
Advanced Statistical Physics

Exam

January, 2022

Surname :

Name :

Master :

Write your surname & name in CAPITAL LETTERS.

Not only the results but especially the clarity and relevance of the explanations
will be evaluated.

Focus on the questions asked and answer them (and not some other issue).

The answers must be written neatly within the boxes.

The problems follow the order of the chapters in the Lecture Notes but are not of
increasing difficulty.

The exam is long but do not panic, if you are blocked by some problem, jump to
the next one and come back later to the one you find difficult.
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1. Ergodicity

Figure 1 shows the numerical evaluation of the solution of a stochastic (Langevin) equation, ruling the
time (t) evolution of a real variable X . We do not need to specify this equation but only remark that it
depends on a parameter a. The evolution of X for different initial conditions X (0) and different random
noise realisations is the one in the panel above for a > 0 and the one in the panel below for a = 0.

Figure 1: The solution of a stochastic equation with a > 0 above and a = 0 below. The different curves correspond
to different initial conditions and different noise realizations.

What do you conclude about the ergodic properties of the system in the two cases? Give the condition
needed to satisfy ergodicity and discuss whether it holds or not in the two cases.
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2. Phase transitions.

Consider the classical Heisenberg model in three dimensions in canonical equilibrium with a bath at
temperature T . This model is defined by the Hamiltonian

H = −J
∑
〈ij〉

~si · ~si , (1)

where J > 0, ~si are placed at the vertices of a three dimensional lattice with unspecified geometry and they
are vectors with three components, ~si = (s1i , s

2
i , s

3
i ), each of them taking real values, −∞ < sai < ∞ for

a = 1, 2, 3, but constrained to have unit modulus, |~si|2 = (s1i )
2 + (s2i )

2 + (s3i )
2 = 1. The sum in Eq. (1) runs

over nearest-neighbours on the lattice and there are N spins in the system.

1 – In the absence of any phase transition consideration, which is the canonical average of ~si at all temper-
atures? Justify your answer with a mathematical proof.

One uses the symmetry under ~si 7→ −~si to prove it.

〈~si〉 = Z−1
∫
ds1i

∫
ds2i

∫
ds3i δ(|~si|2 − 1) ~si e

βJ
∑

〈ij〉 ~si·~sj

Change variables ~si = −~σi in the integral

〈~si〉 = −Z−1
∫
dσ1i

∫
dσ2i

∫
dσ3i δ(|~σi|2 − 1) ~σi e

βJ
∑

〈ij〉 ~σi·~σj = −〈~σi〉

And then 〈~si〉 = 0.

2 – Do you expect a finite temperature phase transition in this problem? Under which conditions on the
number of spins?

Yes, if N →∞.

3 – Which would be the phases? Describe them.

A high temperature disordered paramagnetic phase. Spins pointing in all directions with no
preferred order.

A low temperature ordered ferromagnetic phase. Spins pointing in one direction with thermal
fluctuations distorting the perfect order (ground state).
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4 – Identify an order parameter and give its mathematical expression.

~m = N−1
∑
i〈~si〉 is a global order parameter, the magnetization density.

The local observable 〈~si〉 should behave in the same way, since there is no quenched randomness
in this problem and there is no reason to have heterogeneous behaviour.

5 – Which is the mechanism whereby the order parameter just defined would acquire a non vanishing value?
Explain its origin in an experimental situation.

Spontaneous symmetry breaking

When the system goes through a phase transition

remanent fields which the experimentalist cannot control select one among the continuity of pos-
sible directions that the spins can take in the ground state

6 – How is this mechanism imposed mathematically?

One applies a magnetic field ~h in a chosen direction,

calculates the averages under this field 〈~si〉~h in the N →∞ limit,

and then takes the field to zero

to obtain a non-vanishing ~m, in the direction of the field ~h.
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7 – Explain the way in which you have contoured the answer to question 1 – with the mathematical approach
proposed in the answer to question 6 –.

By applying the magnetic field ~h in a chosen direction, one breaks the rotation symmetry.

In particular, also the one under spin inversion which was used in 1 –

Thus, the average 〈~si〉~h can be different from zero in the thermodynamic limit.

8 – Do you expect ergodicity breaking in this problem? Discuss similarities and differences with the Ising
cases that we discussed in the Lectures.

Difficult question since we did not discuss it in the lectures. Let’s see what the students write.

The pinning field selects one direction but once it’s set to zero there is the zero mode related to
the rotation symmetry (contrary to the discrete one of the Ising model) that they should discuss.

9 – Consider now the fully-connected model in which each spin interacts, via the same scalar product, with
all other spins,

∑
i 6=j ~si ·~sj . How do you render the model well-defined in the thermodynamic limit? Justify

your answer.

Let us focus on one ground state, in which all spins point in the same direction ~si = ~vi, say.

Its energy is E = −JN(N − 1).

To make it extensive one needs to rescale J 7→ J/N .
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10 – Go back to the model in Eq. (1) defined on a finite three dimensional lattice which we will take
to be a cubic one, with either free or periodic boundary conditions, a distinction which is not important
in the infinite size limit. Establish the mean-field analysis, determine the phase diagram and sketch the
behaviour of the order parameter. (Hint: you can exploit the answer to question 6 – to simplify the vectorial
treatment.)
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3. (In) equivalence of ensembles.

Consider a system of N spins placed on the vertices of a lattice. The potential energy is given by the sum,
over all pairs of the elementary constituents, of a two-body energy u(si, sj).

1– Explain and illustrate, with one equation, the extensivity property of the energy.

The energy should be extensive, that is to say, scale with the number of spins.

This is necessary to have an interesting thermodynamic N → ∞ limit allowing, e. g., for finite
temperature phase transitions.

Given a spin configuration, the total potential energy is a function of N and the other parame-
ters in the problem which we do not write explicitly. U(N) =

∑
i 6=j u(si, sj) and, for it to be extensive,

it should be proportional to N with proportionality constant u of order 1.

U(N) = Nu.

2 – Discuss qualitatively the conditions under which this potential is additive. Illustrate this property with
one equation. You can support your argument with a sketch (drawing).

One needs short range interactions to be able to drop the contributions to the energy of the in-
terface between any two macroscopic subsystems.

U = U1 + U2 + U12 ∼ U1 + U2

since U12 = o(N) while U1 = O(N) and U2 = O(N)

Space for a drawing with the system partition in two subsystems 1 and 2.
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3 – Explain why the violation of these properties may affect the equivalence of ensembles. Focus on micro-
canonical and canonical measures and expand your answer with a mathematical argument.

To derive the canonical measure from the microcanonical one we use the extensivity and additivity of
the energy.

They can/should develop the derivation of the canonical from the microcanonical. I will not write it
here.
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4. 2d XY model

1 – Write down the Hamiltonian of the 2d XY model and define all variables and parameters.

Hamiltonian H = −J
∑
〈ij〉 ~si · sj (if no applied field).

J > 0 FM coupling,

~si = (s1i , s
2
i ) two component vectors on each site i of the lattice.

∑
〈ij〉 sum over nearest neighbours on the lattice.

2 – Which kind of transition do you expect in this model?

Topological.

3 – Which are the excitations that drive the phase transition? You can illustrate them with drawings
and give the mathematical expression for the corresponding spin configurations.

Vortices - drawings
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4 – Give a qualitative argument to estimate the critical temperature and express its parameter depen-
dence.

Peierls argument, E vs S, estimate TKT

5 – What is the nature of the low temperature phase?

Critical

6 – Give the expression of the correlation function.

Power law decay at T < TKT .

Exponential decay at T > TKT .

7 – How does the correlation length behave at the transition? How can one prove? (Do not give the
mathematical details just describe the method).

Exponential divergence.

RG via mapping to Villain’s model.
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5. Finite size scaling

The measurement of a linear susceptibility in a model with different linear system sizes yields the curves
in panel (a) of Fig. 2. Explain what has been done in panel (b) in the same figure. To which universality
class does this model belong to?

Figure 2: The susceptibility.

Critical behaviour as a function of the control parameter ε

Finite size Scaling χLγ/ν = χ̃(εL1/ν)

2d Ising model exponents, since ν = 1 and γ = 7/4.

X. Quantum Which are the assumptions leading to the quantum fluctuation dissipation theorem? Recall
its expression.

Linear response and canonical equilibrium.

Equation

X. Quantum Figure 3 shows the time evolution of the probability distribution of atoms in an optical trap
– which can be thought of a confining harmonic potential.

Are the atoms in thermal equilibrium? Discuss.

They are not.

The pdf depends on time.
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Figure 3: The probability distribution of the atom positions in an optical trap (harmonic potential) in the course of
time.
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