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1 Ergodicity

Figure 1 (a) shows one time series of a stochastic process, X(i), i = 1,...,n, in other
words, an indexed set of random variables in which the integer i represents a discrete
time. Panel (b) is the histogram of X(i) with i = 1,...,100 over one time series. Panel
(c), the histogram of X at a particular instant i = 25 measured using N = 100 different
realisations of the stochastic process.

Fig. 1 – (a) A time series of the stochastic process X(i), with i = 1, . . . ,100. (b) The histogram of

X(i) with i = 1, . . . ,100 over one time series. (c) The histogram of Xa(i = 25) over a = 1, . . . , N =

100 realizations of the stochastic process.

1. In your opinion, is this process ergodic? Give the condition needed to satisfy er-
godicity. Explain your conclusion concerning this process. Give a general argument
without an explicit calculation and then justify it with a calculation.

2. Which kind of improved measurement(s) would you propose to reach a more certain
answer to the previous question?
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Fig. 2 – Four realisations of a continuous time stochastic process.

Four signals (realisations) of another continuous time random process X are displayed
in Fig. 2. Is this process ergodic?

2 Coupling to environments and irreversibility

Consider now, for simplicity a single particle with mass M and potential energy V (x),
confined to move in one dimension, and imagine that it is itself bi-linearly coupled to an
ensemble of harmonic oscillators which, to further ease the calculations we will take in their
“diagonalised” formulation. The coupled system represents a system (the particle) and an
environment (the ensemble of oscillators). The interacting system+environment ensemble
is ‘closed’ while the system is ‘open’. The nature of the environment, e.g. whether it can
be modeled by a classical or a quantum formalism, depends on the problem under study.
We focus here on the classical problem defined by Htot:

Htot = Hsyst +Henv +Hint +Hcounter = Hsyst + H̃env . (1)

Hsyst is the Hamiltonian of the isolated particle,

Hsyst =
p2

2M
+ V (x) , (2)

with p and x its momentum and position. Henv is the Hamiltonian of a ‘thermal bath’
that, for simplicity, we take to be an ensemble of N independent harmonic oscillators with
masses ma and frequencies ωa, a = 1, . . . ,N

Henv =

N∑
a=1

π2
a

2ma
+
maω

2
a

2
q2
a (3)

with πa and qa their momenta and positions. Hint is the coupling between system and envi-
ronment. We will restrict the discussion to a linear interaction in the oscillator coordinates,
qa, and in the particle coordinate,

Hint = x
N∑
a=1

caqa , (4)

2



with ca the coupling constants. The counter-term Hcounter is added to avoid the generation
of a negative harmonic potential on the particle due to the coupling to the oscillators (that
may render the dynamics unstable).

A derivation of a generalized Langevin equation with memory is very simple starting
from Newton dynamics of the full system. The generalization to more complex systems
and/or to more complicated baths and higher dimensions is straightforward.

1. Write Hamilton’s equations for the particle.

2. Write Hamilton’s equations for the oscillators in the bath.

3. Solve the latter and introduce the solution in the former.

4. Write the resulting equation as

ṗ(t) = −V ′[x(t)] + ξ(t)−
∫ t

0
dt′ Γ(t− t′)ẋ(t′) (5)

and identify the symmetric and stationary kernel Γ and the time-dependent force ξ.

This is the equation of motion of the reduced system. It is still deterministic. ξ(t) is
a sum of oscillating functions of time. The third term on the rhs of eq. (5) represents a
rather complicated friction force. Its value at time t depends explicitly on the history of
the particle at times 0 ≤ t′ ≤ t and makes the equation non-Markovian. One can rewrite it
as an integral running up to a total time T > max(t,t′) introducing the retarded friction:

γ(t− t′) = Γ(t− t′)θ(t− t′) . (6)

Until this point the dynamics of the system remain deterministic and are completely
determined by its initial conditions as well as those of the reservoir variables. Two im-
portant points can be make here. On the one hand, one can check, by simple numerical
generation, that the function ξ at, say, fixed t resembles more and more a random va-
riable as the number of oscillators increases (for incommensurate frequencies ωa). The
initial conditions for the oscillators are the seeds of the random number generator. This
is similar to what happens with random number generators in the sense that these are,
ultimately, periodic functions with a finite recurrence time that, however, can be made
sufficiently long for computational purposes. Therefore, ξ is a pseudo random number.
On the other hand, one can directly introduce the statistical element into play when one
realises that it is impossible to know the initial configuration of the large number of os-
cillators with great precision and one proposes that the initial coordinates and momenta
of the oscillators have a canonical distribution at an inverse temperature β. (Note that
one needs to assume that the oscillators interacted in the past to establish ergodicity and
reach this pdf, though they do not do any longer.) Then, one chooses {πa(0),qa(0)} to be
initially distributed according to a canonical phase space distribution:

P ({πa(0),qa(0)},x(0)) = 1/Z̃env[x(0)] e−βH̃env[{πa(0),qa(0)},x(0)] (7)

with H̃env = Henv +Hint +Hcounter, that can be rewritten as

H̃env =

N∑
a=1

[
maω

2
a

2

(
qa(0) +

ca
maω2

a

x(0)

)2

+
π2
a(0)

2ma

]
. (8)
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Again, the presence of Hcounter here is for convenience. The randomness in the initial
conditions gives rise to a random force acting on the reduced system.

1. Prove that ξ is a Gaussian random variable, that is to say a noise, with

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = kBT Γ(t− t′) . (9)

(One can easily check that higher-order correlations vanish for an odd number of ξ
factors and factorise as products of two time correlations for an even number of ξ
factors.) In consequence ξ has Gaussian statistics.

2. Defining the inverse of Γ over the interval [0,t],
∫ t

0 dt
′′ Γ(t−t′′)Γ−1(t′′−t′) = δ(t−t′),

confirm that one has the Gaussian pdf:

P [ξ] = Z−1e
− 1

2kBT

∫ t
0 dt

∫ t
0 dt
′ ξ(t)Γ−1(t−t′)ξ(t′)

. (10)

Z is the normalisation. A random force with non-vanishing correlations on a finite
support is usually called a coloured noise. Equation (5) is now a genuine Langevin
equation.

3. A multiplicative retarded noise arises from a model in which one couples the coordi-
nates of the oscillators to a generic function of the coordinates of the system. Prove
that for a non-linear coupling Hint = V[x]

∑N
a=1 caqa there is a choice of counter-term

for which the Langevin equation reads

ṗ(t) = −V ′[x(t)] + ξ(t)V ′[x(t)]− V ′[x(t)]

∫ t

0
dt′ Γ(t− t′)V ′[x(t′)]ẋ(t′)

with the same Γ and ξ(t). The noise appears now multiplying a function of the par-
ticles’ coordinate. Applications of this kind of equations are manifold. For instance,
the random motion of a colloid in a confined medium is mimicked with a Langevin
equation in which the friction coefficient depends on the position notably close to
the walls.

3 Extra

Take a one dimensional mono-atomic material and denote the position of each atom
xn, with n = 1, . . . , N . In equilibrium, the atoms sit at regular positions xn = na with a
the lattice spacing. One assumes that only the interactions between adjacent atoms are
important and that the two-body potential that holds the atoms in place takes the form∑

n V (xn − xn−1). For small deviations from equilibrium, one can expand the generic V
to second order in the displacements

un = xn − na (11)

and the potential becomes the one of a set of coupled harmonic Hooke oscillators. The
Hamiltonian governing the dynamics is then

H =
∑
n

p2
n

2m
+
κ

2

∑
n

(un − un−1)2 , (12)
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Fig. 3 – A chain of identical masses connected by massless springs. The dotted disks represent

the regular equilibrium positions while the solid ones the actual positions during motion. The dis-

placement of the disk at the right boundary from its equilibrium position is indicated above it. The

length of the chain is L = aN .

where pn = mu̇n and m and κ are material parameters. The Hamiltonian is the one of a
chain of identical masses connected by identical massless springs with spring constant κ
as the one depicted in Fig. 3.

1. Write Newton’s equations of motion.

2. To ease the solution of these equations we impose periodic boundary conditions,
extending n ∈ Z and requiring un+N = un. This choice does not influence the
physical behaviour for N � 1. Show that the real (or imaginary) parts of the plane
waves

un = Ae−iωt−ikna (13)

solve the equations of motion.

3. Using the fact that un in eq. (13) is invariant under k 7→ k + 2π/a restrict k to lie
in the first Brillouin zone k ∈ [−π/a, π/a). Find the quantisation condition on k
assuming, for simplicity, that N is even.

4. Evaluate the effect of a and aN on the behaviour of the wave-vector k.

5. Find the dispersion relation, that is to say, the relation between ω and k.

6. Plot this relation. What is the behaviour for k ' 0?

7. Calculate the phase velocity vp = ω(k)/k and the group velocity vg = dω(k)/dk. vp
is the velocity of the propagation of the plane wave, whereas vg is the velocity of
the propagation of the wave packet. The latter is the velocity for the propagation of
energy in the medium. At low k, vp = vg and represent the speed of sound of the
material.

8. What is the energy of a mode k?

9. In the limit k ' 0?

10. What is the density of states in the limit L → ∞? To make calculations simple we
will focus on low energy values E ' 0.

The dispersion relation found with this model is in very good qualitative agreement
with the ones measured in real crystals.

This model is used in the Altland & Simons textbook to introduce an effective field
theory for the low-energy excitations. We will see this kind of construction in the Lectures.
They also point out, as usually done, that this very simple problem gives already sufficient
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information to justify the need to consider quantum fluctuations. see the graph in the
right in Fig. 4.

Although the exercise focused on the one-dimensional lattice, the same basic charac-
terisation of phonon branches occurs for higher dimensional lattices. The time-dependent
displacement of an atom identified by the indices of its equilibrium position rn, on a d
dimensional regular Bravais lattice in which there is one atom per unit cell, is

un(t) = εn e
iω(k)t+ik·na (14)

The wave vector k specifies both the wavelength and direction of propagation. The vector
εn determines the amplitude as well as the direction of vibration of the atoms. Thus, this
vector specifies the polarization of the wave, i.e., whether the wave is longitudinal (εn
parallel to k) or transverse (εn perpendicular to k). Replacing (14) in the equations of
motion one finds d equations that impose d different conditions on ω(k) and give rise to
three acoustic branches, all with linear dispersion ω ∼ |k| for low momenta, while optical
branches have non-vanishing frequency, typically higher than the acoustic branch.

(a) (b)

Fig. 4 – (a) Dispersion relation of acoustic phonons in the Si 0.92 Ge 0.08 alloy. Figure from D. Le

Bolloc’h, J. L. Robertson, H. Reichert, S. C. Moss, and M. L. Crow, X-ray and neutron scattering

study of Si-rich Si-Ge single crystals, Phys. Rev. B 63, 035204 (2001). (b) Specific heat of EuCoO3.

Figure taken from the Altland & Simons textbook. At high T the curve approaches a constant, as

predicted by the classical harmonic model (equipartition) but at low T there is a clear variation of

the curve which indicates the need to take quantum fluctuations into account.

As further exercise of similar kind, study the di-atomic harmonic chain, in which atoms
of two different masses, m and M , intercalate on the chain. Show that a second dispersion
relation gives rise to an additional branch, the optical one.

A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge University Press).
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