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Focus

Classical and Quantum Phase transitions

Phenomenology, concepts & formalism

Critical phenomena & universality, topology, renormalization, nucleation

Current research, e.g.

Non-Equilibrium Universality : From Classical to Quantum and Back, KITP UC Santa Barbara 2021

Quantum localization and glassy physics, Summer School at Cargèse 2023

Out-of-equilibrium Dynamics and Quantum Information of Many-body Systems with Long-range Interactions

KITP UC Santa Barbara 2023

All material (program, lectures, TDs & exams from previous years) downloa-

dable from the webpage www.lpthe.jussieu.fr/̃ leticia/enseignement.html
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Plan

Mathematical preliminaries (should have been done during the summer)

1. One introductory lecture

2. Five lectures on classical statistical physics

3. Five lectures on quantum statistical physics

4. Eleven TD sessions in half group (even/odd ending last number student ID)

5. One homework for the mid-term holidays (in pairs/binôme)

6. Final written exam - concepts and exercises (see examples)

Final Mark 20% homework and 80% written exam

3



Plan

1. Interest and background, principles and formalism, e.g.

— (In)Equivalence of ensembles for (long) short-range interactions

— Systems’ reduction (role of environments)

2. Classical phase transitions

— Important concepts (phase diagrams, order parameters, spontaneous

symmetry breaking, pinning fields, etc.)

— Uncommon mechanisms (e.g. topological phases, condensation)

— Renormalization group ideas

— Effects of quenched randomness

3. Quantum statistical physics

— Generics : Linear response, Kubo formula, FDT, etc.

— Quantum – classical equivalence, path-integrals, imaginary time

— Quantum spin models - chains and mean-field - phase transitions
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Plan

A very typical program

Absolutely necessary basic knowledge, needed to carry out theoretical

or experimental research in

condensed matter - atomic physics - statistical physics

Two examples of syllabus :
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Vlad Dobrosavljevic (Florida State University)

Experimental systems showing classical and quantum critical phenomena.

Thermodynamic potentials. Heat capacity. Magnetic susceptibility.

Phases. Phenomenology of 1st order phase transitions. Continuous transitions.

Landau theory. Order parameters. Spontaneous symmetry breaking.

Critical behavior. Scaling. Critical exponents. Relations between critical exponents.

Kadanoff scaling. Universality conjecture.

Calculation of critical exponents : Real space RG methods.

RG of Wilson and Fisher, φ4 theory, 4-ε expansion.

Continuous symmetry : Mermin-Wagner theorem.

Non-linear sigma-model ; 2 + ε expansion.

Scaling theory of localization. Quark confinement in QCD.

Topological order. Kosterlitz-Thouless phase transition.

Quantum critical phenomena. Hertz-Millis theory. Dissipative quantum tunneling.
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Ben Simons (the University of Cambridge)

Preface

Chapter 1 : Critical Phenomena

Chapter 2 : Ginzburg-Landau Theory

Chapter 3 : Scaling Theory

Chapter 4 : Renormalisation Group

Chapter 5 : Topological Phase Transitions

Chapter 6 : Functional Methods in Quantum Mechanics
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All mathematical methods in the Math Support file are assumed to be

mastered by the students

It is not enough to listen to the oral lectures to understand/learn the content

of this course

You have to read the lectures notes or any book of your choice on Phase

Transitions and Critical Phenomena (see list below)

The final exam will evaluate the comprehension of the concepts presen-

ted and discussed and not only the ability to solve guided exercises (see

examples of previous years)

You have to study and learn these concepts in between the Monday ses-

sions during the semester. Do not wait until the Xmas holidays to do it
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Bibliography

– Berlinsky & Harris - Statistical Mechanics - An Introductory Gradu-
ate Course

– Castiglione, Falcioni, Lesne & Vulpiani - Chaos and coarse-graining
in statistical physics

– Khinchin - Mathematical Foundations of Statistical Mechanics

– Lesne & Lagües - Scale Invariance from Phase Transitions to Turbu-
lence

– Parisi - Statistical Field Theory

– Goldenfeld - Phase Transitions and the Renormalization Group

– Altland & Simons - Condensed Matter Field Theory

There are many other excellent books that you can use as support to the course
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Ask Questions
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Introduction
What are you going to learn?
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Phase transitions
Definition

Sharp changes in the behaviour of macroscopic systems at points

(or curves) in parameter space.

Non-trivial collective phenomena in the thermodynamic limit.

Historical development : experimental observation → phenomeno-

logical description→ mathematical modelling→ full understanding

with the development of a new theoretical framework.
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Magnetic phase transition
Nickel (classical)

The magnetisation sharply vanishes at Tc under no applied field H = 0

Weiss & Forrer, Ann. Phys. 5, 153 (1926)

13



Magnetic phase transition
Manganites

It continuously decays to zero at T →∞ under a magnetic field H 6= 0

Applied magnetic field of 1T for different samples x

Gutiérrez, Olivares, Betancourt & Morales 09
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Magnetic phase diagram
Nickel (classical)

The magnetisation sharply vanishes at Tc under no magnetic field H = 0

Discontinuous jump from

positive to negative magnetization

at T < Tc when H changes sign

Simplest model for these features? Mean-field
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Structure phase diagram
Carbon (classical)

Theoretical phase diagram of carbon, which shows the state of matter for varying tem-

peratures and pressures. The hatched regions indicate conditions under which one

phase is metastable, so that two phases can coexist.

Wikipedia
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Measurements
Magnetization3 vs. temperature m3 ∼ (T − Tc)3β ⇒ β ∼ 0.3

Nuclear magnetic resonance in MnF4 near a critical point

Double linear plot

m3 ∼ c (T − Tc)

Mean-Field yields β = 1/2 PROBLEM!

P. Heller and G. B. Benedek, Phys. Rev. Lett. 8, 428 (1962)
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Universality
Para-Ferro magnetism & Liquid-Gas

Similar phase diagrams

Very different variables and control parameters and, still, same critical properties

Renormalization Group
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Topological phase transitions
Planar magnets

The Berezinskii-Kosterlitz-Thouless (BKT) transition is a phase transition from bound vortex-antivortex pairs
at low temperatures to unpaired vortices and anti-vortices at some critical temperature realized by the two-
dimensional 2dXY model.
Also in Josephson junction arrays, thin superconducting films, ultracold atomic gases in 2d

Kosterlitz & Thouless, J. Phys. C : Solid State Phys. 5, L124 (1972)

Nobel 2016
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Quantum Phase Diagram
High Tc superconductors

... to propose a bosonic effective quantum Hamiltonian based on the projected SO(5) model with ex-
tended interactions, which can be derived from the microscopic models of the cuprates. The global phase
diagram of this model is obtained using mean-field theory and Quantum Monte Carlo simulations ...

Sylvain Capponi - Toulouse
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Quantum Phase Transitions
Occur at zero temperature
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Quantum Phase Transitions
Methods

Functional methods Quantum – classical mapping Spin chains

Generic properties
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Beyond physics
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Active Matter
Phase diagram with solid, hexatic, liquid, co-existence and MIPS

1st order hexatic-liquid close to Pe = 0

KT-HNY solid-hexatic

- universal dislocation unbinding

Breakdown of KT-HNY hexatic-liquid picture

- disclination unbinding within the liquid phase

- percolation of defect clusters in the liquid

Pressure P (φ, Pe) (EoS), correlations GT (r), G6(r), distributions of φi, and |ψ6i|
defect identification & counting

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)
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Computer science
Algorithms & hard problems

Cristopher Moore (Santa Fe Institute, USA)

August 30th, 10:45AM EDT (Zoom meeting starts at 10:30 EDT)

The physics of inference, phase transitions, and networks

Finding patterns in data is a lot like finding ground states in physics. Each “state” corresponds to a hypothesis
about the data, and the most-likely state is the one with the lowest energy. More generally, the Boltzmann
distribution corresponds to the posterior distribution in Bayesian statistics. But reaching equilibrium can be
hard, especially in glassy systems. We can get stuck for exponential time at local optima that have nothing
to do with the true pattern, and are separated from the “correct” state by energy barriers. In many problems,
this creates phase transitions where finding patterns in noisy data suddenly becomes computationally
hard or impossible. These transitions occur when the amount of noise in the data –which is analogous to
the temperature– crosses a critical threshold. I’ll discuss these phase transitions using an example from the
study of social networks, where we try to classify nodes according to which community they belong to.

Transition between solvable and unsolvable
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Framework
In the course, focus on magnetic models

Why ?

Because

— they are simpler to define and work with

— thanks to universality, what you learn from them is applicable to

other problems

— you will learn about bosons & fermions in other courses

— we have only eleven lectures
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End of introductory part
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Phase transitions

28



Continuous phase-transition
Bi-valued equilibrium states related by symmetry

F

Ginzburg-Landau free-energy Scalar order parameter

e.g. Ising magnets at h = 0, m = 〈si〉 = 1
N

N∑
k=1

〈sk〉
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Continuous phase-transition
Bi-valued equilibrium states related by symmetry

Aimantation et phénomène magnétocalorique du nickel

Nickel data vs. mean-field m(T/Tc)

Weiss & Forrer, Ann. Phys. 5, 153 (1926)
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Discontinuous phase transition
Hysteresis loops

Growth Rate Effects in Soft CoFe Films

M. Vopsaroiu, K. O’Grady, M. T. Georgieva, P. J. Grundy, and M. J. Thwaites,

IEEE Transactions on magnetics 41, 3253 (2005)
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Curie-Weiss Mean-Field
Exponents for a continuous (Z2 spont symm broken) transition

−βf = βJz
m2

2
+ βhm−

(
1 +m

2
ln

1 +m

2
+

1−m
2

ln
1−m

2

)
= −βJzm

2

2
+ ln [2 cosh (βJzm+ βh)]

m = tanh (βJzm+ βh)

t = (T − Tc)/Tc
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Measurements
Magnetization3 vs. temperature m3 ∼ (T − Tc)3β ⇒ β ∼ 0.3

Nuclear magnetic resonance in MnF4 near a critical point

Double linear plot

m3 ∼ c (T − Tc)

Mean-Field yields β = 1/2 PROBLEM!

P. Heller and G. B. Benedek, Phys. Rev. Lett. 8, 428 (1962)
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Measurements
Magnetic susceptibility χ ∼ (Tc − T )−1.3

Double log scale

χ ∼ χ0 (T − Tc)−γ
lnχ︸︷︷︸
y

∼ −γ ln(T − Tc)︸ ︷︷ ︸
x

+ lnχ0

Mean-Field yields γ = 1
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Measurements
Heat capacity vs reduced temperature−1/8

Precision Measurement of the Specific Heat of CO2 Near the Critical Point

Mean-Field yields α = 0

J. Lipa, C. Edwards, and M. Buckingham, Phys. Rev. Lett. 25, 1086 (1970)
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Universality
Para-Ferro magnetism & Liquid-Gas
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Typical configurations
Up & down spins in a 2d Ising model

Equilibrium configurations

e.g. up & down spins in a 2d Ising model (IM)

〈φ〉 = 0 〈φ〉 = 0 〈φ〉 #= 0

g → ∞ g = gc g < gc

In a canonical setting the control parameter is g = T/J .

8

T →∞ T = Tc 0 < T < Tc

Real space viewpoint
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Ginzburg-Landau
Continuous scalar statistical field theory

Coarse-grain the spin

φ(r) = n−1
r

∑
i∈Vr

si

The partition function is Z =
∫
Dφ e−βF(φ) with

F(φ) =
∫
ddr

{
1
2
[∇φ(r)]2 + T−Tc

2
φ2(r) + λ

4
φ4(r)

}
Elastic + potential energy with the latter inspired by the results for the fully-

connected model (entropy around φ ∼ 0 and symmetry arguments)

Uniform saddle point in the V →∞ limit : φsp(r) = 〈φ(r)〉 = φ0

The free-energy density is lim
V→∞

fV (β, J, g) = lim
V→∞

V −1F(φ0)
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Ginzburg-Landau
Exponents from the saddle-point analysis vs. finite d ones

NB The mean-field exponents are independent of d, which is incorrect for d < du
Ginzburg-Landau does not detect the absence of a T > 0 phase transition in d = 1

(remember Peierls) but yields the suspicious result C(r) ∼ r2−d = r at Tc
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Correlation functions
Melting: from solid to liquid in 2d

straight lines curved

Translational order correlation functions GT : exponential decay e−r/ξ

Orientational order correlation functions G6 : power law decay r2−d−η - critical
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Correlation functions
Atomic gases in 2d - Stochastic Gross-Pitaevskii equation

F. Larcher, Dynamical excitations in low-dimensional condensates: sound, vortices and quenched dynamics,

PhD thesis, Newcastle University & Università di Trento (2018)
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Landau theory
Second order phase transition

Notation : L is the “potential” in the Landau free-energy density

Notation : η is the “field”
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Landau theory
First order phase transitions

Notation : L is the “potential” in the Landau free-energy density, η is the “field”, tI is

the transition
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Landau theory
Important points

• The actual values of the parameters are not important

they are material/model dependent

• The dimension of the order parameter (scalar, vectorial) and the potential

decide whether the transition is second, first order or infinite order

• In 2nd order phase transitions the correlation length diverges & the linear

susceptibility as well.

• In continuous phase transitions the exponents are universal

• The strength of the Gaussian fluctuations limit the validity of the saddle-point

treatment of the Landau theory.

upper critical dimension, critical region ξ4−d < 1 for the scalar λφ4 theory
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Critical Scaling
Singular part of the free-energy density

Singular part of the free-energy density

fsing(|t|, h) ∼ |t|2−α gf
(

h

|t|∆
)

Limits of the scaling function

gf (y = 0) = ct =⇒ fsing(|t|, 0) ∼ |t|2−α

gf (y →∞) = yx =⇒ fsing(|t| = 0, h) ∼ hx |t|2−α−∆x

fsing(|t| = 0, h) ∼ hx

2− α−∆x = 0 =⇒
∆ = (2− α)/x

Example Curie-Weiss

x = 4/3 α = 0 ∆ = 3/2
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Critical Scaling
Relations between exponents

Widom’s identity δ − 1 = γ/β

Rushbrooke’s identity α + 2β + γ = 2

Josephson’s identity 2− α = dν

From susceptibility γ = ν(2− η)

Only two are independent
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Critical Scaling
Ferromagnetic transition

Bo Yua et al, Scaling study of magnetic phase transition and critical behavior in Nd0.55Sr0.45Mn0.98Ga0.02O3

manganite, Materials Research Bulletin 99, 393 (2018)
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Critical Scaling
Jamming transition

P. Olsson and S. Teitel, Critical Scaling of Shear Viscosity at the Jamming Transition, Phys. Rev. Lett. 99,

178001 (2007).
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Critical Scaling
Jamming transition

P. Olsson and S. Teitel, Critical Scaling of Shear Viscosity at the Jamming Transition, Phys. Rev. Lett. 99,

178001 (2007).
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Finite size effects
Rounding of magnetization curves
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Finite size effects
Rounding of the heat capacity
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Decimation
1d Ising chain K = βJ, ζ = lnZ

K ′ = 1
2

ln cosh(2K)→ 0 that is (T/J)∗ →∞

Decimation : the killing of one in every ten of a group of people as a punishment for the whole group (originally

with reference to a mutinous Roman legion)

52



Decimation
1d Ising chain K = βJ, ζ = lnZ inverse relations

T → 0
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RG
From block spins to coupling renormalization

# degrees of freedom

bd 7→ 1

lattice spacing

a 7→ ba

re-scaling of lengths

~x 7→ ~x/b

From H′[K′]({s′I}) = RbH[K]({si}) to

K ′α =
∑
β

(Rb)αβKβ close to [Kc] = [0]
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Typical configurations
Up & down spins in a 2d Ising model

T = 2Tc T = Tc 0 < T < Tc

Real space viewpoint

Zoom out by observing at larger scales

move away from criticality if T 6= Tc

[Kc] repulsive fixed points
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Scale invariance
2d Ising model at Tc

D. Ashton, Scale invariance in the critical Ising model,

https://www.youtube.com/watch?v=fi-g2ET97W8
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RG
finite d Ising model

Two adimensional parameters inH[K]({si})

K1 = βJ = K K2 = βh = K

Composition R(b1b2) = R(b1)R(b2) and symmetries

K ′ = byKK H ′ = byHH

Repulsive fixed point

yK > 0 yH > 0
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RG
finite d Ising model

Identity of total free-energy =⇒ homogeneity

F (K ′, H ′) = F (K,H) =⇒ b−d f(byKH, byHH)

choosing b = |K|−1/yK =⇒ scaling

f(K,H) = |K|d/yK f(1, |K|−yH/yKH)

= |K|d/yK gf

(
H

|K|yH/yK
)

with ∆ = yH/yK and 2− α = d/yK
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RG
Generic

Transformation

K ′α −K∗α =
∑
β

R(b)αβ (Kβ −K∗β)

in other terms R(b)αβ =
∂K ′α
∂Kβ

∣∣∣∣
[K∗]

To solve one needs to diagonalize the linear (vectorial) relation above

Use the

eigenvalues λi and left orthonormal eigenvectors uiα of the matrix R(b)∑
j
ujβu

j
γ = δβγ

59



RG
Generic

Transformation

δKα = K ′α −K∗α =
∑
β

R(b)αβ (Kβ −K∗β) =
∑
β

R(b)αβ δKβ

multiply by the left eigenvector uiα and sum over α

δκ′
i ≡

∑
α

uiα δK
′
α =

∑
α

uiα
∑
β

R(b)αβ︸ ︷︷ ︸
λi

∑
β u

i
β

∑
γ

(
∑
j

ujβu
j
γ)︸ ︷︷ ︸

δβγ

δKγ

= λi
∑
j

∑
β

uiβu
j
β︸ ︷︷ ︸

δij

∑
γ

ujγδKγ

= λi
∑
γ

uiγ δKγ = λi δκi
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RG
Generic

Diagonalized transformation

δκ′
i ≡

∑
α

uiα δK
′
α = λi δκi

thus

λi =
∂δκ′ i

∂δκ i

∣∣∣∣∣
[K∗]

=
∂κ′ i

∂κ i

∣∣∣∣∣
[K∗]

and

λi = byi =⇒ yi =
d lnλi

db
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RG
Generic

Parameters
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Concepts

The scale of observation does not modify the properties of the critical state

nor the disordered or order character of the phases

Kadanoff blocks modify the physical state by coarse-graining but,

the modern RG (Wilson) transforms the form of the model until reaching the one

that describes the critical state

At criticality and close to it the microscopic details are not important

The critical points are repulsive fixed points of the RG

Above the critical temperature, evolution to the free fixed point, T →∞
Below the critical temperature, evolution to T = 0
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Concepts

The scale of observation does not modify the properties of the critical state

nor the disordered or order character of the phases

Kadanoff blocks modify the physical state by coarse-graining but,

the modern RG (Wilson) transforms the form of the model until reaching the one

that describes the critical state

At criticality and close to it the microscopic details are not important

The critical points are repulsive fixed points of the RG

Above the critical temperature, evolution to the free fixed point, T →∞
Below the critical temperature, evolution to T = 0
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Concepts

The scale of observation does not modify the properties of the critical state

nor the disordered or order character of the phases

Kadanoff blocks modify the physical state by coarse-graining but,

the modern RG (Wilson) transforms the form of the model until reaching the one

that describes the critical state

At criticality and close to it the microscopic details are not important

The critical points are repulsive fixed points of the RG

Above the critical temperature, evolution to the free fixed point, T →∞
Below the critical temperature, evolution to T = 0
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Concepts

The scale of observation does not modify the properties of the critical state

nor the disordered or order character of the phases

Kadanoff blocks modify the physical state by coarse-graining but,

the modern RG (Wilson) transforms the form of the model until reaching the one

that describes the critical state

At criticality and close to it the microscopic details are not important

A renormalisation transformation is a scale transformation that leaves the

partition function invariant. Since the thermodynamic properties of a sys-

tem are governed by the partition function, the physics is preserved.
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Concepts

The critical behaviour does not depend on the type of subcritical order but on the

number n of components of the order parameter and the dimension of space d.

Renormalisation enables the classification in universality classes with the same

critical properties, depending on (n, d)

Scaling laws apply to global, macroscopic properties of systems containing a

large number of elementary microscopic units.

They are found in other domains, e.g. finance, biology, etc.
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Exponents again
Comparison

Images from

A. Lesne & M. Lagües, Scale invariance from phase transitions to turbulence (Springer-

Verlag, 2012)
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