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1. The ergodic hypothesis.

In Fig. 1 four time signals (realisations) of a continuous time random process x(t) are
displayed.

Figure 1: A continuous time stochastic process. Image taken from Ref. [1].

In your opinion, is this process ergodic? Explain.

1



2. (In) equivalence of ensembles.

Consider a system of N Potts spins, that is to say, variables taking q integer values,
si = 1, . . . , q, and potential energy given by the sum of a two-body potential that favours
coupled spins taking the same value

HJ [{si}] = −J
∑
ij

δsisj , (1)

with the coupling constant J > 0. We consider the model defined on:
(a) a square lattice in two dimensions (the sum should then be interpreted as

∑
〈ij〉 with

〈ij〉 first neighbours on the lattice),
(b) a fully connected graph (and the sum being interpreted as

∑
i 6=j).

When studied in the canonical ensemble, the d dimensional Potts model has a phase
transition at a finite Tc that is second order for q < qc(d) and first order for q > qc(d). For
example, in the two dimensional model the phase transition is second order for q = 2, 3, 4
and first order for q > 4.

Is the energy extensive for the model defined as in (a) and/or (b)? Justify the answer with
one equation and explain the conclusion for (a) and (b).

Is the energy additive in (a) and/or (b)? Justify the answer with one equation and explain
the conclusion for (a) and (b).
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Explain why the violation of these properties may affect the equivalence of ensembles.

Do you expect inequivalence of ensembles in this model? In which cases?

Mention a physical system (realised in Nature) with inequivalence of ensembles.
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3. The two dimensional Ising model.

Consider the two dimensional ferromagnetic Ising model with two-body nearest-neighbour
interactions

HJ [{si}] = −J
∑
〈ij〉

sisj (2)

defined on a lattice with coordination number z and the sum
∑

〈ij〉 is such that each the
contribution of each bond is counted once. The variables si = ±1 indicate the Ising spins,
the index i = 1, . . . N labels the lattice sites and therefore the spins placed on them, and
the coupling constant is positive, J > 0. We will analyse the statistical properties of the
model in contact with a thermal bath at temperature T .

Which phase(s) do you expect at T = 0?

Write the ground state energy.

Which phase(s) do you expect at T →∞?

Which are the simplest excitations over the ground state configuration that you can imag-
ine? Make a drawing to explain the answer.

4



Give an expression for the difference, ∆E, between the energy of the excited state described
in the previous question and the energy of the ground state.

Estimate the entropy associated to the excitation that you proposed and explain the
reasoning that you followed to reach the estimate.

What do you conclude concerning the possibility of having an ordered state at low (but
non-vanishing) temperatures and, therefore, a finite temperature phase transition from
the expression found?

Which kind of argument have you applied here?
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4. Frustration

Define frustration

Mention two effects of frustration on spin systems. Explain, briefly, their origin.

Take now the O(n) anti-ferromagnetic model

H = −J
∑
〈ij〉

~si · ~sj . (3)

The sum over pairs of spins ij runs over nearest neighbours on a generic lattice made of
corner-sharing plaquettes. Assume that there are q spins on each plaquette (e.g. q = 3 for
a triangular plaquette) and that the lattice is made by 2N such plaquettes attached by
their corners (see Fig. 2 (a) for an example, the Kagome lattice). The negative exchange
energy J < 0 favours antiparallel alignment of the nearest neighbour n component spins
~si = (s1i , s

2
i , . . . , s

n
i ) with fixed length si = |~si|.

With its length being fixed, how many degrees of freedom does each spin ~si have?

Each spin ~si has n components but the modulus is fixed to one, there is one constraint
and the total number of d.o.f. per spin is n− 1.
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(a) (b)

Figure 2: (a) The so-called Kagome lattice, made of corner sharing triangular plaquettes. (b) The
pyrochlore lattice of corner sharing tetrahedra. Images taken from Ref. [2].

How many degrees of freedom, that we will call D, are there in the system?

There are 2N units in the system and each of them has q spins. Since each spin is
shared by two units, one has Nq spins to consider, and each of them has n− 1 d.o.f.
Therefore, D = Nq(n− 1).

Which is the condition that the spins on a given plaquette (disconnected from the rest of
the system) should satisfy to minimize their contribution to the total energy? Explain.

To minimise the single plaquette P energy one needs to minimise EP /J =
∑

〈ij〉∈P ~si ·
sj . This can be rewritten EP /J = (

∑
i∈P ~si)

2 −
∑
i(~si)

2 = 1/2 (
∑
i∈P ~si)

2 −
1/2

∑
i(~si)

2 = 1/2 (
∑
i∈P ~si)

2 − q/2. The last term is a constant due to the nor-
malisation of the spins. The first term is positive or at best zero; thus the best one
can achieve is to make it vanish. This leads to the condition

∑
i∈P ~si = 0.

Let us call K the number of constraints that must be satisfied to put the system in a
ground state. This is very difficult to calculate. So, the idea is to approximate it by the
sum over the constraints on each plaquette taken to be independent. What is the value of
K under this assumption?

On each plaquette one needs to impose
∑
i∈P ~si = 0, a vectorial relation, with n

components. There are 2N units. Then, the number of constraints is K = 2Nn.
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The number of degrees of freedom in the ground state, F , is estimated to be D −K with
D and K defined above. Which is the condition to have a macroscopic degeneracy of the
ground state?

F = D −K = Nq(n− 1)− 2Nn = N [q(n− 1)− 2n] should scale with N

Do the Kagome (n = 3, q = 3) and pyrochlore (n = 3, q = 4) lattices have macroscopically
degenerate ground states?

For the triangular case, F = D −K = N [q(n− 1)− 2n] = [3× 2− 2× 3]N = 0. The
constraints and degrees of freedom are perfectly matched and one does not expect
macroscopic degeneracy in this case, according to this argument.
For the pyrochlore case, F = D−K = N [q(n− 1)− 2n] = [4× 3− 2× 3]N = 6N the
constraints are definitely not enough and the ground state has macroscopic degeneracy
according to this estimate.

5. Random Matrices

In which field of physics were random matrices first used? Which was the qualitative
argument put forward to justify the use of random matrices in this field?
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In this context, which was the quantity that physicists focused on?

Which are the two “extreme” cases for the probability distribution of the quantity iden-
tified in the last question? Explain the answer without reproducing the full calculation.

Consider an N ×N symmetric matrix M with real elements constructed as mij = (aij +
aji)/2 and aij taken from a probability distribution with zero mean, variance σ2 < +∞
and all higher moments taken finite values. What is the probability distribution of its
eigenvalues λµ?
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5. Quenched randomness

Which are the main effects of quenched randomness on a phase transition?

Explain the difference between “annealed” and “quenched” disorder.

Which is the main difference between “weak” and “strong” quenched disorder?

Mention and state a criterium that allows one to know whether weak disorder may change
the critical exponents in a second order phase transition.
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Consider the random anisotropy model defined by

H = −J
∑
〈ij〉

~si · ~sj + ∆
∑
i

(~νi · ~si)2 (4)

The sum runs over nearest neighbours on a finite dimensional lattice. The spins have n
components, ~si = (s1i , . . . , s

n
i ). The vectors ~νi = (ν1i , . . . , ν

n
i ) have a different quenched

random orientation but the same unit module, |~νi| = ν on each site.

Do you expect a self-averaging free-energy density for this model? Explain.

Take a d dimensional Ising model defined on a cubic lattice. Correlated random fields
with zero mean and variance σ2 act locally on the spins. These are such that they are
identical in one Cartesian direction and different in the (d− 1) other ones. For example,
in a two dimensional system, they are identical on the vertical direction and different on
the horizontal one.

Use and explain a qualitative argument to estimate the lower critical dimension in this
problem
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