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1 PHASE TRANSITIONS

1 Phase transitions
Take a piece of material in contact with an external reservoir. The material will be

characterised by certain global observables, energy, magnetisation, etc.. To characterise
macroscopic systems it is convenient to consider densities of energy, magnetisation, etc, by
diving the macroscopic value by the number of particles (or the volume) of the system. If
the system is coupled to its surroundings, this external environment will be characterised
by some parameters, like the temperature, magnetic field, pressure, etc. In principle,
one is able to tune the latter and measure the former as a function of them. In isolated
systems, the temperature can also be defined from the entropy-energy relation following
the canonical prescription, and it can be used as one of the axis in the phase diagram.

Sharp changes in the behaviour of macroscopic systems at critical points (lines) in
parameter space have been observed experimentally. These correspond to phase transi-
tions [1, 2, 3, 4, 5, 6, 7], a non-trivial collective phenomenon arisng in the thermodynamic
limit, N → ∞ and V → ∞. Phase diagrams as the one in Fig. 1.1 are used as a visual
help to identify the global behaviour of a system according to the values that the or-
der parameters (relevant observables) take in different regions of variation of the control
parameters that give the axes to the phase diagram.

Figure 1.1: A quite generic phase diagram.

Macroscopic models of agents in interaction may have static and dynamic phase tran-
sitions. The former are the usual ones studied with statistical physics methods. For
example, in the canonical ensemble, one finds the phase transitions by looking for non-
analyticities of the free-energy density as a function of the control parameters, say just
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1.1 The standard models for magnetic systems 1 PHASE TRANSITIONS

β = 1/(kBT ),

−βf(β) = N−1 lnZ(β) with Z(β) =
∑
C

e−βH(C) (1.1)

where C represents all the system configurations. One is interested in identifying the
order parameter (in some cases this is easy, in others it is not), finding the critical curves
of the control parameters in the phase diagram, studying the critical phenomenon that
is to say the behaviour of the order parameter and other properties close to the phase
transition, etc.

Dynamic phase transitions correspond to sharp changes in the dynamic evolution of a
macroscopic system. We will not discuss them in these notes.

1.1 The standard models for magnetic systems

Let us analyse a magnetic system. The Hamiltonian describing all microscopic details
is a rather complicated one. It depends on the electrons’ magnetic moments giving rise
to the macroscopic magnetization of the sample but also on the vibrations of the atomic
crystal, the presence of structural defects, etc. If we call α a microstate, in the canonical
ensemble its probability is Pα = e−βHα/Z with Z the partition function, Z =

∑
α e
−βHα .

It is, however, impossible and not necessarily interesting to keep all details and work with
all possible physical phenomena simultaneously. Imagine that we are only interested on
the magnetic properties, characterized by the electronic magnetic moments.

The Ising model is a simplified mathematical representation of a magnetic system. It
describes magnetic moments as classical spins, si, taking values ±1, lying on the vertices
of a cubic lattice in d dimensional space, and interacting via nearest-neighbor couplings,
J > 0. The energy is then

HJ({si}) = −J
2

∑
〈ij〉

sisj −
∑
i

hisi (1.2)

where hi is a local external magnetic field. Most typically one works with a uniform field,
hi = h for all sites. The justification for working with an Ising variable taking only two
values is that in many magnetic systems the magnetic moment is forced to point along an
easy axis selected by crystalline fields. We then need a model that focuses just on these.

There are two external parameters in H, the coupling strength J and the external field
h. J > 0 favors the alignement of the spin in the same direction (ferromagnetism) while
J < 0 favors the anti-alignement of the spins (antiferromagnetism). The magnetic field
tends to align the spins in its direction.

The spins lie on a d dimensional lattice that can have different geometries. For instance,
a cubic lattice is such that each vertex has coordination number, or number of neighbours,
z = 2d. Triangular, honeycomb, etc. lattices are also familiar.
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1.1 The standard models for magnetic systems 1 PHASE TRANSITIONS

The Ising model is specially attractive for a number of reasons:
(i) It is probably the simplest example of modeling to which a student is confronted.
(ii) It can be solved in some cases: d = 1, d = 2, d → ∞. The solutions have been the
source of new and powerful techniques later applied to a variety of different problems in
physics and interdisciplinary fields.
(iii) It has not been solved analytically in the most natural case, d = 3!
(iv) It has a phase transition, an interesting collective phenomenon, separating two phases
that are well-understood and behave, at least qualitatively, as real magnets with a para-
magnetic and a ferromagnetic phase.
(v) There is an upper, du, and a lower, dl, critical dimension. Above du mean-field theory
correctly describes the critical phenomenon. At and below dl there is no finite T phase
transition. Below du mean-field theory fails.
(vi) One can see at work generic tools to describe the critical phenomenon like scaling
and the renormalization group.
(vii) Generalizations in which the interactions and/or the fields are random variables taken
from a probability distribution are typical examples of problems with quenched disorder.
(viii) Generalizations in which spins are not just Ising variables but vectors with n com-
ponents with a local constraint on their modulus are also interesting. Their energy is

H = −J
2

∑
〈ij〉

~si~sj −
∑
i

~hi~si (1.3)

with n = 1 (Ising), n = 2 (XY), n = 3 (Heisenberg), ... , n → ∞ (O(n)) as particular
cases. The local constraint on the length of the spin is

s2i ≡
n∑
a=1

(sai )
2 = n . (1.4)

Note that each component is now a continuous variable bounded in a finite interval,
−
√
n ≤ sai ≤

√
n, that actually diverges in the n → ∞ limit. When n → ∞ it is

sometimes necessary to redefine the coupling constants including factors of n that yield a
sensible n→∞ limit of thermodynamic quantities.
(ix) One can add a dynamic rule to update the spins. We are then confronted to the
kinetic Ising model and more generally to the new World of stochastic processes.
(x) Dynamic phase transitions occur in the properties of the system’s evolution. We will
not discuss them in these Lectures.
(xi) In the low temperature phase the progressive order is reached via domain growth, the
simplest example of coarsening.
(xii) Last but not least, it has been a paradigmatic model extended to describe many
problems going beyond physics like neural networks, social ensembles, etc.

Note the difference between the two parameters, N and n. N is the number of spins
in the system. n is the number of components that each spin vector has. There is still
one other dimension, the one of real space, that we call d.
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1.2 Concepts 1 PHASE TRANSITIONS

1.2 Concepts

Let us now discuss some important concepts, symmetries, order parameters, pinning
fields, broken ergodicity and broken symmetry [1, 2, 3, 4, 5, 6, 7], with the help of the
concrete example of the Ising model. The discussion is however much more general.

1.2.1 Symmetries

Let us treat separately the case of continuous and discrete symmetries.

Continuous

In the absence of an applied magnetic field the Hamiltonian (1.3) remains invariant
under the simultaneous rotation of all spins:

H[~s′] = −J
2

∑
〈ij〉

~s′i~s
′
j = −J

2

∑
〈ij〉

RabsbiR
acscj

= −J
2

∑
〈ij〉

RT baRacsbis
c
j = −J

2

∑
〈ij〉

sbis
b
j (1.5)

since R is an orthogonal transformation, such that RTR = I. This symmetry is explicitly
broken by the external field. (Summation over repeated a, b indices is assumed.)

Discrete

The Ising model with no applied field is invariant under the reversal of all spins, si →
−si, for all i, a discrete symmetry.

1.2.2 Order parameters

An order parameter is generically defined as a quantity – the average of an observable
– that typically vanishes in one phase and is different from zero in another one (or other
ones). One must notice though that the order parameter is not unique (any power of an
order parameter is itself an order parameter) and that there can exist transitions without
an order parameter as in the topological Kosterlitz-Thouless transition in the 2d XYmodel.

In the ferromagnetic Ising model the order parameter is the magnetisation density

m =
1

N

N∑
i=1

〈 si 〉 and 〈 si 〉 = Z−1
∑
C

si e
−βH(C) (1.6)

where N is the total number of spins and the angular brackets represent the thermal
average.

1.2.3 Thermodynamic limit
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1.2 Concepts 1 PHASE TRANSITIONS

The abrupt change in the order parameter at a particular value of the external pa-
rameters, say temperature and magnetic field (T, h), is associated to the divergence of
some derivative of the free-energy (we use the canonical ensemble) with respect to one of
these parameters. The partition function is a sum of positive terms. In a system with a
finite number of degrees of freedom (as, for instance, in an Ising spin model where the
sum has 2N terms with N the number of spins) such a sum is an analytic function of the
parameters. Thus, no derivative can diverge. One can then have a phase transition only
in the thermodynamic limit in which the number of degrees of freedom diverges.

1.2.4 Pinning field

In the absence of a magnetic field for pair interactions the energy is an even function
of the spins, HJ({si}) = HJ({−si}) and, consequently, the equilibrium magnetisation
density computed as an average over all spin configurations with their canonical weight,
e−βHJ (C), vanishes at all temperatures:

〈si〉 = 0 ∀ i if hi = 0 . (1.7)

At high temperatures, m = 0 characterises completely the equilibrium properties of the
system since there is a unique paramagnetic state with vanishing magnetisation density.
At low temperatures instead if we perform an experiment we do observe a net magnetisa-
tion density. In practice, what happens is that when the experimenter takes the system
through the transition he/she cannot avoid the application of tiny external fields – the
experimental set-up, the Earth... – and there is always a small pinning field that actually
selects one of the two possible equilibrium states, with positive or negative magnetisa-
tion density, allowed by symmetry. In the course of time, the experimentalist should see
the full magnetisation density reverse, to ensure m = 0 in equilibrium. However, this is
not seen in practice since astronomical time-scales would be needed. We shall see this
phenomenon at work when solving mean-field models exactly.

To see 〈si〉 6= 0 one needs to compute

lim
h→0

lim
N→∞

〈si〉h = m 6= 0 (1.8)

1.2.5 Broken ergodicity

Introducing dynamics into the problem,1 ergodicity breaking can be stated as the fact
that the temporal average over a long (but finite) time window

At = lim
τ→∞

1

2τ

∫ t+τ

t−τ
dt′A(t′) (1.9)

1Note that Ising model does not have a natural dynamics associated to it. A dynamic rule can be
attributed to the evolution of the spins.
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1.2 Concepts 1 PHASE TRANSITIONS

is different from the statical one, with the sum running over all configurations with their
associated Gibbs-Boltzmann weight:

At 6= 〈A 〉 . (1.10)

In practice the temporal average is done in a long but finite interval τ <∞. During this
time, the system is positively or negatively magnetized depending on whether it is in “one
or the other degenerate equilibrium states” (see Fig. 1.2). Thus, the temporal average of
the orientation of the spins, for instance, yields a non-vanishing result At = m 6= 0. If,
instead, one computes the statistical average summing over all configurations of the spins,
the result is zero, as one can see using just symmetry arguments, explained in Sec. 1.2.6.
The reason for the discrepancy is that with the time average we are actually summing over
half of the available configurations of the system. If time τ is not as large as a function
of N , the trajectory does not have enough time to visit all configurations in phase space.
One can reconcile the two results by, in the statistical average, summing only over the
configurations with positive (or negative) magnetization density and recovering in this
way a non-vanishing result. We shall see this at work in a concrete calculation below.

Note that ergodicity breaking is a statement about the dynamics of a system.

Figure 1.2: Time dependence of the global magnetization.

1.2.6 Spontaneous broken symmetry

In the absence of an external field the Hamiltonian is symmetric with respect to the
simultaneous reversal of all spins, si → −si for all i. The phase transition corresponds to a
spontaneous symmetry breaking between the states of positive and negative magnetization.
One can determine the one that is chosen when going through Tc either by applying a small
pinning field that is taken to zero only after the thermodynamic limit, or by imposing
adequate boundary conditions like, for instance, all spins pointing up on the borders of
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1.2 Concepts 1 PHASE TRANSITIONS

the sample. Once a system sets into one of the equilibrium states this is completely stable
in the N →∞ limit. The mathematical statement of spontaneous symmetry breaking is
then

lim
h→0+

lim
N→∞

〈 si 〉 = − lim
h→0−

lim
N→∞

〈 si 〉 6= 0 . (1.11)

Ergodicity breaking necessarily accompanies spontaneous symmetry breaking but the
reverse is not true; an example is provided by systems with quenched disorder. Indeed,
spontaneous symmetry breaking generates disjoint ergodic regions in phase space, related
by the broken symmetry, but one cannot prove that these are the only ergodic compo-
nents in total generality. Mean-field spin-glass models provide a counterexample of this
implication.

1.2.7 Landau scheme

Without getting into the details of the Landau description of phase transitions (that
you will certain study in the Statistical Field Theory lectures) we just summarize here,
in Figs. 1.3 taken from [2] the two scenarii corresponding to second order (the panels in
the first row) and first order phase transitions (the next six panels). The figures show
the evolution of the free-energy density as a function of the order parameter η when
temperature (called T in the first three panels and t in the next six ones) is modified.

Figure 1.3: Second order and First order phase transitions. Figures taken from [2].
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The saddle-point equation typically takes the form x = a sigmoid function. The dif-
ference between second order and first order solutions in the way in which the sigmoid
function changes when the control parameter is modified. Figure 1.4 shows two sketches of
this evolution for second order (labelled p = 2) and first order (labelled p = 3) transitions.

In a second order phase transition the non-vanishing solutions split from the vanishing
one in a continuous way. A possible strategy to find the critical parameters is, then, to
look for the values at which the slope of the sigmoid function close to zero equals one.

In a first order phase transition the sigmoid function touches the diagonal axis at a
non-vanishing value when the local minimum at x 6= 0 first appears. Further changing
the parameters this point splits in two and the sigmoid function crosses the diagonal at
three points, say x = 0, x1 (a maximum of the free-energy density) and x2 (the non-zero
minimum of the free-energy function). Other two crossings are symmetrically placed on
x < 0 values if the model is invariant under x 7→ −x.

Figure 1.4: Sketch of the graphical solution of the mean-field equation for the order parameter.

1.2.8 Energy vs entropy

Let us first use a thermodynamic argument to describe the high and low temperature
phases of a magnetic system.

The free energy of a system is given by F = U − kBTS where U is the internal energy,
U = 〈H〉, and S is the entropy. The equilibrium state may depend on temperature and it is
such that it minimises its free-energy F . A competition between the energetic contribution
and the entropic one may then lead to a change in phase at a definite temperature, i.e.
a different group of micro-configurations, constituting a state, with different macroscopic
properties dominate the thermodynamics at one side and another of the transition.

At zero temperature the free-energy is identical to the internal energy U . In a system
with ferromagnetic couplings between magnetic moments, the magnetic interaction is
such that the energy is minimised when neighbouring moments are parallel. Thus the
preferred configuration is such that all moments are parallel, the system is fully ordered
and U = −# pairs.
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1.2 Concepts 1 PHASE TRANSITIONS

Switching on temperature thermal agitation provokes the reorientation of the moments
and, consequently, misalignments. Let us then investigate the opposite, infinite temper-
ature case, in which the entropic term dominates and the chosen configurations are such
that entropy is maximised. This is achieved by the magnetic moments pointing in ran-
dom independent directions. For example, for a model with N Ising spins, the entropy at
infinite temperature is S ∼ kBN ln 2.

Decreasing temperature magnetic disorder becomes less favourable. The existence or
not of a finite temperature phase transitions depends on whether long-range order, as the
one observed in the low-temperature phase, can remain stable with respect to fluctuations,
or the reversal of some moments, induced by temperature. Up to this point, the discussion
has been general and independent of the dimension d.

The competition argument made more precise allows one to conclude that there is no
finite temperature phase transition in d = 1 while it suggests there is one in d > 1. Take
a one dimensional ferromagnetic Ising model with closed boundary conditions (the case
of open boundary conditions can be treated in a similar way),

HJ [{si}] = −J
N∑
i=1

sisi+1 , (1.12)

and sN+1 = s1. At zero temperature it is ordered and its internal energy is just

Uo = −JN (1.13)

with N the number of links and spins. Since there are two degenerate ordered configura-
tions (all spins up and all spins down) the entropy is

So = kB ln 2 (1.14)

The internal energy is extensive while the entropy is just a finite number. At temperature
T the free-energy of the completely ordered state is then

Fo = Uo − kBTSo = −JN − kBT ln 2 . (1.15)

This is the ground state at finite temperature or global configuration that minimises the
free-energy of the system.

Adding a domain of the opposite order in the system, i.e. reversing n spins, two bonds
are unsatisfied and the internal energy becomes

U2 = −J(N − 2) + 2J = −J(N − 4) , (1.16)

for any n. Since one can place the misaligned spins anywhere in the lattice, there are N
equivalent configurations with this internal energy. The entropy of this state is then

S2 = kB ln(2N) . (1.17)
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1.2 Concepts 1 PHASE TRANSITIONS

Figure 1.5: Left, a domain wall in a one dimensional Ising system and right, two bidimensional
domains in a planar (artificial) Ising system.

The factor of 2 inside the logarithm arises due to the fact that we consider a reversed
domain in each one of the two ordered states. At temperature T the free-energy of a state
with one reversed spin and two domain walls is

F2 = U2 − kBTS2 = −J(N − 4)− kBT ln(2N) . (1.18)

The variation in free-energy between the ordered state and the one with one domain is

∆F = F2 − Fo = 4J − kBT lnN . (1.19)

Thus, even if the internal energy increases due to the presence of the domain wall, the
increase in entropy is such that the free-energy of the state with a droplet in it is much
lower, and therefore the state much more favourable, at any finite temperature T . We
conclude that spin flips are favourable and order is destroyed at any finite temperature.
The ferromagnetic Ising chain does not have a finite temperature phase transition.

A similar argument in d > 1 suggests that one can have, as indeed happens, a finite
temperature transition in these cases (see, e.g. [2]).

1.2.9 Field theories

A field theory for the magnetic problem can be rather simply derived by coarse-graining
the spins over a coarse-graining length `. This simply amounts to computing the averaged
spin on a box of linear size `. In the limit `� a where a is the lattice spacing many spins
contribute to the sum. For instance, an Ising bimodal variable is thus transformed into a
continuous real variable taking values in [−1, 1]. Studying the problem at long distances
with respect to ` (or else taking a continuum spatial limit) the problem transforms into
a field theory. This is the route followed by Landau.

Field theories are the natural tool to describe particle physics and cosmology. For
example, the Big Bang leaves a radiation-dominated universe at very high temperature
close to the Planck scale. As the initial fireball expands, temperature falls precipitating
a sequence of phase transitions. The exact number and nature of these transitions is
not known. It is often considered that they are at the origin of the structures (galaxies,
clusters, etc.) seen in the universe at present, the original seeds being due to density
fluctuations left behind after the phase transition.
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1.3 Models with continuous symmetry 1 PHASE TRANSITIONS

The similarity between the treatment of condensed matter problems and high energy
physics becomes apparent once both are expressed in terms of field theories. It is however
often simpler to understand important concepts like spontaneous symmetry breaking in
the language of statistical mechanics problems.

1.3 Models with continuous symmetry

The energy of spin models with continuous variables, such as the XY, Heisenberg
or generic O(n) models introduced in (1.3) and (1.4) in the absence of an applied field
(~h = ~0), is invariant under the simultaneous rotation of all the spin variables:

sai 7→ Rabsbi . (1.20)

(Rab are the n2 elements of a rotation matrix in an n-dimensional space. As all rotation
matrices in real space it has real elements and it is orthogonal, that is to say, RT = R−1

with detR = ±1.) This is a continuous global symmetry to be confronted to the discrete
global spin reversal invariance, si 7→ −si, of the Ising case. In group theoretical terms,
the continuous symmetry is O(n) and the discrete one is Z2.

The spontaneous magnetization at low temperatures can point in any of the infinite
equivalent directions constrained to satisfy (1.4). This gives rise to an infinite degeneracy
of ground states that are translational invariant (in real space). These equilibrium states
are controlled by a continuous variable, determining the direction on the n-dimensional
hypersphere of radius 1.

1.3.1 The d-dimensional XY model: spin-waves

Let us consider one such equilibrium state and call it ~s eq
i . It is clear that if one

slightly modifies the angle of the ~s vector on neighbouring space points, the energy cost
of such a perturbation would vanish in the limit of vanishing angle. More precisely, these
configurations are called spin-waves and they differ from the uniformly ordered state by
an arbitrarily small amount.

In the particular case of the XY model, see Fig. 1.6, the local spins are constrained to
rotate on the plane; therefore, each spin has only two components (n = 2) and it can be
parametrized as

~si = (s1i , s
2
i ) = |~si|(cosφi, sinφi) = (cosφi, sinφi) (1.21)

where 0 ≤ φi ≤ 2π is the angle with respect to the x axis of the easy plane on each
d-dimensional lattice site i. The modulus of each vector spin is fixed to one. The Hamil-
tonian (1.3) then becomes

H = −J
2

∑
〈ij〉

cosφij (1.22)
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Figure 1.6: A sketch of the 2d XY model definition. On the left the square lattice in 2d, on the
right the n = 2 spin vector.

where φij = φi − φj is the angle between the spins at neighbouring sites i and j. Equa-
tion (1.22) remains invariant under the global translation of all angles, φi → φi+φ0 by the
same amount, that corresponds to the global rotational invariance. The zero-temperature
ground state is the fully aligned state φi = φ for all i, with φ in [0, 2π]. The ground state
energy E0 = −JNz/2 with z is the coordination number of the lattice and N the total
number of spins in the system. If one assumes that at low enough T the angles between
contiguous spins can only be small, |φi − φj| � 2π, the cosine in the Hamiltonian can be
expanded to second order and

H ' E0 +
J

4

∑
〈ij〉

(φi − φj)2 = E0 +
J

4

∑
~r,~a

[φ(~r + ~a)− φ(~r)]2 . (1.23)

If φ(~r) is a slowly varying function of ~r one can approximate the finite difference by a
derivative, e.g. along the x axis φ(~r + ~a) = φ(~r + aêx) − φ(~r) ' a∂xφ(~r) the sum over
lattice sites by an integral

∑
~r · · · ' a−d

∫
ddr . . . , and write

H ' E0 +
J

4ad−2

∫
ddr [~∇φ(~r)]2 . (1.24)

a is the lattice spacing. We ended up with a quadratic form that, if we relax the constraint
φ ∈ [0, 2π], acts on a real unbounded field

−∞ < φ <∞ . (1.25)

This is also called the elastic representation of the Hamiltonian. We also note that if we
use a Fourier representation φ~k =

∫
ddr ei

~k·~r φ(~r), the Hamiltonian is one of independent
harmonic oscillators

H ' E0 +
J

4ad−2
1

V

∑
~k

k2φ2(~k) . (1.26)
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From the harmonic Hamiltonian, assuming the smooth character of the field φ(~r) one
finds

∇2φ(~r) = 0 . (1.27)

This equation admits the trivial solution φ(~r) = cst. Note that this equation is identical
to the Laplace equation for the electrostatic potential in the absence of any charge density.

First of all one may want to compute the average magnetisation ~m = 〈~s(~r)〉 =

lim~h→~0〈~s(~r)〉~h where ~h is a pinning field. Mermin’s exact calculation [9] (that we will
not present here, see [7] for a description of the proof) leads to ~m = ~0 at all temperatures,
excluding usual magnetic order.

The interest is in computing the spin-spin correlation function

G(r) ≡ 〈~s(~r)~s(~0)〉 = Re〈ei[φ(~r)−φ(~0)]〉 = e−
1
2
〈[φ(~r)−φ(~0)]2〉 ≡ e−

1
2
g(r) , (1.28)

where the second identity holds for Gaussian fields2. G(r) here is a space-dependent
correlation function and its Fourier transform is called the structure factor. One should
analyse whether at long distances it converges to a finite value (long-range order) or zero
(no long-range order). We shall not give the details of this calculation which can be found
in many textbooks (and your field-theory lectures, I presume) and just give the results:

Ja2−d

kBT
g(r) '


Ωd/(d− 2) (π/L)d−2 d > 2 ,
(2π)−1 ln(r/L) d = 2 ,
r/2 d = 1 ,

that imply

G(r) '

 e−const kBT d > 2 long-range order ,
(r/L)−η(kBT/J) d = 2 quasi-long-range order ,
exp[−kBT/(2Ja) r] d = 1 short-range order

(hint to prove it, use the Fourier transform representation.) The behaviour is special
in d = 2. Interestingly enough, we find that the 2d XY model does not support long-
range order but its correlation function decays algebraically at all temperatures. This
is the kind of decay found at a critical point, G(r) ' rd−2+η, so the system behaves as
at criticality at all temperatures. This does not seem feasible physically and, indeed,
we shall see that other excitations, not taken into account by the continuous expansion
above, are responsible for a phase transition of a different kind, a so-called topological phase
transition. After these have been taken care of, the low-T phase remains well described
by the spin-wave approximation but the high-T one is dominated by the proliferation of
topological defects.

The exponent η(kBT/J) continuously depends on temperature, η(kBT/J) = kBT/(2πJ).
This is a signature of the criticality of the low-T phase. The criticality is also accompanied

2Gaussian identity:
∫∞
−∞

dz√
2πσ2

e−
z2

2σ2 eiz =
∫∞
−∞

dz√
2πσ2

e−
1
2 (

z
σ−iσ)

2

e−
σ2

2 = e−
σ2

2 .
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by other special features, such as, for example, the non-trivial fluctuations of the “failed”
order parameter m = N−1〈|

∑N
i=1 ~si|〉 for finite system size [10]. Indeed, the thermally

averaged value of the order parameter m has abnormally large finite size corrections.
Within a spin wave calculation one finds m = (1/(2N))kBT/(8πJ) with the expected van-
ishing value in the thermodynamic limit but rather large values at low temperature and
finite sizes. Monte Carlo simulations demonstrate that the distribution function, P (y)
with y = N−1|

∑N
i=1 ~si| is a universal asymmetric form with interesting characteristics.

1.3.2 The 2d XY model: high temperature expansions

A first quantitative hint on the fact that there must be a phase transition in the 2d
XY model came from the study of the high temperature expansion [11, 12]. The method
is very similar to the one used to study Ising spin systems. With the aim of developing a
small β Taylor expansion, the partition function is written as

Z =

∫ ∏
i

dθi e
βJ
2

∑
〈ij〉 cos(θi−θj) =

∫ ∏
i

dθi
∏
〈ij〉

e
βJ
2

cos(θi−θj) (1.29)

Exploiting the periodicity of the exponential of the cos, one can use several tricks to derive

G(r) = e−r/ξ with ξ = a/ ln(4kBT/J) (1.30)

an exponential decay of the correlation function. This calculation strongly suggests that
there must be a phase transition between the high temperature disordered phase and a
low temperature phase, the latter with, possibly, quasi long-range order predicted by the
spin-wave approximation.

1.3.3 The 2d XY model: vortices and the Kosterlitz-Thouless transition

The failure of the spin-wave approximation at high temperatures is rooted in that this
approximation only allows for small and smooth deviations (gradient expansion) about
the ferromagnetically ordered state. In particular, it excludes configurations in which
the angular field is singular at some isolated point(s). In other words, only single-valued
functions φ satisfying, ∑

~r,~r′

C

[φ(~r)− φ(~r′)] 7→
∫
C

d~r′ · ~∇φ(~r′) = 0 (1.31)

for any closed path C are admitted in the spin-wave expansion. However, in the 2d XY
model, only the spin ~si should be single-valued and the original Hamiltonian (1.22) defined
on the lattice has a discrete symmetry

φi − φj → φi − φj ± 2π (1.32)
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Figure 1.7: Four examples of vortices with charge q = 1 (first line) and two examples of anti-
vortices with q = −1 (second line). Figures borrowed from [16].

that is lost in the continuous approximation (1.24). This symmetry permits the existence
of vortices, a particular kind of topological defects. These excitations are the ones that kill
the simple spin-wave prediction of there being quasi long-range order at all temperatures,
as explained by Kosterlitz & Thouless in the series of papers [13, 14, 15]. Kosterlitz &
Thouless (together with Haldane) were retributed the Nobel Prize in 2016 for having
exhibited a new class of phase and phase transitions, called topological phases.

Topological defects are configurations, in this case spin configurations, that are
local minima of the potential energy and that cannot be smoothly transformed into
the ground state, in this case the configuration in which all the spins are aligned, by a
continuous transformation of variables, in this case a continuous rotation of all spins.

On the lattice a vortex configuration is such that∑
ij∈C

[φi − φj] = 2πq (1.33)

with q an integer ensuring that the spin be single-valued on each site of the lattice. The
center of the vortex is located on a site of the dual lattice.

In a continuous description of the lattice problem, this means that there is no trans-
formation of the kind

~s(~r) 7→ R(~r)~s(~r) (1.34)
with a continuous rotation matrix R(~r) that transforms the configuration with a topolog-
ical defect into one of the ground state (and continuously transformable into a spin-wave
state).
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In the 2d XY model, the topological defects are vortices. Concretely, vortex configu-
rations are local minima of the Hamiltonian

δH

δφ(~r)
= 0 and

δ2H

δφ(~r)δφ(~r′)
positive definite (1.35)

where the second condition ensures their stability.
The solution φ(~r) = cst is not the only field configuration that represents the continuous

limit of the original discrete problem. Vortex configurations, φ(~r), in which the field has a
singularity at the location of a point-like charge, are also solutions. A vortex configuration
can be written as

φ(~r) = qϕ(~r) + φ0 (1.36)

with q the integer charge and ϕ(~r) the polar angle (angle with the horizontal x axis) of
the space point ~r and φ0 an additive constant. As a example, let us take q = 1 and
φ0 = 0. One can easily construct the spin configuration associated with this φ(~r), that
is ~s(~r) = (cosφ(~r), sinφ(~r)). The arrows point as in the third panel in the first line in
Fig. 1.7. Another choice is to use q = 1 and φ0 = π/2, leading to a configuration in
which the spins turn anti-clockwise as in the left Fig. 1.10. Finally, one can use q = 1
and φ0 = π to construct a configuration in which all spins point inwards, as in the last
snapshot in the first line in Fig. 1.7.

All the configurations with the same q can be continuously transformed into one an-
other. In the cases listed in the previous paragraph, q = 1, and

~s(~r, t) = (cos(ϕ+ t), sin(ϕ+ t)) (1.37)

with t a real parameter, taking the values t = 0, π/2 and π in these particular cases.
However, there is no parameter t that makes this configuration be the one of a constant
field.

The divergence of the configuration φ(~r) = qϕ(~r) + φ0 is

~∇φ(~r) = q~∇ϕ(~r) = q~∇ arctan
(y
x

)
= −q y

x2
1

1 + y2

x2

êx + q
1

x

1

1 + y2

x2

êy

= −q y

x2 + y2
êx + q

x

x2 + y2
êy = −q r sinϕ

r2
êx + q

r cosϕ

r2
êy

and
~∇φ(~r) =

q

r
êϕ (1.38)

where we used êϕ = cosϕ êy − sinϕ êx. One clearly sees the divergence for r → 0. The
problem is spherically symmetric in the sense that the modulus of the gradient of the field
only depends on the modulus of r, |~∇φ(~r)| = f(r).

Let us see whether the Laplacian of the angle vanishes for all r 6= 0:

~∇ · ~∇φ(~r) = q
2xy

(x2 + y2)2
− q 2xy

(x2 + y2)2
= 0 .
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At the origin one has to be more careful because of the divergence of the gradient.
Taking a circle with radius R and centred at the centre of the vortex, the circulation

of the field φ around C yields∮
C

dφ(~r) =

∮
C

d~l · ~∇φ(~r) =

∫ 2π

0

Rdϕ êϕ ·
q

R
êϕ = 2πq . (1.39)

Actually, in a single vortex configuration the angle winds around the topological defect
for any contour C around the centre of the vortex3∮

C

dφ(~r) =

∮
C

d~l · ~∇φ(~r) = 2πq . (1.40)

(Note that the spin has to point in the same direction after coming back to the starting
point of the circulation, this condition implies that q must be an integer.) The integral
yields this non-vanishing result for all paths C that encircle the centre of the vortex and
vanishes on paths that do not. The position of the vortex corresponds to a singularity in
the field that is constructed with the coarse-graining procedure. The discrete nature of
the charge makes it impossible to find a continuous deformation which returns the state
to the uniformly ordered configuration in which the charge is zero. (One justifies the
continuous treatment of the spin rotation by taking a curve around the vortex core with
a sufficiently large “radius” so that the variations in angle will be small and the lattice
structure can be ignored. The continuous approximation fails close to the core of the
vortex.) A vortex creates a distortion in the phase field φ(~r) that persists infinitely far
from the centre of the vortex.

The electromagnetic analogy, that is explained in detail in the book by Chaikin &
Lubensky [19], is such that

magnetic induction ~B ↔ ~∇φ
electric current density ~J ↔ ~M = ~∇× ~∇φ

vector potential ~∇× ~A ↔ ~∇φ
(1.41)

The current density is singular at the location of the centre of the vortices as

~M(~r) = 2π
∑
i

qiδ(~r − ~ri) êz = 2πρ(~r) êz (1.42)

where ~r lives on the two dimensional plane and êz is perpendicular to it. ρ(~r) is the charge
density constituted by point-like charges located at positions ~ri.

Several singular configurations are shown in Fig. 1.7, with vortices (q = 1) in the first
row and antivortices (q = −1) in the second row (figures borrowed from [16]). A simple

3Recall Gauss’ divergence theorem
∫
dV ~∇ · ~F =

∫
dS n̂ · ~F , where the volume integral on the left

transforms into the surface integral on the right. Applied to a volume in two dimensions and ~F = ~∇φ,
one goes from eq. (??) to eq. (1.40) for a single vortex with charge q.
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Figure 1.8: A graphical way to visualize the charge of a vortex. One places on the circle an arrow
corresponding the the “firs” (arbitrary choice) spin. One takes the next spin on the plaquette,
conventionally turning in anti-clockwise order, and places a second arrow on the circle. One
repeats the procedure until the last spin on the plaquette. The points on the circle are numbered
according to the order of the spins on the plaquette, 1, . . . , 4 in these examples. If the points
make one turn on the circle the charge is q = 1. If it has made an anti-turn the charge is q = −1.
If they make more than one turn the charge is higher than 0.

visualisation of the winding angle is sketched in Fig. 1.8. Vortices with higher charge
are also possible (though as they have a higher energetic cost they are less common),
see Fig. 1.9. A vortex and a nearby anti-vortex configuration are shown in Fig. 1.10 and
some constant spin lines around vortex-antivortex pairs are shown in Fig. 1.11. The latter
appear bounded in the low temperature phase, see Fig. 1.12.

An angular configuration with M vortices with charge qi situated at the points ~ri is

φ(~r) =
M∑
i

qi arctan

(
(~r − ~ri)y
(~r − ~ri)x

)
(1.43)

where the sub-scripts x and y indicate the horizontal and vertical components.
Let us evaluate the energy of a single vortex configuration. We have already argued

that the vortex configuration satisfies

~∇φ(~r) =
q

r
êϕ (1.44)

where, without loss of generality, we set the origin of coordinates at the center of the
vortex, θ is the angle of the position ~r with respect to the x axis, and q is the charge of
the vortex. Using the expression (1.24) where ~∇φ(~r) is replaced by (1.44),

E1 vortex =
J

2

∫
d2r [~∇φ(~r)]2 =

J

2
q2
∫ 2π

0

dϕ

∫ L

a

dr r
1

r2
= πJq2 ln

L

a
(1.45)

with L the linear dimension of the system. The energy of a single vortex
• increases quadratically with its charge
• diverges logarithmically in the infinite size limit
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Figure 1.9: Four vortices with charges q = 0, 1,−1, 2.

and one might conclude that these configurations cannot exist in equilibrium at any
temperature. However, as already discussed in the Ising chain, at finite T one needs
to estimate the free-energy difference between configurations with and without a vortex
to decide for their existence or not. The entropy of a single vortex is S = kB lnN =
kB ln(L/a)2 since in a 2d lattice the centre of the vortex can be located on (L/a)2 different
sites. Then

∆F = F1 vortex − F = (πJq2 − 2kBT ) ln(L/a) . (1.46)
This quantity changes sign at kBT = πJq2/2 therefore there cannot be isolated vortices
in equilibrium below kBTKT = πJ/2 but they can at higher temperature. Indeed, at
T > TKT , isolated vortices proliferate (favoured by the entropic contribution), destroy
the quasi long-range order and make correlations decay exponentially on a length-scale
given by the typical spacing between vortices

G(r) ' e−r/ξ(T ) ξ(T ) ' eb|T−TKT |
−1/2

(1.47)

close to TKT . This very fast divergence of the correlation length, ν →∞, can be rigorously
proven with an RG analysis [15] that we shall not present here.

The estimate of TKT just given represents only a bound for the stability of the system
towards the condensation of topological defects. Pairs (dipoles) of defects may appear at
larger couplings or lower temperatures.

Although the energy of a single vortex diverges as lnL, the energy of a bound pair
of vortex-antivortex does not diverge, since, the total vorticity of the pair vanishes, see
the Fig. 1.11 taken from [6]. Below TKT vortices exist only in bound pairs with opposite
vorticity held together by a logarithmic confining potential

Epair(~r1, ~r2) = −πJq1q2 ln(|~r1 − ~r2|/a) . (1.48)
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This expression follows uniquely from the fact that at distances much larger than the
pair’s size there is no net vorticity, so the energy of the pair must be finite, and as the
pair’s size diverges Epair should yield the sum of the energies for an isolated vortex and an
isolated antivortex. (A more detailed calculation uses an integral over a contour in the 2d
plane that excludes the centers of the vortices. In particular, this approach allows one to
show that a sum over the energies of the single vortices appears multiplied by

∑
i qi and

this divergence is eliminated if the total vorticity is zero, i.e.
∑

i qi = 0.) Such pairs can
thus be thermally excited, and the low temperature phase will host a gas of such pairs.
The insight by Kosterlitz and Thouless was that at a certain temperature TKT the pairs
will break up into individual vortices. It is this vortex pair unbinding transition that will
take the system to a high temperature phase with exponentially decaying correlations.

Figure 1.10: A vortex and a near-by anti-vortex configuration as they may appear bounded in
the low temperature phase.

Figure 1.11: Lines of spin direction close to a vortex-antivortex pair. As one observes the spin
configurations far from the vortex cores, the lines of constant spin are smooth.

The (single) vortices and anti-vortices act as if they were two point particles with
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Figure 1.12: At low T there are few vortices and they are bound in pairs. At high T there are
many more vortices, they are free and can separate apart. Image taken from [17].

charges q = +1 and q = −1 interacting with a 1/r force. Since this corresponds to the
Coulomb interaction in two dimensions, the physics of the topological defects is just like
the physics of a two-dimensional neutral Coulomb gas. Note that the energy increases
if one tries to unbind – separate – the vortices in the pair. The vortices remain paired
and do not change much the behaviour in the low temperature phase. The correlation
still decays as a power-law and there is no spontaneous symmetry breaking in this phase
since the order parameter vanishes – in agreement with the Mermin-Wagner theorem that
we discuss below. In terms of the electrostatic analogy, the high temperature phase is a
plasma. A detailed description of the vortex influence on the equilibrium properties of
the 2d XY goes beyond the scope of these Lectures. A detailed description can be found
in several book, in particular in [7].

This argument shows that two qualitatively different equilibrium states exist at high
and low T but it does not characterize the transition. The naive order parameter vanishes
on both sides of the transition but there is still a topological order, with the spin-spin
correlation decaying exponentially on one side (high T ) and as a power law on the other
(low T ) of the transition. In contrast to usual continuous phase transitions, the KT-
transition does not break any symmetry.

1.3.4 The 2d XY model: Nobel Prize and applications

From the Nobel Lecture: In 1972 J. Michael Kosterlitz and David J. Thouless identified
a completely new type of phase transition in two-dimensional systems where topological
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defects play a crucial role. Their theory applied to certain kinds of magnets and to super-
conducting and superfluid films, and has also been very important for understanding the
quantum theory of one-dimensional systems at very low temperatures.

Other two dimensional systems, notably those of particles in interaction that would like
to form solids at sufficiently low temperature and high densities, also fall into the scheme
of the Kosterlitz-Thouless phase transitions. Indeed, in 1935, Peierls argued that thermal
motion of long-wave length phonons will destroy the long-range order or a two dimensional
solid in the sense that the mean square deviation of an atom from its equilibrium position
increases logarithmically with the size of the system. He also proposed a model, just atoms
sitting on a lattice in 2d and linked together by Hookean springs, that has quasi long-
range order at all temperatures [18]. Quasi long range order means in this context that he
mean square deviation of an atom from its equilibrium position increases logarithmically
with the size of the system. It was later understood that the mechanism for distabilising
this critical phase is through the unbinding of topological defects that are of a different
kind from the ones we studied here. (For more details, see, for example the slides that I
included in my web page.)

For similar reasons, the expectation value of the superfluid order parameter in a two
dimensional Bose fluid is zero. In 1978, Bishop and Reppy studied the superfluid tran-
sition of a thin two dimensional helium film absorbed on an oscillating substrate. The
observation results on superfluid mass and dissipation supported the Kosterlitz-Thouless
picture of the phase transition in a two dimensional superfluid. The jump in the super-
fluid density at the transition given by Kosterlitz and Thouless is in good agreement with
estimates from experiment.

1.3.5 The Mermin-Wagner theorem

What happens in d = 2 and below? Indeed, the logarithmic behaviour of the angle
correlation function in the XY model or the transverse correlation in the generic O(n)
model, see below, are signatures of the fact that this is a special dimension.

In 1968, using a mathematical inequality, Mermin showed that the magnetisation den-
sity m is strictly zero at all T > 0 in the 2d XY model. This proof is part of what is
nowadays called the Mermin-Wagner theorem.

The Mermin-Wagner theorem states that for any system with short-range interactions
there is a lower critical dimension below which no spontaneous broken symmetry can exist
at finite temperature. In other words, fluctuations are so large that any ordering that
breaks a continuous symmetry is destroyed by thermal fluctuations. dc = 1 for discrete
symmetries and dc = 2 for systems with continuous symmetries. The absence of long-
range order in the 2d XY case, for example, is demonstrated by the fact that the finite
temperature correlation decays to zero at long distances – albeit as a power law – and
thus there is no net magnetisation in the system.

In a continuous spin model the cost of an interface is proportional to its surface divided
by its thickness (note that spins can smoothly rotate from site to site to create a thick
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interface). The thickness of the interface depends on the details of the model, temperature,
etc. This means that interfaces are much easier to create in continuous spin models than
in discrete ones.

The Mermin-Wagner theorem is known as Coleman-Weinberg theorem/result in field
theory.

1.3.6 O(n) model: Ginzburg-Landau field theory and Goldstone modes

We lift here the constraint on the modulus of the vector spins and we let it fluctuate.
It is simple to derive a continuum limit of the lattice model in analogy with the Landau
approach. One first coarse-grains the two-component spin to construct a n-component
field

~ψ(~r) = `−d
∑
i∈V~r

~si . (1.49)

Let us first focus on the d dimensional O(2) model, where the field has just two com-
ponents. One proposes a Landau ψ4 action for the field ~ψ,

F [~ψ] =

∫
ddr

[
1

2
[~∇~ψ(~r)]2 +

T − Tc
Tc

ψ2(~r) +
λ

4!
ψ4(~r) + ~h~ψ(~r)

]
(1.50)

and parametrises the field by its modulus and angle,
~ψ(~r) = |φ0(~r)|(cosφ(~r), sinφ(~r)) (or ~ψ(~r) = |φ0(~r)|eiφ(~r)) . (1.51)

to rewrite the Landau free-energy of a generic configuration in the absence of the external
field ~h as

F [φ0, φ] =

∫
ddr

[
1

2
(~∇φ0(~r))

2 +
T − Tc
Tc

φ2
0(~r) +

λ

4!
φ4
0(~r)

]
(1.52)

+
φ2
0

2

∫
ddr [~∇φ(~r)]2 . (1.53)

The first term is just similar to the Landau free-energy of a massive scalar field config-
uration in the Ising model. The second-term quantifies the free-energy of the spin-wave
configurations (in higher dimensions topological defects also exist, for example, in d = 3
this model has vortex lines with linear singularities). The local angle is simply a massless
scalar field in d dimensional space. The correlation functions of the φ field behave as

〈φ(~r)φ(~r′) 〉 ∼ (2− d)−1|~r − ~r′|2−d (1.54)

in the large |~r − ~r′| limit for d = 1, 2. The behaviour is logarithmic in d = 2 (the 2d XY
model). The correlation reaches a constant in d > 2.

Let us now focus on the generic d dimensional O(n) model. The free-energy à la Landau
is the one in Eq. (1.50)

F [~ψ] =

∫
ddr

[
1

2
(~∇~ψ(~r))2 +

T − Tc
Tc

ψ2(~r) +
λ

4!
ψ4(~r) + ~h~ψ(~r)

]
(1.55)
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Figure 1.13: A Mexican hat potential, figure taken from [8].

where ψ2 ≡
∑N

a=1 ψ
2
a is the result of a sum over n components. The potential V (ψ2) has

the Mexican hat form sketched in Fig. 1.13 (credit to A. M. Tsvelik), with extrema at

~ψ = ~0 or ψ2 = − 4!

2λ

T − Tc
Tc

(1.56)

Clearly, the latter exists only if T < Tc and we focus on this range of temperatures. It
is clear that the condition on ψ2 admits an infinite number of solutions, in other words,
there is a ground state manifold, corresponding to the circular bottom of the valley in
the Mexican hat potential. The pinning field ~h can then be used to force the system to
choose one among all these degenerate directions in the n dimensional space, in which
the field “condenses”. Let us suppose that this is the nth direction that we therefore call
longitudinal. The rotation symmetry in the remaining transverse n−1 directions remains
unbroken and the symmetry is therefore spontaneously broken to O(n−1). The expected
values of such a configuration is then

〈ψa(~r)〉 = ψδan (1.57)

while the fluctuations are

ψn(~r) = 〈ψn(~r)〉+ δψn(~r)

ψa6=n(~r) = δψa6=n (1.58)

(think of the case n = 3, choosing the n direction to be the z vertical one and the
rotations around this axis). Replacing these forms in the Landau free-energy one finds that
the longitudinal mode is massive while the transverse ones are massless (just decoupled
Gaussian fields).

The correlation functions, Cab(~r) = 〈ψa(~r)ψb(~0)〉, can be written as

Cab(~r) = δab [CL(r)δan + CT (r)(1− δan)] . (1.59)

We recall that a and b label the components in the n-dimensional space. CL is the
longitudinal correlation (parallel to an infinitesimal applied field that selects the ordering
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direction, ~h = hên) and CT is the transverse (orthogonal to the applied field) one. A
simple calculation shows that the longitudinal component behaves just as the correlation
in the Ising model. It is a massive scalar field. The transverse directions, instead, are
massless: there is no restoring force to the tilt of the full system. These components
behave just as the angle in the XY model, CT (~r) ∼ r2−d (the power law decay becomes a
logarithm in d = 2). These are called Goldstone modes or soft modes.

1.3.7 The Higgs mechanism

A particular feature of models with continuous symmetry breaking in gauge theories is
that gauge fields acquire a mass through the process of spontaneous symmetry breaking.
Take the classical Abelian field theory

L[Aµ, φ] =

∫
ddr

[
−1

4
FµνF

µν + (Dµφ)∗(Dµφ) + V (φ)

]
(1.60)

with Fµν = ∂µAν − ∂νAµ, Dµ = ∂µ + ieAµ and φ a complex field. The potential is

V (φ) = µ(φ∗φ) + λ(φ∗φ)2 (1.61)

with µ < 0 and λ > 0. The φ configuration that renders V minimum is such that
φ∗0φ0 = −2µ/λ. Without loss of generality one can choose φ0 to be real through a uniform
rotation over all space. It is easy to verify that replacing φ by (φ0 + δφ) + iφ2 where φ2

is an imaginary part (playing the role of the transverse components in the analysis of the
O(n) model) one finds that the quadratic Lagrangian does not have a φ2 term (massless
field) but instead a quadratic term in A appears. The gauge field acquired a mass (there
is also a Aµ∂µφ2 term that can be eliminated with a change of variables).

This phenomenon has been discovered in the study of superconductors by P. W. Ander-
son. Indeed, one can find a short account of the historic development in Wikipedia: The
mechanism was proposed in 1962 by Philip W. Anderson, who discussed its consequences
for particle physics but did not work out an explicit relativistic model. The relativistic
model was developed in 1964 by three independent groups Ð Robert Brout and François
Englert, Peter Higgs and Gerald Guralnik, Carl Richard Hagen, and Tom Kibble. Slightly
later, in 1965, but independently from the other publications the mechanism was also pro-
posed by Alexander Migdal and Alexander Polyakov at that time Soviet undergraduate
students. However, the paper was delayed by the Editorial Office of JETP, and was pub-
lished only in 1966. The Nobel Prize was given to F. Englert and P. Higgs in 2013
"for the theoretical discovery of a mechanism that contributes to our understanding of
the origin of mass of subatomic particles, and which recently was confirmed through the
discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at
CERN’s Large Hadron Collider".
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A POLAR COORDINATE SYSTEM

A Polar coordinate system
The polar coordinate system is such that

êr = cosϕêx + sinϕêy

êϕ = − sinϕêx + cosϕêy (A.62)

and
êϕ = êz × êr . (A.63)

Figure 1.14: Polar coordinates notation convention.
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