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Aim

Give you an idea of what a theoretical physicist,

with knowledge of field theory & statistical physics

works on these days.
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Plan

1. From Newton dynamics to Statistical Physics (N � 1).

– Microscopic definition of entropy, temperature, etc.

Thermodynamics recovered. Phase transitions shown.

– Interest in long-range interactions, quenched disorder & frustration

effects, exactly solvable models & quantum phase transitions.

2. Put time back in the game.

– Can a macroscopic system remain out of equilibrium ?

– A few classical examples : Brownian motion, phase separation &

glasses, active samples.

– A few quantum problems : impurity motion in quantum environ-

ments ; the equilibration (or not) of quantum closed systems and

back to square one.
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Part 1.

1. From Newton dynamics to Statistical Physics (N � 1).

– Microscopic definition of entropy, temperature, etc.

Thermodynamics recovered. Phase transitions shown.

– Interest in long-range interactions, quenched disorder & frustration

effects, exactly solvable models & quantum phase transitions.

2. Put time back in the game.

– Can a macroscopic system remain out of equilibrium ?

– A few classical examples: Brownian motion, phase separation &

glasses, active samples.

– A few quantum problems: impurity motion in quantum environ-

ments ; the equilibration (or not) of quantum closed systems and

back to square one.

4



Newton dynamics
Take i = 1, . . . , N point-like particles with Hamiltonian

H =
∑
i

p2i
2mi

+
∑
i 6=j

V (|~xi − ~xj|)

Given the initial conditions {~pi(0), ~xi(0)} :

solve 2dN first-order or dN second-order differential equations.

ForN = 1, 2, 3, . . . one can try to extract some information analytically

dynamical systems but already N = 3 can be very hard (and rich).

For N � 1 no hope to progress this way until computers became avai-

lable in the, say, 70s molecular dynamics (still, N ' 103 − 104).
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Statistical physics
No need to solve the dynamic equations!

Under certain circumstances, ergodic hypothesis, after some equilibra-

tion time, teq, the macroscopic observables can be, on average, obtained

with a static calculation, as an average over all configurations in phase

space weighted with a probability distribution function P ({~pi, ~xi}) :

〈A〉 =
∫ ∏

i

d~pid~xi P ({~pi, ~xi}) A({~pi, ~xi})

Recipes for P ({~pi, ~xi}) are given and depend upon the conditions un-

der which the system evolves, whether it is isolated or in contact with an

environment.

L. Boltzmann, late XIX
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r(0)

r(tw)

tr( )

ε=ct

Isolated system⇒ total energy is conserved

E = H({~pi, ~xi})
Flat probability density

P ({~pi, ~xi}) ∝ δ(H({~pi, ~xi})− E)

Microcanonical distribution

SE = kB lnV(E) β ≡ 1
kBT

= ∂SE
∂E

∣∣∣
E

Entropy Temperature

E = Esyst + Eenv + Eint
Neglect Eint (short-range interact.)

Esyst � Eenv
P ({~pi, ~xi}) ∝ e−βH({~pi,~xi})

Canonical ensemble

Environment

System

Interaction
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Statistical physics

• Microscopic definition of thermodynamic concepts (entropy, tempera-

ture, etc.)

•Microscopic derivation of thermodynamic properties (equations of state,

etc.)

• Theoretical understanding of collective effects.

•Mathematical proof of the existence of phase transitions: sharp changes

in the macroscopic behavior of a system when an external (e.g. the

temperature of the environment) or an internal (e.g. a constant in the

interaction potential) parameter is changed. The best known example

is the solid – liquid – gas phase diagram.

• Calculations can be very difficult but the theoretical framework is set

beyond any doubt.
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Statistical physics
Generalized formalism

From the particle description {~pi, ~xi} to a field-theoretic one {~Π(~x), ~φ(~x)}
with matter density and velocity density fields.

Given an effective Hamiltonian density H[~Π, ~φ], construct the probability den-

sity in the relevant ensemble, typically the canonical one, and focus on the free-

energy density−βf = lnZ with the partition function Z =
∫
D~ΠD~φ e−βH.

Quantum fluctuations (bosons) can be included by upgrading the fields to ope-

rators, Πa 7→ Π̂a and φb 7→ φ̂b, satisfying canonical commutation relations,

[Π̂a(~x), φ̂b(~x
′)] = −i~δabδ(~x− ~x′), and constructing %̂ = Z−1e−βĤ with

Z = Tr%̂. Other subtleties (fermions, spin...) not to be discussed here. Mapping

from quantum model in d-dimensions to a classical one in d+1-dimensions⇒

Statistical Field Theory – Thermal Quantum Field Theory
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Methods
Analytic

Perturbation theory (if there is a small parameter).

Mean-field (effective medium approximation, long-range interactions), e.g. Curie-

Weiss model for ferromagnetic transition, early 20th century.

Self-consistent approximations, e.g. Gaussian closures, Hartree-Fock & large

N methods. Improvements over naive mean-field.

Renormalization group techniques for critical behavior. K. Wilson, 75

Conformal field theory & integrability for 2d cases. Lieb, Baxter, Cardy et al

Numerical

Monte Carlo methods: incomplete but intelligent sampling of the partition sum.

Goals: Order parameters, phase diagrams, critical behavior, thermodyn...
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Statistical physics
Some problems of current research

Disordered systems (in which some parameters in the Hamiltonian are

taken from a probability distribution) : functional order parameters and

many other peculiarities.

– Applications beyond physics to social sciences, econophysics,

computer science, e.g. combinatorial optimisation.

Glassy systems prove existence or non-existence of a phase transition.

Exact results in low d classical and quantum integrable models.

Quantum phase transitions as classical ones or not ?

Understanding observed phenomena e.g. high-Tc superconductivity.
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Part 2.

1. From Newton dynamics to Statistical Physics (N � 1).

– Microscopic definition of entropy, temperature, etc.

Thermodynamics recovered. Phase transitions shown.

– Interest in long-range interactions, quenched disorder & frustration

effects, exactly solvable models & quantum phase transitions.

2. Put time back in the game.

– Can a macroscopic system remain out of equilibrium ?

– A few classical examples: Brownian motion, phase separation &

glasses, active samples.

– A few quantum problems: impurity motion in quantum environ-

ments ; the equilibration (or not) of quantum closed systems and

back to square one.
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Discussion

• A few variables ruled by Newton dynamics : dynamical systems

• My aim here: exhibit examples of many-body systems in which a part

acts as an equilibrium bath but the rest cannot equilibrate with it.

– One goal: understand the evolution at a mesoscopic scale.

– Another goal: derive, if possible, generalisations of thermodynamic

concepts for these cases and later check whether these are gene-

ric for some class of out of equilibrium systems.
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Out of equilibrium
How can a classical system stay out of equilibrium ?

• The equilibration time goes beyond the experimentally accessible times.

teq � t

No confining potential, e.g. harmonic oscillator in the ω → 0 limit:

teqx = γ/(Mω2)→∞. e.g., Diffusion processes.

Macroscopic systems in which the equilibration time grows with

the system size, limN�1 teq(N)� t

e.g., Critical dynamics, coarsening, glassy physics.

• Driven systems ~F 6= −~∇V (~r)

e.g., Sheared liquids, vibrated powders, active matter.
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Brownian motion

First example of dynamics of

an open system

The system : the Brownian

particle

The bath: the liquid

Interaction : collisional or po-

tential

‘Canonical setting’

A few Brownian particles or tracers • imbedded in, say, a molecular liquid.

Late XIX, early XX (Brown, Einstein, Langevin)
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Langevin approach
Stochastic Markov dynamics

From Newton’s equation ~F = m~a = m~̇v and ~v = ~̇x

mv̇a = −γ0va + ξa

with a = 1, . . . , d (the dimension of space), m the particle mass,

γ0 the friction coefficient,

and ~ξ the time-dependent thermal noise with Gaussian statistics,

zero average 〈ξa(t)〉 = 0 at all times t,

and delta-correlations 〈ξa(t)ξb(t′)〉 = 2 γ0kBT δab δ(t− t′).

Dissipation for γ0 > 0 the averaged energy is not conserved,

2〈E(t)〉 = m〈v2(t)〉 6= 0.
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Brownian motion
Markov normal diffusion

For simplicity : take a one dimensional system, d = 1.

The relation between friction coefficient γ0 and amplitude of the noise

correlation 2γ0kBT ensures equipartition for the velocity variable

m〈v2(t)〉 → kBT for t� tvr ≡ m
γ0

But the position variable x diffuses and e−βV is not normalizable.

〈x2(t)〉 → 2D t (t� tvr = m/γo)

D = kBT/γo diffusion constant.

The particle is out of equilibrium !
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Stochastic dynamics
Open systems

• Stochastic equation, noise, fluctuations Stochastic calculus

• Dissipation, breakdown of time-reversal invariance, irreversibility.

• Similar equations are proposed as phenomenological equations for the

evolution of more complex systems, even macroscopic ones, coupled

to even larger environments that act as baths.

m~̈φ(~x, t)︸ ︷︷ ︸ + γ0 ~̇φ(~x, t)︸ ︷︷ ︸ = F (~φ)︸ ︷︷ ︸ + ~ξ(~x, t)︸ ︷︷ ︸
Inertia Dissipation Deterministic Noise

Effective Langevin equation: time is present, no usual thermodynamics.
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Demixing transitions
Many-body interacting system

Two species • and •, repulsive interactions between them.

Sketch
Experimental phase diagram

Binary alloy, Hansen & Anderko, 54
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Phase separation
Phase ordering kinetics
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Phase ordering kinetics

Are these quench dynamics fast processes ? Can we simply forget what

happens during the transient, teq, and focus on the subsequent equili-

brium behaviour ?
No !

It turns out that this is a very slow regime. Its duration grows with the size

of the system and it diverges in the thermodynamic limit V → ∞.

In this case we understand the mechanisms for relaxation : reduction of

the local curvature of the interfaces and matter diffusion.

The domains get rounder

The regions get darker and lighter

Lifshitz-Slyozov 60s & Huse 93

R(t) ' t1/3

Dynamic scaling
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Dynamic scaling
in phase ordering kinetics

Growing length `(t) and equilibrium reached for `(teq) ' L

Typically `(t) ' t1/z and teq ' Lz

Excess energy w.r.t. the equilibrium one stored in the domain walls ; ∆E(t) ' `−a(t)
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Vortex dynamics
Quenched 3d xy model

M. Kobayashi & LFC
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What do glasses look like ?
Experiments

Granular matter

Simulation

Molecular (Sodium Silicate)

Confocal microscopy - colloids

Polymer melt
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Glasses
e.g., colloidal ensembles

Micrometric spheres immersed in a fluid

Crystal Glass

In the glass : no obvious growth of order, solid-like behaviour though

liquid-like structure, slow dynamics with, however, scaling properties.

What drives the slowing down ?
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Non-potential forces

Apply external non-potential forces, ~fi 6= −~∇iV ({~x}):

energy injection into the system.

Let the system evolve under ~fi from some initial condition.

timet=0 t t=dt+t w w

preparation

   time

waiting 

   time

measuring

   time

0 τ

• Typically, for tw > tst : the system reaches a non-equilibrium steady

state in which thermodynamics and (Boltzmann) statistical mechanics

do not obviously apply.

Dynamic phase transitions ? Which is the stationary measure ?
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Bacteria colony
Active matter

Rabani, Ariel & Be’er, 13
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Active dumbbells
Molecular dynamics

G. Gonnella, A. Lamura & A. Suma, 13
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Active dumbbells
Phase segregation

Fixed density and fixed activity.

T = 0.5 T = 0.05 T = 0.01

Mixed Large density fluctuations Segregation dense-gas

G. Gonnella, A. Lamura & A. Suma, 13
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Active dumbbells
Spherical tracers to probe the dynamics of the “active bath"

G. Gonnella, G. L. Laghezza, A. Lamura, A. Suma & LFC
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A quantum impurity
in a one dimensional harmonic trap

K atom : the impurity (1.4 on average per tube) T ' 350 nK

Rb atoms : the bath (180 on average per tube) ~β
√
κ0/m ' 0.1

all confined in one dimensional tubes
Catani et al. 12 (Firenze)

31



Experiment
Sketch

Initially, the impurity is localized at the centre of the harmonic potential.

At t = 0, the impurity is released.

It subsequently undergoes quantum Brownian motion in the quasi 1d

harmonic potential.
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Experimental protocol
A quench of the system

Initial equilibrium of the coupled system : %̂(t0) ∝ e−βĤ0

with Ĥ0 = Ĥ0
syst + Ĥenv + Ĥint

and Ĥ0
syst =

1

2m
p̂2 +

1

2
κ0 x̂

2

At time t0 = 0 the impurity is released, the laser blade is switched-off

and the atom only feels the wide confining harmonic potential κ0 → κ
as well as the bath made by the other species.

What are the subsequent dynamics of the particle ?
Use it to characterise the environment
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Breathing mode
Theory vs. experiment

w/ωL = 1

w/ωL = 4

Dynamics withm∗ and κ∗, interpolation to limt→∞〈x2(t)〉 → kBT/κ:

〈x2(t)〉 =
~2κ0

4kBT
R(t)− κ∗

kBT
C2
eq(t) +

kBT

κ∗
+
(
1− e−Γt

)(kBT
κ
− kBT

κ∗

)
Bonart & LFC EPL 13
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Closed quantum systems
Quantum quenches

• Take an isolated quantum system with Hamiltonian Ĥ0

• Initialize it in, say, |ψ0〉 the ground-state of the Ĥ0

• Evolve this state with the Hamiltonian Ĥ

Does the system reach equilibrium ?

Note that it the ergodic theory question posed in the quantum context

(and back to square one).

Motivated by cold-atom experiments & exact solutions of 1d quantum

models.
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Methods

Analytic : dynamic generating functional

Perturbation theory (if there is a small parameter).

Mean-field (effective medium approximation, long-range interactions).

Self-consistent approximations, e.g. Gaussian closures, Hartree-Fock & large

N methods. Improvements over naive mean-field.

Dynamic renormalization group techniques for critical behavior. Janssen, 80s

Numerical

Classical: molecular dynamics, Monte Carlo methods.

Quantum: time-dependent density-functional RG for low-d systems.

Goals: Dynamic phase diagrams & collective effects,

“thermodynamic-like" properties
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Thermodynamics ?
Model independent concepts and laws

• Fluctuation theorems, work relations.

Morris, Evans, Gallavotti, Cohen, Jarzinsky, Crooks, Sasa...

• Effective temperatures.

LFC, Kurchan, Peliti...

• Stochastic thermodynamics

Sekimoto, Maes, Seifert...
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Wrap-up

Collective phenomena out of equilibrium.

Understand concrete chosen systems.

Find general rules.

Close exchanges between theoreticians and experimentalists.

Technically difficult both theoretically as experimentally.
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M2 Systèmes complexes

Master recherches

• Physique théorique des systèmes complexes (PCS) parcours inter-

national avec le Politecnico di Torino. Martine Ben Amar, Jean-Baptiste

Fournier, Emmanuel Trizac

• Modélisation statistique et algorithmique. Dominique Mouhanna

• Microfluidique. Marie-Caroline Jullien, Patrick Tabeling

• Mécanique/Physique (à partir de la rentrée 2015). Matteo Ciccotti

Master Pro

• Fluides complexes et Milieux divisés. Anke Lindner, Florent Carn
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