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The Kosterlitz-Thouless transition is a peculiar transition occurring in 2d systems in
which topological defects play a crucial role. We will study it in the formulation of the XY
model, which consists of two-dimensional vector (classical) spins placed at the vertices r
of a two-dimensional square lattice of N sites and of size L (N = (L/a)?, where a is the
lattice spacing), and interacting ferromagnetically:
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The correlation function decays as a power-law at low temperature and become short-
ranged above a certain temperature. While the nature of the correlations changes drasti-
cally between the high and the low temperature regime, there is nonetheless no genuine
ordering transition. The purpose of this exercise is to analyze the predictions of the renor-
malization group approach in the scale invariant regime in the Coulomb gas approximation.

— The Coulomb gas formulation within the Villain approximation
The aim of this part of the excercise is to establish a connection between the XY
model and a system of charges interacting via a Coulomb potential in two dimensions.
The charges can be seen as vortices in the local magnetization field.
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3. Using the definition of the discretized version of the derivative 9,0y = 0r1q4e, —
0y, with p = x,y, show that:
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where n(r) is an integer two-dimensional vector field.

4. Henceforth the K-dependent prefactor will be omitted (it only contributes to
the free-energy but not to the correlation function). Show that integrating over
each 0, yields a zero divergence condition for the n(r) field.

5. Recall that a field with zero divergence can be written in the form of a curl:
n(r) = V x A(r), where A(r) = p(r)e., i.e. ny, = 9yp and n, = —0,p. Show
that the partition function can be recast as a summation over configurations of
the field p(r) (given the linear relation between p and n, any possible Jacobian
associated to this change of variable would be a constant).

6. We now recall the Poisson summation formula, which states that for an arbi-
trary function f one has that:
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Apply this formula to the partition function by introducing an integer field
m(r) and a Gaussian field ¢(r) for any point of the lattice.

7. Integrate out explicitly the Gaussian field ¢(r) and write the resulting partition
function in terms of Zg, and the Green’s function of the Laplacian operator.
In the following, without any loss of description of the large-scale physics, we
replace the Green’s function by its large-distance asymptotic behavior: G|ps.q —

Go ~ —% log % —c. Justify that in the large L limit only neutral configurations

such that ). m(r) = 0 survive.

— Real space renormalization

The partition function Z, = Z/Zg, is the partition function of a two-dimensional
Coulomb gas at temperature T’ of 27v/Jm/(r) charges sitting at the nodes of a 2d
square lattice whose density is controlled by the fugacity z = e~ 2m Ke, Physically,
the field m(r) represents the circulation of the local magnetization field around some
specific point r, and can be then seen as a vorticity field. Vortices at distance r in
2d interact via a logr potential. As z is increased, more and more charges (vorices)
appear, while for z — 0 the number of charges (vortices) vanishes and they stop
interacting with each other. In the high temperature regime vortices proliferate and
correlations decay exponentially fast. In the low temperature regime a quasi long-
range order sets in, characterized by power-law correlations. In the following we
attempt a z — 0 expansion of Z.

1. Consider the case where at most two non-zero opposite charges are present and

justify that:
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2. We now introduce the coarse-graining parameter b = e’ (with £ = logb < 1) and
split the integrals in the right hand side as faoo dr-.- = faba dr---+ fbc;o dr---.
Rescale the large-r integration variables so that the integrals again run from
a to co. The rescaling can be absorbed into the definition of a renormalized
fugacity. Determine the differential equation governing the evolution of the
fugacity under rescaling.

3. In order to get the renormalization of K one has to study the spin spin corre-
lation function C(Jr — r'|) = (Sp - Sy) and compute how the exponent of the
power-law decay is modified. We use the result of the paper José, Kadanoff,
Kirckpatrick, and Nelson, Phys. Rev. B 16, 1217 (1997), where it is shown that
the expansion of C' in powers of z yields (equation (5.1))
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Below which value of K the perturbative expansion breaks down? Split the
integrals in the right hand side as [*dr--- = faba dr---+ [, dr---. Rescale
the large-r integration variables so that the integrals again run from a to oo,
and find the renormalized bare coupling constant K’ and its evolution equation
upon rescaling.

4. Recall the relationship between z and K at the microscopic level before any sort
of renormalization. Plot the z(K) line in the (K,z) plane. This is the so-called
line of initial conditions.

5. The RG flow is then made up by two equations:
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What are the fixed points of these equations? Locate them on the (K,z) plane.
6. Show that, for K in the vicinity of K, = 2/7 one has that:
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Draw on the phase diagram the asymptotes of the resulting hyperboles descri-
bing the flow lines.

7. We want now to exploit the RG flow to predict the temperature dependence of
the correlation length in the high-temperature phase. What is the correlation
length in the low temperature phase? How would you define 7.7

8. Let us now consider the regime close to the critical point, T — T.F. Find K (¢) by
direct integration of the flow equations between 0 and £. How would you define
the correlation length £7 Determine how it diverges when T, is approached from
above.



APPENDIX: Green’s function of the two-dimensional Laplacian on the
square lattice

We define the Fourier transform as:
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where the wave vectors are q = 2% (ng,n,), and (ng,n,) are integers varying between
—L/(2a) and L/(2a). Inserting the last expression into the definition of the Green’s
function we have that:
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We will use the following properties of the Green’s function (without proving them):
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