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Fig, 9. Inverse temperature § as a function of energy &, The Maxwell’s construction Is shown by the dotted line, while the dash-dotted line indicates
the inverse temperature of the bath By U denotes an unstable macroscopic state with negative specific heat, while M and § are metastable and stable,

respectively,

The fact that the presence of a canonical fiist order phase transition is necessaly o obtain ensemble inequivalence was
conjectured in Ref, [14] This statement has been put on a more rigorous basis in Refs. [20,42], analyzing the convexity
properties of the entropy s(g). In fact, it has been shown [20] that if the rescaled free energy ¢(f) is differentiable, then the
entropy s() can be obtained by its Legendre-Fenchel transform. This applies also for second order phase transitions, when
the second derivative of ¢ (8) is discontinuous. Therefore, in the presence of a second order phase transition in the canonical
ensemble, the microcanonical and canonical ensembles are equivalent.

In this subsection we have discussed in detail the case where no singularity is present in the entropy. Although already
showing all the features of ensemble inequivalence, this case is not generic and we will discuss in the next subsectiona model
that has a second order phase transition in the microcanonical ensemble and still a first order transition in the canonical
ensemble,

Let us conclude this subsection with a remark. We have remarked that energies berween ¢y and £, correspond to the same
value of £ in the canonical ensemble. [t is interesting to figure out what happens if animitially 1solated system with negative
specific heat and with an energy between &1 and &z, is put in contact with a heat bath that has its inverse temperature Brath.
Looking at Fig. 9 can be of help to understand the argument. We consider the case where the energy of the system lies in the
range in which the specific heat is negative [&4, £5] when the system is put in contact with the bath. Let us take for instance
point U in Fig. 9 as an initial point. We are interested to study the behavior of the system subjected to small perturbations, so
that it can still be considered to be initially close to a micracanonical system, We see immediately that the system becomes
unstable. In fact, if it gets a small amount of energy from the bath, its temperature lowers (negative specific heat!), and
therefore further energy will flow from the bath to the system, inducing a lowering of the system’s temperature and then
creating instability. If, on the contrary, the initial energy fluctuation decreases the system's energy, its temperature rises,
inducing a further energy flow towards the bath, and, hence, an increase of system's temperature. Thus, in contact with a
heat bath, the system does not maintain an energy in which its microcanonical specific heat is negative. The flow of energy
started by the initial energy fluctuations stops when the system reaches the same temperature of the bath again, but at an
energy for which its specific heat is positive, Looking at Fig. 9, it is clear that this could be either outside the range |&1, &),
i.e. point S, or inside this range, point M, This feature is valid for all points U inside ], £]. Once in M, the system will be in
a thermodynamically metastable state and a sufficiently large fluctuation in the energy exchange with the bath will make it
leave this metastable state, ending up again in a state with energy outside [£1, 2], i.e. point S, which has the same inverse
temperature of the bath Bpam. If the system instead jumps directly from U tc §, it will stay there because this point lies on a
thermodynamically stable branch.

4.2, An analytical solvable example: The mean-field Blume-Emery-Griffiths model

We have presented above the main physical and mathematical aspects related to ensemble equivalence or inequivalence
in the study of long-range systems, Other mathematical approaches and tools, that exist, will be presented in connection with
concrete examples. Actually, this subsection is dedicated to a toy model that exhibits all the features that have been discussed
so far, in particular ensemble inequivalence and negative specific heat in the microcanonical ensemble, Historically, the
relation between first order phase transition and negative specific heat for long-range systems in the thermodynamic limit
was first pointed out in Refs. [104,105]. The phenomenology we are going to discuss in this section has been heuristically

described in Ref. [106].
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Fig. 10. Elementary features of the phase diagram of the Blume-Emery-Griffiths model, showing the phase transitions on the temperature T and local
coupling A axis, respectively.

4,21, Qualitative remarks

The Blume-Emery-Griffiths (BEG) model is a lattice spin model with infinite range, mean-field like interactions whose
phase diagram can be obtained analytically both within the canonical and the microcanconical ensembles. This study enables
one to compare the two resulting phase diagrams and get a better understanding of the effect of the non-additivity on the
thermodynamic behavior of the model.

The model we consider is a simplified version of the Blume-Emery-Griffiths model [107], known as the Blume-Capel
model, where the quadrupole-quadrupole interaction is absent, The model is intended to reproduce the relevant features of
superfluidity in He3-He? mixtures, Recently, it has also been proposed as a realistic mode! for metallic ferromagnetism [108].
It is a lattice system (5), and each lattice point i is occupied by a spin-1 variable, i.e, a variable §; assuming the values
S; = 0, 1. We will consider the mean-field version of this model, for which all lattice points are coupled with the same

strength, The Hamiltonian is given by

N ] N 2 :
H=4) 8- (Z&) ; (73)
f=1 =1

where J > 0 is a ferromagnetic coupling constant and A > 0 controls the energy difference between the ferromagnetic
S = 1,Vi,orS; = —1,Vi, and the paramagnetic, §; = 0, Vi, states. In the following we will set ] = 1, without loss
.of generality since we consider only ferromagnetic couplings. The paramagnetic configuration has zero energy, while the
uniform ferromagnetic configurations have an energy (A — 1/2)N. In the canonical ensemble, the minimization of the free
energy F = E—TS at zero temperature is equivalent to the minimization of the energy. One thus finds that the paramagnetic
state is the more favorable from the thermodynamic point of view if E({==1}) > E({0}), which correspondsto A > 1/2. At
the point A = 1/2, there is therefore a phase transition; it is a first order phase transition since, it corresponds to a sudden
Jjump of magnetization from the ferromagnetic state to the paramagnetic state.

For vanishingly small ratio A, the first term of Hamiltonian (73) can be safely neglected so that one recovers the
Curie-Weiss Hamiltonian (1) with spin 1, usually introduced to solve the Ising model within the mean-field approximation.
It is well known that such a system has a second order phase transition when T = 2/3 (we recall that we are adopting units
for which J = 1, kg = 1). Since one has phase transitions of different orders on the T and A axis (see Fig. 10), one expects
that the (T, A) phase diagram displays a transition line separating the low temperature ferromagnetic phase from the high
temperature paramagnetic phase. The transition line is indeed found to be first order at large A values, while it is second

order at small A’s.

4.2.2. The solution in the canonical ensemble
The canonical phase diagram of this model in the (T, A) is known since long time [107,108,110]. The partition function

reads

N N 2
ZB.N)= Y exp —ﬁAZS?-{-f—i(ZSi) ] (74)
f=1

(51,-5n} =1

Using the Gaussian identity

b e '
exp(bm?) = \/;f dx exp(—bx? + 2mbx), (75)
OO =

(often called the Hubbard-Stratonovich transformation) with m = >, 5;/N and b = NgJ/2, one obtains

N 73 00
Z(B,N) = Z exp (~ﬂA ;S,z) \/I;Lf /:o dxexp ( J—Vf-xz - mNﬁx) ¥ (76)

(81500581
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Fig. 11. Free energyf(ﬁ X) vs. x for different values of the inverse temperature 8 = 1/T. Left panei shows the case of a second order phase transition,
temperatute values T = 0,8 (dashed line), 0.63 (dotted), 0.4 (solid) when A = 0.1 are displayed. Right panel shows the case of a first order piiase transition

with A = 0.485 when T = 0.5 (dashed), 0.24 (dotted), 0.21 (dash-daotted), 0.18 (solid).

Cne then easily gets

N“‘éw “+00 .
2. =52 [ anenoc-ngis, ) 77)
where '
fB.% = %x: - % In[1 + e~P4(ef* + o4, (78)

The integral in (77) can be computed using the saddle point method where N is the large parameter. The free energy is thus

F(8) = infF(B.x). (79)
It is not difficult to see that the spontaneous magnetization {m) is equal to the value of x at the extremum which appears in
Eq. (79). We should also note that f (8, x) is even inx; therefore, if there is a value of x different from 0 realizing the extremum,
the opposite value also realizes it. This means that if the minimum x is equal to 0 the system is in the paramagnetic phase,
while if X # O the system is in the ferromagnetic phase, where it can assume a positive or a negative magnetization. The
phase diagram, in the (T, A) plane, is then divided into a paramagnetic region (¥ = 0) and a ferromagnetic one (x # 0).

Let us now show that the two regions are divided by a second order phase transition line and a first order phase transition
line, which meet at a tricritical point. As in the Landau theory of phase transitions, we find a second order transition line by
a power series expansion in x of the functmnf(ﬁ x) in Eq. (78). The second order line is obtained by equatzng to zero the
coefficient of 2, i.e., by the relation

1
Acﬁﬁ——ieﬁﬂ——“[:& (80)

provided that the coefficient of x* is positive, i.e., provided that
B, =4-¢f4 >0, (81)

The tricritical point is obtained when A. = B, = 0. This gives A = In(4)/3 = 0.4621 and § = 3. The continuation of the
critical line after the tricritical point is the first order phase transition line, which can be obtained by finding numerically the
local maximum value ¥ # 0 (magnetic phase) for whichf(,ﬁ, x) is equal to f (8, 0) (paramagnetic phase), Le,, by equating the
free energies of the ferromagnetic and the paramagnetic phases. The behavior of the function F(B, x) as B varies is shown
in Fig. 11: panel (a) represents the case of a second order phase transition {A = 0.1) and panel (b) the case of a first order
phase transition (A = 0.485).

A picture of the phase diagram is shown in Fig. 12.
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Fig. 12. Phase diagram of the Blume-Emery-Criffiths model in the canonical ensemble. The second order transition line (solid) ends at the tricritical point
(*), where the transition becomes first order (dotted).

4,2.3. The solution in the microcanonical ensemble

The derivation of the phase diagram of the BEG model (73) in the microcanonical ensemble relies on a simple counting
problem [14], since all spins interact with equal strength, independently of their mutual distance. A given macroscopic
configuration is characterized by the numbers N4, N_, Ny of up, down and zero spins, with Ny +N_ + Ny = N. The energy
E of this configuration is only a function of N4, N_ and Np and is given by

1
E=AQ — ﬁM?, (82)

where Q = Z:';‘_' .S} = Ny + N_ (the quadrupole moment) and M = Zf_l Si = Ny — N_ (the magnetization) are the
two order parameters. The number of microscopic configurations £2 compatible with the macroscopic occupation numbers

Ny, N_and Ny is

: ,_
B i e, , (83)
N, IN_INo!

Using Stirling’s approximation in the large N limit, the entropy, S = In £2, is given by

S=—N [(1 —ln(1—g) + %(q +m)In(g +m) + %(q — m)lnlg — m) --qinz] , (84)

where g = Q /N and m = M/N are the quadrupole moment and the magnetization per site, respectively. Eq. (82) may be
written as

q = 2Ke + Km?, (85)
where K = 1/(24). Using this relation, the entropy per site § = S/N can be expressed in terms of m and ¢, as follows
’ 1
i(e,m) = —(1 —2Ke — Km®)In(1 — 2Ke — Km?) — 5 (2Ke Km? + m) In(2Ke 4+ Km? + m)
1
-5 (K5 + Km? —m) In(2Ke + Km*> — m) + (2Ke 4+ Km®)In 2. (86)

At fixed g, the value of m which maximizes the entropy correspends to the equilibrium magnetization. The corresponding

equilibrium entropy

s(g) = sups(e, m) (87)
m

contains all the relevant information about the thermodynamics of the system in the microcanonical ensemble. As usual in
systems where the energy per particle is bounded from above, the model has both a positive and a negative temperature
region: entropy is a one humped function of the energy. In order to locate the continuous transition line, one develops
3(g, m) in powers of m, in analogy with what has been done above for the canonical free energy

§ = 5y + Ape m? + Bre m* + 0(m®), (88)

where
50 =3(e,m=0) = —(1 - 2Ke) In{1 — 2Ke) —~ 2K¢e In(Ke), (89)
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and
Ke 1
Ape = —KIn-o—oome — —.
= (1—-2Kg) 4Ke' (20)
K 1 1
OV . VU, VO SN, W 1
4z (1 — 2Ke) T 96K 33 41

In the paramagnetic phase both Ay, and By, are negative, and the entropy is maximized by m = 0. The continuous transition
to the ferromagnetic phase takes place at Ap: = 0 for By < 0. In order to obtain the critical line in the (T, 4) plane, we
first observe that temperature is calculable on the critical line (m = 0) using (53) and (89). One gets

Bm'r =

1 2K 1—2Ke (92)
- = n ;
T Ke
Requiring now that Ay, = 0, one gets the following expression for the critical line
ex 210 i
i ?[ﬁzf,(k-]“ ey ; (93)

Equivalently, this expression may be written as § = 1/(2K¢). The microcanonical critical line thus coincides with the
critical line (80) obtained for the canonical ensemble, The tricritical point of the microcanonical ensemble is obtained at
Ame = Bne = 0, Combining these equations with Eq. (92), one finds that, at the tricritical peint, 8 satisfies the equation

K r1+Ze £ il +- - 0 (94)
—— 1 xpl—— |- —=+--=0
287 | Blog 28 " 12

Egs. (93) and (94) yield a tricritical point at K ~ 1.0813, § = 3.0272. This has to be compared with the canonical tricritical
point located at K = 1/(24) = 3/In(16) ~ 1.0820, 8§ = 3. The two points, although very close to each other, do not
coincide. The microcanonical critical line extends beyond the canonical one. This feature, which is a clear indication of
ensemble inequivalence, was first found analytically for the BEG model [14] and later confirmed for gravitational models
[4,34]. The non-coincidence of microcanonical and canonical tricritical points is a generic feature, as proven in Ref. [42].

4.2.4. Inequivalence of ensembles

We have already discussed in general terms the question of ensemble equivalence or inequivalence in Sections 4.1.1 and
4.1,3. Inequivalence is associated to the existence of a convex region of the entropy as a function of energy. This is exactly
what happens for the BEG model in the region of parameters 1 < K < 3In(16). Since the interesting region is extremely
narfow for this model [14], it is more convenient to plot a schematic representation of the entropy and of the free energy (see
Fig, 13). We show what happens in a region of K where both a negative specific heat and a temperature jump are present. The
entropy curve consists of two branches: the high energy branch is obtained for m = 0 (dotted line), while the [ow energy one
is for m # 0 (full line). The m = 0 branch has been extended also in a region where it corresponds to metastable states, just
to emphasize that these correspond to a smaller entropy and that it remains a concave function overal! the energy range. We
have not extended the m % 0 branch in the high energy region not to make the plot confusing: it would also correspond to a
metastable state. The two branches merge at an energy value g, where the left and right derivatives do not coincide; hence
microcanonical temperature is different on the two sides, leading to a temperature jump. It has been proven in Ref. [42],
that for all types of bifurcation the temperature jump is always negative, In the low energy branch, there is a region where
entropy is locally convex (thick line in Fig. 13), giving a negative specific heat according to formula (70). The convex envelope,
with constant slope f; is also indicated by the dash-dotted line. [n the same figure, we plot the rescaled free energy ¢(8),
which is a concave function, with 2 point 8, where left and right derivatives (given by &, and ¢; respectively) are different.
This is the first order phase transition point in the canonical ensemble. :

A schematic phase diagram near the canonical tricritical* point (CTP) and the microcanonical one (MTP) is given in
Fig. 14. In the region between the two tricritical points, the canonical ensemble yields a first order phase transition at
a higher temperature, while in the microcanonical ensemble the transition is still continuous. It is in this region that
negative specific heat appears, Beyond the microcanonical tricritical point, temperature has a jump at the transition energy
in the microcanonical ensemble. The two lines emerging on the right side from the MTP correspond to the two limiting
temperatures which are reached when approaching the transition energy from below and from above (see Fig. 15c and d)
The two microcanonical temperature lines and the canonical first order phase transition line all merge on the T = 0 line at
A=1/2

To get a better understanding of the microcanonical phase diagram and also in order to compare our results with
those obtained for self-gravitating systems [4,34] and for finite systems [9,19,31,87], we consider the temperature-energy
relation T (&) (also called in the literature the “caloric curve”). Also this curve has two branches: a high energy branch (92)
corresponding to m = 0, and a low energy branch obtained from (53) using the spontaneous magnetization m;(g) # 0. At
the intersection point of the two branches, the two entropies become equal. However, their first derivatives at the crossing
point can be different, resulting in a jump in the temperature, i.e. a microcanonical first order transition. When the transition is
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Fig. 13. Left graph: schematic plot of the entropy s(e) as a function of energy density & for the BEG model in a case where negative specific heat coexists
with a temperature jump. The dash-dotted line is the concave envelope of s(¢) and the region with negative specific heat ¢y < 0is explicitly indicated by
the thick line, Right graph: Rescaled free energy ¢(8): the first order phase transition point j, is shown.

Fig. 14. Aschematic representation of the phase diagram, where we expand the region around the canonical (CTP) and the microcanonical (MTP) tricritical
points. The second order line, common to both ensembles, is dotted, the first order canonical transition line is solid and the microcanonical transition lines

are dashed (with the bold dashed line representing a continuous fransition).

continuous in the microcanonical ensemble, i.e, the first derivative of the entropy branches at the crossing point are equal,
the BEG model always displays, at variance with what happens for gravitational systems, a discontinuity in the second
derivative of the entropy. This is due to the fact that here we have a true symmetry breaking transition [42]. Fig. 15 displays
the T (&) curves for decreasing values of K. For K = 3/In(16), corresponding to the canonical tricritical point, the lower
branch of the curve has a zero slope at the intersection point (Fig. 15a). Thus, the specific heat of the ordered phase diverges
at this point. This effect signals the canonical tricritical point through a property of the microcanonical ensemble, Decreasing
K, down to the region between the two tricritical points, a negative specific heat in the microcanonical ensemble first arises
(8T/Be < 0), see Fig. 15b. At the microcanonical tricritical point, the derivative 8T/de of the lower branch diverges at
the transition point, yielding a vanishing specific heat. For smaller values of K, a jump in the temperature appears at the
transition energy (Fig. 15¢). The lower temperature corresponds to the m = 0 solution (92) and the upper one is given by
exp(B/2K) = 2(1— q“)/\/(q”')2 — (m*)2, where m*, g* are the values of the order parameters of the ferromagnetic state at
the transition energy. The negative specific heat branch disappears at even smaller values of K, leaving just a temperature
jump (see Fig. 15d). In the K — 1 limit the low temperature branch, corresponding to ¢ = m == 1 in the limit, shrinks to
zero and the m = 0 branch (92) occupies the full energy range.

4.3, Entropy and free energy dependence on the order parameter

In this section, we will discuss in detail the dependence of both the canonical free energy and the microcanonical entropy
on the order parameter. This will allow to understand more deeply the relation between the two ensembles by revisiting
Maxwell constructions. Besides that, we will also discover an interesting physical effect, negative susceptibility, of which we

will give an explicit example, see Section 4.5.4.



