
Advanced Statistical Physics

Exam

22nd December, 2023

Surname :

Name :

Master :

Write your surname & name clearly and in CAPITAL LETTERS.

You can write in English or French, as you prefer.

No books, notes, calculator nor mobile phone allowed.

Not only the results but also the clarity and relevance of the explanations will be
evaluated.

Focus on the questions asked and answer them (and not some other issue).

If doubt exists as to the interpretation of any question, the candidate is urged to
consult the examiners in the room and to submit with the answer paper a clear statement
of any assumptions made.

The answers must be written neatly within the boxes.

The problems roughly follow the order of the chapters in the Lecture Notes but
are not necessarily of increasing difficulty.

The exam is long but do not panic, if you are blocked by some problem, jump to
the next one and come back later to the one you found difficult.
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Conceptual questions 30pt

1 - Explain what “ergodicity” means. Support your answer with an equation. 2pt

Ergodicity means that after a sufficiently long time, time and ensemble averages coincide, that is,
well-behaved global observables satisfy

O(t) = 〈O〉

with

O(t) ≡ lim
τ�t0

1

τ

∫ t+τ

t
dt′O(t′)

independent of t for t sufficiently large, and

〈O〉 ≡ 1

N

N∑
a=1

Oa

N being the number of elements of the ensemble.

2.a - Define the term “phase”. 2pt

A state of matter
No singularity in the free-energy for all the states in a phase
A domain of parameter space in which the system displays similar behaviour
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2.b - Give an example. 1pt

Solid; ferromagnetic.

3.a - Define the term “phase transition”. 2pt

A sharp change between states of matter.

3.b - Give an example. 1pt

From solid to liquid; from paramagnetic to ferromagnetic.

4 - Define the order parameter in the context of phase transitions. 2pt

A quantity that characterizes the degree of order in a system.
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5 - Describe the behaviour of the order parameter across a second-order phase transition. 2pt

Continuous.

For example,

O(g) = 0 on one side of the disordered side of the transition and

O(g) ∼ (|g − gc|β) on the ordered one with β the critical exponent

6.a - Define the spatial connected correlation function in a problem described by, say, a scalar field. 2pt

C(r) ≡ 〈[φ(~r′)− 〈φ(~r′)〉][φ(~r′ + ~r)− 〈φ(~r′ + ~r)〉]〉

6.b - Describe the spatial connected correlation function close and at a second order phase transition. Use
an equation, a plot and explain them. 3pt

C(r) ∼ r2−d−η e−r/ξ(g)

with ξ(g) ∼ |g − gc|−ν the equilibrium correlation length which diverges when the control
parameter approaches the critical point gc with the critical exponent ν

The drawing of hte connected correlation: In a log-log plot, straight line with a cut-off
away from gc and a full straight line at gc.

Drawing of the correlation length divergence on both sides of gc
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7.a - Describe the behaviour of the order parameter across a first-order phase transition. 1pt

Jumps

7.b - Describe the behaviour of the correlation length across a first-order phase transition. 1pt

It does not diverge, finite

Figure 1: The curves represent the Curie-Weiss or mean-field free-energy density of a magnetic system in contact
with baths at different temperatures indicated in the figure, as a function of the magnetisation density, called M here.
TS (in blue) is the name given to the temperature at which the minimum at M = 0 disappears.

8.a - Describe the phase transition that is represented in Fig. 1. 2pt

At T1, first order phase transition from M = 0 at T > T1 to M 6= 0 at T < T1, with two possible
signs.

8.b - What could happen between T2 and TS? Explain. 2pt

Hysteresis between M 6= 0 and M = 0.
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9 - Do you know a system in which the correlation length diverges in a full phase? 1pt

2d XY model

Figure 2: Image extracted from Ding & Zhong, A theoretical strategy for pressure-driven ferroelectric transition
associated with critical behavior and magnetoelectric coupling in organic multiferroics, Phys. Chem. Chem. Phys.
22, 19120 (2020). P is the polarization, E is the modulus of an applied electric field, and the data points have been
measured at different temperatures indicated in the plot.

10 - Explain what has been done in Fig. 2. Describe what are t, β and γ, used in the vertical and horizontal
axes. 2pt

A scaling plot with the purpose of identifying Pc, t = P − Pc possibly divided by Pc, and the
critical exponents β (of the order parameter) and γ (of the susceptibility). Note that the title of
the paper is ... for pressure driven... so the tuning parameter to go through the transition is the
pressure P
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11 - Do the answer to the questions above apply to classical and quantum phase transitions or is there a
difference when dealing with the quantum ones? Justify your answer. 2pt

Yes. Classical d + 1 dimensional - quantum d dimensional mapping, with the corresponding
association of parameters

T1 T2 T3

Figure 3: These are three configurations of the bidimensional Potts model with three colors. This model has variables
placed on the vertices of a lattice, which can be coloured in three ways: blue, red and green. The interactions act on
first neighbours on the lattice and favour that neighbouring sites be occupied by variables with the same colour. The
configurations have been drawn from equilibrium at different temperatures T1, T2 and T3.

12 - What do you conclude from the images, especially about the values of the three temperatures T1, T2

and T3? 2pt

Above, at and below Tc. T3 is not zero since there are finite T fluctuations in the last figure. There
has been spontaneous symmetry breaking towards the red state in this case.
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Problem: The antiferromagnetic Ising model 40pt

Take an Ising antiferromagnetic model defined by the Hamiltonian

HAF[{si}] =
J

2

∑
〈ij〉

sisj −H
∑
i

si (1)

with i = 1, . . . , N classical Ising spins, si = ±1. The coupling constant is J > 0 and H is an external
field. The sum runs over nearest neighbours on a d dimensional hypercubic lattice with coordination z and
the factor 1/2 ensures that the contribution of each link is counted once. We will consider the statistical
properties of this model coupled to an equilibrium bath at temperature T .

Generic questions

1. Identify the symmetries of this Hamiltonian. Consider H = 0 and H 6= 0. 1pt

Global spin reversal si 7→ −si for H = 0. Explicitly broken for H 6= 0.

2. Which ground states do you expect for H = 0? Draw it or them for d = 1. 1pt

Antiferromagnetic ordering for H = 0, alternating up-down spins.

3. Is the ground state unique or are there many? Which would be their degeneracy in the latter case?
2pt

For H = 0 two related by symmetry.
For H 6= 0 unique ground state.
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4. Which kind of equilibrium phase do you expect at very high temperature? 1pt

Paramagnetic, disordered.

5. You will discuss below whether you expect a finite temperature phase transition. Focus on H = 0.

(a) Under which condition on the system size? 1pt

N →∞.

(b) Between which phases? 1pt

from a PM (high T ) to an AF (low T )

(c) In which space dimensions? 2pt

In d ≥ 2
In d = 1 no finite T order

(d) If you exclude the existence of a finite temperature phase transition in some particular value of
d, explain why. 1pt

In d = 1 the same Peierls argument as for the FM chain
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6. Take the case H = 0. Use symmetry arguments (based on your answer to question 1.) to evaluate
the equilibrium global magnetization m = N−1

∑
i=1〈si〉 and the equilibrium local magnetization

mi = 〈si〉. 1pt

m = mi = 0 because of the up-down symmetry.

7. Which is the mechanism whereby the system acquires the low temperature ordering that you have
identified in previous questions? 1pt

Spontaneous symmetry breaking, due to an infinitesimal staggered pinning field, between the two
equivalent equilibrium states

8. Which order parameter would you propose? 1pt

Staggered magnetization over two sub-lattices A and B, with mA = −mB.

The mean-field approximation

We will now study this model in its mean-field approximation.

9. In order to capture the low temperature phase, can you treat all spins in the same way? 1pt

no, separate them in two sublattices.
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10. Use now the approach of Weiss, in which the interaction between neighboring spins is replaced by an
interaction with an averaged value which will play the role of an order parameter and contributes to
the local effective field. Derive the mean-field approximation of the Hamiltonian HAF justifying the
steps followed and the approximations made. 4pt

We call A and B the two sub-lattices. We write a spin in each of these sub-lattices as its average
plus its fluctuations

sj = mA + (sj −mA) = mA + δsj sk = mB + (sk −mB) = mB + δsk (2)

with δsj � mA and δsk � mB. The quadratic part of the Hamiltonian then reads

Hq({si},mA,B) =
J

2

∑
j∈A

k=∂j∈B

(mA + δsj)(mB + δsk) +
J

2

∑
k∈B

j=∂k∈A

(mB + δsk)(mA + δsj)

∼ J

2

∑
j∈A

k=∂j∈B

(mAmB + δsjmB +mAδsk) +
J

2

∑
k∈B

j=∂k∈A

(mBmA + δskmA +mBδsj)

=
J

2

∑
j∈A

k=∂j∈B

[mAmB + (sj −mA)mB +mA(sk −mB)]

+
J

2

∑
k∈B

j=∂k∈A

[mBmA + (sk −mB)mA +mB(sj −mA)]

=
J

2

∑
j∈A

k=∂j∈B

[−mAmB + sjmB +mAsk] +
J

2

∑
k∈B

j=∂k∈A

[−mBmA + skmA +mBsj ] (3)

having dropped the contributions O(δs2). Then, putting these terms together with the ones for
the coupling to the external field

HAF({si},mA,B) = −J
2
zNAmAmB −

J

2
zNBmAmB

+JzmB

∑
j∈A

sj −H
∑
j∈A

sj + JzmA

∑
k∈B

sk −H
∑
k∈B

sk

= −J
2
zNmAmB + (JzmB −H)

∑
j∈A

sj + (JzmA −H)
∑
k∈B

sk

= −J
2
zNmAmB − heff

A

∑
j∈A

sj − heff
B

∑
k∈B

sk (4)
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11. Have you identified local fields? Which are the mathematical expressions that determine them? 2pt

heff
A = −JzmB +H (5)

heff
B = −JzmA +H (6)

the former acting on the spins of sublattice A and the latter on the spins of sublattice B.

12. Deduce the free-energy density as a function of the order parameters. 2pt

We write the partition sum and we calculate the sum over the now uncoupled spins on the two
sublattices:

Z = eβ
J
2
zmAmBN

∑
sj∈A

∑
sk∈B

eβ
∑

j∈A sjh
eff
A (mB)β

∑
k∈B skh

eff
B (mB)

= eβ
J
2
zmAmBN

{
2 cosh[βheff

A (mB)]
}N/2 {

2 cosh[βheff
B (mA)]

}N/2
= exp

{
N

2
βJzmAmB +

N

2
ln{2 cosh[βheff

A (mB)]}+
N

2
ln{2 cosh[βheff

B (mA)]}
}

(7)

The free-energy density is

−βf(mA,mB) =
1

N
lnZ

=
βJz

2
mAmB +

1

2
ln{2 cosh[βheff

A (mB)]}+
1

2
ln{2 cosh[βheff

B (mA)]} (8)

We check that we recover the known result for the FM case. If we set mA = mB = m,

−βf(m) =
βJz

2
m2 + ln{2 cosh[βheff

A (m)]} (9)

which is, indeed, the correct form we had for the FM case, if we change J 7→ −J .
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13. Derive the mean-field self consistency equations 1pt

mA = tanh(−βJzmB + βH) (10)

mB = tanh(−βJzmA + βH) (11)

14. Consider H → 0 and recall that J > 0. Do you find a phase transition? At which critical temperature
and of which order? 2pt

Using mA = −mB, the equations reduce to a single one

mA = tanh(βJzmA) (12)

the same equation as for the FM model. βcJz = 1 and second order.

15. Is there a total magnetisation in this problem? 1pt

No. But each sublattice acquires one by spontaneous symmetry breaking.

16. Can you identify a single quantity, which we will call φ, that is different from zero in the low temper-
ature phase? Give its expression. 1pt

Yes, φ ≡ mA −mB.
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17. Give the definition and calculate the linear susceptibility, defined as the variation of the order parameter
that you identified with respect to an infinitesimal field h > 0 globally coupled to the spins, HAF 7→
HAF − h

∑
i si, for H = 0 and T ∼ Tc. What do you remark in the final expression? 2pt

χ =
∂mh

A

∂h

∣∣∣∣
h=0

(13)

We note that mh
A 6= −mh

B under h. We proceed as usual, we take the mean-field eqs. (10)-(11)
and we expand them close to mh

A ∼ 0 and mh
B ∼ 0:

mh
A ∼ −βJzmh

B + βh (14)

mh
B ∼ −βJzmh

A + βh (15)

We replace the second equation in the first one to get a closed expression of mh
A

mh
A ∼ −βJz(−βJzmh

A + βh) + βh = (βJz)2mh
A + (−βJz + 1)βh (16)

which implies

mh
A ∼

1− βJz
1− (βJz)2

βh =
1

1 + (βJz)
βh (17)

Then, at T ∼ Tc = Jz,

χ =
1

T + Tc
kB = 1 (18)

Note the sign, it’s T + Tc in the denominator.
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18. If you were to guess, which would be, in your opinion, the low temperature phase of a frustrated
model with ferromagnetic interactions between nearest neighbours on the lattice and antiferromagnetic
interactions falling off with distance as a power law? 2pt

Modulated, FM at short distances and reversed FM at longer distances. The length of the regions
will depend on the parameters, especially the relative strength of the FM and AF couplings.

Ginzburg-Landau theory

19. Recall the functional form of the scalar field Ginzburg-Landau free-energy density of the Ising ferro-
magnetic model. 2pt

F [φ] =

∫
ddx

[ c
2

(~∇φ)2 + aφ2 + λφ4 −Hφ
]

(19)

with a ∝ (T − Tc), λ > 0.

20. From the results found in the previous section, especially in question 16, write the Ginzburg-Landau
free-energy density for the anti-ferromagnetic model. 1pt

The same as above, with the staggered order parameter φ defined in question 16.

The antiferromagnetic chain

Consider now the one dimensional case,

HAF[{si}] = J
∑
i=1

sisi+1 −H
∑
i

si (20)

with J > 0, H > 0, and periodic boundary conditions.
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21. Call K = βJ and H = βH, write the partition function, and identify the transfer matrix. 1pt

T =

(
e−K+H eK

eK e−K−H

)
(21)

which has the same form as for the FM case, apart from the sign in front of K.

22. Is there an equivalent quantum model that represents this classical chain? 1pt

Write T in terms of Pauli matrices, T = aI + bσ̂x + cσ̂z and find a, b, c as we did in the lectures.
No need to include σ̂y since all real in T.
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Problem: The hierarchical Berker lattice
10pt

The Berker diamond lattice is a hierarchical lattice that can be constructed iteratively as explained
below and illustrated in the figure: Starting from two vertices and a single edge, one recursively replace
each edge by 2c edges, inserting c vertices in between, where c ≥ 1 is an integer parameter. The first steps
of this procedure are represented on the figure for c = 2. To mimic Euclidean d-dimensional lattices, c is
taken equal to 2d−1.

Figure 4: Iterative construction of the hierarchical diamond lattice with c = 2. We will also call it a graph.

We place the Ising spins on the vertices of the graph obtained after a certain number of steps of this
recursive procedure, and consider the Hamiltonian

H = −J
2

∑
〈ij〉

sisj (22)

where the sum is over the 〈ij〉 edges of the graph and J > 0. We will study this model by the decimation
method, eliminating the spins in the reverse order of their introduction.

1. How many edges and how many vertices are present in the graph after n steps? 1 pt

Edges, case c = 2. n = 1 : e1 = 1, n = 2 : e2 = 4, n = 3 : e3 = 16.
Rule en+1 = 2c en for n = 1, . . . and e1 = 1. Then

en = (2c)n−1

For c = 2 becomes en = 4n−1 and one can check the first values above.

Vertices, case c = 2. n = 1 : v1 = 2, n = 2 : v2 = 4, n = 3 : v3 = 12.
Recursion vn+1 = vn + cen for n = 1, . . . with e1 = 1 and v1 = 2. Then

vn+1 = v1 + c

n∑
k=1

ek = 2 + c

n∑
k=1

(2c)k−1 = 2 + c

n−1∑
k=0

(2c)k

= 2 + c
1− (2c)n

1− (2c)

where we used
n∑
k=0

xk =
xn+1 − 1

x− 1
. For c = 2 the result becomes vn = 2 + 2/3 (4n−1 − 1)
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2. Setting, as usual, t = tanh(βJ), find the recursion relation giving the new dimensionless coupling
constant t′ as a function of the coupling constant t at the previous step of the decimation procedure.
2 pt

We focus on the partition sum over the “internal” spins si with i = 1, . . . , c, to two “external”
ones that we call sI and sI′

Z(sI , sI′) =
∑

{si=±1}

e
βJ

c∑
i=1

si(sI+sI′ )
= {2 cosh[βJ(sI + sI′)]}c

= eln{2 cosh[βJ(sI+sI′ )]}c = ec ln{2 cosh[βJ(sI+sI′ )]}

= ec ln 2 ec ln[cosh(βJ(sI+sI′ )]

The first factor is a constant. The second one should be rewritten in the form of the original
Hamiltonian. One notes

sI + sI′ =


2 sI = sI′ = 1
0 sI 6= sI′

−2 sI = sI′ = −1
⇒ cosh[(βJ(sI + sI′)] =

{
cosh(2βJ) sIsI′ = 1
1 sIsI′ = −1

Then,

Z(sI , sI′) = ec ln 2 ec
(1+sIsI′)

2
ln[cosh(βJ)] = ec ln 2 e(c/2) ln[cosh(βJ)] e(c/2) ln[cosh(βJ)] sIsI′

Calling K = βJ and K ′ the new adimensional coupling

K ′ = (c/2) ln[coshK] ⇒ e(2/c)K′ =
1

2

(
e2K + e−2K

)
We transform this relation by adding or subtracting one on both sides:

e(1/c)K′
(
e(1/c)K′ ± e−(1/c)K′

)
=

1

2

(
eK ± e−K

)2
Dividing one by the other

tanh[(1/c)K ′] = (tanhK)2 ⇒ tanhK ′ = tanh{c tanh−1
[
(tanhK)2

]
}

Using now t = tanhK and t′ = tanhK ′

t′ = tanh{c tanh−1 t2}
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3. Show that for c = 1 one recovers the recursion relation of the one-dimensional Ising model. 2pt

We take c = 1

t′ = tanh{tanh−1 t2} = t2

which the relation we already know for the d = 1 Ising chain

Note that dt′/dt = 2t > 0 for all t > 0

4. What are the values of t corresponding to the high and low temperature limits? Check that these
correspond to fixed points of the renormalization transformation. 2pt

t = tanhK = tanh(βJ)

Low temperature T → 0 means β →∞, that is βJ →∞, tanh(βJ)→ 1 and t→ 1

High temperature T →∞ means β → 0, that is βJ → 0, tanh(βJ)→ 0 and t→ 0

Fixed points?

Low T , t→ 1, is 1 = tanh[c tanh−1 1]?
Yes, since tanh−1 1 =∞, and then the result in the left-hand-side follows.

High T , t→ 0, is 0 = tanh[c tanh−1 0]?
Yes, since tanh−1 0 = 0 and then the result in the left-hand-side follows.
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5. Study the behavior of the RG transformation around these trivial fixed points and discuss their stability
for c > 1. 1 pt

Use
d tanh y

dy
=

1

cosh2 y

d arctanh y

dy
=

1

1− y2

then
dt′

dt
=

1

cosh2[c arctanh t2]

c

1− t4
2t

Now, for c > 1 at t� 1 that means T →∞:

t� 1 T →∞ dt′

dt
= 2ct+O(t5)→ 0

and at t = 1 that is T → 0, the derivative is also positive and goes to zero exponentially

t→ 1− T → 0
dt′

dt
→ 2ct

1− t4
1

e2c arctanh 1−
→ 0

For c > 1, there must be a crossing at a non-zero value of t, as shown in the plot.
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6. The distance between the boundary sites of the lattice is equal to 2n edges after n steps: this naturally
fixes the length scale after n iterations as 2n. For c = 2 the fixed point of the RG transformation is
found at t? ' 0.5437. Compute the critical exponent ν. 1 pt

At each iteration step the length scale doubles so the correlation length changes as

ξ′ = ξ/2

Close to the non-trivial fixed point t?, ξ ∼ |K −K?|−ν ; then

|K ′ −K?|−ν =
1

2
|K −K?|−ν ⇒ 1

2
=
ξ′

ξ
=

[
dK ′

dK

∣∣∣∣
K∗

]−ν
ν =

ln 2

ln
dK ′

dK

∣∣∣∣
K∗

We can transform the derivatives

dt′

dt

∣∣∣∣
t∗

=
dt′

dK ′
dK ′

dK

dK

dt

∣∣∣∣
K∗

⇒ dK ′

dK

∣∣∣∣
K∗

=

dt′

dt
dt′

dK ′
dK

dt

∣∣∣∣∣∣∣
t∗

and the factors in denominator are regular and we can forget them. Then we need to estimate

ν =
ln 2

ln
dt′

dt

∣∣∣∣
t∗

=
ln 2

ln

{
2ct

(1− t4) cosh2[c tanh−1(t2)]

}∣∣∣∣
t∗

Yields ν ∼ 1.33.
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