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The Berezinski-Kosterlitz-Thouless transition is a peculiar transition occurring in 2d
systems in which topological defects play a crucial role. We will study it in the formulation
of the XY model, which consists of two-dimensional vector (classical) spins placed at the
vertices r of a two-dimensional square lattice of N sites and of size L (N = (L/a)2, where
a is the lattice spacing), and interacting ferromagnetically:

H = −J
∑
⟨r,r′⟩

Sr · Sr′ .

We have seen in the TD2 that the correlation function behaves in a drastically different
way at high at low temperatures: It decays as a power-law at low temperature and become
short-ranged at high temperature.

C(|r|) = ⟨S0 · Sr⟩ ≃


(

a
|r|

)η(T )
η = T

2πJ for T ≪ J ,

e−|r|/ξ ξ ≃ − 1
ln( J

2T )
for T ≫ J .

This indicates that there exists a phase transition, called the BKT transition, between
a high-temperature phase characterized by exponential decay of correlations and a low-
temperature phase characterized by algebraic decay of correlations. The goal of this tuto-
rial is to provide a quantitative study of this transition using a real-space renormalization
group approach (exercise C). To this purpose, we need to reformulate the XY Hamiltonian
as a 2d Coulombg gas. We will first do this by means of the phenomenological arguments
given by Kosterlitz and Thouless in their theory of phenomenological defects (exercise A),
and then more formally using the so-called Villain approximation (optional exercise B).
More details can be found in M. Kardar, Statistical physics of fields, Cambridge University
Press (2007).

A) Phenomenological analysis

In this part of the exercise we will follow J. M. Kosterlitz, D. J. Thouless, Ordering,
metastability and phase transitions in two-dimensional systems, J. Phys. C: Solid State
Phys. 6, 1181 (1973). In the continuum limit the XY Hamiltonian can be approximated
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as:

H = cst +
J

2

∫
d2r (∇θ(r))2 .

1. Write the condition that gives stable configurations of the field θ(r) that dominates
the Gibbs measure at very low temperature.

2. Note that θ(r) is not physical, contrary to S; There are multiple choices of θ(r)
which can lead to the same spin configuration. The equation ∆θ = 0 is the subject
of harmonic theory. Liouville theorem states that if θ(r) has no singularity, then it
is a constant; Therefore, non-trivial solutions must have singular points, or defects.
Then, Stokes theorem tells us that the integrals of dθ on different contours contai-
ning the singularity are all equal to 2πn for some n ∈ Z. Hence, the non trivial
stable configurations of the field, such that θ(r is not constant, must satisfy∮

dθ = 2πn , n ∈ Z .

The integer n is a characteristic of the defect, often called “charge”. Show that the
general solution of the equation ∆θ = 0 can be written as θ(r) = nϕ + θ0, where
ϕ is the polar coordinate of the point r. Draw the configuration of the spins for
n = ±1 and θ0 = 0,π/2.

3. Compute the energy of a defect of charge n (the integration over d2r varies between
a ≤ |r| ≤ L).

4. The defects have several interesting properties: Only one of them is enough to des-
troy long-range ferromagnetic order; A finite density of defects even kills algebraic
correlations; Defects are topologically stable (this means that there is no continuous
transformation of the field allowing to change their charge n); Defects with the same
charge are topologically equivalent (it is possible to deform the θ field from θ(r) = ϕ
to θ(r) = ϕ+π/2 in a smooth manner); Finally, show that these topological defects
are energetically stable. To do this, determine how much energy it would cost to
destroy one of the defects.

5. Applying the Peierl’s argument, and using the answer to question 3, compute the
free-energy cost for creating a defect, and estimate the critical temperature Tc

at which topological defects start to form. For T < Tc there are no defects and,
according to the spin-waves analysis, the system is characterized by algebraic cor-
relations. For T > Tc topological defects proliferate and correlations decay expo-
nentially. Estimate the correlation length as a function of the density of defects.

It is possible to show that topological defects behave as Coulomb electric charges
in 2d: two defects of charge n1 and n2 interact as

Eint = An1n2 ln

(
a

|r1 − r2|

)
,

i.e., two defects of opposite charge attract each other.

In the next part of the tutorial (optional), we will determine more formally the
effective model describing these topological defects.
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B) Optional exercise: The Coulomb gas formulation within the Villain approxi-
mation

The aim of this part of the excercise is to establish a connection between the XY model
and a system of charges interacting via a Coulomb potential in two dimensions. The
charges can be seen as defects or vortices in the local magnetization field.

1. The Bessel functions of imaginary argument In =
∫ 2π
0

dθ
2πe

x cos θ+inθ allows us to
writhe the Fourier series of eK cos θ as

eK cos θ =
∞∑

n=−∞
einθIn(K) .

In which regime we can approximate In(K) ≃ 1√
2πK

eK−n2/2K?

2. In the following we will use

eK cos θ ≃ eK√
2πK

∞∑
n=−∞

einθ−n2/2K .

Which physical symmetry of the model is preserved by this approximation and not
by the spin-wave approximation treated above eK cos θ ≈ eK−Kθ2/2?

3. Using the definition of the discretized version of the derivative ∂µθr = θr+aeµ − θr,
with µ = x,y, show that:

Z ≈
(

eK√
2πK

)N ∑
{n(r)∈Z}

∫
Dθ

∏
r

e−i
∑

µ ∂µnµ(r)θr−n2(r)/2K ,

where n(r) is an integer two-dimensional vector field.

4. Henceforth the K-dependent prefactor will be omitted (it only contributes to the
free-energy but not to the correlation function). Show that integrating over each θr
yields a zero divergence condition for the n(r) field.

5. Recall that a field with zero divergence can be written in the form of a curl: n(r) =
∇ × A(r), where A(r) = p(r)ez, i.e. nx = ∂yp and ny = −∂xp. Show that the
partition function can be recast as a summation over configurations of the field
p(r) (given the linear relation between p and n, any possible Jacobian associated
to this change of variable would be a constant).

6. We now recall the Poisson summation formula, which states that for an arbitrary
function f one has that:

∞∑
p=−∞

f(p) =
∞∑

m=−∞

∫ +∞

−∞
dϕf(ϕ)ei2πmϕ .

Apply this formula to the partition function by introducing an integer field m(r)
and a Gaussian field ϕ(r) for any point of the lattice.

7. Integrate out explicitly the Gaussian field ϕ(r) and write the resulting partition
function in terms of Zsw and the Green’s function of the Laplacian operator. In
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the following, without any loss of description of the large-scale physics, we replace
the Green’s function by its large-distance asymptotic behavior: G|r|≫a − G0 ≃
− 1

2π log |r|
a − c. Justify that in the large L limit only neutral configurations such

that
∑

rm(r) = 0 survive.

C) Real space renormalization

Using the Villain approximation we have seen that the partition function of the model
can be rewritten as:

Z = e2NJ Zsw Zv ,

Zv =
∑

{m(r)}∈ZN∑
r m(r)=0

e
πK

∑
r1 ̸=r2

m(r1)m(r2) ln
(

|r1−r2|
a

)
e−

π2K
2

∑
r m

2(r) .

1. The partition function Zv is the (grand-canonical) partition function of of a two-
dimensional Coulomb gas of charges sitting at the nodes of a 2d square lattice
(with a neutrality condition). Give the physical interpretation of the different terms.
Which parameter control the density of charges?

2. Consider the case where at most two non-zero opposite charges are present and
justify that:

Zv ≈ 1 +
z2

a4

∫
|r−r′|>a

d2r d2r′
∣∣∣∣ a

r− r′

∣∣∣∣2πK .

3. We now introduce the coarse-graining parameter b = eℓ (with ℓ = log b ≪ 1) and

split the integrals in the right hand side as
∫∞
a dr · · · =

∫ ba
a dr · · · +

∫∞
ba dr · · · .

Rescale the large-r integration variables so that the integrals again run from a to
∞. The rescaling can be absorbed into the definition of a renormalized fugacity.
Determine the differential equation governing the evolution of the fugacity under
rescaling.

4. In order to get the renormalization of K one has to study the spin spin correlation
function C(|r − r′|) = ⟨S0 · Sr⟩ and compute how the exponent of the power-law
decay is modified. We use the result of the paper J. V. José, L. P. Kadanoff, S.
Kirckpatrick, and D. R. Nelson, Renormalization, vortices, and symmetry-breaking
perturbations in the two-dimensional planar model, Phys. Rev. B 16, 1217 (1997),
where it is shown that the expansion of C in powers of z yields (equation (5.1))

C(|r− r′|) ∝ |r− r′|−
1

2πKeff ,
1

Keff
=

1

K
+ 4π3z2

∫ L

a

dr

a

(r
a

)3−2πK
.

Below which value of K the perturbative expansion breaks down? Split the integrals
in the right hand side as

∫∞
a dr · · · =

∫ ba
a dr · · · +

∫∞
ba dr · · · . Rescale the large-r

integration variables so that the integrals again run from a to ∞, and find the
renormalized bare coupling constant K ′ and its evolution equation upon rescaling.

5. Recall the relationship between z and K at the microscopic level before any sort of
renormalization. Plot the z(K) line in the (K,z) plane. This is the so-called line of
initial conditions.
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6. The RG flow is then made up by two equations:

dz

dℓ
= z(2− πK) ,

dK

dℓ
= −4π3z2K2 .

What are the fixed points of these equations? Locate them on the (K,z) plane.

7. Show that, for K in the vicinity of K⋆ = 2/π one has that:

16π2z2 − (2− πK)2 = cst .

Draw on the phase diagram the asymptotes of the resulting hyperboles describing
the flow lines.

8. We want now to exploit the RG flow to predict the temperature dependence of the
correlation length in the high-temperature phase. What is the correlation length in
the low temperature phase? How would you define Tc?

9. Let us now consider the regime close to the critical point, T → T+
c . Find K(ℓ) by

direct integration of the flow equations between 0 and ℓ. How would you define the
correlation length ξ? Determine how it diverges when Tc is approached from above.

APPENDIX: Green’s function of the two-dimensional Laplacian on the square
lattice

We define the Fourier transform as:

Ĝq =
∑
r

eiq·rGr , Gr =
1

N

∑
q ̸=0

e−iq·rĜq ,

where the wave vectors are q = 2π
L (nx,ny), and (nx,ny) are integers varying between

−L/(2a) and L/(2a). Inserting the last expression into the definition of the Green’s func-
tion we have that:

−a2∇2Gr = 4Gr −Gr+aex −Gr−aex −Gr+aey −Gr−aey

=
1

N

∑
q ̸=0

eiq·rĜq [4− 2 cos(aqx)− 2 cos(aqy)] = δr,0 .

We than obtain that:

Ĝq =
1

4− 2 cos(aqx)− 2 cos(aqy)
Gr =

1

N

∑
q ̸=0

e−iq·r

4− 2 cos(aqx)− 2 cos(aqy)
.

We will use the following properties of the Green’s function (without proving them):

G0 ≃ 1

2π
log

L

a
, G|r|≫a −G0 ≃ − 1

2π
log

|r|
a

− c+ o(1) ,

where c = 1
2π (γ + 3

2 log(2)) ≈
1
4 .
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