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We consider an Ising model with infinite-ranged interaction with statistically independent site fields with
Gaussian distribution. The model is solved exactly and exhibits both an independent spin phase and a
ferromagnetic phase, separated by a line of second-order phase transitions. We also establish that the replica
technique yields exact results in the present model but not in the related random exchange system.

The question of the influence of random fields
and random coupling constants on the phase dia-
gram and the critical phenomena has recently
attracted considerable attention.'™ It was demon-
strated that, in Ising and Heisenberg models with
random interactions, ferromagnetic, paramag-
netic, and spin-glass phases are likely.*”"'® More-
over, it was shown, that when the order parameter
has a continuous symmetry, the ordcred state is
unstable against an arbitrarily weak random field
in less than four dimensions.®

Here we present a simple exactly soluble model
exhibiting an instability of the ferromagnetic phase
to an independent spin phase that is driven by a
random field. In recent work on spin glasses,®”"°
it was the interaction that were considered random.
In the Ising model studied here, the local field
conjugate to the spins is random with Gaussian
distribution. The exchange interaction is assumed
to be infinite ranged and only static random fields
are considered. It will be established that an in-
dependent spin and a ferromagnetic phase occur.
The independent spin phase will be characterized
by the order parameter introduced by Edwards
and Anderson.® The phase diagram and the critical
properties will be discussed in some detail.

We consider N Ising spins interacting through
an infinite ranged exchange interaction. The Ising
spins are coupled to a random field with a Gaussian
distribution. The Hamiltonian is

J
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where the %; are distributed according to
P(r)=[(2m)"/20] ~* exp(- h?/20%) , 2)

with the same distribution for every site. By con-
trast the infinite ranged model considered in Ref.
7, had random exchange interactions rather than a
random field. The Hamiltonian and the random ex-
change distribution were defined by’
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where the Z;; are distributed according to
P(Z;;)=(2m) 2 exp(- 3 22;) . 4)

In both models only a quenched system is con-
sidered in which case the free energy rather than
the partition function is to be averaged.

We first calculate the free energy for random-
field model using the replica method.>” The deri-
vation is closely analogous to that for the random=J
case” but is simpler as only quadratic couplings
are obtained between different replicas. The re-
sult is

IN (FY=jm? - % jth(h) In2 cosh[B (2Jm + k)],
(5)
where m is given by

{S;Hh=m= f dh P(h) tanh[B(2 mJ + h)]. (6)

The details of the calculation are outlined in the
Appendix. From Eq. (5) the energy is calculated
to be

€O, (1/N) = - Jn? + Bo*(1 - q,) , (1)
where
an=(5)= | anp tan?[g@mIsm].  (8)

To prove that these results are exact we introduce
an effective Hamiltonian 90, linear in §;, of the
form

No=Jn? N=2md 3 S;= 3 IS, (9)
i i

and define N, =N -N,. N, is a mean-field Ham-
iltonian which may be expected to give exact re-
sults because of the infinite ranged interaction.
The thermodynamic variational principle® (Gibbs-
Bogoliubov inequality) then gives

(1/NYCI Do+ (1/N)(F ) = (1/N)(F oy
2 (1/N)(F )y + (1/N) (H b
(10)
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where (1/N)(F,), is given by the right-hand side

of Eq. (5) and { ), denotes the thermal average
with respect to %,. To show that (1/N)(F,), is both
an upper and lower bound for (1/N){F), we add

to the Hamiltonian the term A2; A;, where A4; is
specified below.'! Taking the second derivative

of the free energy with respect to A, we obtain

e O (Faneo=-NE <<<§Z (4, - (A,-)))2>>h'z ,

(11)

It then follows, that

(Bru-w),of): o

( )». denotes on average with respect to the ran-
dom variables 2 and z, respectively. With the aid
of this equation it is easily verified, by setting A;
=S;, that (1/N)XC)o), and (1/N){(3C,)), both vanish
in the thermodynamic limit. Thus for the random-
field model, the replica technique, as used in Ref.
7 yields the exact result. This is a nontrivial re-
sult, because the method involves analytic con-
tinuation of an integer variable into a continuous
variable, and in addition, an interchange of the
limits N—- « and n—- 0 with the large N limit taken
before n— 0 where » is the number of replicas. In
fact, for the random exchange model the replica
method does not yield the exact result, To show
this we consider the internal energy. From Eq.
(3) we obtain

Lioen.=- J<<<%}j s) )

S S a-gss Py, )

iFg
Here, ( ), denotes the average over the random
exchange interaction. The Z;; have been eliminat-
ed by partial integration. Making use of Eq. (12)
twice, with A; =S, and A; =(S;) S;, respectively,
the internal energy reduces to

1 J
¥ (3O == 5 2 (S)E

B (1= (P (0518870
i a4)
where

0= K;? Z(<<S¢>2(Sj)2), +((65,65,%),) <1,
N (15)

06S;=S; = (S
This expression for the energy per site differs

from that in Ref. 7, derived by means of the rep-
lica technique. That approach yields’

(1/NI(3eY), == T Sp)s = Bo*(1 = 43) (16)
where
quz=<<si>2>zS1‘ (17)

This result may be obtained from Eq. (14) by neg-
lecting ({(5S;6S;)?), and assuming the factorizations
(S SYa=(( S0 (S, and (( S S, ), ~ (S

x ((S;*),. These are exact in the random-field case.
However, in the random exchange model these
factorizations are not correct, because the z aver-
age involves uncorrelated pairs rather than uncor-
related single spins. As noted in Ref. 7, the rep-
lica method gives rise to a negative entropy’in

the spin-glass phase at 7 =0 for the random ex-
change model.

Next we discuss the thermodynamic properties
of the random field model. The function m intro-
duced in Eq. (6) is the magnetization and ¢, [Eq.
(8)] is the Edwards and Anderson spin-glass order
parameter.>7 Nonzero ¢, indicates the existence
of magnetic moments, while m #0 in addition to
4, #0 indicates that the moments are ferromag-
netically ordered. For m =0 but ¢,# 0 the sign of
the individual moments is determined by the local
fields. From Egs. (6) and (8) the boundary be-
tween the ferromagnetic and the independent spin
phases are given by

28J(1 - g,) =1. (18)

The full phase diagram is plotted in Fig. 1 in terms
of the dimensionless parameters k,T/o and 2J/0,
where ¢ is the variance of the random field dis-

INDEPENDENT
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FIG. 1. Phase diagram of an Ising system with infin-
ite-ranged exchange interaction in a random field with
Gaussian distribution.
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FIG. 2. Temperature dependence of the specific heat
in the independent spin phase for 2J/0 < (% m)! /2,

tribution [Eq. (2)]. It is clear on physical grounds
that for sufficiently strong random fields, the
ferromagnetic order will be suppressed. The pa-
ramagnetic phase m=¢, =0 is obtained only in the
limit of infinite temperature, where the “spin-
glass” order parameter g, vanishes as (0/k,T).
Although the disordered phase is characterized by
the Edwards and Anderson spin-glass order pa-
rameter, this phase is fundamentally different
from the “spin-glass” phase discussed for the ran-
dom exchange models. In the spin-glass phase

the spins are correlated, whereas in the random
field model the spins are completely independent
in the ¢,#0, m =0 phase. That is, the free energy
as given by Eq. (5) is independent of the exchange
coupling J.

The susceptibility is obtained by adding a uni-
form field term H 2}, S; to the Hamiltonian. This
simply adds on extra term BH to the argument of
tanh in Eq. (6). Differentiating m with respect to
H and taking the limit # -~ 0, we obtain

X=B(1-Qh)/[1—2[3¢](1"%)]- (19)

The susceptibility diverges at the phase boundary
as seen from Eq. (18). By approaching the phase
boundaries at T =const we obtain the power laws

M~ J*—J, J*>J (20)
and
x~ [J*=Jt, (21)

where J* is fixed by the phase boundary (Fig. 1).
Approaching the phase boundary at J =const, the
same power laws are found again, with J* and J
replaced by T* and T, respectively. The mean-

field exponents associated with these power laws
are a consequence of the infinite-ranged interac-
tions.

In the independent spin phase, for 2J/0< (:7)Y2,
the specific heat and susceptibility are smooth
functions of T. In fact at low temperature the
specific heat is given by

C=@2/mMV2 &P AT /o (22)

and vanishes for large T as kg(0/kzT)?, reaching
a maximum in between. The full temperature de-
pendence of the specific heat is shown in Fig. 2.
At T =0, the susceptibility goes to a finite value
[o(:m)Y2 = J]™, decreases for 2J/o< (37)Y2 smooth-
ly with T and vanishes for large T as (kzT)"!. We
also note that the entropy vanishes as 7'— 0 linear-
ly with 7, and is equal to k;1n2 at infinite temper-
ature. The ground state is nondegenerate. At T
=0 the spins are all aligned by their respective
local fields. As the temperature is increased only
those spins for which the thermal energy is suffi-
ciently large to overcome the local field, contrib-
ute to the thermal properties.

To summarize, we have shown that the replica’
technique yields the exact result for the random
field model, but that it fails for the random ex-
change model defined by Egs. (3) and (4). More-
over, we have demonstrated that the ferromag-
netic phase is unstable at all temperatures against
a local random field with a sufficiently broad
Gaussian distribution. Thus for 2J/0 < (7)Y?
there is no ferromagnetic phase. On the other-
hand for 2J/c> (47)Y? both independent spin and
ferromagnetic phases occur, depending on the
temperature, separated by a line of second-order
transitions.
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APPENDIX
We consider the Hamiltonian

J
H==5208:5- 2 IS, (A1)
] i

where the random fields are distributed according
to

p(r;)=[(27)/20]" exp(- 13/202). (A2)
Using the identity

1nx=1im—115(x"—1), (A3)

n-=o0

the averaged free energy may be expressed as
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- 7 1im(zx {<expz > s157) (e 3 (5 )z(zsa) ]} 1). (a1)

n=0 =1 i#j

Making use of the formula

1 -]
M = ’('271)—1/2[” dx exp[-3x2+ (22)/ 2ax] (A5)
and the identity
Tr exp<2fi> =(Tr expf;)" = [exp(In Tr expf;)]" =exp(N In Tr expf;), (A6)
7

we obtain (apart from terms which vanish in the thermodynamic limit)

F=-FkTlim- ( [fdx <2n>l/z}expN1—z < +InTrexp [(2‘;)1/22 SoXg+

n-0

where the trace is now over » replicas at a single
spin site. In the thermodynamic limit the integrals
may be evaluated by steepest descent in the usual
way. At the maximum all x, are equal. Then, if
we further define m = (RT/2J)'/%x,,,,, the free en-
ergy and the extremum condition may be written

1 J
F——lelm;[expN<— 7T +1nTrepr> ]

n-0
(A8)
_TrS,e*
- Trez ) (Ag)
where
2J 1/0\? 2
A—-;T—Wl;sa+§<ﬁ> <a sa) . (AIO)

) (=) ).

(A7)

T

Making use of Eq. (A5), once more, ¢4 may be
expressed as

f(Z )1/zexp(—zs ) HeXp< kT)
(A11)

Then evaluating the traces in Eqs. (A8) and (A9)
and taking the limit » -0 we finally obtain

F__, 1l
S f dnp(h) In2 cosh(2BJm+h),  (A12)

m = f an p(k) tanh(28Tm + 1), (A13)

as given in the text.
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