internal energy becomes

U2 = −J(N − 2) + 2J = −J(N − 4) , (2.17)

for any n. Since one can place the misaligned spins anywhere in the lattice, there are N
equivalent configurations with this internal energy. The entropy of this state is then

S2 = kB ln(2N) . (2.18)

The factor of 2 inside the logarithm arises due to the fact that we consider a reversed
domain in each one of the two ordered states. At temperature T the free-energy of a state
with two domain walls is

F2 = U2 − TS2 = −J(N − 4)− kBT ln(2N) . (2.19)

The variation in free-energy between the ordered state and the one with one reversed
domain is

∆F = F2 − Fo = 4J − kBT lnN . (2.20)

Thus, even if the internal energy increases due to the presence of the domain walls,
the increase in entropy is such that the free-energy of the state with a droplet in it is
much lower, and therefore the state much more favourable, at any finite temperature
T . One can repeat this argument reversing domains within domains and progressively
disorder the sample. We conclude that spin flips are favourable and order is destroyed at
any non-vanishing temperature. The ferromagnetic Ising chain does not support a non-
zero temperature ordered phase and therefore does not have a finite temperature phase
transition.
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A similar argument in d > 1 suggests that one can have, as indeed happens, a finite
temperature transition in these cases (see, e.g. [2]).

Note that this argument explicitly uses the fact that the interactions are short-ranged
(actually, they extend to first neighbours on the lattice only in the example). Systems
with sufficiently long-range interactions can have finite temperature phase transitions even
in one dimension, as shown below.

Exercise 2.2 Solve the one dimensional Ising chain and confirm that it only orders at zero temperature.
Identify the correlation length, ξ(T ), from the decay of the correlation function, C(r) ∼ e−r/ξ(T ), and its
temperature dependence.

Power-law interactions

Take now a one dimensional Ising model

H = −J
2

∑
i 6=j

Jijsisj = −J
N−1∑
i=0

N−i∑
k=1

Ji i+ksisi+k (2.21)

with open boundary conditions and algebraically decaying ferromagnetic interactions

Ji i+k ∼ J r
−(1+σ)
i i+k = J (ak)−(1+σ) , (2.22)

where ri i+k = |~ri − ~ri+k|. = ak, a is the lattice spacing and we used here the notation
in [17] that compared to the one of the Introductory chapter is α = σ + 1. From the
arguments put forward in that chapter, we expect a change in behaviour at σ = 0 or
α = d = 1.

In a perfect ferromagnetic configuration the energy is U0 = −J
∑N−1

i=0

∑N−i
k=1 (ak)−(1+σ)

that in a continuous limit, ak 7→ y, a
∑

k 7→
∫
dy, and a

∑
i 7→

∫
dx reads

U0 7→ − J
a2

∫ L−a

0

dx

∫ L−x

a

dy
1

y1+σ
=

J

a2
1

σ

∫ L−a

0

dx [(L− x)−σ − a−σ]

=
J

a2
1

σ

1

1− σ
[−a1−σ + L1−σ − a−σ(L− a)] . (2.23)

We see that for σ < 0 the energy is superextensive, U0 ∝ −L1−σ. Instead, for σ > 0 the
large system size limit is controlled by the last term and the (still negative) ground state
energy is extensive.

We now make an explicit calculation to check whether this system can have long-range
order in the cases σ > 0.

Consider an excitation over the ferromagnetically order state in which n spins on the
left point down and N−n spins on the right point up, that is to say, a configuration with a
single sharp domain wall (possible because of the open boundary conditions). The excess
energy of this excitation with respect to the perfectly ordered ground state in which all
spins point up is:

∆U = 2J
n∑
i=0

N−i∑
j=n−i+1

1

(aj)1+σ
. (2.24)
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2.2 Concepts 2 PHASE TRANSITIONS

Clearly, if n = 0 or n = N − 1, ∆U = 0. In the continuous space limit, a→ 0, the sums
can be transformed into integrals

∆U 7→ 2J

a2

∫ z

0

dx

∫ L−x

z−x+a
dy

1

y1+σ

= − 2J

a2σ

∫ z

0

dx
[
(L− x)−σ − (z − x+ a)−σ

]
=

2J

a2σ(1− σ)

[
(L− z)1−σ − L1−σ − a1−σ + (z + a)1−σ

]
(2.25)

where we called L = Na the length of the chain and z the placement of the domain wall.
We now study this expression in the case L � z � a, that is to say, when the domain
wall is placed at a finite distance from the origin compared to the infinite size limit. The
contribution of the first two terms in the square brackets is proportional to z/Lσ for z � L
and negligible for σ > 0. The third term is just a short-length regularisation depending
on the lattice size. The last term is the important one that we approximate as

≈ 2J

a2σ(1− σ)
z1−σ (2.26)

using z � a. Therefore, the excitation energy increases with the length to the reversed
domain for 0 < σ < 1 (while in the short range case it was independent of it). The
reversal of large domains is not favourable energetically and this is an indication that
long-range order can exist in such a model with weakly long-range interactions such that
0 < σ < 1. In the case σ < 0 interactions are strongly long-ranged and order is possible
as well. In contrast, for σ > 1 the energy of a large droplet is bounded and the entropic
term at finite temperature will end up destroying the ferromagnetic order.

2.2.9 Exact solutions in low dimension

In one dimension the partition function of a number of magnetic models can be com-
puted exactly and the absence of a finite temperature phase transition see from the ab-
sence of non-analyticities in the free-energy. In the two following exercises this fact is
made explicit in the one dimensional Ising chain and XY model.

Exercise 2.3 Calculate the free-energy of the one dimensional ferromagnetic Ising chain (no external field
applied) H = −J

∑N
i=1 sisi+1. Discuss free and periodic (s1 = sN+1) boundary conditions separately.

Exercise 2.4 Calculate the free-energy of the one dimensional ferromagnetic XY chain (no external field
applied) H = −J

∑N
i=1 ~si ·~si+1. Discuss free and periodic (~s1 = ~sN+1) boundary conditions separately.

Exercise 2.5 Study the equilibrium properties of the nearest-neighbour Ising model in one dimension
with the addition of a fully connected term: H = −Jnn

∑N
i=1 ~si ·~si+1+Jfc

(∑
i s

2
i

)2 with Jfc conveniently
rescaled with N so as to make the energy extensive. This model can be studied in the canonical and
microcanonical ensembles and for certain values of the parameters inequivalence of results are found. See,
e.g. [17] and references therein for a discussion.
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2.2.10 Field theories

A field theory for the magnetic problem can be rather simply derived by coarse-graining
the spins over a coarse-graining length `. This simply amounts to computing the averaged
spin on a box of linear size `. In the limit `� a where a is the lattice spacing many spins
contribute to the sum. For instance, an Ising bimodal variable is thus transformed into a
continuous real variable taking values in [−1, 1]. Studying the problem at long distances
with respect to ` (or else taking a continuum spatial limit) the problem transforms into
a field theory. This is the route followed by Landau.

Field theories are the natural tool to describe particle physics and cosmology. For
example, the Big Bang leaves a radiation-dominated universe at very high temperature
close to the Planck scale. As the initial fireball expands, temperature falls precipitating
a sequence of phase transitions. The exact number and nature of these transitions is
not known. It is often considered that they are at the origin of the structures (galaxies,
clusters, etc.) seen in the universe at present, the original seeds being due to density
fluctuations left behind after the phase transition.

The similarity between the treatment of condensed matter problems and high energy
physics becomes apparent once both are expressed in terms of field theories. It is however
often simpler to understand important concepts like spontaneous symmetry breaking in
the language of statistical mechanics problems.

2.3 Critical phenomena and scaling

The notion of universality was originally introduced by experimentalists to describe the
observation that several apparently unrelated physical systems were characterised by the
same type of singular behaviour near a continuous phase transition. It implies that the
emerging long-range correlations of fluctuations of the order parameter are fully specified
by the symmetry properties and conservation laws and do not depend on details of the
microscopic interactions or dynamics.

Correlation function yield a very useful way to characterise phases and phase transi-
tions. The two-point spatial correlation measures how much the fluctuation of the local
(say, scalar) order parameter O(~r) around its averaged value influences the same quantity
at a given distance within the system:

C(~r, ~r′) = 〈(O(~r)− 〈O(~r)〉)(O(~r′)− 〈O(~r′)〉)〉 . (2.27)

The averages 〈O(~r)〉 and 〈O(~r′)〉 are not expected to depend on the space points ~r and ~r′
in a homogeneous system but, for completeness, we keep this potential dependence in the
notation used. These are also called connected correlation functions. In the disorder phase
the order parameter vanishes and connected and normal correlation functions coincide.
In the ordered phase this is not the case. In models with no order parameter, such as
the 2d XY model, the correlation function of the would-be order parameter still yields

14



2.3 Critical phenomena 2 PHASE TRANSITIONS

relevant information about the systems behaviour. Therefore, in the spin models we deal
with in this Section

Cij = 〈(~si − 〈~si〉) · (~sj − 〈~sj〉)〉 (2.28)

that, because of invariance under translations and isotropy, one expects to be a function
of the distance between the two spins, rij ≡ |~ri − ~rj|.

Close to a continuous phase transition, a two-point correlation function should behave
as

C(~r, ~r′) ' r2−d−η e−r/ξeq , (2.29)

with r = |~r − ~r′|, and the correlation length, the only relevant length scale, diverging at
the critical point according to

ξeq ' |T − Tc|−ν (2nd order) ξeq ' eb|T−Tc|
−ν

(∞ order) . (2.30)

Time-delayed correlation functions characterise the temporal de-correlation of equi-
librium fluctuations. The equal space, time delayed connected correlations are defined
as

C(~r, t) = 〈(O(~r, t)− 〈O(~r, t)〉)(O(~r, t)− 〈O(~r, t)〉)〉 . (2.31)

In a stationary state, one-time quantities are independent of absolute time 〈O(~r, t)〉 →
〈O(~r)〉 and two-time quantities depend upon the time difference only. Close to criticality
one expects

C(t, t′) ' |t− t′|(2−d−η)/zeq e−|t−t′|/τeq . (2.32)

In second order cases, the correlation length and correlation time are linked by

ξeq ' τ 1/zeqeq . (2.33)

In infinite order cases the relation should be exponential.
At the critical point, the exponents and scaling functions can be derived with the RG

analysis of an effective field theory, valid in the vanishing lattice spacing limit.
In experiments it is often easier to measure linear response functions instead of corre-

lation functions. The linear response of the local observable O(~r) is defined as

χ(~r, ~r′) =
δ〈O(~r)〉h
δh(~r′)

∣∣∣∣
h=0

(2.34)

where the infinitesimal perturbation h(~r′) is applied linearly to the same observable O in
such a way that the Hamiltonian of the system is modified as H 7→ H −

∫
ddr h(~r)O(~r).

The notation 〈· · · 〉h indicates that the average has to be calculated in the presence of the
field, that is to say, with the perturbed Hamiltonian.

A simple calculation yields the fluctuation-dissipation theorem

χ(~r, ~r′) = β (〈O(~r)O(~r′)〉 − 〈O(~r)〉〈O(~r′)〉) (2.35)
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where all averages in the right-hand-side are measured with no applied field. This is a
model independent relation since it does not depend on the form of the Hamiltonian H
and only relies on the assumption of equilibrium.

Exercise 2.6 Prove eq. (2.35) assuming equilibrium in the canonical ensemble.

In a homogenous case one expects χ(~r, ~r′) = χ̃( ~∆r) with ~∆r = ~r − ~r′. If the problem
is furthermore isotropic then χ(~r, ~r′) = χ̃(r) with r = |∆~r| = |~r − ~r′|. Under these
assumptions, the integration of the susceptibility or linear response over the full space
reads∫

ddr

∫
ddr′ χ(~r, ~r′) = V

∫
ddr χ̃(r) = V Ωd

∫
dr rd−1 χ̃(r) = V Ωdβ

∫
dr rd−1 C̃c(r) ,

(2.36)
where V is the volume, Ωd is the angular volume of the d dimensional space, and we used
the fluctuation-dissipation relation (2.35). If we now use the critical scaling form of the
connected correlation function, eq. (2.29),

(V Ωd)
−1
∫
ddr

∫
ddr′ χ(~r, ~r′) = β

∫ L

0

dr rd−1 r2−d−η e−r/ξeq

= β ξeq ξ
d−1
eq ξ2−d−ηeq

∫ L/ξeq

0

du ud−1 u2−d−η e−u

= β c(L/ξeq) ξ
2−η
eq . (2.37)

where c(L/ξeq) is the value of the last integral. In the infinite size limit, L/ξeq → ∞,
c(L/ξeq) reaches a constant and the integrated susceptibility diverges with the correlation
length at the critical point.

2.4 Models with continuous symmetry

The energy of spin models with continuous variables, such as the XY, Heisenberg
or generic O(n) models introduced in (2.3) and (2.4) in the absence of an applied field
(~h = ~0), is invariant under the simultaneous rotation of all the spin variables:

sai 7→ Rabsbi . (2.38)

(Rab are the n2 elements of a rotation matrix in an n-dimensional space. As all rotation
matrices in real space it has real elements and it is orthogonal, that is to say, RT = R−1

with detR = ±1.) This is a continuous global symmetry to be confronted to the discrete
global spin reversal invariance, si 7→ −si, of the Ising case. In group theoretical terms,
the continuous symmetry is O(n) and the discrete one is Z2.

The spontaneous magnetization at zero temperature can point in any of the infinite
equivalent directions constrained to satisfy (2.4). This gives rise to an infinite degeneracy
of ground states that are translational invariant (in real space). These equilibrium states
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are controlled by a continuous variable, determining the direction on the n-dimensional
hypersphere of radius 1. The effect of thermal fluctuations depends on the dimensions
of the real space d and the vector n. We analyse them below, especially in the case of
d = n = 2.

2.4.1 The d-dimensional XY model: spin-waves

Let us consider one such equilibrium state and call it ~s eq
i . It is clear that if one

slightly modifies the angle of the ~s vector on neighbouring space points, the energy cost
of such a perturbation vanishes in the limit of vanishing angle. These configurations are
called spin-waves and they differ from the uniformly ordered state by an arbitrarily small
amount.

Figure 2.6: A sketch of the 2d XY model definition. On the left the square lattice in 2d, on the
right the n = 2 spin vector.

In the particular case of the XY model, see Fig. 2.6, the local spins are constrained to
rotate on the plane; therefore, each spin has only two components (n = 2) and it can be
parametrised as

~si = (s1i , s
2
i ) = |~si|(cosφi, sinφi) = (cosφi, sinφi) (2.39)

where 0 ≤ φi ≤ 2π is the angle with respect to the x axis of the plane on which the spin
vector lives, on each d-dimensional lattice site i. The modulus of each vector spin is fixed
to one. The Hamiltonian (2.3) then becomes

H[{~si}] 7→ H[{φij}] = −J
2

∑
〈ij〉

cosφij (2.40)

where φij = φi − φj is the angle between the spins at neighbouring sites i and j. Equa-
tion (2.40) remains invariant under the global translation of all angles, φi → φi + φ0

by the same amount, that corresponds to the global rotational invariance. The zero-
temperature ground state is any of the fully aligned states φi = φ for all i, with φ in
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[0, 2π]. There is, therefore, an infinite degeneracy of the ground state, as all possible
orientations of the magnetisation ~m are equally probable. Any of these ground states has
perfect long-range order since all spins point in the same direction. The ground state
energy is E0 = −JNz/2 with z the coordination number of the lattice and N the total
number of spins in the system.

If one now assumes that at low enough T the angles between contiguous spins can only
be small, |φi − φj| � 2π, the cosine in the Hamiltonian can be expanded to second order
and

H[{φi}] ' −Jz
2
N +

J

4

∑
〈ij〉

(φi − φj)2

= E0 +
J

4

∑
~r,~a

[φ(~r + ~a)− φ(~r)]2 = H[{φ(~r)}] . (2.41)

In the last member we used a different parametrisation of the lattice sites in which they
are identified by their positions ~r with respect to the origin of a coordinate system, and
the vectors ~a point along all axes of the lattice. On a square lattice in d = 2, ~a = êk
with k = 1, 2, and has modulus a, the lattice spacing. If φ(~r) is a slowly varying function
of ~r one can approximate the finite difference by a derivative, e.g., along the x axis
φ(~r+~a) = φ(~r+aêx)−φ(~r) ' a∂xφ(~r) since typically, a� |~r|. Next, the sum over lattice
sites is approximated by an integral

∑
~r · · · ' a−d

∫
ddr . . . , and we write

H[{φ(~r)}] ' E0 +
J

4ad−2

∫
ddr [~∇φ(~r)]2 (2.42)

where d = 2. We ended up with a quadratic form that, if we relax the angular constraint
φ ∈ [0, 2π], acts on a real unbounded field

−∞ < φ <∞ . (2.43)

This is also called the elastic representation. We note that if we use a Fourier transform
φ~k = V −1

∫
ddr ei

~k·~r φ(~r), where φ~k is now a complex function of ~k, with ~k = 2πn/L êk
and n an integer (see App. 2.B, the number of variables is not doubled since the Fourier
components are constrained to satisfy φ∗~k = φ−~k), the Hamiltonian becomes one of inde-
pendent harmonic oscillators or modes

H[{φ~k}] ' E0 +
(2π)dJ

4ad−2

∑
~k

k2|φ~k|
2 . (2.44)

We note that the contribution of the long wave-length modes, that is to say, small k =
2π/λ, is expected to be very small due to the k2 factor.

From the harmonic Hamiltonian, assuming the smooth character of the field φ(~r), one
finds that the equation for the field configurations that minimise the energy is

∇2φ(~r) = 0 . (2.45)
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This equation is identical to the Laplace equation for the electrostatic potential in the
absence of any charge density. It admits the trivial solution φ(~r) = cst, that is just the
ground state configuration.

First of all one may want to compute the average magnetisation ~m = 〈~s(~r) 〉 =

lim~h→~0〈~s(~r) 〉~h where ~h is a pinning field. Mermin’s exact calculation [10, 11] (that we will
not present here, see [7] for a description of the proof) leads to ~m = ~0 at all non-vanishing
temperatures in the thermodynamic limit, excluding usual magnetic order at any finite
temperature in this system.

Exercise 2.7 Study Mermin’s proof.

The interest is in computing the spin-spin correlation function

G(~r) ≡ 〈~s(~r) · ~s(~0)〉 = Re 〈ei[φ(~r)−φ(~0)]〉 = e−
1
2
〈[φ(~r)−φ(~0)]2〉 ≡ e−

1
2
g(r) , (2.46)

where the second identity holds for Gaussian fields with zero average.3 G(~r) here is
a space-dependent correlation function and its Fourier transform is called the structure
factor. Since there is no perturbation breaking the systems isotropy, one can expect this
quantity to be a function of the modulus of the position vector and not of its direction;
therefore, one should find that the result is given by a G(r). Next, one should analyse
whether the correlation function, at long distances, converges to a finite value (long-range
order) or zero (no long-range order). Some details of this calculation (which can be
found in many textbooks and your statistical field-theory lectures, I presume) are given
in App. 2.C. They lead to

Ja2−d

kBT
g(r) '


Ωd/(d− 2) (π/L)d−2 d > 2 ,
(2π)−1 ln(r/L) d = 2 ,
r/2 d = 1 ,

that imply

G(r) '

 e−const kBT d > 2 long-range order ,
(r/L)−η(kBT/J) d = 2 quasi-long-range order ,
exp[−kBT/(2Ja) r] d = 1 short-range order

The behaviour is special in d = 2. Interestingly enough, we find that the 2d XYmodel does
not support long-range order but its correlation function decays algebraically at all non-
zero temperatures. This is the kind of decay found at a critical point, G(r) ' r−(d−2+η),
so the system behaves as at criticality at all temperatures. This does not seem feasible
physically (at least at very high temperature the decay should be exponential) and, indeed,
we shall see that other excitations, not taken into account by the continuous expansion
above, are responsible for a phase transition of a different kind, a so-called topological phase
transition. After these have been taken care of, the low-T phase remains well described

3Gaussian identity:
∫∞
−∞

dz√
2πσ2

e−
z2

2σ2 eiz =
∫∞
−∞

dz√
2πσ2

e−
1
2 (

z
σ−iσ)

2

e−
σ2

2 = e−
σ2

2 .
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by the spin-wave approximation but the high-T one is dominated by the proliferation of
topological defects.

The exponent η(kBT/J) continuously depends on temperature, η(kBT/J) = kBT/(2πJ).
This is a signature of the criticality of the low-T phase. The criticality is also accompanied
by other special features, such as, for example, the non-trivial fluctuations of the “failed”
order parameter m = N−1〈|

∑N
i=1 ~si|〉 for finite system size [14]. Indeed, the thermally

averaged value of the order parameter m has abnormally large finite size corrections.
Within a spin wave calculation one finds m = (1/(2N))kBT/(8πJ) with the expected van-
ishing value in the thermodynamic limit but rather large values at low temperature and
finite sizes. Monte Carlo simulations demonstrate that the distribution function, P (y)
with y = N−1|

∑N
i=1 ~si| is a universal asymmetric form with interesting characteristics.

2.4.2 The 2d XY model: high temperature expansions

A first quantitative hint on the fact that there must be a phase transition in the 2d
XY model came from the study of the high temperature expansion [15, 16]. The method
is very similar to the one used to study Ising spin systems. With the aim of developing a
small β Taylor expansion, the partition function is written as

Z =

∫ ∏
i

dφi e
βJ
2

∑
〈ij〉 cos(φi−φj) =

∫ ∏
i

dφi
∏
〈ij〉

e
βJ
2

cos(φi−φj) . (2.47)

Exploiting the periodicity of the exponential of the cos, one can use several tricks to derive

G(r) = e−r/ξ with ξ = a/ ln(4kBT/J) (2.48)

an exponential decay of the correlation function (see [9] for details). This calculation
strongly suggests that there must be a phase transition between the high temperature
disordered phase and a low temperature phase, the latter with, possibly, the quasi long-
range order predicted by the spin-wave approximation. (It was argued that higher order
terms in the gradient expansion around the zero temperature ground state do not de-
stroy the quasi long-range order at low temperatures since they are irrelevant in the RG
sense [9].)

2.4.3 The 2d XY model: vortices and the Kosterlitz-Thouless transition

The failure of the spin-wave approximation at high temperatures is rooted in that it
only allows for small and smooth deviations (gradient expansion) about the ferromag-
netically ordered state. In particular, it excludes configurations in which the angular
field is singular at some isolated point(s). In other words, only single-valued functions φ
satisfying, ∑

nn~r,~r′∈C

[φ(~r)− φ(~r′)] 7→
∮
C

d~r′ · ~∇φ(~r′) = 0 (2.49)
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Figure 2.7: Four examples of vortices with charge q = 1 (first line) and two examples of anti-
vortices with q = −1 (second line), see Eq. (2.52) for the definition of q. Figures borrowed
from [21].

for any closed path C are admitted in the spin-wave expansion. However, in the 2d XY
model, only the spin ~si should be single-valued and the original Hamiltonian (2.40) defined
on the lattice has a discrete symmetry

φi − φj → φi − φj + 2πq with q ∈ Z (2.50)

that is lost in the continuous approximation (2.42). This symmetry permits the existence
of vortices, a particular kind of topological defects. These excitations are the ones that kill
the simple spin-wave prediction of there being quasi long-range order at all temperatures,
as explained by Kosterlitz & Thouless in the series of papers [18, 19, 20]. Kosterlitz &
Thouless (together with Haldane) were retributed the Nobel Prize in 2016 for having
exhibited a new class of phase and phase transitions, qualified as topological.

Topological defects are configurations, in this case spin configurations, that are
local minima of the potential energy and that cannot be smoothly transformed into
the ground state, in this case the configuration in which all the spins are aligned, by a
continuous transformation of variables, in this case a continuous rotation of all spins.

In a continuous description of the lattice problem, this means that there is no trans-
formation of the kind

~s(~r) 7→ R(~r)~s(~r) (2.51)
with a continuous rotation matrix R(~r) that transforms the configuration with a topo-
logical defect into one of the ground state (continuously transformable into a spin-wave
state).
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In the 2d XY model, the topological defects are vortices. On the lattice a vortex
configuration is such that ∑

nn i,j∈C

(φi − φj) = 2πq (2.52)

with q an integer ensuring that the spin be single-valued on each site of the lattice, the
charge of the vortex. These are spin configurations for which in going around a closed
path the angle rotates by 2πq. The discrete nature of the charge, makes impossible to
continuously deform the configuration to the uniformly ordered state in which the charge
is zero. The center of the vortex is located on a site of the dual lattice.

In the continuous limit vortex configurations are local minima of the Hamiltonian
δH

δφ(~r)
= 0 and

δ2H

δφ(~r)δφ(~r′)
positive definite (2.53)

where the second condition ensures their stability. Indeed, φ(~r) = cst is not the only field
configuration that minimises the energy. Vortex configurations, φ(~r), in which the field
has a singularity at the location of a point-like charge, also satisfy the conditions above.

A vortex configuration located at the origin ~r = ~0 can be written as

φ(~r) = qϕ(~r) + φ0 (2.54)

with q the integer charge and ϕ(~r) the polar angle (angle with the horizontal x axis) of
the space point ~r

ϕ(~r) = arctan
(y
x

)
(2.55)

and φ0 an additive constant. As a example, let us take q = 1 and φ0 = 0. One
can easily construct the spin configuration associated with this φ(~r), that is ~s(~r) =
(cosφ(~r), sinφ(~r)). The arrows point as in the third panel in the first line in Fig. 2.7.
Another choice is to use q = 1 and φ0 = π/2, leading to a configuration in which the
spins turn anti-clockwise as in the left Fig. 2.10. Finally, one can use q = 1 and φ0 = π
to construct a configuration in which all spins point inwards, as in the last snapshot in
the first line in Fig. 2.7.

All the configurations with the same q can be continuously transformed into one an-
other. In the cases listed in the previous paragraph, q = 1, and

~s(~r, t) = (cos(ϕ+ t), sin(ϕ+ t)) (2.56)

with t a real parameter, taking the values t = 0, π/2 and π in these particular cases.
However, there is no parameter t that makes this configuration be one with another
charge q′; this excludes the transformation into a constant field with q′ = 0.

The divergence at the origin of the gradient of the configuration φ(~r) = qϕ(~r)+φ0 with
ϕ)~r) in (2.54) is

~∇φ(~r) = q~∇ϕ(~r) = q~∇ arctan
(y
x

)
= −q y

x2
1

1 + y2

x2

êx + q
1

x

1

1 + y2

x2

êy

= −q y

x2 + y2
êx + q

x

x2 + y2
êy = −q r sinϕ

r2
êx + q

r cosϕ

r2
êy
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and
~∇φ(~r) =

q

r
êϕ (2.57)

where we used êϕ = cosϕ êy − sinϕ êx. One clearly sees the divergence for r → 0. The
problem is spherically symmetric in the sense that the modulus of the gradient of the field
only depends on the modulus of r, |~∇φ(~r)| = f(r). Moreover, ~∇φ(~r) points along a circle
around the center of the vortex, that is to say, perpendicularly to the radius (êϕ · êr = 0).

We now check that the Laplacian of the angular field φ vanishes for all r 6= 0:

~∇ · ~∇φ(~r) = q
2xy

(x2 + y2)2
− q 2xy

(x2 + y2)2
= 0 .

At the origin one has to be more careful because of the divergence of the gradient. We
proved in this way that the proposed configuration satisfies the extremisation equation.
One can also check that it is a local minimum of the energy.

Taking a circle with radius R and centred at the centre of the vortex, the circulation
of the angular field φ in (2.54)-(2.63) around C yields∮

C

dφ(~r) =

∮
C

d~l · ~∇φ(~r) =

∫ 2π

0

Rdϕ êϕ ·
q

R
êϕ = 2πq . (2.58)

Note that this result is independent of the radius of C. Actually, in a single vortex
configuration the angle winds around the topological defect for any contour C around the
centre of the vortex4 ∮

C
dφ(~r) =

∮
C
d~l · ~∇φ(~r) = 2πq . (2.59)

(Note that the spin has to point in the same direction after coming back to the starting
point of the circulation, this condition implies that q must be an integer.) The integral
yields this non-vanishing result for all paths C that encircle the centre of the vortex and
vanishes on paths that do not. The position of the vortex corresponds to a singularity in
the field that is constructed with the coarse-graining procedure (the continuous space limit
we used to build the field). The discrete nature of the charge makes it impossible to find
a continuous deformation which returns the state to the uniformly ordered configuration
in which the charge is zero. (One justifies the continuous treatment of the spin rotation
by taking a curve around the vortex core with a sufficiently large “radius” so that the
variations in angle will be small and the lattice structure can be ignored. The continuous
approximation fails close to the core of the vortex.) A vortex creates a distortion in the
phase field φ(~r) that persists infinitely far from the centre of the vortex.

4Recall Gauss’ divergence theorem
∫
dV ~∇ · ~F =

∫
dS n̂ · ~F , where the volume integral on the left

transforms into the surface integral on the right. Applied to a volume in two dimensions and ~F = ~∇φ,
one goes from eq. (2.57) to eq. (2.59) for a single vortex with charge q.
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Figure 2.8: A graphical way to visualise the charge of a vortex. One places on the circle an arrow
corresponding the the “firs” (arbitrary choice) spin. One takes the next spin on the plaquette,
conventionally turning in anti-clockwise order, and places a second arrow on the circle. One
repeats the procedure until the last spin on the plaquette. The points on the circle are numbered
according to the order of the spins on the plaquette, 1, . . . , 4 in these examples. If the points
make one turn on the circle the charge is q = 1. If it has made an anti-turn the charge is q = −1.
If they make more than one turn the charge is higher than 0.

The electromagnetic analogy, that is explained in detail in the book by Chaikin &
Lubensky [25], is such that

magnetic induction ~B ↔ ~∇φ
electric current density ~J ↔ ~M = ~∇× ~∇φ

vector potential ~∇× ~A ↔ ~∇φ
(2.60)

The current density is singular at the location of the centre of the vortices as

~M(~r) = 2π
∑
i

qiδ(~r − ~ri) êz = 2πρ(~r) êz (2.61)

where ~r lives on the two dimensional plane and êz is perpendicular to it. ρ(~r) is the charge
density constituted by point-like charges located at positions ~ri.

Several singular configurations are shown in Fig. 2.7, with vortices (q = 1) in the first
row and antivortices (q = −1) in the second row (figures borrowed from [21]). A simple
visualisation of the winding angle is sketched in Fig. 2.8. Vortices with higher charge
are also possible (though as they have a higher energetic cost they are less common),
see Fig. 2.9. A vortex and a nearby anti-vortex configuration are shown in Fig. 2.10 and
some constant spin lines around vortex-antivortex pairs are shown in Fig. 2.11. The latter
appear bounded in the low temperature phase, see Fig. 2.12.

An angular configuration with M vortices with charge qi situated at the points ~ri is

φ(~r) =
∑M

i qi arctan
(

(~r−~ri)y
(~r−~ri)x

)
(2.62)

where the sub-scripts x and y indicate the horizontal and vertical components.
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Let us evaluate the energy of a single vortex configuration. We have already argued
that the vortex configuration satisfies

~∇φ(~r) =
q

r
êϕ (2.63)

where, without loss of generality, we set the origin of coordinates at the center of the
vortex, ϕ is the angle of the position ~r with respect to the x axis, and q is the charge of
the vortex. Using the expression (2.42) where ~∇φ(~r) is replaced by (2.63),

E1 vortex =
J

2

∫
d2r [~∇φ(~r)]2 =

J

2
q2
∫ 2π

0

dϕ

∫ L

a

dr r
1

r2
= πJq2 ln

L

a
(2.64)

with L the linear dimension of the system. The energy of a single vortex
• increases quadratically with its charge
• diverges logarithmically in the infinite size limit

and one might conclude that these configurations cannot exist in equilibrium at any tem-
perature. However, as already discussed when presenting Peierls argument applied to the
Ising chain, at finite T one needs to estimate the free-energy difference between configura-
tions with and without a vortex to decide for their existence or not. The configurational
entropy of a single vortex is S = kB lnN = kB ln(L/a)2 since in a 2d lattice the centre of
the vortex can be located on (L/a)2 different sites. Then

∆F = F1 vortex − F = (πJq2 − 2kBT ) ln(L/a) (2.65)

Both energy and entropy of a single vortex configuration grow as lnL. The variation of
the free-energy changes sign at kBT = πJq2/2 therefore there cannot be isolated vortices
in equilibrium below

kBTKT = πJ/2 (2.66)

but they can at higher temperatures. Indeed, at T > TKT , isolated vortices proliferate
(favoured by the entropic contribution), destroy the quasi long-range order and make
correlations decay exponentially on a length-scale given by the typical spacing between
vortices

G(r) ' e−r/ξ(T ) ξ(T ) ' eb|T−TKT |
−1/2

(2.67)

close to TKT . This very fast divergence of the correlation length, ν →∞, can be rigorously
proven with an RG analysis [20] that we shall not present here.

The estimate of TKT just given represents only a bound for the stability of the system
towards the condensation of topological defects. Pairs (dipoles) of defects may appear at
larger couplings or lower temperatures.

Although the energy of a single vortex diverges as lnL, the energy of a bound pair
of vortex-antivortex does not diverge, since, the total vorticity of the pair vanishes, see
the Fig. 2.11 taken from [6]. Below TKT vortices exist only in bound pairs with opposite
vorticity held together by a logarithmic confining potential

Epair(~r1, ~r2) = −πJq1q2 ln(|~r1 − ~r2|/a) . (2.68)
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Figure 2.9: Four vortices with charges q = 0, 1,−1, 2.

This expression follows uniquely from the fact that at distances much larger than the
pair’s size there is no net vorticity, so the energy of the pair must be finite, and as the
pair’s size diverges Epair should yield the sum of the energies for an isolated vortex and an
isolated antivortex. (A more detailed calculation uses an integral over a contour in the 2d
plane that excludes the centers of the vortices. In particular, this approach allows one to
show that a sum over the energies of the single vortices appears multiplied by

∑
i qi and

this divergence is eliminated if the total vorticity is zero, i.e.
∑

i qi = 0.) Such pairs can
thus be thermally excited, and the low temperature phase will host a gas of such pairs.
The insight by Kosterlitz and Thouless was that at a certain temperature TKT the pairs
will break up into individual vortices. It is this vortex pair unbinding transition that will
take the system to a high temperature phase with exponentially decaying correlations.

Figure 2.10: A vortex and a near-by anti-vortex configuration as they may appear bounded in
the low temperature phase.
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Figure 2.11: Lines of spin direction close to a vortex-antivortex pair. As one observes the spin
configurations far from the vortex cores, the lines of constant spin are smooth.

The (single) vortices and anti-vortices act as if they were two point particles with
charges q = +1 and q = −1 interacting with a 1/r force. Since this corresponds to the
Coulomb interaction in two dimensions, the physics of the topological defects is just like
the physics of a two-dimensional neutral Coulomb gas. Note that the energy increases
if one tries to unbind – separate – the vortices in the pair. The vortices remain paired
and do not change much the behaviour in the low temperature phase. The correlation
still decays as a power-law and there is no spontaneous symmetry breaking in this phase
since the order parameter vanishes – in agreement with the Mermin-Wagner theorem that
we discuss below. In terms of the electrostatic analogy, the high temperature phase is a
plasma. A detailed description of the vortex influence on the equilibrium properties of
the 2d XY goes beyond the scope of these Lectures. A detailed description can be found
in several book, in particular in [7].

This argument shows that two qualitatively different equilibrium states exist at high
and low T but it does not characterize the transition. The naive order parameter vanishes
on both sides of the transition but there is still a topological order, with the spin-spin
correlation decaying exponentially on one side (high T ) and as a power law on the other
(low T ) of the transition. In contrast to usual continuous phase transitions, the KT-
transition does not break any symmetry.

2.4.4 The 2d XY model: numerical evaluation

Distinguishing a second order phase transition from a Kosterlitz-Thouless one is a
daunting challenge. See, e.g., [26] for a recent effort to verify the scalings expected. A
useful method is based on the scaling properties of the kurtosis of the (pseudo) order
parameter or Binder parameter [27, 28].
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Figure 2.12: At low T there are few vortices and they are bound in pairs. At high T there are
many more vortices, they are free and can separate apart. Image taken from [22].

2.4.5 The 2d XY model: Nobel Prize and applications

From the Nobel Lecture: In 1972 J. Michael Kosterlitz and David J. Thouless identified
a completely new type of phase transition in two-dimensional systems where topological
defects play a crucial role. Their theory applied to certain kinds of magnets and to super-
conducting and superfluid films, and has also been very important for understanding the
quantum theory of one-dimensional systems at very low temperatures.

Other two dimensional systems, notably those of particles in interaction that would like
to form solids at sufficiently low temperature and high densities, also fall into the scheme
of the Kosterlitz-Thouless phase transitions. Indeed, in 1934, Peierls argued that thermal
motion of long-wave length phonons will destroy the long-range order or a two dimensional
solid in the sense that the mean square deviation of an atom from its equilibrium position
increases logarithmically with the size of the system [?]. He also proposed a model,
just atoms sitting on a lattice in 2d and linked together by Hookean springs, that has
quasi long-range order at all temperatures [23]. Quasi long range order means in this
context that he mean square deviation of an atom from its equilibrium position increases
logarithmically with the size of the system. It was later understood that the mechanism
for destabilising this critical phase is through the unbinding of topological defects that
are of a different kind from the ones we studied here. (For more details, see, for example
the slides that I included in my web page and the Subsection below.)

For similar reasons, the expectation value of the superfluid order parameter in a two
dimensional Bose fluid is zero. In 1978, Bishop and Reppy studied the superfluid tran-
sition of a thin two dimensional helium film absorbed on an oscillating substrate. The
observation results on superfluid mass and dissipation supported the Kosterlitz-Thouless
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picture of the phase transition in a two dimensional superfluid. The jump in the super-
fluid density at the transition given by Kosterlitz and Thouless is in good agreement with
estimates from experiment.

2.4.6 The Mermin-Wagner theorem

What happens in d = 2 and below? Indeed, the logarithmic behaviour of the angle
correlation function in the XY model or the transverse correlation in the generic O(n)
model, see below, are signatures of the fact that this is a special dimension.

In 1968, using a mathematical inequality due to Bogoliubov, Mermin showed that the
magnetisation density m is strictly zero at all T > 0 in the 2d XY model. This proof is
part of what is nowadays called the Mermin-Wagner theorem.

The Mermin-Wagner theorem is often quoted as stating that for any system with short-
range interactions there is a lower critical dimension below which no spontaneous broken
symmetry can exist at finite temperature [11]. In other words, fluctuations are so large
that any ordering that breaks a continuous symmetry is destroyed by thermal fluctuations.
dc = 1 for discrete symmetries and dc = 2 for systems with continuous symmetries. The
absence of long-range order in the 2d XY case, for example, is demonstrated by the fact
that the finite temperature correlation decays to zero at long distances – albeit as a power
law – and thus there is no net magnetisation in the system.

However, the statement above is not totally correct. What Mermin proved is that some
order parameters (like the magnetisation for the 2dXY model or the one associated to
translational order in 2d particle systems in interaction) cannot take a non-zero value at
any non-vanishing temperature. This does not exclude that other order parameters could
do it. This is indeed what happens in the problem of 2d melting, where the translational
order parameter vanishes at all non-zero temperatures but a less obvious order parameter,
associated to orientational order, does not. The system can therefore sustain long-range
orientational order at finite temperatures while it cannot maintain translational order.

The Mermin-Wagner theorem [11] is known as Coleman-Weinberg theorem/result in
field theory [12]. Independently of Mermin & Wagner, Hohenberg developed a similar
argument in the context of Bose quantum liquids and superconductors [13].

2.4.7 About universality

The picture described above has been developed based on the analysis of the 2d XY
model in which planar spins are placed on the vertices of a regular lattice, with near-
est neighbour pairwise interactions −Jcosθij with θij the angle between the two spins.
Interestingly enough, the nature of the transition can change dramatically if the in-
teraction term takes other forms that still respect rotational invariance. The potential
2[1− cos2p

2
(θij/2)], that interpolates between the conventional one for p = 1 and a much

steeper well for large p2 was used by Domany, Schick and Swendsen [29] to show that the
transition crosses over from BKT to first order for large p2. In particular, for p2 = 50 the
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transition is very sharp with a huge peak in the specific heat and many other elements of
a first order phase transition. The reason for this behaviour is that the typical temper-
ature for the unbinding of vortex-antivortex pairs is pushed to very high values, beyond
the ones at which other kinds of excitations drive the discontinuous transition. Similarly,
other examples of models expected to have BKT transitions, such as the 2d Coulomb gas,
were shown to comply with the expectations only at low density and depart towards a
first order phase transition at higher density.

The phenomena just described seem to be in contradiction with the picture that
emerges from the renormalisation group theory according to which systems in the same
universal class (having the same symmetry of the order parameter and same dimension-
ality) should exhibit the same type of phase transition with identical values of critical
exponents. However, a rigorous proof that planar spin models of the XY kind with a suf-
ficiently narrow potential undergo first order phase transitions was provided by van Enter
& Shlosman [30] and the fact that with a simple change of parameter one can change the
order of the transition was thus confirmed.

2.4.8 On interface energies

In a continuous spin model the cost of an interface is proportional to its surface divided
by its thickness (note that spins can smoothly rotate from site to site to create a thick
interface). The thickness of the interface depends on the details of the model, temperature,
etc. This means that interfaces are much easier to create in continuous spin models than in
discrete ones. One can then expect to have lower lower critical dimensions for continuous
spin models than for discrete ones.

2.4.9 O(n) model: Ginzburg-Landau field theory and Goldstone modes

We lift here the constraint on the modulus of the vector spins and we let it fluctuate.
It is simple to derive a continuum limit of the lattice model in analogy with the Landau
approach. One first coarse-grains the two-component spin to construct a n-component
field

~ψ(~r) = `−d
∑
i∈V~r

~si . (2.69)

Let us first focus on the d dimensional O(2) model, where the field has just two com-
ponents. One proposes a Landau ψ4 action for the field ~ψ,

F [~ψ] =

∫
ddr

[
1

2
[~∇~ψ(~r)]2 +

T − Tc
Tc

ψ2(~r) +
λ

4!
ψ4(~r) + ~h~ψ(~r)

]
(2.70)

and parametrises the field by its modulus and angle,

~ψ(~r) = |φ0(~r)|(cosφ(~r), sinφ(~r)) (or ~ψ(~r) = |φ0(~r)|eiφ(~r)) . (2.71)
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Figure 2.13: A Mexican hat potential, figure taken from [8].

to rewrite the Landau free-energy of a generic configuration in the absence of the external
field ~h as

F [φ0, φ] =

∫
ddr

[
1

2
(~∇φ0(~r))

2 +
T − Tc
Tc

φ2
0(~r) +

λ

4!
φ4
0(~r)

]
(2.72)

+
φ2
0

2

∫
ddr [~∇φ(~r)]2 . (2.73)

The first term is just similar to the Landau free-energy of a massive scalar field config-
uration in the Ising model. The second-term quantifies the free-energy of the spin-wave
configurations (in higher dimensions topological defects also exist, for example, in d = 3
this model has vortex lines with linear singularities). The local angle is simply a massless
scalar field in d dimensional space. The correlation functions of the φ field behave as

〈φ(~r)φ(~r′) 〉 ∼ (2− d)−1|~r − ~r′|2−d (2.74)

in the large |~r − ~r′| limit for d = 1, 2. The behaviour is logarithmic in d = 2 (the 2d XY
model). The correlation reaches a constant in d > 2.

Let us now focus on the generic d dimensional O(n) model. The free-energy à la Landau
is the one in Eq. (2.69)

F [~ψ] =

∫
ddr

[
1

2
(~∇~ψ(~r))2 +

T − Tc
Tc

ψ2(~r) +
λ

4!
ψ4(~r) + ~h~ψ(~r)

]
(2.75)

where ψ2 ≡
∑N

a=1 ψ
2
a is the result of a sum over n components. The potential V (ψ2) has

the Mexican hat form sketched in Fig. 2.13 (credit to A. M. Tsvelik), with extrema at

~ψ = ~0 or ψ2 = − 4!

2λ

T − Tc
Tc

(2.76)

Clearly, the latter exists only if T < Tc and we focus on this range of temperatures. It
is clear that the condition on ψ2 admits an infinite number of solutions, in other words,
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there is a ground state manifold, corresponding to the circular bottom of the valley in
the Mexican hat potential. The pinning field ~h can then be used to force the system to
choose one among all these degenerate directions in the n dimensional space, in which
the field “condenses”. Let us suppose that this is the nth direction that we therefore call
longitudinal. The rotation symmetry in the remaining transverse n−1 directions remains
unbroken and the symmetry is therefore spontaneously broken to O(n−1). The expected
values of such a configuration is then

〈ψa(~r)〉 = ψδan (2.77)

while the fluctuations are

ψn(~r) = 〈ψn(~r)〉+ δψn(~r)

ψa6=n(~r) = δψa6=n (2.78)

(think of the case n = 3, choosing the n direction to be the z vertical one and the
rotations around this axis). Replacing these forms in the Landau free-energy one finds that
the longitudinal mode is massive while the transverse ones are massless (just decoupled
Gaussian fields).

The correlation functions, Cab(~r) = 〈ψa(~r)ψb(~0)〉, can be written as

Cab(~r) = δab [CL(r)δan + CT (r)(1− δan)] . (2.79)

We recall that a and b label the components in the n-dimensional space. CL is the
longitudinal correlation (parallel to an infinitesimal applied field that selects the ordering
direction, ~h = hên) and CT is the transverse (orthogonal to the applied field) one. A
simple calculation shows that the longitudinal component behaves just as the correlation
in the Ising model. It is a massive scalar field. The transverse directions, instead, are
massless: there is no restoring force to the tilt of the full system. These components
behave just as the angle in the XY model, CT (~r) ∼ r2−d (the power law decay becomes a
logarithm in d = 2). These are called Goldstone modes or soft modes.

2.4.10 The Higgs mechanism

A particular feature of models with continuous symmetry breaking in gauge theories is
that gauge fields acquire a mass through the process of spontaneous symmetry breaking.
Take the classical Abelian field theory

L[Aµ, φ] =

∫
ddr

[
−1

4
FµνF

µν + (Dµφ)∗(Dµφ) + V (φ)

]
(2.80)

with Fµν = ∂µAν − ∂νAµ, Dµ = ∂µ + ieAµ and φ a complex field. The potential is

V (φ) = µ(φ∗φ) + λ(φ∗φ)2 (2.81)
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with µ < 0 and λ > 0. The φ configuration that renders V minimum is such that
φ∗0φ0 = −2µ/λ. Without loss of generality one can choose φ0 to be real through a uniform
rotation over all space. It is easy to verify that replacing φ by (φ0 + δφ) + iφ2 where φ2

is an imaginary part (playing the role of the transverse components in the analysis of the
O(n) model) one finds that the quadratic Lagrangian does not have a φ2 term (massless
field) but instead a quadratic term in A appears. The gauge field acquired a mass (there
is also a Aµ∂µφ2 term that can be eliminated with a change of variables).

This phenomenon has been discovered in the study of superconductors by P. W. An-
derson. Indeed, one can find a short account of the historic development in Wikipedia:
The mechanism was proposed in 1962 by Philip W. Anderson, who discussed its con-
sequences for particle physics but did not work out an explicit relativistic model. The
relativistic model was developed in 1964 by three independent groups Robert Brout and
François Englert, Peter Higgs and Gerald Guralnik, Carl Richard Hagen, and Tom Kib-
ble. Slightly later, in 1965, but independently from the other publications the mechanism
was also proposed by Alexander Migdal and Alexander Polyakov at that time Soviet un-
dergraduate students. However, the paper was delayed by the Editorial Office of JETP,
and was published only in 1966. The Nobel Prize was given to F. Englert and P. Higgs in
2013 "for the theoretical discovery of a mechanism that contributes to our understanding
of the origin of mass of subatomic particles, and which recently was confirmed through the
discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at
CERN’s Large Hadron Collider".

2.5 2d Melting

Consider a sufficiently dense system so that it should be a solid, possibly in a crystalline
phase and evaluate the effect of thermal fluctuations. Does the solid melt? Which are
the mechanisms leading to melting? Which is the order of the phase transition taking the
solid into a liquid?

These questions received an answer that draw consensus around the fact that the
transition is of first order in d = 3. However, the situation is trickier in d = 2. We discuss
this case below.

2.5.1 Positional vs. orientational order

In the 30s [33] and Landau [31, 32] argued that it is not possible to find long-range
positional order in low dimensional systems with short-range interactions.

Peierls used the simplest possible model for a solid, one of beads placed on a d-
dimensional lattice, with Hookean couplings between nearest-neighbours, in canonical
equilibrium, that is to say, a harmonic solid. The question he asked was whether such a
system could sustain periodic order over long distances under thermal fluctuations, and
he concluded that this is not possible in d ≤ 2, while it is in d ≥ 3. Landau based his
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arguments instead on his theory of phase transitions and reached the same conclusion. In
the 60s, the numerical simulations of [35] pointed towards a first order phase transition
between solid and liquid. A more general proof of absence of crystalline order in 2d, that
does not rely on the harmonic approximation but uses a classical limit of Bogoliubov’s
inequality [36], was given later by [37].

An equilibrium amorphous state has a uniform averaged density 〈ρ〉 = ρ0, while a zero
temperature crystalline state has a periodic one

ρ(r) =
∑
i

δ(r−Ri) (2.82)

with i a label that identifies the particles or lattice sites, and Ri the position of the ith
vertex of the lattice. At zero temperature a perfectly ordered state, with periodic density
is allowed for all d ≥ 1. However, thermal fluctuations make the atoms vibrate around
their putative lattice sites, and the instantaneous position of the ith atom becomes

ri = Ri + ui = Ri + u(Ri) (2.83)

with ui = u(Ri) its displacement from Ri. A simple way to see the lack of positional
order in low dimensions (and the existence of it in higher dimensions) is to compute the
mean-square displacement of the atoms assuming thermal equilibrium. Take a generic
pair-wise potential

Utot =
1

2

∑
ij

U(ri − rj) =
1

2

∑
ij

U(Ri −Rj + ui − uj) . (2.84)

Indeed, the total harmonic potential energy is [34]

Utot = Ugs +
1

2

∑
ij

∑
µν

(uµi − u
µ
j )

∂2U

∂rµi ∂rνj
(Ri −Rj) (uνi − uνj )

= Ugs +
1

2

∑
ij

∑
µν

uµiDµν(Ri −Rj)u
ν
j (2.85)

where Ugs = 1
2

∑
i 6=j U(Ri − Rj), and in the second term µ, ν run from 1 to d, Dµν

ij ≡
Dµν(Ri − Rj) = δij

∑
k φ

µν
ik − φ

µν
ij and φµνik = ∂2U(r)/∂rµi ∂r

ν
k . Three symmetries of the

couplings follow immediately Dµν
ij = Dνµ

ji , D
µν
ij = Dµν

ji (from the inversion symmetry of
a Bravais lattice), and

∑
iD

µν
ij = 0 (from the uniform translation invariance of the full

lattice). After a Fourier transform Utot becomes

Utot = Ugs +
1

2

∑
k

∑
µν

ũ∗µ(k)D̃µν(k)ũν(k) , (2.86)

where ũµ(k) =
∑

i e
ik·riui and ũ∗µ(k) = ũµ(−k) since ui is real. Next one needs to estimate

the k dependence of D̃µν(k). Using the symmetries of Dµν
ij , its Fourier transform D̃µν(k)
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can be recast as

D̃µν(k) = −2
∑
R

Dµν(R) sin2(k ·R/2) ≈ −2
∑
R

Dµν(R)(k ·R/2)2 , (2.87)

after a small k approximation. It is now possible to further assume

D̃µν(k) 7→ k2Aµν (2.88)

where the important k2 dependence has been extracted. Utot thus becomes the energy of
an ensemble of harmonic oscillators. The equipartition of quadratic degrees of freedom in
canonical equilibrium yields

〈ũ∗µ(k)ũν(k)〉 =
kBT

k2
A−1µν (2.89)

and a logarithmic divergence of the displacement mean-square displacement

∆u2 ≡ 〈|u(r)− u(r′)|2〉 ∼ kBT ln |r− r′| in d = 2 (2.90)

follows as a consequence of the logarithmic divergence of the integral
∫
d2k k−2.

An even simpler derivation of the same result goes as follows. Take the harmonic
Hamiltonian H = c

2

∫
ddr (∇u)2 as a starting point. The excitation of a spin-wave with

wavelength L (wave vector 2π/L) then requires an energy E ≈ Ld(2π/L)2 ∝ Ld−2 that
diverges with L for d = 3, is independent of L for d = 2 (marginal case) and decreases as
L−1 for d = 1.

The divergence of the mean-square displacement in Eqn. (2.89) implies that any atom
displaces a long distance from each other and hence no long-range order is possible in
d = 2. This weird effect is due to the dimensionality of space. In three dimensions, the
mean square fluctuation is finite.

A more general proof of the lack of positional order in d ≤ 2 that goes beyond the
harmonic approximation was by Mermin [37]. In this paper, he first proposed the following
criterium for crystallinity:

ρ̃(k) = 0 for k not a reciprocal lattice vector ,
ρ̃(k) 6= 0 for at least one non-zero reciprocal lattice vector , (2.91)

with ρ̃(k) the Fourier transform of ρ(r), in the thermodynamic limit, that is

ρ̃(k) =
1

N

N∑
i=1

eik·ri . (2.92)

Using Bogolyubov’s identity, Mermin showed that the condition (2.90) cannot be satisfied
in d ≤ 2 since in thermal equilibrium at non-vanishing temperature, for all k, 〈ρ̃(k)〉 is
bounded form above by a quantity that vanishes in the thermodynamic limit.
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The possibility of a two-dimensional system with constant density (all Fourier modes
vanish) being, however, anisotropic over long distances was left open by Peierls and Lan-
dau. The actual definition of the orientational order was also given by Mermin in his 1968
paper. Within the harmonic solid model he simply noticed that

〈[r(R + a1)− r(R)] · [r(R′ + a1)− r(R′)]〉 (2.93)

approaches a21 at long distances |R−R′| → ∞, implying that the orientation of the local
order is maintained all along the sample. The status of the studies of orientational order
in two dimensional systems in the 90s is summarised in [38].

Because the symmetry group of both phases is the same in the thermodynamic limit
(QLRO does not result in a macroscopic broken symmetry), it seems that a phase transi-
tion is not necessary. However, as we have seen, the loss of order in the low temperature
phase is very weak, and samples of macroscopic but finite size are expected to exhibit bro-
ken symmetry, so that for all practical purposes there is a symmetry difference between
the two phases, and we would expect a phase transition.

2.5.2 Melting scenarii

In d ≥ 3 melting is a first order phase transition between crystal and liquid (although
the details of how this transition occurs are still not fully understood and may depend
on the material). In d = 2, instead, there is no full consensus yet as to which are the
mechanisms for melting and how the passage from solid (with quasi-long-range positional
and long-range orientational order) to liquid (with both short-range positional and orien-
tational order) occurs. In the late 70s Halperin & Nelson [39] and Young [40] suggested
that the transition can occur in two steps, with an intermediate anisotropic hexatic phase
with short-range positional and quasi-long-range orientational order. Both transitions,
between solid and hexatic on the one hand, and hexatic and liquid on the other, were
proposed to be driven by the dissociation of topological defects, and therefore be of BKT
type:

• In the first stage, at the melting transition Tm, dislocation pairs unbind to form a
bond orientationally ordered hexatic liquid.

• In the second stage, at Ti, the disclination pairs which make up the dislocations
unbind to form an isotropic liquid.

What are these topological defects? In two dimensions, an isolated dislocation is formed
by inserting an extra half row of particles into a triangular lattice. Similarly, an isolated
disclination is formed by inserting (removing) a 60o wedge of material into (from) a tri-
angular lattice, to form a +1(−1) disclination. A +1 disclination corresponds to a point
having sevenfold symmetry, while a −1 disclination corresponds to a point of fivefold
symmetry. Dislocations and disclinations are considered topological defects because they
cannot be eliminated from the lattice without a global rearrangement of particles (insert-
ing or removing a half-row or a 60o wedge of particles).
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Figure 2.14: A vacancy, a grain boundary between regions with different order and a dislocation
in a triangular lattice.

Figure 2.15: Disclination in a triangular and a square lattice.

Moreover, within the KTHNY theory, the finite size scaling of the order parameters
is expected to be as follows. In the solid phase the translational order parameter should
decay with system size as N−η with η ≤ 1/3. In the hexatic phase the hexatic order
parameter should decay with system size as N−η6 with η6 → 0 at the transition with the
solid and, according to Nelson & Halperin, η6 → 1/4 at the transition with the liquid.
All these conclusions were derived from an RG analysis of the continuous elastic model
of a solid separated into the contribution of the smooth displacements and the one of the
defects.

A large number of numerical and experimental attempts to confirm (or not) this picture
followed. A summary of the situation at the beginning of the 90s can be found in [38] and
close to ten years ago in [41]. Early numerics and experiments faced some difficulty in
establishing the existence of the hexatic phase, and suggested instead coexistence between
solid and liquid as expected in a single first order phase transition scenario. However, by
the turn of the century the existence of the hexatic phase was settled and quite widely
accepted (see the references by Maret et al. cited below) although evidence for both
transitions being of BKT kind remained still elusive.

More recently, Krauth and collaborators [43, 44, 45] came back to this problem with
powerful numerical techniques and they suggested that, for sufficiently hard repulsive
interactions between disks, the transition between the hexatic and liquid phases is of first
order. A phenomenon similar to the one put forward by Domany, Schick and Swendsen [29]
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with a numerical study, and later shown rigorously by van Enter and Shlosman [30] for
the 2d XY model with a different potential, would then be at work. Namely, that the
BKT transition derived with renormalisation group techniques would be preempted by a
first order one. This new scenario allows for co-existence of the liquid and hexatic phases
in a finite region of the phase diagram. The mechanisms for the transitions could then be
the following.

• In the first stage, at Tm, dislocation pairs unbind to form a bond orientationally
ordered hexatic phase.

• In the second stage, at Ti, grain boundaries made of strings of alternating five and
seven fold defects would percolate across the sample and liquify it.

While real time video microscopy on superparamagnetic colloids interacting via a soft
r−3 potential tend to confirm the KTHNY scenario experimental evidence for the new
scenario in a colloidal hard disks system was recently given. It seems plausible that the
mechanism for melting in 2d be non-universal and depend on the interaction potential
and other specificities of the systems. Indeed, the numerical simulations prove that for
sufficiently soft potential the first order transition is replaced by the conventional BKT
one [45]. Moreover, a choice between the two is also made by the form of the particles:
a dependence of the order of the transition with the number of sides of the constituent
polygons was claimed in this paper.

The nature of the second transition, at Ti, remains, therefore, to be understood.

2.6 Summary

This Section contains a (very) rapid summary of what we discussed

2.6.1 First order phase transitions

In a first-order phase transition a state that is stable on one side of the transition,
becomes metastable on the other side of it. The order parameter jumps at the transition,
for example, from zero in the disordered phase to a non-vanishing value in the ordered
one. The correlation length, that is extracted from the correlations of the fluctuations of
the order parameter with respect to its average, is always finite.

In common discussions of this kind of transition, the interplay between only two states
is considered, each one being the preferred one on the two sides of the transition. But this
is not necessarily the case and a competition between various equivalent stable states can
also arise. The dynamics of first order phase transitions is driven by nucleation of the new
stable phase within the metastable one in which the system is placed initially. During a
long period of time the system attempts to nucleate one or more bubbles of the stable
phase until some of them reach the critical size and then quickly grow. In the multi-
nucleation problem, two possibilities then arise: either one of them rapidly conquers the
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full sample or many of them touch, get stuck, and a new coarsening process establishes.
The latter case is the one that will be of interest in the hexatic-liquid transition, as we
will argue below.

2.6.2 Second order phase transitions

In a second-order phase transition a state that is stable on one side of the transition,
becomes unstable on the other side of it and, typically, divides continuously into an even
number of different stable points, related in pairs by symmetry. The order parameter is
continuous at the transition and, for example, it grows from zero in the ordered phase.
The correlation length, also extracted from the correlations of the fluctuations of the
order parameter with respect to its average, diverges algebraically on both sides of the
transition.

When the parameters are taken across the critical value, the system needs to accom-
modate to the new conditions and it does progressively, by locally ordering domains of
each of the possible and equivalent new equilibrium states. The latter process is called
coarsening or domain growth and, although it is a very general phenomenon, its details
depend on some characteristics of the problem as the conservation laws and the dimension
of the order parameter. The symmetry breaking process, whereby one of the equivalent
equilibrium states conquers the full sample, is achieved late after the system is taken
across the phase transition. Indeed, equilibration takes a time that scales with the system
size and diverges in the thermodynamic limit.

2.6.3 Infinite order phase transitions

Berezinskii-Kosterlitz-Thouless (BKT) phase transitions lack an order parameter tak-
ing a non-vanishing value on one side of the transition (in the thermodynamic limit) and
are not related to spontaneous symmetry breaking. They are transitions of a different
kind, driven by the unbinding of topological defects when a critical value of a control pa-
rameter (typically temperature over an energy scale) is reached. In the disordered phase
the density of free topological defects is finite and the correlation function of the would-be
order parameter decays exponentially, with a correlation length that is proportional to the
distance between unbound defects. This length diverges exponentially at the transition
and remains infinite in the full quasi-long-range ordered phase. Topological defects exist
in the ordered phase but they bound in pairs and such localised in space. The divergence
of the correlation length implies that the correlations of the would-be order parameter
decay algebraically beyond the transition, that the system has quasi long range order and
that this full phase behaves as a critical point. In terms of the associated susceptibility,
it is finite in the disordered phase and it diverges in the full subcritical phase. Even more
so, the transition is characterised by essential singularities in all thermodynamic func-
tions. The reason for this behaviour are (spin or density) wave excitations with a linear
dispersion relation at long wave-lengths. The dynamics of such phase transitions is char-
acterised by the growth of the quasi-long-range order and the annihilation of topological
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defects.

Appendices

2.A Polar coordinate system

The polar coordinate system is such that

êr = cosϕêx + sinϕêy

êϕ = − sinϕêx + cosϕêy (2.A.1)

and
êϕ = êz × êr . (2.A.2)

Figure 2.16: Polar coordinates notation convention.

2.B Fourier transform

We define the Fourier transform (FT) of a function f(~x) defined in a volume V as

f̃~k = V −1
∫
V

ddx f(~x) ei
~k~x (2.B.1)

This implies
f(~x) =

∑
~k

f̃~k e
−i~k~x (2.B.2)

where the sum runs over all ~k with components ki satisfying ki = 2πni/L with ni an
integer and L the linear size of the volume V .
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In the large V limit these equations become

f̃(~k) = V −1
∫
V

ddx f(~x) e−i
~k~x (2.B.3)

f̃(~x) =

∫
V

ddk

(2π)d
f(~k) ei

~k~x (2.B.4)

The Fourier transform of a real function f(~x) satisfies f̃ ∗(~k) = f̃(−~k).

2.C The angle correlation

In terms of the Fourier components, the canonical measure is a Gaussian, with a weight
that is just a sum over independent modes,

P [{φ~k}] ∝ e−
K
V

∑
~k
k2|φ~k|

2

= e−
K
V

∑
~k
k2φ~kφ−~k (2.C.1)

where we collected in K all the parameters in the Hamiltonian times the inverse tem-
perature β of the Boltzmann weight. We avoid using tilde to distinguish the Fourier
transformed from the original fields as the interpretation should be obvious. Each mode
is an independent random variable with a Gaussian distribution of zero mean and corre-
lations

〈φ~kφ~k′〉 =
V

Kk2
δ~k,−~k′ . (2.C.2)

From this expression one can easily compute the averages and correlations in real space.
First, 〈φ(~r)〉 = 0. Next,

〈φ(~r)φ(~r′)〉 =
1

V 2

∑
~k

∑
~k′

ei
~k·~rei

~k′·~r′〈φ~kφ~k′〉 =
1

V K

∑
~k

ei
~k·(~r−~r′)

k2
. (2.C.3)

In the continuum limit the sum over modes can be replaced by an integral, 1
V

∑
~k · · · 7→∫

ddk
(2π)d
· · · and

〈φ(~r)φ(~r′)〉 =
1

K

∫
ddk

(2π)d
ei
~k·(~r−~r′)

k2
= − 1

K
Cd(~r − ~r′) . (2.C.4)

The right-hand-side is the Coulomb potential due to a unit charge at the origin in a
d-dimensional space, since it is the solution to

∇2Cd(~r) = δd(~r) . (2.C.5)

This equation is solved using Gauss’ theorem∫
V

ddr ∇2Cd(~r) =

∫
S

d~S · ~∇Cd(~r) = 1 . (2.C.6)
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For a spherically symmetric solution Cd(~r) = Cd(r) and ~∇Cd(~r) = dCd(r)/dr êr, and the
equation becomes

1 = Sdr
d−1dCd(r)

dr
with Sd =

2πd/2

(d/2− 1)!
(2.C.7)

the area of a d dimensional sphere with unit radius. From this equation one deduces the
long distance behaviour

lim
r�a

Cd(r) =


c0 d > 2
ln r
2π

d = 2
r2−d

(2−d)Sd
d < 2

(2.C.8)

and, therefore, the phase fluctuations

〈[φ(~r)− φ(~0)]2〉 =
2[r2−d − a2−d]
K(2− d)Sd

(2.C.9)

(the subtracted constant has been fixed so that this quantity vanishes at zero distance)
one finds that while they are finite for d > 2, they diverge for d ≤ 2, and order is thus
destroyed by the spin-waves at sufficiently low dimensions.
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