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The Kosterlitz-Thouless transition is a peculiar transition occurring in 2d systems in
which topological defects play a crucial role. We will study it in the formulation of the XY
model, which consists of two-dimensional vector (classical) spins placed at the vertices r
of a two-dimensional square lattice of N sites and of size L (N = (L/a)2, where a is the
lattice spacing), and interacting ferromagnetically:

H = −J
∑
〈r,r′〉

Sr · Sr′ .

The correlation function decays as a power-law at low temperature and become short-
ranged above a certain temperature. While the nature of the correlations changes drasti-
cally between the high and the low temperature regime, there is nonetheless no genuine
ordering transition. The purpose of this exercise is to analyze the predictions of the renor-
malization group approach in the scale invariant regime in the Coulomb gas approximation.

– The Coulomb gas formulation within the Villain approximation

The aim of this part of the excercise is to establish a connection between the XY
model and a system of charges interacting via a Coulomb potential in two dimensions.
The charges can be seen as vortices in the local magnetization field.

1. The Bessel functions of imaginary argument In =
∫ 2π

0
dθ
2πe

x cos θ+inθ allows us to
writhe the Fourier series of eK cos θ as

eK cos θ =

∞∑
n=−∞

einθIn(K) .

In which regime we can approximate In(K) ' 1√
2πK

eK−n
2/2K?

2. In the following we will use

eK cos θ ' eK√
2πK

∞∑
n=−∞

einθ−n
2/2K .

Which physical symmetry of the model is preserved by this approximation and
not by the spin-wave approximation treated above eK cos θ ≈ eK−Kθ2/2?

1



3. Using the definition of the discretized version of the derivative ∂µθr = θr+aeµ −
θr, with µ = x,y, show that:

Z ≈
(

eK√
2πK

)N ∑
{n(r)∈Z}

∫
Dθ
∏
r

e−i
∑
µ ∂µnµ(r)θr−n2(r)/2K ,

where n(r) is an integer two-dimensional vector field.

4. Henceforth the K-dependent prefactor will be omitted (it only contributes to
the free-energy but not to the correlation function). Show that integrating over
each θr yields a zero divergence condition for the n(r) field.

5. Recall that a field with zero divergence can be written in the form of a curl:
n(r) = ∇ ×A(r), where A(r) = p(r)ez, i.e. nx = ∂yp and ny = −∂xp. Show
that the partition function can be recast as a summation over configurations of
the field p(r) (given the linear relation between p and n, any possible Jacobian
associated to this change of variable would be a constant).

6. We now recall the Poisson summation formula, which states that for an arbi-
trary function f one has that:

∞∑
p=−∞

f(p) =
∞∑

m=−∞

∫ +∞

−∞
dφf(φ)ei2πmφ .

Apply this formula to the partition function by introducing an integer field
m(r) and a Gaussian field φ(r) for any point of the lattice.

7. Integrate out explicitly the Gaussian field φ(r) and write the resulting partition
function in terms of Zsw and the Green’s function of the Laplacian operator.
In the following, without any loss of description of the large-scale physics, we
replace the Green’s function by its large-distance asymptotic behavior: G|r|�a−
G0 ' − 1

2π log |r|a −c. Justify that in the large L limit only neutral configurations
such that

∑
rm(r) = 0 survive.

– Real space renormalization

The partition function Zv = Z/Zsw is the partition function of a two-dimensional
Coulomb gas at temperature T of 2π

√
Jm(r) charges sitting at the nodes of a 2d

square lattice whose density is controlled by the fugacity z = e−2π2Kc. Physically,
the field m(r) represents the circulation of the local magnetization field around some
specific point r, and can be then seen as a vorticity field. Vortices at distance r in
2d interact via a log r potential. As z is increased, more and more charges (vorices)
appear, while for z → 0 the number of charges (vortices) vanishes and they stop
interacting with each other. In the high temperature regime vortices proliferate and
correlations decay exponentially fast. In the low temperature regime a quasi long-
range order sets in, characterized by power-law correlations. In the following we
attempt a z → 0 expansion of Zv.

1. Consider the case where at most two non-zero opposite charges are present and
justify that:

Zv ≈ 1 +
z2

a4

∫
|r−r′|>a

d2rd2r′
∣∣∣∣ a

r− r′

∣∣∣∣2πK .
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2. We now introduce the coarse-graining parameter b = e` (with ` = log b� 1) and

split the integrals in the right hand side as
∫∞
a dr · · · =

∫ ba
a dr · · ·+

∫∞
ba dr · · · .

Rescale the large-r integration variables so that the integrals again run from
a to ∞. The rescaling can be absorbed into the definition of a renormalized
fugacity. Determine the differential equation governing the evolution of the
fugacity under rescaling.

3. In order to get the renormalization of K one has to study the spin spin corre-
lation function C(|r − r′|) = 〈S0 · Sr〉 and compute how the exponent of the
power-law decay is modified. We use the result of the paper José, Kadanoff,
Kirckpatrick, and Nelson, Phys. Rev. B 16, 1217 (1997), where it is shown that
the expansion of C in powers of z yields (equation (5.1))

C(|r− r′|) ∝ |r− r′|−
1

2πKeff ,
1

Keff
=

1

K
+ 4π3z2

∫ L

a

dr

a

(r
a

)3−2πK
.

Below which value of K the perturbative expansion breaks down? Split the
integrals in the right hand side as

∫∞
a dr · · · =

∫ ba
a dr · · · +

∫∞
ba dr · · · . Rescale

the large-r integration variables so that the integrals again run from a to ∞,
and find the renormalized bare coupling constant K ′ and its evolution equation
upon rescaling.

4. Recall the relationship between z and K at the microscopic level before any sort
of renormalization. Plot the z(K) line in the (K,z) plane. This is the so-called
line of initial conditions.

5. The RG flow is then made up by two equations:

dz

d`
= z(2− πK) ,

dK

d`
= −4π3z2K2 .

What are the fixed points of these equations? Locate them on the (K,z) plane.

6. Show that, for K in the vicinity of K? = 2/π one has that:

16π2z2 − (2− πK)2 = cst .

Draw on the phase diagram the asymptotes of the resulting hyperboles descri-
bing the flow lines.

7. We want now to exploit the RG flow to predict the temperature dependence of
the correlation length in the high-temperature phase. What is the correlation
length in the low temperature phase? How would you define Tc?

8. Let us now consider the regime close to the critical point, T → T+
c . FindK(`) by

direct integration of the flow equations between 0 and `. How would you define
the correlation length ξ? Determine how it diverges when Tc is approached from
above.
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APPENDIX: Green’s function of the two-dimensional Laplacian on the
square lattice

We define the Fourier transform as:

Ĝq =
∑
r

eiq·rGr , Gr =
1

N

∑
q 6=0

e−iq·rĜq ,

where the wave vectors are q = 2π
L (nx,ny), and (nx,ny) are integers varying between

−L/(2a) and L/(2a). Inserting the last expression into the definition of the Green’s
function we have that:

−a2∇2Gr = 4Gr −Gr+aex −Gr−aex −Gr+aey −Gr−aey

=
1

N

∑
q 6=0

eiq·rĜq [4− 2 cos(aqx)− 2 cos(aqy)] = δr,0 .

We than obtain that:

Ĝq =
1

4− 2 cos(aqx)− 2 cos(aqy)
Gr =

1

N

∑
q 6=0

e−iq·r

4− 2 cos(aqx)− 2 cos(aqy)
.

We will use the following properties of the Green’s function (without proving them):

G0 '
1

2π
log

L

a
, G|r|�a −G0 ' −

1

2π
log
|r|
a
− c+ o(1) ,

where c = 1
2π (γ + 3

2 log(2)) ≈ 1
4 .
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