Advanced Statistical Physics TD2 Random matrix Theory

November 2018

We shall study some properties of random symmetric matrices with elements taking real values.

1. Consider a 2×2 symmetric matrix

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{12} & m_{22} \end{pmatrix} \tag{1}$$

- (a) Compute the eigenvalues λ_1 and λ_2 .
- (b) Compute their difference $s = \lambda_1 \lambda_2$.
- (c) Find the conditions on the matrix elements to have degenerate eigenvalues, in other words, vanishing level spacing, s = 0.
- (d) Write the level spacing s as a distance on a two dimensional plane. Suppose that the joint probability distribution of the "coordinates" x and y on this plane does not diverge close to the origin. Prove that the probability distribution of the level spacing vanishes close to zero. This is a manifestation of the level spacing repulsion.
- 2. Imagine now that the matrix M has been constructed as $M = A + A^T$ with

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad \Rightarrow \qquad M = \begin{pmatrix} 2a_{11} & a_{12} + a_{21} \\ a_{12} + a_{21} & 2a_{22} \end{pmatrix}$$
(2)

and take the real elements of A as independent identically distributed random variables with probability $p_A(a_{ij})$.

- (a) Compute the probability distribution of the four elements m_{ij} that we will call $p_{M_{ij}}(m_{ij})$. What do you note in these distributions?
- (b) Draw the real elements of A from a Gaussian probability distribution with zero mean and unit variance. Compute the probability distributions of the elements of the matrix M in this case. (Hint: as you shall use the probability of a linear combination of two Gaussian random variables in several steps of this and the following questions, first establish the form of p(z) for z = ax + by, with a and b real parameters and x and y i.i.d. Gaussian random variables with zero mean and variance σ^2 .)

- (c) Calculate p(s).
- (d) Prove that $\tilde{p}(s/\langle s \rangle)$ with $\langle s \rangle = \int ds \, s \, p(s)$ satisfies the Wigner surmise.
- 3. Generate an ensemble with $\mathcal{N} = 1000$ Gaussian Orthogonal Ensemble (GOE) matrices constructed as $M = A + A^T$, and A matrices of size N = 2, 4, 10 with elements drawn from a Gaussian probability distribution for zero mean and unit variance.
 - (a) For N = 2 verify numerically the results of the previous item.
 - (b) In general, find the N eigenvalues λ_n , with n = 1, ..., N of each matrix.
 - (c) Sort them in increasing order.
 - (d) Find the difference between neighbouring eigenvalues $s_n = \lambda_{n+1} \lambda_n$.
 - (e) Calculate the mean splitting $\langle s \rangle \equiv N^{-1} \sum_{n=1}^{N} s_n$.
 - (f) Plot a histogram of the eigenvalue splittings divided by the mean splitting, $\tilde{s}_n = s_n/\langle s \rangle$ with bin size small enough to see some of the fluctuations. (Hint: Debug your work with $\mathcal{N} = 10$, and then change to $\mathcal{N} = 1000$.)
 - (g) Plot also the probability density of a single eigenvalues λ_n , $\rho(\lambda_n)$, and compare it to the semi-circle law.
- 4. In this exercise we will study some properties of the Gaussian Orthogonal Ensemble, the ensemble of real symmetric matrices. Let us call H an element of the GOE such that its elements are $H_{ij} = (M_{ij} + M_{ji})/2$ and M_{ij} are i.i.d. Gaussian random variables with zero mean and variance σ^2 . R is a rotation matrix such that $R^T R = 1$, with 1 the identity matrix.
 - (a) Show that the trace of $H^T H$ with H^T the transpose of H is equal to the sum of the squares of all the elements of H.
 - (b) Write $H^T H$ as a sum over diagonal elements H_{ii} and the elements of, say, the elements of the upper half of the matrix, H_{ij} with j > i.
 - (c) Recall how are the variance of the diagonal and off-diagonal elements of the matrix H related.
 - (d) Show that this trace is invariant under orthogonal transformations, $H \mapsto R^T H R$.
 - (e) Write the joint probability distribution of the elements of a GOE matrix H in terms of $\text{Tr}H^TH$.
 - (f) Prove that this measure is invariant under orthogonal transformations, $\rho(R^T H R) = \rho(H)$.
- 5. In this exercise we develop an algebraic proof of Wigner's semi-circle law for GOE matrices.
 - (a) Define $\rho_N(\lambda) = \frac{1}{N} \sum_{\mu=1}^N \delta(\lambda \lambda_\mu)$, to be the probability density of the eigenvalues of the random matrix H_N . Note that since the λ_μ are random, this is random probability distribution function. The idea here is to prove that, in the $N \to \infty$ limit, the *k*th moment of this finite N distribution function approaches

$$\lim_{N \to \infty} \frac{1}{N} \sum_{\mu=1}^{N} \lambda_{\mu}^{k} = \int d\lambda \,\rho(\lambda) \lambda^{k} \tag{3}$$

with $\rho(\lambda)$ the semi-circle law, $\rho(\lambda) = 1/(4\pi) \sqrt{4 - \lambda^2}$.

- (b) Relate $\frac{1}{N} \sum_{\mu=1}^{N} \lambda_{\mu}^{k}$ to the trace of a power of the random matrix H_{N} .
- (c) Once written as a trace, order the various terms in the sum over diagonal indices according to their N-dependence. Fro convenience, scale the elements of H by a convenient factor \sqrt{N} .
- (d) Prove that the leading (in powers of N) term in the odd moments, k odd, vanish, and hence also does the moment itself.
- (e) Prove that the even moments are given by the Catalan numbers $C_{k/2}$, where

$$C_n \equiv \frac{1}{n+1} \begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{(2n)!}{(n+1)!n!} = \prod_{k=2}^n \frac{n+k}{k} = \int_0^4 dx \ x^n \frac{1}{2\pi} \sqrt{\frac{4-x}{x}} , \quad (4)$$

and that these are also the moments of the semi-circle law.

Références

- P. Chau Huu-Tai, N. A. Smirnova and P. Van Isacker, *Generalised Wigner surmise for 2 × 2 random matrices*, J. Phys. A: Math. Gen. 35, L199 (2002).
- [2] M. V. Berry and P. Shukla, Spacing distributions for real symmetric 2×2 generalized Gaussian ensembles J. Phys. A: Math. Gen. 42, 485102 (2009).