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1 RANDOM FIELDS, RANDOM INTERACTIONS

1 Random fields, random interactions
No material is perfectly homogeneous: impurities of different kinds are distributed

randomly throughout the samples. In ultra-cold atom systems, so much studied nowadays,
disorder can be realized, for example, using speckle laser light.

A natural effect of disorder should be to lower the critical temperature. Much atten-
tion has been payed to the effect of weak disorder on phase transitions, that is to say,
situations in which the nature of the ordered and disordered phases is not modified by
the impurities but the critical phenomenon is. On the one hand, the critical exponents of
second order phase transitions might be modified by disorder, on the other hand, disorder
may smooth out the discontinuities of first order phase transitions rendering them of sec-
ond order. Strong disorder instead changes the nature of the low-temperature phase and
before discussing the critical phenomenon one needs to understand how to characterize
the new ordered ‘glassy’ phase.

In this Section we shall discuss several types of quenched disorder and models that
account for it. We shall also overview some of the theoretical methods used to deal with
the static properties of models with quenched disorder, namely, scaling arguments and
the droplet theory, mean-field equations, and the replica method.

1.1 Quenched and annealed disorder

First, one has to distinguish between quenched or frozen-in and annealed disorder.
Imagine that one mixes some random impurities in a melt and then very slowly cools it
down in such a way that the impurities and the host remain in thermal equilibrium. If one
wants to study the statistical properties of the full system one then has to compute the
full partition function in which one sums over all configurations of original components
and impurities. This is called annealed disorder. In the opposite case in which upon
cooling the host and impurities do not equilibrate but the impurities remain blocked in
random fixed positions, one talks about quenched disorder. Basically, the relaxation time
associated with the diffusion of the impurities in the sample is so long that these remain
trapped:

τo ∼ 10−12 − 10−15 sec ≪ tobs ∼ 104 sec ≪ tdiff , (1.1)

where τo is the microscopic time associated to the typical scale needed to reverse a spin.
The former case is easier to treat analytically but is less physically relevant. The latter

is the one that leads to new phenomena and ideas that we shall discuss next.
Quenched disorder is static. Instead, in annealed disorder the impurities are in ther-

mal equilibrium in the experimental time-scales, and they can simply be included in the
statistical mechanic description of the problem.
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Figure 1.1: A frustrated (left) and an unfrustrated (center) square plaquette. A frustrated
triangular plaquette (right).

1.2 Properties

1.2.1 Lack of homogeneity

It is clear that the presence of quench disorder, in the form of random interactions,
fields, dilution, etc. breaks spatial homogeneity and renders single samples heterogenous.
Homogeneity is recovered though, if one performs an average of all possible realizations
of disorder, each weighted with its own probability.

1.2.2 Frustration

Depending on the value of the distance rij the numerator in Eq. (1.10) can be positive or
negative implying that both ferromagnetic and antiferromagnetic interactions exist. This
leads to frustration, which means that in any configuration some two-body interactions
remain unsatisfied. In other words, there is no spin configuration that minimizes all terms
in the Hamiltonian. An example with four sites and four links is shown in Fig. 1.1-left,
where we took three positive exchanges and one negative one all, for simplicity, with the
same absolute value, J . Four configurations minimize the energy, Ef = −2J , but none
of them satisfies the lower link. One can easily check that any closed loop such that
the product of the interactions takes a negative sign is frustrated. Frustration naturally
leads to a higher energy and a larger degeneracy of the number of ground states. This is
again easy to grasp by comparing the number of ground states of the frustrated plaquette
in Fig. 1.1-left to its unfrustrated counterpart shown on the central panel. Indeed, the
energy and degeneracy of the ground state of the unfrustrated plaquette are Eu = −4J
and nu = 2, respectively.

Frustration may also be due to pure geometrical constraints. The canonical example
is an antiferromagnet on a triangular lattice in which each plaquette is frustrated, see
Fig. 1.1-right.

In short, frustration arises when the geometry of the lattice and/or the nature of the
interactions make impossible to simultaneously minimize the energy of all pair couplings
between the spins. Any loop of connected spins is said to be frustrated if the product of
the signs of connecting bonds is negative. In general, energy and entropy of the ground
states increase due to frustration.
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1.2 Properties 1 RANDOM FIELDS, RANDOM INTERACTIONS

1.2.3 Self-averageness

If each sample is characterized by its own realization of the exchanges, should one
expect a totally different behavior from sample to sample? Fortunately, many generic
static and dynamic properties of spin-glasses (and other systems with quenched disorder)
do not depend on the specific realization of the random couplings and are self-averaging.
This means that the typical value is equal to the average over the disorder:

Atyp
J = [AJ ] (1.2)

in the thermodynamic limit. Henceforth, we use square brackets to indicate the average
over the random couplings. More precisely, in self-averaging quantities sample-to-sample
fluctuations with respect to the mean value are expected to be O(N−a) with a > 0.
Roughly, observables that involve summing over the entire volume of the system are
expected to be self-averaging. In particular, the free-energy density of models with short-
ranged interactions is expected to be self-averaging in this limit.

An example: the disordered Ising chain

The meaning of this property can be grasped from the solution of the random bond Ising
chain defined by the energy function HJ [{si}] = −

∑
i Jisisi+1 with spin variables si = ±,

for i = 1, . . . , N and random bonds Ji independently taken from a probability distribution
P (Ji). For simplicity, we consider periodic boundary conditions. The disorder-dependent
partition function reads

ZJ =
∑

{si=±1}

eβ
∑

i Jisisi+1 (1.3)

and this can be readily computed introducing the change of variables σi ≡ sisi+1. (Note
that these new variables are not independent, since they are constrained to satisfy

∏
i ηi =

1. This constraint is irrelevant in the thermodynamic limit.) One finds

ZJ =
∏
i

2 cosh(βJi) ⇒ −βFJ =
∑
i

ln cosh(βJi) +N ln 2 . (1.4)

The partition function is a product of i.i.d. random variables and it is itself a random
variable with a log-normal distribution. The free-energy density instead is a sum of i.i.d.
random variables and, using the central limit theorem, in the large N limit becomes a
Gaussian random variable narrowly peaked at its maximum. The typical value, given by
the maximum of the Gaussian distribution, coincides with the average, limN→∞(f typ

J −
[ fJ ]) = 0 with fJ = FJ/N .

General argument

A simple argument justifies the self-averageness of the free-energy density in generic
finite dimensional systems with short-range interactions. Let us divide a, say, cubic sys-
tem of volume V = Ld in n subsystems, say also cubes, of volume v = ℓd with V = nv.
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If the interactions are short-ranged, the total free-energy is the sum of two terms, a con-
tribution from the bulk of the subsystems and a contribution from the interfaces between
the subsystems: −βFJ = lnZJ = ln

∑
conf e

−βHJ (conf) = ln
∑

conf e
−βHJ (bulk)−βHJ(surf) ≈

ln
∑

bulk e
−βHJ (bulk) + ln

∑
surf e

−βHJ (surf) = −βF bulk
J − βF surf

J (we neglected the contribu-
tions from the interaction between surface and bulk). If the interaction extends over a
short distance σ and the linear size of the boxes is ℓ ≫ σ, the surface energy is negligible
with respect to the bulk one and −βFJ ≈ ln

∑
bulk e

−βHJ (bulk). In the thermodynamic
limit, the disorder dependent free-energy is then a sum of n = (L/ℓ)d random num-
bers, each one being the disorder dependent free-energy of the bulk of each subsystem:
−βFJ ≈

∑n
k=1 ln

∑
bulkk

e−βHJ (bulkk). In the limit of a very large number of subsystems
(L ≫ ℓ or n ≫ 1) the central limit theorem implies that the total free-energy is Gaussian
distributed with the maximum reached at a value F typ

J that coincides with the average
over all realizations of the randomness [FJ ]. Morever, the dispersion about the typ-
ical value vanishes in the large n limit, σFJ

/[FJ ] ∝
√
n/n = n−1/2 → 0. Similarly,

σfJ/[fJ ] ∼ O(n−1/2) where fJ = FJ/N is the intensive free-energy. In a sufficiently large
system the typical FJ is then very close to the averaged [FJ ] and one can compute the
latter to understand the static properties of typical systems.

Lack of self-averageness in the correlation functions

Once one has [FJ ], one derives all disordered average thermal averages by taking deriva-
tives of the disordered averaged free-energy with respect to sources introduced in the
partition function. For example,

[ ⟨ si ⟩ ] = − ∂[FJ ]

∂hi

∣∣∣∣
hi=0

, (1.5)

[ ⟨ sisj ⟩ − ⟨ si ⟩⟨ sj ⟩ ] = −T
∂2[FJ ]

∂hihj

∣∣∣∣
hi=0

, (1.6)

with HJ → HJ −
∑

i hisi. Connected correlation functions, though, are not self-averaging
quantities. This can be seen, again, studying the random bond Ising chain. Take i < j.
One can easily check that

⟨ sisj ⟩J − ⟨ si ⟩J⟨ sj ⟩J = Z−1
J

∂

∂βJj−1

. . .
∂

∂βJi

ZJ = tanh(βJi) . . . tanh(βJj) , (1.7)

where we used ⟨ si ⟩ = 0 (valid for a distribution of random bonds with zero mean) and the
dots indicate all sites on the chain between the ending points i and j, i.e. i+1 ≤ k ≤ j−1.
The last expression is a product of random variables and it is not equal to its average (1.6)
– not even in the large separation limit |r⃗i − r⃗j| → ∞.

1.2.4 Annealed disorder
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1.3 Models 1 RANDOM FIELDS, RANDOM INTERACTIONS

The thermodynamics of a system with annealed disorder is obtained by averaging the
partition function over the impurity degrees of freedom,

Z = [ZJ ] (1.8)

since one needs to do the partition sum over the disorder degrees of freedom as well.

1.3 Models

1.3.1 Bethe lattices and random graphs

The Bethe lattice is a tree, in which each site has z neighbours and each branch gives
rise to z − 1 new branches. Two important properties of these lattices are:
- there are no closed loops.
- the number of sites on the border is of the same order of magnitude as the total number
of sites on the lattice.
- All sites on the lattice are equivalent, there is no notion of a central site.

Exercise 1.1 Show that the total number of sites on the Bethe lattice with z = 3 and g
generations (or the distance from the site designed as the central one) is ntot = 3 2g − 1
and the number of sites on the border is nborder = 3 2g−1. The surface to volume ratio
tends to 1/2.

Exercise 1.2 Take a hypercubic lattice in d dimensions and estimate the surface to
volume ratio. Show that this ratio tends to a finite value only if d → ∞.

A random graph is obtained by starting with a set of n isolated vertices and adding
successive edges between them at random. A popular ensemble is the one denoted G(n, p),
in which every possible edge occurs independently with probability 0 < p < 1. Random
graphs with fixed connectivity are also commonly used.

Random graphs are used in social sciences modeling (nodes representing individuals and
edges the friendship relationship), technology (interconnections of routers in the Internet,
pages of the WWW, or production centers in an electrical network), biology (interactions
of genes in a regulatory network) [40, 41]. Disordered systems are usually defined on
random graphs, especially the ones motivated by combinatorial optimisation.

1.3.2 Dilute spin models

Lattice models with site or link dilution are

Hsite dil
J = −J

∑
⟨ij⟩ sisjϵiϵj , H link dil

J = −J
∑

⟨ij⟩ sisjϵij , (1.9)

with P (ϵi = 1, 0) = p, 1 − p in the first case and P (ϵij = 1, 0) = p, 1 − p in the second.
These models are intimately related to Percolation theory. Physically, dilution is realised
by vacancies or impurity atoms in a crystal.
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Figure 1.2: Random graphs with N = 10 and different probabilities p.

1.3.3 Spin-glass models

Spin-glasses are alloys in which magnetic impurities substitute the original atoms in
positions randomly selected during the chemical preparation of the sample [43, 45, 46].
The interactions between the impurities are of RKKY type:

Vrkky = −J
cos(2kF rij)

r3ij
sisj (1.10)

with rij = |r⃗i − r⃗j| the distance between them and si a spin variable that represents their
magnetic moment. Clearly, the initial location of the impurities varies from sample to
sample. The time-scale for diffusion of the magnetic impurities is much longer than the
time-scale for spin flips. Thus, for all practical purposes the positions r⃗i can be associated
to quenched random variables distributed according to a uniform probability distribution
that in turn implies a probability distribution of the exchanges. This is called quenched
disorder.

In early 70s Edwards and Anderson proposed a rather simple model that should capture
the main features of spin-glasses. The interactions (1.10) decay with a cubic power of the
distance and hence they are relatively short-ranged. This suggests to put the spins on
a regular cubic lattice model and to trade the randomness in the positions into random
nearest neighbour exchanges taken from a Gaussian probability distribution:

Hea
J = −

∑
⟨ij⟩

Jijsisj with P (Jij) = (2πσ2)−
1
2 e−

J2
ij

2σ2 . (1.11)

The precise form of the probability distribution of the exchanges is supposed not to be
important, though some authors claim that there might be non-universality with respect
to it.

Another natural choice is to use bimodal exchanges

P (Jij) = pδ(Jij − J0) + (1− p)δ(Jij + J0) (1.12)

8
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with the possibility of a bias towards positive or negative interactions depending on the
parameter p. A tendency to non-zero average Jij can also be introduced in the Gaussian
pdf.

A natural extension of the EA model in which all spins interact has been proposed by
Sherrington and Kirkpatrick

HSK
J = −

∑
i̸=j

Jijsisj −
∑
i

hisi (1.13)

and it is called the SK model. The interaction strengths Jij are taken from a Gaussian
pdf and they scale with N in such a way that the thermodynamic limit is non-trivial:

P (Jij) = (2πσ2
N)

− 1
2 e

−
J2
ij

2σ2
N σ2

N = σ2N . (1.14)

The first two-moments of the exchange distribution are [Jij] = 0 and [J2
ij] = J2/(2N).

This is a case for which a mean-field theory is expected to be exact.

1.3.4 Glass models

A further extension of the EA model is called the p spin model

HJp−spin = −
∑

i1<···<ip

Ji1...ipsi1 . . . sip −
∑
i

hisi (1.15)

with p ≥ 3. The sum can also be written as
∑

i1<i2<···<ip
= 1/p!

∑
i1 ̸=i2 ̸=ip

. The exchanges
are now taken from a Gaussian probability distribution

P (Jij) = (2πσ2
N)

− 1
2 e

−
J2
ij

2σ2
N σ2

N = J2p!/(2Np−1) . (1.16)

with [Ji1...ip ] = 0 and [J2
i1...ip

] = J2p!
2Np−1 . Indeed, an extensive free-energy is achieved by

scaling Ji1...ip with N−(p−1)/2. This scaling can be justified as follows. The ‘local field’
hi = 1/(p− 1)!

∑
ii2 ̸=ip

Jii2...ipmi2 . . .mip should be of order one. At low temperatures the
mi’s take plus and minus signs. In particular, we estimate the order of magnitude of this
term by working at T = 0 and taking mi = ±1 with probability 1

2
. In order to keep the

discussion simple, let us take p = 2. In this case, if the strengths Jij, are of order one,
hi is a sum of N i.i.d. random variables, with zero mean and unit variance1, and hi has
zero mean and variance equal to N . Therefore, one can argue that hi is of order

√
N .

To make it finite we then chose Jij to be of order 1/
√
N or, in other words, we impose

[ J2
ij ] = J2/(2N). The generalization to p ≥ 2 is straightforward.
We classify this model in the “glass” class since it has been shown that its behaviour

mimics the one of so-called fragile glasses.
1The calculation goes as follow: ⟨Fi ⟩ =

∑
j Jij⟨mj ⟩ = 0 and ⟨F 2

i ⟩ =
∑

jk JijJik⟨mjmk ⟩ =
∑

j J
2
ij

9
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1.3.5 Vector spins

Extensions to vector spins with two (XY), three (Heisenberg) or N components also
exist. In the former cases can be relevant to describe real samples. One usually keeps the
modulus of the spins fixed to be 1 in these cases.

But there is another way to extend the spin variables and it is to use a spherical
constraint,

−∞ ≤ si ≤ ∞
∑
i=1

s2i = N . (1.17)

In this case, the spins si are the components of an N -dimensional vector, constrained to
be an N -dimensional sphere.

1.3.6 Optimization problems

Cases that find an application in computer science [7] are defined on random graphs
with fixed or fluctuating finite connectivity. In the latter case one places the spins on
the vertices of a graph with links between couples or groups of p spins chosen with a
probability c. These are dilute spin-glasses on graphs (instead of lattices).

Optimisation problems can usually be stated in a form that requires the minimisation of
a cost (energy) function over a large set of variables. Typically these cost functions have
a very large number of local minima – an exponential function of the number of variables –
separated by barriers that scale with N and finding the truly absolute minimum is hardly
non-trivial. Many interesting optimisation problems have the great advantage of being
defined on random graphs and are then mean-field in nature. The mean-field machinery
that we will discuss at length is then applicable to these problems with minor (or not so
minor) modifications due to the finite connectivity of the networks.

Let us illustrate this kind of problems with two examples. The graph partitioning
problem consists in, given a graph G(N,E) with N vertices and E edges, to partition
it into smaller components with given properties. In its simplest realisation the uniform
graph partitioning problem is how to partition, in the optimal way, a graph with N vertices
and E links between them in two (or k) groups of equal size N/2 (or N/k) and the minimal
the number of edges between them. Many other variations are possible. This problem is
encountered, for example, in computer design where one wishes to partition the circuits
of a computer between two chips. More recent applications include the identification of
clustering and detection of cliques in social, pathological and biological networks.

Another example, that we will map to a spin model, is k-satisfiability (k-SAT). The
problem is to determine whether the variables of a given Boolean formula can be assigned
in such a way to make the formula evaluate to ‘TRUE’. Equally important is to determine
whether no such assignments exist, which would imply that the function expressed by the
formula is identically ‘FALSE’ for all possible variable assignments. In this latter case,
we would say that the function is unsatisfiable; otherwise it is satisfiable.

10
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We illustrate this problem with a concrete example. Let us use the convention x for the
requirement x = TRUE and x for the requirement x = FALSE. For example, the formula
C1 : x1 OR x2 made by a single clause C1 is satisfiable because one can find the values x1

= TRUE (and x2 free) or x2 = FALSE (and x1 free), which make C1 : x1 OR x2 TRUE.
This formula is so simple that 3 out of 4 possible configurations of the two variables solve
it. This example belongs to the k = 2 class of satisfiability problems since the clause is
made by two literals (involving different variables) only. It has M = 1 clauses and N = 2
variables.

Harder to decide formulæ are made of M clauses involving k literals required to take
the true value (x) or the false value (x) each, these taken from a pool of N variables. An
example in 3-SAT is

F =


C1 : x1 OR x2 OR x3

C2 : x5 OR x7 OR x9

C3 : x1 OR x4 OR x7

C4 : x2 OR x5 OR x8

(1.18)

All clauses have to be satisfied simultaneously so the formula has to be read

F: C1 AND C2 AND C3 AND C4 . (1.19)

It is not hard to believe that when α ≡ M/N ≫ 1 the problems typically become
unsolvable while many solutions exist for α ≪ 1. One could expect to find a sharp
threshold between a region of parameters α < αc where the formula is satisfiable and
another region of parameters α ≥ αc where it is not.

In random k-SAT an instance of the problem, i.e. a formula, is chosen at random
with the following procedure: first one takes k variables out of the N available ones.
Second one decides to require xi or xi for each of them with probability one half. Third
one creates a clause taking the OR of these k literals. Forth one returns the variables
to the pool and the outlined three steps are repeated M times. The M resulting clauses
form the final formula.

The Boolean character of the variables in the k-SAT problem suggests to transform
them into Ising spins, i.e. xi evaluated to TRUE (FALSE) will correspond to si = 1 (−1) .
The requirement that a formula be evaluated TRUE by an assignment of variables (i.e. a
configuration of spins) will correspond to the ground state of an adequately chosen energy
function. In the simplest setting, each clause will contribute zero (when satisfied) or one
(when unsatisfied) to this cost function. There are several equivalent ways to reach this
goal. For instance C1 above can be represented by a term (1− s1)(1 + s2)(1− s3)/8. The
fact that the variables are linked together through the clauses suggests to define k-uplet
interactions between them. We then choose the interaction matrix to be

Jai =


0 if neither xi nor xi ∈ Ca

1 if xi ∈ Ca

−1 if xi ∈ Ca

(1.20)

11
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and the energy function as

HJ [{si}] =
M∑
a=1

δ(
N∑
i=1

Jaisi,−k) (1.21)

where δ(x, y) is a Kronecker-delta that equals one when the arguments are identical and
zero otherwise. This cost function is easy to understand. The Kronecker delta contributes
one to the sum only if all terms in the sum

∑N
i=1 Jaisi are equal to −1. This can happen

when Jai = 1 and si = −1 or when Jai = −1 and si = 1. In both cases the condition on
the variable xi is not satisfied. Since this is required from all the variables in the clause,
the clause itself and hence the formula are not satisfied.

The energy (1.21) can be rewritten in a way that resembles strongly physical spin
models,

HJ [{si}] =
M

2K
+

K∑
R=1

(−1)R
∑

i1<···<iR

Ji1...iRsi1 . . . siR (1.22)

and

Ji1...iR =
1

2K

M∑
a=1

Jai1 . . . JaiR . (1.23)

These problems are “solved" numerically, with algorithms that do not necessarily re-
spect physical rules. Thus, one can use non-local moves in which several variables are
updated at once – as in cluster algorithms of the Swendsen-Wang type used to beat crit-
ical slowing down close to phase transitions – or one can introduce a temperature to go
beyond cost-function barriers and use dynamic local moves that do not, however, satisfy
a detail balance. The problem is that with hard instances of the optimization problem
none of these strategies is successful. Indeed, one can expect that glassy aspects, such
as the proliferation of metastable states separated by barriers that grow very fast with
the number of variables, can hinder the resolutions of these problems in polynomial time,
that is to say a time that scales with the system size as N ζ , for any algorithm. These are
then hard combinatorial problems.

1.3.7 Random bond ferromagnets

Let us now discuss some, a priori simpler cases. An example is the Mattis random
magnet with generic nergy (1.15) in which the interaction strengths are given by

Ji1...ip = ξi1 . . . ξip with ξj = ± with prob = 1/2 (1.24)

for any p and any kind of graph. In this case a simple gauge transformation, ηi ≡ ξisi,
allows one to transform the disordered model in a ferromagnet, showing that there was
no true frustration in the system.

12



1.3 Models 1 RANDOM FIELDS, RANDOM INTERACTIONS

Random bond ferromagnets (RBFMs) are systems in which the strengths of the inter-
actions are not all identical but their sign is always positive. One can imagine such a
exchange as the sum of two terms:

Jij = J + δJij , with J > 0 and δJij small and random . (1.25)

There is no frustration in these systems either.
As long as all Jij remain positive, this kind of disorder should not change the two bulk

phases with a paramagnetic-ferromagnetic second-order phase transition. Moreover the
up-down spin symmetry is not broken by the disorder. The disorder just changes the local
tendency towards ferromagnetism that can be interpreted as a change in the local critical
temperature. Consequently, this type of disorder is often called random-Tc disorder, and
it admits a Ginzburg-Landau kind of description, with a random distance from criticality,
δu(x),

F [m(r⃗)] =

∫
ddr

{
−hm(r⃗) + [r + δr(x)]m2(r⃗) + (∇m(r⃗))2 + um4(r⃗) + . . .

}
.. (1.26)

The disorder couples to the m2 term in the free-energy functional. In quantum field
theory, this term is called the mass term and, therefore, random-Tc disorder is also called
random-mass disorder. (In addition to random exchange couplings, random-mass disorder
can also be realized by random dilution of the spins.)

1.3.8 Random field ferromagnets

Link randomness is not the only type of disorder encountered experimentally. Random
fields, that couple linearly to the magnetic moments, are also quite common; the classical
model is the ferromagnetic random field Ising model (RFIM):

Hrfim
J = −J

∑
⟨ij⟩

sisj −
∑
i

sihi with P (hi) = (2πσ2)−
1
2 e−

h2i
2σ2 . (1.27)

The dilute antiferromagnet in a uniform magnetic field is believed to behave similarly to
the ferromagnetic random field Ising model. Experimental realizations of the former are
common and measurements have been performed in samples like Rb2Co0.7Mg0.3F4.

Note that the up-down Ising symmetry is not preserved in models in the RFIMm and
any spin model such that the disorder couples to the local order parameter.

In the Ginzburg-Landau description this model reads

F [m(r⃗)] =

∫
ddr

{
−h(x)m(r⃗) + rm2(r⃗) + (∇m(r⃗))2 + um4(r⃗) + . . .

}
(1.28)

where h(r⃗) is the local random variable that breaks the up-down spin symmetry. Whether
or not the symmetry is broken globally depends on the probability distribution of the

13
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random fields. A particularly interesting situation arises if the distribution is even in h
such that the up-down symmetry is globally preserved in the statistical sense.

Random-field disorder is generally stronger than random-mass disorder.
The random fields give rise to many metastable states that modify the equilibrium and

non-equilibrium behaviour of the RFIM. In one dimension the RFIM does not order at all,
in d = 2 there is strong evidence that the model is disordered even at zero temperature, in
d = 3 it there is a finite temperature transition towards a ferromagnetic state. Whether
there is a glassy phase near zero temperture and close to the critical point is still and
open problem.

The RFIM at zero temperature has been proposed to yield a generic description of
material cracking through a series of avalaches. In this problem one cracking domain
triggers others, of which size, depends on the quenched disorder in the samples. In a
random magnetic system this phenomenon corresponds to the variation of the magneti-
zation in discrete steps as the external field is adiabatically increased (the time scale for
an avalanche to take place is much shorter than the time-scale to modify the field) and
it is accessed using Barkhausen noise experiments. Disorder is responsible for the jerky
motion of the domain walls. The distribution of sizes and duration of the avalanches is
found to decay with a power law tail and cut-off at a given size. The value of the cut-off
size depends on the strength of the random field and it moves to infinity at the critical
point.

1.3.9 Random manifolds

Once again, disorder is not only present in magnetic systems. An example that has
received much attention is the so-called random manifold. This is a d dimensional directed
elastic manifold moving in an embedding N + d dimensional space under the effect of a
quenched random potential. The simplest case with d = 0 corresponds to a particle
moving in an embedding space with N dimensions. If, for instance N = 1, the particle
moves on a line, if N = 2 it moves on a plane and so on and so forth. If d = 1 one has a
line that can represent a domain wall, a polymer, a vortex line, etc. The fact that the line
is directed means it has a preferred direction, in particular, it does not have overhangs.
If the line moves in a plane, the embedding space has (N = 1)+ (d = 1) dimensions. One
usually describes the system with an N -dimensional coordinate, ϕ⃗, that locates in the
transverse space each point on the manifold, represented by the internal d-dimensional
coordinate r⃗,

The elastic energy is Helas = γ
∫
ddx

√
1 + (∇ϕ(r⃗))2 with γ the deformation cost of a

unit surface. Assuming the deformation is small one can linearise this expression and get,
upto an additive constant, Helas =

γ
2

∫
ddr (∇ϕ(r⃗))2.

Disorder is introduced in the form of a random potential energy V (ϕ⃗(r⃗), r⃗) characterised
by its pdf.

14
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The random manifold model is then

HV (ϕ⃗) =

∫
ddr

[γ
2
(∇ϕ(r⃗))2 + V (ϕ⃗(r⃗), r⃗)

]
. (1.29)

If the random potential is the result of a large number of impurities, the central limit
theorem implies that its probability density is Gaussian. Just by shifting the energy scale
one can set its average to zero, [V ] = 0. As for its correlations, one typically assumes,
for simplicity, that they exist in the transverse direction only:

[V (ϕ⃗(r⃗), r⃗)V (ϕ⃗′(r⃗′), r⃗′) ] = δd(r⃗ − r⃗′)V(ϕ⃗, ϕ⃗′) . (1.30)

If one further assumes that there is a statistical isotropy and translational invariance of the
correlations, V(ϕ⃗, ϕ⃗′) = W/∆2 V(|ϕ⃗− ϕ⃗′|/∆) with ∆ a correlation length and (W∆d−2)1/2

the strength of the disorder. The disorder can now be of two types: short-ranged if V
falls to zero at infinity sufficiently rapidly and long-range if it either grows with distance
or has a slow decay to zero. An example involving both cases is given by the power
law V(z) = (θ + z)−γ where θ is a short distance cut-off and γ controls the range of the
correlations with γ > 1 being short-ranged and γ < 1 being long-ranged.

This model also describes directed domain walls in random systems. One can derive
it in the long length-scales limit by taking the continuum limit of the pure Ising part
(that leads to the elastic term) and the random part (that leads to the second disordered
potential). In the pure Ising model the second term is a constant that can be set to zero
while the first one implies that the ground state is a perfectly flat wall, as expected. In
cases with quenched disorder, the long-ranged and short-ranged random potentials mimic
cases in which the interfaces are attracted by pinning centres (‘random field’ type) or the
phases are attracted by disorder (‘random bond’ type), respectively. For instance, random
bond disorder is typically described by a Gaussian pdf with zero mean and delta-correlated
[V (ϕ⃗(r⃗), r⃗), V (ϕ⃗′(r⃗′), r⃗′)] = W∆d−2 δd(r⃗ − r⃗′)δ(ϕ⃗− ϕ⃗′).

1.4 Properties of finite dimensional disordered systems

Once various kinds of quenched disorder introduced, a number of questions on their
effect on the equilibrium and dynamic properties arise. Concerning the former:

• Are the equilibrium phases qualitatively changed by the random interactions?

• Is the phase transition still sharp, or is it smeared because different parts of the
system undergo the transition independently?

• If there is still a phase transition, does its order (first order vs. continuous) change?

• If the phase transition remains continuous, does the critical behavior, i.e., the values
of the critical exponents, change?

Now, for the latter:
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• Is the dynamic behaviour of the system modified by the quenched randomness?

In the following we explain a series of classical results in this field: the Harris criterium,
the proof of non-analyticity of the free-energy of quenched disordered systems below their
critical temperature given by Griffiths, the analysis of droplets and their domain wall
stiffness, and the derivation of some exact results using the gauge invariance.

We first focus on impurities or defects that lead to spatial variations with respect to
the tendency to order but do not induce new types of order, that is to say, no changes are
induced in the two phases at the two sides of the transition. Only later we consider the
spin-glass case.

1.4.1 The Harris criterium

The first question to ask is how does the average disorder strength behave under coarse-
graining or, equivalently, how is it seen at long distances. This is the question answered
by the Harris argument.

The Harris’ criterion [51] states that if the specific-heat of a pure system

Cpure(T ) ≃ |T − T pure
c |−α (1.31)

presents a power-like divergence with

αpure > 0 , (1.32)

the disorder may induce a new universality class. Otherwise, if αpure < 0, disorder is
irrelevant in a renormalisation group sense and the critical behaviour of the model remains
unchanged. The criterium does not decide in the marginal case αpure = 0 case. Note that
the Harris criterium is a necessary condition for a change in critical behaviour but not a
sufficient one.

The hyper-scaling relation 2− dνpure = αpure allows to rewrite the Harris criterium as

critical behaviour =
{

unchanged if νpure > 2/d
changed if νpure < 2/d

(1.33)

where νpure is the correlation length exponent

⟨s0sr⃗⟩ ≃ e−r/ξpure and ξ ≃ |T − T pure
c |−νpure , (1.34)

of the pure system.
The proof of the Harris result is rather simple and illustrates a way of reasoning that

is extremely useful [51, 50]. Take the full system with frozen-in disorder at a temperature
T slightly above its critical temperature T dis

c . Divide it into equal pieces with linear size
ξdis, the correlation length at the working temperature. By construction, the spins within
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ξ

+TC(1),

+TC(4),

+TC(2),

+TC(3),

Figure 1.3: Left: scheme of the Harris construction. The disordered system is divided into cells
with linear length ξdis, its correlation length. Right: a typical configuration of the dilute Ising
ferromagnet. Figures taken from [50].

each of these blocks behave as a super-spin since they are effectively parallel. Because
of disorder, each block k has its own local critical temperature T

(k)
c determined by the

interactions (or dilution) within the block. Harris proposes to compare the fluctuations in
the local critical temperatures ∆T

(k)
c ≡ T

(k)
c − T dis

c with respect to the global critical one
T dis
c , with the distance from the critical point ∆T ≡ T − T dis

c > 0, taken to be positive:

• If ∆T
(k)
c < ∆T for all k, all blocks have critical temperature below the working one,

T
(k)
c < T , and the system is ‘uniform’ with respect to the phase transition.

• If ∆T
(k)
c > ∆T for some k, some blocks are in the disordered (paramagnetic) phase

and some are in the ordered (ferromagnetic) phase, making a uniform transition
impossible. The inhomogeneity in the system may then be important.

Require now ∆T
(k)
c < ∆T for all k to have an unmodified critical behaviour. Use

also that an unmodified critical behaviour implies ξdis = ξpure = ξ and, consequently,
νdis = νpure.

As this should be the case for all k we call ∆T
(loc)
c the generic one. ∆T

(loc)
c can be

estimated using the central limit theorem. Indeed, as each local T (k)
c is determined by an

average of a large number of random variables in the block (e.g., the random Jij in the
Hamiltonian), its variations decay as the square root of the block volume, ∆T

(loc)
c ≃ ξ−d/2.

On the other hand, ∆T ≃ ξ−1/νpure . Therefore,

∆T (k)
c < ∆Tc ⇒ dνpure > 2 . (1.35)

The interpretation of this inequality is the following. If the Harris criterion dνpure > 2

is fulfilled, the ratio ∆T
(loc)
c /∆T goes to zero as the critical point is approached. The

system looks less and less disordered on larger length scales, the effective disorder strength
vanishes right at criticality, and the disordered system features the same critical behaviour
as the clean one. An example of a transition that fullfills the Harris criterion is the
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0

T T

T

pure

c
(k)

dis

Figure 1.4: The characteristic temperatures. Tpure and Tdis are the critical temperatures of the
pure and disordered systems, respectively. T

(k)
c is the critical temperature of the local region

with linear size ξdis labelled k, see the sketch in Fig. 1.3-left. The distance from the disordered
critical point is measured by ∆T

(k)
c = T

(k)
c − Tdis for the critical temperature of block k and

∆T = T − Tdis for the working temperature T . Right: the probability distribution function
of the local critical temperatures T

(k)
c . The width depends on ξdis and clearly decreases with

increasing ξ as the local temperatures fluctuate less and less.

ferromagnetic transition in a three-dimensional classical Heisenberg model. Its clean
correlation length exponent is νpure ≈ 0.69 > 2/d = 2/3.

In contrast, if dνpure < 2, the ratio ∆T
(loc)
c /∆T increases upon approaching the phase

transition. The blocks differ more and more on larger length scales. Eventually, some
blocks are on one side of the transition while other blocks are on the other side. This makes
a uniform sharp phase transition impossible. The clean critical behavior is unstable and
the phase transition can be erased or it can remain continuous but with different critical
behaviour. More precisely, the disordered system can be in a new universality class
featuring a correlation length exponent that fullfills the inequality dνdis > 2. Many phase
transitions in classical disordered systems follow this scenario, for example the three-
dimensional classical Ising model. Its clean correlation length exponent is νpure ≈ 0.63
which violates the Harris criterion. In the presence of random-mass disorder, the critical
behavior changes and νdis ≈ 0.68. (Note, however, that the difference between these
exponents is tiny!)

In the marginal case dνpure = 2, more sophisticated methods are required to decide the
stability of the clean critical point.

Chayes et al. [53] turned this argument around to show rigorously that for all the con-
tinuous phase transitions in presence of disorder, the correlation-length critical exponent
of the disordered system, νdis verifies νdis ≥ 2/d, independently of whether or not the
critical behaviour is the same as in the uniform system and even when the system does
not have a uniform analogue.

Finally, note that the Harris criterion dνpure > 2 applies to uncorrelated or short-range
correlated disorder. If the disorder displays long-range correlations in space, the inequality
needs to be modified because the central-limit theorem estimate of ∆T

(loc)
c changes.

Long-range correlated disorder is especially important in quantum phase transitions.
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The reason is the fact that the statistical properties of quantum systems are studied in an
imaginary time formulation that makes a d-dimensional quantum problem equivalent to
a d+1 dimensional classical one. Along Along this additional spatial direction, quenched
randomness is long-range correlated.

1.4.2 The Griffiths phase

The critical temperature of a spin system is usually estimated from the high tempera-
ture expansion and the evaluation of its radius of convergence (see App. A.1). However,
Griffiths showed that the temperature at which the free-energy of models with quenched
disorder starts being non-analytical falls above the critical temperature where the order
parameter detaches from zero [49]. The argument applies to models with second order
phase transitions.

Griffiths explained his argument using the dilute ferromagnetic Ising model. First, he
argued that the critical temperature of the disordered model should decrease for increas-
ing p, the probability of empty sites. This is ‘intuitively obvious’ since no spontaneous
magnetisation can occur at a finite temperature if the probability of occupied sites is less
than the critical percolation probability at which an ‘infinite cluster’ first appears. See
Fig. 1.5 where the phase diagram of the dilute Ising ferromagnet is shown.

p

T

10 pc

T (p)c

Tc
0

PM

FM

Griffiths
region

Figure 1.5: The phase diagram of the dilute ferromagnetic Ising model. p is the probability
of empty sites in this figure, taken from [50]. With increasing dilution the ordered phase is
eventually suppressed.

In the following paragraph we sketch Griffiths’ argument and we use his notation
in which p is the probability of occupying a site. For any concentration p < 1 the
magnetisation m is not an analytic function of h at h = 0 at any temperature below
T pure
c , the critical temperature of the regular Ising model p = 1. As he explains, this

fact is most easily explained for p < pc. The magnetisation m per lattice site in the
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thermodynamic limit has the form

m =
1

N

N∑
i=1

⟨si⟩ =
∑
c

P (c)m(c) (1.36)

where P (c) is the probability that a particular site on the lattice belongs to a cluster c
that is necessarily finite for p < pc, and m(c) is the magnetisation density of the cluster
c, that is to say m(c) = N−1(c)

∑
i∈c⟨si⟩ with N(c) the number of sites in the cluster.

Griffiths uses the Yang-Lee theorem, see App. A, to express m(c) as

m(c) = 1 +
2z

N(c)

∑
i∈c

1

ξi − z
with z = e−2βh (1.37)

and ξi, i = 1, . . . , N(c), complex numbers with |ξi| = 1. The total magnetisation density
is then of the same form

m = 1 + zf(z) f(z) =
∑
i

ηi(ξi − z)−1 (1.38)

with ηi = 2P (c)/N(c). He then argues that this form is analytic for z < 1 but non-analytic
at z = 1 that corresponds to h = 0.

A more intuitive understand of what is going on in the temperature region above the
critical temperature of the disordered model, T dis

c , and below the critical temperature the
pure one, T pure

c , can be reached as follows [50]. The effects of quenched disorder show up
already in the paramagnetic phase of finite dimensional systems. Below the critical point
of the pure case (no disorder) finite regions of the system can order due to fluctuations
in the couplings or, in a dilute ferromagnetic model, they can be regions where all sites
are occupied, as shown in Fig. 1.3. As such rare regions are finite-size pieces of the clean
system, their spins align parallel to each other below the clean critical temperature T pure

c .
Because they are of finite size, these regions cannot undergo a true phase transition by
themselves, but for temperatures between the actual transition temperature T dis

c and T pure
c

they act as large superspins.
Note that using the ideas of percolation theory, one can estimate the scaling of P (c) with

its size. Recall the one dimensional case. Take a segment of length L + 2 on the lattice.
A cluster of size L will occupy the internal sites with empty borders with probability
pL(1− p)2. This is because one needs L contiguous sites to be occupied and its boundary
sites be empty. In larger dimensions, this probability will be approximately pL

d
(1−p)L

d−1

with the first factor linked to the filled volume and the second to the empty surface. In
the large L limit one can make a harsh approximation and use ≃ exp{ln[pLd

(1−p)L
d−1

]} =
exp[ln pL

d
+ ln(1− p)L

d−1
] ≃ exp[−c(p)Ld] with c(p) = ln 1/p.

The sum in eq. (1.36) is made of two contributions. On the one hand, there are
the large clusters that are basically frozen at the working temperature. On the other,
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Figure 1.6: Rare regions in a random ferromagnet, figure taken from [50]. On the left, a ferro-
magnetically ordered region in the paramagnetic bulk (T > T dis

c ). On the right, a paramagnetic
band in a system that is ordered ferromagnetically in a patchwork way (T < T dis

c ).

there are the free spins that belong to small clusters and are easy to flip at the working
temperature. Let us focus on the former. Their magnetic moment is proportional to
their volume m(c) ≃ µLd. The energy gain due to their alignment with the field is
∆E(c) = −hm(c) = −hµLd where h is a small uniform field applied to the system, say
to measure its susceptibility.

The separation of the clusters in the two groups is then controlled by ∆E(c): the small
clusters with |∆E(c)| < kBT can be flipped by thermal fluctuations, and the large clusters
with |∆E(c)| > kBT and are frozen.

Then effect of the frozen clusters for which |∆E(c)| > kBT is then

m(T, h) ≈
∑

|∆E(c)|>kBT

P (c)m(c) ≈
∫ ∞

Lc

dL e−c(p)Ld

µLd (1.39)

and Ld
c ≈ kBT/(µh). This integral can be computed by the saddle-point method, see

App. ??, and it is dominated by the lower border. The result is

m(T, h) ≈ e−c(p)Ld
c = e−c(p)kBT/(µh) (1.40)

and this contribution has an essential singularity in the h → 0 limit.
It is important to note that the clusters that contribute to this integral are rare regions

since they occur with probability P (c) ≃ e−c(p)Ld that is exponentially small in their
volume. Still they are the cause of the non-analytic behaviour of m(h).

The magnetic susceptibility χ can be analyzed similarly. Each locally ordered rare
region makes a Curie contribution m2(c)/kBT to χ. The total rare region susceptibility
can therefore be estimated as

χ(T, h) ∼
∫ ∞

Lc

dL e−c(p)Ld

µ2 L2d/(kBT ) ≈ e−c(p)kBT/(µh) . (1.41)

This equation shows that the susceptibility of an individual rare region does not increase
fast enough to overcome the exponential decay of the rare region probability with increas-
ing size L. Consequently, large rare regions only make an exponentially small contribution
to the susceptibility.
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Rare regions also exist on the ordered side of the transition T < Tc. One has to consider
locally ordered islands inside holes that can fluctuate between up and down because they
are only very weakly coupled to the bulk ferromagnet outside the hole, see Fig. 1.6. This
conceptual difference entails a different probability for the rare events as one needs to find
a large enough vacancy-rich region around a locally ordered island.

There are therefore slight differences in the resulting Griffiths singularities on the two
sides of the transition. In the site-diluted Ising model, the ferromagnetic Griffiths phase
comprises all of the ferromagnetic phase for p > 0. The phase diagram of the dilute
ferromagnetic Ising model is sketched in Fig. 1.5.

1.4.3 Scenario for the phase transitions

The argument put forward by Harris is based on the effect of disorder on average
over the local critical temperatures. The intuitive explanation of the Griffiths phase
shows the importance of rare regions on the behaviour of global observables such as the
magnetisation or the susceptibility, The analysis of the effect of randomness on the phase
transitions should then be refined to take into account the effect of rare regions (tails in
the distributions). Different classes of rare regions can be identified according to their
dimension drr. This leaves place for three possibilities for the effect of (still weak in the
sense of not having frustration) disorder on the phase transition.

• The rare regions have dimension drr smaller than the lower critical dimension of the
pure problem, drr < dL; therefore the critical behaviour is not modified with respect
to the one of the clean problem.

• When the rare regions have dimension equal to the lower-critical one, drr = dL, the
critical point is still of second order with conventional power law scaling but with
different exponents that vary in the Griffiths phase. At the critical point the Harris
criterium is satisfied dνdis > 2.

• Infinite randomness strength, appearing mostly in problems with correlated disorder,
lead to a complete change in the critical properties, with unconventional activated
scaling. This occurs when drr > dL.

In the derivation of this scenario the rare regions are supposed to act independently,
with no interactions among them. This picture is therefore limited to systems with short-
range interactions.

1.4.4 Domain-wall stiffness and droplets

Let us now just discuss one simple argument that is at the basis of what is needed to
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derive the results of the droplet theory for spin-glasses without entering into the compli-
cations of the calculations.

At very high temperature the configurations are disordered and one does not see large
patches of ordered spins.

Close but above the critical temperature Tc finite patches of the system are ordered
(in all possible low-temperature equilibrium states) but none of these include a finite
fraction of the spins in the sample and the magnetization density vanishes. However,
these patches are enough to generate non-trivial thermodynamic properties very close to
Tc and the richness of critical phenomena.

At criticality one observes ordered domains of the two equilibrium states at all length
scales – with fractal properties.

Below the critical temperature thermal fluctuations induce the spin reversal with re-
spect to the order selected by the spontaneous symmetry breaking. It is clear that the
structure of droplets, meaning patches in which the spins point in the opposite direction
to the one of the background ordered state, plays an important role in the thermodynamic
behaviour at low temperatures.

M. Fisher and others developed a droplet phenomenological theory for critical phe-
nomena in clean systems. Later D. S. Fisher and D. Huse extended these arguments to
describe the effects of quenched disorder in spin-glasses and other random systems; this
is the so-called droplet model.

Domain-wall stiffness

Ordered phases resist spatial variations of their order parameter. This property is
called stiffness or rigidity and it is absent in high-temperature disordered phases.

More precisely, in an ordered phase the free-energy cost for changing one part of the
system with respect to another part far away is proportional to kBT and usually diverges
as a power law of the system size. In a disordered phase the information about the
reversed part propagates only a finite distance (of the order of the correlation length, see
below) and the stiffness vanishes.

Concretely, the free-energy cost of installing a domain-wall in a system, gives a mea-
sure of the stiffness of a phase. The domain wall can be imposed by special boundary
conditions. Compare then the free-energy of an Ising model with linear length L, in its
ordered phase, with periodic and anti-periodic boundary conditions on one Cartesian di-
rection and periodic boundary conditions on the d− 1 other directions of a d-dimensional
hypercube. The ± boundary conditions forces an interface between the regions with pos-
itive and negative magnetisations. At T = 0, the minimum energy interface is a d− 1 flat
hyper-plane and the energy cost is

∆E(L) ≃ σLθ with θ = d− 1 (1.42)

and σ = 2J the interfacial energy per unit area or the interfacial tension of the domain
wall.
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Droplets - generalisation of the Peierls argument

In an ordered system at finite temperature domain walls, surrounding droplet fluc-
tuations, or domains with reversed spins with respect to the bulk order, are naturally
generated by thermal fluctuations. The study of droplet fluctuations is useful to establish
whether an ordered phase can exist at low (but finite) temperatures. One then studies
the free-energy cost for creating large droplets with thermal fluctuations that may desta-
bilise the ordered phase, in the way usually done in the simple Ising chain (the Peierls
argument).

Indeed, temperature generates fluctuations of different size and the question is whether
these are favourable or not. These are the droplet excitations made by simply connected
regions (domains) with spins reversed with respect to the ordered state. Because of the
surface tension, the minimal energy droplets with linear size or radius L will be compact
spherical-like objects with volume Ld and surface Ld−1. The surface determines their
energy and, at finite temperature, an entropic contribution has to be taken into account
as well. Simplifying, one argues that the free-energy cost is of the order of Lθ, that is
Ld−1 in the ferromagnetic case but can be different in disordered systems.

Summarising, in system with symmetry breaking the free-energy cost of an excitation
of linear size L is expected to scale as

∆F (L) ≃ σ(T )Lθ . (1.43)

The sign of θ determines whether thermal fluctuations destroy the ordered phase or
not. For θ > 0 large excitations are costly and very unlikely to occur; the order phase
is expected to be stable. For θ < 0 instead large scale excitations cost little energy and
one can expect that the gain in entropy due to the large choice in the position of these
excitations will render the free-energy variation negative. A proliferation of droplets and
droplets within droplets is expected and the ordered phase will be destroyed by thermal
fluctuations. The case θ = 0 is marginal and its analysis needs the use of other methods.

As the phase transitions is approached from below the surface tension σ(T ) should
vanish. Moreover, one expects that the stiffness should be independent of length close to
Tc and therefore, θc = 0.

Above the transition the stiffness should decay exponentially

∆F (L) ≃ e−L/ξ (1.44)

with ξ the equilibrium correlation length.

1.4.5 Stability of ordered phases

A ferromagnet under a magnetic field

Let us study the stability properties of an equilibrium ferromagnetic phase under an
applied external field that tends to destabilize it. If we set T = 0 the free-energy is just
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the energy. In the ferromagnetic case the free-energy cost of a spherical droplet of radius
R of the equilibrium phase parallel to the applied field embedded in the dominant one
(see Fig. 1.7-left) is

∆F (R) = −2ΩdR
dhmeq + Ωd−1R

d−1σ0 (1.45)

where σ0 is the interfacial free-energy density (the energy cost of the domain wall) and
Ωd is the volume of a d-dimensional unit sphere. We assume here that the droplet has a
regular surface and volume such that they are proportional to Rd−1 and Rd, respectively.
The excess free-energy reaches a maximum

∆Fc =
Ωd

d

Ωd
d−1

Ωd
d

(
d− 1

2dhmeq

)d−1

σd
0 (1.46)

at the critical radius
Rc =

(d− 1)Ωd−1σ0

2dΩdhmeq

, (1.47)

see Fig. 1.7-right (h > 0 and meq > 0 here, the signs have already been taken into
account). The free-energy difference vanishes at

∆F (R0) = 0 ⇒ R0 =
Ωd−1σ0

2Ωdhmeq

. (1.48)

Several features are to be stressed:

• The barrier vanishes in d = 1; indeed, the free-energy is a linear function of R in
this case.

• Both Rc and R0 have the same dependence on hmeq: they monotonically decrease
with increasing hmeq vanishing for hmeq → ∞ and diverging for hmeq → 0.

• In dynamic terms that we shall discuss later, the passage above the barrier is done
via thermal activation; as soon as the system has reached the height of the barrier
it rolls on the right side of ‘potential’ ∆F and the favorable phase nucleates.

• As long as the critical size Rc is not reached the droplet is not favorable and the
system remains positively magnetized.

The Imry-Ma argument for the random field Ising model

Take a ferromagnetic Ising model in a random field, defined in eq. (1.27). In zero
applied field and low enough temperature, if d > 1 there is a phase transition between a
ferromagnetic and a paramagnetic phase at a critical value of the variance of the random
fields, σ2

h = [h2
i ] ∝ h2, that sets the scale of the values that these random fields can take.

Under the effect of a random field with very strong typical strength, the spins align with
the local external fields that point in both directions and the system is paramagnetic. It
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Figure 1.7: Left: the droplet. Right: the free-energy density f(R) of a spherical droplet with
radius R.

is, however, non-trivial to determine the effect of a relatively weak random field on the
ferromagnetic phase at sufficiently low temperature. The long-range ferromagnetic order
could be preserved or else the field could be enough to break up the system into large but
finite domains of the two ferromagnetic phases.

A qualitative argument to decide whether the ferromagnetic phase survives or not in
presence of the external random field is due to Imry and Ma [54]. Let us fix T = 0 and
switch on a random field. If a compact domain D of the opposite order (say down) is
created within the bulk of the ordered state (say up) the system pays an energy due to
the unsatisfied links lying on the boundary that is

∆Eborder ∼ 2JRd−1 (1.49)

where R is the radius of the domain and d− 1 is the dimension of the border of a domain
embedded in d a dimensional volume, assuming the interface is not fractal. By creating
a domain boundary the system can also gain a magnetic energy in the interior of the
domain due to the external field:

∆Erandom field ∼ −hRd/2 (1.50)

since there are N ∝ Rd spins inside the domain of linear scale R (assuming now that the
bulk of the domain is not fractal) and, using the central limit theorem, −h

∑
j∈D si ∼

−h
√
N ∝ −hRd/2. h ≈ σh is the width of the random field distribution.

Dimension lower than two. In d = 1 the energy difference is a monotonically decreasing
function of R thus suggesting that the creation of droplets is very favourable and there
is no barrier to cross to do it. Indeed, for any d < 2, the random field energy increases
faster with R than the domain wall energy. Even for weak random fields, there will
be a critical R beyond which forming domains that align with the local random field
becomes favourable. Consequently, the uniform ferromagnetic state is unstable against
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domain formation for arbitrary random field strength. In other words, in dimensions
d < 2 random-field disorder prevents spontaneous symmetry breaking.

Dimension larger than two. The functional form of the total energy variation ∆E =
∆Eborder + ∆Erandom field as a function of R is characterised by ∆E → 0 for R → 0 and
∆E → ∞ for R → ∞. The function has a minimum at

Rc ∼
(

hd

4J(d− 1)

)2/(d−2)

(1.51)

and crosses zero at R0 to approach ∞ at R → ∞. The comparison between these two
energy scales yields

2JRd−1
0 ∼ hR

d/2
0 ⇒ R0 ∼

(
h

2J

) 2
d−2

(1.52)

This equation clearly shows a change in d = 2, with

lim
h/J→0

R0(h/J) =

{
0 if d > 2 ,
∞ if d < 2 .

(1.53)

Therefore, in d > 2 the energy difference first decreases from ∆E(R = 0) = 0 to
reach a negative minimum at Rc, and then increases back to pass through zero at R0 and
diverge at infinity. This indicates that the creation of domains at zero temperature is not
favourable in d > 2. Just domains of finite length, up to R0 can be created. Note that R0

increases with h/J in d > 2. Therefore, a higher field tends to generate larger droplets
and thus disorder more the sample.

The marginal case d = 2 is more subtle and more powerful techniques are needed to
decide.

With this argument one cannot show the existence of a phase transition at hc nor the
nature of it. The argument is such that it suggests that order can be supported by the
system at zero temperature and small fields in d > 2.

Again, we stress that these results hold for short-range correlated disorder.
There are rigorous proofs that random fields destroy long-range order (and thus prevent

spontaneous symmetry breaking) in all dimensions d ≤ 2 for discrete (Ising) symmetry
and in dimensions d ≤ 4 for continuous (Heisenberg) symmetry. The existence of a phase
transition from a FM to a PM state at zero temperature in 3d was shown in [56].

An elastic line in a random potential

The interfacial tension, σ, will tend to make an interface, forced into a system as flat
as possible. However, this will be resisted by thermal fluctuations and, in a system with
random impurities, by quenched disorder.

Let us take an interface model of the type defined in eq. (1.29) with N = 1. If one
assumes that the interface makes an excursion of longitudinal length L and transverse
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Figure 1.8: Illustration of an interface modeled as a directed manifold. In the example, the
domain wall separates a region with positive magnetisation (above) from one with negative
magnetisation (below). The line represents a lowest energy configuration that deviates from a
flat one due to the quenched randomness. An excitation on a length-scale L is shown with a
dashed line. The relative displacement is δh ≡ δϕ ≃ Lα and the excitation energy ∆E(L) ≃ Lθ.
Figure taken from [57].

length ϕ the elastic energy cost is

Eelast =
c

2

∫
ddx (∇ϕ(x⃗))2 ⇒ ∆Eelast ∼ cLd(L−1ϕ)2 = cLd−2ϕ2 (1.54)

Ignore for the moment the random potential. Thermal fluctuations cause fluctuations
of the kind shown in Fig. 1.8. The interfaces roughens, that is to say, it deviates from
being flat. Its mean-square displacement between two point x⃗ and y⃗, or its width on a
scale L satisfies

⟨[ϕ(x⃗)− ϕ(y⃗)]2⟩ ≃ T |x⃗− y⃗|2ζT (1.55)

with ζT the roughness exponent.
The elastic energy cost of an excitation of length L is then

∆Eelast(L) ≃ cLd−2ϕ2(L) ≃ cTLd−2L2ζT (1.56)

and this is of order one if
ζT =

2− d

2
. (1.57)

In the presence of quenched randomness, the deformation energy cost competes with
gains in energy obtained from finding more optimal regions of the random potential.
Naively, the energy gain due to the randomness is∫

ddx V ≃ [W 2Ld]1/2 ≃ WLd/2 (1.58)
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Figure 1.9: The interface width and the roughness exponent in a magnetic domain wall in a
thin film. The value measured ζD ≃ 0.6 is compatible with the Flory value 2/3 expected for a
one dimensional domain wall in a two dimensional space (N = 1 and d = 1 in the calculations
discussed in the text.) [58].

and the balance with the elastic cost, assumed to be the same as with no disorder, yields

cTLd−2L2ζD ≃ WLd/2 ⇒ ζD =
4− d

2
(1.59)

This result turns out to be an upper bound of the exponent value [57]. It is called the Flory
exponent for the roughness of the surface. One then concludes that for d > 4 disorder is
irrelevant and the interface is flat (ϕ → 0 when L → ∞). Since the linearization of the
elastic energy [see the discussion leading to eq. (1.29)] holds only if ϕ/L ≪ 1, the result
(1.59) may hold only for d > 1 where α < 1.

Destruction of first order phase transitions under randomness

A first order phase transition is characterized by macroscopic phase coexistence at the
transition point. For example, at the liquid-gas phase transition of a fluid, a macroscopic
liquid phase coexists with a macroscopic vapour phase. Random-mass disorder locally
favors one phase over the other. The question is whether the macroscopic phases survives
in the presence of disorder or the system forms domains (droplets) that follow the local
value of the random-mass.

Consider a single domain or droplet (of linear size L) of one phase embedded in the
other phase. The free energy cost due to forming the surface is

∆Fsurf ∼ σLd−1 (1.60)

where σ is the surface energy between the two phases. The energy gain from the random-
mass disorder can be estimated via the central limit theorem, resulting in a typical mag-
nitude of

|∆Fdis| ∼ W 1/2Ld/2 (1.61)
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where W is the variance of the random-mass disorder.
The macroscopic phases are stable if |∆Fdis| < ∆Fsurf , but this is impossible in dimen-

sions d ≤ 2 no matter how weak the disorder is. In dimensions d > 2, phase coexistence
is possible for weak disorder but will be destabilized for sufficiently strong disorder.

We thus conclude that random-mass disorder destroys first-order phase transitions in
dimensions d ≤ 2. In many examples, the first-order transition is replaced by (‘rounded
to’) a continuous one, but more complicated scenarios cannot be excluded.

The 3d Edwards-Anderson model in a uniform magnetic field

A very similar reasoning is used to argue that there cannot be spin-glass order in an
Edwards-Anderson model in an external field [71, 72]. The only difference is that the
domain wall energy is here assumed to be proportional to Ly with an a priori unknown
d-dependent exponent y that is related to the geometry of the domains.

Comments

These arguments are easy to implement when one knows the equilibrium states (or one
assumes what they are). They cannot be used in models in which the energy is not a
slowly varying function of the domain wall position.

1.4.6 Consequences of the gauge invariace

H. Nishimori used the gauge transformation explained in Sec. ?? to derive a series of
exact results for averaged observables of finite dimensional disordered systems [46].

The idea follows the steps by which one easily proves, for example, that the averaged
local magnetization of a ferromagnetic Ising model vanishes, that is to say, one applies a
transformation of variables within the partition sum and evaluates the consequences over
the averaged observables. For example,

⟨si⟩ =
∑
{sj}

si e
βJ

∑
ij sisj = ⟨si⟩ =

∑
{sj}

(−si) e
βJ

∑
ij sisj = −⟨si⟩ . (1.62)

This immediately implies ⟨si⟩ = 0 and, more generally, the fact that the average of any
odd function under {si} → {−si} vanishes exactly.

In the case of disordered systems, one is interested in observables that are averaged
over the random variables weighted with their probability distribution. The gauge trans-
formation that leaves the Hamiltonian unchanged involves a change of spins accompanied
by a transformation of the exchanges:

si = ηisi J ij = ηiηjJij (1.63)

with ηi = ±1. The latter affects their probability distribution as this one, in general, is
not gauge invariant. For instance, the bimodal pdf P (Jij) = pδ(Jij−J)+(1−p)δ(Jij+J)
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can be rewritten as

P (Jij) =
eKpJij/J

2 coshKp

with e2Kp =
p

1− p
, (1.64)

as one can simply check. τij ≡ Jij/J are just the signs of the Jij. Under the gauge
transformation P (Jij) transforms as

P (J ij)dJ ij = P (Jij)dJij ⇒ P (J ij) = P (Jij(J ij))
dJij

dJ ij

(1.65)

that implies

P (J ij) =
eKpJij/(ηiηjJ)

2 coshKp

1

ηiηj
⇒ P (J ij) = ηiηj

eKpJijηiηj/J

2 coshKp

(1.66)

For instance, applying the gauge transformation to the internal energy of an Ising spin-
glass model with bimodal disorder, after a series of straightforward transformations one
finds

[⟨HJ⟩]J = −NBJ tanhKp (1.67)

with NB the number of bonds in the lattice, under the condition βJ = Kp. This relation
holds for any lattice. The constraint βJ = Kp relates the inverse temperature J/(kBT )
and the probability p = (tanhKp + 1)/2. The curve βJ = Kp connects the points
(p = 1, T = 0) and (p = 1/2, T → ∞) in the (p, T ) phase diagram and it is called the
Nishimori line.

The proof of the relation above goes as follows. The full pdf of the interactions is

P ({Jij}) =
∏
⟨ij⟩

P (Jij) (1.68)

and the average of any disorder dependent quantity is expressed as

[AJ ] =
∑

{Jij=±J}

∏
⟨ij⟩

P (Jij)AJ (1.69)

The disorder average Hamiltonian reads

[⟨HJ⟩]J =
∑
{Jij}

eKp
∑

⟨ij⟩ Jij/J

(2 coshKp)NB

∑
{si}(−

∑
ij Jijsisj) e

β
∑

⟨ij⟩ Jijsisj∑
{si} e

β
∑

⟨ij⟩ Jijsisj
(1.70)

with NB the number of bonds in the graph or lattice. Performing the gauge transformation

[⟨HJ⟩]J =
∑
{Jij}

eKp
∑

⟨ij⟩ Jijηiηj/J

(2 coshKp)NB

∑
{si}(−

∑
ij Jijsisj) e

β
∑

⟨ij⟩ Jijsisj∑
{si} e

β
∑

⟨ij⟩ Jijsisj
(1.71)
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where gauge invariance of the Hamiltonian has been used and the spins and interactions
have been renamed Jij and si. As this is independent of the choice of the parameters {ηi}
used in the transformation, one can sum over all possible 2N choices and divide by this
number keeping the result unchanged:

[⟨HJ⟩]J =
1

2N

∑
{Jij}

∑
{ηi} e

Kp
∑

⟨ij⟩ Jijηiηj/J

(2 coshKp)NB

∑
{si}(−

∑
ij Jijsisj) e

β
∑

⟨ij⟩ Jijsisj∑
{si} e

β
∑

⟨ij⟩ Jijsisj
(1.72)

If β is chosen to be β = Kp/J the sum over the spins in the denominator (the partition sum
in the normalisation) cancels out the sum over the parameters ηi introduced via the gauge
transformation. The sum over Jij and the remaining sum over the spin configurations can
be rewritten

[⟨HJ⟩]J =
1

2N
1

(2 coshKp)NB

(
− ∂

∂β

)∑
{si}

∏
⟨ij⟩

∑
{Jij=±J}

eβJijsisj . (1.73)

Changing now variables in the sum over Jij = ±J to τij = Jijsisj = ±J ,

[⟨HJ⟩]J =
1

2N
1

(2 coshKp)NB

(
− ∂

∂β

)∑
{si}

∏
⟨ij⟩

∑
τij=±J

eβτij

=
1

2N
1

(2 coshKp)NB

(
− ∂

∂β

)
2N(2 coshKp)

NB , (1.74)

where the sum over the spin configurations yields the 2N factor and the sum over the
independent τij configurations yields the last factor. Finally, taking the derivative with
respect to β:

[⟨HJ⟩]J = −NBJ tanhKp (1.75)

with Kp = βJ , defining the Nishimori line in the phase diagram.
For Gaussian distributed quenched randomness there also exists a Nishimori line and

the averaged internal energy can also be computed exactly on this line.
Many other relations of this kind exist and are explained in [46].
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A Classical results in statistical physics

A.1 High temperature expansion

The partition function of the Ising ferromagnet reads

Z =
∑
si=±1

eβJ
∑

⟨ij⟩ sisj =
∑
si=±1

∏
⟨ij⟩

eβJsisj (A.76)

Using the identity eβJsisj = a(1+bsisj) with a = cosh(βJ) and b = tanh(βJ) and the fact
that b is order β, an expansion if powers of b can be established. The average of products
of the spins s’s that remains can be non-zero only if each spin appears an even number of
times s. The expansion can then be represented as graphs on the lattice, a representation
that makes the enumeration of terms easier.

A.2 Lee-Yang theorem

The LeeYang theorem states that if partition functions of models with ferromagnetic
interactions are considered as functions of an external field, then all zeros are purely
imaginary (or on the unit circle after a change of variable) [96].

A.3 Critical behaviour

Second order phase transitions are characterised by the diverge of the correlation length.
In normal conditions, far from the critical point, the correlation function of the fluctuations
of an observable decay as an exponential of the distance between the measuring points:

C(r⃗) ≡ ⟨[O(r⃗ + r⃗′)− ⟨(O(r⃗ + r⃗′)⟩][O(r⃗′)− ⟨(O(r⃗′)⟩)⟩]⟩ ≃ e−r/ξ . (A.77)

ξ is the correlation length that diverges at the critical point as

ξ ≃ |T − Tc|−ν (A.78)

with ν a critical exponent. A power-law singularities in the length scales leads to power-
law singularities in observable quantities. We summarise in Table 1 all the critical expo-
nents associated to various quantities in a second order phase transition. The values of
the critical exponents generally do not depend on the microscopic details but only on the
space dimensionality and the symmetries of the system under consideration.

The collection of all these power laws characterizes the critical point and is usually
called the critical behavior.
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exponent definition conditions

Specific heat α c ∝ |u|−α u → 0, h = 0

Order parameter β m ∝ (−u)β u → 0−, h = 0

Susceptibility γ χ ∝ |u|−γ u → 0, h = 0

Critical isotherm δ h ∝ |m|δsign(m) h → 0, u = 0

Correlation length ν ξ ∝ |r|−ν r → 0, h = 0

Correlation function η G(r⃗) ∝ |r⃗|−d+2−η r = 0, h = 0

Table 1: Definitions of the commonly used critical exponents. m is the order parameter, e.g.
the magnetization, h is an external conjugate field, e.g. a magnetic field, u denotes the distance
from the critical point, e.g. |T − Tc|, and d is the space dimensionality.

Whether fluctuations influence the critical behavior depends on the space dimension-
ality d. In general, fluctuations become less important with increasing dimensionality.

In sufficiently low dimensions, i.e. below the lower critical dimension dl, fluctuations
are so strong that they completely destroy the ordered phase at all (nonzero) temperatures
and there is no phase transition. Between dl and the upper critical dimension du, order
at low temperatures is possible, there is a phase transition, and the critical exponents
are influenced by fluctuations (and depend on d). Finally, for d > du, fluctuations are
unimportant for the critical behavior, and this is well described by mean-field theory. The
exponents become independent of d and take their mean-field values. For example, for
Ising ferromagnets, dl = 1 and du = 4, for Heisenberg ferromagnets dl = 2 and du = 4.
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