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Focus

Classical and Quantum Phase transitions

Phenomenology, concepts & formalism

Critical phenomena & universality, topology, renormalization, nucleation,
and disorder

Current research, e.g.

Non-Equilibrium Universality : From Classical to Quantum and Back, KITP UC Santa Barbara 2021

Quantum localization and glassy physics, Summer School at Cargèse 2023

Out-of-equilibrium Dynamics and Quantum Information of Many-body Systems with Long-range Interactions

KITP UC Santa Barbara 2023

All material (program, lectures & TDs) downloadable from the webpage

www.lpthe.jussieu.fr/̃ leticia/enseignement.html
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Plan

Mathematical preliminaries (should have been done during the summer)

1. One introductory lecture

2. Six lectures on classical statistical physics

3. Six lectures on quantum statistical physics

4. Twelve TD sessions in half group

5. One homework to be done during the mid-term holidays

6. Final written exam (concepts and exercises)

Final Mark 20% homework and 80% written exam
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Plan

1. Interest and background, principles and formalism, e.g.

— (In)Equivalence of ensembles for (long) short-range interactions

— Systems’ reduction (role of environments)

2. Phase transitions in the classical case

— Important concepts (phase diagrams, order parameters, spontaneous

symmetry breaking, etc.)

— Uncommon mechanisms (e.g. topological phases, condensation)

— Renormalization group ideas

— Effects of quenched randomness

3. Quantum statistical physics

— Generics : Linear response, Kubo formula, FDT, etc.

— Quantum – classical equivalence, imaginary time representation

— Quantum spin chains (tricks)
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Phase transitions
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Phase diagram
Graphite

Theoretical phase diagram of carbon, which shows the state of matter for varying tem-

peratures and pressures. The hatched regions indicate conditions under which one

phase is metastable, so that two phases can coexist.

Wikipedia
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Phase diagrams
High Tc superconductors

... to propose a bosonic effective quantum Hamiltonian based on the projected SO(5)

model with extended interactions, which can be derived from the microscopic models

of the cuprates. The global phase diagram of this model is obtained using mean-field

theory and Quantum Monte Carlo simulations ...

Sylvain Capponi - Toulouse
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Universality
Para-Ferro magnetism & Liquid-Gas

Very different variables and control parameters and, still, same critical properties

Non-Equilibrium Universality : From Classical to Quantum and Back, KITP UC Santa

Barbara 2021
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Active Brownian disks
Phase diagram with solid, hexatic, liquid, co-existence and MIPS

1st order hexatic-liquid close to Pe = 0

KT-HNY solid-hexatic

- universal dislocation unbinding

Breakdown of KT-HNY hexatic-liquid picture

- disclination unbinding within the liquid phase

- percolation of defect clusters in the liquid

Pressure P (φ, Pe) (EoS), correlations GT (r), G6(r), distributions of φi, and |ψ6i|
defect identification & counting

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)
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Long-Range Interactions
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Long-Range Interactions
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Out of equilibrium
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GGEs
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GGEs
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Baths
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Baths
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Baths
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Baths
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Phase transitions
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Summary 3rd Lecture
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Continuous phase-transition
Bi-valued equilibrium states related by symmetry

F

Ginzburg-Landau free-energy Scalar order parameter

e.g. Ising magnets at h = 0, m = 〈si〉 = 1
N

N∑
k=1

〈sk〉
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Continuous phase-transition
Bi-valued equilibrium states related by symmetry

Aimantation et phénomène magnétocalorique du nickel

Nickel data vs. mean-field m(T/Tc)

Weiss & Forrer, Ann. Phys. 5, 153 (1926)

22



Discontinuous phase transition
Hysteresis loops

Growth Rate Effects in Soft CoFe Films

M. Vopsaroiu, K. O’Grady, M. T. Georgieva, P. J. Grundy, and M. J. Thwaites,

IEEE Transactions on magnetics 41, 3253 (2005)
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Curie-Weiss Mean-Field
Exponents for a continuous (Z2 spont symm broken) transition

t = (T − Tc)/Tc
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Measurements
Magentisation3 vs. temperature

Nuclear magnetic resonance in MnF4 near a critical point

Mean-Field yields β = 1/2

P. Heller and G. B. Benedek, Phys. Rev. Lett. 8, 428 (1962)
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Measurements
Magnetic susceptibility χ ∼ (Tc − T )−1.3

Mean-Field yields γ = 1
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Measurements
Heat capacity vs reduced temperature−1/8

Precision Measurement of the Specific Heat of CO2 Near the Critical Point

Mean-Field yields α = 0

J. Lipa, C. Edwards, and M. Buckingham, Phys. Rev. Lett. 25, 1086 (1970)
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Universality
Para-Ferro magnetism & Liquid-Gas
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Typical configurations
Up & down spins in a 2d Ising model

Equilibrium configurations

e.g. up & down spins in a 2d Ising model (IM)

〈φ〉 = 0 〈φ〉 = 0 〈φ〉 #= 0

g → ∞ g = gc g < gc

In a canonical setting the control parameter is g = T/J .
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T →∞ T = Tc 0 < T < Tc

Real space viewpoint
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Ginzburg-Landau
Continuous scalar statistical field theory

Coarse-grain the spin

φ(r) = V −1r

∑
i∈Vr si.

The partition function is Z =
∫
Dφ e−βF(φ) with

F(φ) =
∫
ddr

{
1
2
[∇φ(r)]2 + T−Tc

2
φ2(r) + λ

4
φ4(r)

}
Elastic + potential energy with the latter inspired by the results for the fully-

connected model (entropy around φ ∼ 0 and symmetry arguments)

Uniform saddle point in the V →∞ limit : φsp(r) = 〈φ(r)〉 = φ0

The free-energy density is lim
V→∞

fV (β, J, g) = lim
V→∞

V −1F(φ0)
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Ginzburg-Landau
Exponents from the saddle-point analysis vs. finite d ones
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Correlation functions
Melting: from solid to liquid in 2d

straight lines curved

Translational order correlation functions GT : exponential decay e−r/ξ

Orientational order correlation functions G6 : power law decay r2−d−η - critical
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Correlation functions
Atomic gases in 2d - Stochastic Gross-Pitaevskii equation

F. Larcher, Dynamical excitations in low-dimensional condensates: sound, vortices and quenched dynamics,

PhD thesis, Newcastle University & Università di Trento (2018)
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Landau theory
Second order phase transition

Notation : L is the “potential” in the Landau free-energy density

Notation : η is the “field”
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Landau theory
First order phase transitions

Notation : L is the “potential” in the Landau free-energy density, η is the “field”, tI is

the transition
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Landau theory
Important points

• The actual values of the parameters are not important

they are material/model dependent

• The dimension of the order parameter (scalar, vectorial) and the potential

decide whether the transition is second, first order or infinite order

• In 2nd order phase transitions the correlation length diverges & the linear

susceptibility as well.

• In continuous phase transitions the exponents are universal

• The strength of the Gaussian fluctuations limit the validity of the saddle-point

treatment of the Landau theory.

upper critical dimension, critical region ξ4−d < 1 for the scalar λφ4 theory
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Critical Scaling
Ferromagnetic transition

Bo Yua et al, Scaling study of magnetic phase transition and critical behavior in Nd0.55Sr0.45Mn0.98Ga0.02O3

manganite, Materials Research Bulletin 99, 393 (2018)
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Critical Scaling
Jamming transition

P. Olsson and S. Teitel, Critical Scaling of Shear Viscosity at the Jamming Transition, Phys. Rev. Lett. 99,

178001 (2007).
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Critical Scaling
Jamming transition

P. Olsson and S. Teitel, Critical Scaling of Shear Viscosity at the Jamming Transition, Phys. Rev. Lett. 99,

178001 (2007).
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Finite size effects
Rounding of magnetization curves
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Finite size effects
Rounding of the heat capacity
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Decimation
1d Ising chain K = βJ, ζ = lnZ

K ′ = 1
2

ln cosh(2K)→ 0 that is (T/J)∗ →∞

Decimation : the killing of one in every ten of a group of people as a punishment for the whole group (originally

with reference to a mutinous Roman legion)
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Decimation
1d Ising chain K = βJ, ζ = lnZ inverse relations

T → 0
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RG
From block spins to coupling renormalization

# degrees of freedom

bd 7→ 1

lattice spacing

a 7→ ba

re-scaling of lengths

~x 7→ ~x/b

From H′[K′]({s′I}) = RbH[K]({si}) to

K ′α =
∑
β

(Rb)αβKβ close to [Kc] = [0]
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Typical configurations
Up & down spins in a 2d Ising model

T = 2Tc T = Tc 0 < T < Tc

Real space viewpoint

Zoom out by observing at larger scales

move away from criticality if T 6= Tc

[Kc] repulsive fixed points

45



Scale invariance
2d Ising model at Tc

D. Ashton, Scale invariance in the critical Ising model,

https://www.youtube.com/watch?v=fi-g2ET97W8
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RG
finite d Ising model

Two adimensional parameters inH[K]({si})

K1 = βJ = K K2 = βh = K

Composition R(b1b2) = R(b1)R(b2) and symmetries

K ′ = byKK H ′ = byHH

Repulsive fixed point

yK > 0 yH > 0
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RG
finite d Ising model

Identity of total free-energy =⇒ homogeneity

F (K ′, H ′) = F (K,H) =⇒ b−d f(byKH, byHH)

choosing b = |K|−1/yK =⇒ scaling

f(K,H) = |K|d/yK f(1, |K|−yH/yKH)

= |K|d/yK gf

(
H

|K|yH/yK
)

with ∆ = yH/yK and 2− α = d/yK
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RG
Generic

Transformation

K ′α −K∗α =
∑
β

R(b)αβ (Kβ −K∗β)

in other terms R(b)αβ =
∂K ′α
∂Kβ

∣∣∣∣
[K∗]

To solve one needs to diagonalize the linear (vectorial) relation above

Use the

eigenvalues λi and left orthonormal eigenvectors uiα of the matrix R(b)∑
j
ujβu

j
γ = δβγ
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RG
Generic

Transformation

δKα = K ′α −K∗α =
∑
β

R(b)αβ (Kβ −K∗β) =
∑
β

R(b)αβ δKβ

multiply by the left eigenvector uiα and sum over α

δκ′
i ≡

∑
α

uiα δK
′
α =

∑
α

uiα
∑
β

R(b)αβ︸ ︷︷ ︸
λi

∑
β u

i
β

∑
γ

(
∑
j

ujβu
j
γ)︸ ︷︷ ︸

δβγ

δKγ

= λi
∑
j

∑
β

uiβu
j
β︸ ︷︷ ︸

δij

∑
γ

ujγδKγ

= λi
∑
γ

uiγ δKγ = λi δκi
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RG
Generic

Diagonalized transformation

δκ′
i ≡

∑
α

uiα δK
′
α = λi δκi

thus

λi =
∂δκ′ i

∂δκ i

∣∣∣∣∣
[K∗]

=
∂κ′ i

∂κ i

∣∣∣∣∣
[K∗]

and

λi = byi =⇒ yi =
d lnλi

db
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RG
Generic

Parameters
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Concepts

The scale of observation does not modify the properties of the critical state

nor the disordered or order character of the phases

Kadanoff blocks modify the physical state by coarse-graining but,

the modern RG (Wilson) transforms the form of the model until reaching the one

that describes the critical state

At criticality and close to it the microscopic details are not important

The critical points are repulsive fixed points of the RG

Above the critical temperature, evolution to the free fixed point, T →∞
Below the critical temperature, evolution to T = 0
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Concepts

The scale of observation does not modify the properties of the critical state

nor the disordered or order character of the phases

Kadanoff blocks modify the physical state by coarse-graining but,

the modern RG (Wilson) transforms the form of the model until reaching the one

that describes the critical state

At criticality and close to it the microscopic details are not important

A renormalisation transformation is a scale transformation that leaves the

partition function invariant. Since the thermodynamic properties of a sys-

tem are governed by the partition function, the physics is preserved.
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Concepts

The critical behaviour does not depend on the type of subcritical order but on the

number n of components of the order parameter and the dimension of space d.

Renormalisation enables the classification in universality classes with the same

critical properties, depending on (n, d)

Scaling laws apply to global, macroscopic properties of systems containing a

large number of elementary microscopic units.

They are found in other domains, e.g. finance, biology, etc.
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Exponents again
Comparison

Images from

A. Lesne & M. Lagües, Scale invariance from phase transitions to turbulence (Springer-

Verlag, 2012)
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