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Why this topic ?

• Materials of possible technological importance

• that pose challenging

problems in experimental physics,

questions of fundamental interest,

and need(ed) the development of theoretical physics/mathematics tools.

Nice interplay between theory & experiment
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Artificial spin-ice
Metamaterials: designed in the laboratory.

3



Artificial spin-ice
Metamaterials

Arrays of nano/micro-scale magnets

single domain magnetic islands

placed at the edges of a tiling or

the edges of a planar graph

Parameters specified by design
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Artificial spin-ice
Metamaterials

Arrays of micro/nano-scale magnets

single domain magnetic islands

placed at the edges of a tiling or

the edges of a planar graph

Parameters specified by design

Image: atomic foce microscopy
Square lattice

Wang et al 06
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Artificial spin-ice
Metamaterials

Arrays of micro/nano-scale magnets

single domain magnetic islands

placed at the edges of a tiling

the edges of a planar graph

Parameters specified by design

Image: atomic foce microscopy

Penrose tiling

Marrows et al 14
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Artificial spin-ice
Metamaterials

Arrays of micro/nano-scale magnets

single domain magnetic islands

placed at the edges of a tiling

the edges of a planar graph

Easy axis magnets ⇒ Ising spins

Construction ⇒ along the edges

Photoelectron emission microscopy

(More about fabrication later)

Honeycomb lattice

Hügli et al 15
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Artificial spin-ice
Dipolar interactions

E12 ∝ s⃗1 · s⃗2 − 3
(s⃗1 · r⃗12)(s⃗2 · r⃗12)

r212

E < 0 favorable

E > 0 unfavorable

The islands meet at each vertex ; local dipolar interactions are frustrated ;

that is to say, they cannot be satisfied simultaneously.

It is not possible to find a configuration of the spins that join at a vertex

that minimises all pair contributions to the total energy.
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Artificial spin-ice
A simpler modelling

Metamaterials

Arrays of nanoscale Ising magnets

single domain magnetic islands

placed at the edges of a tiling or

the edges of a square lattice

Parameters specified by design

©!2006!Nature Publishing Group!

!

the vertex as a whole, there are four distinct topologies for the
configurations of the four moments with a total multiplicity of 16, as
shown in Fig. 1c. We label the configurations I–IV in the order of
increasing magnetostatic energy, but no configuration can minimize
all of the dipole–dipole interactions (even type I only minimizes the
energy for four of the six pairs in a vertex), and thus the system is
frustrated.
The lowest energy vertex configurations (I and II) have two of the

moments pointing in toward the centre of the vertex, and two
pointing out. Although the interactions between all pairs of spins
on the vertex are not equivalent, these energetics are analogous to the
two-in/two-out ice rules for the atomic moments on a tetrahedron in
spin ice. For arrays with a lattice constant of 320 nm, the energy
difference between vertices of types I and III is more than twice as
large as the energy difference between vertices of types I and II, and
the energy difference between types I and IV is more than six times as
large (based on OOMMF calculations of relaxed magnetostatic
energies). The two-in/two-out motifs (types I and II) therefore
dominate within a large manifold of closely spaced low-energy
magnetic states. Topological considerations further favour the
creation of magnetic states that are dominated by frustratedmixtures
of types I and II. For example, a domain boundary between regions of
types I and II is essentially seamless, requiring no vertices of types III
or IV. The situation contrasts sharply with that of a traditional Ising
ferromagnet or antiferromagnet, wherein magnetic domain walls
contain highly unfavourable anti-aligned spin pairs.
Magnetic force microscopy (MFM) allowed us to image the

orientations of all of the moments in a large area (10 mm £ 10 mm),
far from the edges of the arrays. To enable the system to settle into a
low energy configuration, we followed a protocol developed by
previous authors16,18 and rotated the samples in a magnetic field
which decreased stepwise from above to below the coercive field.
MFM images of the system after such field treatment revealed no
measurable residual magnetic moment for the array, and a ten-fold
variation of the step dwell times did not significantly alter the
distribution of vertex types described below.

In Fig. 2 we show an atomic force microsope (AFM) image and an
MFM image of a portion of a typical array. The black and white spots
in the MFM image, which indicate the north and south poles of the
ferromagnetic islands, confirm the single-domain nature of the
islands and demonstrate the dominance of the shape anisotropy in
aligning the magnetization of each island along its long axis. From
the MFMdata, we can easily determine the moment configuration of
the array (as indicated by the arrows in Fig. 1a). These data
demonstrate that the many vertex types anticipated in Fig. 1c can
be directly observed in the actual system. In order to probe the nature
of frustration in this system, we studied how the properties varied
with the spacing between the islands, counting between 1,000 and
3,000 islands in measurements of 2–4 different arrays for each lattice
spacing. This allowed us direct control over the frustrated inter-
actions, something which is not easily attainable in geometrically
frustrated magnetic materials.
An immediate question is whether our arrays obeyed the ice

rules—that is, did a preponderance of the vertices fall into a two-
in/two-out configuration (type I or II)? By simple counting argu-
ments (see Fig. 1c) we can predict the expected distribution of
different vertex types if the moments were non-interacting and
randomly oriented. One would expect only 37.5% of the vertices to
have a two-in/two-out configuration if the orientations were ran-
dom; an excess of such vertices would indicate that interactions are
determining the moment configuration. We compute the excess
percentage for each type of vertex, defined as the difference between
the percentage observed and that expected for a random distribution.
We plot this excess versus lattice spacing in Fig. 3a for each of the four
vertex types, as well as for types I and II combined. The excess
percentage of vertices with a two-in/two-out configuration (types I
and II) was well over 30% for the smallest lattice spacing; in other
words, over 70% of all vertices had a spin-ice-like configuration. This
excess percentage decreased monotonically with increasing lattice
spacing (decreasing interactions), approaching zero for our largest
lattice spacing, as would be expected for non-interacting (randomly
oriented) moments. In fact, the excess for all vertex types approached
zero as the lattice spacing increased, lending credence both to our
understanding of the system and to the effectiveness of the rotating-
field method in enabling facile local re-orientation of the moments.
To further understand the nature of frustration in this system, we

also studied the pairwise correlations between the Ising-like
moments of the islands. Defining a correlation function is somewhat
complicated by the anisotropic nature of our lattice and that of the
dipole interaction. We thus define a set of correlation functions
between distinct types of neighbouring pairs. The closest pairing is

Figure 1 | Illustration of frustration on the square lattice used in these
experiments. Each island in the lattice is a single-domain ferromagnet with
its moment pointing along the long axis, as indicated by the arrow. a, The
geometry of the lattice studied. The arrows indicate the directions of
moments corresponding to the MFM image of Fig. 2b. b, Vertices of the
lattice with pairs of moments indicated, illustrating energetically favourable
and unfavourable dipole interactions between the pairs. c, The 16 possible
moment configurations on a vertex of four islands, separated into four
topological types. The percentages indicate the expected fraction of each
type if the individual moment orientations on an array were completely
random.

Figure 2 | AFM and MFM images of a frustrated lattice. a, An AFM image
of a typical permalloy array with lattice spacing of 400 nm. b, AnMFM image
taken from the same array. Note the single-domain character of the islands,
as indicated by the division of each island into black and white halves. The
moment configuration of the MFM image is illustrated in Fig. 1a. The
coloured outlines indicate examples of vertices of types I, II and III in pink,
blue and green respectively.
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Magnetic force microscopy

Local approx: 2d vertex model with experimentally relevant parameters
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The 2d 16 vertex model
with 3-in 1-out vertices: non-integrable system

FM AF 4-in or 4-out

3-in 1-out or 3-out 1-in

(Un-normalized) statistical weight of a vertex ωk = e−βϵk

In the models a, b, c, d, e are free parameters (usually, c is the scale)

In the experiments ϵk depend on the sample and,

from the (planar) local energy approximation, ϵAF < ϵFM < ϵ3−1 < ϵ4−0

The energies ϵk could be tuned differently by adding fields, vertical off-sets, etc.
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Natural ices
Single cell unit - tetrahedron - in water-ice and spin-ice

Water-ice: coordination four lattice. Bernal & Fowler 33 rules, two H near and

two far away from each O.

Spin-ice: four (Ising) spins on each tetrahedron forced to point along the axes

that join the centres of two neighbouring units (Ising anisotropy). Local interac-

tions imply the two-in two-out ice rule ;

e.g. Dy2 Ti2 O7 Harris, Bramwell, McMorrow, Zeiske & Godfrey 97
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Artificial spin-ice
Metamaterials

Arrays of nanoscale magnets

single domain magnetic islands

placed at the edges of a tiling or

the edges of a planar graph

Ising spins along the links

Local dipolar interactions are geometrically frustrated

no quenched disorder

It is not possible to find a configuration of the spins that join at a vertex

that minimises all pair contributions to the total energy.

Macroscopic degeneracy of the ground state and metastable states
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Natural spin-ice entropy

∆S =

∫ T2

T1

dT ′ C(T ′)

T ′
Pyrochlore

Dy2 Ti2 O7

Ising Dy spins lie along the axes

that join the nn cell units

Ramírez, Hayashi, Cava, Siddharthan & Shastry 99.

Very similar to Giauque & Stout 33 for water ice.
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Natural spin-ice entropy

∆S =

∫ T2

T1

dT ′ C(T ′)

T ′ N tetrahedra

4 nn cell units each

4N/2 = 2N links

All 2-in 2-out equivalent

Ω0 ≃ 22N
(

6
16

)N
s0/kB ≃ ln 3

2
≃ 0.405

Pauling 35

s0/kB = 3
2
ln 4

3
≃ 0.431

Transfer matrix Lieb 76

Ramírez, Hayashi, Cava, Siddharthan & Shastry 99.

Very similar to Giauque & Stout 33 for water ice.
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Natural ices
Properties and mapping

• Ice-rule breaking vertices – excitations above the ground state.

• The ±1 Ising spins map onto a pair of “emergent” magnetic charges.

• The two-in two-out rule ≡ vanishing magnetic charge in the unit cell.

• Excitation have non-vanishing charge, effective magnetic monopoles.

• The defects/charges migrate on the lattice.

Castelnovo, Moessner & Sondhi 08
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The 2d 16 vertex model
with 3-in 1-out vertices: non-integrable system

FM AF 4-in or 4-out

3-in 1-out or 3-out 1-in

(Un-normalized) statistical weight of a vertex ωk = e−βϵk

In the models a, b, c, d, e are free parameters (usually, c is the scale)

In the experiments ϵk depend on the sample

from the (planar) local energy approximation, ϵAF < ϵFM < ϵ3−1 < ϵ4−0

The energies ϵk could be tuned differently by adding fields, vertical off-sets, etc.
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Static properties
What did we know ?

• 6 and 8 vertex models.

Integrable systems techniques (transfer matrix + Bethe Ansatz), mappings

to many physical (e.g. quantum spin chains) and mathematical problems.

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2

b
/c

a/c

PM

FM

FM

AF

d=0
d=0.1
d=0.2
d=0.3 Phase diagram

critical exponents

ground state entropy

boundary conditions effects

etc.

Lieb 67 ; Baxter Exactly solved models in statistical mechanics 82

• 16 vertex model.

Integrability is lost. Not much interest so far.
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Equilibrium analytic
Bethe-Peierls or cavity method

Join an L-rooted tree from the left ; an U-rooted tree from above ;

an R-rooted tree from the right and a D-rooted tree from below.

Foini, Levis, Tarzia & LFC 12
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Is it a powerful technique ?
in, e.g., the 6 vertex model

With a tree in which the unit is a vertex we find the PM, FM, and AF phases.

sPM = ln[(a+ b+ c)/(2c)]

Pauling’s entropy sPM = ln 3/2 ∼ 0.405 at the spin-ice point a = b = c.

Location and 1st order transition between the PM and FM phases. 4

Location 4 but 1st order PM-AF transition. 8

no fluctuations in the frozen FM phase. 4

no fluctuations in the AF phase. 8

With a four site plaquette as a unit we find the PM, FM, and AF phases.

A more complicated expression for sPM (a, b, c) that yields

sPM ≃ 0.418 closer to Lieb’s entropy sPM ≃ 0.431 at the spin-ice point.

Location and 1st order transition between the PM and FM phases. 4

Location 4 but 2nd order (should be BKT) PM-AF transition. 8

fluctuations in the AF phase and frozen FM phase. 4
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Six-vertex model
with domain-wall boundary conditions

Strongly constrained model: non-trivial effect of boundary conditions.

Global parameters in D phase

fD
dwBC > fD

pBC

Korepin & P. Zinn-Justin 00

Macroscopic phase separation

external frozen region

internal thermal region

interface : arctic curve
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Six-vertex model
with domain-wall boundary conditions

∆ ≡ (a2 + b2 − c2)/(2ab)

= 0 Disordered phase

a = b free-fermion case

Color code : Bethe-Peierls polarization of horizontal arrows

White curve : analytic arctic circle.

Elkies et al. 92-96 ; Jokusch et al. 98 ; Colomo & Pronko 08-14 ; Sportiello

LFC, Gonnella & Pelizzola 14
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Six-vertex model
with domain-wall boundary conditions

∆ ≡ (a2 + b2 − c2)/(2ab)

< −1 Anti-ferromagnetic

a = b = 1

c = 2.5
Color code : BP polarization of horizontal arrows

Double phase separation: frozen – thermal disordered - AF

Colomo, Pronko & P. Zinn-Justin 10 ; Sportiello btw frozen and thermal

LFC, Gonnella & Pelizzola 14
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Artificial spin-ice
Back to experiments: as-grown samples

• Lattice is written with electron beam lithography.

• Magnetic material is gradually poured as in the sketch.

• Thermal fluctuations let the magnets flip until some size is reached.

• Configurations are henceforth blocked.

(Magnetic field annealing is also used.)

Note the similarity with granular matter & effective measure ideas.

23



Vertex density
How many of each kind ?

©!2006!Nature Publishing Group!
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the vertex as a whole, there are four distinct topologies for the
configurations of the four moments with a total multiplicity of 16, as
shown in Fig. 1c. We label the configurations I–IV in the order of
increasing magnetostatic energy, but no configuration can minimize
all of the dipole–dipole interactions (even type I only minimizes the
energy for four of the six pairs in a vertex), and thus the system is
frustrated.
The lowest energy vertex configurations (I and II) have two of the

moments pointing in toward the centre of the vertex, and two
pointing out. Although the interactions between all pairs of spins
on the vertex are not equivalent, these energetics are analogous to the
two-in/two-out ice rules for the atomic moments on a tetrahedron in
spin ice. For arrays with a lattice constant of 320 nm, the energy
difference between vertices of types I and III is more than twice as
large as the energy difference between vertices of types I and II, and
the energy difference between types I and IV is more than six times as
large (based on OOMMF calculations of relaxed magnetostatic
energies). The two-in/two-out motifs (types I and II) therefore
dominate within a large manifold of closely spaced low-energy
magnetic states. Topological considerations further favour the
creation of magnetic states that are dominated by frustratedmixtures
of types I and II. For example, a domain boundary between regions of
types I and II is essentially seamless, requiring no vertices of types III
or IV. The situation contrasts sharply with that of a traditional Ising
ferromagnet or antiferromagnet, wherein magnetic domain walls
contain highly unfavourable anti-aligned spin pairs.
Magnetic force microscopy (MFM) allowed us to image the

orientations of all of the moments in a large area (10 mm £ 10 mm),
far from the edges of the arrays. To enable the system to settle into a
low energy configuration, we followed a protocol developed by
previous authors16,18 and rotated the samples in a magnetic field
which decreased stepwise from above to below the coercive field.
MFM images of the system after such field treatment revealed no
measurable residual magnetic moment for the array, and a ten-fold
variation of the step dwell times did not significantly alter the
distribution of vertex types described below.

In Fig. 2 we show an atomic force microsope (AFM) image and an
MFM image of a portion of a typical array. The black and white spots
in the MFM image, which indicate the north and south poles of the
ferromagnetic islands, confirm the single-domain nature of the
islands and demonstrate the dominance of the shape anisotropy in
aligning the magnetization of each island along its long axis. From
the MFMdata, we can easily determine the moment configuration of
the array (as indicated by the arrows in Fig. 1a). These data
demonstrate that the many vertex types anticipated in Fig. 1c can
be directly observed in the actual system. In order to probe the nature
of frustration in this system, we studied how the properties varied
with the spacing between the islands, counting between 1,000 and
3,000 islands in measurements of 2–4 different arrays for each lattice
spacing. This allowed us direct control over the frustrated inter-
actions, something which is not easily attainable in geometrically
frustrated magnetic materials.
An immediate question is whether our arrays obeyed the ice

rules—that is, did a preponderance of the vertices fall into a two-
in/two-out configuration (type I or II)? By simple counting argu-
ments (see Fig. 1c) we can predict the expected distribution of
different vertex types if the moments were non-interacting and
randomly oriented. One would expect only 37.5% of the vertices to
have a two-in/two-out configuration if the orientations were ran-
dom; an excess of such vertices would indicate that interactions are
determining the moment configuration. We compute the excess
percentage for each type of vertex, defined as the difference between
the percentage observed and that expected for a random distribution.
We plot this excess versus lattice spacing in Fig. 3a for each of the four
vertex types, as well as for types I and II combined. The excess
percentage of vertices with a two-in/two-out configuration (types I
and II) was well over 30% for the smallest lattice spacing; in other
words, over 70% of all vertices had a spin-ice-like configuration. This
excess percentage decreased monotonically with increasing lattice
spacing (decreasing interactions), approaching zero for our largest
lattice spacing, as would be expected for non-interacting (randomly
oriented) moments. In fact, the excess for all vertex types approached
zero as the lattice spacing increased, lending credence both to our
understanding of the system and to the effectiveness of the rotating-
field method in enabling facile local re-orientation of the moments.
To further understand the nature of frustration in this system, we

also studied the pairwise correlations between the Ising-like
moments of the islands. Defining a correlation function is somewhat
complicated by the anisotropic nature of our lattice and that of the
dipole interaction. We thus define a set of correlation functions
between distinct types of neighbouring pairs. The closest pairing is

Figure 1 | Illustration of frustration on the square lattice used in these
experiments. Each island in the lattice is a single-domain ferromagnet with
its moment pointing along the long axis, as indicated by the arrow. a, The
geometry of the lattice studied. The arrows indicate the directions of
moments corresponding to the MFM image of Fig. 2b. b, Vertices of the
lattice with pairs of moments indicated, illustrating energetically favourable
and unfavourable dipole interactions between the pairs. c, The 16 possible
moment configurations on a vertex of four islands, separated into four
topological types. The percentages indicate the expected fraction of each
type if the individual moment orientations on an array were completely
random.

Figure 2 | AFM and MFM images of a frustrated lattice. a, An AFM image
of a typical permalloy array with lattice spacing of 400 nm. b, AnMFM image
taken from the same array. Note the single-domain character of the islands,
as indicated by the division of each island into black and white halves. The
moment configuration of the MFM image is illustrated in Fig. 1a. The
coloured outlines indicate examples of vertices of types I, II and III in pink,
blue and green respectively.
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Signalled in this image

Pink: an AF vertex

Yellow: a 3-in 1-out vertex

Blue: a FM vertex

No 4-in nor 4-out vertices

Magnetic force microscopy

Wang et al 06

Does one sample the Gibbs-Boltzmann distribution function at β ?

Another measure ?
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Vertex density
Across the PM-AF transition – numerical, analytic and exp. data

0 0.5 1 1.5 2
βE  (l)

0

0

0.2

0.4

0.6

0.8

1
<

n i>

AF c   MF
  

 
   SIM

  
 
   EXP

FM a,b

3in/1out e

4in/4out d

Disordered AF

PM - AF transition

AF vertices

FM vertices

3-in 1-out & 3-out 1-in e-vert.

4-in & 4-out d-vertices

Each set of vertical points, βE0(ℓ) value, corresponds to a different sample

(varying lattice spacing ℓ or the compound). ϵa,b,d,e = f(ℓ) = f(ϵc)

Agreement seems perfect but experience from glassy physics...

Levis, LFC, Foini & Tarzia 13 ; experimental data courtesy of Morgan et al. 12
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Vertex density
Across the PM-AF transition – numerical, analytic and exp. data

0 0.5 1 1.5 2
E0

0

0.2

0.4

0.6

0.8

1
<n

i>

<nc> MF
<nc> SIM
<nc> EXP
<na,b> MF
<na,b> SIM
<na,b> EXP
<ne> MF
<ne> SIM
<ne> EXP
<nd>MF
<nd> SIM
<nd> EXP

Disordered AF

PM - AF transition

AF vertices

FM vertices

3-in 1-out & 3-out 1-in e-vert.

4-in & 4-out d-vertices

Each set of vertical points, βE0(ℓ) value, corresponds to a different sample

(varying lattice spacing ℓ or the compound). ϵa,b,d,e = f(ℓ) = f(ϵc)

Agreement seems perfect but experience from glassy physics...

Levis, LFC, Foini & Tarzia 13 ; experimental data courtesy of Morgan et al. 12
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Quench dynamics
A simpler setting

• Take an initial condition in equilibrium at, e.g. T0 → ∞ that corres-

ponds to a0 = b0 = c0 = d0 = e0 = 1.

• Evolve it with a set of parameters a, b, c, d, e in the phases PM, FM

or AF: an infinitely rapid quench at t = 0.

• Concretely, we use stochastic dynamics:

with single spin flip updates with the usual heat-bath rule,

and a continuous time MC algorithm (to reach long time scales).

Relevant dynamics experimentally (contrary to loop updates used to study

equilibrium in the 8 vertex model)

Levis & LFC 11, 13
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Dynamics in AF phase
Density of defects

c = 1, a = b = 0.1 and d = e2 = 10−10

0 0.5 1 1.5 2
E0

0

0.2

0.4

0.6

0.8

1

<n
i>

<nc> MF
<nc> SIM
<nc> EXP
<na,b> MF
<na,b> SIM
<na,b> EXP
<ne> MF
<ne> SIM
<ne> EXP
<nd>MF
<nd> SIM
<nd> EXP
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Dynamics in AF phase
Density of defects

c = 1, a = b = 0.1 and d = e2 = 10−10

Isotropic growth of AF order with L(t) ≃ t1/2
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Dynamics in AF phase
Snapshots – coarsening

Color code. Violet background: AF order of two kinds ;

Initial state coarsening states

Isotropic growth of AF order for this choice of parameters

c ≫ a = b AF vertices are energetically preferred ;

there is no anisotropy imposed, LAF(t) ≃ t1/2
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Dynamics in AF phase
Snapshots – experiment vs. numerics

Color code. Orange background: AF order of two kinds ;

green FM vertices, red-blue defects.

Magnetic force microscopy coarsening state equilibrium state
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Interfaces between the two staggered AF orders

A statistical and geometric analysis of domain walls & defects should be

done to conclude.
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Dynamics in AF phase
Snapshots – other modelling

Budrikis et al 12
Mostame et al. 14 field quenches

Cepas & Canals 12, Cepas 14 multiple time-scales

Wysin et al. 13 dynamics in Heisenberg 2d square ice
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Dynamics in the FM phase
Snapshots

Growth of stripes

Quench to a large a value : black & white vertices energetically favored.

Interesting coarsening process, LFM
⊥ (t) and LFM

∥ (t)
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Summary

Classical geometrically frustrated magnetism

spin-ice in two dimensions

2d vertex models

Problems with analytic, numeric and experimental interest
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Summary

Classical frustrated magnetism ; spin-ice in two dimensions.

− 2d vertex models: problems with analytic, numeric and

experimental interest. Cfr. artificial spin-ice

• Beyond integrable systems’ methods to describe the static properties.

− Some results of the Bethe-Peierls approximation are exact, others
are at least very accurate. Analytic challenge

• Slow coarsening (or near critical in the disordered phase) dynamics.

LFM
∥ (t) ≃ LFM

⊥ (t) ≃ LAF(t) ≃ t1/2 Analytically ?

• Experiments : dynamics block, non-equilibrium measures ?

• Useful manipulation of defects (ice-breaking rule vertices).
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Natural spin-ice
3d : the pyrochlore lattice

Coordination four lattice of corner linked tetahedra. The rare earth ions

occupy the vertices of the tetrahedra ; e.g. Dy2 Ti2 O7

Harris, Bramwell, McMorrow, Zeiske & Godfrey 97
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Artificial spin-ice
Bidimensional square lattice of elongated magnets

Bidimensional square lattice

Dipoles on the edges

16 possible vertices

Experimental conditions in this fig. :

vertices w/ two-in & two-out arrows

with staggered AF order

are much more numerous

AF 3in-1out FM

Wang et al 06, Nisoli et al 10, Morgan et al 12
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Square lattice artificial spin-ice
Local energy approximation ⇒ 2d 16 vertex model

Just the interactions between dipoles attached to a vertex are added.

Dipole-dipole interactions. Dipoles are modeled as two opposite charges.

Each vertex is made of 8 charges, 4 close to the center, 2 away from it. The

energy of a vertex is the electrostatic energy of the eight charge configura-

tion. With a convenient normalization, dependence on the lattice spacing ℓ :

ϵAF = ϵ5 = ϵ6 = (−2
√
2 + 1)/ℓ ϵFM = ϵ1 = · · · = ϵ4 = −1/ℓ

ϵe = ϵ9 = . . . ϵ16 = 0 ϵd = ϵ7 = ϵ8 = (4
√
2 + 2)/ℓ

ϵAF < ϵFM < ϵe < ϵd Nisoli et al 10

Energy could be tuned differently by adding fields, vertical off-sets, etc.
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Static properties
What did we do ?

• Equilibrium simulations with finite-size scaling analysis.

− Continuous time Monte Carlo.

e.g. focus on the AF-PM transition ; cfr. experimental data.

AF order parameter : M− = 1
2

(
⟨|mx

−|⟩+ ⟨|my
−|⟩

)
with mx,y

− the staggered magnetization along the x and y axes.

− Finite-time relaxation M−(t) ≃ t−β/(νzc)

• Cavity Bethe-Peierls mean-field approximation.

− The model is defined on a tree of single vertices or 4-site plaquettes
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Finite time relaxation
Magnetization across the PM-AF transition

ac = e−βce1 ≃ 0.3 with e1 = 0.45 ⇒ βc = 2.67± 0.02
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Equilibrium analytic
Bethe-Peierls or cavity method

Write a (matrix) recurrence relation to compute the probability that the

cavity site be occupied by each one of the six vertices.

Find the solutions as a function of the weigths ωα.

Obtain the free-energy density.

Look for transition lines.

This method can be applied to the 16 vertex model.

Foini, Levis, Tarzia & LFC 13
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Equilibrium analytic
6 vertex : AF - D transition, cavity vs Baxter’s exact solution
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Equilibrium analytic
6 vertex : FM - D transition, cavity vs. Baxter’s exact solution
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The 2d 8 vertex model
Integrable system (transfer matrix + Bethe Ansatz)
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No type e vertices.

2nd order phase transitions

∆8 =
a2 + b2 − c2 − d2

2(ab+ cd)

∆8 = ±1 transition lines

With three-in one-out vertices

Integrability

is lost.

Lieb 67 ; Baxter Exactly solved models in statistical mechanics 82
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Equilibrium CTMC
Magnetization across the PM-AF transition

Vertex energies set to the values explained above.

Solid red line from the Bethe-Peierls calculation.
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Static properties
Equilibrium phase diagram 16 vertex model

• MC simulations & cavity Bethe-Peierls method

Phase diagram

critical exponents

ground state entropy

equilibrium fluctuations

etc.

Foini, Levis, Tarzia & LFC 12
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Fluctuations
Sketch

The probability of such fluctuations can be estimated with the Bethe-

Peierls calculation on a tree of four-site plaquettes !
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Equilibrium : the tree vs 2d
16 vertex model

• The cavity method can deal with the generic vertex model.

More complicated recursion relations, more cases to be considered, but no

further difficulties.

• The transition lines do not get parallelly translated with respect to the

ones of the 6-vertex model. ?
They are all of 2nd order. 4

They are remarkably close to the numerical values in 2d. 4

The exponents : on the tree they are mean-field, in 2d ?

• MF expression for ∆16 In 2d ?

• The quantum Ising chain for the 16 vertex model should include new

terms.
Foini, Levis, Tarzia & LFC 12
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Dynamics in the FM phase
Density of defects (d = e here)
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Dynamics in the FM phase
Dynamic scaling and growing lengths

(a) (b)
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G⊥(r, t), G∥(r, t) ≃ F∥,⊥(r/L(t))

Stretched exponential F (x) = e−(x/w)v with v∥ ≃ v⊥ ≃ 0.15 and ̸= w∥,⊥

the same growing length L∥(t), L⊥(t) ≃ t1/2

until a band crosses the sample, then a different mechanism.
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Scaling theory
At late times there is a single length-scale, the typical radius of the do-

mains L(t, g), such that the domain structure is (in statistical sense)

independent of time when lengths are scaled by L(t, g), e.g.

C(r, t) ≡ ⟨ si(t)sj(t) ⟩||x⃗i−x⃗j |=r ∼ ⟨ϕ⟩2eq(g) f
(

r

L(t, g)

)
,

C(t, tw) ≡ ⟨ si(t)si(tw) ⟩ ∼ ⟨ϕ⟩2eq(g) fc
(

L(t, g)

L(tw, g)

)
,

etc. when r ≫ ξ(g), t, tw ≫ t0 and C < ⟨ϕ⟩2eq(g).

Suggested by experiments and numerical simulations. Proved for

• Ising chain with Glauber dynamics.

• Langevin dynamics of the O(N) model with N → ∞, and the

spherical ferromagnet. Review Bray 94.
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Dynamics in the FM phase
Growing lengths
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Dynamics in the FM phase
Some elementary moves
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Dynamics in the D phase
Density of defects
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Scaling below the plateau.
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Single spin-flip dynamics
Reaction-diffusion picture in terms of the vertex charges

Reaction ∆E

(2q)d + (−q)e → (q)e + (0)a ϵa − ϵd ∝ ln a/d < 0

(q)e + (−q)e → (0)a + (0)c ϵa + ϵc − 2ϵe ∝ ln ac/e2 < 0

(q)e + (q)e → (2q)d + (0)a ϵd + ϵa − 2ϵe ∝ ln da/e2
<
> 0

(q)e + (q)e → (2q)d + (0)c ϵd + ϵc − 2ϵe ∝ ln dc/e2
<
> 0

since ϵAF < ϵFM < ϵe < ϵd.

e.g.,

the first reaction is

Attn : “Directional diffusion" : vertices have to meet in the “good" direction.
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Dynamics in the PM phase
Density of defects, nd = #defects/#vertices

Relevant experimental sizes L = 50 L = 100

a = b = c, d/c = e/c = 10−1, 10−2, . . . , 10−8 from left to right.

For e = d
>∼ 10−4c the density of defects reaches its equilibrium value.

For e = d
<∼ 10−4c the density of defects gets blocked at nd ≈ 10/L2.

It eventually approaches the final value nd ≈ 2/L2 indep. of bc ; rough esti-

mate for teq from reaction-diffusion arguments.
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Deconfined monopoles
Ice-rule vs. ice-rule breaking vertices

Just spin-ice vertices

Two (3 in or 3 out) red defects

One lattice spacing apart

Two lattice spacings apart

NB, once created, the energy remains constant iff a = b = c.
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