Advanced Statistical Physics

TD8: Quantum Ising model

December 2021

We consider the quantum Ising model in d dimensions made by N spins 1/2 interacting via ferromagnetic interactions in presence of a transverse field:

$$\hat{\mathcal{H}} = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - \Gamma \sum_i \sigma_i^x ,$$

where $\langle i,j \rangle$ denotes all pairs of nearest neighbor on a d-dimensional lattice and $\sigma_i^{x,y,z}$ are the Pauli matrices.

I. Ground state properties

- (a) What is the energy of the ground state when J=0? Is the ground state degenerate? Determine the expectation values of $\langle \sigma_x \rangle$ and $\langle \sigma_z \rangle$ in this ground state.
- (b) What is the energy of the ground state when $\Gamma = 0$? Is the ground state degenerate? Determine the expectation values of $\langle \sigma_x \rangle$ and $\langle \sigma_z \rangle$ in this ground state.
- (c) Let us now restore both couplings J and Γ . Plot the qualitative behavior of $\langle \sigma_x \rangle$ and $\langle \sigma_z \rangle$ as a function of Γ for J = 1.

II. Mean-field approach

(a) In the mean-field approach one replaces the instantaneous fluctuating fields by their average values. Consider a site i of the lattice and its neighbors $j=1,\ldots,2d$. We introduce the average magnetization per spin:

$$m = \frac{1}{N} \sum_{i} \langle \sigma_i^z \rangle .$$

Replace the operators σ_j^z by their expectation values, and write the mean field Hamiltonian as:

$$\hat{\mathcal{H}}_{\mathrm{mf}} = -\sum_i ec{h}_{\mathrm{mf}} \cdot ec{\sigma}_i \,.$$

Give the expression of the effective field $\vec{h}_{\rm mf}$ in terms of d, J, Γ , and m.

- (b) What is the energy of the ground state of $\hat{\mathcal{H}}_{\mathrm{mf}}$? Determine the expectation values of $\langle \sigma_x \rangle$ and $\langle \sigma_z \rangle$ in the ground state and find the self-consistent equation for m.
- (c) Show that there exist a critical value of Γ above which the only solution of this equation is m=0.

- (d) Find the solution of the self-consistent equation for m below Γ_c .
- (e) We now investigate the effect of thermal fluctuations. Find the self-consistent equation for m at finite T and express it in terms of m, Γ , Γ_c , and β only.
- (f) Find the equation that gives the critical value of the field $\Gamma_c(\beta)$ above which the only solution of the self-consistent equation for m is m=0 as a function of Γ_c and β . Determine the values of $\Gamma_c(\beta=0)$ and $\Gamma_c(\beta\to\infty)$ and draw the mean-field phase diagram of the model.