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1 RANDOM FIELDS, RANDOM INTERACTIONS

1 Random fields, random interactions
No material is perfectly homogeneous: impurities of different kinds are distributed

randomly throughout the samples. In ultra-cold atom systems, so much studied nowadays,
disorder can be realised, for example, using speckle laser light. It is quite natural to
expect that disorder will change the equilibrium and dynamical properties of the systems
on which it acts.

A natural effect of disorder should be to lower the critical temperature of a macroscopic
interacting system. Much attention has been payed to the effect of weak disorder on phase
transitions, that is to say, situations in which the nature of the ordered and disordered
phases is not modified by the impurities but the critical phenomenon is. On the one hand,
the critical exponents of second order phase transitions might be modified by disorder, on
the other hand, disorder may smooth out the discontinuities of first order phase transitions
rendering them of second order. Strong disorder instead changes the nature of the low-
temperature phase and before discussing the critical phenomenon one needs to understand
how to characterise the new ordered ‘glassy’ phase.

In this Section we shall discuss several types of quenched disorder and models that
account for it. We shall also overview some of the theoretical methods used to deal with
the static properties of models with quenched disorder, namely, scaling arguments and
the droplet theory, mean-field equations, and the replica method.

1.1 Quenched and annealed disorder

Imagine that one mixes some random impurities in a melt and then very slowly cools
it down in such a way that the impurities and the host remain in thermal equilibrium. If
the interest sets on the statistical properties of the full system, one has to compute the
full partition function in which a sum over all configurations of the host components and
the impurities has to be performed. This is called annealed disorder.

In the opposite case in which upon cooling the impurities do not equilibrate with the
host nor with the environment but remain blocked in random fixed positions, one talks
about quenched disorder. Basically, the relaxation time associated with the diffusion of
the impurities in the sample is so long that these remain trapped:

tobs ∼ 104 sec� tdiff . (1.1)

As concerns the host variables, they have their own, typically microscopic time scale that
is much smaller than the observational time scale and therefore fluctuate. For example,
in magnetic system, this time scale is the typical time-scale needed to reverse a spin,
τo ∼ 10−12 − 10−15 sec� tobs.
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1.2 Properties 1 RANDOM FIELDS, RANDOM INTERACTIONS

The annealed case is easier to treat analytically but it brings in less theoretical novelties
and, in many cases of interest, is of less physical relevance. The quenched one is the one
that leads to new phenomena and ideas that we shall discuss next.

Quenched disorder is static. Instead, in annealed disorder the impurities are in ther-
mal equilibrium in the experimental time-scales, and they can simply be included in the
statistical mechanic description of the problem, by summing over their degrees of freedom
in the partition function.

1.2 Properties

Let us list a number of properties of systems with frozen-in randomness.

1.2.1 Lack of homogeneity

It is clear that the presence of quenched disorder, in the form of random interactions,
fields, dilution, etc. breaks spatial homogeneity and renders single samples heterogeneous.
Homogeneity is recovered though, if one performs an average of all possible realisations
of disorder, each weighted with its own probability.

1.2.2 Frustration

We already discussed frustration in the context of magnetic models without disorder. It
is quite clear that disorder will also introduce frustration in magnetic (and other) systems.

An example of an Ising model with four sites and four links is shown in Fig. 1.1-left,
where we took three positive exchanges and one negative one all, for simplicity, with the
same absolute value, J . Four configurations minimise the energy, Ef = −2J , but none
of them satisfies the lower link. One can easily check that any closed loop such that
the product of the interactions takes a negative sign is frustrated. Frustration naturally
leads to a higher energy and a larger degeneracy of the number of ground states. This is
again easy to grasp by comparing the number of ground states of the frustrated plaquette
in Fig. 1.1-left to its unfrustrated counterpart shown on the central panel. Indeed, the
energy and degeneracy of the ground state of the unfrustrated plaquette are Eu = −4J
and nu = 2, respectively.

+ + + +

+

++

−

− −

−

Figure 1.1: A frustrated (left) and an unfrustrated (center) square plaquette for an Ising model
with nearest-neighbour interactions. A frustrated triangular plaquette (right).

Frustration may also be due to pure geometrical constraints. The canonical example
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1.2 Properties 1 RANDOM FIELDS, RANDOM INTERACTIONS

is an antiferromagnet on a triangular lattice in which each plaquette is frustrated, see
Fig. 1.1-right.

In short, frustration arises when the geometry of the lattice and/or the nature of
the interactions make impossible the simultaneous minimisation of the energy of all pair
couplings between the spins. Any loop of connected spins is said to be frustrated if the
product of the signs of connecting bonds is negative. In general, energy and entropy of
the ground states increase due to frustration.

Later in this Section, in Eq. (1.16), we will introduce the interaction energy between
any pair of spins in a spin-glass sample. Depending on the value of the distance rij the
numerator in this expression can be positive or negative implying that both ferromagnetic
and antiferromagnetic interactions exist. This leads to frustration, which means that in
any configuration some two-body interactions remain unsatisfied. In other words, there
is no spin configuration that minimises all terms in the Hamiltonian.

1.2.3 Random parameters

Each given sample has its own peculiar realisation of the quenched disorder (the in-
teractions between the fluctuating and the frozen-in variables) that is determined by the
way in which the sample was prepared. It would be illusory, and quite impossible, to
know all details about it. The idea put forward by several theoreticians is to consider
that quenched disorder will be typical and hence modelled by random exchanges, fields or
potentials, taken from time-independent probability distribution functions. What one has
to determine first are the characteristics of these distributions (functional form, mean,
variance, momenta). Having this modellisation in mind, one then talks about quenched
randomness.

Exercise 1.1 This exercise provides a useful example of the distinction between typical
and average values of random variables. Consider a random variable x that takes only
two values x1 = eα

√
N and x2 = eβN , with α and β two positive and finite numbers with

α unconstrained and β > 1. The probabilities of the two events are p1 = 1 − e−N and
p2 = e−N . First, confirm that these probabilities are normalised. Second, compute the
average 〈x〉, where the angular brackets indicate average with the probabilities p1, p2,
and evaluate it in the limit N → ∞. Third, calculate the most probable value taken
by x, that we call xtyp, for typical (indeed, if we were to draw the variable we would
typically get this value). Compare and conclude. Now, let us study the behaviour of
the quantity lnx that is also a random variable. Compute its average. By which value
of x is it determined? Does 〈lnx〉 = (ln x)typ in the large N limit? Is 〈lnx〉 = ln〈x〉?
The last result demonstrate the difference between what are called quenched and annealed
averages. Which value is larger? Does the comparison comply with Jenssen’s inequality?
(See App. A for its definition.)
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1.2.4 Self-averageness

Say that the quenched randomness is given by random exchanges (i.e., random Jij in
an Ising model). If each sample is characterised by its own realisation of the exchanges,
should one expect a totally different behaviour from sample to sample? Fortunately, many
generic static and dynamic properties of spin-glasses (and other systems with quenched
disorder) do not depend on the specific realisation of the random couplings and are self-
averaging.

Owing to the fact that each disorder configuration has a probability of occurrence, each
physical quantity A has a probability distribution P (A) given by P (A) =

∑
J p(J)δ(A−

A(J)) where we denoted J a generic disorder realisation. When the size of the system
increases one expects (and even prove in some cases) that the distribution P (A) becomes
narrower and narrower. Therefore the only quantity which can be observed in the ther-
modynamic limit is the most probable, or typical value, Atyp

J , the value around which
most of the distribution is concentrated.

For some quantities the typical value is very close to the average over the disorder and

Atyp
J = [AJ ] (1.2)

in the thermodynamic limit. Henceforth, we use square brackets to indicate the average
over the random couplings. More precisely, in self-averaging quantities sample-to-sample
fluctuations with respect to the mean value are expected to be O(N−a) with N the number
of variables in the system and a > 0. Roughly, observables that involve summing over
the entire volume of the system are expected to be self-averaging. In particular, the free-
energy density of models with short-ranged interactions is expected to be self-averaging
in the infinite size limit. There can be, though, in the same system quantities for which
Btyp
J 6= [BJ ] even in the thermodynamic limit. We will show examples of both below.

An example: the disordered Ising chain

The meaning of this property can be grasped from the solution of the random bond Ising
chain defined by the energy function HJ [{si}] = −

∑
i Jisisi+1 with spin variables si = ±,

for i = 1, . . . , N and random bonds Ji independently taken from a probability distribution
P (Ji). For simplicity, we consider periodic boundary conditions. The disorder-dependent
partition function reads

ZJ =
∑
{si=±1}

eβ
∑
i Jisisi+1 (1.3)

and this can be readily computed introducing the change of variables σi ≡ sisi+1. (Note
that these new variables are not independent, since they are constrained to satisfy

∏
i σi =

1 and one should take it into account to perform the sum. However, this constraint
becomes irrelevant in the thermodynamic limit and one can simply ignore it.) One finds

ZJ =
∏
i

2 cosh(βJi) ⇒ −βFJ =
∑
i

ln cosh(βJi) +N ln 2 . (1.4)
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The partition function is a product of i.i.d. random variables and it is itself a random
variable with a log-normal distribution. The free-energy density instead is a sum of i.i.d.
random variables and, using the central limit theorem, in the large N limit becomes a
Gaussian random variable narrowly peaked at its maximum. The typical value, given by
the maximum of the Gaussian distribution, coincides with the average, limN→∞(f typ

J −
[ fJ ]) = 0 with fJ = FJ/N .

Exercise 1.2 Take a one dimensional Ising model with a Gaussian probability distribution
of the interaction strengths Ji, with zero mean and variance J2. Draw histograms of the
partition function ZJ , the total free-energy FJ , and the free-energy density fJ . Study
these for increasing value of N . Conclude. Repeat the analysis for different probability
distributions of the interaction strengths. In particular, consider distribution functions
with fat tails, that is to say, with power law decays. What is the difference?

General argument

A simple argument justifies the self-averageness of the free-energy density in generic
finite dimensional systems with short-range interactions. Let us divide a, say, cubic sys-
tem of volume V = Ld in n subsystems, say also cubes, of volume v = `d with V = nv.
If the interactions are short-ranged, the total free-energy is the sum of two terms, a con-
tribution from the bulk of the subsystems and a contribution from the interfaces between
the subsystems: −βFJ = lnZJ = ln

∑
conf e

−βHJ (conf) ≈ ln
∑

conf e
−βHJ (bulk)−βHJ(surf) =

ln
∑

bulk e
−βHJ (bulk) + ln

∑
surf e

−βHJ (surf) = −βF bulk
J − βF surf

J (we neglected the contribu-
tions from the interaction between surface and bulk). If the interaction extends over a
short distance σ and the linear size of the boxes is `� σ, the surface energy is negligible
with respect to the bulk one and −βFJ ≈ ln

∑
bulk e

−βHJ (bulk). In the thermodynamic
limit, the disorder dependent free-energy is then a sum of n = (L/`)d random num-
bers, each one being the disorder dependent free-energy of the bulk of each subsystem:
−βFJ ≈

∑n
k=1 ln

∑
bulkk

e−βHJ (bulkk). In the limit of a very large number of subsystems
(L � ` or n � 1) the central limit theorem (see App. B) implies that the free-energy
density is Gaussian distributed with the maximum reached at a value f typ

J that coin-
cides with the average over all realisations of the randomness [ fJ ]. Moreover, the dis-
persion about the typical value of the total free-energy vanishes in the large n limit,
σFJ/[FJ ] ∝

√
n/n = n−1/2 → 0 and the one of the free-energy density, or intensive free-

energy, fJ = FJ/N , as well, σfJ/[fJ ] = O(n−1/2). In a sufficiently large system the typical
fJ is then very close to the averaged [ fJ ] and one can compute the latter to understand
the static properties of typical systems. This is very convenient from a calculation point
of view.

Lack of self-averageness in the correlation functions

Once one has [fJ ], one derives all disordered average thermal averages by taking deriva-
tives of the disordered averaged free-energy with respect to sources introduced in the
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1.3 Percolation (geometry) 1 RANDOM FIELDS, RANDOM INTERACTIONS

partition function. For example,

[ 〈 si 〉 ] = − ∂[FJ ]

∂hi

∣∣∣∣
hi=0

, (1.5)

[ 〈 sisj 〉 − 〈 si 〉〈 sj 〉 ] = −T ∂2[FJ ]

∂hihj

∣∣∣∣
hi=0

, (1.6)

with HJ → HJ −
∑

i hisi. Connected correlation functions, though, are not self-averaging
quantities. This can be seen, again, studying the random bond Ising chain. Take i < j.
One can easily check that

〈 sisj 〉J − 〈 si 〉J〈 sj 〉J = Z−1
J

∂

∂βJj−1

. . .
∂

∂βJi
ZJ = x tanh(βJi) . . . tanh(βJj) , (1.7)

where we used 〈 si 〉 = 0 (valid for a distribution of random bonds with zero mean) and the
dots indicate all sites on the chain between the ending points i and j, i.e. i+1 ≤ k ≤ j−1.
The last expression is a product of random variables and it is not equal to its average (1.6)
– not even in the large separation limit |~ri − ~rj| → ∞.

See the TD on correlation functions for more details on them.

1.2.5 Annealed disorder

The thermodynamics of a system with annealed disorder is obtained by averaging the
partition function over the impurity degrees of freedom,

Z = [ZJ ] (1.8)

since one needs to do the partition sum over the disorder degrees of freedom as well.
In general, this calculation does not present any particular difficulty. In some cases, the
annealed average gives a good description of the high temperature phases of problems with
quenched randomness but it fails to predict the phase transition and the low temperature
properties correctly.

In general, one can prove
fquenched ≥ f annealed . (1.9)

Exercise 1.3 Prove this inequality using Jenssen’s inequality (see App. A).

1.3 Percolation (geometry)

The understanding of fluid flow in porous media needs, as a first step, the understanding
of the static geometry of the connected pores. The typical example, that gave the name
to the problem, is coffee percolation, where a solvent (water) filter or trickle through the
permeable substance that is the coffee grounds and in passing picks up soluble constituents
(the chemical compounds that give coffee its color, taste, and aroma).

9



1.3 Percolation (geometry) 1 RANDOM FIELDS, RANDOM INTERACTIONS

Another problem that needs the comprehension of a static random structure is the
one of conduction across a disordered sample. Imagine that one mixes randomly a set of
conducting and insulating islands. Whether the mix can conduct an electric current from
one end to the other of the container is the question posed, and the answer depends on
the structure formed by the conducting islands.

Figure 1.2: Left: a measurement of the topography (left) and local current (right) in an in-
homogeneous mixture of good and bad conducting polymers. The brighter the zone the more
current passing through it. Several grains are contoured in the left image. Right: an example of
bond percolation.

Percolation [3, 4, 5, 6] is a simple geometric problem with a critical threshold. It is very
helpful since it allows one to become familiar with important concepts of critical phenom-
ena such as fractals, scaling, and renormalisation group theory in a very intuitive way.
Moreover, it is not just a mathematical model, since it is at the basis of the understanding
of the two physical problems mentioned above among many others.

Site dilute lattices with missing vertices are intimately related to the site percolation
problem. Imagine that one builds a lattice by occupying a site with probability p (and
not occupying it with probability 1− p). For p = 0 the lattice will be completely empty
while for p = 1 is will be totally full. For intermediate values of p, on average, order pLd
sites will be occupied, with L the linear size of the lattice. Site percolation theory is about
the geometric and statistical properties of the structures thus formed. In particular, it
deals with the behaviour of the clusters of nearest neighbour occupied sites.

Similarly, one can construct bond dilute lattices and compare them to the bond perco-
lation problem.

The site percolation problem describes, for example, a binary alloy or dilute ferromag-
netic crystal, also called a doped ferromagnet. The question in this context is how much
dilution is needed to destroy the ferromagnetic order in the sample at a given temper-
ature. The bond percolation problem corresponds to a randomly blocked maze through
which the percolation of a fluid can occur. Many other physical problems can be set in
terms of percolation: the distribution of grain size in sand and photographic emulsions,
the vulcanisation of rubber and the formation of cross-linked gels, the propagation of an
infection, etc.

10



1.3 Percolation (geometry) 1 RANDOM FIELDS, RANDOM INTERACTIONS

The main interest lies on characterising the statistical and geometric properties of the
clusters on a lattice of linear size L as a function of the probability p. The clusters are
connected ensembles of nearest neighbour sites. Their easiest geometric property is their
size, defined as the number of sites that compose them. Other geometric properties are
also interesting and we will define them below.

The percolation problem is specially interesting since it has a threshold phenomenon,
with a critical value pc at which a first spanning cluster that goes from one end of the
lattice to the opposite in at least one of the Cartesian directions appears. For p < pc there
are only finite clusters, for p > pc there is a spanning cluster as well as finite clusters.

The first natural question is whether the value pc depends on the particular sample
studied or not, that is to say, whether it suffers from sample-to-sample fluctuations. All
samples are different as the sites erased or the links cut are not the same. The threshold
value is therefore a random variable and it does not take the same value for different
samples. The ‘surprise’ is that the mean-square deviations of pc from its mean value
vanish as a power law with the system size,

δ2
pc(N) ≡ 1

N

N∑
k=1

(p(k)
c − pc)2 ' C2N−ν , pc ≡

1

N

N∑
k=1

p(k)
c , (1.10)

with k labelling different measurements and N counting its total number. N the number
of sites in the sample. (C turns out to be 0.54 and ν = 1.3 in d = 2.) In the infinite
system size limit, pc does not fluctuate from sample to sample.

One can then count the number of sites belonging to the largest cluster and compare
this number to the total number of sites in the sample:

rL(p) ≡ Nmax(p)

N
. (1.11)

This is, again, a fluctuating quantity that, in the infinite system size limit does no longer
fluctuate and defines

r∞ ≡ lim
L→∞

rL(p) . (1.12)

The precise definition of the critical threshold pc involves the infinite size limit and it
can be given by

r∞(p) = lim
L→∞

rL(p) =

{
0 for p < pc
> 0 for p > pc

(1.13)

where r∞(p) denotes the fraction of sites belonging to the largest cluster in the finite
lattice with linear size L. In the magnetic application of percolation, this means that the
magnetisation vanishes for p < pc and it takes the value that the magnetisation takes on
the largest cluster for p > pc (as in both cases the magnetisation on the finite clusters is
independent and averages to zero).

11



1.4 Bethe lattices and random graphs1 RANDOM FIELDS, RANDOM INTERACTIONS

Figure 1.3: A Bethe lattice with coordination number z = 3. The root is labeled 0 and
the generations 1, 2 and 3 are shown with different colours. Figure taken from Wikipedia.

An equivalent definition of the critical threshold pc is given by

P∞(p) = lim
L→∞

PL(p) =

{
0 for p < pc
1 for p > pc

(1.14)

where PL(p) denotes the probability of there being a percolating cluster in the finite lattice
with linear size L.

The percolation threshold pc depends on the lattice geometry and its dimensionality.
Moreover, it is not the same for bond percolation and site percolation. Exact results are
known for special lattices as the Cayley tree. Examples of how these results are found are
given in [3]. Numerical data for finite dimensional lattices are complemented by rigorous
upper and lower bounds and the outcome of series expansions for the mean cluster value.
Harris showed that pc ≥ 1/2 for the bond percolation problem on a planar square lattice
and the numerics suggests pc = 1/2. Fisher put several bounds on pc on various 2d
lattices for the site and bond problem. In particular, pc ≥ 1/2 for site percolation on
planar regular lattices with no crossings.

1.4 Bethe lattices and random graphs

The Bethe lattice is a tree, in which each site has z neighbours and each branch gives
rise to z − 1 new branches, see Fig. 1.3. Two important properties of these lattices are:
- there are no closed loops.
- the number of sites on the border is of the same order of magnitude as the total number
of sites on the lattice.
- It is a rooted tree, with all other nodes arranged in shells around the root node, also
called the origin of the lattice.

Exercise 1.4 Show that the total number of sites on the Bethe lattice with z = 3 and
g generations (or the distance from the site designed as the central one) is ntot = 3 2g−1.
Prove that the surface to volume ratio tends to 1/2.

12
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Due to its distinctive topological structure, the statistical mechanics of lattice models
on this graph are often exactly solvable.

Exercise 1.5 Take a hypercubic lattice in d dimensions and estimate the surface to
volume ratio. Show that this ratio tends to a finite value only if d→∞.

A random graph is obtained by starting with a set of n isolated vertices and adding
successive edges between them at random. A popular ensemble is the one denoted G(n, p),
in which every possible edge occurs independently with probability 0 < p < 1. Random
graphs with fixed connectivity are also commonly used.

Random graphs are used in social sciences modeling (nodes representing individuals and
edges the friendship relationship), technology (interconnections of routers in the Internet,
pages of the WWW, or production centers in an electrical network), biology (interactions
of genes in a regulatory network) [1, 2]. Disordered systems are usually defined on random
graphs, especially the ones motivated by combinatorial optimisation.

Figure 1.4: Random graphs with N = 10 and different probabilities p of joining two nodes.

1.5 Energetic models

Let us briefly describe here some representative models with quenched randomness.

1.5.1 Dilute spin models

Lattice models with site or link dilution are

Hsite dil
J = −J

∑
〈ij〉 sisjεiεj , H link dil

J = −J
∑
〈ij〉 sisjεij , (1.15)

with P (εi = 1, 0) = p, 1 − p in the first case and P (εij = 1, 0) = p, 1 − p in the second.
These models are intimately related to Percolation theory [3, 4, 5, 6]. Physically, dilution
is realised by vacancies or impurity atoms in a crystal.

13
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1.5.2 Spin-glass models

Spin-glasses are alloys in which magnetic impurities substitute the original atoms in
positions randomly selected during the chemical preparation of the sample [7, 8, 9, 10,
11, 12, 13]. The interactions between the impurities are of RKKY type:

Vrkky = −J cos(2kF rij)

r3
ij

sisj (1.16)

with rij = |~ri− ~rj| the distance between them and si a spin variable that represents their
magnetic moment. Clearly, the initial location of the impurities varies from sample to
sample. The time-scale for diffusion of the magnetic impurities is much longer than the
time-scale for spin flips. Thus, for all practical purposes the positions ~ri can be associated
to quenched random variables distributed according to a uniform probability distribution
that in turn implies a probability distribution of the exchanges. This is called quenched
disorder.

In early 70s Edwards and Anderson proposed a rather simple model that should capture
the main features of spin-glasses [15]. The interactions (1.16) decay with a cubic power of
the distance and hence they are relatively short-ranged. This suggests to put the spins on
a regular cubic lattice model and to trade the randomness in the positions into random
nearest neighbour exchanges, independently and identically distributed according to a
Gaussian probability distribution function (pdf):

HEA
J = −

∑
〈ij〉

Jijsisj with P (Jij) = (2πσ2)−
1
2 e−

J2
ij

2σ2 . (1.17)

The precise form of the probability distribution of the exchanges is supposed not to be
important (though some authors claimed that there might be non-universality with respect
to it, see however [20] where this is refuted at least in the random field Ising model case).

Another natural choice is to use bimodal exchanges

P (Jij) = pδ(Jij − J0) + (1− p)δ(Jij + J0) (1.18)

with the possibility of a bias towards positive or negative interactions depending on the
parameter p. A tendency to non-zero average Jij can also be introduced in the Gaussian
pdf.

A natural extension of the EA model in which all spins interact has been proposed by
Sherrington and Kirkpatrick

HSK
J = −

∑
i 6=j

Jijsisj (1.19)

and it is called the SK model [16]. The interaction strengths Jij are taken from a Gaussian
pdf and they scale with N in such a way that the thermodynamic limit is non-trivial:

P (Jij) = (2πσ2
N)−

1
2 e
−

J2
ij

2σ2
N σ2

N = J2N . (1.20)
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The first two-moments of the exchange distribution are [Jij] = 0 and [J2
ij] = J2/N . This

is a case for which a mean-field theory is expected to be exact.

1.5.3 Glass models

A further extension of the EA model is called the p-spin model

Hp−spin
J = −

∑
i1<···<ip

Ji1...ipsi1 . . . sip (1.21)

with p ≥ 3. The sum can also be written as
∑

i1<i2<···<ip = 1/p!
∑

i1 6=i2 6=···6=ip . The
exchanges are now taken from a Gaussian probability distribution

P (Jij) = (2πσ2
N)−

1
2 e
−

J2
ij

2σ2
N σ2

N = J2p!/(2Np−1) . (1.22)

with [Ji1...ip ] = 0 and [J2
i1...ip

] = J2p!
Np−1 . Indeed, an extensive free-energy is achieved by

scaling Ji1...ip with N−(p−1)/2. This scaling can be justified as follows. Imagine that at
low temperatures the spins acquire local equilibrium expectation values that we call mi.
The ‘local field’ that they induce are hi = 1/(p − 1)!

∑
ii2 6=ip Jii2...ipmi2 . . .mip and they

should be of order one. Contrary to ferromagnetic models, the mi’s take plus and minus
signs in the disordered case as there is no tendency to align all moments in the same
direction. In particular, we estimate the order of magnitude of this term by working at
T = 0 and taking mi = ±1 with probability 1

2
, since there is no external magnetic field

nor a non-vanishing mean of the exchanges that could bias the local order in one or the
other direction. In order to keep the discussion simple, let us take p = 2. In this case,
if the strengths Jij, are of order one, hi is a sum of N i.i.d. random variables, with zero
mean and unit variance,1 and hi is a random variable with zero mean and variance equal
to N . Therefore, one can argue that hi is of order

√
N . To make it finite we then chose

Jij to be of order 1/
√
N or, in other words, we impose [J2

ij ] = J2/N . The generalization
to p > 2 is straightforward.

We classify this model in the “glass” class since it has been shown that its behaviour
mimics the one of so-called fragile glasses for p > 2 [17, 18, 19].

1.5.4 Vector spins

Extensions to vector spins with two (XY), three (Heisenberg) or N components also
exist. In the former cases can be relevant to describe real samples. One usually keeps the
modulus of the spins fixed to be 1 in these cases.

1.5.5 Spherical model

But there is another way to extend the spin variables and it is to use a spherical
1The calculation goes as follow: 〈Fi 〉 =

∑
j Jij〈mj 〉 = 0 and 〈F 2

i 〉 =
∑
jk JijJik〈mjmk 〉 =

∑
j J

2
ij
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constraint [21, 22],

−∞ ≤ si ≤ ∞
N∑
i=1

s2
i = N . (1.23)

In this case, the spins si are the components of an N -dimensional vector, constrained to
be an N -dimensional sphere.

1.5.6 Optimization problems

Cases that find an application in computer science [23, 24] are defined on random
graphs with fixed or fluctuating finite connectivity. In the latter case one places the spins
on the vertices of a graph with links between couples or groups of p spins chosen with a
probability c. These are dilute spin-glasses on graphs (instead of lattices).

Optimisation problems can usually be stated in a form that requires the minimisation of
a cost (energy) function over a large set of variables. Typically these cost functions have
a very large number of local minima – an exponential function of the number of variables –
separated by barriers that scale with N and finding the truly absolute minimum is hardly
non-trivial. Many interesting optimisation problems have the great advantage of being
defined on random graphs and are then mean-field in nature. The mean-field machinery
that we will discuss at length is then applicable to these problems with minor (or not so
minor) modifications due to the finite connectivity of the networks.

Let us illustrate this kind of problems with two examples. The graph partitioning
problem consists in, given a graph G(N,E) with N vertices and E edges, to partition
it into smaller components with given properties. In its simplest realisation the uniform
graph partitioning problem is how to partition, in the optimal way, a graph withN vertices
and E links between them in two (or k) groups of equal size N/2 (or N/k) and the minimal
number of edges between them. Many other variations are possible. This problem is
encountered, for example, in computer design where one wishes to partition the circuits
of a computer between two chips. More recent applications include the identification of
clustering and detection of cliques in social, pathological and biological networks.

Another example, that we will map to a spin model, is k-satisfiability (k-SAT). The
problem is to determine whether the variables of a given Boolean formula can be assigned
in such a way to make the formula evaluate to ‘TRUE’. Equally important is to determine
whether no such assignments exist, which would imply that the function expressed by the
formula is identically ‘FALSE’ for all possible variable assignments. In this latter case,
we would say that the function is unsatisfiable; otherwise it is satisfiable.

We illustrate this problem with a concrete example. Let us use the convention x for the
requirement x = TRUE and x for the requirement x = FALSE. For example, the formula
C1 : x1 OR x2 made by a single clause C1 is satisfiable because one can find the values x1

= TRUE (and x2 free) or x2 = FALSE (and x1 free), which make C1 : x1 OR x2 TRUE.
This formula is so simple that 3 out of 4 possible configurations of the two variables solve
it. This example belongs to the k = 2 class of satisfiability problems since the clause is
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made by two literals (involving different variables) only. It has M = 1 clauses and N = 2
variables.

Harder to decide formulæ are made of M clauses involving k literals required to take
the true value (x) or the false value (x) each, these taken from a pool of N variables. An
example in 3-SAT is

F =


C1 : x1 OR x2 OR x3

C2 : x5 OR x7 OR x9

C3 : x1 OR x4 OR x7

C4 : x2 OR x5 OR x8

(1.24)

All clauses have to be satisfied simultaneously so the formula has to be read

F: C1 AND C2 AND C3 AND C4 . (1.25)

It is not hard to believe that when α ≡ M/N � 1 the problems typically become
unsolvable while many solutions exist for α � 1. One could expect to find a sharp
threshold between a region of parameters α < αc where the formula is satisfiable and
another region of parameters α ≥ αc where it is not.

In random k-SAT an instance of the problem, i.e. a formula, is chosen at random
with the following procedure: first one takes k variables out of the N available ones.
Second one decides to require xi or xi for each of them with probability one half. Third
one creates a clause taking the OR of these k literals. Forth one returns the variables
to the pool and the outlined three steps are repeated M times. The M resulting clauses
form the final formula.

The Boolean character of the variables in the k-SAT problem suggests to transform
them into Ising spins, i.e. xi evaluated to TRUE (FALSE) will correspond to si = 1 (−1) .
The requirement that a formula be evaluated TRUE by an assignment of variables (i.e. a
configuration of spins) will correspond to the ground state of an adequately chosen energy
function. In the simplest setting, each clause will contribute zero (when satisfied) or one
(when unsatisfied) to this cost function. There are several equivalent ways to reach this
goal. The fact that the variables are linked together through the clauses suggests to define
k-uplet interactions between them. We then choose the interaction matrix to be

Jai =


0 if neither xi nor xi ∈ Ca
1 if xi ∈ Ca
−1 if xi ∈ Ca

(1.26)

and the energy function as

HJ [{si}] =
M∑
a=1

δ(
N∑
i=1

Jaisi,−k) (1.27)

where δ(x, y) is a Kronecker-delta that equals one when the arguments are identical and
zero otherwise. This cost function is easy to understand. The Kronecker delta contributes
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one to the sum over a only if the k non-vanishing terms in the sum
∑N

i=1 Jaisi are equal
to −1. This can happen when Jai = 1 and si = −1 or when Jai = −1 and si = 1. In both
cases the condition on the variable xi is not satisfied. Since this is required from all the
variables in the clause, the clause itself and hence the formula are not satisfied.

Another way to represent a clause in an energy function is to consider, for instance for
C1 above, the term (1 − s1)(1 + s2)(1 − s3)/8. This term vanishes if s1 = 1 or s2 = −1
or s3 = 1 and does not contribute to the total energy, that is written as a sum of terms
of this kind. It is then simple to see that the total energy can be rewritten in a way that
resembles strongly physical spin models,

HJ [{si}] =
M

2K
+

K∑
R=1

(−1)R
∑

i1<···<iR

Ji1...iRsi1 . . . siR (1.28)

and

Ji1...iR =
1

2K

M∑
a=1

Jai1 . . . JaiR . (1.29)

These problems are “solved” numerically, with algorithms that do not necessarily re-
spect physical rules. Thus, one can use non-local moves in which several variables are
updated at once – as in cluster algorithms of the Swendsen-Wang type used to beat crit-
ical slowing down close to phase transitions – or one can introduce a temperature to go
beyond cost-function barriers and use dynamic local moves that do not, however, satisfy
a detail balance. The problem is that with hard instances of the optimization problem
none of these strategies is successful. Indeed, one can expect that glassy aspects, such
as the proliferation of metastable states separated by barriers that grow very fast with
the number of variables, can hinder the resolutions of these problems in polynomial time,
that is to say a time that scales with the system size as N ζ , for any algorithm. These are
then hard combinatorial problems.

1.5.7 Random bond ferromagnets

Let us now discuss some, a priori simpler cases. An example is the Mattis random
magnet with generic energy (1.21) in which the interaction strengths are given by [25]

Ji1...ip = ξi1 . . . ξip with ξj = ±1 with prob = 1/2 (1.30)

for any p and any kind of graph. In this case a simple gauge transformation, ηi ≡ ξisi,
allows one to transform the disordered model in a ferromagnet, showing that there was
no true frustration in the system.

Random bond ferromagnets (RBFMs) are systems in which the strengths of the inter-
actions are not all identical but their sign is always positive. One can imagine such a
exchange as the sum of two terms:

Jij = J + δJij , with J > 0 and δJij small and random . (1.31)
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There is no frustration in these systems either. Ising models of this kind have also been
used to describe fracture in materials, where the Jij represents the local force needed to
break the material and it is assumed the fracture occurs along the surface of minimum
total rupture force [26].

As long as all Jij remain positive, this kind of disorder should not change the two bulk
phases with a paramagnetic-ferromagnetic second-order phase transition. Moreover the
up-down spin symmetry is not broken by the disorder. The disorder just changes the local
tendency towards ferromagnetism that can be interpreted as a change in the local critical
temperature. Consequently, this type of disorder is often called random-Tc disorder, and
it admits a Ginzburg-Landau kind of description, with a random distance from criticality,
δu(~r),

F random mass[m(~r)] =

∫
ddr
{
−hm(~r) + [r + δr(~r)]m2(~r) + (∇m(~r))2 + um4(~r) + . . .

}
.

(1.32)
The disorder couples to the m2 term in the free-energy functional. In quantum field
theory, this term is called the mass term and, therefore, random-Tc disorder is also called
random-mass disorder. (In addition to random exchange couplings, random-mass disorder
can also be realized by random dilution of the spins.)

1.5.8 Random field ferromagnets

Link randomness is not the only type of disorder encountered experimentally. Random
fields, that couple linearly to the magnetic moments, are also quite common; the classical
model is the ferromagnetic random field Ising model (RFIM) [20, 27]:

Hrfim
J = −J

∑
〈ij〉

sisj −
∑
i

sihi with P (hi) = (2πσ2)−
1
2 e−

h2
i

2σ2 . (1.33)

The dilute antiferromagnet in a uniform magnetic field is believed to behave similarly to
the ferromagnetic random field Ising model. Experimental realisations of the former are
common and measurements have been performed in samples like Rb2Co0.7Mg0.3F4.

Note that the up-down Ising symmetry is not preserved in models in the RFIMm and
any spin model such that the disorder couples to the local order parameter.

In the Ginzburg-Landau description this model reads

F [m(~r)] =

∫
ddr
{
−h(~r)m(~r) + rm2(~r) + (∇m(~r))2 + um4(~r) + . . .

}
(1.34)

where h(~r) is the local random variable that breaks the up-down spin symmetry. Whether
or not the symmetry is broken globally depends on the probability distribution of the
random fields. A particularly interesting situation arises if the distribution is even in h
such that the up-down symmetry is globally preserved in the statistical sense.

Random-field disorder is generally stronger than random-mass disorder.
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The random fields give rise to many metastable states that modify the equilibrium and
non-equilibrium behaviour of the RFIM. In one dimension the RFIM does not order at all,
in d = 2 there is strong evidence that the model is disordered even at zero temperature,
in d = 3 it there is a finite temperature transition towards a ferromagnetic state [29].
Whether there is a glassy phase near zero temperature and close to the critical point is
still and open problem.

The RFIM at zero temperature has been proposed to yield a generic description of
material cracking through a series of avalanches. In this problem one cracking domain
triggers others, of which size, depends on the quenched disorder in the samples. In a
random magnetic system this phenomenon corresponds to the variation of the magneti-
sation in discrete steps as the external field is adiabatically increased (the time scale for
an avalanche to take place is much shorter than the time-scale to modify the field) and it
is accessed using Barkhausen noise experiments [30]. Disorder is responsible for the jerky
motion of the domain walls. The distribution of sizes and duration of the avalanches is
found to decay with a power law tail and cut-off at a given size. The value of the cut-off
size depends on the strength of the random field and it moves to infinity at the critical
point.

1.5.9 Random manifolds

Once again, disorder is not only present in magnetic systems. An example that has
received much attention is the so-called random manifold [31, 32]. This is a d dimensional
directed elastic manifold moving in an embedding N + d dimensional space under the
effect of a quenched random potential. The simplest case with d = 0 corresponds to a
particle moving in an embedding space with N dimensions. If, for instance N = 1, the
particle moves on a line, if N = 2 it moves on a plane and so on and so forth. If d = 1
one has a line that can represent a domain wall, a polymer, a vortex line, etc. The fact
that the line is directed means it has a preferred direction, in particular, it does not have
overhangs. If the line moves in a plane, the embedding space has (N = 1) + (d = 1)

dimensions. One usually describes the system with an N -dimensional coordinate, ~φ, that
locates in the transverse space each point on the manifold, represented by the internal
d-dimensional coordinate ~r,

The elastic energy is Helas = γ
∫
ddx

√
1 + (∇φ(~r))2 with γ the deformation cost of a

unit surface. Assuming the deformation is small one can linearise this expression and get,
upto an additive constant, Helas = γ

2

∫
ddr (∇φ(~r))2.

Disorder is introduced in the form of a random potential energy V (~φ(~r), ~r) characterised
by its pdf.

The random manifold model is then

HV (~φ) =

∫
ddr
[γ

2
(∇φ(~r))2 + V (~φ(~r), ~r)

]
. (1.35)

If the random potential is the result of a large number of impurities, the central limit
theorem implies that its probability density is Gaussian. Just by shifting the energy scale
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one can set its average to zero, [V ] = 0. As for its correlations, one typically assumes,
for simplicity, that they exist in the transverse direction only:

[V (~φ(~r), ~r)V (~φ′(~r′), ~r′) ] = δd(~r − ~r′)V(~φ, ~φ′) . (1.36)

If one further assumes that there is a statistical isotropy and translational invariance of the
correlations, V(~φ, ~φ′) = W/∆2 V(|~φ− ~φ′|/∆) with ∆ a correlation length and (W∆d−2)1/2

the strength of the disorder. The disorder can now be of two types: short-ranged if V
falls to zero at infinity sufficiently rapidly and long-range if it either grows with distance
or has a slow decay to zero. An example involving both cases is given by the power
law V(z) = (θ + z)−γ where θ is a short distance cut-off and γ controls the range of the
correlations with γ > 1 being short-ranged and γ < 1 being long-ranged.

This model also describes directed domain walls in random systems. One can derive
it in the long length-scales limit by taking the continuum limit of the pure Ising part
(that leads to the elastic term) and the random part (that leads to the second disordered
potential). In the pure Ising model the second term is a constant that can be set to zero
while the first one implies that the ground state is a perfectly flat wall, as expected. In
cases with quenched disorder, the long-ranged and short-ranged random potentials mimic
cases in which the interfaces are attracted by pinning centres (‘random field’ type) or the
phases are attracted by disorder (‘random bond’ type), respectively. For instance, random
bond disorder is typically described by a Gaussian pdf with zero mean and delta-correlated
[V (~φ(~r), ~r), V (~φ′(~r′), ~r′)] = W∆d−2 δd(~r − ~r′)δ(~φ− ~φ′).

2 Properties of finite dimensional disordered systems
Once various kinds of quenched disorder introduced, a number of questions on their

effect on the equilibrium and dynamic properties arise. Concerning the former:

• Are the equilibrium phases qualitatively changed by the random interactions?

• Is the phase transition still sharp, or is it rendered smoother because different parts
of the system undergo the transition independently?

• If there is still a phase transition, does its order (first order vs. continuous) change?

• If the phase transition remains continuous, does the critical behavior, i.e., the values
of the critical exponents, change?

Now, for the latter:

• Is the dynamic behaviour of the system modified by the quenched randomness?

In the following we explain a series of classical results in this field: the Harris criterium,
the proof of non-analyticity of the free-energy of quenched disordered systems close to
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ξ

+TC(1),

+TC(4),

+TC(2),

+TC(3),
dis

Figure 2.5: Left: scheme of the Harris construction. The disordered system is divided into cells
with linear length ξdis, its correlation length. Right: a typical configuration of the dilute Ising
ferromagnet. Figures taken from [33].

their critical temperature given by Griffiths, the analysis of droplets and their domain
wall stiffness, and the derivation of some exact results using the gauge invariance.

We first focus on impurities or defects that lead to spatial variations with respect to
the tendency to order but do not induce new types of order, that is to say, no changes are
inflicted on the two phases at the two sides of the transition. Only later we consider the
spin-glass case.

2.1 The Harris criterium

The first question to ask is how does the average disorder strength behave under coarse-
graining or, equivalently, how is it seen at long distances. This is the question answered
by the Harris argument.

The Harris’ criterion [34] states that if the specific-heat of a pure system

Cpure(T ) ' |T − T pure
c |−αpure (2.37)

presents a power-like divergence with

αpure > 0 , (2.38)

the disorder may induce a new universality class. Otherwise, if αpure < 0, disorder is
irrelevant in a renormalisation group sense and the critical behaviour of the model remains
unchanged. The criterium does not decide in the marginal case αpure = 0 case. Note that
the Harris criterium is a necessary condition for a change in critical behaviour but not a
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sufficient one.
The hyper-scaling relation 2− dνpure = αpure allows to rewrite the Harris criterium as

critical behaviour =

{
unchanged if νpure > 2/d
may change if νpure < 2/d

(2.39)

where νpure is the correlation length exponent

〈s0s~r〉 ' e−r/ξpure and ξ ' |T − T pure
c |−νpure , (2.40)

of the pure system.

0

T T

T

pure

c
(k)

dis
heterogeneous

homogeneous
if T here:

Figure 2.6: The characteristic temperatures. Tpure and Tdis are the critical temperatures of the
pure and disordered systems, respectively. T

(k)
c is the critical temperature of the local region

with linear size ξdis labelled k, see the sketch in Fig. 2.5-left. The distance from the disordered
critical point is measured by ∆T

(k)
c = T

(k)
c − Tdis for the critical temperature of block k and

∆T = T − Tdis for the working temperature T . Right: the probability distribution function
of the local critical temperatures T (k)

c . The width depends on ξdis and clearly decreases with
increasing ξ as the local temperatures fluctuate less and less.

The proof of the Harris result is rather simple and illustrates a way of reasoning that
is extremely useful [34, 33]. Take the full system with frozen-in disorder at a temperature
T slightly above its critical temperature T dis

c . Divide it into equal pieces with linear size
ξdis, the correlation length at the working temperature. By construction, the spins within
each of these blocks behave as a super-spin since they are effectively parallel. Because
of disorder, each block k has its own local critical temperature T (k)

c determined by the
interactions (or dilution) within the block. Harris proposes to compare the fluctuations in
the local critical temperatures ∆T

(k)
c ≡ T

(k)
c − T dis

c with respect to the global critical one
T dis
c , with the distance from the critical point ∆T ≡ T − T dis

c > 0, taken to be positive:

• If ∆T
(k)
c < ∆T for all k, all blocks have critical temperature below the working one,

T
(k)
c < T , and the system is ‘homogeneous’ with respect to the phase transition.

• If ∆T
(k)
c > ∆T for some k, some blocks are in the disordered (paramagnetic) phase

and some are in the ordered (ferromagnetic) phase, making a uniform transition
impossible. The inhomogeneity in the system may then be important.
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Require now ∆T
(k)
c < ∆T for all k to have an unmodified critical behaviour. Use also

that an unmodified critical behaviour implies ξdis = ξpure and, consequently, νdis = νpure.
As this should be the case for all k we call ∆T

(loc)
c the generic one. ∆T

(loc)
c can be

estimated using the central limit theorem. Indeed, as each local T (k)
c is determined by an

average of a large number of random variables in the block (e.g., the random Jij in the
Hamiltonian), its variations decay as the square root of the block volume, ∆T

(loc)
c ' ξ

−d/2
pure .

On the other hand, ∆T ' ξ
−1/νpure
pure . Therefore,

∆T (loc)
c < ∆T ⇒ dνpure > 2 . (2.41)

The interpretation of this inequality is the following. If the Harris criterion dνpure >

2 is fulfilled, the ratio ∆T
(loc)
c /∆T ' ξ

−d/2+1/νpure
pure goes to zero as the critical point is

approached. The system looks less and less disordered on larger length scales, the effective
disorder strength vanishes right at criticality, and the disordered system features the same
critical behaviour as the clean one. An example of a transition that fullfills the Harris
criterion is the ferromagnetic transition in a three-dimensional classical Heisenberg model.
Its clean correlation length exponent is νpure ≈ 0.69 > 2/d = 2/3.

In contrast, if dνpure < 2, the ratio ∆T
(loc)
c /∆T increases upon approaching the phase

transition. The blocks differ more and more on larger length scales. Eventually, some
blocks are on one side of the transition while other blocks are on the other side. This makes
a uniform sharp phase transition impossible. The clean critical behavior is unstable and
the phase transition can be erased or it can remain continuous but with different critical
behaviour. More precisely, the disordered system can be in a new universality class
featuring a correlation length exponent that fullfills the inequality dνdis > 2. Many phase
transitions in classical disordered systems follow this scenario, for example the three-
dimensional classical Ising model. Its clean correlation length exponent is νpure ≈ 0.63
which violates the Harris criterion. In the presence of random-mass disorder, the critical
behavior changes and νdis ≈ 0.68. (Note, however, that the difference between these
exponents is tiny!)

In the marginal case dνpure = 2, more sophisticated methods are required to decide the
stability of the clean critical point.

Chayes et al. [36] turned this argument around to show rigorously that for all the con-
tinuous phase transitions in presence of disorder, the correlation-length critical exponent
of the disordered system, νdis verifies νdis ≥ 2/d, independently of whether or not the
critical behaviour is the same as in the uniform system and even when the system does
not have a uniform analogue.

Finally, note that the Harris criterion dνpure > 2 applies to uncorrelated or short-range
correlated disorder. If the disorder displays long-range correlations in space, the inequality
needs to be modified because the central-limit theorem estimate of ∆T

(loc)
c changes.

Long-range correlated disorder is especially important in quantum phase transitions.
The reason is the fact that the statistical properties of quantum systems are studied in
an imaginary time formulation that makes a d-dimensional quantum problem equivalent
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to a d + 1 dimensional classical one. Along this additional spatial direction, quenched
randomness is long-range correlated.

2.2 The Griffiths phase

The critical temperature of a spin system is usually estimated from the high tempera-
ture expansion and the evaluation of its radius of convergence (see App. C.1). However,
Griffiths showed that the temperature at which the free-energy of models with quenched
disorder starts being non-analytical falls above the critical temperature where the order
parameter detaches from zero [37]. The argument applies to models with second order
phase transitions.

Griffiths explained his argument using the dilute ferromagnetic Ising model. First, he
argued that the critical temperature of the disordered model should decrease for increas-
ing p, the probability of empty sites. This is ‘intuitively obvious’ since no spontaneous
magnetisation can occur at a finite temperature if the probability of occupied sites is less
than the critical percolation probability at which an ‘infinite cluster’ first appears. See
Fig. 2.7 where the phase diagram of the dilute Ising ferromagnet is shown.

p

T

10 pc

T (p)c

Tc
0

PM

FM

Griffiths
region

Figure 2.7: The phase diagram of the dilute ferromagnetic Ising model. p is the probability of
empty sites in this figure differently from the notation in the main text, figure taken from [33].
With increasing dilution the ordered phase is eventually suppressed.

In the following paragraph we sketch Griffiths’ argument and we use his notation
in which p is the probability of occupying a site. For any concentration p < 1 the
magnetisation m is not an analytic function of h at h = 0 at any temperature below
T pure
c , the critical temperature of the regular Ising model p = 1. As he explains, this

fact is most easily explained for p < pc. The magnetisation m per lattice site in the
thermodynamic limit has the form

m =
1

N

N∑
i=1

〈si〉 =
∑
c

P (c)m(c) (2.42)
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where P (c) is the probability that a particular site on the lattice belongs to a cluster c
that is necessarily finite for p < pc, and m(c) is the magnetisation density of the cluster
c, that is to say m(c) = N−1(c)

∑
i∈c〈si〉 with N(c) the number of sites in the cluster.

Griffiths uses the Yang-Lee theorem, see App. C, to express m(c) as

m(c) = 1 +
2z

N(c)

∑
i∈c

1

ξi − z
with z = e−2βh (2.43)

and ξi, i = 1, . . . , N(c), complex numbers with |ξi| = 1. The total magnetisation density
is then of the same form

m = 1 + zf(z) f(z) =
∑
i

ηi(ξi − z)−1 (2.44)

with ηi = 2P (c)/N(c). He then argues that this form is analytic for z < 1 but non-analytic
at z = 1 that corresponds to h = 0.

A more intuitive understanding of what is going on in the temperature region above the
critical temperature of the disordered model, T dis

c , and below the critical temperature the
pure one, T pure

c , can be reached as follows [33]. The effects of quenched disorder show up
already in the paramagnetic phase of finite dimensional systems. Below the critical point
of the pure case (no disorder) finite regions of the system can order due to fluctuations
in the couplings or, in a dilute ferromagnetic model, they can be regions where all sites
are occupied, as shown in Fig. 2.5. As such rare regions are finite-size pieces of the clean
system, their spins align parallel to each other below the clean critical temperature T pure

c .
Because they are of finite size, these regions cannot undergo a true phase transition by
themselves, but for temperatures between the actual transition temperature T dis

c and T pure
c

they act as large superspins.
Note that using the ideas of percolation theory, one can estimate the scaling of P (c) with

its size. Recall the one dimensional case. Take a segment of length L + 2 on the lattice.
A cluster of size L will occupy the internal sites with empty borders with probability
pL(1− p)2. This is because one needs L contiguous sites to be occupied and its boundary
sites be empty. In larger dimensions, this probability will be approximately pLd(1−p)Ld−1

with the first factor linked to the filled volume and the second to the empty surface. In
the large L limit one can make a harsh approximation and use ' exp{ln[pL

d
(1−p)Ld−1

]} =
exp[ln pL

d
+ ln(1− p)Ld−1

] ' exp[−c(p)Ld].

The sum in eq. (2.42) is made of two contributions. On the one hand, there are
the large clusters that are basically frozen at the working temperature. On the other,
there are the free spins that belong to small clusters and are easy to flip at the working
temperature. Let us focus on the former. Their magnetic moment is proportional to
their volume m(c) ' µLd. The energy gain due to their alignment with the field is
∆E(c) = −hm(c) = −hµLd where h is a small uniform field applied to the system, say
to measure its susceptibility.
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Figure 2.8: Rare regions in a random ferromagnet, figure taken from [33]. On the left, a ferro-
magnetically ordered region in the paramagnetic bulk (T > T dis

c ). On the right, a paramagnetic
band in a system that is ordered ferromagnetically in a patchwork way (T < T dis

c ).

The separation of the clusters in the two groups is then controlled by the comparison
between ∆E(c) and the thermal energy: the small clusters with |∆E(c)| < kBT can be
flipped by thermal fluctuations, and the large clusters with |∆E(c)| > kBT are frozen.

The effect of the frozen clusters for which |∆E(c)| > kBT is then

mfrozen(T, h) ≈
∑

|∆E(c)|>kBT

P (c)m(c) ≈
∫ ∞
Lc

dL e−c(p)Ld µLd (2.45)

and Ldc ≈ kBT/(µh). This integral can be computed by the saddle-point method and it
is dominated by the lower border in the small h limit. The result is

mfrozen(T, h) ≈ e−c(p)Ldc = e−c(p)kBT/(µh) (2.46)

where we dropped the contribution from µLd since it is negligible, and this contribution
has an essential singularity in the h→ 0 limit.

It is important to note that the clusters that contribute to this integral are rare regions
since they occur with probability P (c) ' e−c(p)Ld that is exponentially small in their
volume. Still they are the cause of the non-analytic behaviour of m(h).

The magnetic susceptibility χ can be analyzed similarly. Each locally ordered rare
region makes a Curie contribution m2(c)/kBT to χ. The total rare region susceptibility
can therefore be estimated as

χrare(T, h) ≈
∫ ∞
Lc

dL e−c(p)Ldµ2 L2d/(kBT ) ≈ e−c(p)kBT/(µh) . (2.47)

This equation shows that the susceptibility of an individual rare region does not increase
fast enough to overcome the exponential decay of the rare region probability with increas-
ing size L. Consequently, large rare regions only make an exponentially small contribution
to the susceptibility.

Rare regions also exist on the ordered side of the transition T < Tc. One has to consider
locally ordered islands inside holes that can fluctuate between up and down because they
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are only very weakly coupled to the bulk ferromagnet outside the hole, see Fig. 2.8. This
conceptual difference entails a different probability for the rare events as one needs to find
a large enough vacancy-rich region around a locally ordered island.

There are therefore slight differences in the resulting Griffiths singularities on the two
sides of the transition. In the site-diluted Ising model, the ferromagnetic Griffiths phase
comprises all of the ferromagnetic phase for p > 0. The phase diagram of the dilute
ferromagnetic Ising model is sketched in Fig. 2.7 with p denoting the probability of empty
sites in the figure.

2.3 Scenario for the phase transitions

The argument put forward by Harris is based on the effect of disorder on average
over the local critical temperatures. The intuitive explanation of the Griffiths phase
shows the importance of rare regions on the behaviour of global observables such as the
magnetisation or the susceptibility. The analysis of the effect of randomness on the phase
transitions should then be refined to take into account the effect of rare regions (tails in
the distributions). Different classes of rare regions can be identified according to their
dimension drr. This leaves place for three possibilities for the effect of (still weak in the
sense of not having frustration) disorder on the phase transition.

• The rare regions have dimension drr smaller than the lower critical dimension of the
pure problem, drr < dL; therefore the critical behaviour is not modified with respect
to the one of the clean problem.

• When the rare regions have dimension equal to the lower-critical one, drr = dL, the
critical point is still of second order with conventional power law scaling but with
different exponents that vary in the Griffiths phase. At the disordered critical point
the Harris criterium is satisfied dνdis > 2.

• Infinite randomness strength, appearing mostly in problems with correlated disorder,
lead to a complete change in the critical properties, with unconventional activated
scaling. This occurs when drr > dL.

In the derivation of this scenario the rare regions are supposed to act independently,
with no interactions among them. This picture is therefore limited to systems with short-
range interactions.

2.4 Domain-wall stiffness and droplets

Let us now just discuss one simple argument that is at the basis of what is needed to
derive the results of the droplet theory for spin-glasses without entering into the compli-
cations of the calculations.
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At very high temperature the configurations are disordered and one does not see large
patches of ordered spins.

Close but above the critical temperature Tc finite patches of the system are ordered
(in all possible low-temperature equilibrium states) but none of these include a finite
fraction of the spins in the sample and the magnetization density vanishes. However,
these patches are enough to generate non-trivial thermodynamic properties very close to
Tc and the richness of critical phenomena.

At criticality one observes ordered domains of the two equilibrium states at all length
scales – with fractal properties.

Below the critical temperature thermal fluctuations induce the spin reversal with re-
spect to the order selected by the spontaneous symmetry breaking. It is clear that the
structure of droplets, meaning patches in which the spins point in the opposite direction
to the one of the background ordered state, plays an important role in the thermodynamic
behaviour at low temperatures.

M. Fisher and others developed a droplet phenomenological theory for critical phe-
nomena in clean systems. Later D. S. Fisher and D. Huse extended these arguments to
describe the effects of quenched disorder in spin-glasses and other random systems; this
is the so-called droplet model.

Domain-wall stiffness

Ordered phases resist spatial variations of their order parameter. This property is
called stiffness or rigidity and it is absent in high-temperature disordered phases.

More precisely, in an ordered phase the free-energy cost for changing one part of the
system with respect to another part far away is proportional to kBT and usually diverges
as a power law of the system size. In a disordered phase the information about the
reversed part propagates only a finite distance (of the order of the correlation length, see
below) and the stiffness vanishes.

Concretely, the free-energy cost of installing a domain-wall in a system, gives a mea-
sure of the stiffness of a phase. The domain wall can be imposed by special boundary
conditions. Compare then the free-energy of an Ising model with linear length L, in its
ordered phase, with periodic and anti-periodic boundary conditions on one Cartesian di-
rection and periodic boundary conditions on the d− 1 other directions of a d-dimensional
hypercube. The ± boundary conditions forces an interface between the regions with pos-
itive and negative magnetisations. At T = 0, the minimum energy interface is a d− 1 flat
hyper-plane and the energy cost is

∆E(L) ' σLθ with θ = d− 1 (2.48)

and σ = 2J the interfacial energy per unit area or the interfacial tension of the domain
wall.

Droplets - generalisation of the Peierls argument

29



2.5 Stability of ordered phases 2 FINITE DIMENSIONAL...

In an ordered system at finite temperature domain walls, surrounding droplet fluc-
tuations, or domains with reversed spins with respect to the bulk order, are naturally
generated by thermal fluctuations. The study of droplet fluctuations is useful to establish
whether an ordered phase can exist at low (but finite) temperatures. One then studies
the free-energy cost for creating large droplets with thermal fluctuations that may desta-
bilise the ordered phase, in the way usually done in the simple Ising chain (the Peierls
argument).

Indeed, temperature generates fluctuations of different size and the question is whether
these are favourable or not. These are the droplet excitations made by simply connected
regions (domains) with spins reversed with respect to the ordered state. Because of the
surface tension, the minimal energy droplets with linear size or radius L will be compact
spherical-like objects with volume Ld and surface Ld−1. The surface determines their
energy and, at finite temperature, an entropic contribution has to be taken into account
as well. Simplifying, one argues that the free-energy cost is of the order of Lθ, that is
Ld−1 in the ferromagnetic case but can be different in disordered systems.

Summarising, in system with symmetry breaking the free-energy cost of an excitation
of linear size L is expected to scale as

∆F (L) ' σ(T )Lθ . (2.49)

The sign of θ determines whether thermal fluctuations destroy the ordered phase or
not. For θ > 0 large excitations are costly and very unlikely to occur; the order phase
is expected to be stable. For θ < 0 instead large scale excitations cost little energy and
one can expect that the gain in entropy due to the large choice in the position of these
excitations will render the free-energy variation negative. A proliferation of droplets and
droplets within droplets is expected and the ordered phase will be destroyed by thermal
fluctuations. The case θ = 0 is marginal and its analysis needs the use of other methods.

As the phase transitions is approached from below the surface tension σ(T ) should
vanish. Moreover, one expects that the stiffness should be independent of length close to
Tc and therefore, θc = 0.

Above the transition the stiffness should decay exponentially

∆F (L) ' e−L/ξ (2.50)

with ξ the equilibrium correlation length.

2.5 Stability of ordered phases

A ferromagnet under a magnetic field

Let us study the stability properties of an equilibrium ferromagnetic phase under an
applied external field that tends to destabilize it. If we set T = 0 the free-energy is just
the energy. In the ferromagnetic case the free-energy cost of a spherical droplet of radius
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R of the equilibrium phase parallel to the applied field embedded in the dominant one
(see Fig. 2.9-left) is

∆F (R) = −2ΩdR
dhmeq + Ωd−1R

d−1σ0 (2.51)

where σ0 is the interfacial free-energy density (the energy cost of the domain wall) and
Ωd is the volume of a d-dimensional unit sphere. We assume here that the droplet has a
regular surface and volume such that they are proportional to Rd−1 and Rd, respectively.
The excess free-energy reaches a maximum

∆Fc =
Ωd

d

Ωd
d−1

Ωd
d

(
d− 1

2dhmeq

)d−1

σd0 (2.52)

at the critical radius
Rc =

(d− 1)Ωd−1σ0

2dΩdhmeq

, (2.53)

see Fig. 2.9-right (h > 0 and meq > 0 here, the signs have already been taken into
account). The free-energy difference vanishes at

∆F (R0) = 0 ⇒ R0 =
Ωd−1σ0

2Ωdhmeq

. (2.54)

Several features are to be stressed:

• The barrier vanishes in d = 1; indeed, the free-energy is a linear function of R in
this case.

• Both Rc and R0 have the same dependence on hmeq/σ0: they monotonically decrease
with increasing hmeqσ0 vanishing for hmeq/σ0 →∞ and diverging for hmeq/σ0 → 0.

• In dynamic terms, the passage above the barrier is done via thermal activation; as
soon as the system has reached the height of the barrier it rolls on the right side of
the ‘potential’ ∆F and the favourable phase nucleates.

• As long as the critical size Rc is not reached the droplet is not favorable and the
system remains positively magnetised.

The Imry-Ma argument for the random field Ising model at T = 0

Take a ferromagnetic Ising model in a random field, defined in eq. (1.33). In zero
applied field and low enough temperature, if d > 1 there is a phase transition between a
ferromagnetic and a paramagnetic phase at a critical value of the variance of the random
fields, σ2

h = [h2
i ] ∝ h2, that sets the scale of the values that these random fields can take.

Under the effect of a random field with very strong typical strength, the spins align with
the local external fields that point in both directions and the system is paramagnetic. It
is, however, non-trivial to determine the effect of a relatively weak random field on the
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Figure 2.9: Left: the droplet. Right: the free-energy density f(R) of a spherical droplet with
radius R.

ferromagnetic phase at sufficiently low temperature. The long-range ferromagnetic order
could be preserved or else the field could be enough to break up the system into large but
finite domains of the two ferromagnetic phases.

A qualitative argument to decide whether the ferromagnetic phase survives or not in
presence of the external random field is due to Imry and Ma [38]. Let us fix T = 0 and
switch on a random field. If a compact domain D of the opposite order (say down) is
created within the bulk of the ordered state (say up) the system pays an energy due to
the unsatisfied links lying on the boundary that is

∆Eborder ∼ 2JRd−1 (2.55)

where R is the radius of the domain and d− 1 is the dimension of the border of a domain
embedded in d a dimensional volume, assuming the interface is not fractal. By creating
a domain boundary the system can also gain a magnetic energy in the interior of the
domain due to the external field:

∆Erandom field ∼ −hRd/2 (2.56)

since there are N ∝ Rd spins inside the domain of linear scale R (assuming now that the
bulk of the domain is not fractal) and, using the central limit theorem, −h

∑
j∈D si ∼

−h
√
N ∝ −hRd/2. h ≈ σh is the width of the random field distribution.

One dimensional systems. In d = 1 the energy difference is a monotonically decreasing
function of R thus suggesting that the creation of droplets is very favourable. There is
no barrier to cross to do it. The larger the droplets to form, the better. The system fully
disorders.

Dimension lower than two. For any d < 2, the random field energy increases faster with
R than the domain wall energy. For all non-vanishing random fields, there is a critical R
below which forming domains that align with the local random field becomes favourable.
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Seen as a function of R, the energy function has a minimum at an Rc that is conveniently
written as

Rc ∼
(

4J(d− 1)

hd

)2/(2−d)

'
{

increases with J/h ↑
decreases with J/h ↑ (2.57)

and later crosses zero at an R0 that scales with J/h in the same way. In particular,

R0 ∝ Rc →∞ for h/J → 0 . (2.58)

We note that while this energy function is negative, and this is the case for all R in the
limit h→ 0 in d < 2, it is convenient for the system to reverse droplets with radius R < R0

and thus break the ferromagnetic order in pieces eventually disordering the full system.
Consequently, the uniform ferromagnetic state is unstable against domain formation for
arbitrary random field strength. In other words, in dimensions d < 2 random-field disorder
prevents spontaneous symmetry breaking. In the resulting Imry-Ma state there is only
short-range ordering within randomly oriented domains of average size R0 which depends
on the strength of the random field.

Dimension equal to two. This is a marginal case. The function E(R) is linear and the
slope depends on the sign of 2J − h (but we neglected many numerical factors) and a
more refined study is needed to decide what the system does in this case.

Dimension larger than two. The functional form of the total energy variation ∆E =
∆Eborder + ∆Erandom field as a function of R is characterised by ∆E → 0 for R → 0 and
∆E →∞ for R→∞. The function has a minimum at

Rc ∼
(

hd

4J(d− 1)

)2/(d−2)

'
{

increases with h/J ↑
decreases with h/J ↑ (2.59)

and crosses zero at R0 ∝ Rc to approach ∞ at R → ∞. The comparison between these
two energy scales yields

2JRd−1
0 ∼ hR

d/2
0 ⇒ R0 ∼

(
h

2J

) 2
d−2

(2.60)

In particular,
R0 ∝ Rc → 0 for h/J → 0 . (2.61)

Therefore, in d > 2 the energy difference also decreases from ∆E(R = 0) = 0 to reach a
negative minimum at Rc, and then increases back to pass through zero at R0 and diverge
at infinity. The main difference with the d < 2 case is the dependence of Rc and R0 with
h/J , the fact that both increase, and in particular vanish, for h/J → 0 in d > 2. In
consequence, in d > 2, for infinitesimal field, it is not favourable to reverse domains and
long-range ferromagnetic order can be sustained in the sample.
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In the arguments above, it has been very important the change in parameter depen-
dence of the R0 occurring in d = 2,

lim
h/J→0

R0(h/J) =

{
0 if d > 2 ,
∞ if d < 2 .

(2.62)

With this argument one cannot show the existence of a phase transition at hc nor the
nature of it. The argument is such that it suggests that order can be supported by the
system at zero temperature and small fields in d > 2.

Again, we stress that these results hold for short-range correlated disorder.
The argument has at least two drawbacks that have been discussed in the literature

and shown to be not important for the final conclusions. One is that one should count
the number of possible contours with a given length to take into account an entropic
contribution to the bubble’s free-energy density. Another one is that one should consider
the possibility of there being contours within contours. Both problems have been taken
care of, see e.g. [29].

There are rigorous proofs that random fields destroy long-range order (and thus prevent
spontaneous symmetry breaking) in all dimensions d ≤ 2 for discrete (Ising) symmetry
and in dimensions d ≤ 4 for continuous (Heisenberg) symmetry [28]. The existence of a
phase transition from a FM to a PM state at zero temperature in 3d was shown in [29].

An elastic line in a random potential

A similar argument has been put forward by Larkin [31] for the random manifold
problem.

The interfacial tension, σ, will tend to make an interface, forced into a system as flat
as possible. However, this will be resisted by thermal fluctuations and, in a system with
random impurities, by quenched disorder.

Let us take an interface model of the type defined in eq. (1.35) with N = 1. If one
assumes that the interface makes an excursion of longitudinal length L and transverse
length φ the elastic energy cost is

Eelast =
c

2

∫
ddx (∇φ(~x))2 ⇒ ∆Eelast ∼ cLd(L−1φ)2 = cLd−2φ2 (2.63)

Ignore for the moment the random potential. Thermal fluctuations cause fluctuations
of the kind shown in Fig. 2.10. The interfaces roughens, that is to say, it deviates from
being flat. Its mean-square displacement between two point ~x and ~y, or its width on a
scale L satisfies

〈[φ(~x)− φ(~y)]2〉 ' T |~x− ~y|2ζT (2.64)

with ζT the roughness exponent.
The elastic energy cost of an excitation of length L is then

∆Eelast(L) ' cLd−2φ2(L) ' cTLd−2L2ζT (2.65)
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Figure 2.10: Illustration of an interface modeled as a directed manifold. In the example, the
domain wall separates a region with positive magnetisation (above) from one with negative
magnetisation (below). The line represents a lowest energy configuration that deviates from a
flat one due to the quenched randomness. An excitation on a length-scale L is shown with a
dashed line. The relative displacement is δh ≡ δφ ' Lα and the excitation energy ∆E(L) ' Lθ.
Figure taken from [39].

and this is of order one if
ζT =

2− d
2

. (2.66)

In the presence of quenched randomness, the deformation energy cost competes with
gains in energy obtained from finding more optimal regions of the random potential.
Naively, the energy gain due to the randomness is∫

ddx V ' [W 2Ld]1/2 ' WLd/2 (2.67)

and the balance with the elastic cost, assumed to be the same as with no disorder, yields

cTLd−2L2ζD ' WLd/2 ⇒ ζD =
4− d

2
(2.68)

This result turns out to be an upper bound of the exponent value [39]. It is called the Flory
exponent for the roughness of the surface. One then concludes that for d > 4 disorder is
irrelevant and the interface is flat (φ → 0 when L → ∞). Since the linearization of the
elastic energy [see the discussion leading to eq. (1.35)] holds only if φ/L � 1, the result
(2.68) may hold only for d > 1 where α < 1.

Destruction of first order phase transitions under randomness

A first order phase transition is characterized by macroscopic phase coexistence at the
transition point. For example, at the liquid-gas phase transition of a fluid, a macroscopic
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Figure 2.11: The interface width and the roughness exponent in a magnetic domain wall in a
thin film. The value measured ζD ' 0.6 is compatible with the Flory value 2/3 expected for a
one dimensional domain wall in a two dimensional space (N = 1 and d = 1 in the calculations
discussed in the text.) [32].

liquid phase coexists with a macroscopic vapour phase. Random-mass disorder locally
favours one phase over the other. The question is whether the macroscopic phases survive
in the presence of disorder or the system forms domains (droplets) that follow the local
value of the random-mass.

Consider a single domain or droplet (of linear size L) of one phase embedded in the
other phase. The free energy cost due to forming the surface is

∆Fsurf ∼ σLd−1 (2.69)

where σ is the surface energy between the two phases. The energy gain from the random-
mass disorder can be estimated via the central limit theorem, resulting in a typical mag-
nitude of

|∆Fdis| ∼ W 1/2Ld/2 (2.70)

where W is the variance of the random-mass disorder.
The macroscopic phases are stable if |∆Fdis| < ∆Fsurf , but this is impossible in dimen-

sions d ≤ 2 no matter how weak the disorder is. In dimensions d > 2, phase coexistence
is possible for weak disorder but will be destabilized for sufficiently strong disorder.

We thus conclude that random-mass disorder destroys first-order phase transitions in
dimensions d ≤ 2. In many examples, the first-order transition is replaced by (‘rounded
to’) a continuous one, but more complicated scenarios cannot be excluded.

The 3d Edwards-Anderson model in a uniform magnetic field

A very similar reasoning is used to argue that there cannot be spin-glass order in an
Edwards-Anderson model in an external field [40, 41]. The only difference is that the
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domain wall energy is here assumed to be proportional to Ly with an a priori unknown
d-dependent exponent y that is related to the geometry of the domains.

Comments

These arguments are easy to implement when one knows the equilibrium states (or one
assumes what they are). They cannot be used in models in which the energy is not a
slowly varying function of the domain wall position.

2.6 Consequences of the gauge invariace

H. Nishimori used the gauge transformation to derive a series of exact results for
averaged observables of finite dimensional disordered systems [11].

The idea follows the steps by which one easily proves, for example, that the averaged
local magnetisation of a ferromagnetic Ising model vanishes, that is to say, one applies a
transformation of variables within the partition sum and evaluates the consequences over
the averaged observables. For example,

〈si〉 =
∑
{sj=±1}

si e
βJ

∑
ij sisj =

∑
{sj=±1}

(−si) eβJ
∑
ij sisj = −〈si〉 . (2.71)

This immediately implies 〈si〉 = 0 and, more generally, the fact that the average of any
odd function under {si} → {−si} vanishes exactly.

In the case of disordered systems, one is interested in observables that are averaged
over the random variables weighted with their probability distribution. The gauge trans-
formation that leaves the Hamiltonian unchanged involves a change of spins accompanied
by a transformation of the exchanges:

si = ηisi J ij = ηiηjJij (2.72)

with ηi = ±1. The latter affects the couplings probability distribution as this one, in
general, is not gauge invariant. For instance, the bimodal pdf P (Jij) = pδ(Jij − J) + (1−
p)δ(Jij + J) can be rewritten as

P (Jij) =
eKpJij/J

2 coshKp

with e2Kp =
p

1− p
, (2.73)

as one can simply check. τij ≡ Jij/J are just the signs of the Jij. Under the gauge
transformation P (Jij) transforms as

P (J ij)dJ ij = P (Jij)dJij ⇒ P (J ij) = P (Jij(J ij))
dJij

dJ ij
(2.74)

that implies

P (J ij) =
eKpJij/(ηiηjJ)

2 coshKp

1

ηiηj
⇒ P (J ij) = ηiηj

eKpJijηiηj/J

2 coshKp

(2.75)
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For instance, applying the gauge transformation to the internal energy of an Ising spin-
glass model with bimodal disorder, after a series of straightforward transformations one
finds

[〈HJ〉]J = −NBJ tanhKp (2.76)

with NB the number of bonds in the lattice, under the condition βJ = Kp. This relation
holds for any lattice. The constraint βJ = Kp relates the inverse temperature J/(kBT )
and the probability p = (tanhKp + 1)/2. The curve βJ = Kp connects the points
(p = 1, T = 0) and (p = 1/2, T → ∞) in the (p, T ) phase diagram and it is called the
Nishimori line.

The proof of the relation above goes as follows. The full pdf of the interactions is

P ({Jij}) =
∏
〈ij〉

P (Jij) (2.77)

and the average of any disorder dependent quantity is expressed as

[AJ ] =
∑

{Jij=±J}

∏
〈ij〉

P (Jij)AJ (2.78)

The disorder average Hamiltonian reads

[〈HJ〉]J =
∑
{Jij}

eKp
∑
〈ij〉 Jij/J

(2 coshKp)NB

∑
{si}(−

∑
ij Jijsisj) e

β
∑
〈ij〉 Jijsisj∑

{si} e
β
∑
〈ij〉 Jijsisj

(2.79)

withNB the number of bonds in the graph or lattice. Performing the gauge transformation

[〈HJ〉]J =
∑
{Jij}

eKp
∑
〈ij〉 Jijηiηj/J

(2 coshKp)NB

∑
{si}(−

∑
ij Jijsisj) e

β
∑
〈ij〉 Jijsisj∑

{si} e
β
∑
〈ij〉 Jijsisj

(2.80)

where gauge invariance of the Hamiltonian has been used and the spins and interactions
have been renamed Jij and si. As this is independent of the choice of the parameters {ηi}
used in the transformation, one can sum over all possible 2N choices and divide by this
number keeping the result unchanged:

[〈HJ〉]J =
1

2N

∑
{Jij}

∑
{ηi} e

Kp
∑
〈ij〉 Jijηiηj/J

(2 coshKp)NB

∑
{si}(−

∑
ij Jijsisj) e

β
∑
〈ij〉 Jijsisj∑

{si} e
β
∑
〈ij〉 Jijsisj

(2.81)

If β is chosen to be β = Kp/J the sum over the spins in the denominator (the partition sum
in the normalisation) cancels out the sum over the parameters ηi introduced via the gauge
transformation. The sum over Jij and the remaining sum over the spin configurations can
be rewritten

[〈HJ〉]J =
1

2N
1

(2 coshKp)NB

(
− ∂

∂β

)∑
{si}

∏
〈ij〉

∑
{Jij=±J}

eβJijsisj . (2.82)
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Changing now variables in the sum over Jij = ±J to τij = Jijsisj = ±J ,

[〈HJ〉]J =
1

2N
1

(2 coshKp)NB

(
− ∂

∂β

)∑
{si}

∏
〈ij〉

∑
τij=±J

eβτij

=
1

2N
1

(2 coshKp)NB

(
− ∂

∂β

)
2N(2 coshKp)

NB , (2.83)

where the sum over the spin configurations yields the 2N factor and the sum over the
independent τij configurations yields the last factor. Finally, taking the derivative with
respect to β:

[〈HJ〉]J = −NBJ tanhKp (2.84)

with Kp = βJ , defining the Nishimori line in the phase diagram.
For Gaussian distributed quenched randomness there also exists a Nishimori line and

the averaged internal energy can also be computed exactly on this line.
Many other relations of this kind exist and are explained in [11]. A timely application

appeared recently [46] where the gauge transformation was used to put bounds on the
Jarzynski relation [47] for the work done in a non-equilibrium transformation of a spin-
glass on the Nishikori line.

3 Mean-field models
In the previous section we analysed finite dimensional models, with approximation

methods and a few exact ones. Here, we focus on what are called mean-field models,
or models defined on the complete graph in such a way that the mean-field treatment
becomes exact. We present to two techniques: the Thouless-Anderson-Palmer (TAP)
approach and the replica trick.

3.1 The TAP approach

Disordered models have quenched random interactions. Due to the fluctuating values
of the exchanges, one expects that the equilibrium configurations be such that in each
equilibrium state the spins freeze in different directions. The local averaged magnetizations
need not be identical, on the contrary one expects 〈 si 〉 = mi and, if many states exist,
each of them can be identified by the vector (m1, . . . ,mN).

Let us focus on the Sherrington-Kirkpatrick model, defined by

HSK
J = −1

2

∑
i 6=j

Jijsisj −
∑
i

hext
i si (3.85)

with interaction strengths Jij taken from a Gaussian pdf and scaled with N in such a way
that the thermodynamic limit is non-trivial:

P (Jij) = (2πσ2
N)−

1
2 e
−

J2
ij

2σ2
N (3.86)
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and external applied field hext
i . The first two-moments of the exchange distribution are

[Jij] = 0 and [J2
ij] = σ2

N = J2/(2N).
One may try to use the naive mean-field equations generalised to local variational

parameters mi, to characterise the low temperature properties of these models at fixed
quenched disorder:

mi = tanh
(
βhloc

i

)
= tanh

∑
j(6=i)

βJijmj + βhext
i

 .

and determine then the different {mα
i } = (mα

1 , . . . ,m
α
N) values from them, with the label α

indicating the possibility of there being many solutions to these equations. It is important
to reckon that, in this discussion, the mi = 〈si〉 are assumed to be average in each
thermodynamic state (with no mixture between them).

It has been shown by Thouless-Anderson-Palmer (TAP) [42] that these equations are
not completely correct even in the fully-connected disordered case: a term which is called
the Onsager reaction term is missing. This term represents the reaction of the spin i: the
magnetisation of the spin i produces a field h′j(i) = Jjimi = Jijmi on spin j; this field
induces a magnetisation m′j(i) = χjjh

′
j(i) = χjjJijmi on the spin j. This magnetisation, in

turn, produces a field h′i(j) = Jijm
′
j(i) = JijχjjJijmi = χjjJ

2
ijmi on the site i. The equilib-

rium fluctuation-dissipation relation between susceptibilities and connected correlations
implies χjj = β 〈 (sj−〈 sj 〉)2 〉 = β(1−m2

j) and one then has h′i(j) = β(1−m2
j)J

2
ijmi. The

idea of Onsager – or cavity method – is that one has to study the ordering of the spin i in
the absence of its own effect on the rest of the system. Thus, the total field produced by
the sum of h′i(j) = β(1 −m2

j)J
2
ijmi over all the spins j with which it can connect, has to

be subtracted from the mean-field created by the other spins in the sample, i.e.

hloc
i =

∑
j

Jijmj + hext
i − βmi

∑
j

J2
ij(1−m2

j) (3.87)

where hext
i is the external field. The equations then read

mi = tanh

∑
j(6=i)

βJijmj − β2miJ
2
ij(1−m2

j) + βhext
i

 .

The reason why the reaction term does not appear in the mean-field equations for
ferromagnets is that it is sub-leading with respect to the first one. We now discuss why
it is not in the disordered case. Let us study the order of magnitude, as powers of N of
each term in the r.h.s. In the first term∑

j( 6=i)

Jijmj '
∑ 1√

N
mj ' 1 (3.88)
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because of the central limit theorem. In the second term∑
j( 6=i)

J2
ij(1−m2

j) '
∑ 1

N
(1−m2

j) ' 1 (3.89)

because all terms in the sum are positive definite. Thus, in disordered systems the reaction
term is of the same order of the usual mean-field; a correct mean-field description has to
include it. In the ferromagnetic case this term can be neglected since it is sub-leading in
N , since J2

ij = J2/N2 in this case.
The argument leading to the Onsager reaction term can be generalised to include the

combined effect of the magnetisation of spin i on a sequence of spins (or p − 1 spins) in
the sample, i.e. the effect on i on j and then on k that comes back to i in the SK model.
These higher order terms are indeed negligible only if the series of all higher order effects
does not diverge. The ensuing condition is 1 > β2 (1− 2qEA +N−1

∑
im

4
i ) for the SK

model.
Using the fact that there is a sum over a very large number of elements, J2

ij can be
replaced by its site-independent variance [J2

ij] = p!J2/(2N) in the last term in (3.88).
Introducing the Edwards-Anderson parameter qEA = N−1

∑
i=1 m

2
i the TAP equations

follow:

mi = tanh

(
β
∑
j 6=i

Jijmj − β2J2mi(1− qEA) + βhi

)
. (3.90)

The generalisation of the argument leading to the reaction term to p spin interactions

HJ [{si}] = −
∑

i1<···<ip

Ji1...ipsi1 . . . sip [ J2
i1...ip

] =
J2p!

2Np−1
(3.91)

is not so straightforward. An alternative derivation has been given by Biroli [43]. The
TAP equations for p-spin fully connected models read

mi = tanh

 ∑
i2 6=···6=ip

(
β

(p− 1)!
Jii2...ipmi2 . . .mip − β2miJ

2
ii2...ip

(1−m2
i2

) . . . (1−m2
ip)

)
where we set hext

i = 0. The first contribution to the internal field is proportional to
Ji12...ip ∼ N−(p−1)/2 and once the p − 1 sums performed it is of order one. The reaction
term instead is proportional to J2

ii2...ip
and, again, a simple power counting shows that it

is O(1). Using the fact that there is a sum over a very large number of elements, J2
i1...ip

can be replaced by its site-independent variance [J2
i1...ip

] = p!J2/(2Np−1) in the last term
in (3.92). Introducing the Edwards-Anderson parameter qEA = N−1

∑
i=1m

2
i the TAP

equations follow:

mi = tanh

 β

(p− 1)!

∑
i2 6=···6=ip

Jii2...ipmi2 . . .mip −
β2J2p

2
mi(1− qEA)p−1 + βhi

 .
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The importance of the reaction term becomes clear from the analysis of the linearised
equations, expected to describe the second order critical behaviour for the SK model
(p = 2) in the absence of an applied field. The TAP equations become

mi ∼ β
∑
j

Jijmj − β2J2mi + βhi . (3.92)

A change of basis to the one in which the Jij matrix is diagonal leads to mλ ∼ β(λ −
βJ2)mλ + βhλ. The notation we use is such that Jλ is an eigenvalue of the Jij matrix
associated to the eigenvector ~vλ. mλ represents the projection of ~m on the eigenvector
mλ, mλ = ~vλ · ~m, with ~m the N -vector with components mi. The staggered susceptibility
then reads

χλ ≡
∂mλ

∂hλ

∣∣∣∣
h=0

= β
(
1− βJλ + (βJ)2

)−1
. (3.93)

Random matrix theory tells us that the eigenvalues of the random matrix Jij are dis-
tributed with the semi-circle law. For the normalisation of the Jij’s that we used, the
largest eigenvalue is Jmax

λ = 2J [44]. The staggered susceptibility for the largest eigen-
value diverges at βcJ = 1. Note that without the reaction term the divergence appears
at the inexact value T ∗ = 2Tc (see Sect. 3.3 for the replica solution of the SK model).

The TAP equations are the extremisation conditions on the TAP free-energy density:

f tap
J ({mi}) = − 1

p!

∑
i1 6=···6=ip

Ji1...ipmi1 . . .mip −
β

4p

∑
i1 6=···6=ip

J2
i1...ip

(1−m2
i1

) . . . (1−m2
ip)

−
∑
i

himi + T
N∑
i=1

[
1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

]
(3.94)

where presented for the generalised p-spin model. The free-energy density as a function
of the local magnetizations mi defines what is usually called the free-energy landscape.
Note that this function depends on N � 1 variables, mi, and these are not necessarily
identical in the disordered case in which the interactions between different groups of spins
are different. The stability properties of each extreme {mα

l } are given by the eigenvalues
of the Hessian matrix

HJ
ij ≡

∂f tap
J ({mk})
∂mi∂mj

∣∣∣∣
{mαl }

. (3.95)

The number of positive, negative and vanishing eigenvalues determine then the number of
directions in which the extreme is a minimum, a maximum or marginal. The sets {mα

l }
for which f tap

J ({mα
l }) is the absolute minima yield a first definition of equilibrium or pure

states.
The TAP equations apply to {mi} and not to the configurations {si}. The values of

the {mα
i } are determined as extrema of the TAP free-energy density, f tap

J ({mi}), and
they not need to be the same as those of the energy, HJ({si}), a confusion sometimes
encountered in the glassy literature. The coincidence of the two can only occur at T → 0.
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Figure 3.12: Schematic representation of a rugged free-energy landscape. Application to protein
folding [45].

3.1.1 The complexity or configurational entropy

There are a number of interesting questions about the extrema of the TAP free-energy
landscape, or even its simpler version in which the Onsager term is neglected, that help
us understanding the static behaviour of disordered systems:

• For a given temperature, T , how many solutions to the mean-field equations exist?
The total number of solutions can be calculated using

NJ(T ) =
∏
i

∫ 1

−1

dmi δ(mi −mα
i ) =

∏
i

∫ 1

−1

dmi δ(eqJi )

∣∣∣∣det
∂eqJi
∂mj

∣∣∣∣ . (3.96)

{mα
i } are the solutions to the TAP equations that we write as {eqJi = 0}. The

last factor is the normalization of the delta function after the change of variables,
it ensures that we count one each time the integration variables touch a solution
to the TAP equations independently of their stability properties. We made explicit
the fact the this quantity depends on temperature.

We define the complexity or configurational entropy as the logarithm of the number
of solutions at temperature T divided by N :

ΣJ(T ) ≡ N−1 lnNJ(T ) . (3.97)

The normalization with N suggests that the number of solutions is actually an
exponential of N . We shall come back to this very important point below.
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• Does NJ(T ) depend on T and does it change abruptly at particular values of T that
may or may not coincide with static and dynamic phase transitions?

• One can define a free-energy level dependent complexity

ΣJ(f, T ) ≡ N−1 lnNJ(f, T ) (3.98)

where NJ(f, T ) is the number solutions in the interval [f, f + df ] at temperature T .

• From these solutions, one can identify the minima as well as all saddles of different
type, i.e. with different indices K. These are different kinds of metastable states.
Geometry constrains the number of metastable states to satisfy Morse theorem that
states

∑NJ
l=1(−1)κl = 1, where κl is the number of negative eigenvalues of the Hessian

evaluated at the solution l, for any continuous and well-behaved function diverging
at infinity in all directions. (For example, in a one-dimensional double-well function,
one has (−1)0 + (−1)1 + (−1)0 = 1.)

One can then count the number of solutions to the TAP equations of each index,
NJ(K,T ), and define the corresponding complexity

ΣJ(K,T ) ≡ N−1 lnNJ(K,T ) , (3.99)

or even work at fixed free-energy density

ΣJ(K, f, T ) ≡ N−1 lnNJ(K, f, T ) . (3.100)

Even more interestingly, one can analyse how are the free-energy densities of different
saddles organized. For instance, one can check whether all maxima are much higher
in free-energy density than saddles of a given type, etc.

• What is the barrier, ∆f = f1 − f0, between ground states and first excited states?
How does this barrier scale with the actual free-energy difference, ∆f between these
states? To answer this question one has to estimate the nucleation radius for the
reversal of a droplet under an applied field, for instance.

The definitions of complexity given above are disorder-dependent. One might then
expect that the complexity will show sample-to-sample fluctuations and be characterized
by a probability distribution. The quenched complexity, Σquenched, is then the most likely
value of ΣJ , and it is defined through

maxP (ΣJ) = P (Σquenched) . (3.101)

In practice, this is very difficult to compute. Most analytic results concern the annealed
complexity

Σann ≡ N−1 ln [NJ ] = N−1 ln[ eNΣJ ] . (3.102)

One can show that the annealed complexity is smaller or equal than the quenched one.

44



3.1 The TAP approach 3 MEAN-FIELD MODELS

3.1.2 Weighted averages

Having identified many solutions to the TAP equations one needs to determine now
how to compute statistical averages. A natural proposal is to give a probability weight to
each solution, wα, and to use it to average the value of the observable of interest:

〈O 〉 =
∑
α

wJα Oα with Oα = O({mα
i }) (3.103)

where α labels the TAP solutions, Oα is the value that the observable O takes in the TAP
solution α, and wJα are their statistical weights, satisfying the normalization condition∑

αw
J
α = 1. Two examples can illustrate the meaning of this average. In a spin-glass

problem, if O = si, then Oα = mα
i . In an Ising model in its ferromagnetic phase, if O = si,

then Oα = mα
i = ±m and wα = 1/2. Within the TAP approach one proposes

wJα =
e−βF

J
α∑

γ e
−βFJγ

(3.104)

with F J
α the total free-energy of the α-solution to the TAP equations. The discrete sum

can be transformed into an integral over free-energy densities, introducing the degeneracy
of solutions quantified by the free-energy density dependent complexity:

〈O 〉 =
1

ZJ

∫
df e−Nβf NJ(f, T ) O(f) =

1

ZJ

∫
df e−N(βf−ΣJ (f,T )) O(f) . (3.105)

The normalization is the ‘partition function’

ZJ =

∫
df e−Nβf NJ(f, T ) =

∫
df e−N(βf−ΣJ (f,T )) . (3.106)

We assumed that the labelling by α can be traded by a labelling by f that implies that
at the same free-energy density level f the observable O takes the same value. In the
N → ∞ limit these integrals can be evaluated by saddle-point, provided the parenthesis
is positive. In order to simplify the calculations, the disorder-dependent complexity is
generally approximated with the annealed value introduced in eq. (3.102).

The equilibrium free-energy

The total equilibrium free-energy density, using the saddle-point method to evaluate
the partition function ZJ in eq. (3.106), reads

−βfJeq = N−1 lnZJ = min
f

[f − kBTΣJ(f, T )] ≡ min
f

ΦJ(f, T ) . (3.107)

It is clear that ΦJ(f, T ) is the Landau free-energy density of the problem with f playing
the rôle of the energy and ΣJ of the entropy. If we use f = (E− kBTS)/N = e−Ts with
E the actual energy and S the microscopic entropy one has

ΦJ(f, T ) = e− kBT (s+ ΣJ(f, T )) . (3.108)
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Thus, ΣJ is an extra contribution to the total entropy that is due to the exponentially
large number of metastable states. Note that we do not distinguish here their stability.

Note that ΣJ is subtracted from TAP free-energy level f . Thus, it is possible that
in some cases states lying at a higher free-energy density f but being very numerous
have a lower total Landau free-energy density Φ than lower lying states that are less
numerous. Collectively, higher states dominate the equilibrium measure in these cases.
This phenomenon actually occurs in p-spin models, as explained below.

The order parameter

Now that we know that there can be a large number of states (defined as extrema of
the TAP free-energy) we have to be careful about the definition of the spin-glass order
parameter.

The Edwards-Anderson parameter is understood as a property of a single state. Within
the TAP formalism one then has

qJ
α
EA = N−1

∑
i

(mα
i )2 with mα

i = 〈si〉α (3.109)

being restricted to spin configurations in state α. An average of this quantity over all
extrema of the free-energy density yields

∑
αw

J
α qJ

α
EA =

∑
αw

J
α N

−1
∑

i(m
α
i )2.

Instead, the statistical equilibrium magnetisation, mi = 〈si〉 =
∑

αw
J
αm

α
i , squared is

qJ ≡ 〈 si 〉2 = m2
i =

(∑
α

wJαm
α
i

)2

=
∑
αβ

wJαw
J
β m

α
im

β
i . (3.110)

If there are multiple phases, the latter sum has crossed contributions from terms with
α 6= β. These sums, as in a usual paramagnetic-ferromagnetic transition have to be taken
over half space-space, otherwise global up-down reversal would imply the cancellation of
all cross-terms.

Clearly
qαJ EA 6= qJ and

∑
α

wJα q
α
J EA 6= qJ . (3.111)

3.2 Metastable states in two families of models

3.2.1 High temperatures

For all models, at high temperatures f(mi) is characterized by a single stable absolute
minimum in which all local magnetizations vanish, as expected; this is the paramagnetic
state. The mi = 0 for all i minimum continues to exist at all temperatures. However, even
if it is still the global absolute minimum of the TAP free-energy density, fJTAP, at low
temperatures it becomes unstable thermodynamically, and it is substituted as the equilib-
rium state, by other non-trivial configurations with mi 6= 0 that are the absolute minima
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of Φ. Note the difference with the ferromagnetic problem for which the paramagnetic
solution is no longer a minimum below Tc.

3.2.2 Low temperatures

At low temperature many equilibrium states appear (and not just two as in an Ising
ferromagnetic model) and they are not related by symmetry (as spin reversal in the Ising
ferromagnet or a rotational symmetry in the Heisenberg ferromagnet). These are char-
acterized by non-zero values of the local magnetizations mi that are different in different
states.

At low-temperatures both the naive mean-field equations and the TAP equations have
an exponential in N number of solutions and still an exponential in N number of them
correspond to absolute minima of the mi-dependent free-energy density. This means
that ΣJ(T ) and even ΣJ(0, f0, T ) are quantities O(1). These minima can be identified
as different states that could be accessed by applying the corresponding site-dependent
pinning fields.

The derivation and understanding of the structure of the TAP free-energy landscape
is quite subtle and goes beyond the scope of these Lectures. Still, we shall briefly present
their structure for the SK and p-spin models to give a flavor of their complexity.

The SK model

The first calculation of the complexity in the SK model appeared in 1980 [48, 49].
After 35 years of research the structure of the free-energy landscape in this system is
still a matter of discussion. At present, the picture that emerges is the following. The
temperature-dependent annealed complexity is a decreasing function of temperature that
vanishes only at Tc but takes a very small value already at ∼ 0.6Tc. Surprisingly enough,
at finite but large N the TAP solutions come in pairs of minima and saddles of type one,
that is to say, extrema with only one unstable direction. These states are connected by a
mode that is softer the larger the number of spins: they coalesce and become marginally
stable in the limit N → ∞. Numerical simulations show that starting from the saddle-
point and following the ‘left’ direction along the soft mode one falls into the minimum;
instead, following the ‘right’ direction along the same mode one falls into the paramagnetic
solution. See Fig. 3.13 for a sketch of these results. The free-energy difference between the
minimum and saddle decreases for increasing N and one finds, numerically, an averaged
∆f ∼ N−1.4. The extensive complexity of minima and type-one saddles is identical in the
large N limit, ΣJ(0, T ) = ΣJ(1, T ) + O(N−1) [50] in such a way that the Morse theorem
is respected. The free-energy dependent annealed complexity is a smooth function of
f with support on a finite interval [f0, f1] and maximum at fmax. The Bray and Moore
annealed calculation (with supersymmetry breaking) yields fmax = −0.654, Σmax

J = 0.052,
Σ′′(fmax) = 8.9. The probability of finding a solution with free-energy density f can be
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Figure 3.13: Left: sketch of the temperature dependent complexity, ΣJ(T ), of the SK. It actually
vanishes only at Tc but it takes a very small value already at ∼ 0.6 Tc. Right: pairs of extrema
in the SK model with N large and N →∞ limit.

expressed as

pJ(f, T ) =
NJ(f, T )

NJ(T )
=
eNΣJ (f,T )

NJ(T )
∼
√
NΣ′′J(fmax)

2π
e−

N
2
|Σ′′J (fmax)|(f−fmax)2

, (3.112)

where we evaluated the total number of solutions, NJ(T ) =
∫
df eNΣJ (f,T ), by steepest

descent. The complexity, approximated by its annealed value, vanishes linearly close to
f0: ΣJ(f, T ) ∼ λ(f − f0) with λ < β.

Only the lowest lying TAP solutions contribute to the statistical weight. The complex-
ity does not contribute to Φ in the large N limit:

Φ = βf − Σann(f, T ) ' βf − (f − f0)λ

∂Φ

∂f
' β − λ > 0 iff β > λ (3.113)

and Φmin ' βfmin = βf0. See Fig. 3.14. The ‘total’ free-energy density in the exponential
is just the free-energy density of each low-lying solution.

3.3 The replica method

A picture that is consistent with the one arising from the naive mean-field approxi-
mation but contradicts the initial assumption of the droplet model arises from the exact
solution of fully-connected spin-glass models. These results are obtained using a method
called the replica trick that we will briefly present below.

In Sect. 1.2.4 we argued that the typical properties of a disordered system can be
computed from the disorder averaged free-energy [14]

[FJ ] ≡
∫
dJ P (J)FJ . (3.114)
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Σ

ff0 fmax

Figure 3.14: The complexity as a function of f for the SK model.

One then needs to average the logarithm of the partition funtion. In the annealed approx-
imation one exchanges the ln with the average over disorder and, basically, considers the
interactions equilibrated at the same temperature T as the spins:

[ lnZJ ] ∼ ln[ZJ ] . (3.115)

This approximation turns out to be correct at high temperatures but incorrect at low
ones.

The evaluation of the disordered average free-energy density is difficult for at least two
reasons: firstly, virtually all configurations are not translationally invariant; secondly, no
factorisation helps one easily reduce the partition sum over one acting on independent
variables.

The replica method allows one to compute [FJ ] for fully-connected models. It is based
on the smart use of the identity

lnZJ = lim
n→0

Zn
J − 1

n
. (3.116)

The idea is to compute the right-hand-side for finite and integer n = 1, 2, . . . and then
perform the analytic continuation to n→ 0. Care should be taken in this step: for some
models the analytic continuation may not be unique. (Recall the calculation done using
the Potts model with q → 1 that allows one to recover results for the percolation problem.)
It turns out that this is indeed the case for the emblematic Sherrington-Kirkpatrick model,
as discussed by van Hemmen and Palmer [55] though it has also been recently shown that
the free-energy f(T ) obtained by Parisi [56] with the replica trick is exact! [57, 58]

The disorder averaged free-energy is given by

−β[FJ ] = −
∫
dJ P (J) lnZJ = − lim

n→0

1

n

(∫
dJ P (J)Zn

J − 1

)
, (3.117)
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where we have exchanged the limit n → 0 with the integration over the exchanges. For
integer n the replicated partition function, Zn

J , reads

Zn
J =

∑
{sai }

e−β[HJ ({s1i })+···+HJ ({sni }] . (3.118)

Here
∑
{sai }
≡
∑
{s1i=±1} · · ·

∑
{sni =±1}. Z

n
J corresponds to n identical copies of the original

system, that is to say, all of them with the same realisation of disorder. Each copy is
characterised by an ensemble of N spins, {sai }. We label the copies with a replica index
a = 1, . . . , n. For p-spin disordered spin models Zn

J takes the form

Zn
J =

∑
{sai }

e
β
p!

∑n
a=1

[ ∑
i1 6=···6=ip

Ji1...ips
a
i1
...saip+

∑
i his

a
i

]
. (3.119)

The average over disorder amounts to computing a Gaussian integral for each set of spin
indices i1 6= · · · 6= ip, with [J2

i1...ip
] = J2p!/(2Np−1)2. One finds

[Zn
J ] =

∑
{sai }

e
β2J2

2Np−1p!

∑
i1 6=···6=ip

(
∑
a s

a
i1
...saip )2+β

∑
a

∑
i his

a
i ≡

∑
{sai }

e−βF ({sai }) . (3.120)

The function βF ({sai }) is not random. It depends on the spin variables only but it includes
terms that couple different replica indices. Indeed,∑

i1 6=···6=ip

∑
a

sai1 . . . s
a
ip

∑
b

sbi1 . . . s
b
ip =

∑
ab

∑
i1 6=···6=ip

(sai1s
b
i1

) . . . (saips
b
ip) (3.121)

We first note that all terms are identical to one for a = b since s2
i = 1. The sum over

the spin indices (ignoring the constraint i1 6= · · · 6= ip that will, in any case give a
subdominant contribution in the N → ∞ limit) and the replica indices of such terms
yields Npn. Focusing then on the cases a 6= b, Ignoring the constraint i1 6= · · · 6= ip, there
are N factors here

βF ({sai }) ≈ −
Nβ2J2

2p!

[∑
a6=b

(
1

N

∑
i

sai s
b
i

)p

+ n

]
− β

∑
a

∑
i

his
a
i . (3.122)

In writing the last expression we have dropped terms that are sub-leading in N . (In
complete analogy with what is done for the pure p spin ferromagnet. They correspond to
adding terms with self-interactions in the Hamiltonian.) The constant term −Nnβ2J2/2
originates in the terms with a = b, for which (sai )

2 = 1.
To summarise, we started with an interacting spin model. Next, we enlarged the num-

ber of variables from N spins to N × n replicated spins by introducing n non-interacting

2We use
∫
dJαe

−J2
α/(2σ

2)−Jαx ∝ ex2σ2/2
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copies of the system. By integrating out the disorder we decoupled the sites but we payed
the price of coupling the replicas. Hitherto the replica indices act as a formal tool in-
troduced to compute the average over the bond distribution. Nothing distinguishes one
replica from another and, in consequence, the ‘free-energy’ F ({sai }) is invariant under
permutations of the replica indices.

The next step to follow is to identify the order parameters and transform the free-
energy into an order-parameter dependent expression to be rendered extremal at their
equilibrium values. In a spin-glass problem we already know that the order parameter is
not the global magnetisation as in a pure magnetic system but the parameter q – or more
generally the overlap between states. Within the replica calculation an overlap between
replicas

qab ≡ N−1
∑
i

sai s
b
i (3.123)

naturally appeared in eq. (3.122). The idea is to write the free-energy density as a function
of the order parameter qab and look for their extreme in complete analogy with what is
done for the fully-connected ferromagnet This is, of course, a tricky business, since the
order parameter is here a matrix with number of elements n going to zero! A recipe for
identifying the form of the order parameter (or the correct saddle-point solution) has been
proposed by G. Parisi in the late 70s and early 80s [56]. This solution has been recently
proven to be exact for mean-field models by two mathematical physics, F. Guerra [57]
and M. Talagrand [58]. Whether the very rich physical structure that derives from this
rather formal solution survives in finite dimensional systems remains a subject of debate.

Introducing the Gaussian integral (Hubbard-Stratonovich transformation)∫
dqab e

βJqab
∑
i s
a
i s
b
i−

N
2
q2
ab = e

N
2 ( 1

N
βJ

∑
i s
a
i s
b
i)

2

(3.124)

for each pair of replica indices a 6= b, one decouples the site indices, i, and the averaged
replicated partition function can be rewritten as

[Zn
J ] =

∫ ∏
a6=b

dqab e
−βF (qab) (3.125)

and

βF (qab) = −Nβ
2J2

2

[
−
∑
a6=b

qpab + n

]
−N ln ζ(qab) , (3.126)

ζ(qab) =
∑
sa

e−βH(qab,sa) , (3.127)

H(qab, sa) = −J
∑
ab

qabsasb − h
∑
a

sa , (3.128)
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where for simplicity we set hi = h. The factor N in front of ln ζ comes from the decoupling
of the site indices. Note that the transformation (3.124) serves to uncouple the sites and
to obtain the very useful factor N in front of the exponential. The partition function

Z(qab) =
∑
{sa}

e−βH(qab,sa) (3.129)

is the one of a fully-connected Ising model with interaction matrix qab. As it is posed, this
problem remains unsolvable. However, important steps forward will be possible taking
advantage of the n→ 0 limit.

Saddle-point evaluation

Having extracted a factor N in the exponential suggests to evaluate the integral over qab
with the saddle-point method. This, of course, involves the a priori dangerous exchange
of limits N → ∞ and n → 0. The replica theory relies on this assumption. One then
writes

lim
N→∞

−[ fJ ]→ − lim
n→0

1

n
f(qsp

ab) (3.130)

and searches for the solutions to the n(n− 1)/2 extremization equations

δf(qab)

δqcd

∣∣∣∣
qsp
ef

= 0 . (3.131)

In usual saddle-point evaluations the saddle-point one should use is (are) the one(s) that
correspond to absolute minima of the free-energy density. In the replica calculation the
number of variables is n(n − 1)/2 that becomes negative! when n < 1 and makes the
saddle-point evaluation tricky. In order to avoid unphysical complex results one needs to
focus on the saddle-points with positive (or at least semi-positive) definite Hessian

H ≡ ∂f(qab)

∂qcd∂qef

∣∣∣∣
qsp
gh

, (3.132)

and these sometimes corresponds tomaxima (instead of minima) of the free-energy density.
The saddle-point equations are also self-consistency equations

qsp
ab = 〈sasb〉H(qab,{sa}) = [ 〈sasb〉 ] (3.133)

where the second member means that the average is performed with the single site many-
replica Hamiltonian H(qab, {sa}) and the third member is just one of the averages we
would like to compute.

The partition function in eq. (3.128) cannot be computed for generic qab since there is
no large n limit to exploit. On the contrary, n→ 0. Thus, one usually looks for solutions
to eqs. (3.131) within a certain family of matrices qab. We discuss below the relevant
parametrizations.
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Replica symmetry (RS)

In principle, nothing distinguishes one replica from another one. This is the reason
why Sherrington and Kirkpatrick looked for solutions that preserve replica symmetry:

qab = q , for all a 6= b . (3.134)

Inserting this Ansatz in (3.126) and (3.128) and taking n→ 0 one finds

q =

∫ ∞
−∞

dz√
2π

e−z
2/2 tanh2

(
β

√
pqp−1

2
z + βh

)
. (3.135)

This equation resembles strongly the one for the magnetisation density of the p-spin
ferromagnet, eq. (??). The free-energy density for p = 2 is

f = −β
4

(1− q)2 −
∫ ∞
−∞

dz√
2π

e−z
2/2 ln[2 cosh(βq1/2z + βh)] . (3.136)

Let us first discuss the case p = 2, i.e. the SK model. In the absence of a magnetic
field, one finds a second order phase transition at Ts = J from a paramagnetic (q = 0) to
a spin-glass phase with q 6= 0. In the presence of a field there is no phase transition. SK
soon realized though that there is something wrong with this solution: the entropy at zero
temperature is negative, S(0) = −1/(2π), and this is impossible for a model with discrete
spins, for which S is strictly positive. de Almeida and Thouless later showed that the
reason for this failure is that the replica symmetric saddle-point is not stable, since the
Hessian (3.132) is not positive definite and has negative eigenvalues [59]. The eigenvalue
responsible for the instability of the replica symmetric solution is called the replicon.

Comparison with the TAP equations shows that the RS Ansatz corresponds to the
assumption that the local fields hi =

∑
ii1 ...iip

Ji1...ipmi1 . . .mip+h are independent and have
a Gaussian distribution with average h and variance σ2 = J2qp−1. Numerical simulations
clearly show that this assumption is invalid.

Interestingly enough, the numerical values for several physical quantities obtained with
the replica symmetric solution do not disagree much with numerical results. For instance,
the ground state zero-temperature energy density is Ers

gs = −0.798 while with numerical
simulations one finds Egs ∼ −0.76.

For the p > 2 model one finds that the replica symmetric solution is stable at all
temperatures. However, the problem of the negative entropy remains and should be
solved by another solution. The transition must then have aspects of a first-order one,
with another solution appearing at low temperatures and becoming the most convenient
one at the transition.

One step replica symmetry breaking

The next challenge is to device a replica symmetry breaking Ansatz, in the form of
a matrix qab that is not invariant under permutations of rows or columns. There is no
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Figure 3.15: Left: a one-step replica symmetry breaking (1RSB) Ansatz. Right: a two-step
replica symmetry breaking Ansatz. The elements on the main diagonal vanish identically. In the
1RSB case the diagonal blocks have size m×m. In the 2RSB the proceudre is repeated and one
has blocks of size m1 ×m1 with smaller diagonal blocks of size m2 ×m2.

first principles way of doing this, instead, the structure of the Ansatz is the result of trial
and error. Indeed, a kind of minimal way to break the replica symmetry is to propose a
structure in blocks as the one shown in Fig. 3.15-left. The diagonal elements are set to
zero as in the RS case. Square blocks of linear size m close to the main diagonal are filled
with a paramater q1. The elements in the rest of the matrix take a different value q0 and
one takes 0 ≤ q0 ≤ q1. The matrix qab depends on three parameters q0, q1, m and one
has to find the values such that the free-energy density is maximized! The conditions for
a extreme are

∂f(q0, q1,m)

∂q0

=
∂f(q0, q1,m)

∂q1

=
∂f(q0, q1,m)

∂m
= 0 . (3.137)

In the SK model (p = 2) the 1RSB Ansatz yields a second order phase transition
(q0 = q1 = 0 and m = 1 at criticality) at a critical temperature Ts = J , that remains
unchanged with respect to the one predicted by the RS Ansatz. The 1RSB solution is
still unstable below Ts and in all the low temperature phase. One notices, however, that
the zero temperature entropy, even if still negative and incorrect, takes a value that is
closer to zero, S(T = 0) ≈ −0.01, the ground state energy is closer to the value obtained
numerically, and the replicon eigenvalue even if still negative has an absolute value that
is closer to zero. All this suggest that the 1RSB Ansatz is closer to the exact solution.

Instead, in all cases with p ≥ 3 the 1RSB Ansatz is stable below the static critical
temperature Ts and all the way up to a new characteristic temperature 0 < Tf < Ts.
Moreover, one can prove that in this range of temperatures the model is solved exactly
by this Ansatz. The critical behaviour is quite peculiar: while the order parameters q0

and q1 jump at the transition from a vanishing value in the paramagnetic phase to a
non-zero value right below Ts, all thermodynamic quantities are continuous since m = 1
at Ts and all q0 and q1 dependent terms appear multiplied by 1−m. This is a mixed type
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of transition that has been baptised random first-order. Note that disorder weakens the
critical behaviour in the p ≥ 3-spin models. In the limit p → ∞ the solutions become
m = T/Tc, q0 = 0 and q = 1.

k-step replica symmetry breaking

The natural way to generalize the 1RSB Ansatz is to propose a k-step one. In each step
the off-diagonal blocks are left unchanged while the diagonal ones of size mk are broken as
in the first step thus generating smaller square blocks of size mk+1, close to the diagonal.
At a generic k-step RSB scheme one has

0 ≤ q0 ≤ q1 ≤ · · · ≤ qk−1 ≤ qk ≤ 1 , (3.138)
n = m0 ≥ m1 ≥ · · · ≥ mk ≥ mk+1 , (3.139)

parameters. In the n→ 0 limit the ordering of the parameters m is reversed

0 = m0 ≤ m1 ≤ · · · ≤ mk ≤ mk+1 . (3.140)

In the SK model one finds that any finite k-step RSB Ansatz remains unstable. How-
ever, increasing the number of breaking levels the results continue to improve with, in
particular, the zero temperature entropy getting closer to zero. In the p ≥ 3 case instead
one finds that the 2RSB Ansatz has, as unique solution to the saddle-point equations,
one that boils down to the 1RSB case. This suggests that the 1RSB Ansatz is stable as
can also be checked with the analysis of the Hessian eigenvalues: the replicon is stricly
positive for all p ≥ 3.

Full replica symmetry breaking

In order to construct the full RSB solution the breaking procedure is iterated an infinite
number of times. The full RSB Ansatz thus obtained generalizes the block structure to
an infinite sequence by introducing a function

q(x) = qi , mi+1 < x < mi (3.141)

with 0 ≤ x ≤ 1. Introducing q(x) sums over replicas are traded by integrals over x; for
instance

1

n

∑
a6=b

qlab =

∫ 1

0

dx ql(x) . (3.142)

The free-energy density becomes a functional of the function q(x). The extremization
condition is then a hard functional equation. A Landau expansion – expected to be valid
close to the assumed second order phase transition – simplifies the task of solving it. For
the SK model one finds

q(x) =

{
x
2
, 0 ≤ x ≤ x1 = 2q(1) ,

qEA ≡ qmax = q(1) , x1 = 2q(1) ≤ x ≤ 1 ,
(3.143)
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Figure 3.16: The function q(x) for a replica symmetric (left), one step replica symmetry breaking
(center) and full replica symmetry breaking Ansätze.

at first order in |T − Tc|, with q(1) = |T − Tc|/Tc and x1 = 2q(1). The stability analysis
yields a vanishing replicon eigenvalue signalling that the full RSB solution is marginally
stable.

One can also recover the particular case of the 1RSB using a q(x) with two plateaux,
at q0 and q1 and the breaking point at x = m.

Marginality condition

In the discussion above we chose the extreme that maximize the free-energy density
since we were interested in studying equilibrium properties. We could, instead, use a
different prescription, though a priori not justified, and select other solutions. For exam-
ple, we can impose that the solution is marginally stable by requiring that the replicon
eigenvalue vanishes. In the p = 2 this leads to identical results to the ones obtained with
the usual prescription since the full-RSB Ansatz is in any case marginally stable. In the
p-spin models with p ≥ 3 instead it turns out that the averaged properties obtained in this
way correspond to the asymptotic values derived with the stochastic dynamics starting
from random initial conditions. This is quite a remarkable result.

3.3.1 Interpretation of replica results

Let us now discuss the implications of the solution to fully-connected disordered models
obtained with the, for the moment, rather abstract replica formalism.

The interpretation uses heavily the identification of pure states. Their definition is a
tricky matter that we shall not discuss in detail here. We shall just assume it can be
done and use the analogy with the ferromagnetic system – and its two pure states – and
the TAP results at fixed disorder. As we already know, which are the pure states, its
properties, number, etc. can depend on the quenched disorder realization and fluctuate
from sample to sample. We shall keep this in mind in the rest of our discussion.

Let us then distinguish the averages computed within a pure state and over all config-
uration space. In a ferromagnet with no applied magnetic field this is simple to grasp:
at high temperatures there is just one state, the paramagnet, while at low temperatures
there are two, the states with positive and negative magnetization. If one computes the
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averaged magnetization restricted to the state of positive (negative) magnetization one
finds meq > 0 (meq < 0); instead, summing over all configurations meq = 0 even at low
temperatures. Now, if one considers systems with more than just two pure states, and
one labels them with Greeks indices, averages within such states are denoted 〈O〉α while
averages taken with the full Gibbs measure are expressed as

〈O 〉 =
∑
α

wJα 〈O 〉α . (3.144)

wJα is the probability of the α state given by

wJα =
e−βF

J
α

ZJ
, with ZJ =

∑
α

e−βF
J
α (3.145)

and thus satisfying the normalization condition
∑

αw
J
α = 1. F J

α can be interpreted as
the total free-energy of the state α. These probabilities, as well as the state dependent
averages, will show sample-to-sample fluctuations.

One can then define an overlap between states:

qJαβ ≡ N−1
∑
i

〈si〉α〈si〉β = N−1
∑
i

mα
im

β
i (3.146)

and rename the self-overlap the Edwards-Anderson parameter

qJαα ≡ N−1
∑
i

〈si〉α〈si〉α ≡ qJEA (3.147)

(assuming the result is independent of α). The statistics of possible overlaps is then
characterized by a probability function

PJ(q) ≡
∑
αβ

wJαw
J
β δ(q − qJαβ) , (3.148)

where we included a subindex J to stress the fact that this is a strongly sample-dependent
quantity. Again, a ferromagnetic model serves to illustrate the meaning of PJ(q). First,
there is no disorder in this case so the J label is irrelevant. Second, the high-T equilibrium
phase is paramagnetic, with q = 0. P (q) is then a delta function with weight 1 (see the
left panel in Fig. 3.17). In the low-T phase there are only two pure states with identical
statistical properties and qEA = m2. Thus, P (q) is just the sum of two delta functions
with weight 1/2 (central panel in Fig. 3.17).

Next, one can consider averages over quenched disorder and study

[PJ(q) ] ≡
∫
dJ P (J)

∑
αβ

wJαw
J
β δ(q − qJαβ) . (3.149)
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How can one access PJ(q) or [PJ(q) ]? It is natural to reckon that

PJ(q) = Z−2
∑
σs

e−βHJ ({σi})e−βHJ ({si}) δ

(
N−1

∑
i

σisi − q

)
(3.150)

that is to say, PJ(q) is the probability of finding an overlap q between two real replicas of
the system with identical disordered interactions in equilibrium at temperature T . This
identitiy gives a way to compute PJ(q) and its average in a numerical simulation: one
just has to simulate two independent systems with identical disorder in equilibrium and
calculate the overlap.

But there is also, as suggested by the notation, a way to relate the pure state structure
to the replica matrix qab. Let us consider the simple case

[mi ] =

Z−1
J

∑
{si}

si e
−βHJ ({si})

 =

 Zn−1
J

Zn
J

∑
{s1i }

s1
i e
−βHJ ({s1i })


=

 1

Zn
J

∑
{sai }

s1
i e
−β

∑n
a=1 HJ ({sai })

 (3.151)

where we singled out the replica index of the spin to average. This relation is valid for all
n, in particular for n→ 0. In this limit the denominator approaches one and the average
over disorder can be simply evaluated

[mi ] =
∑
{sai }

s1
i e
−βHeff({sai }) (3.152)

and introducing back the normalization factor Zn = 1 =
∑
{sai }

e−β
∑n
a=1 HJ ({sai }) that

becomes Zn = [
∑
{sai }

e−β
∑n
a=1HJ ({sai }) ] = e−βHeff({sai }) we have

[mi ] = 〈 sai 〉Heff
(3.153)

with a any replica index. The average is taken over the Gibbs measure of a system
with effective Hamiltonian Heff . In a replica symmetric problem in which all replicas are
identical this result should be independent of the label a. Instead, in a problem with
replica symmetry breaking the averages on the right-hand-side need not be identical for
all a. This could occur in a normal vectorial theory with dimension n in which not
all components take the same expected value. It is reasonable to assume that the full
thermodynamic average is achieved by the sum over all these cases,

[mi ] = lim
n→0

1

n

n∑
a=1

〈 sai 〉Heff
. (3.154)
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Let us now take a less trivial observable and study the spin-glass order parameter q

q ≡ [ 〈 si 〉2 ] =

Z−1
J

∑
{si}

si e
−βHJ ({si}) Z−1

J

∑
{σi}

σi e
−βHJ ({σi})


=

 Zn−2

Zn

∑
{si},{σi}

siσi e
−βHJ ({si})−βHJ ({σi})


=

 1

Zn
J

∑
{sai }

s1
i s

2
i e
−β

∑n
a=1 HJ ({sai })

 (3.155)

In the n→ 0 limit the denominator is equal to one and one can then perform the average
over disorder. Introducing back the normalization one then has

q = 〈 sai sbi 〉Eeff({sai }) (3.156)

for any arbitrary pair of replicas a 6= b (since 〈 sai sai 〉 = 1 for Ising spins). The average is
done with an effective theory of n interacting replicas characterized by Eeff({sai }). Again,
if there is replica symmetry breaking the actual thermal average is the sum over all possible
pairs of replicas:

q = lim
n→0

1

n(n− 1)

∑
a6=b

qab . (3.157)

A similar argument allows one to write

q(k) = [ 〈 si1 . . . sik 〉2 ] = lim
n→0

1

n(n− 1)

∑
a6=b

qkab . (3.158)

One can also generalize this argument to obtain

P (q) = [PJ(q) ] = lim
n→0

1

n(n− 1)

∑
a6=b

δ(q − qab) (3.159)

Thus, the replica matrix qab can be ascribed to the overlap between pure states.
Note that a small applied field, though uncorrelated with a particular pure state, is

necessary to have non-zero local magnetizations and then non-zero q values.
The function P (q) then extends the concept of order parameter to a function. In

zero field the symmetry with respect to simultaneous reversal of all spins translates into
the fact that PJ(q) must be symmetric with respect to q = 0. [PJ(q) ] can be used to
distinguish between the droplet picture prediction for finite dimensional spin-glasses – two
pure states – that simply corresponds to

[PJ(q) ] =
1

2
δ(q − qEA) +

1

2
δ(q + qEA) (3.160)
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Figure 3.17: [PJ(q) ] in a paramagnet (left), in a ferromagnet or a replica symmetric system
(centre) and for system with full RSB (right).

(see the central panel in Fig. 3.17) and a more complicated situation in which [PJ(q) ]
has the two delta functions at ±qEA plus non-zero values on a finite support (right panel
in Fig. 3.17) as found in mean-field spin-glass models.

The linear susceptibility

Taking into account the multiplicity of pure states, the magnetic susceptibility, eq. (??),
and using (3.144) becomes

Tχ = T [χJ ] = 1− 1

N

∑
i

[ 〈 si 〉2 ] = 1−
∑
αβ

[wJαw
J
β ] qαβ =

∫
dq (1− q)P (q) . (3.161)

There are then several possible results for the susceptibility depending on the level of
replica symmetry breaking in the system:

• In a replica symmetric problem or, equivalently, in the droplet model,

χ = β(1− qEA) . (3.162)

This is also the susceptibility within a pure state of a system with a higher level of
RSB.

• At the one step RSB level, this becomes

χ = β [1− (1−m)qEA] . (3.163)

• For systems with full RSB one needs to know the complete P (q) to compute χ, as
in (3.161).

Note that in systems with RSB (one step or full) the susceptibility is larger than β(1−qEA).
A system with qEA = 1 in the full low-temperature phase (as the REM model or p→∞

limit of the p spin model, see below) has just one configuration in each state. Systems
with qEA < 1 below Tc have states formed by a number of different configurations that
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is exponentially large in N . (Note that qEA < 1 means that the two configurations differ
in a number of spins that is proportional to N .) The logarithm of this number is usually
called the intra-state entropy.

Even if the number of pure states can be very large (exponential in N) only a fraction
of them can have a non-negligible weight. This is the case if one finds, for example,∑

αw
2
α < +∞

Symmetry and ergodicity breaking

In all p ≥ 2 spin models there is a phase transition at a finite Ts at which the rather
abstract replica symmetry is broken. This symmetry breaking is accompanied by ergod-
icity breaking as in the usual case. Many pure states appear at low temperatures, each
one has its reversed si → −si counterpart, but not all of them are related by real-space
symmetry properties.

The one-step RSB scenario

In this case the transition has first-order and second-order aspects. The order param-
eters q0 and q1 jump at the critical point as in a first-order transition but the thermody-
namic quantities are continuous.

The full RSB scenario

Right below Tc an exponential in N number of equilibrium states appear. The transi-
tion is continuous, the order parameter approaches zero right below Tc. Lowering further
the temperature each ergodic component breaks in many other ones. In this sense, the
full spin-glass phase, T < Tc, is ‘critical’ and not only the single point Tc.

3.3.2 The pinning field

We can nevertheless choose a possible direction, given by another field σ(x), and com-
pute the free–energy of our system when it is weakly pinned by this external quenched
field

Fφ [σ, g, β] = − 1

β
log

∫
dφ(x) e−βH[φ]− g

2

∫
dx(σ(x)−φ(x))2

(3.164)

where g > 0 denotes the strength of the coupling. This free-energy (3.164) will be small
when the external perturbing field σ(x) lies in a direction corresponding to the bottom
of a well of the unperturbed free-energy. Therefore, we should be able to obtain useful
information about the free-energy landscape by scanning the entire space of the config-
urations σ(x) to locate all the states in which the system can freeze after spontaneous
ergodicity breaking (g → 0). According to this intuitive idea, we now consider the field
σ(x) as a thermalized variable with the “Hamiltonian” Fφ [σ, g, β]. The free-energy of the
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Figure 3.18: The susequent phase transitions in the SK model.

field σ at inverse temperature βm where m is a positive free parameter therefore reads

Fσ(m,β) = lim
g→0+

− 1

βm
log

∫
dσ(x) e−βmFφ[σ,g,β] (3.165)

When the ratio m between the two temperatures is an integer, one can easily integrate
σ(x) in Eq.(3.165) after having introduced m copies φρ(x) (ρ = 1...m) of the original field
to obtain the relation

Fσ(m,β) = lim
g→0+

− 1

βm
log

∫ m∏
ρ=1

dφρ(x) e−β
∑
ρH[φρ]+ 1

2

∑
ρ,λ g

ρλ
∫
dxφρ(x)φλ(x) (3.166)

where gρλ = g( 1
m
− δρλ). Let us define two more quantities related to the field σ : its

internal energy W (m,β) = ∂(mFσ)
∂m

and its entropy S(m,β) = βm2 ∂Fσ
∂m

. Since the case
m = 1 will be of particular interest, we shall use hereafter Fhs(β) ≡ W (m = 1, β) and
Shs(β) ≡ S(m = 1, β) where hs stands for “hidden states”. We stress that S(m,β) and
β2 ∂Fφ

∂β
which are respectively the entropies of the fields σ and φ are two distinct quantities

with different physical meanings.
When the pinning field σ(x) is thermalized at the same temperature as φ(x), that is

when m = 1, one sees from Eq.(3.166) that Fφ(β) = Fσ(m = 1, β). The basic idea of this
letter is to decompose Fσ into its energetic and entropic contributions to obtain

Shs(β) = β

[
Fhs(β)− Fφ(β)

]
(3.167)
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To get some insights on the significance of the above relation, we shall now turn to the
particular case of disordered mean-field systems. We shall see how it rigorously gives back
some analytical results derived within the mean-field TAP and dynamical approaches. We
shall then discuss the physical meaning of identity (3.167) for the general case of glassy
systems.

3.3.3 Coupling replicas and the effective potential

Let us take a spin-configuration, {s}, in equilibrium at temperature T ′, that is to say,
drawn from the canonical probability distribution P [{s}] = exp(−β′H[{s}])/Z(T ′). One
computes the free-energy cost to keep the system at a fixed overlap p̃ = qs,σ with {s} at
a temperature T (in general different from T ′):

VJ(β, p̃, {s}) = − T
N

lnZJ(β, p̃, {s})− fJ(T ); (3.168)

ZJ(β, p̃, {s}) ≡
∑
{σ}

e−βHJ [{σ}] δ (p̃− qs,σ) (3.169)

βNfJ(T ) = lnZJ(β) = ln
∑
{s}

e−βHJ [{s}] . (3.170)

(fJ(T ) is the disorder-dependent free-energy density without constraint.) In this problem
the spins si are quenched variables on the same footing as the random interactions in the
Hamiltonian. One then assumes that V is self-averaging with respect to the quenched
disorder and the probability distribution of the reference configuration {s}. One then
computes the two averages:

NV (β, β′, p̃) ≡ N [VJ(β, p̃, {s})]J,{s} =

∑
{s}

e−β
′HJ [{s}]

ZJ(β′)
(−T lnZJ(β, p̃, {s})− fJ(T ))


J

.

(3.171)
This average can be done using the replica method:

NV (β, β′, p̃) = −T lim
n→0

lim
m→0

∑
{s}

e−β
′HJ [{s}]ZJ(β′)n−1

(
ZJ({s}; p̃, {s})m − 1

m

)
J

.

(3.172)
The analytic continuation is performed from integer n and m. One then has

Z(n,m) =

∑
{sa}

∑
{σα}

exp

[
β′

n∑
a=1

H[{sa}] + β
m∑
α=1

H[{σα}]

]
m∏
α=1

δ

(∑
i

s1
iσ

α
i −Np̃

)
J

.

(3.173)
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After averaging over the disorder strength distribution one introduces the order parame-
ters:

Qab =
1

N

∑
i

sai s
b
i , Rαγ =

1

N

∑
i

σαi σ
γ
i Paα =

1

N

∑
i

sai σ
α
i , (3.174)

with a, b = 1, ..., n and α, γ = 1, ...,m. Combining the order parameters in the single
(n+m)× (n+m) matrix

Q =

(
Q P
P T R

)
(3.175)

one finds

1

N
logZ(n,m) =

1

2

[
β′2

n∑
a=1,b=1

Qp
ab + β2

m∑
α=1γ=1

Rp
α,γ) + 2ββ′

n∑
a=1

m∑
α=1

P p
aα)

]
+

1

2
Tr lnQ.

(3.176)
We shall not present the details of the RSB Ansatz here.

One studies different ranges of β and β′ and analyses the minima of V with respect to
p̃.

The effective potential for four different temperatures, T = T ′ for p = 3 is shown in [52]
From top to bottom, the curves represent the potential at temperature higher then Td,
equal to Td between Td and TS, and right at TS. We can see from the figure that for
T > Td the potential is monotonically increasing, and the only extremum of the potential
is the minimum at p̃ = 0. At the temperature Td where the dynamical transition happens,
the potential develops for the first time a minimum with p̃ ≡ r 6= 0. It is interesting to
observe that the energy in this flex point is equal to the asymptotic value of the energy in
the out-of-equilibrium dynamics. The same is true for the parameter r which turns out
to be equal to the dynamical Edward-Anderson parameter.

The condition for the potential of having a flex coincides with the marginality condition.
Indeed the flex implies a zero eigenvalue in the longitudinal sector and at x = 1 the replicon
and the longitudinal eigenvalues are degenerate. The marginality condition is well known
to give exact results for the transition temperatures in p-spin spherical models.

We have observed that in general more then one minimum can be present in the po-
tential. In the p-spin model it happens that two minima develop at the same temperature
Td. The rightmost one, that we will call primary is the one with p̃ = r, while the other,
secondary, has p̃ < r. For temperatures smaller than Td the minima have a finite depth,
i.e. are separated by extensive barriers from the absolute minimum.

The primary minimum is easily interpreted. There the system denoted by s is in the
same pure state as the system σ. In the region TS < T < TD the number of pure states
is exponentially large in N : N = eNΣ(T ). Consequently the probability of finding two
system in the same state is exponentially small and proportional to e−NΣ(T ). The free
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energy cost to constrain two systems to be in the same state is then proportional to the
logarithm of this probability, namely we have

Vprimary = TΣ(T ). (3.177)

Coherently at the statical transition temperature T = TS one finds Vprimary = 0. The
quantity Σ has been computed for the p-spin model as the number of solution of the
TAP equation with given free energy and coincides with our calculation. The secondary
minima, could aso be associated to metastable states, but at present we do not have an
interpretation for them. This conclusion on the equivalence of the potential with the
number of solution of the TAP equation hold also in the ROM.

The study of the potential for temperatures smaller than TS would require to take into
account RSB effects, which would complicate a bit the analysis. However it is physically
clear that the shape of the potential in that region it is not different qualitatively from
the one at T = TS. It has a minimum where r = p̃ are equal to the Edwards Anderson
parameter and the value of potential is zero.

The study of the effective potential at different gives information about the chaotic
properties of the models. We shall not develop it here.
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C CLASSICAL RESULTS IN STATISTICAL PHYSICS

A Jenssen’s inequality
Jensen’s inequality relates the value of a convex function of an integral to the integral

of the convex function. In its simplest form the inequality states that the convex transfor-
mation of a mean is less than or equal to the mean applied after convex transformation;
it is a simple corollary that the opposite is true of concave transformations.

In probability theory, the Jenssen’s inequality implies that, for x a random variable
and φ a convex function, then

φ(E(x)) ≤ E[φ(x)] (A.1)

where E[. . . ] is the expectation value of . . .

B The central limit theorem
In probability theory, the central limit theorem (CLT) establishes that, in most sit-

uations, when independent random variables are added, their properly normalized sum
tends toward a normal (Gaussian) distribution (informally a "bell curve") even if the
original variables themselves are not normally distributed. More precisely, for xi i.i.d.
with average µ and variance σ2,

X =
1

N

∑
i

xi (B.1)

is a Gaussian distributed with average [X] = µ and variance [(X − [X])2] = σ2/N .
They all express the fact that a sum of many independent and identically distributed

(i.i.d.) random variables, or alternatively, random variables with specific types of depen-
dence, will tend to be distributed according to one of a small set of attractor distributions.
When the variance of the i.i.d. variables is finite, the attractor distribution is the normal
distribution. In contrast, the sum of a number of i.i.d. random variables with power law
tail distributions decreasing as |x|−α−1 where 0 < α < 2 (and therefore having infinite
variance) will tend to an alpha-stable distribution with stability parameter (or index of
stability) of α as the number of variables grows.

C Classical results in statistical physics
We recall here some classical results in statistical physics.

C.1 High temperature expansion
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The partition function of the Ising ferromagnet reads

Z =
∑
si=±1

eβJ
∑
〈ij〉 sisj =

∑
si=±1

∏
〈ij〉

eβJsisj (C.2)

Using the identity eβJsisj = a(1+bsisj) with a = cosh(βJ) and b = tanh(βJ) and the fact
that b is order β, an expansion if powers of b can be established. The average of products
of the spins s’s that remains can be non-zero only if each spin appears an even number of
times s. The expansion can then be represented as graphs on the lattice, a representation
that makes the enumeration of terms easier.

C.2 Lee-Yang theorem

The LeeÐYang theorem states that if partition functions of models with ferromagnetic
interactions are considered as functions of an external field, then all zeros are purely
imaginary (or on the unit circle after a change of variable) [61].

C.3 Critical behaviour

Second order phase transitions are characterised by the diverge of the correlation length.
In normal conditions, far from the critical point, the correlation function of the fluctuations
of an observable decay as an exponential of the distance between the measuring points:

C(~r) ≡ 〈[O(~r + ~r′)− 〈(O(~r + ~r′)〉][O(~r′)− 〈(O(~r′)〉)〉]〉 ' e−r/ξ . (C.3)

ξ is the correlation length that diverges at the critical point as

ξ ' |T − Tc|−ν (C.4)

with ν a critical exponent. A power-law singularities in the length scales leads to power-
law singularities in observable quantities. We summarise in Table 1 all the critical expo-
nents associated to various quantities in a second order phase transition. The values of
the critical exponents generally do not depend on the microscopic details but only on the
space dimensionality and the symmetries of the system under consideration.

The collection of all these power laws characterizes the critical point and is usually
called the critical behavior.

Whether fluctuations influence the critical behavior depends on the space dimension-
ality d. In general, fluctuations become less important with increasing dimensionality.

In sufficiently low dimensions, i.e. below the lower critical dimension dl, fluctuations
are so strong that they completely destroy the ordered phase at all (nonzero) temperatures
and there is no phase transition. Between dl and the upper critical dimension du, order
at low temperatures is possible, there is a phase transition, and the critical exponents
are influenced by fluctuations (and depend on d). Finally, for d > du, fluctuations are
unimportant for the critical behavior, and this is well described by mean-field theory. The
exponents become independent of d and take their mean-field values. For example, for
Ising ferromagnets, dl = 1 and du = 4, for Heisenberg ferromagnets dl = 2 and du = 4.
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exponent definition conditions

Specific heat α c ∝ |u|−α u→ 0, h = 0

Order parameter β m ∝ (−u)β u→ 0−, h = 0

Susceptibility γ χ ∝ |u|−γ u→ 0, h = 0

Critical isotherm δ h ∝ |m|δsign(m) h→ 0, u = 0

Correlation length ν ξ ∝ |r|−ν r → 0, h = 0

Correlation function η G(~r) ∝ |~r|−d+2−η r = 0, h = 0

Table 1: Definitions of the commonly used critical exponents. m is the order parameter, e.g.
the magnetization, h is an external conjugate field, e.g. a magnetic field, u denotes the distance
from the critical point, e.g. |T − Tc|, and d is the space dimensionality.
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