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Dissipative systems
Aim

Our interest is to describe the dynamics of a classical or quantum

system coupled to a classical or quantum environment .

The Hamiltonian of the ensemble is

H = Hsyst +Henv +Hint
E∆

env

syst

The dynamics of all variables are given by Newton or Heisenberg rules, depen-

ding on the variables being classical or quantum.

We need to give the initial {xi(0), pi(0)} or ρ̂(0).

The total energy is conserved, E = ct but each contribution is not, in particular,

Esyst 6= ct, and we’ll take Esyst ≪ Eenv



Reduced system
Model the environment and the interaction

E.g., an ensemble of harmonic oscillators and a bi-linear coupling :

Henv +Hint =

N∑

α=1

[

p2α
2mα

+
mαω

2
α

2

(
cα

mαω2
α

x− qα

)2
]

Classically (coupled Newton equations) and quantum mechanically (easier in

a path-integral formalism) one can integrate out the oscillator variables.

Assuming the environment is coupled to the sample at the initial time and that

its variables are characterized by a Gibbs-Boltzmann density function

ρ ∝ e−β(Henv+Hint) at inverse temperature β one finds :

a colored Langevin equation (classically) or

a reduced dynamic generating functional Zred (quantum mechanically).
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General Langevin equation

The system, {rai }, with i = 1, . . . , N and a = 1, . . . , D, coupled to

an equilibrium environment evolves according to the Langevin eq.

Mr̈ai (t)
︸ ︷︷ ︸

+

∫ t

t0

dt′ ΣK

B
(t− t′)ṙai (t

′)

︸ ︷︷ ︸

= −δV ({~ri})
rai (t)

︸ ︷︷ ︸

+ ξai (t)
︸︷︷︸

.

Inertia friction deterministic force noise

Coloured noise with correlation 〈 ξai (t)ξbj(t′) 〉 = kBTδijδ
ab
Σ

K

B
(t− t′)

and zero mean.

T the temperature of the equilibrium bath and kB the Boltzmann constant.

The friction kernel is ΣK

B
(t− t′).

Proof : see, e.g., Weiss 99 .



Colored noise

Generic : Most of the exact fluctuation-dissipation relations in and

out of equilibrium remain unaltered for generic ΣK

B
, e.g. the fluctuation-

dissipation theorem, fluctuation theorems, etc.

Aron, Biroli, LFC 10

Particular : The functional form of the observables depends on the cha-

racteristics of the noise, i.e. on Σ
K

B
.

The interesting cases are

Σ
K

B
(t− t′) =

g

ΓE(1− α)
|t− t′|−α with α > 0

g the ‘friction coefficient’ and ΓE the Euler-function.



A particle in a
harmonic potential

x

V

V (x) = 1
2
Mω2

0 x
2

After a relatively short transient,

independently of the initial condition

Cx(t, t
′) ≡ 〈x(t)x(t′)〉 → 1

Mω2
0

Eα,1

(

−Mω2
0 |t− t′|α
g

)

with Eα,1 =
∑

k=0
zk

ΓE(αk+1) the Mittag-Leffler function.

Ohmic bath α = 1 E1,1(z) = ez exponential relaxation.

non-Ohmic bath α 6= 1 Eα,1(z) → z−1 for z → −∞ power-law relaxation.



Protein dynamics
Questions : what are the potential and the bath ?

x(t) distance between Tyr and FAD α = 0.51± 0.07

Yang et al 03 ; Min, Luo, Cherayil, Kou & Xie 05



Collective phenomena
Critical relaxation in the classical O(N) model

N -component field ~φ = (φ1, . . . , φN ) in a D-dim. space ~r = (r1, . . . , rD).

Ginzburg-Landau type free-energy :

H =

∫

dDr

{
1

2
[∇~φ(~r)]2 +

r

2
φ2(~r) +

λ

4
φ4(~r)

}

Overdamped relaxation dynamics

∫ t

t0

dt′ ΣK
B (t− t′)

∂

∂t′
~φ(~r, t′) = − δH

δ~φ(~r, t)
+ ~ξ(~r, t)

〈ξi(~r, t)ξj(~r′, t′)〉 = kBTδijδ(~r − ~r′)ΣK
B (t− t′)

Equilibrium initial condition P [~φ(~r, t0)] ∝ e−βH[φ(~r,t0)]

High-temperature initial conditions P [~φ(~r, t0)] ∝ e−φ2(~r,t0)/(2∆
2)



Critical relaxation
ǫ = 4−D–expansion in the classical O(N) model

Region C
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Dotted horizontal line N → ∞

Dc(α) = 4, Tc 6= Tc(α),

The dynamic exponent

in region W

z = 2 +
N + 2

(N + 8)2

[

3 ln
4

3
− 1

2
ǫ2
]

in region C Sub-Ohmic bath

z =
2

α

[

1− N + 2

4(N + 8)2ǫ2

]

Bonart, LFC & Gambassi 11



Interest ?

In classical interacting systems (e.g. glasses, active matter, powders) so-

metimes one selects some variables and treats the rest in some self-

consistent way.

Results in an effective Langevin equation with a self-consistent ‘bath’ ,

Mφ̈(t) +

∫ t

t0

dt′ Σ1

B
(t, t′)φ̇(t′) = −δV ({φ})

δφ(t)
+ ξ(t) .

Coloured noise with correlation 〈 ξ(t)ξ(t′) 〉 ∝ Σ
2

B
(t, t′)

Σ
1
B and Σ

2
B are self-consistently determined in terms of correlations

and linear responses of the original fields. cfr. DMFT

How are the collective dynamics determined ?
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A quantum impurity
in a one dimensional harmonic trap

Catani et al. 12



An impurity
in a one dimensional harmonic trap

One atom trapped by a laser beam

H0
syst =

1

2M
p2 +

1

2
Mω2

0 x
2

in contact with a bath made by a different species Henv.

Hamiltonian of the coupled system :

H0 = H0
syst +Henv +Hint

Catani et al 12

All the atoms are within a wide one-dimensional very wide harmonic trap (not shown).

Recall protein problem ; not that different.



Experimental protocol
A quench

Initial equilibrium of the coupled system : ρ(t0) ∝ e−βH0

with H0 = H0
syst +Henv +Hint

and H0
syst =

1

2M
p2 +

1

2
Mω2

0 x
2

At time t0 = 0 the impurity is released, the laser blade is switched-off

and the atom only feels the wide confining harmonic potential ω0 → ω
subsequently.

Question : what are the subsequent dynamics of the particle ?

Catani et al. 12



Model the environment
as a Luttinger liquid

Bosons in one dimensional modeled by the density

ρ(r) ≃ ρ0(r)− 1
π
dφ(r)
dr

with the Hamiltonian

Henv =
~

2π

∫

dr

{

uKL

~2
[πΠ(r)]2 +

u

KL

[
dφ(r)

dr

]2
}

The interaction is

Hint =

∫

drdr′ U(|r − r′|) δ(x− r′) ρ(r)

with Ũ(p) = ~ve−p/pc and p→ pn = π~n/L

(Quantization of momenta due to the wide harmonic trap ; later L → ∞.)



Path integral formalism
Schwinger-Keldysh generating functional

After a transformation to ladder operators bp for the bath and defining

Qp = eipx/~ for the impurity, the coupling Hint becomes bilinear with

p-dependent coupling constants [depending on Ũ(p)].

Real-time path-integral generating functional.

Integration of the bath degrees of freedom (à la Feynman-Vernon) yields :

Zred =

∫

DQ+
p DQ−

p DQ0
p e

Ssyst[Q
+
p ,Q−

p ,Q0
p] Φ[Q+

p , Q
−
p , Q

0
p]

with the influence functional

Φ[Q+
p , Q

−
p , Q

0
p] =

∑

p∈{pn}

Φp[Q
+
p , Q

−
p , Q

0
p]



Path integral formalism
Schwinger-Keldysh generating functional

Low-energy expansion : Qp = eipx/~ to quadratic order implies that

Each mode is effectively coupled to a bath ‘harmonic oscillator’.

The effective action has delayed quadratic interactions mediated by

ΣK
B (t− t′) =

2

M

∫ ∞

0

dν
S(ν)

ν
cos[ν(t− t′)]

(high T limit) with the spectral density

S(ν) =
π

2L

∑

pn

KL

2π~3

|pn|3
~2

|Ũ(pn)|2 δ(ν − u|pn|/~)

→ g

(
ν

ωc

)3

e−ν/ωc for L→ ∞ .

g = KLv
2ω3

c/u
4 with ωc = upc/~ Super-Ohmic diss. α = 3



Path integral formalism
Schwinger-Keldysh generating functional

The action is quadratic in all remaining variables (that have to do with the

position of the impurity).

The generating functional of all expectation values and correlation func-

tions can be computed by the stationary phase method (exact in this

case) as done in

Grabert & Ingold’s review

with some differences : rôle of initial condition, quench in harmonic trap,

spectral density.

In particular, the equal-times correlation functionCx(t, t) = 〈x(t)x(t)〉 =
〈x2(t)〉.



Equal–time correlation function
Theory

Cx(t, t) ≡ 〈x2(t)〉

Damped oscillations
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For two values of the coupling to the bath (to be made precise below).

Bonart & LFC 12



Oscillating frequency
Dependence on the coupling to the bath ( g) and the trap ( ω/ωc)

σ/ωc
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g 
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Bonart & LFC 12



Equal–time correlation function
Experiment

Cx(t, t) ≡ 〈x2(t)〉

Damped oscillations
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For four values of the coupling to the bath.

Catani et al. 12



Oscillating frequency
Theory vs experience

σ/ωc for ω/ωc=3

0.01 0.1 1.0
g 

2.98

3.00

3.02

Σ

σ increases with the coupling to the bath for sufficiently narrow (large

ω/ωc) harmonic traps.

The height of the peak depends on ω/ωc. with ωc the cut-off of bath

spectral function. Order of magnitude similar to the one measured.

Bonart & LFC 12



Many-body
Interacting rotors under a bias

The system’s Hamiltonian is

Hsyst =
Γ

2M

N∑

i=1

~L2
i −

M
2
√
N

∑

i<j

Jij~ni~nj

with usual commutation rules between La
i and nb

j .

Each variable is coupled to two ‘leads’ or electron reservoirs at equal

temperature T but with different chemical potential, µR − µL = eV .

We set the system in contact with the reservoir at time t0.

Decoupled density matrix ̺(t0) = ̺syst(t0)⊗ ̺env(t0) and

random initial condition for the rotors.



Many-body
Interacting rotors under a bias

The interaction with the two leads leads to

Sint = −1

2

∑

rs=±

∫

dtdt′ Σrs
B (t, t′)

∑

i

~nr
i (t)~n

s
i (t

′)

with the bath induced kernels

Σrs
B (t, t′) = −irs~ω2

c

[
GR

rs(t, t
′)GL

sr(t
′, t) + L ↔ R

]

and Grs(t, t
′) ≡ −i〈T ψr(t)ψ

†
s(t

′)〉
with ψr(t), ψ

†
r(t) the fermionic fields

and T the time-ordering operator on the closed contour.



Many-body
Interacting rotors under a bias

Potential (V ) – Temp. (T )

– Quantum fluct. (Γ)

phase diagram
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γ c

g

γc(θ = υ = 0)

Dependence of

γc ≡ (4~/3π)2Γc/J = 1 + 9/2 g2

on the strength of the bath (g = ~ωc/ǫF ).

Aron, Biroli & LFC 09 & 10



Summary

• Classical and quantum dissipative dynamics :

very similar once in path-integral formalism.

• Classical systems

Single particle : one of many discussions of non-Markovian environ-

ments in bio-physics.

Collective phenomena : just the first ( ? ) non-trivial calculation for the

effect on the critical slowing down in second-order phase transitions.

Focus on the dependence on the kernel tails α

No no-trivial effects produced by the bath strength g

(apart, of course, of dependence of equilibration time).



Summary

• Quantum systems

Quantum Brownian motion and quenches : a rather simple problem

with non-trivial consequences of the bath strength g

Many-body systems ; effect on transitions and collective dynamics.

• Some issues in progress

Quantum critical dynamics at second-order phase transitions

[e.g. in the quantum O(N) model]
Bonart, LFC & Gambassi

Phase ordering in a spin chain coupled to semi-infinite spin chains

acting as baths.
Bonart, Foini & LFC


