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TD 6 : Quenched randomness

The objective of this session is to better understand the different mechanisms that can trigger disor-
der in a given system, such as introduction of topological defects, dilution, random magnetic field,
frustration and also detachment/emergence of domain walls and surface fluctuations.
For more details, see also References below 1.

Exercise 1 : diluted ferromagnet

Let us consider a spin lattice and assign to each site a certain probability pi to be occupied or empty.
If pi = 1 ∀i, we recover the Ising model back, otherwise if pi < 1 we end up with a diluted model.
We define a diluted system on a cubic lattice by the Hamiltonian :

H = −
∑

Jijσiσj + h
∑

σi (1)

where σi = ±1 and Jij = 1 with probability p and 0 with probability (1 − p) respectively. For h 6= 0
there is no phase transition, whereas for h = 0 we can define the evolution in temperature Tc(p) as a
function of p.
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Figure 1 – Phase diagram of a diluted ferromagnet.

Clearly we recover : Tc(1) = T Ising
c = T pure

c . Furthermore,

1. R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969) ;
A. J. Bray, Phys. Rev. Lett. 60, 720 (1988) ;
M. Randeria, James P. Sethna et al., Phys. Rev. Lett. 54, 1321 (1985).
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— If p < pc (probability of link percolation), Tc(p) = 0 ;
— Tc(p) < pTc(1) ;
— In the disordered phase with T > Tc(p) and T < Tc(1), Griffiths singularities can occur leading

to a divergent high-temperature expansion (even without undergoing a true phase transition).
These features for the different phases are summarized in Fig. 1 below.

1) What should you expect for the probability of site occupancy p ? What are the observables that
might depend on p ?

2) Considering the Hamiltonian in Eq. (1), how can you define site dilution and link dilution respec-
tively ?

3) We aim to show that upon increasing the system size increases with T < Tc(1) – but not too
small – the imaginary axis in the complex plane of h contains a singularity at h = 0. However, the
spontaneous magnetization does not display any jump (indeed the magnetization could be C∞ in h
at h = 0).
Let us consider site dilution, i.e. j is occupied only if τj = 1, otherwise the site is empty. Then we
call :

— C ≡ arbitrary configuration of occupied sites in the lattice region Λ ;
— |C| ≡ number of sites belonging to C ;
— PC,Λ ≡ probability of occurrence of C, namely probability of obtaining C by site percolation ;
— MΛ ≡ average magnetization per site in Λ ;
— MC ≡ average magnetization per site in C.

Λ

C

Given the definitions above, what is the average magnetization per site in Λ (see Fig. below) ?

4) If we introduce the weight z = e−2βh, how would you express the average magnetization restricted
to C in terms of the free energy fC ? (Suggestion : use the thermodynamic relation between the order
parameter and the free energy.)

5) Optional
What can you claim about the average magnetization in the domain ? Is it bounded ? Using the
expressions for MΛ and ηa(Λ) ≡ 1

|Λ|
∑

C:ζα(C)=ζa
PC,Λ ma(C) used before, analyze MΛ as a function of

z.
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Exercise 2 : Ising model in a random magnetic field

In the following we shall consider a simple Ising model to show the equivalence – close to the critical
point – between a spin system in d-dimensions in a random magnetic field and a spin system in
(d− 2)-dimensions without field.

1) How would you define the free energy of the model with Lagrangian L(x) = −1
2φ(x)∆φ(x)+V (φ(x))

and averaged over the random field ? For the computation, assume the field to be Gaussian distributed.

2) If we take advantage of a tree-like diagram approximation, what would the expression for F [h] look
like ?

3) If you consider again the tree-like approximation, how should you write the corresponding expression
for the correlation 〈φ(x)φ(0)〉h and for 〈φ(x)φ(0)〉 ?

4) Comment the result about the last integral form. How would you solve the integral for the correlation
function ?
Suggestion : use the variable change h(x) = h

′
(x) + h̃(x).

5) Optional point. Now we introduce the superspace defined by d dimensions xi, which commute,
and 2 dimensions θ, θ̄, which are Grassmann variables. We introduce then a super-field Φ(x, θ, θ̄) =
φ(x) + θ̄c(x) + c̄(x)θ + θ̄θλ(x).
• Verify that the Lagragian operator satisfies the following relation∫

L̃(φ, c, c̄, λ) ddx =

∫
SSUSY(Φ) ddxdθdθ̄ , (2)

with the action SSUSY(Φ) = −1
2Φ∆SSΦ + V (Φ) and the corresponding Laplacian ∆SS = ∆ + ∂2

∂θ∂θ̄
.

• Check that the super-symmetric transformations are simply rotations in the aforementioned super-
space leaving the metrics x2 + θθ̄ invariant.

6) Optional – Imry and Ma argument.
Let us consider an Ising ferromagnet in a random magnetic field in d dimensions. It is defined by the
following Hamiltonian

H = −
∑
i,j

Jijσiσj +
∑
i

hiσi (3)

with P (hi) ∼ e−
h2i
2ε and hih̄j = h2δij .

We assume that the system without external field develops a spontaneous magnetization. • Explain
on what basis the long-range order should be stable with respect to the formation of domain walls.

3


