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1 The correlation length and the energy gap

Take the classical one dimensional Ising chain with ferromagnetic couplings, at tempera-
ture T and under a uniform external field h, and treat it with the transfer matrix formalism.

1. Write the spatial correlation between two spins at sites i and j, separated at distance
r = |~ri − ~rj |, C(r) = 〈sisj〉, using the transfer matrix method.

2. Show that the correlation length ξ, which characterises the spatial decay of the two-
point correlation function, C(r) ∼ e−r/ξ, is given by ξ = [ln(λ1/λ2)]

−1 with λ1 and
λ2 the eigenvalues of the transfer matrix T. Give the explicit expression of ξ in terms
of the parameters K = βJ and H = βh.

3. Which is the limit limT→0+ limH→0 ξ? What does this mean?

4. Optional Check the scaling hypothesis using H and t = e−2K as the adimensional
scaling parameters, with the latter replacing the linear displacement from a finite
temperature critical point, in this case with an exponential divergence of the corre-
lation length at T → 0 [1].

Take now the quantum spin model H = −(∆/2)σ̂x.

5. Find the spectrum.

6. Compare the energy gap, e1 − e0 to the inverse correlation length of the classical
problem in the absence of the applied field.

2 The 2dIM and the transverse field quantum Ising chain

Take a two dimensional classical Ising model defined on a rectangular lattice made of square
plaquettes, with lattice spacing a. The system has N ×M sites on which the bimodal
variables, sn,m = ±1 with n = 1, . . . , N and m = 1, . . . ,M are placed, and periodic
boundary conditions on both directions are imposed. The ferromagnetic interactions are
different on the two spatial directions, say Jx and Jy:

H({si}) = −Jx
∑
nm

sn,msn,m+1 − Jy
∑
nm

sn,msn+1,m . (1)
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We identified the spins by the two coordinates of the place they occupy on the lattice.
The periodic boundary conditions imply sn,M+1 = sn,1 and sN+1,m = s1,m.

1. Build a ladder, with two classical Ising chains attached to one another site by site.
Call τ = na the direction along the chains, and x = ma the one across the bonds
between the two chains, that is m = 1 and m = 2. Write the partition function for
this rectangular problem in terms of a transfer matrix T. Note that one has to choose
the “transfer direction” and sum over all the configurations of the “transverse” one.
Think about the most convenient choice.

2. Introduce the basis |s1〉 ⊗ |s2〉 of the product of two spins 1/2 Hilbert space and the
notation σ̂z1 = σ̂z ⊗ I and σ̂z2 = I⊗ σ̂z, and similarly for the other two Pauli cases.

3. Express the classical transfer matrix in terms of Pauli operators in this Hilbert space.

4. Show that T can be written as e−εĤ with Ĥ the quantum Hamiltonian of a two

spin systems. Determine the relation between the coefficients. Hint: use e−εĤ ∼
eεb0I− ε(b1σ̂x + b2σ̂y + b3σ̂z) and determine the coefficients b0, b1, b2, b3.

5. Use the results in the previous item to generalise to a system with Na×Ma size.

6. Find the quantum representation of the operator TN in the form e−NεĤ and show
that Ĥ is the so-called quantum transverse field Ising chain, involving two non-
commuting spin operators (or Pauli matrices).

7. Find the relations between the parameters in the two models.

3 The multi-instanton gas (optional)

In the lectures we expressed the partition function of a quantum particle in a double well
potential as a path integral. We evaluated the latter in the semi-classical approximation
and we found that this amounts to the saddle-point classical contribution and the quadratic
fluctuations around it. The classical configurations are instantons, which take the particle
from one well to the other, thus describing the tunnelling processes.

The problem here is to study the instanton gas which will be constrained by the
requirement of it being dilute and that not too many instantons can be accommodated in
a finite time interval.

The full transition amplitudes are

G(x0, τ ;x0, 0) =
∑
n=2k

Kn

∫ τ

0
dτ1

∫ τ1

0
· · ·

∫ τn−1

0
dτn Un(τ1, . . . , τn)

G(−x0, τ ;x0, 0) =
∑

n=2k−1
Kn

∫ τ

0
dτ1

∫ τ1

0
· · ·

∫ τn−1

0
dτn Un(τ1, . . . , τn)

(2)

with k = 1, . . . . In the first case n is even and in the second it is odd. Un denotes the
amplitude associated with n instantons, which take place at arbitrary times τi ∈ [0, τ ],
i = 1, . . . , n, and τn−1 ≤ · · · ≤ τ1 ≤ τ , and all these possibilities have to be added. Kn

is a dimensionfull [Kn] = [τ ]−n constant absorbing the temporal dimension introduced
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Figure 1: Left: A multi instanton configuration in the dilute limit. Right: One of the wells in the
double well potential and its quadratic approximation. Figures adapted from [3].

by the time integrations. In the following, we first focus on the transition amplitude An,
which controls the exponential dependence of the tunneling amplitude, returning later to
consider the prefactor Kn.

We will consider, as in the single instanton case, that each Un is the product of a
classical and a quantum contribution, Un = U cl

n Uq
n . We will also focus on a dilute limit,

as the one depicted in Fig. 1.

1. Start by studying the classical contribution, written as U cl
n = e−S

cl
n /~. Estimate Scl

n

from the approximation in which each instantonic contribution is independent of the
other ones and occurs in a narrow time interval.

2. Concerning the quantum contribution Uq
n , we will assume that those around the

rapid variation when the particle tunnels from one well to the other are negligible
while the fluctuations during the long periods between transitions at τi and τi+1,
when the particle lies in one of the two wells, are the dominating ones. To evaluate
these, we approximate the well by a parabola, centred at its minimum/maximum,
V (x) ∼ V (x0) ± V ′′(x0)(x − x0)2/2 and we evaluate U(0, τi+1, 0, τi) using the path
integral formalism in the semi-classical approximation. For concreteness, we take
V (x0) = 0.

(a) Write U as a product and identify the two factors.

(b) Which is the classical solution? and the corresponding action?

(c) We go back to the original problem in real time, and we evaluate the fluctuations
of the harmomic oscillator. The determinant of an operator is the product of
its eigenvalues

∏∞
n=1 εn. Establish the eigenvalue equation and solve it.

(d) Write Uq in terms of the eigenvalues of the operator.

(e) The product for Uq looks ill-defined since it is an infinite product and in cases
divergent. The idea is to regularise it by dividing by the result for the free
particle, V = 0, and propose

Uq =
Uq

Uq
free

Uq
free (3)

Use this trick to find a manageable expression for Uq taking advantage of the
identity

∏∞
n=1[1− (x/(nπ))2] = x/ sinx.

(f) Go back now to imaginary time t 7→ −iτ . Write the quantum fluctuations
accumulated during the interval [τi, τi+1].
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(g) Evaluate now Uq
n

3. Let us now return to Eqs. (2) and replace Uq
n just found. Show that G can be

expressed as a factor times the series of cosh and sinh functions, using a convenient
expression for

∫ τ
0 dτ1

∫ τ1
0 dτ2· · ·

∫ τn−1

0 dτn

The actual density is dictated by the competition between the configurational “en-
tropy” (favoring high density), and the “energetics”, the exponential weight implied by
the action (favoring low density).
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