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The purpose of this set of problems is to learn how to implement the real space re-
normalization group ideas on simple physical systems. We will study first the percolation
transition and the Ising model on the bidimensional triangular lattice (in the spirit of
the so-called “majority rule”), then the Ising model on d-dimensional hyper-cubic lattices
within the Migdal-Kadanoff approximation and on the hierarchical Berker lattice.

I. REAL-SPACE RENORMALIZATION GROUP APPROACH TO THE
PERCOLATION TRANSITION

In statistical physics and mathematics, the percolation transition describes a geome-
tric type of phase transition occurring when nodes (or links) are added to a given
network. The probability of each node being occupied is independent of the other
sites’ occupancy, and is equal to p. Neighboring occupied sites form clusters. For an
infinite size system, there is a critical value of p, called percolation threshold pc, such
that for p < pc the system does not have any clusters that span the entire system
length, and for p > pc it does.

(A) One-dimensional chain: exact solution

1. Consider a 1d chain with sites occupied with probability p or empty with
probability 1−p. Define ns to be the cluster number – the number of clusters
containing s sites per lattice site. Find it in terms of p and s.

2. What is S, the average size of a finite cluster?

3. Calculate the correlation function g(r) – the probability that a site, that is a
distance r away from an occupied site, belongs to the same cluster. Rewrite
it in terms of the correlation length as g(r) = e−r/ξ.

4. What is the percolation threshold in this problem? What happens to S and
ξ at pc? The fact that the divergence of ξ at the percolation threshold can be
described in general by a simple power law, ξ ∝ (p− pc)−ν .

(B) One-dimensional chain: RG approach

Now we will use this exactly solvable model to demonstrate how real-space
renormalization works. The idea is to replace a group of sites by a coarse-grained
super-site, whose linear dimension is b, with 1 < b < ξ. The super-site is said
to be occupied if there is a cluster of the original sites that spans the length of
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the cell. Away from the critical point, the probability p′ of the super-sites will
be different from p, while at the critical point p′ = p = pc since ξ is infinite. The
new lattice will have a new lattice constant b, and a new correlation length ξ′,
measured in the units of b. Since this is an exact transformation, one has that
bξ′(p′) = ξ(p).

1. Show that

1

ν
=

log dp′

dp

∣∣
pc

log b
.

This expression allows us to estimate the critical exponent ν via the renor-
malization group method.

2. Group the sites in our one-dimensional chain into cells of b sites. Find p′.

3. Values of p that stay constant under renormalization are called fixed points.
What are the fixed points in this problem?

4. Calculate ν and compare it to the earlier result.

p’

b

Fig. 1 – Two-dimensional triangular lattice. Sites belonging to the same triangular plaquette

(dashed blue) are grouped together.

(C) Two-dimensional triangular lattice: RG approach

1. Consider now a two-dimensional triangular lattice. The lattice is divided in
triangular plaquettes, as shown in the figure. Group together the three sites
belonging to each plaquette and find p′ in such a way that the plaquette
supports the percolating cluster.

2. What are the fixed points of the recursion relation? Which of them is stable
and which of them is unstable?

3. Show that the lattice made by the triangular plaquettes is still a triangu-
lar lattice (but rotated by π/6 with respect to the original lattice) with a
renormalized lattice constant. Find b and ν.
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II. REAL-SPACE RENORMALIZATION OF THE ISING MODEL ON THE
BIDIMENSIONAL TRIANGULAR LATTICE WITHIN A VARIATIO-
NAL APPROXIMATION

We consider the Ising model on a two-dimensional triangular lattice represented in the
figure, in which the N spins S = (S1, . . . ,SN ) interact according to the Hamiltonian:

H[S] = −J
∑
〈i,j〉

SiSj , (1)

where 〈i,j〉 denotes the pairs of nearest neighbors on the lattice.

S1(α)

S2(α)S3(α)
̂Sα

Fig. 2 – Ising model on the two-dimensional triangular lattice. Spins belonging to the same trian-

gular plaquette (blue) are grouped together. A new coarse-grained spin is assigned to each plaquette

according to the majority rule.

In this exercise we consider a transformation of the real-space renormalization group
which consists in reducing the number of degrees of freedom of the system by introdu-
cing new spins, each of them representing the state of a block of several coarse-grained
original spins. The blue triangles (blocks) of the figure are indexed by α = 1, . . . ,N̂ ,
and we denote 1(α), 2(α), and 3(α) the three sites of the original lattice at the vertices
of the triangle α. A new Ising spin Ŝα is placed at the center of each blue triangle.
As sketched in the figure, to each configuration of the original spins S = (S1, . . . ,SN )
one associates a configuration Ŝ = (Ŝ1, . . . ,ŜN̂ ) of the new coarse-grained block spins
of the new lattice according to the majority rule inside each block:

Ŝα = sign(S1(α) + S2(α) + S3(α)) .

You can check that each spin Si belongs to a single block.

1. What is the distance b (scale factor of the transformnation) between two nearest-
neighbor spins in the new triangular lattice formed by the blocks α? What is the
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number of N̂ spins in the new lattice? We call C(Ŝ) the set of configurations S
of the original spins that lead to the configuration Ŝ of the block spins by the
decimation rule. How many configurations of the original spins S1(α),S2(α),S3(α)
are decimated into Ŝα? What is the cardinality of C(Ŝ)?

2. A renormalized Hamiltonian acting on the new spins is defined as:

e−βĤ[Ŝ] =
∑

S∈C(Ŝ)

e−βH[S] .

Compare the partition functions computed from Ĥ[Ŝ] and H[S]. What is the most
general form of the renormnalized Hamiltonian Ĥ[Ŝ]?

3. In general the exact computation of the Ĥ[Ŝ] after the decimation is impossible
(except in 1d, as we will see in the next exercise). To bypass this difficulty we will
consider an approximate Hamiltonian with the same form of H[S], inspired by a
variational method.

Consider an arbitrary approximate Hamiltonian H0[S] on the original spins. For
each configuration Ŝ of the decimated spins one introduces an average over the
configurations of the original spins using the approximate Hamiltonian as:

〈· · · 〉0,Ŝ =
1

Z0[Ŝ]

∑
S∈C(Ŝ)

· · · e−βH0[S] , Z0[Ŝ] =
∑

S∈C(Ŝ)

e−βH0[S] .

Show that
e−βĤ[Ŝ] = Z0[Ŝ]〈e−β(H[S]−H0[S])〉0,Ŝ .

Using the Jensen inequality, 〈f(x)〉 ≥ f(〈x〉), for any convex function f and any
random variable x, deduce the following upper bound for Ĥ[Ŝ]:

Ĥ[Ŝ] ≤ − 1

β
lnZ0[Ŝ] + 〈H[S]−H0[S]〉0,Ŝ .

4. We will take as approximate Hamiltonian

H0[S] = −J
N̂∑
α=1

∑
〈i,j〉∈α

Si(α)Sj(α) ,

where the sum 〈i,j〉 ∈ α involves only the three edges inside the block α. Compute
Z0[Ŝ]. Compute 〈Si〉0,Ŝ and express it in terms of the configuration of the new

spins Ŝ. We will introduce the notation α(i) denoting the block α to which the
site i belongs. Compute 〈SiSj〉0,Ŝ if i and j belongs to two different blocks.

5. Deduce then the value of 〈H[S]−H0[S]〉 and show that

Ĥ[Ŝ] ≤ c− J ′
∑
〈α,β〉

ŜαŜβ ,

where 〈α,β〉 denote the pairs of nearest neighbors blocks in the new lattice. Find
the new coupling constant J ′.
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6. What are the fixed points Jc of this transformation? Study their stability by
computing ∂J ′/∂J |Jc .

7. Compute the critical exponent ν at the non-trivial fixed point and compare it to
its exact value ν = 1 in d = 2.

III. REAL-SPACE RENORMALIZATION OF THE ISING MODEL À LA
MIGDAL-KADANOFF

We consider the Ising model on a d-dimensional hyper-cubic lattice with spins Si =
±1, described by the Hamiltonian:

H = −J
∑
〈i,j〉

SiSj , (2)

where 〈i,j〉 denotes the pairs of nearest neighbors on the lattice. We introduce the
dimensionless coupling constant t = tanh(K) with K = βJ > 0.
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Fig. 3 – Top: Decimation of b− 1 spins along a one-dimensional chain. Middle: Migdal-Kadanoff

procedure on a two-dimensional square lattice for b = 2. Bottom: Migdal-Kadanoff procedure on

a three-dimensional cubic lattice for b = 2. Bonds are moved along the directions of the arrows.

Spins marked with circles are kept and spins marked with crosses are integrated out.

(A) Decimation rule in one dimension

We start by the case d = 1 in which the decimation can be carried out exactly.
We study the renormalization procedure illustrated in the figure by which b− 1
spins are integrated out (crosses) and the other spins are kept (circles). The
thick bonds indicate the new coupling t′ obtained upon decimation.

1. Show that eKSiSi+1 can always be written as A+BSiSi+1, where the constants
A and B depend on K and must be determined.
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2. Consider three subsequent spins on the chain, S1, S2, and S3. For S1 and S3
being fixed, integrate out S2 and compute:∑

S2=±1
eK(S1S2+S2S3) .

3. Determine the recursion relation for the coupling constant when b− 1 conse-
cutive spins on the chain are integrated out.

(B) The two-dimensonal model on the square lattice

Unfortunately, a simple decimation in d larger than 1 cannot be performed
exactly. To circumvent this problem approximations have to be made. We follow
here an idea put forward by Migdal (1975) and Kadanoff (1976). We consider
a two-step decimation procedure on a square lattice sketched in the figure. We
start by the case b = 2. The approximation consists in moving the bonds that are
not connected to the spins that are kept (circles). These spins are then connected
by bonds of strength 2K instead of K.

1. Spins marked by crosses now are decimated. What is the new coupling constant
t′ after decimation?

 0
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Fig. 4 – Plot of the function f(x) = 4x2/(1 + x2)2 for x ∈ (0,1).

2. Discuss the fixed points of the recursion relation (we can use here the fact
that tanh(2x) = 2 tanh(x)/(1 + tanh2(x))). Using the figure above provide
an approximate value for the fixed point Kc. The exact value, computed by
Onsager, is Kexact

c = log(1 +
√

2)/2 ≈ 0.44.

3. The correlation length (measured in units of the lattice constant) of the model
depends only on K. Imposing that ξ measured in units of the original lattice
spacing is the same before and after the decimation, and imposing that in the
vicinity of Kc the correlation length diverges as ξ ∝ (K − Kc)

−ν , compute
the critical exponent ν within the Migdal-Kadanoff approximation.
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4. Optional: We now generalize the procedure described above to any b. We
move the bonds that are not connected to the spins that are kept along the
x and y directions. The spins marked with a cross are then integrated out by
one-dimensional decimation. What is the value of the new coupling constant?

5. Optional: We consider the analytic continuation limit in which an infinitesi-
mal fraction of spins is renormalized at each step (and an infinitesimal fraction
of bonds is moved). We denote b = 1 + ε, with ε� 1. Show that:

K ′ ≈ K + ε [K + f(K) log tanh(K)] ,

with f(K) a function to be determined.

6. Optional: The exact value Kexact
c = log(1+

√
2)/2 ≈ 0.44 is now a fixed point

of the recursion relation. Compute the value of the critical exponent ν.

(C) Optional exercise: Generalizations to arbitrary dimensions

We now consider the Ising model on the d-dimensional hyper-cubic lattice and
consider the Migdal-Kadanoff decimation procedure for arbitrary b.

1. Compute N ′, the number of sites kept after the decimation, as a function of
N and b.

2. Compute B′, the number of bonds that survive after the bond moving step,
as a function of N ′ and d.

3. Imposing that the total number of couplings is the same before and after
the bond moving step, determine the value of the coupling constant K̃ (see
figure) as a function of b and d.

4. Determine the recursion relation for any arbitrary value of b and d.

5. Discuss the stabiliy of the low-temperature (K →∞) fixed point and connect
the result to the lower critical dimension of the model.

IV. REAL-SPACE RENORMALIZATION OF THE ISING MODEL ON THE
HIERARCHICAL BERKER LATTICE

The Berker diamond lattice is a hierarchical lattice that can be constructed iteratively
as explained below and illustrated in the figure: Starting from two vertices and a single
edge, one recursively replace each edge by 2c edges, inserting c vertices in between,
where c ≥ 1 is an integer parameter. The first steps of this procedure are represented
on the figure for c = 2. To mimic Euclidean d-dimensional lattices, c is taken equal
to 2d−1.

We place the Ising spins on the vertices of the graph obtained after a certain number
of steps of this recursive procedure, and consider the Hamiltonian (2), where the
sum is over the 〈i,j〉 edges of the graph. We will study this model by the decimation
method, eliminating the spins in the reverse order of their introduction.

1. How many edges and how many vertices are present in the graph after n steps?

2. Setting, as usual, t = tanh(βJ), find the recursion relation giving the new di-
mensionless coupling constant t′ as a function of the coupling constant t at the
previous step of the decimation procedure.
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Fig. 5 – Iterative construction of the hierarchical diamond lattice with c = 2.

3. Show that for c = 1 one recovers the recursion relation of the one-dimensional
Ising model.

4. What are the values of t corresponding to the high and low temperature limits?
Check that these correspond to fixed points of the renormalization transformation.

5. Study the behavior of the RG transformation around these trivial fixed points and
discuss their stability for c > 1.

6. The distance between the boundary sites of the lattice is equal to 2n edges after
n steps: this naturally fixes the length scale after n iterations as 2n. For c = 2
the fixed point of the RG transformation is found at t? ' 0.5437. Compute the
critical exponent ν.
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