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The ancient Greeks were aware of the phenomenon of
magnetic order in lodestone, a type of rock containing

the ferromagnet magnetite Fe3O4. Magnetic moments in a
ferromagnet tend to align and thereby sum to an easily ob-
served macroscopic magnetic moment. The absence of such
a moment even in ordered antiferromagnets is the reason
their discovery is comparatively recent. It had to await the
development of Louis Néel’s microscopic theory of spin in-
teractions in the 1930s and the neutron diffraction meas-
urement of MnO in 1949 by Clifford Shull and Stuart
Smart.

There are magnets, however, that today present greater
experimental and theoretical challenges than those posed
by simple antiferromagnets in the 1930s.1 The origin of
their complex and varied behavior is remarkably simple
and can be illustrated by as few as three spins on a tri-
angular lattice. Once two of the spins on an elementary
triangle are antialigned to satisfy their antiferromagnetic
interaction, the third one can no longer point in a direc-
tion opposite to both other spins (see figure 1). Thus, not
all interactions can be minimized simultaneously—that 
is, exist in their lowest energy state. In other words, anti-
ferromagnetic interactions are incompatible with triangu-
lar lattice symmetry, a situation known as geometrical
frustration.

The antiferromagnetic triangle is the simplest case in
which a conflict arises between the geometry of the space
inhabited by a set of degrees of freedom and the local cor-
relations favored by their interactions. This phenomenon
is one aspect of a powerful paradigm for discovery over the
past few decades—namely, our ability to experimentally
manipulate the space in which magnetic, charge, or vi-
brational degrees of freedom interact. Two other particu-
larly well-studied aspects are low effective dimensionality
for electronic systems and tunable optical lattices for sys-
tems of cold atoms.

The study of geometrically frustrated magnets is con-
cerned with what happens when lattice geometry inhibits
the formation of a simple, ordered, low-temperature spin
configuration. Typically, geometrical frustration gives rise

to a degenerate manifold of ground
states rather than a single stable
ground-state configuration, leading to
magnetic analogues of liquids and ice.
Not surprisingly, even slight pertur-
bations induce instabilities in such
systems and prompt the emergence of
further unusual phenomena, even in-
cluding an incarnation of artificial

electrodynamics in which the frustrated magnet acts as an
“ether” for novel magnetic excitations. 

Frustrated magnets thus lie at the crossroads of two
fundamental enterprises in condensed matter physics.
On the applied side, the instabilities exhibited by frus-
trated magnets open a window on the richness of nature
realized in different materials. On the fundamental side
is the search for principles that help organize the variety
of behavior we observe around us. This article addresses
two possible principles: Underconstraint, which here
arises for spins residing on a weakly connected lattice
whose geometry frustrates their mutual interactions,
and emergence, the dynamical generation of new types of
degrees of freedom.

Frustration leads to degeneracy
To understand the central features of frustrated magnet-
ism, consider a simple set of model Hamiltonians that ac-
count only for antiferromagnetic interactions between
nearest neighbors:

In this equation, a positive exchange energy J favors 
antiparallel alignment of the spins S, labeled by their 
site indices i and j, and the sum is taken over nearest-
neighbor bonds. For the moment, we restrict our attention
to the case where the spins are classical, either as dis-
crete Ising-model spins (S ⊂ "1) or continuous, three-
component Heisenberg vector spins S ⊂ (Sx, Sy, Sz) of fixed
spin length +S+.

The hallmark of frustration in such models is a large
ground-state degeneracy. For continuous spins, a simple
counting argument can give the size of the degeneracy:
The number of degrees of freedom in the ground state, F,
is estimated to be D ⊗ K, where D is the total number of
degrees of freedom of the spins and K the number of con-
straints that must be satisfied to put the system into a
ground state.

The idea essentially comes from linear algebra, in
which a system of K equations for D variables is expected
to have a solution space of dimension F ⊂ D ⊗ K. Here, as
there, the expectation may be wrong because the con-
straints imposed by the equations may not be independent
(like 2x ⊂ 4 and 4x ⊂ 8, for example), or because they may
be mutually exclusive (like 2x ⊂ 4 and 4x ⊂ 7).
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When interactions between magnetic degrees of freedom in
a lattice are incompatible with the underlying crystal
geometry, exotic phenomena such as spin ice and spin
liquid phases can emerge.
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James Clerk Maxwell introduced such counting in the
context of elastic systems in 1864, and John Chalker of
Oxford University and one of us (Moessner) applied it to
frustrated spin systems in 1998. It can be illustrated most
simply in clusters of q mutually interconnected spins, for
which the above Hamiltonian can be rewritten as

Each three-component Heisenberg spin has two de-
grees of freedom. With its length fixed, each spin is free to
take any value on the surface of a sphere, with the two de-
grees of freedom parameterized, for instance, by latitude
and longitude. Obviously, all states in which the total spin
sums to zero are ground states, provided such states exist.
This condition supplies three ground-state constraints,
one for each component of the total spin. Hence, there are
D ⊗ K ⊂ 2q ⊗ 3 degrees of freedom left. Three of those cor-
respond to global rotations, but the remaining 2q ⊗ 6 are
genuine unconstrained degrees of freedom, even in the
ground state.

The symmetric arrangement of three mutually inter-
connected spins (q ⊂ 3) takes the form of a triangle in spin
space, for which there are no internal degrees of freedom;
one thus finds a unique 120° ground-state spin structure.
In contrast, a cluster with four interconnected spins
(q ⊂ 4), arranged symmetrically on the corners of a tetra-
hedron, is underconstrained: The degenerate ground state
has two internal degrees of freedom, parameterized by an-
gles q and v as shown in figure 1c.

Maxwellian counting can be generalized to treat lat-
tices rather than just isolated clusters of spins. To maxi-
mize the ground-state degeneracy for a fixed number of
spins, one must minimize the number of constraints. Lat-
tices that are made up of vertex-sharing clusters do just
that. In the two-dimensional kagome lattice, for example,
each site belongs to only two triangles (see figure 2); in the
less-frustrated triangular lattice, each site belongs to six
(see figure 1).

By this counting method, the most degenerate—and
thus most frustrated—lattice readily realizable in three di-
mensions or less is the one made up of vertex-sharing

tetrahedra, the pyrochlore lattice pictured in figure 2b. In-
deed, the number of degrees of freedom in the pyrochlore
ground state is an extensive property: It equals the num-
ber of tetrahedra!

The huge ground-state degeneracy is accidental in that
two different ground states are not generally related by any
symmetry operation. Normally, fine-tuning some parame-
ters is required to produce such an accidental degeneracy.
However, in the pyrochlore lattice, the symmetry of the
tetrahedron takes care of that fine-tuning by ensuring that
the interactions have equal strength; that is, the symmetry
allows a choice between which bonds to frustrate.

Spin ice and water ice
For materials with Ising spins, geometrical frustration
takes a different form. An Ising spin has only two discrete
orientations—up or down—because it is constrained to
point along one axis. Unlike in the continuous case, the
spin cannot exhibit small deviations from those directions.
Consequently, its number W of ground states is countable
and can be used to define a residual entropy S0 via Boltz-
mann’s relation S0/kB ⊂ ln W.

An approach analogous to Maxwellian counting for
continuous spins adapts an estimate of the entropy made
by Linus Pauling for water ice.2 Pauling’s description of
the low-temperature ordering of protons in crystalline ice
was perhaps the first recognition of the significance of geo-
metrical frustration. The proton ordering in ice turns out
to be locally equivalent to the physics of a frustrated py-
rochlore Ising magnet as first noted by Philip Anderson of
Princeton University.3 Again, to estimate W one separately
evaluates the total number of states on the one hand and
the action of the constraints on the other.

For example, 2N possible states exist on the pyrochlore
lattice—each of its N Ising spins points either up or down.
As for the constraints, out of the 24 possible spin states on
a tetrahedron, only six (a fraction of 3/8) are actually ground
states, namely, those in which two spins point up and two
down, so that their sum equals zero. Pauling’s estimate
amounts to treating the constraints imposed by different
tetrahedra as if they were independent; that is only an
approximation, but turns out to be a rather good one.
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Figure 1. A geometrically frustrated system is one in which the geometry of the lattice precludes the simultaneous mini-
mization of all interactions. (a) In the unfrustrated antiferromagnet on the square lattice, each spin can be antialigned with
all its neighbors. (b) On a triangular lattice, such a configuration is impossible: Three neighboring spins cannot be pairwise
antialigned, and the system is frustrated. (c) The ground states of a cluster of Heisenberg spins have zero total spin, so the
vector sum of an elementary group of spins must add up to zero. A cluster of three spins forms a unique structure, whereas
four spins form a family of degenerate ground states, with q and f the structure’s two degrees of freedom.
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Because the number of tetrahedra equals N/2, Paul-
ing’s estimate for the number of ground states is thus
W ⊂ (3/8)N/22N. That implies an entropy per spin of
S0/kBN ⊂ (1/N) ln W ⊂ 1/2 ln 3/2.

How can one observe this ground-state degeneracy
and the resulting entropy S0? As the high-temperature en-
tropy equals that of free spins, Sf ⊂ NkBln 2, it suffices to
measure the amount of entropy DS that leaves the system
as it cools to temperatures at which only the ground states
are accessible. At those temperatures, S0 ⊂ Sf ⊗ DS. 

This residual entropy can be demonstrated explicitly
in the case of spin ice, a frustrated ferromagnet whose spin
states at low temperature mimic the configurations of the
hydrogen ions in water ice.3 Mark Harris of Rutherford Ap-
pleton Laboratory and Steve Bramwell of University Col-
lege London discovered spin ice in 1997 and realized that
holmium titanate (Ho2Ti2O7) can be understood as a frus-
trated Ising magnet on the pyrochlore lattice.4

In common water ice the location of oxygen atoms is
strictly periodic, as pictured in figure 2c, whereas the lo-
cation of the hydrogen ions is not. At atmospheric pres-
sure, ice forms a hexagonal structure that preserves the
H–O distance found in water molecules. That distance,
however, is far less than half the distance between oxygen
atoms. Therefore, each hydrogen atom can occupy one of
two sites: close to or far from a particular oxygen atom.
One “ice rule” states that around each oxygen atom are two
hydrogens that are close by, as in an H2O molecule, and
two that are far away. Because only 6 (of the 16 possible)
configurations achieve that arrangement, one obtains the
Pauling estimate for the entropy per hydrogen as derived
above, S0/kBN ⊂ 1/2 ln 3/2. 

The approximate equivalence of pyrochlore spin ice to
water ice follows from identifying the centers of the
pyrochlore tetrahedra with the location of the oxygen
atoms. The spins are then located at the midpoint of the
bond between a pair of neighboring oxygens. The axes for
the Ising spins are precisely those bond directions, and
each spin points in the direction of the oxygen atom clos-
est to the proton along that bond. The ground-state en-
tropy of pyrochlore spin ice is thus expected to be approx-
imately the same as it is in water ice. 

One of us (Ramirez) and coworkers tested that expec-

tation5 by measuring the specific heat of dysprosium
titanate Dy2Ti2O7, an Ising pyrochlore similar to
Ho2Ti2O7. Indeed, the resulting entropy agreed with the
theoretical Pauling value for ice to within a few percent
(see figure 3). In the absence of any structural disorder in
the host compound, a nonzero entropy indicates that spin
ice represents a new state of magnetism. 

Local zero-energy modes
The residual entropy is due to the existence of a large num-
ber of ground states. How can the system fluctuate be-
tween them? One extreme possibility occurs in a ferro-
magnet, where all spins point in the same direction in a
ground state. To get to a different ground state, all spins
of the system would need to flip and be reoriented together.
The other extreme occurs in a completely noninteracting
paramagnet, where each spin can be separately flipped,
because the energy does not depend on its orientation.

A frustrated magnet, even at zero temperature, can be
closer to the paramagnet: A local rearrangement of a finite
cluster of spins is possible at zero cost in energy while still
preserving the ground-state constraint that the sum of all
the spins in a cluster add up to zero.6 As shown in figure
4, the pyrochlore lattice bears this out. The smallest such
cluster is a group of spins (marked by green crosses)
arranged in a hexagon. Reorienting a single spin by dS,
say, would change the total spin of the two tetrahedra it
belongs to by dS. However, changing the value of neigh-
boring spins in the cluster by equal and opposite amounts
"dS ensures that the sum of those changes vanishes for
each individual tetrahedron.

In 2002 Oleg Tchernyshyov of Johns Hopkins Univer-
sity, Shivaji Sondhi of Princeton University, and one of us
(Moessner) considered a model in which spin rearrange-
ments around such hexagons are dominant. The resulting
spin correlations agree very well with measurements of
Seung-Hun Lee of the University of Virginia, Collin Bro-
holm of Johns Hopkins, and coworkers on the spinel com-
pound zinc chromium oxide (ZnCr2O4), in which the
chromium ions, Heisenberg spins with S ⊂ 3/2, form a py-
rochlore structure. The work confirmed the existence of
hexagonal modes in this compound.7

Figure 2. Frustrated lattices. (a) The kagome lattice consists of vertex-sharing triangles. (b) The pyrochlore lattice is a net-
work of vertex-sharing tetrahedra. The orange hexagonal loop is discussed in figure 4. (c) Hexagonal ice consists of protons
(small spheres) that reside on the bonds between two oxygen atoms (large spheres). The positions of the oxygens are
uniquely determined, but there are exponentially many allowed proton configurations. (Figure 2c is adapted from ref. 2.)
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Algebraic correlations without criticality
The nature of correlations is fundamentally influenced by
conservation laws, and in a class of geometrically frus-
trated magnets this connection has an interesting conse-
quence. One might naively expect that reorienting local
spins in a cluster would destroy long-range order, as it does
in a paramagnet. That expectation, however, would be
quite wrong. Rather, the ground-state constraint implies
a local conservation law that leads to a theory formally
equivalent to conventional magnetostatics.8

In the simplest case of the spin-ice model, the orien-
tation of the magnetic moments defines a divergence-free
(though artificial) magnetic flux B on the links of the ice
lattice as shown in figure 4b, where the spins are denoted
by arrows. The ice rules dictate that two spins point to-
ward each oxygen atom and two point away. As in Kir-
choff ’s law for current flow in electrical circuits, the total
amount of flux that enters or leaves each node, or oxygen
atom, is zero. Consequently, the magnetic flux, like the
electrical current, is conserved and therefore has zero di-
vergence: ¹ ! B ⊂ 0.

The conservation law has important implications:
Correlations between spins are enhanced because fluctu-
ations that do not respect the zero-divergence constraint
are prohibited. In fact, the simplest hydrodynamical theo-
ries of correlations have as their starting point the idea
that correlations at long times and distances are funda-
mentally governed by underlying conservation laws.

A detailed analysis of the spin correlations in the pres-
ence of the constraint ¹ ! B ⊂ 0 leads to a theory of pre-
cisely the same form as magnetostatics, in which the ab-
sence of magnetic monopoles is, of course, also a vital
ingredient. The statistical correlations between different
spins therefore follow a dipolar form like (3cos2q ⊗ 1)/+r+3.
That is, the correlations decay like a power law with dis-

tance and exhibit a nontrivial angular dependence. Here,
r is the distance vector between the spins and q the angle
between r and the axis along which the spins are con-
strained to point. In Fourier space, the correlations show
up as a characteristic bow-tie motif with a pinch point at
its center (see figure 5). Martin Zinkin of Oxford Univer-
sity first noticed such bow ties in frustrated magnetism 
in 1996.

Crucially, the dipolar correlations between spins are
algebraic but not critical. The adjectives “algebraic” and
“critical” are normally used interchangeably in condensed
matter physics because the critical point—between para-
magnetic (disordered) and Néel (ordered) phases, say, in
an unfrustrated antiferromagnet—typically gives rise to
correlations that decay algebraically. But the frustrated
magnet is unusual; it exhibits algebraic correlations be-
tween spins but does not sit at a point sandwiched between
a disordered and an ordered phase. Rather, the ground-
state constraint is strong enough to prevent an exponen-
tial decay of correlations, but too weak to induce long-
range order. Similarly, and somewhat reassuringly, the
algebraic decay of a dipole’s real magnetic field at long dis-
tances does not indicate that electromagnetism sits at a
critical point, delicately balanced between an ordered and
a disordered phase.

Artificial light
What are the effects of adding quantum fluctuations to a
frustrated system? Those fluctuations can be added in the
framework provided by a class of models introduced in
1988 by Daniel Rokhsar of University of California, Berke-
ley, and Steve Kivelson of Stanford University in the con-
text of high-temperature superconductors.9 The models in-
clude the simplest possible quantum dynamics consistent
with the classical ground-state constraint. Because the
spins cannot fluctuate individually but only as loops, one
must add a perturbation to the simple exchange Hamil-
tonian so that loops of six spins (as pictured in figure 4)
are allowed to tunnel between one classical ground state
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Figure 3. The entropy S of the spin-ice compound dys-
prosium titanate Dy2Ti2O7 as a function of temperature
T. At high T, S ⊂ kB ln 2 per spin, the same as for free
spins. Cooling the system causes the entropy to drop as
correlations develop between spins. An unfrustrated
magnet follows the plot’s schematic red line down to
zero entropy because the system assumes a unique
ground state. In spin ice, geometrical frustration creates
an exponentially large number of degenerate ground
states. The large degeneracy manifests itself in a non-
vanishing entropy, which is close to the value that 
Linus Pauling predicted for ordinary water ice. 
(Adapted from ref. 5.)

Figure 4. Local modes. (a) A hexagonal loop (orange),
consisting of edges of a group of tetrahedra in the
pyrochlore lattice of figure 2b, can support a zero-
energy mode. The mode involves reorienting neighbor-
ing spins (green crosses) by equal and opposite amounts
dS. The rearrangement preserves the ground-state con-
straint for each tetrahedron—the sum of the spins re-
mains zero. (b) Ice representation of such a loop. Oxy-
gen atoms (blue) reside in the centers of the tetrahedra,
while the spins (brown) sit on the midpoints of the
bonds and point in the direction of the hydrogen atoms
(red). Inverting the six encircled spins pointing clockwise
around the loop produces another energetically equiva-
lent ground state.
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in which the arrows point clockwise and another in which
they reverse direction. Analysis of the Rokhsar–Kivelson
model that corresponds to this type of system reveals a
phase described by an effective Maxwell Hamiltonian:
H ⊂ E2 ⊕ c2B2, where E is related to B in the same way
that the electric field is related to the magnetic field in
standard electromagnetism.8

The formal equivalence to the Maxwell Hamiltonian
immediately implies the presence of artificial photons in
the frustrated system, traveling at the speed of artificial
light, c. And this speed can be tuned by changing micro-
scopic parameters of the underlying model. A tunable
speed of light is nothing unusual in itself, of course; the
speed of ordinary light can, after all, be reduced inside a
dielectric.

The frustrated magnet is, however, fundamentally dif-
ferent from a dielectric. Take away the dielectric and one
is still left with electromagnetic waves in vacuo. Take away
the frustrated magnet and the artificial electromagnetism
is lost altogether. The frustrated magnet thus acts as an
“ether” to the artificial light.

The artificial photon is really a complex coherent su-
perposition of spin degrees of freedom. Spins, in turn, are
not fundamental particles at all, but rather a low-energy
description of some degrees of freedom of a solid. A little
high-energy physicist living inside our frustrated system
would be in for quite a surprise upon discovering the de-
grees of freedom of the solid during a scattering experi-
ment between artificial photons.

From that perspective, as MIT’s Xiao-Gang Wen has
emphasized, it is not inconceivable that particles we nor-
mally think of as elementary are, in fact, emergent com-
posite objects in a universe that, at high energies, looks in-
creasingly messy rather than increasingly simple. The
phenomenon of one set of degrees of freedom (like spins)
giving rise to a qualitatively different set (like photons) is
known as emergence. This ability of condensed matter sys-
tems to mimic spontaneously and collectively different
ones—possibly unknown or otherwise unrealizable—is
among their most fascinating properties.

Cooling to observe frustration
No experimental system is yet known that provides us—
at least unequivocally—with the coherent quantum dy-
namics just discussed. The collective quantum dynamics
within clusters of spins is rather fragile, and other per-
turbations to the model Hamiltonian generally become im-
portant before the quantum fluctuations do. What hap-
pens in different temperature regimes?

The spin-liquid regime. At high temperatures, no
spin correlations are present, and any magnet is a simple
paramagnet. When the magnet is cooled, the spins start to
form into clusters that obey the ground-state constraint.

That evolution happens on a temperature scale de-
termined by the exchange energy J, or more precisely the
Curie–Weiss temperature qCW ⊂ zJS(S ⊕ 1)/3kB, which is
the product of J with the number of nearest neighbors z
and the spin length S(S ⊕ 1). The temperature regime
below qCW is known as the spin-liquid regime because, as
in an ordinary liquid, the interactions are strong but there
is no long-range order. Such spin liquids can nevertheless,
as we’ve seen, exhibit subtle correlations in the absence of
long-range order.

The nonperturbative low-temperature regime.
For the idealized frustrated Hamiltonian, a spin-liquid or
spin-ice regime can exist all the way down to zero tem-
perature. One might worry that an exponential ground-
state degeneracy and the resulting residual entropy are in-
consistent with the third law of thermodynamics, which

essentially states that the residual entropy should vanish.
In real, non-ideal systems, inevitable compound-dependent
perturbations to the Hamiltonian lift the degeneracy un-
less the system freezes and falls out of equilibrium at low
temperature anyway, a situation that appears to occur in
spin ice. 

One example of such a perturbation occurs in the sort
of quantum dynamics that lifts the classical degeneracy in
favor of the vacuum of artificial electrodynamics. Other ex-
amples include anisotropies, longer-range interactions,
disorder, and spin–lattice coupling.

Such perturbations come with their own energy scale,
v. Crucially, they cannot be treated perturbatively even if
v/J ≪ 1, because all the ground states have the same en-
ergy. J thus drops out as an energy scale. Frustrated mag-
netism is intrinsically nonperturbative.

Consequently, discovering the low-temperature state
of the system can be quite difficult. Different perturbations
will generally select different combinations of the unper-
turbed ground states as the temperature T drops below the
energy scale of the perturbation. That is what makes the
field of frustrated magnetism so rich from a materials sci-
ence perspective. In the spin-liquid regime, though, where
v ≪ T < qCW, many different frustrated magnetic com-
pounds can look alike, each unstable toward its own low-
temperature state.1,10

Diagnostics
How can one tell if a material is geometrically frustrated?
In real materials, geometrical frustration betrays its pres-
ence via the separation of energy scales, v ≪ qCW. As an
example of a commonly used experimental diagnostic, 
we describe the susceptibility fingerprint of geometrical
frustration.1

The magnetic susceptibility x measures the ratio of
the magnetization to the strength of the magnetic field

Figure 5. Fourier transform of the spin correlations in a
high-symmetry plane of the frustrated pyrochlore magnet.
Red regions denote strong correlations; black regions,
weak ones. The local constraint on the sum over spins in
a tetrahedron leads to the appearance of bow-tie motifs.
These each have a pinch point at their center, which is a
location of discontinuity but not divergence; the value of
the spin correlations in the vicinity of those pinch points
depends on the direction, but not on the distance, that
one moves away from them. Back in real space, the
ground-state constraint on the spins leads to algebraic
correlations of the dipolar type, (3cos2q ⊗ 1)/r3. (Courtesy
of Sergei Isakov.)
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applied to generate it. At high temperatures, the suscep-
tibility follows the Curie–Weiss law—that is, its inverse is
a straight line, x⊗1 } T ⊗ qCW. For ferromagnets, qCW is pos-
itive; for antiferromagnets, it is negative. In either case,
mean-field theory predicts an ordering transition at tem-
perature Tc & +qCW+, and a corresponding anomaly in x,
which is indeed observed for conventional magnets. The
susceptibility curve in geometrically frustrated magnets,
in contrast, remains smooth and stays close to the
Curie–Weiss law, basically because the spins can continue
to fluctuate almost as if they were free.

At a critical temperature Tc much lower than qCW—
that is, f ' qCW/Tc ≫ 1—frustrated systems typically are
found to undergo a phase transition. The large value of f
is therefore a simple consequence of the fact that the scale
of Tc is set by v, whereas that of qCW is set by J, so that
f & O(J/v).

The large size of f is not unique to geometrically frus-
trated systems. Low-dimensional systems also exhibit sup-
pression of long-range order. But that effect need not be
associated with a macroscopic residual entropy, which pro-
vides a simple diagnostic of the destruction of order due to
frustration versus low dimensionality.

A link to quantum Hall physics
This article has explored the important role of degenera-
cies in magnetic systems. Another field in condensed mat-
ter physics in which they are prominent is the study of
electrons in a 2D system immersed in a strong perpendi-
cular magnetic field B. In this quantum Hall regime, the
energy levels of an ideal system form a discrete set of al-
lowed values, hnc(n ⊕ 1/2), where n ) 0 is an integer and hnc
the cyclotron energy. To each n correspond many single-
particle states grouped together in what’s called the nth
Landau level.

The connection between degeneracy and frustration
relies on a notion of parallel transport. Imagine a spin that
initially points up, say, being taken along an imaginary
closed path around the lattice. The spin’s orientation stays
the same when its path crosses a ferromagnetic bond, and
flips when it crosses an antiferromagnetic one. When the
path closes, if the spin has encountered an odd number of
antiferromagnetic bonds, the spin’s final and initial states
differ. That path is said to be frustrated (see figure 6).

Similarly, in quantum Hall physics, the wavefunction
of an electron that crosses a closed loop of area A picks up
a phase 2p(AB/f0), where f0 is the flux quantum h/e. Un-
less the area A comprises an integer number of magnetic
flux quanta, the final and initial states are again differ-
ent. The difference is a manifestation of what can be
termed a frustrated kinetic energy, which is ultimately the
origin of the quantization into discrete Landau levels, each
containing a macroscopic number of degenerate single-
particle orbitals. (See the article by Joseph Avron, Daniel
Osadchy, and Ruedi Seiler, PHYSICS TODAY, August 2003,
page 38.)

The many ways of lifting the degeneracy of a Landau
level give rise to the famously rich phase diagram of 2D
electron systems, which exhibit zero-resistance states,
fractionally charged quasiparticles, composite fermions,
skyrmions, and charge-density waves. Similarly, the great
richness of geometrically frustrated materials is related to
the many instabilities of degenerate spin systems.

The search for other systems in which similar physics
gives rise to unusual behavior is an exciting subject. One
fascinating material, zirconium tungstate ZrW2O8, ex-
hibits the peculiar structural property of having a lattice
that shrinks when heated. Underconstraint in the mate-
rial’s lattice degrees of freedom, coupled with an unusual

symmetry of the compound’s vibrational modes, conspires
to create this negative thermal expansion.11 In many other
materials, from metals to multiferroics, this unusual con-
fluence of symmetry mismatch and underconstraint could
play an important role in generating exotic properties. No
doubt more will be found in the future. 

We are grateful to Chanda Jog and Shivaji Sondhi for com-
ments on the manuscript.
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Figure 6. Frustration and quantum Hall physics. Con-
sider a spin, pictured as an arrow in the top panel, taken
along some imaginary closed path in the lattice. It flips
once for every antiferromagnetic bond encountered
along the path. The bottom panel shows an analogous
closed loop for an electron immersed in a magnetic
field. In both the frustrated triangular lattice and the two-
dimensional electron system, traversing the path leads to
a final state that differs from the initial one: In the frus-
trated lattice the spin gets flipped, and in the 2D electron
gas the phase of the electron wavefunction changes.


