
Advanced Statistical Physics

Homework: Finite Size Scaling

October 2021

This homework investigates the use of the finite size scaling technique to identify the
phase transition and critical behaviour in systems with continuous phase transitions. It
has two parts. One concerns analysis of data of the Ising model, and the second one deals
with the analytic treatment of a stochastic model.

1 The Ising model

We will apply the finite size scaling technique to analyse numerical Monte Carlo data
for the Ising model

H({si}) = −J
∑
〈ij〉

sisi − h
∑
i

si ≡ HJ({si}) +Hh({si}) (1)

defined on two and three dimensional lattices. The spin variables are si = ±1 for all i,
the ferromagnetic coupling constant is J > 0 and h is a uniform magnetic field. The
sum

∑
〈ij〉 runs over nearest neighbours on the lattices, which have linear sizes L. The

convention used for the definition of this sum will be inferred from the data. The system
is in equilibrium with a thermal bath at inverse temperature β = 1/(kBT ). We have
defined the two contributions to the Hamiltonian, HJ({si}) from the two-body coupling,
and Hh({si}) from the magnetic field contribution, for later convenience.

2 The data

The data in www.lpthe.jussieu.fr/˜leticia/TEACHING/ICFP/Homework have been
produced by M. Picco (LPTHE) using the Swendsen-Wang (two dimensional) and Wolf
(three dimensional) cluster algorithms which allow one to speed up the Monte Carlo si-
mulations close to the critical point, and equilibrate samples of much larger sizes than the
single spin flip Monte Carlo codes. In the following we measure temperature in units of J
or, equivalently, we set J = 1.

The representation used is such that H has been multiplied by β.
The three first files have data for

The 2dIM at different T and h = 0 OUT2dL#Th0

The 2dIM at different h and T = Tc OUT2dL#Tc

The 3dIM at different T and h = 0 OUT3dL#Th0
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The label # close to L means that the values of the system sizes, L, are placed there in
the names of the files. OUT3dL4Th0 contains data for the three dimensional Ising model
with linear size L = 4, at various temperatures, and under no applied magnetic field.
OUT2dL4Tc contains data for the two dimensional Ising model with linear size L = 4, at
the critical temperature, and under different applied fields. The columns are organised as

L 1/β h m − e L2σ2m L2σ2H # samples (2)

in the two dimensional case at h = 0 (file OUT2dL#Th0)

L 1/β h m − eJ − e σ2m L2σ2HJ
L2σ2H # samples (3)

in the two dimensional case at Tc (file OUT2dL#Tc) and

L 1/β h m m2 − e e2 σ2HJ
σ2H # samples (4)

in the three dimensional case at h = 0 (file OUT3dL#Th0) with

m =
1

Ld

〈∣∣∣∣∣∑
i

si

∣∣∣∣∣
〉

m2 =

〈(
1

Ld

∑
i

si

)2〉
σ2m = m2−m2

eJ =
1

Ld
〈HJ({si})〉 e =

1

Ld
〈H({si})〉

e2 =
1

L2d

〈
(H({si}))2

〉
eJ2 =

1

L2d

〈
(HJ({si}))2

〉
σ2H = e2− e2 σ2HJ

= eJ2− e2J

(5)

# samples gives the number of samples used to calculate the averages.

2.1 Questions

We start with a series of general questions. Justify your answers.

1. Can the free-energy of a finite size system be non-analytic?

2. Do you expect the actual critical temperature of a finite dimensional system to be
higher or lower than the one found with the mean-field approximation?

3. Which is the relation between the fluctuations of the magnetisation and the linear
magnetic susceptibility? Write it down.

4. Which is the relation between the fluctuations of the energy and the heat capacity?
Write it down.

We now perform the data analysis.

1. Use the information about the energy density given in the data-files to deduce which
is the convention for the sum over nearest-neighbours on the lattice,

∑
〈ij〉, used.

2



2. Using the data in the files, make two plots of the magnetisation density m as a
function of temperature, for the 2d and 3d Ising models in the absence of magnetic
field and different values of the linear size L. Discuss these curves. Write down
the equation that determines the mean-field magnetisation density (for the sum
convention identified in the previous item) and trace the solutions on the same
plots. In which case is it closer to the numerical data in finite d? You can quantify
the answer to this question calculating TMF

c /Tc − 1. Why?

3. In the d = 2 case, find in the literature Onsager’s expression for m and trace it in
the same plot. Compare to the numerical data.

4. One can determine the ratio exponent β/ν from the relation 〈m2〉1/2(Tc) ∼ L−β/ν .
Plot 〈m2〉1/2 as a function of temperature.

Determine from Onsager’s exact expression for m the exponent β in d = 2. Compare
to what you found with the data analysis, setting ν = 1.

5. Make the scaling plots for the magnetisation densities in the 2d and 3d dimensional
cases. In the bidimensional case work with the distance from the critical point,
t ≡ (T − Tc)/Tc with no absolute value, while in the three dimensional case use |t|
to build the scaling variable.

6. Consider now the applied field dependence of the magnetisation in the Ising model
in d = 2. Confront the numerical data for m(h) to the mean-field predictions and to
Onsager’s result. Which one represents better the data? Think about using a double
logarithmic representation to make the algebraic dependence easy to visualise.

7. Make plots of the linear magnetic susceptibility in the 2d model using the data in
OUT2dL#Th0. Do you see the expected qualitative behaviour?
Imagine that the maximum value in this plot scales as

χmax(L) ∝ (βc(L)− βc(L→∞))−γ ∝ Lγ/ν (6)

where βc(L → ∞) is here a fitting parameter to be later compared to Onsager’s
exact value. Proceed as follows:

(a) Apply some smoothing of this data (e.g. with gnuplot, the “smooth bezier”
option to the “plot” command).

(b) Estimate the pair (βc(L), χmax(L)) for each L, where βc(L) is the position of
the maximum and χmax(L) the height at the maximum.

(c) Make a power law fit of the maximum location βc(L) = βc(L → ∞)− cL−1/ν .
This is a three parameter fit, βc(L→∞), c, ν, and serves to find estimates for
the infinite size βc and the exponent ν.

(d) Get γ from χmax ∼ Lγ/ν .

(e) Compare all values from to Onsager’s exact ones.

8. Use now the more detailed data in the critical region that you can find in the files
called OUTL#h0close. Do you find improved results? What does this teach you?

9. How would you exploit the data in the files to find the exponent α?

3 The Galton-Watson model

Sharp changes in the behaviour of a system not only arise in the thermodynamic
equilibrium of infinite size systems. Dynamic phase transitions are also of interest. The
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concepts and ideas learnt in the equilibrium case can sometimes be transposed and applied
in the new contexts. In this Section we will study one model with this occurs, paying special
attention to finite size effects, the theme of this Homework.

Bienaymé on the one hand, and Galton and Watson on the other, analysed a sto-
chastic process, more than one hundred years ago, to study the extinction of (prominent)
families [1].

Consider elements (say, mothers) who give rise to other elements (say, daughters). The
Galton-Watson process assumes that each of these elements triggers a random number K
of offspring elements in each generation. The Ks are independent identically distributed
(i.i.d.) random variables, with probabilities

P (K = 0) = p0, P (K = 1) = p1, . . . , P (K = k) = pk, . . . (7)

with k = 0,1, . . . ,∞. The probabilities are normalised,
∑∞

k=1 pk = 1. An example of a
Galton-Watson tree is shown in Fig. 1.

In the zeroth generation of the process there is a single element, and the number of
elements at this step is Z0 = 1. The K offsprings of this first element constitute the first
generation. The number of elements in this first generation is called Z1. The definition
of the probability P implies that P (Z1 = k) = pk. The number of elements in the tth
generation is called Zt. t is playing the role of a discrete time and Zt is a random variable
in its turn, with distribution determined by P (K).

Fig. 1 – An example of Galton-Watson tree, with Z0 = 1, Z1 = 3, Z2 = 5, etc.

The number of elements in the t+ 1th generation is obtained from the number of the
previous generation t as

Zt+1 =

Zt∑
i=1

Ki . (8)

Ki is the number of offsprings of the ith element in the t generation. This equation can
be used to generate the process, once the probability law P (K) has been chosen.

The question asked by Galton and Watson was what is the probability of extinction?
Extinction is achieved when Zt = 0, for the first “time”. Once Zt = 0, clearly, Zt′>t = 0
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as well. Extinction is an “absorbing state” of the process. In mathematical terms, the
probability of extinction is given by

Pext = lim
t→∞

P (Z1 = 0 or Z2 = 0 or . . . or Zt = 0) = lim
t→∞

P (Zt = 0) . (9)

We need to find an expression for P (Zt = 0) and study its long t properties.
We will start by recalling some properties of the generating function of the random

variable K (see Math Support)

fK(x) =

∞∑
k=0

pkx
k = 〈xK〉 . (10)

1. Give the values of fK(0) and fK(1).

2. Call m ≡ 〈K〉 and express it in terms of fK . can you foresee some special value of
m which could make change the behaviour of the process in its long time limit?

3. What are the signs of f ′K(x) and f ′′K(x)?

4. Make a sketch of fK(x) for x ∈ [0,1].

Let us now define the sum of random variables

S =

N∑
i=1

Ki (11)

with N fixed.

5. Show that the generating function of S, fS(x), is given by fS(x) = (fK(x))N , using
the fact that the Ki are i.i.d.

Imagine now that N is also a random variable, independent from the K ones, and with a
different probability distribution.

6. Show that the generating function of S, fS(x), is now given by fS(x) = fN (fK(x)).

We now apply these definitions to the Galton-Watson process.

7. Rewrite fS , making the corresponding association of variables. Express it as a re-
cursion relation to prove

fZt(x) = fK(fK(fK(. . . fK(x))))︸ ︷︷ ︸
t−times

= fK ◦ fK ◦ fK ◦ . . . ◦ fK︸ ︷︷ ︸
t−times

(x) ≡ f (t)K (x) (12)

where the super-script (t) indicates composition t times (and not power). Give also
the initial values of the recursion.

8. Find 〈Zt〉 as a function of m = 〈K〉 and t. Distinguish two relevant cases depending
on the value of m.

9. Express now the probability of extinction Pext in eq. (9) in terms of fK .

10. Solve the iteration that you have just found for Pext graphically, distinguishing two
relevant possibilities.

11. In which case is extinction unavoidable? What happens in the other cases? Have you
found a sharp change at a particular value of a control parameter? Which is this
control parameter?
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We have solved the problem in the limit of infinite number of generations, t→∞. We
now consider it for finite t, and to make the connection with the finite size scaling theory
very clear, we call it tmax = L. The probability of extinction is simply Pext(L) = P (ZL =
0) = fLK(0).

12. Is Pext(L) smaller or larger than Pext(t→∞)? Why?

13. Write a code to compute Psurv(L) = 1 − Pext(L), the survival probability, for the
choice P (K = k) = p(1 − p)k. Plot Psurv(L) for several values of L (if possible,
logarithmically spaced). What do you observe?

14. Try to scale the data for σ2c LPsurv(L) using L(〈K〉 − 1) as a scaling variable with
σ2c = 〈K2〉 − 〈K〉2. Does it work?

15. Choose another probability distribution for P (K = k), and repeat the procedure.
Do you find data collapse on the same scaling function?

16. If we interpret σ2c LPsurv(L) as an order parameter, what does the scaling with
L(〈K〉 − 1) implies for the exponents β and ν?
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[4] R. Garćıa-Millán, F. Font-Clos, and A. Corral, Finite-size scaling of survival proba-
bility in branching processes, Phys. Rev. E 91, 042122 (2015).

6


