Artificial spin-ice & vertex models

Leticia F. Cugliandolo

Université Pierre et Marie Curie – Institut Universitaire de France leticia@lpthe.jussieu.fr www.lpthe.jussieu.fr/~leticia/seminars

In collaboration with

Demian Levis (PhD at LPTHE \rightarrow post-doc at Köln)

<u>Laura Foini</u> (post-doc at LPTHE \rightarrow Genève), Giuseppe Gonnella (Bari),

Alessandro Pelizzola (Torino) & Marco Tarzia (Paris)

Grenoble, March 2015

Why this topic?

• Materials of possible technological importance

• that pose challenging

problems in experimental physics,

questions of fundamental interest,

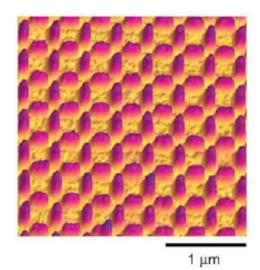
and need(ed) the development of theoretical physics/mathematics tools.

Nice interplay between theory & experiment

Metamaterials: designed in the laboratory.

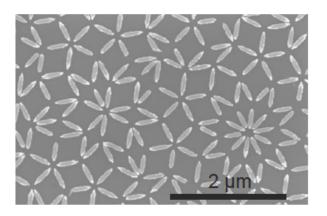
Metamaterials Arrays of nano/micro-scale magnets single domain magnetic islands placed at the edges of a tiling or the edges of a planar graph Parameters specified by design

Metamaterials Arrays of micro/nano-scale magnets single domain magnetic islands placed at the edges of a tiling or the edges of a planar graph Parameters specified by design Image: atomic foce microscopy



Square lattice Wang et al 06

Metamaterials Arrays of micro/nano-scale magnets single domain magnetic islands placed at the edges of a tiling the edges of a planar graph Parameters specified by design Image: atomic foce microscopy

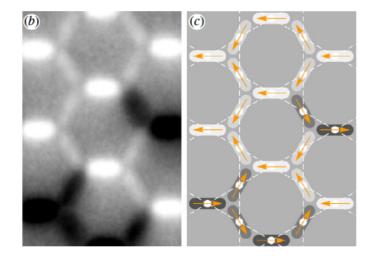


Penrose tiling

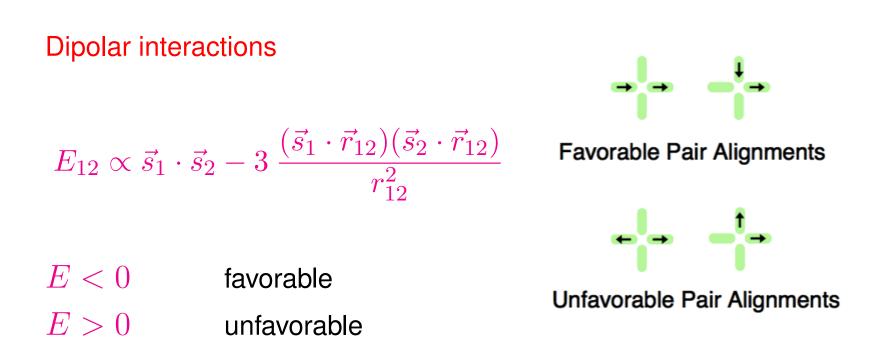
Marrows et al 14

Metamaterials

Arrays of micro/nano-scale magnets
 single domain magnetic islands
placed at the edges of a tiling
 the edges of a planar graph
Easy axis magnets ⇒ Ising spins
Construction ⇒ along the edges
Photoelectron emission microscopy
(More about fabrication later)



Honeycomb lattice Hügli et al 15



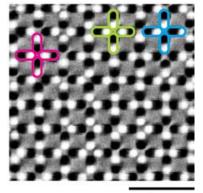
The islands meet at each vertex ; local dipolar interactions are frustrated ; that is to say, they cannot be satisfied simultaneously.

It is not possible to find a configuration of the spins that join at a vertex that minimises all pair contributions to the total energy.

A simpler modelling

Metamaterials

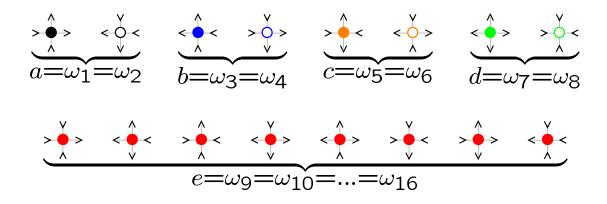
Arrays of nanoscale Ising magnets single domain magnetic islands placed at the edges of a tiling or the edges of a square lattice Parameters specified by design



1 µm

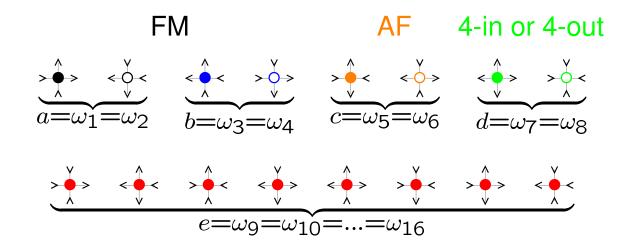
Magnetic force microscopy

Local approx: 2d vertex model with experimentally relevant parameters



The 2d 16 vertex model

with 3-in 1-out vertices: non-integrable system

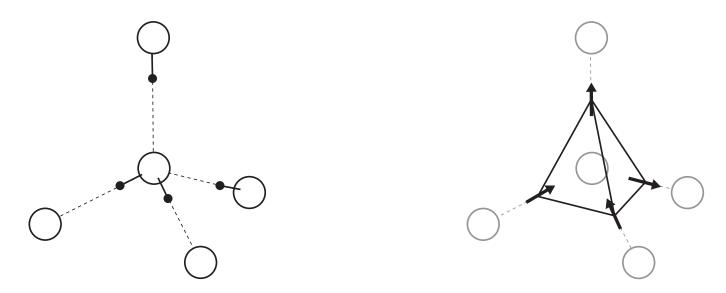


3-in 1-out or 3-out 1-in

(Un-normalized) statistical weight of a vertex $\omega_k = e^{-\beta \epsilon_k}$ In the models [a, b, c, d, e] are free parameters (usually, *c* is the scale) In the experiments ϵ_k depend on the sample and, from the (planar) local energy approximation, $\epsilon_{AF} < \epsilon_{FM} < \epsilon_{3-1} < \epsilon_{4-0}$ The energies ϵ_k could be tuned differently by adding fields, vertical off-sets, etc.

Natural ices

Single cell unit - tetrahedron - in water-ice and spin-ice



Water-ice: coordination four lattice. Bernal & Fowler 33 rules, two H near and two far away from each O.

Spin-ice: four (Ising) spins on each tetrahedron forced to point along the axes that join the centres of two neighbouring units (Ising anisotropy). Local interactions imply the two-in two-out ice rule ;

e.g. $Dy_2 Ti_2 O_7$ Harris, Bramwell, McMorrow, Zeiske & Godfrey 97

Metamaterials Arrays of nanoscale magnets single domain magnetic islands placed at the edges of a tiling or the edges of a planar graph Ising spins along the links

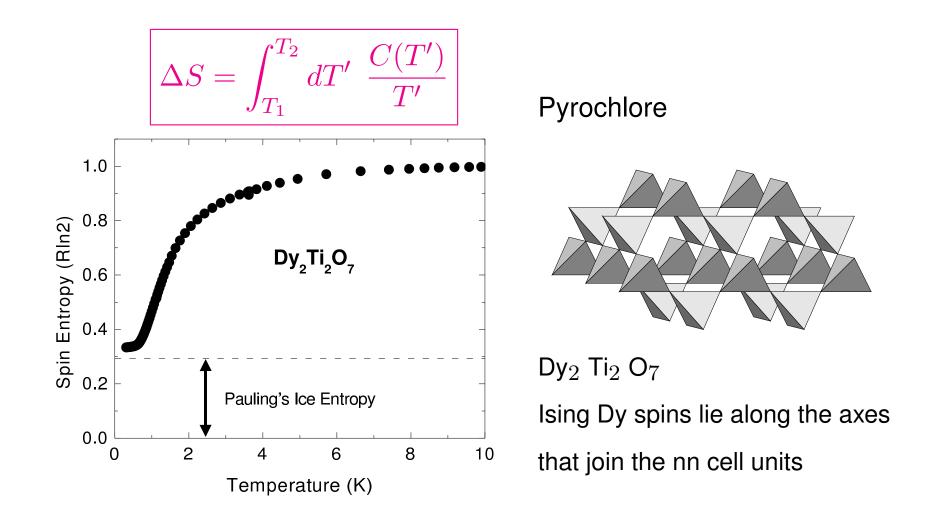
Local dipolar interactions are geometrically frustrated

no quenched disorder

It is not possible to find a configuration of the spins that join at a vertex that minimises all pair contributions to the total energy.

Macroscopic degeneracy of the ground state and metastable states

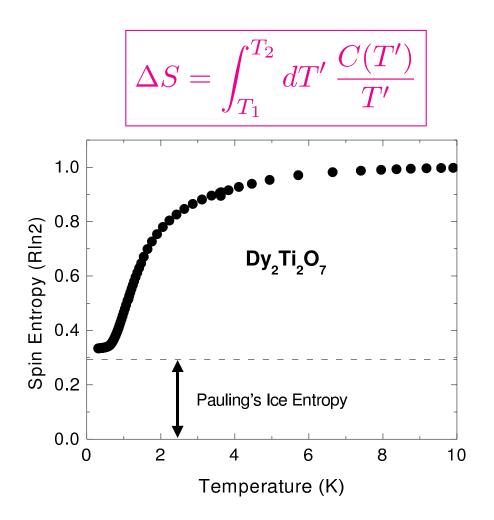
Natural spin-ice entropy



Ramírez, Hayashi, Cava, Siddharthan & Shastry 99.

Very similar to Giauque & Stout 33 for water ice.

Natural spin-ice entropy



N tetrahedra 4 nn cell units each 4N/2 = 2N links All 2-in 2-out equivalent $\Omega_0 \simeq 2^{2N} \left(\frac{6}{16}\right)^N$ $s_0/k_B \simeq \ln \frac{3}{2} \simeq 0.405$ Pauling 35 $s_0/k_B = \frac{3}{2} \ln \frac{4}{3} \simeq 0.431$ Transfer matrix Lieb 76

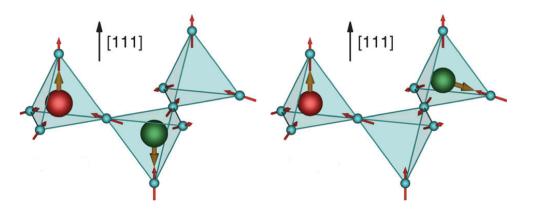
Ramírez, Hayashi, Cava, Siddharthan & Shastry 99.

Very similar to Giauque & Stout 33 for water ice.

Natural ices

Properties and mapping

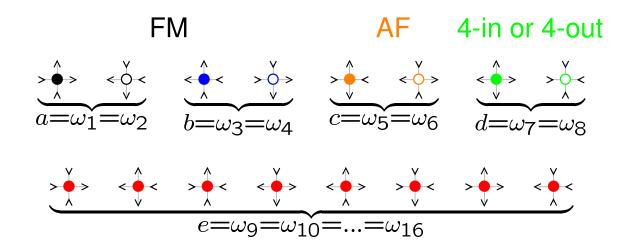
- Ice-rule breaking vertices excitations above the ground state.
- The ± 1 Ising spins map onto a pair of "emergent" magnetic charges.
- The two-in two-out rule \equiv vanishing magnetic charge in the unit cell.
- Excitation have non-vanishing charge, effective magnetic monopoles.
- The defects/charges migrate on the lattice.



Castelnovo, Moessner & Sondhi 08

The 2d 16 vertex model

with 3-in 1-out vertices: non-integrable system



3-in 1-out or 3-out 1-in

(Un-normalized) statistical weight of a vertex $\omega_k = e^{-\beta \epsilon_k}$ In the models a, b, c, d, e are free parameters (usually, *c* is the scale) In the experiments ϵ_k depend on the sample from the (planar) local energy approximation, $\epsilon_{AF} < \epsilon_{FM} < \epsilon_{3-1} < \epsilon_{4-0}$

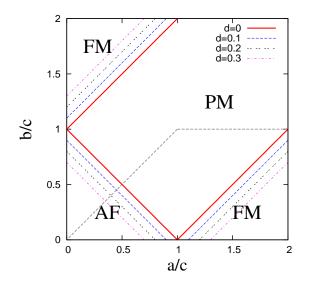
The energies ϵ_k could be tuned differently by adding fields, vertical off-sets, etc.

Static properties

What did we know?

• 6 and 8 vertex models.

Integrable systems techniques (transfer matrix + Bethe Ansatz), mappings to many physical (e.g. quantum spin chains) and mathematical problems.



Phase diagram critical exponents ground state entropy boundary conditions effects etc.

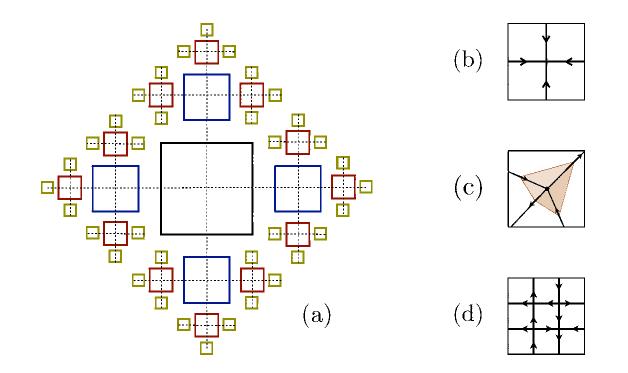
Lieb 67; Baxter Exactly solved models in statistical mechanics 82

• 16 vertex model.

Integrability is lost. Not much interest so far.

Equilibrium analytic

Bethe-Peierls or cavity method



Join an L-rooted tree from the left; an U-rooted tree from above; an R-rooted tree from the right and a D-rooted tree from below.

Foini, Levis, Tarzia & LFC 12

Is it a powerful technique?

in, e.g., the 6 vertex model

With a tree in which the unit is a vertex we find the PM, FM, and AF phases.

 $s_{PM} = \ln[(a+b+c)/(2c)]$

Pauling's entropy $s_{PM} = \ln 3/2 \sim 0.405$ at the spin-ice point a = b = c.

Location and 1st order transition between the PM and FM phases.

Location V but 1st order PM-AF transition. X

no fluctuations in the frozen FM phase. 🖌

no fluctuations in the AF phase.

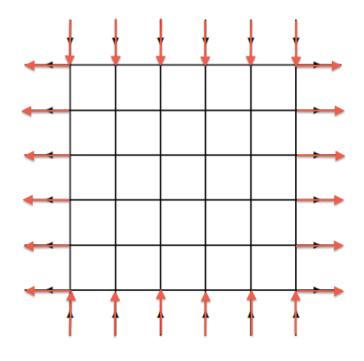
With a four site plaquette as a unit we find the PM, FM, and AF phases.

A more complicated expression for $s_{PM}(a, b, c)$ that yields $s_{PM} \simeq 0.418$ closer to Lieb's entropy $s_{PM} \simeq 0.431$ at the spin-ice point. Location and 1st order transition between the PM and FM phases. \checkmark Location \checkmark but *2nd order* (should be BKT) PM-AF transition. \thickapprox fluctuations in the AF phase and frozen FM phase. \checkmark

Six-vertex model

with domain-wall boundary conditions

Strongly constrained model: non-trivial effect of boundary conditions.



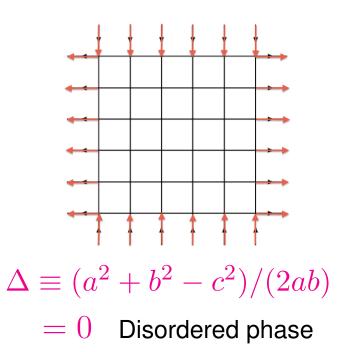
Global parameters in D phase $f^{D}_{\rm dwBC} > f^{D}_{\rm pBC}$

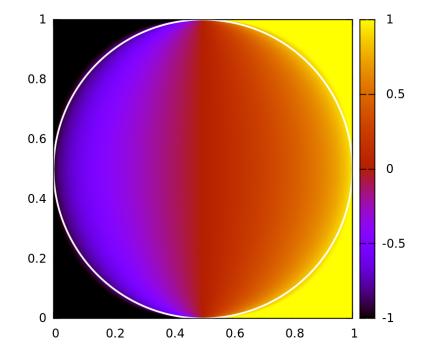
Korepin & P. Zinn-Justin 00

Macroscopic phase separation external frozen region internal thermal region interface : arctic curve

Six-vertex model

with domain-wall boundary conditions





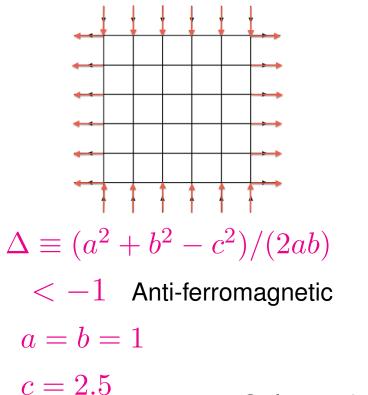
a = b free-fermion case

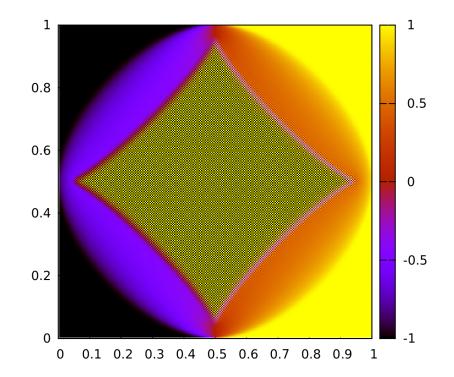
Color code : Bethe-Peierls polarization of horizontal arrows White curve : analytic arctic circle.

Elkies et al. 92-96 ; Jokusch et al. 98 ; Colomo & Pronko 08-14 ; Sportiello LFC, Gonnella & Pelizzola 14

Six-vertex model

with domain-wall boundary conditions





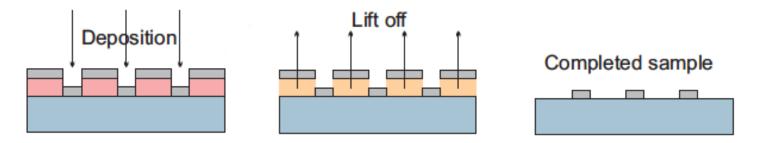
Color code : BP polarization of horizontal arrows

Double phase separation: frozen - thermal disordered - AF

Colomo, Pronko & P. Zinn-Justin 10; Sportiello btw frozen and thermal LFC, Gonnella & Pelizzola 14

Back to experiments: as-grown samples

- Lattice is written with electron beam lithography.
- Magnetic material is gradually poured as in the sketch.



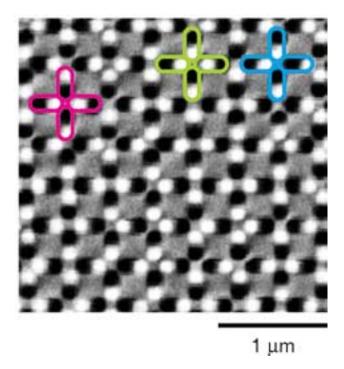
- Thermal fluctuations let the magnets flip until some size is reached.
- Configurations are henceforth blocked.

(Magnetic field annealing is also used.)

Note the similarity with granular matter & effective measure ideas.

Vertex density

How many of each kind?



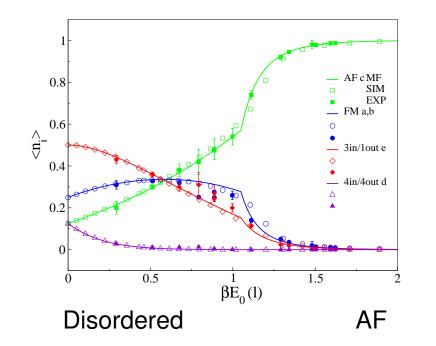
Signalled in this image Pink: an AF vertex Yellow: a 3-in 1-out vertex Blue: a FM vertex No 4-in nor 4-out vertices Magnetic force microscopy Wang et al 06

Does one sample the Gibbs-Boltzmann distribution function at β ?

Another measure?

Vertex density

Across the PM-AF transition – numerical, analytic and exp. data



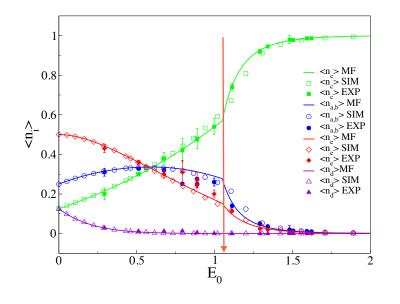
PM - AF transition
AF vertices
FM vertices
3-in 1-out & 3-out 1-in *e*-vert.
4-in & 4-out *d*-vertices

Each set of vertical points, $\beta E_0(\ell)$ value, corresponds to a different sample (varying lattice spacing ℓ or the compound). $\epsilon_{a,b,d,e} = \overline{f}(\ell) = f(\epsilon_c)$ Agreement seems perfect but experience from glassy physics...

Levis, LFC, Foini & Tarzia 13; experimental data courtesy of Morgan et al. 12

Vertex density

Across the PM-AF transition – numerical, analytic and exp. data



PM - AF transition
AF vertices
FM vertices
3-in 1-out & 3-out 1-in *e*-vert.
4-in & 4-out *d*-vertices

Disordered

Each set of vertical points, $\beta E_0(\ell)$ value, corresponds to a different sample (varying lattice spacing ℓ or the compound). $\epsilon_{a,b,d,e} = \overline{f}(\ell) = f(\epsilon_c)$ Agreement seems perfect but experience from glassy physics...

Levis, LFC, Foini & Tarzia 13; experimental data courtesy of Morgan et al. 12

Quench dynamics

A simpler setting

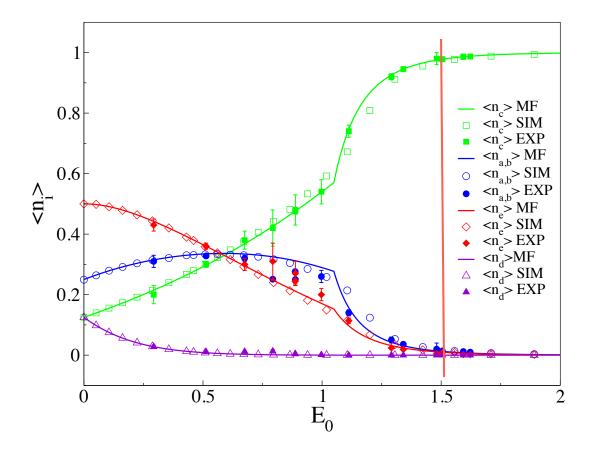
- Take an initial condition in equilibrium at, e.g. $T_0 \to \infty$ that corresponds to $a_0 = b_0 = c_0 = d_0 = e_0 = 1$.
- Evolve it with a set of parameters a, b, c, d, e in the phases PM, FM or AF: an infinitely rapid quench at t = 0.
- Concretely, we use **stochastic dynamics**:

with single spin flip updates with the usual heat-bath rule, and a continuous time MC algorithm (to reach long time scales). Relevant dynamics experimentally (contrary to loop updates used to study equilibrium in the 8 vertex model)

Levis & LFC 11, 13

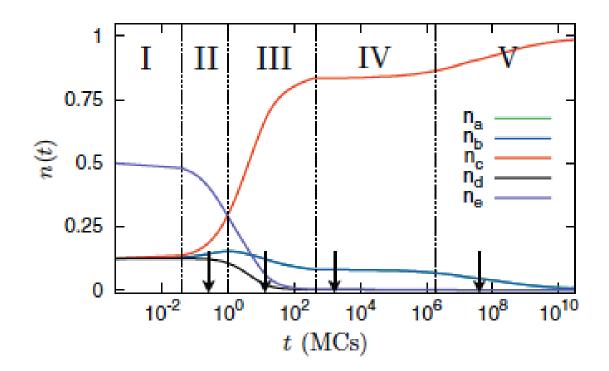
Density of defects

$$c = 1$$
, $a = b = 0.1$ and $d = e^2 = 10^{-10}$



Density of defects

$$c = 1$$
, $a = b = 0.1$ and $d = e^2 = 10^{-10}$



Isotropic growth of AF order with

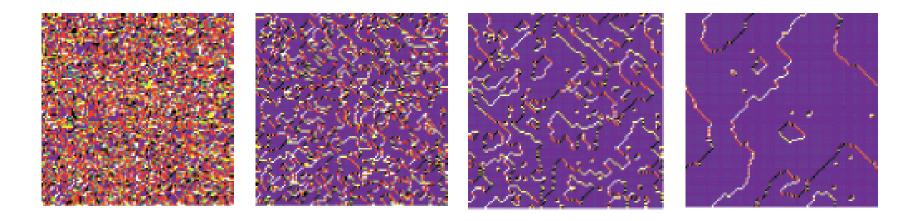
$$L(t) \simeq t^{1/2}$$

Snapshots – coarsening

Color code. Violet background: AF order of two kinds;

Initial state

coarsening states



Isotropic growth of AF order for this choice of parameters

AF vertices are energetically preferred;

there is no anisotropy imposed, $L^{
m AF}(t)\simeq t^{1/2}$

Snapshots – experiment vs. numerics

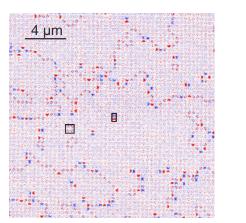
Color code. Orange background: AF order of two kinds;

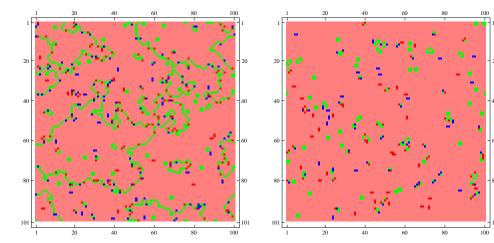
green FM vertices, red-blue defects.

Magnetic force microscopy

coarsening state

equilibrium state

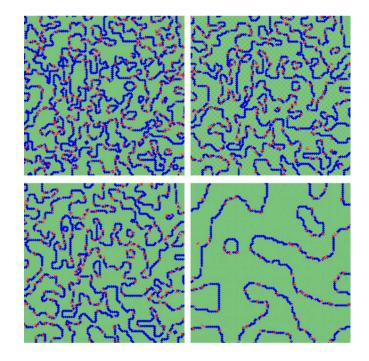




Interfaces between the two staggered AF orders

A statistical and geometric analysis of domain walls & defects should be done to conclude.

Snapshots – other modelling



Budrikis et al 12

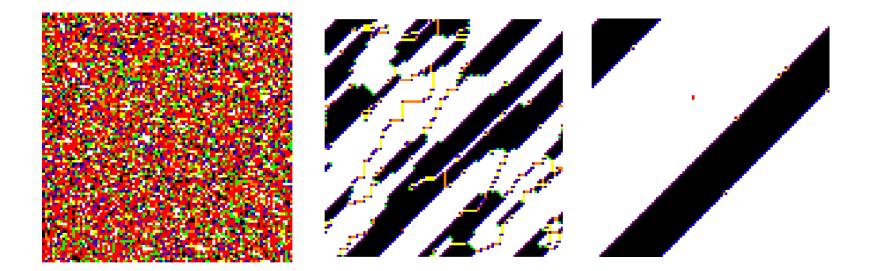
Mostame et al. 14 field quenches

Cepas & Canals 12, Cepas 14 multiple time-scales

Wysin et al. 13 dynamics in Heisenberg 2d square ice

Dynamics in the FM phase

Snapshots



Growth of stripes

Quench to a large *a* value : black & white vertices energetically favored.

Interesting coarsening process, $L_{\perp}^{
m FM}(t)$ and $L_{\parallel}^{
m FM}(t)$

Classical geometrically frustrated magnetism

spin-ice in two dimensions

 $2d\ {\rm vertex}\ {\rm models}$

Problems with analytic, numeric and experimental interest

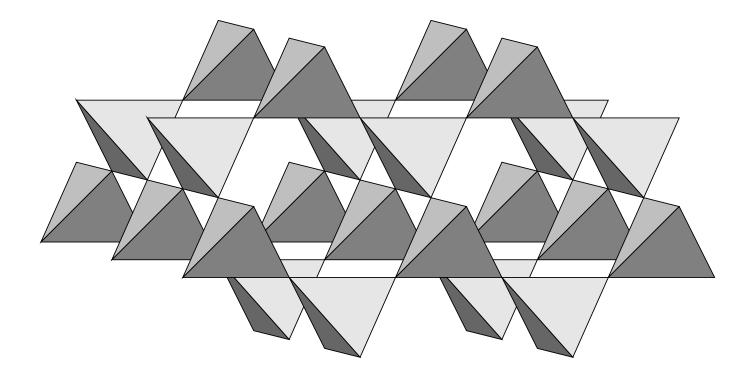
Summary

Classical frustrated magnetism ; spin-ice in two dimensions.

- 2d vertex models: problems with analytic, numeric and experimental interest.
 Cfr. artificial spin-ice
- Beyond integrable systems' methods to describe the static properties.
 Some results of the Bethe-Peierls approximation are exact, others are at least very accurate.
 Analytic challenge
- Slow coarsening (or near critical in the disordered phase) dynamics. $L^{\rm FM}_{\parallel}(t) \simeq L^{\rm FM}_{\perp}(t) \simeq L^{\rm AF}(t) \simeq t^{1/2}$ Analytically?
- Experiments : dynamics block, **non-equilibrium measures**?
- Useful manipulation of **defects** (ice-breaking rule vertices).

Natural spin-ice

3d : the pyrochlore lattice $% d^{2}d^{2}$

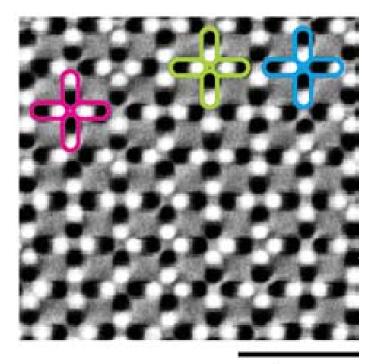


Coordination four lattice of corner linked tetahedra. The rare earth ions occupy the vertices of the tetrahedra; **e.g.** $Dy_2 Ti_2 O_7$

Harris, Bramwell, McMorrow, Zeiske & Godfrey 97

Artificial spin-ice

Bidimensional square lattice of elongated magnets



1 µm

AF

Bidimensional square lattice Dipoles on the edges 16 possible vertices Experimental conditions in this fig. : vertices w/ two-in & two-out arrows with staggered AF order are much more numerous

3in-1out

FM

Wang et al 06, Nisoli et al 10, Morgan et al 12

Square lattice artificial spin-ice

Local energy approximation $\Rightarrow 2d$ 16 vertex model

Just the interactions between dipoles attached to a vertex are added.

Dipole-dipole interactions. Dipoles are modeled as two opposite charges. Each vertex is made of 8 charges, 4 close to the center, 2 away from it. The energy of a vertex is the electrostatic energy of the eight charge configuration. With a convenient normalization, dependence on the lattice spacing ℓ :

 $\epsilon_{AF} = \epsilon_5 = \epsilon_6 = (-2\sqrt{2}+1)/\ell \qquad \epsilon_{FM} = \epsilon_1 = \dots = \epsilon_4 = -1/\ell$ $\epsilon_e = \epsilon_9 = \dots \epsilon_{16} = 0 \qquad \epsilon_d = \epsilon_7 = \epsilon_8 = (4\sqrt{2}+2)/\ell$

 $\epsilon_{AF} < \epsilon_{FM} < \epsilon_e < \epsilon_d$

Nisoli et al 10

Energy could be tuned differently by adding fields, vertical off-sets, etc.

Static properties

What did we do?

• Equilibrium simulations with finite-size scaling analysis.

Continuous time Monte Carlo.

e.g. focus on the **AF-PM transition**; cfr. experimental data.

AF order parameter :

$$M_{-} = \frac{1}{2} \left(\langle |m_{-}^{x}| \rangle + \langle |m_{-}^{y}| \rangle \right)$$

with $m_{-}^{x,y}$ the staggered magnetization along the x and y axes.

Finite-time relaxation

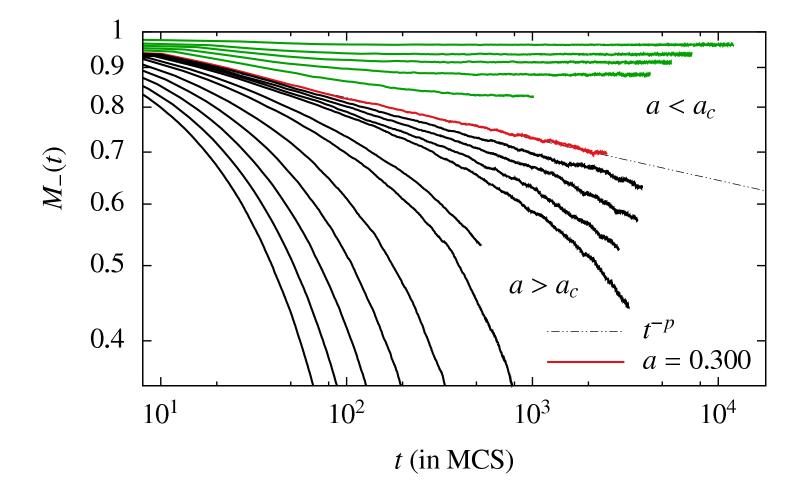
 $M_{-}(t) \simeq t^{-\beta/(\nu z_c)}$

• Cavity Bethe-Peierls mean-field approximation.

The model is defined on a tree of single vertices or 4-site plaquettes

Finite time relaxation

Magnetization across the PM-AF transition



 $a_c = e^{-\beta_c e_1} \simeq 0.3$ with $e_1 = 0.45 \implies \beta_c = 2.67 \pm 0.02$

Equilibrium analytic

Bethe-Peierls or cavity method

Write a (matrix) recurrence relation to compute the probability that the cavity site be occupied by each one of the six vertices.

Find the solutions as a function of the weigths ω_{α} .

Obtain the free-energy density.

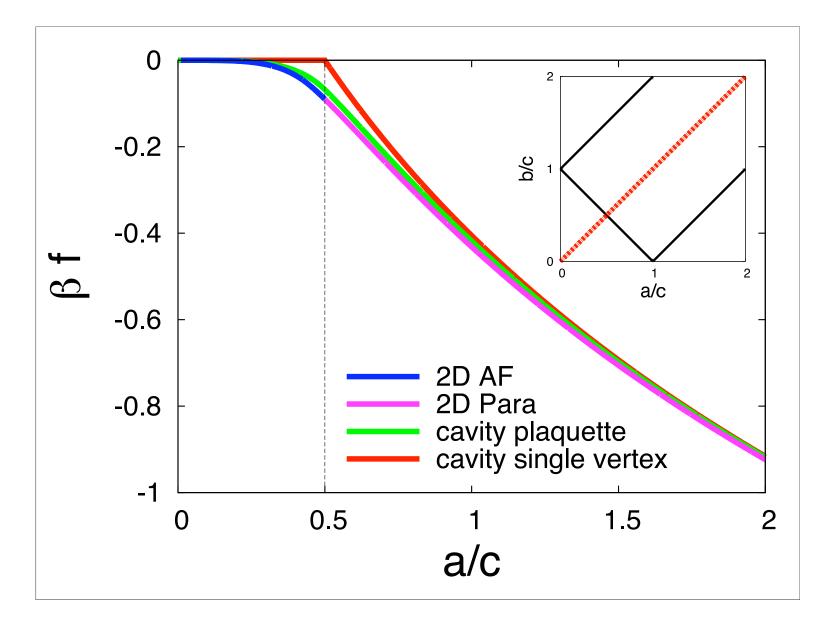
Look for transition lines.

This method can be applied to the 16 vertex model.

Foini, Levis, Tarzia & LFC 13

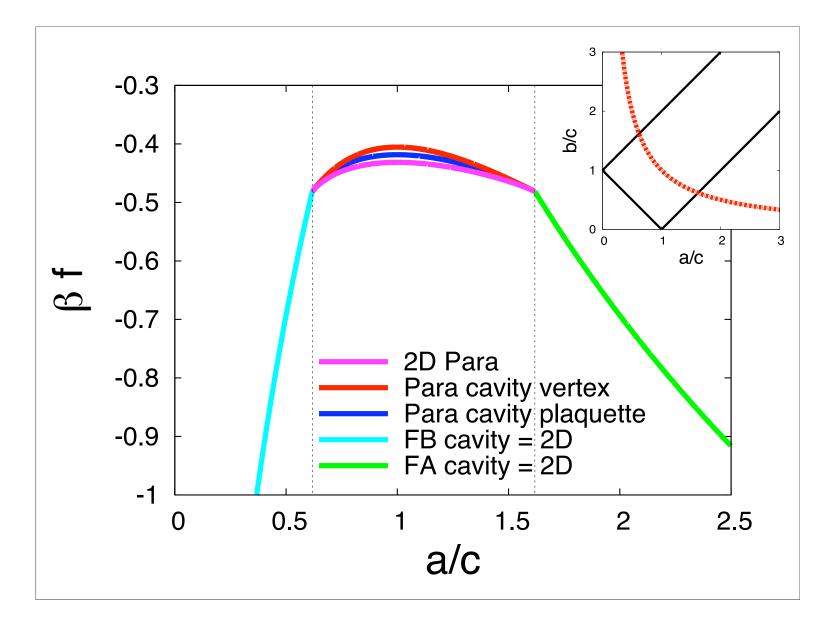
Equilibrium analytic

6 vertex : AF - D transition, cavity vs Baxter's exact solution



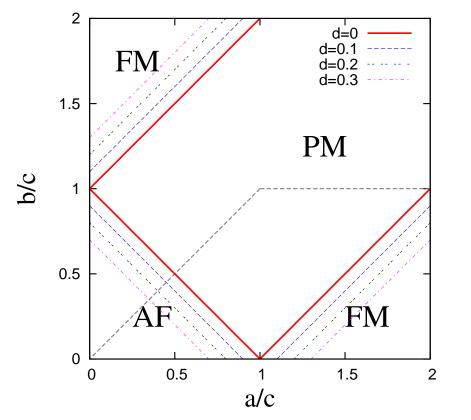
Equilibrium analytic

6 vertex : FM - D transition, cavity vs. Baxter's exact solution



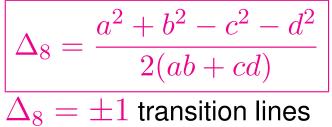
The 2d 8 vertex model

Integrable system (transfer matrix + Bethe Ansatz)



No type *e* vertices.

2nd order phase transitions



With three-in one-out vertices Integrability is lost.

Lieb 67; Baxter Exactly solved models in statistical mechanics 82

Equilibrium CTMC

Magnetization across the PM-AF transition

Vertex energies set to the values explained above.

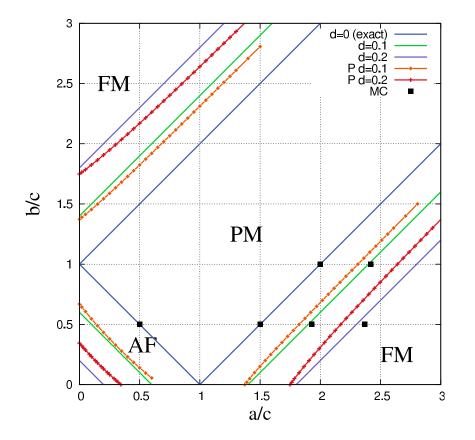


Solid red line from the Bethe-Peierls calculation.

Static properties

Equilibrium phase diagram 16 vertex model

• MC simulations & cavity Bethe-Peierls method

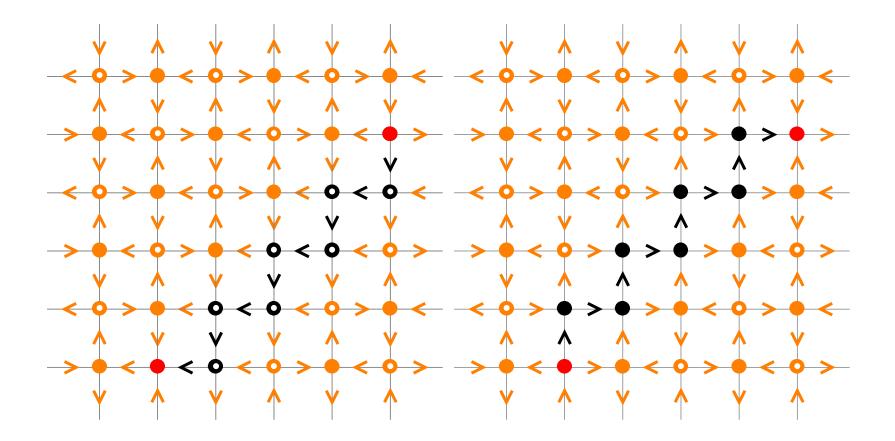


Phase diagram critical exponents ground state entropy equilibrium fluctuations etc.

Foini, Levis, Tarzia & LFC 12

Fluctuations

Sketch



The probability of such fluctuations can be estimated with the Bethe-Peierls calculation on a tree of four-site plaquettes !

Equilibrium : the tree vs 2d

16 vertex model

- The cavity method can deal with the generic vertex model.
 More complicated recursion relations, more cases to be considered, but no further difficulties.
- The transition lines do not get parallelly translated with respect to the ones of the 6-vertex model. ?

They are all of 2nd order. 🖌

They are remarkably close to the numerical values in 2d. \checkmark

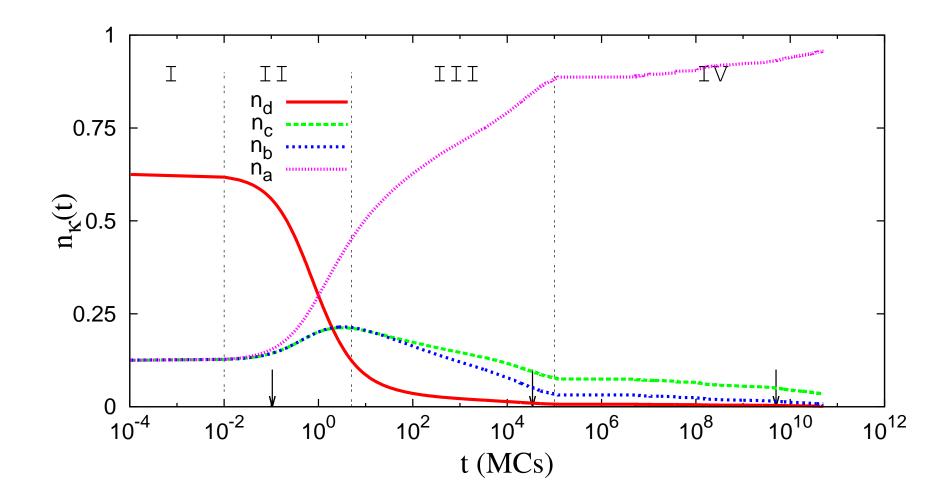
The exponents : on the tree they are mean-field, in 2d ?

- MF expression for Δ_{16} In 2d ?
- The quantum Ising chain for the 16 vertex model should include new terms.

Foini, Levis, Tarzia & LFC 12

Dynamics in the FM phase

Density of defects (d = e here)



Four regimes

Dynamics in the FM phase

Dynamic scaling and growing lengths



 $G^{\perp}(r,t), \ G^{\parallel}(r,t) \simeq F_{\parallel,\perp}(r/L(t))$

Stretched exponential $F(x) = e^{-(x/w)^v}$ with $v_{\parallel} \simeq v_{\perp} \simeq 0.15$ and $\neq w_{\parallel,\perp}$

the same growing length

$$L_{\parallel}(t), \ L_{\perp}(t) \simeq t^{1/2}$$

until a band crosses the sample, then a different mechanism.

Scaling theory

At late times there is a single length-scale, the typical radius of the domains L(t,g), such that the domain structure is (in statistical sense) independent of time when lengths are scaled by L(t,g), e.g.

$$C(r,t) \equiv \langle s_i(t)s_j(t)\rangle|_{|\vec{x}_i - \vec{x}_j| = r} \sim \langle \phi \rangle_{eq}^2(g) f\left(\frac{r}{L(t,g)}\right),$$
$$C(t,t_w) \equiv \langle s_i(t)s_i(t_w)\rangle \sim \langle \phi \rangle_{eq}^2(g) f_c\left(\frac{L(t,g)}{L(t_w,g)}\right),$$

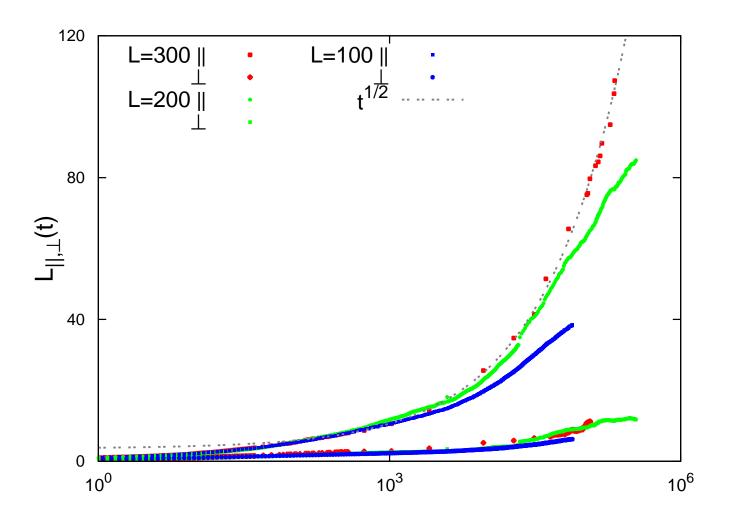
etc. when $r \gg \xi(g)$, $t, t_w \gg t_0$ and $C < \langle \phi \rangle_{eq}^2(g)$.

Suggested by experiments and numerical simulations. Proved for

- Ising chain with Glauber dynamics.
- Langevin dynamics of the O(N) model with $N \to \infty$, and the spherical ferromagnet. Review Bray 94.

Dynamics in the FM phase

Growing lengths

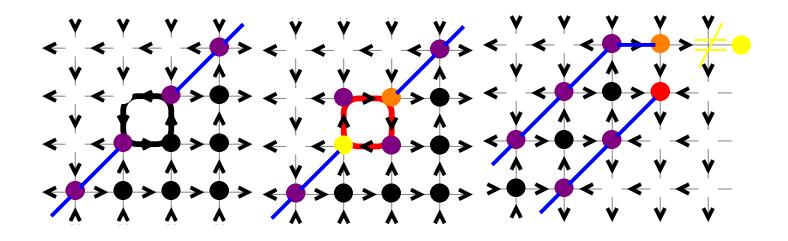


Anisotropic growth of FM order with

 $L_{\parallel}(t) \simeq t^{1/2}$

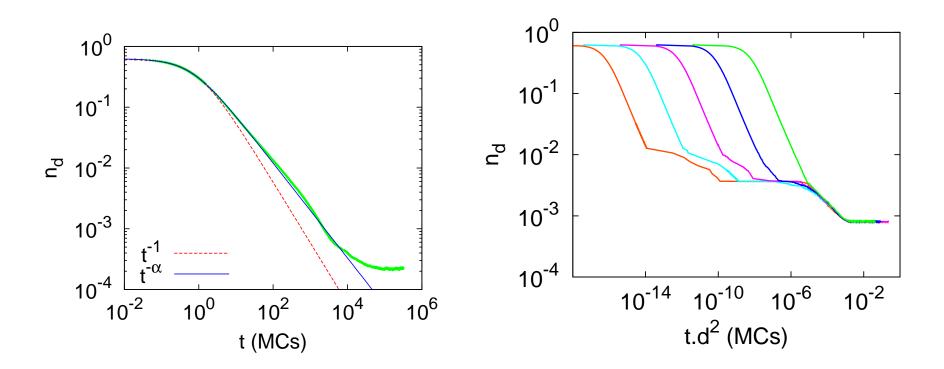
Dynamics in the FM phase

Some elementary moves



Dynamics in the D phase

Density of defects



Short-time decay $t^{-0.78}$ Different from MF approximation to reaction - diffusion model t^{-1} .

 $n_d \simeq f(td^2)$

Scaling below the plateau.

Single spin-flip dynamics

Reaction-diffusion picture in terms of the vertex charges

Reaction

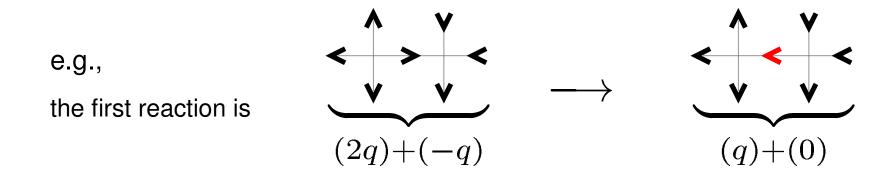
 $(2q)_d + (-q)_e \rightarrow (q)_e + (0)_a$ $(q)_e + (-q)_e \rightarrow (0)_a + (0)_c \qquad \epsilon_a + \epsilon_c - 2\epsilon_e \propto \ln ac/e^2 < 0$ $(q)_e + (q)_e \longrightarrow (2q)_d + (0)_c$

since $\epsilon_{AF} < \epsilon_{FM} < \epsilon_e < \epsilon_d$.

 ΔE

- $\epsilon_a \epsilon_d \propto \ln a/d < 0$
- $(q)_e + (q)_e \longrightarrow (2q)_d + (0)_a \qquad \epsilon_d + \epsilon_a 2\epsilon_e \propto \ln da/e^2 \leq 0$

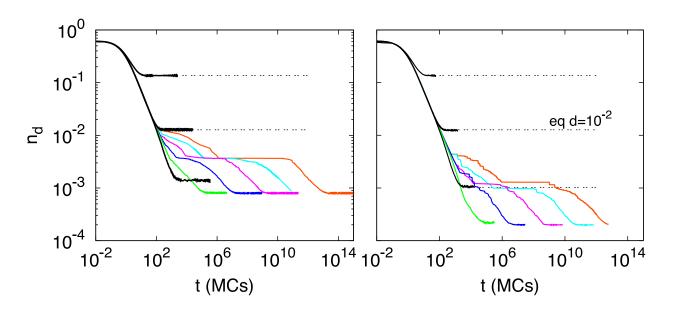
$$\epsilon_d + \epsilon_c - 2\epsilon_e \propto \ln dc/e^2 \ge 0$$



Attn : "Directional diffusion" : vertices have to meet in the "good" direction.

Dynamics in the PM phase

Density of defects, $n_d = \# defects / \# vertices$



Relevant experimental sizes L = 50

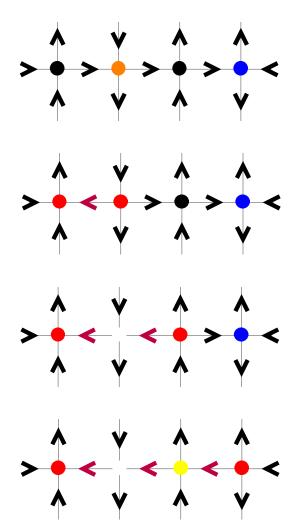
= 50

L = 100

 $a = b = c, d/c = e/c = 10^{-1}, 10^{-2}, \dots, 10^{-8}$ from left to right. For $e = d \stackrel{>}{\sim} 10^{-4}c$ the density of defects reaches its equilibrium value. For $e = d \stackrel{<}{\sim} 10^{-4}c$ the density of defects gets blocked at $n_d \approx 10/L^2$. It eventually approaches the final value $n_d \approx 2/L^2$ indep. of bc; rough estimate for t_{eq} from reaction-diffusion arguments.

Deconfined monopoles

Ice-rule vs. ice-rule breaking vertices



Just spin-ice vertices

Two (3 in or 3 out) red defects

One lattice spacing apart

Two lattice spacings apart

NB, once created, the energy remains constant iff a = b = c.