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Why this topic ?

Materials of possible technological importance
that pose challenging
problems in experimental physics,
questions of fundamental interest,

and need(ed) the development of theoretical physics/mathematics tools.

Nice interplay between theory & experiment



Artificial spin-ice

Metamaterials: designed in the laboratory.



Artificial spin-ice

Metamaterials
Arrays of nano/micro-scale magnets
single domain magnetic islands
placed at the edges of a tiling or
the edges of a planar graph

Parameters specified by design



Artificial spin-ice

Metamaterials

Arrays of micro/nano-scale magnets
single domain magnetic islands

placed at the edges of a tiling or

the edges of a planar graph

Parameters specified by design

Image : atomic foce microscopy Square lattice

Wang et al 06



Artificial spin-ice

Metamaterials
Arrays of micro/nano-scale magnets
single domain magnetic islands

placed at the edges of a tiling

the edges of a planar graph
Parameters specified by design Penrose tiling

Image: atomic foce microscopy Marrows et al 14



Artificial spin-ice

Metamaterials

: @ . ™ _ le
Arrays of micro/nano-scale magnets iy
single domain magnetic islands

placed at the edges of a tiling

the edges of a planar graph | > éf,’
]
Easy axis magnets = Ising spins %m

Construction = along the edges Honeycomb lattice

Photoelectron emission microscopy Hiigli et al 15

(More about fabrication later)
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Artificial spin-ice

Dipolar interactions
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The islands meet at each vertex ; local dipolar interactions are frustrated ;

that is to say, they cannot be satisfied simultaneously.

It is not possible to find a configuration of the spins that join at a vertex

that minimises all pair contributions to the total energy.



Artificial spin-ice

A simpler modelling

Metamaterials
Arrays of nanoscale Ising magnets
single domain magnetic islands

placed at the edges of a tiling or

the edges of a square lattice

Parameters specified by design Magnetic force microscopy

Local approx: 2d vertex model with experimentally relevant parameters
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The 2d 16 vertex model

with 3-in 1-out vertices: non-integrable system

FM
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3-in 1-out or 3-out 1-in

(Un-normalized) statistical weight of a vertex w;, = e~ 7

In the models | a, b, ¢, d, e | are free parameters (usually, ¢ is the scale)

In the experiments ¢, depend on the sample and,

from the (planar) local energy approximation, < €ppm < €31 <

The energies €. could be tuned differently by adding fields, vertical off-sets, etc.



Natural ices

Single cell unit - tetrahedron - in water-ice and spin-ice

:
Q““"'/Q‘Q*O

O

Water-ice: coordination four lattice. Bernal & Fowler 33 rules, two H near and

two far away from each O.

Spin-ice: four (Ising) spins on each tetrahedron forced to point along the axes
that join the centres of two neighbouring units (Ising anisotropy). Local interac-
tions imply the two-in two-out ice rule;

e.g. Dys Tip O7 Harris, Bramwell, McMorrow, Zeiske & Godfrey 97



Artificial spin-ice

Metamaterials
Arrays of nanoscale magnets

single domain magnetic islands
placed at the edges of a tiling or

the edges of a planar graph

Ising spins along the links

Local dipolar interactions are | geometrically frustrated

no quenched disorder

It is not possible to find a configuration of the spins that join at a vertex

that minimises all pair contributions to the total energy.

Macroscopic degeneracy of the ground state and metastable states




Natural spin-ice entropy

Ty I’ Pyrochlore

= . | Dya2 Ti2 O7
Pauling’s Ice Entropy ) . .
Ising Dy spins lie along the axes
00 | | I | I | I |
0 2 4 6 8 "9 that join the nn cell units

Temperature (K)

Ramirez, Hayashi, Cava, Siddharthan & Shastry 99.
Very similar to Giauque & Stout 33 for water ice.



Natural spin-ice entropy

/
Ty I
1.0 - ° oooooJ
oo * °
o08°
q 0.8 ]
£ I
i Dy.Ti.O
> 0.6 - 2 27 :
o
o
5 0.4 - .
R e I I
Q
w 0.2 i
Pauling’s Ice Entropy
00 I | I | I | I |

0 2 4 6 8

Temperature (K)

10

N tetrahedra
4 nn cell units each
AN /2 = 2N links
All 2-in 2-out equivalent
~ 6 \V
Qo =~ 22V ({5)
so/kp ~1n 3 ~ 0.405
Pauling 35
So/kp = %ln% ~ ().431

Transfer matrix Lieb 76

Ramirez, Hayashi, Cava, Siddharthan & Shastry 99.
Very similar to Giauque & Stout 33 for water ice.



Natural ices

Properties and mapping

Ice-rule breaking vertices — excitations above the ground state.
The £1 Ising spins map onto a pair of “emergent” magnetic charges.
The two-in two-out rule = vanishing magnetic charge in the unit cell.

Excitation have non-vanishing charge, effective magnetic monopoles.

The defects/charges migrate on the lattice.

1[111] T[111]

Castelnovo, Moessner & Sondhi 08



The 2d 16 vertex model

with 3-in 1-out vertices: non-integrable system

FM AF 4-in or 4-out

A A A A
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3-in 1-out or 3-out 1-in

(Un-normalized) statistical weight of a vertex wy, = ¢~ 7

In the models | a, b, ¢, d, e | are free parameters (usually, ¢ is the scale)

In the experiments ¢, depend on the sample
from the (planar) local energy approximation, ear < €ppr < €31 < €40

The energies €. could be tuned differently by adding fields, vertical off-sets, etc.



Static properties

What did we know ?
6 and 8 vertex models.

Integrable systems techniques (transfer matrix + Bethe Ansatz), mappings

to many physical (e.g. quantum spin chains) and mathematical problems.
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Phase diagram
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Lieb 67 ; Baxter Exactly solved models in statistical mechanics 82

16 vertex model.

Integrability is lost. Not much interest so far.



Equilibrium analytic

Bethe-Peierls or cavity method
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Join an L-rooted tree from the left ; an U-rooted tree from above;

an R-rooted tree from the right and a D-rooted tree from below.

Foini, Levis, Tarzia & LFC 12



Is it a powerful technique ?

in, e.g., the 6 vertex model

With a tree in which the unit is a vertex we find the PM, FM, and AF phases.

spy = Inl(a+ b+ ¢)/(2¢)]

Pauling’s entropy spas = In3/2 ~ 0.405 at the spin-ice pointa = b = c.
Location and 1st order transition between the PM and FM phases.

Location but 1st order PM-AF transition.

no fluctuations in the frozen FM phase.

no fluctuations in the AF phase.

With a four site plaquette as a unit we find the PM, FM, and AF phases.

A more complicated expression for sp 7 (a, b, ¢) that yields

spy = 0.418 closer to Lieb’s entropy s pps =~ 0.431 at the spin-ice point.
Location and 1st order transition between the PM and FM phases.

Location but 2nd order (should be BKT) PM-AF transition.

fluctuations in the AF phase and frozen FM phase.



Six-vertex model

with domain-wall boundary conditions

Strongly constrained model: non-trivial effect of boundary conditions.

Global parameters in D phase

D D
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Macroscopic phase separation

— = external frozen region

>
»

-~ s ? $ ‘F —> internal thermal region

interface : arctic curve



Six-vertex model

with domain-wall boundary conditions

A o~ At [ ) 7 S

A = (a? +b% — c?)/(2ab)
— () Disordered phase

a = b free-fermion case

Color code : Bethe-Peierls polarization of horizontal arrows
White curve : analytic arctic circle.

Elkies et al. 92-96 ; Jokusch et al. 98 ; Colomo & Pronko 08-14 ; Sportiello
LFC, Gonnella & Pelizzola 14



Six-vertex model

with domain-wall boundary conditions

0.5

4 b 7 v Y 0.4
A

-0.5

A = (a? +b* — c?)/(2ab) 02

< —1 Anti-ferromagnetic
0

— = 0 01 02 03 04 05 06 07 08 09 1
a=0b=1

-1

c=2.5
Color code : BP polarization of horizontal arrows

Double phase separation: frozen — thermal disordered - AF

Colomo, Pronko & P. Zinn-Justin 10 ; Sportiello btw frozen and thermal
LFC, Gonnella & Pelizzola 14



Artificial spin-ice

Back to experiments: as-grown samples

Lattice is written with electron beam lithography.

Magnetic material is gradually poured as in the sketch.

Lift off

Dep:{siﬁnn

o o o Completed sample

[ | | I I o I S | o I (o I S |

Thermal fluctuations let the magnets flip until some size is reached.
Configurations are henceforth blocked.
(Magnetic field annealing is also used.)

Note the similarity with granular matter & effective measure ideas.



Vertex density

How many of each kind ?

Signalled in this image

Pink: an AF vertex

Blue: a FM vertex

No 4-in nor 4-out vertices

Magnetic force microscopy

Wang et al 06

Does one sample the Gibbs-Boltzmann distribution function at 3 ?

Another measure ?



Vertex density

Across the PM-AF transition — numerical, analytic and exp. data
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FM vertices
3-in 1-out & 3-out 1-in e-vert.

4-in & 4-out d-vertices

Each set of vertical points, 5 (/) value, corresponds to a different sample

(varying lattice spacing ¢ or the compound). €, 7. = fO) = f(e)

Agreement seems perfect but experience from glassy physics...

Levis, LFC, Foini & Tarzia 13 ; experimental data courtesy of Morgan et al. 12



Vertex density

Across the PM-AF transition — numerical, analytic and exp. data

PM - AF transition
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Each set of vertical points, 5 (/) value, corresponds to a different sample
(varying lattice spacing ¢ or the compound). €, 4 4. = fO) = f(e.)

Agreement seems perfect but experience from glassy physics...

Levis, LFC, Foini & Tarzia 13 ; experimental data courtesy of Morgan et al. 12



Quench dynamics

A simpler setting

Take an initial condition in equilibrium at, e.g.| 7y — o0 |that corres-
pondstoa0=b0=co=d0=eo = 1.

Evolve it with a set of parameters a, b, ¢, d, e in the phases PM, FM
or AF: an infinitely rapid quench at ¢ = 0.

Concretely, we use stochastic dynamics:
with single spin flip updates with the usual heat-bath rule,
and a continuous time MC algorithm (to reach long time scales).

Relevant dynamics experimentally (contrary to loop updates used to study
equilibrium in the 8 vertex model)

Levis & LFC 11, 13



Dynamics Iin AF phase

Density of defects
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Dynamics Iin AF phase

Density of defects

c=1l,a=b=0.1andd = ¢e? = 10710
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Isotropic growth of AF order with L(t) ~ t1/2




Dynamics in AF phase

Snapshots — coarsening

Color code. Violet background: AF order of two kinds ;

Initial state coarsening states

Isotropic growth of AF order for this choice of parameters

c>a=2>

AF vertices are energetically preferred;
there is no anisotropy imposed, L () ~ t1/2



Dynamics in AF phase

Snapshots — experiment vs. numerics

Color code. Orange background: AF order of two kinds ;
green FM vertices, red-blue defects.

Magnetic force microscopy coarsening state equilibrium state

20 40 60 80 100 1 20 40 60 80 100
T T T T T T T T T T T

Interfaces between the two staggered AF orders

A statistical and geometric analysis of domain walls & defects should be

done to conclude.



Dynamics in AF phase

Snapshots — other modelling

Budrikis et al 12
Mostame et al. 14 field quenches

Cepas & Canals 12, Cepas 14 multiple time-scales

Wysin et al. 13 dynamics in Heisenberg 2d square ice



Dynamics in the FM phase

Snapshots

B e M T AT
A e e LR
i . e .‘:_-:-.L_:I-..:'.:;.:.:i.i'_:;:q_': :i i_ri— e

L g

Growth of stripes
Quench to a large a value : black & white vertices energetically favored.

Interesting coarsening process, L', () and L (1)



Summary

Classical geometrically frustrated magnetism

spin-ice in two dimensions

2d vertex models

Problems with analytic, numeric and experimental interest



Summary

Classical frustrated magnetism ; spin-ice in two dimensions.

2d vertex models: problems with analytic, numeric and
experimental interest. Cfr. artificial spin-ice

Beyond integrable systems’ methods to describe the static properties.

Some results of the Bethe-Peierls approximation are exact, others

are at least very accurate. Ana|ytic cha"enge

Slow coarsening (or near critical in the disordered phase) dynamics.

LiM(t) o LTM(t) o LAY (t) ~ t1/? Analytically ?

Experiments : dynamics block, non-equilibrium measures ?

Useful manipulation of defects (ice-breaking rule vertices).



Natural spin-ice

3d : the pyrochlore lattice

Mg A4

PV PV Py

M

Coordination four lattice of corner linked tetahedra. The rare earth ions

occupy the vertices of the tetrahedra ; e.g. Dy, Tis O

Harris, Bramwell, McMorrow, Zeiske & Godfrey 97



Artificial spin-ice

Bidimensional square lattice of elongated magnets

Bidimensional square lattice
Dipoles on the edges

16 possible vertices

Experimental conditions in this fig. :

vertices w/ two-in & two-out arrows

with staggered | AF | order

are much more numerous

AF FM

Wang et al 06, Nisoli et al 10, Morgan et a/ 12



Square lattice artificial spin-ice

Local energy approximation = 2d 16 vertex model

Just the interactions between dipoles attached to a vertex are added.

Dipoles are modeled as two opposite charges.
Each vertex is made of 8 charges, 4 close to the center, 2 away from it. The

energy of a vertex is the electrostatic energy of the eight charge configura-

tion. With a convenient normalization, dependence on the lattice spacing £ :

EAF:€5:€6:(—2\/§—|—1)/€ EFM:€1:--°:E4:—1/€
€c =€ =...€16 =0 €g=¢€r =es = (42 +2) /¢
EAR < €Epp < € < €4 Nisoli et al 10

Energy could be tuned differently by adding fields, vertical off-sets, etc.



Static properties

What did we do ?

Equilibrium simulations with finite-size scaling analysis.
Continuous time Monte Carlo.

e.g. focus on the AF-PM transition ; cfr. experimental data.

AF order parameter : M_ = % (<\mf]> + <!my_’>)

with Y the staggered magnetization along the 2 and 1y axes.

Finite-time relaxation M_(t) ~ =B/ (vze)

Cavity Bethe-Peierls mean-field approximation.

The model is defined on a tree of single vertices or 4-site plaquettes



Finite time relaxation

Magnetization across the PM-AF transition

1 =— | T T
a a<a, -
= i
a> d, ]
............ P |
a = 0.300
10° 104
t (in MCS)

a. = e 7 ~ 0.3 with e; =045 = [.=2.67+0.02



Equilibrium analytic

Bethe-Peierls or cavity method

Write a (matrix) recurrence relation to compute the probability that the
cavity site be occupied by each one of the six vertices.

Find the solutions as a function of the weigths w,,.
Obtain the free-energy density.
Look for transition lines.

This method can be applied to the 16 vertex model.

Foini, Levis, Tarzia & LFC 13



Equilibrium analytic

6 vertex : AF - D transition, cavity vs Baxter’s exact solution

P f

2D AF
2D Para
cavity plaquette
cavity single vertex

o
oo

0 0.5 1 1.5 2
al/c




Equilibrium analytic

6 vertex : FM - D transition, cavity vs. Baxter’s exact solution

-0.3
-0.4
-0.5
« -0.6
e -0.7
_ 2D Para !
-0.8 = Para cavity vertex
-— Para cavity plaquette
-0.9 FB cavity = 2D
= FA cavity =2D
_1 | | . : 1
0 0.5 1 1.5 2 2.5
al/c




The 2d 8 vertex model

b/c

Integrable system (transfer matrix + Bethe Ansatz)

No type ¢ vertices.

2nd order phase transitions

a’ 4+ b — c? — d?
2(ab + cd)

Ag = +1 transition lines

Ag =

With three-in one-out vertices

Integrability

is lost.

Lieb 67 ; Baxter Exactly solved models in statistical mechanics 82



Equilibrium CTMC

Magnetization across the PM-AF transition

Vertex energies set to the values explained above.

1 .
0.8 F
I
~ 0.6 , 7 =130 .
04 L 2 L =40 A |
. $ L =50 .
0.2 g L=60 = _

-1 —.5 0 0.5 1 1.5
(18 _180)/186

Solid red line from the Bethe-Peierls calculation.



Static properties

Equilibrium phase diagram 16 vertex model

MC simulations & cavity Bethe-Peierls method

d=0 (
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Phase diagram

critical exponents

b/c

ground state entropy
equilibrium fluctuations

efc.

alc

Foini, Levis, Tarzia & LFC 12



Fluctuations

Sketch

The probability of such fluctuations can be estimated with the Bethe-

Peierls calculation on a tree of four-site plaquettes !



Equilibrium : the tree vs 2d

16 vertex model

The cavity method can deal with the generic vertex model.
More complicated recursion relations, more cases to be considered, but no

further difficulties.

The transition lines do not get parallelly translated with respect to the
ones of the 6-vertex model.
They are all of 2nd order.
They are remarkably close to the numerical values in 2d.
The exponents : on the tree they are mean-field, in 2d

MF expression for A4 In 2d

The quantum Ising chain for the 16 vertex model should include new

terms.
Foini, Levis, Tarzia & LFC 12



Dynamics in the FM phase

Density of defects (d = ¢ here)
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Four regimes




Dynamics in the FM phase

Dynamic scaling and growing lengths

1

0.8 |

0.6 |t

Gl(r, )

0.4

0.2 H

0

1 L L L 1
0 10 20 30 40 50 60 70 80
r r

G (r,t), Gl(r,t) = Fj L (r/L(t))

Stretched exponential () = e~ (/)" with v ~ vy ~0.15and # w) |

the same growing length Ly(t), Ly(t) ~ />

until a band crosses the sample, then a different mechanism.



Scaling theory

At late times there is a single length-scale, the typical radius of the do-
mains L(t, ), such that the domain structure is (in statistical sense)
independent of time when lengths are scaled by L.(t, g), e.g.

&~ |=r (@)eql0) 1 (L(Z 9)> |

Clt,t) = (si0si(ta)) ~ (@2 (0) fo (7).

etc. when > £(g), t,t, > tgand C' < ()2 (g).

€q

C(rt) = (si(t)s;(t))

Suggested by experiments and numerical simulations. Proved for

Ising chain with Glauber dynamics.

Langevin dynamics of the O (V) model with N — 00, and the
spherical ferromagnet. Review Bray 94.



Dynamics in the FM phase

Growing lengths

120

L=300] -  L=100 ||
[

[] .
L=200 - {2 e
[] .

10° 103 10°

Anisotropic growth of FM order with LH (t) ~ t1/2




Dynamics in the FM phase

Some elementary moves




Dynamics in the D phase

Density of defects

100 T T T T

-4
10 1 1 1 1
10 1019 10°% 10°

t (MCs) t.d* (MCs)

Short-time decay ¢ V- "®

ng = f(tdQ)

Diff from MF imati
iterent from MF approximation Scaling below the plateau.

to reaction - diffusion model 7 *.



Single spin-flip dynamics

Reaction-diffusion picture in terms of the vertex charges

Reaction AFE

(2¢)a + (=2)e = (@)e+ (0)a e — €4 x Ina/d <
(@)e + (—=q)e — (0)q + (0)c €q + €c — 26, X In ac/e2 <
(q)e + (q)e — (2q)q + (0)4 €4+ €4 — 26, X In da/e2 ;
(9)e + (q)e — (2q)q + (0), €4+ €c — 26, X In dc/e2 ;

since cop < €ppr < €, < €4.

A A
e.g., <<‘%J—< <—\—<%—<
\4 \4 — \4 \4
HH Hﬂ

the first reaction is

Attn : “

(29)+(—q) (g)+(0)

o O O O

Directional diffusion” : vertices have to meet in the “good" direction.



Dynamics in the PM phase

Density of defects, 11, = #defects/# vertices

e

1074 ' ' ' ' ' ' ' '
102 102 10®° 10" 10102 10®° 10° 10" 10"
t (MCs) t (MCs)
Relevant experimental sizes L =50 L =100

a=b=c, d/c=e¢/c=10"11072,...,10° from left to right.

Fore = d g 10~ *¢ the density of defects reaches its equilibrium value.

Fore = d ~ 10 %c the density of defects gets blocked at 14 ~ 10/L2.

It eventually approaches the final value n; ~ 2/L2 indep. of bc; rough esti-

mate for 7., from reaction-diffusion arguments.



Deconfined monopoles

Ice-rule vs. ice-rule breaking vertices

%I%( Just spin-ice vertices
W Two (3 in or 3 out) red defects
%I% One lattice spacing apart
%i*ﬁ Two lattice spacings apart

NB, once created, the energy remains constant iffa = b = c.



