
Advanced Statistical Physics

Homework: Finite Size Scaling

October 2022

This homework is intended to familiarize you with the use of the finite size scaling
technique to characterize continuous and discontinuous phase transitions. It illustrates its
application to data of the two dimensional Potts model.

The Potts model is defined as follows [1],

H({si}) = −J
2

∑
〈ij〉

(2δsisj − 1)−
∑
i

hsi = HJ({si}) +Hh({si}) , (1)

with the = 1, . . . , N spins, si, taking q values, graphically represented as colors, si =
1, . . . , q. The coupling constant J is positive J > 0. The symbol δsisj is a Kronecker delta.
The constant subtracted from it ensures that the energy is the one of the Ising model for
q = 2. The sum

∑
〈ij〉 runs over nearest neighbours on a lattice with linear size L. For

definiteness, we will focus on the two dimensional case. The magnetic field contributions
hsi can be seen as acting (favouring) one of the q possible spin configurations.

We defined the two contributions to the Hamiltonian, HJ({si}) from the two-body
coupling, and Hh({si}) from the magnetic field contribution, for later convenience.

Take this system in equilibrium with a thermal bath at inverse temperature β =
1/(kBT ) and no applied field. On the square lattice, and in the infinite size limit there is
a critical temperature at

kBTc =
J

ln(1 +
√
q)

(2)

which separates a high temperature paramagnetic phase, from a low temperature ordered
phase. In the latter, the system orders in one of the equivalent q equilibrium states. Typical
equilibrium low temperature configurations have a majority of spins taking one of the q
possible values, and a minority taking the other q − 1 values, and being due to thermal
fluctuations. Equilibrium configurations above, at, and below the critical temperature of
a q = 3 model are shown in Fig. 1.

The thermal phase transition - under no applied field - is continuous for q = 2, 3, 4 and
discontinuous for q > 4. The case q = 2 boils down to the bidimensional Ising model.

We will apply the finite size scaling technique to analyse numerical Monte Carlo data
for this model.

Many experimental realizations of this model are described in [1].
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Fig. 1 – Three typical equilibrium configurations of the q = 3 bidimensional Potts model
above Tc (left), at Tc (center) and below Tc (right).

1 Generic questions

We start with a series of general questions. Justify your answers.

1. Can the free-energy of a finite size system be non-analytic?
no, it’s the logarithm of a sum of a finite number of terms, each of them analytic
with respect to β times the parameters in the Hamiltonian (J , h). More precisely,
if there are no non-analyticities in the Hamiltonian, the Boltzmann factor e−βH is
also analytic, and the lnZ is analytic too. .

2. Do you expect the actual critical temperature of a finite dimensional system to be
higher or lower than the one found with the mean-field approximation?
MF usually over-estimates order, so TMF

c > Tc, with Tc the actual critical tempera-
ture of the finite dimensional model. An example is given by the q = 2 Ising case on
the square lattice. From Eq. (2), Tc = J/(1 +

√
2) while TMF

c = zJ = 4J , which is
higher than the previous one.

3. What is the degeneracy of the equilibrium state at T < Tc?
q. Below Tc there is ferromagnetic order and there are q such choices.

4. Which is the relation between the fluctuations of the magnetisation and the linear
magnetic susceptibility in an Ising model? Derive it. How general is this?
FDT. Look at the lecture notes for a proof.

5. Which is the relation between the fluctuations of the energy and the heat capacity?
Derive it.
It is the equilibrium FDT again. Using Cv = ∂〈H〉/∂T and 〈H〉 = −Z−1∂Z/∂β,

Cv = β2〈(H − 〈H〉)2〉 = kBβ
2
(
〈H2〉 − 〈H〉2

)
2 The q = 2 (Ising case)

The data in www.lpthe.jussieu.fr/˜leticia/TEACHING/ICFP/Homework-2022 have
been produced by M. Picco (LPTHE) using the Swendsen-Wang (two dimensional) cluster
algorithms which allow one to speed up the Monte Carlo simulations close to the critical
point, and equilibrate samples of much larger sizes than the single spin flip Monte Carlo
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codes. In the following we measure kBT in units of J or, equivalently, we set J = 1, and,
furthermore, also kB = 1.

The first two files have data for the Ising model (q = 2)

The 2dIM at different T and h = 0 OUT2dL#Th0

The 2dIM at different h and T = Tc OUT2dL#Tch

The label # close to L means that the values of the system sizes, L, are placed there in
the names of the files. For example, OUT2dL4Tch contains data for the model with linear
size L = 4, at the (zero field) critical temperature, and under different applied fields.

The columns of OUT2dL#Th0 are organised as

L 1/β h m − e L2σ2m L2σ2H # samp

and the ones of OUT2dL#Tch as

L 1/β h m − eJ − e σ2m L2σ2HJ L2σ2H # samp

with the definitions

m =
1

Ld

〈∣∣∣∣∣∑
i

si

∣∣∣∣∣
〉
, m2 =

〈(
1

Ld

∑
i

si

)2〉
, σ2m = m2−m2 ,

eJ =
1

Ld
〈βHJ({si})〉 e =

1

Ld
〈βH({si})〉 σ2HJ = e2J − e2J

e2J =
1

L2d

〈
(βHJ({si}))2

〉
e2 =

1

L2d

〈
(βH({si}))2

〉
σ2H = e2− e2

(3)

# samp gives the number of samples used to calculate the averages. Note that H has been
multiplied by β in the definitions of e, eJ , e2 and e2J .

The file OUTL#h0close zooms close to the thermal phase transition at zero field.

2.1 Data analysis

1. Use the information about the energy density given in the data-file OUT2dL#Th0
to deduce whether the contributions sisj , with i and j nearest neighbours on the
lattice, are summed once or twice.

At zero temperature the value −e = 2 is approached. This means that 1
2

∑
〈ij〉 =

1
2

∑
i

∑
∂i 1 with ∂i = 1, . . . , z the coordination of the lattice. One recovers in this

way e = −1
2 4 = −2. The energy density is measured in units of the coupling

2. Plot the magnetisation density m as a function of temperature in the absence of
magnetic field, for different values of the linear size L. Discuss these curves. If you
guessed the critical temperature Tc from them, would it be close to the exact value
in Eq. (1)?

The plots are in Fig. 3 where we display the magnetisation density as a function
temperature over the coupling strength, for several system sizes.
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Fig. 2 – Minus the energy density as a function of temperature over the coupling constant J .
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Fig. 3 – The magnetisation density as a function temperature over critical temperature, for several

system sizes, in the 2d. The Onsager exact solution is really close to the numerical data. The mean-

field expression is quite far from it (it is better in three dimensions).

The curves smoothly go from 1 at T ∼ 0 to 0 at T � J . The change from the low-T
to the high-T behaviour gets sharper for increasing L.

The guess for Tc would be very close Tc = J/ ln(1 +
√

2) ∼ 1.13, the exact value
(kB = 1).

3. Write down the equation that determines the mean-field magnetisation density (for
the sum convention identified in the previous item). What do you conclude about
the mean-field critical temperature?

The mean-field equation predicts the critical temperature kBTc/J = z = 4, well
above the values found in the simulation, which are very close to Tc = 1/(1 +

√
2) ∼

1.13, the exact value. Tc is non-universal and depends on many details so the MF
approximation cannot give it exactly in any finite d.

4. Find in the literature Onsager’s expression for m and trace it in the same plot.
Compare to the numerical data.

Onsager’s solution yields m = [1− sinh−4(βJ)]1/8. The critical temperature is given
by [sinh(βcJ)]2 = 1, and yields Tc ∼ 1.13. The exponent β = 1/8 can be read from
this expression after expanding close to the critical point.
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In Fig. 3 we plot m against T/Tc. The numerical data are very close to the Onsager
curve but quite far from the mean-field one, which is also shown in blue. We note
that the larger L, the closer the data points are to the Onsager expression, something
natural since the latter holds for L→∞.

5. One can determine the ratio exponent β/ν from the relation 〈m2〉1/2(Tc) ∼ L−β/ν .
We can also use the expression for m in the fourth column in the files since they
have the absolute value. Plot 〈m2〉1/2 or this m as a function of L and determine
the exponent.

Figure 4 investigates m ∼ L−β/ν . The double logarithmic plot on the right demons-
trates that β/ν = 1/8, predicted by Onsager’s solution represents the data very
accurately. The mean-field β/ν = 1/2 would have been completely off the data
points.
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Fig. 4 – The (absolute value of the) magnetization density at the critical temperature and
zero field for four system sizes. The dependence m ∼ L−β/ν in linear scale and in double
log scale.

Determine from Onsager’s exact expression for m the exponent β in d = 2. Compare
to what you found with the data analysis, setting ν = 1.

Just expanding β = 1/8.

6. Make the scaling plots for the magnetisation densities close to the critical point, with
t ≡ (T − Tc)/Tc

7. Consider now the applied field dependence of the magnetisation in the Ising model
in d = 2. Confront the numerical data for m(h) to the mean-field predictions and to
Onsager’s result. Which one represents better the data? Think about using a double
logarithmic representation to make the algebraic dependence easy to visualise.

8. Use now the more detailed data in the critical region that you can find in the files
called OUTL#h0close. Make plots of the linear magnetic susceptibility in the 2d
model using the data in OUT2dL#Th0. Do you see the expected qualitative beha-
viour?
Imagine that the maximum value in this plot scales as

χmax(L) ∝ (βc(L)− βc(L→∞))−γ ∝ Lγ/ν (4)
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Fig. 6 – Log-log plot of the magnetisation as a function of the applied magnetic field with the

temperature held fixed at Tc. Comparison to mean-field and the Onsager result.

where βc(L → ∞) is here a fitting parameter to be later compared to Onsager’s
exact value. Proceed as follows:

(a) Apply some smoothing of this data (e.g. with gnuplot, the “smooth bezier”
option to the “plot” command).

(b) Estimate the pair (βc(L), χmax(L)) for each L, where βc(L) is the position of
the maximum and χmax(L) the height at the maximum.

(c) Make a power law fit of the maximum location βc(L) = βc(L → ∞)− cL−1/ν .
This is a three parameter fit, βc(L→∞), c, ν, and serves to find estimates for
the infinite size βc and the exponent ν.

(d) Get γ from χmax ∼ Lγ/ν .

(e) Compare all values from to Onsager’s exact ones.

We read from the smooth χ(β,L) curves:

L βc χmax

10 0.77 5.10

16 0.81 9.12

20 0.82 11.81

40 0.85 23.36
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Estimates βc(L → ∞) to 0.88, which is in agreement with what we have from On-
sager’s solution, and 1/ν to 0.87, which is not very precise, since ν = 1 in Onsager’s
solution. Also from the χmax(L) plot γ/ν ∼ 1.04, while γ = 1.23 in Onsager’s.
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Fig. 7 – The magnetisation fluctuations as a function of temperature with more details close to

the transition in the 2d case.
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Fig. 8 – The (β,χ) of the maximum as a function of L and their fits.

9. How would you exploit the data in the files to find the exponent α?

Using the FDT or else using the relation α+ 2β+ γ = 2 between critical exponents.
We have already estimated β and γ from the data, this equation then yields α.

2.2 The Binder cumulant

Assume that for finite but large L the distribution of the fluctuating order parameter is

PL(m) =



Ld/2

(2πkBTχL)1/2
e

−m2Ld

(2kBTχL) T > Tc (5)

Ld/2

(2πkBTχL)1/2

[
1

2
e

−(m−mL)2Ld

(2kBTχL) +
1

2
e

−(m+mL)2Ld

(2kBTχL)

]
T < Tc (6)

Lβ/ν P (mLβ/ν , L/ξ) T ∼ Tc (7)

with mL = |〈m〉|. These forms are a Gaussian centered at zero, two Gaussian centered at
the (symmetric) mean values, and a form satisfying finite size scaling.
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1. Relate χL to the moments of m in the cases T > Tc and T < Tc.

At T > Tc the distribution is Gaussian with zero mean 〈m〉 = 0. The variance is
σ2 = 〈m2〉 = kBTχL/L

d

At T < Tc the distribution is a superposition of two Gaussian weights with the
same variances but non-zero averages, with the same magnitude but different sign.
The full distribution is symmetric with respect to m 7→ −m. Thus the average of
m vanishes. Of course, if one restricts the sum over m to only positive (or negative)
values, then the result is not zero. In the L → ∞ limit it approaches the typical
value of m, the one at which the peak attains its maximum.

The variance is σ2 = 〈m2〉 = kBTχL/L
d + (mL)2

2. Find the condition on P so that P at T ∼ Tc is normalized.∫
du P (u,L/ξ) = 1.

3. The functional form of the distribution close to Tc is in general not know, The possible
deviations from the Gaussian are studied with the kurtosis or Binder parameter
which is defined as

UL ≡ 1− 〈m4〉
3〈m2〉2 . (8)

(a) Evaluate UL at high T using (5).

UL ∼ L−d

(b) Evaluate UL at low T using (6).

UL = 2/3 (having already taken the limit L→∞)

(c) Find the scaling form of UL close to Tc using (7).

UL ∼ 1− χ̃4(L/ξ)/(χ̃2(L/ξ))
2

(d) Consider the case T = Tc and take ξ/L→∞. Is there any L dependence of UL
left?

No. UL ∼ 1− χ̃4(0)/(χ̃2(0))2. Crossing of curves at Tc

(e) In Fig. 9 we show the Binder parameter defined above for the 2d Ising Model.
Explain what you see.

The high T and low T limits found above are recovered. The curves cross at Tc
where the L dependence disappears. This is a very useful method to determine
Tc.
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Fig. 9 – The Binder parameter for the 2d Ising model.

3 The large q Potts Model

We now turn to the study of the Potts model with large value of q, and we focus on
its energy (in the absence of any applied field) and its statistical properties.

Fig. 10 – (a) The energy density of a 2d Potts model, on a square lattice with linear size L = 20,

with q = 10 (above) compared to the one of a q = 2 case along two Monte Carlo runs (data every

5 × 103 MC steps are shown). (b) The histograms of the energy densities measured in a Monte

Carlo simulation of the q = 10 Potts model with L = 34 away from its transition (left) and at the

transition Tc. The averaged values are indicated.

1. Comment on Fig. 10.

In (a) for q = 10 we see jumps between two values of the energy while for q = 2
there are only relatively small fluctuations around a single value. The histograms
are shown in (b), where we see a single peak at high T representing the energy of
the paramagnetic state and its fluctuations (approximately Gaussian). At the phase
transition there are two peaks, one corresponds to the paramagnetic state while the
other to an ordered state. The transition for q large is of first order and there is
coexistence.
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