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The purpose of this exercise, which is largely inspired by the beautiful paper Kafri,
Mukamel, and Peliti, Physical Review Letters 85, 4988 (2000), is to study the unzipping
transition of the DNA in a simplified setting.
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Fig. 1 – A configuration of the DNA molecule made by a segment of `1 pairs of bonded monomers

and a portion of `2 unzipped monomers.

We consider a schematic model of the DNA molecule as two filaments composed by
a sequence of identical monomers. In order to simplify the treatment of the problem, we
will start by assuming that the possible configurations of the DNA molecule are made by
two parts, as in figure 1 (Poland-Sheraga model).

– a segment of `1 pairs of bonded monomers (with `1 ≥ 0),

– an unzipped portion made by `2 monomers (with `2 ≥ 0) on each filament.

The bonding energy associated to each pair of bonded monomers is −ε0 (with ε0 > 0).
To simplify the notations we will introduce the Boltzmann factor ω = eβε0 corresponding
to the statistical weight of each bonded pair.

We will assume that the statistical (entropic) weight of the unzipped portion corres-
pond to an entropic gain accounting for all possible configurations of the two filaments of
length `2 (which all have the same energy), which is given by

Ω(`2) =
s`2

`c2
, (1)

with s being a constant (s > 1) and c an exponent which depends on the space dimension.
The analysis of the model is simpler in the grand canonical ensemble. We will then

introduce a fugacity z = eβµ associated to the number of pairs of monomer of the DNA
(bonded or not).
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1. Compute the grand partition function Ξ of the molecule in the Poland-Sheraga
setting as a function of z, ω and s and show that it is given by the product of the
two grand partition functions V0 (of the bonded segment) and Q (of the unzipped
portion) that need to be specified explicitly.

2. We now assume, as in Kafri, Mukamel, and Peliti, Physical Review Letters 85,
4988 (2000), that the configurations of the DNA molecule are made by arbitrarily
alternating sequences of bonded segments and unzipped portions. Show that the
grand partition function Ξ can be expanded as illustrated in figure 2, with U = Q−1
and V = V0 − 1. Find the expression of Ξ and of the grand potential J .

Fig. 2 – Graphical representation of the expansion of the partition function in powers of (UV )n.

3. Write the grand canonical relation which gives the average length of the molecule
〈L〉 (i.e. the total number of pairs of monomers) from the expression of ln Ξ.

4. Henceforth we will focus on the thermodynamic limit, 〈L〉 → ∞. We define z? as the
smallest value of the fugacity for which 〈L〉 diverges. Identify the possible values of
z?.

5. Show that for c > 1 there is a phase transition between a bonded phase at low tem-
perature and an unzipped phase at high temperature. Find the critical temperature.

6. To study the unzipping transition, we will introduce the order parameter 〈M〉, de-
fined as the average number of bonded pairs of monomers. In the thermodynamic
limit the intensive order parameter (i.e. the fraction of bonded pairs) is:

m = lim
〈L〉→∞

〈M〉
〈L〉 .

Show that m can be written as :

m =
∂ log z?
∂ logω

.

7. We specify now to the case 1 < c < 2 (and s > ζ(c) + 1) and we consider a
temperature close to the critical point. We set:

ω = ωc + δ , z =
1

s
− ε .

By expressing ε as a function of δ, show that the unzipping transition is second order
and compute the critical exponent β such that m ∼ |T − Tc|β.

8. Show that for c > 2 the transition is instead first order.
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9. Show that for c < 1 there is no transition and the DNA molecule is in the unzipped
phase at all temperature

APPENDIX: Few properties of the polylogarithmic function

The polylogarithmic function is defined as:

gc(x) =
∞∑
k=1

xk

kc
.

It has the following integral representation:

gc(x) =
1

Γ(c)

∫ ∞
0

tc−1dt

x−1et − 1

– For c > 1 its value in x = 1 is
gc(1) = ζ(c) ,

where ζ is the Riemann zeta-function.

– For c < 1 the polylogarithmic function diverges for x→ 1− as:

gc(x) ∼ 1

(1− x)1−c
.

– For c > 1 and x→ 1− we have that:

gc(1− ε) ≈ ζ(c)− εγ ,

avec γ = min(1,c− 1).
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