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Introduction
• We want to understand the out of equilibrium dynamics of macroscopic

systems in interaction.

e.g. coarsening, critical relaxation, glassy dynamics.

• Relaxation of one-time observables, e.g. 〈E(t)〉, is insufficient.

• Averaged two-time correlation and linear-response

C(t, tw) = 〈φ(t)φ(tw)〉 χ(t, tw) =

∫ t

tw

dt′
δ〈φ(t)〉

δh(t′)

∣

∣

∣

∣

h=0

have a much richer structure.

Separation of time scales : additive (non-vanishing order parameter),

multiplicative (vanishing order parameter).

Relation between spontaneous and induced fluctuations via time-scale

dependent fluctuation-dissipation relations, χ(C, tw), with different

limiting forms.



Introduction
Langevin process

φ̇ = −
δF

δφ
+ ξ ⇒ φ = F [ φ0, ξ ] implicit solution

Fluctuating two-time composite fields

Ĉ = φ(t)φ(tw) "corr" 2T χ̂ = φ(t)ξ(tw) "resp"∗

∗subtlety equal-times, see Corberi, Lippiello, Sarracino, Zannetti 11

Martin-Siggia-Rose generating functional

Zdyn =

∫

DφDiφ̂ eS[φ,φ̂]

In this formalism 2T χ̂ = φ(t)iφ̂(tw).



Introduction
Questions

How are these objects distributed ?

P (Ĉ, χ̂; t, tw)

• Does P (Ĉ, χ̂; t, tw) = P̃ (Ĉ, χ̂;C, tw) scale in the long tw limit ?

(C = 〈φφ〉 is here the averaged two time-correlation)

• Less ambitious : scaling of (some) moments .

In particular, do averages involving factors of Ĉ and χ̂ in different combina-

tions scale in the same way ? e.g.

VCC(t, tw) =

∫

ddx 〈Ĉ(~x; t, tw)Ĉ(~0; t, tw)〉

Vχχ(t, tw) =

∫

ddx 〈χ̂(~x; t, tw)χ̂(~0; t, tw)〉



Introduction
Questions

• Generalized fluctuation-dissipation relations beyond the first moment ?

• With the same effective temperature ?

• Can one identify the ruling mechanisms ?

Guiding symmetry ? Castillo, Chamon, LFC & Kennett 02

Theoretic analysis numeric analysis

As usual, treat different dynamic classes in parallel :

Gaussian models – critical relaxation – coarsening – glasses

NB We focused on the aging part of the out of equilibrium relaxation while Franz,

Parisi, Ricci-Tersenghi & Rizzo 11 are looking at the super-cooled equilibrium

regime and fluctuations around the plateau.



Plan

• Back to the analysis of the averaged correlation and linear res-

ponse .

glassy dynamics : the p-spin model.

domain growth : the O(N) ferromagnet.

Emerging symmetries in the asymptotic aging regime.

• Comments on the analysis of the effective MSR actions .

• Consequence on fluctuations.

• Massless scalar field and the critical phase of the 2d xy model .

Work in progress, see Corberi’s talk .



Global dynamic equations
Schwinger-Dyson equations

Quite generally, one can derive closed equations on the two-time global

averaged correlation C and linear response R :

(∂t − zt)C(t, tw) =

∫

dt′ [Σ(t, t′)C(t′, tw) +D(t, t′)R(tw, t
′)]

+2TR(tw, t) ,

(∂t − zt)R(t, tw) = δ(t− tw) +

∫

dt′ Σ(t, t′)R(t′, tw) ,

where the self-energy Σ(t, t′) and vertex D(t, t′) are model-dependent

functionals of C and R.

Of course, it is difficulty is to compute them, but in some cases one can.



Global dynamic equations
p-spin models

The self-energy and vertex are

D(t, t′) =
p

2
Cp−1(t, t′) ,

Σ(t, t′) =
p(p− 1)

2
Cp−2(t, t′)R(t, t′) .

and the Lagrange multiplier zt → z∞ fixed by setting C(t, t) = 1.
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Separation of time-scales
The linear response in the long tw limit

Fast

1e+00
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χ

t-tw

rapid & stationary (χ st)

aging & slow (χag)

χ
ea

Slow

χag(t, tw) ≈ fχ

(

L(t)
L(tw)

)

χag(t, tw) > 0

∂tχag(t, tw) ≪ χag(t, tw)

log-log scale !

Eqs. for the slow relaxation Cag ≡ C < q and χag ≡ χ > (1− q)/T

Approx. asymptotic time-reparametization invariance t → h(t)



Separation of time-scales
Example : the eq. (∂t − zt)R = δ + ΣR in the p-spin model

Approximations in the long tw limit :

• Take t− tw ≫ tw.

• Assume ∂tR ≪ terms in the right-hand-side.

• Assume zt → z∞.

• Separate the fast contributions to the integral
∫ t

tw
dt′ Σ(t, t′)R(t′, tw)

and assume that the contributions from the fast relaxation are constants .

The aging equation becomes :

z̃∞Rag(t, tw) ∼

∫ t

tw

dt′ D′[Cag(t, t
′)]Rag(t, t

′)Rag(t
′, tw) (1)



Separation of time-scales
The p-spin model

A similar approximation is applied the equation "for" C .

The coupled remaining equations lead to

Rst(t, tw) ≃ (t− tw)
−a(T )−1 for t− tw → ∞

Rag(t, tw) ≃ t−1fR

(

t
tw

)

for t ∝ tw

with a(T = 0) = 1/2 and a(Td) = 1 as a (possible) solution to these

equations.

Note that 1 + a(T ) > 1

But this is not the only solution ; there are infinitely many to the approxi-

mate equations :



Time-reparametrization
The transformation

t → ht ≡ h(t)







Cag(t, tw) → Cag(ht, htw)

Rag(t, tw) →
dhtw

dtw
Rag(ht, htw)

with ht positive and monotonic leaves eq. (1) invariant :

z̃∞Rag(ht, htw) ∼

∫ ht

hw

dht′ D
′[Cag(ht, ht′)]Rag(ht, ht′)Rag(ht′ , htw)

One can compute analytically fc andχag(Cag) (consistent w/assumptions)

Cag(t, tw) ∼ fc

(

L(t)

L(tw)

)

,

χ(t, tw) ≡

∫ t

tw

dt′R(t, t′) ∼
1− q

T
+

1

Teff
[q − Cag(t, tw)]

but not the ‘clock’ L(t) .



The O(N → ∞) model
Exact solution

φ̇α(~x, t) = ∇2φα(~x, t)− λ|φ2/N − 1|φα(~x, t) + ξα(~x, t)

Quadratic equation under the replacement φ2(~x, t) → 〈φ2〉 ≡ ztN .

One finds
φα(~k, t) = F [ φα(~k, 0), ξα(~k, t

′) ]

and from here the two-time correlation and linear-response.

See, e.g., Corberi, Lippiello & Zannetti 02

A much more cumbersome route, closer to what has been done for the

p-spin model is the following.
Chamon, LFC & Yoshino 06



The O(N → ∞) model
Invariance of the slow dynamic equations ?

The Schwinger-Dyson equations act on R(t, t′) ≡
∫

ddr R(~r, t, t′)

and C(t, t′) ≡
∫

ddr C(~r, t, t′).

The self-energy is

Σ(t, t′) =
∞
∑

n=0

An

∫

dtn−1 . . .

∫

dt1 R(t, t1)R(t1, t2) . . . R(tn−1, t
′)

with the constants An fixed by the Fourier-mode density.

After a separation of time-scales and t− tw ≫ tw one has

∂Rag(t, tw)

∂t
= −ztRag(t, tw) +

∞
∑

n=0

Bn(t− tw)

×

∫

dtn

∫

dtn−1 . . .

∫

dt1 Rag(t, t1)Rag(t1, t2) . . . Rag(tn, tw)



The O(N → ∞) model
Invariance of the slow dynamic equations ?

Knowing the exact R one can plug in Rag to find that, apart from a func-

tion g(t/tw),

• the time-derivative behaves as ∂tRag ≃ t−1−d/2 ;

• the Lagrange multiplier zt decays as t−1 ; then zt Rag ∼ t−1−d/2

too ;

• the coefficientsBn (stationary contributions) do not approach constants !

INSTEAD Bn(t− tw) ∼ (t− tw)
−1+n(1−d/2).

• The integral factors go as In ∼ t−d/2−n(1−d/2) in such a way that

BnIn ∼ t−1−d/2 as well.

No time-reparametrization invariance, just scale invaria nce t → ζt



Classification
Invariance of the slow dynamic equations ?

• The key to the difference seems to be in the bad separation of time-

scales in the linear response :

Rst(t− tw) ≃ (t− tw)
−d/2 & Rag(t, tw) ≃ t−d/2fR(tw/t)

in the O(N) model while

Rst(t− tw) ≃ (t− tw)
−a(T )−1 & Rag(t, tw) ≃ t−1fR(tw/t)

with a(T ) ∈ [1/2, 1] in the p-spin model .

• The same analysis can be performed at the level of the MSR generating

functional ; separate the field into fast and slow components as done

by Corberi, Lippiello & Zannetti 02

Chamon, LFC & Yoshino 06



Massless fluctuations
Scaling of the slow part of the global correlation

Cs(t, tw) ≈ fc

(

L(t)

L(tw)

)

.

Time-reparametrization invariance ⇒ Cs
r (t, tw) ≈ fc

(

hr(t)
hr(tw)

)

.

Example :

hr1 = e
lna

(

t

t0

)

(‘fast’) hr3 = t
t0

(‘normal’), hr2 = ln
(

t
t0

)

(‘slow’) .
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Same tw, slower and faster decays on

different regions labeled by r1, r3, r2,

Castillo, Chamon, LFC, Iguain, Kennett 02, 03



Consequences
Easier to measure consequences

Time-reparametrization invariance implies that the moment of Ĉ and χ̂

should scale in the same way, e.g.

VCC(t, tw) =

∫

ddx 〈Ĉ(~x; t, tw)Ĉ(~0; t, tw)〉

Vχχ(t, tw) =

∫

ddx 〈χ̂(~x; t, tw)χ̂(~0; t, tw)〉

Chamon, Corberi & LFC 11

This should not be the case for system breaking this symmetry asympto-

tically, such as coarsening systems , if we believe that the O(N) should

be extended to non-mean-field cases.



Variances
3dEA
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All "variances" scale in the same way.

See Corberi’s talk for more.



Consequences

• We argued in favor of time-reparametrization invariance as the guiding

symmetry that controls fluctuations in glassy samples.

We checked the consequences with various numeric simulations, mostly

on the 3d Edwards-Anderson model.

• We analyzed the non-equilibrium dynamics of the O(N) model with

the same ideas.

We found that the symmetry is reduced to rescaling of time.

The moments of the distribution do not scale in the same way.

• We are currently working on Gaussian models as the massless scalar

field and the 2d xy model (critical relaxation).

• This framework we can get a full understanding of fluctuations in the

aging regime of non-equilibrium macroscopic systems.



Introduction
Gaussian Langevin process & critical KT phase

φ̇ = −
δF

δφ
+ ξ ⇒ φ = F [ φ0, ξ ] linear functional

(e.g., massless scalar field, angle in spin-wave approximation to 2d xy model,

height in Edwards-Wilkinson interface)

P (Ĉ, χ̂; t, tw) = known analytically

• Generalized fluctuation-dissipation relations beyond the first moment.

•

Corberi & LFC, in preparation


