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Give you an idea of what a theoretical physicist,
with knowledge of field theory & statistical physics

works on these days.



Plan

1. From Newton dynamics to Statistical Physics (/V > 1).
— Microscopic definition of entropy, temperature, etc.
Thermodynamics recovered. Phase transitions shown.
— Interest in long-range interactions, quenched disorder & frustration

effects, exactly solvable models & quantum phase transitions.

2. Put time back in the game.
— Can a macroscopic system remain out of equilibrium ?
— A few classical examples : Brownian motion, phase separation &
glasses, active samples.
— A few quantum problems : impurity motion in quantum environ-

ments ; the equilibration (or not) of quantum closed systems and

back to square one.



Part 1.

1. From Newton dynamics to Statistical Physics (/V > 1).
— Microscopic definition of entropy, temperature, etc.
Thermodynamics recovered. Phase transitions shown.
— Interest in long-range interactions, quenched disorder & frustration

effects, exactly solvable models & quantum phase transitions.

2. Put time back in the game.
— Can a macroscopic system remain out of equilibrium ?

— A few classical examples: Brownian motion, phase separation &

glasses, active samples.
— A few gquantum problems: impurity motion in quantum environ-

ments ; the equilibration (or not) of quantum closed systems and

back to square one.



Newton dynamics

Take 2 = 1, ..., N point-like particles with Hamiltonian
P2
o 1 — L —
M=) g+ 2 V& - &)
i )

Given the initial conditions {7;(0), 7;(0)} :

solve 2d /N first-order or d/V second-order differential equations.

For NV = 1.,2,3,... one can try to extract some information analytically
dynamical systems but already /N = 3 can be very hard (and rich).

For /N > 1 no hope to progress this way until computers became avai-
lable in the, say, 70s molecular dynamics (still, N ~ 10% — 10%).



Statistical physics

No need to solve the dynamic equations!

Under certain circumstances, ergodic hypothesis, after some equilibra-
tion time, Z.,, the macroscopic observables can be, on average, obtained
with a static calculation, as an average over all configurations in phase
space weighted with a probability distribution function °({p;, Z; }) :

y- | [T iz, P({7 7)) Al )

Recipes for P({p;, Z;}) are given and depend upon the conditions un-

der which the system evolves, whether it is isolated or in contact with an

environment.

L. Boltzmann, late XIX



Ensembles

Isolated system —> total energy is conserved

g:

H({pi Ti})

Flat probability density

P({pi, Zi}) o< 6(H({pi, Ti}) — €)

Microcanonical distribution
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Statistical physics

Microscopic definition of thermodynamic concepts (entropy, tempera-

ture, etc.)

Microscopic derivation of thermodynamic properties (equations of state,

etc.)
Theoretical understanding of collective effects.

Mathematical proof of the existence of phase transitions: sharp changes
in the macroscopic behavior of a system when an external (e.g. the
temperature of the environment) or an internal (e.g. a constant in the
interaction potential) parameter is changed. The best known example

Is the solid — liquid — gas phase diagram.

Calculations can be very difficult but the theoretical framework is set

beyond any doubt.



Statistical physics

Generalized formalism

From the particle description {p;, Z;} to a field-theoretic one {ﬁ(f), gg(f)}

with matter density and velocity density fields.

Given an effective Hamiltonian density H[ﬁ, gz;] construct the probability den-
sity in the relevant ensemble, typically the canonical one, and focus on the free-
energy density — 3 f = In Z with the partition function Z = f DﬁD$ e P

Quantum fluctuations (bosons) can be included by upgrading the fields to ope-
rators, 11, — f[a and ¢ — ggb, satisfying canonical commutation relations,
11, (Z), op(Z)] = —ihd,,0(Z — '), and constructing o = 7~Le=BH with
Z = Trp. Other subtleties (fermions, spin...) not to be discussed here. Mapping

from quantum model in d-dimensions to a classical one in d + 1-dimensions =-

Statistical Field Theory — Thermal Quantum Field Theory




Methods

Analytic

Perturbation theory (if there is a small parameter).

Mean-field (effective medium approximation, long-range interactions), e.g. Curie-

Weiss model for ferromagnetic transition, early 20th century.

Self-consistent approximations, e.g. Gaussian closures, Hartree-Fock & large

N methods. Improvements over naive mean-field.

Renormalization group techniques for critical behavior. K. Wilson, 75

Conformal field theory & integrability for 2d cases.  Lieb, Baxter, Cardy et al

Numerical

Monte Carlo methods: incomplete but intelligent sampling of the partition sum.

Goals: Order parameters, phase diagrams, critical behavior, thermodyn...




Statistical physics

Some problems of current research

Disordered systems (in which some parameters in the Hamiltonian are
taken from a probability distribution) : functional order parameters and

many other peculiarities.

— Applications beyond physics to social sciences, econophysics,

computer science, e.g. combinatorial optimisation.
Glassy systems prove existence or non-existence of a phase transition.
Exact results in low d classical and quantum integrable models.
Quantum phase transitions as classical ones or not ?

Understanding observed phenomena e.g. high-1,. superconductivity.



Part 2.

1. From Newton dynamics to Statistical Physics (/N > 1).
— Microscopic definition of entropy, temperature, etc.
Thermodynamics recovered. Phase transitions shown.
— Interest in long-range interactions, quenched disorder & frustration

effects, exactly solvable models & quantum phase transitions.

2. Put time back in the game.
— Can a macroscopic system remain out of equilibrium ?
— A few classical examples: Brownian motion, phase separation &
glasses, active samples.
— A few quantum problems: impurity motion in quantum environ-

ments ; the equilibration (or not) of quantum closed systems and

back to square one.



Discussion

A few variables ruled by Newton dynamics : dynamical systems

My aim here: exhibit examples of many-body systems in which a part

acts as an equilibrium bath but the rest cannot equilibrate with it.
— One goal: understand the evolution at a mesoscopic scale.

— Another goal: derive, if possible, generalisations of thermodynamic
concepts for these cases and later check whether these are gene-

ric for some class of out of equilibrium systems.



Out of equilibrium

How can a classical system stay out of equilibrium ?

The equilibration time goes beyond the experimentally accessible times.

tog >t

No confining potential, e.g. harmonic oscillator in the w — 0 limit:

teq, =7/ (Mw?) — oc. e.g., Diffusion processes.

Macroscopic systems in which the equilibration time grows with

the system size, limpsg teg(N) >t

e.g., Critical dynamics, coarsening, glassy physics.

Driven systems F # —VV(F)

e.g., Sheared liquids, vibrated powders, active matter.




Brownian motion

phi= 0.100000 FO = 0.000000 time = 0.600000

120 -
""‘,‘ v . L v W ._J. Fo ,:c'_..... : :l ' . TN . .
% ‘ First mple of dynam f
~ o PO R A IrSt exa eo Namics O
. L PN . w ‘:J‘..:‘ ;. Ll ‘..‘-.. % S e
$ '; ’;‘ " "3 P ,;. . "n ‘".‘ ® e e - ,.‘. od .:_-:
100 [** 004 ‘_: ;S‘l.,f,,;n: ..:-S .3, 88 "- - L t
A AR A an open system
b LR T 4 s g * . @
& A - i .cl..l § o o 5l ‘.'o‘.“ &
Lod o 3 oo & g8 [ () Py %
* wwld 8 * s w = o " Th t - th B
TSRS e e ) Tae el e system: the Brownian
L R T i P R
boe - P o o v ed ¢ 4
s X 3 *T W ’ g %
ot 1, T e e s .
- L0}
et e s @ e B particle
» + -
i IR AR vl @) M
60 B oop o @ o gl _
wl LA TN 2" e *, T T e .
) ,"..0..}‘-..:‘ . FRPARY Pyt ,“““‘E ’..‘..‘ . .
SN AL VEE The bath: the liquid
v Y YRRy LIPS S N e pain: e liqul
AL L ” w g 3 . & ’
) o $ S 3% 4 g oe s et e . % L I
p Wb I TRPLE : * L
40 o ".._, ..‘" 2 e e P (37 :“: s Y, .f - o . P
® b o G a e e o s o e .
R ALl SRR Interaction : collisional or po-
LR L L e ... S ety Ny
- H " ] . o % * o L4 s
d % '-o.‘.o * ¢ S e e ] ‘e ‘ * ';‘
e N . =% 7 .t 1:;. atey .
afe Jotgn B e T L el BT tential
o '\' o [ PRI wd o
] " - b - o Ve ] .
t ‘.,n:“ s = [ *
b E R 4 P Rl LY BN
o ..'u{"‘:o “! L “.:' .o ) E‘ 't £ - ; J
o L ™ . . 2, S0
d o BT g e R Canonical setting
0 XY 8 F ol Poite oo | M W Y

A few Brownian particles or tracers ® imbedded in, say, a molecular liquid.

Late XIX, early XX (Brown, Einstein, Langevin)



Langevin approach

Stochastic Markov dynamics

—

From Newton’s equation ' = ma = mv and U =T

mlba = —YoUq T fa

witha = 1, ..., d (the dimension of space), m the particle mass,
7o the friction coefficient,

and 5 the time-dependent thermal noise with Gaussian statistics,
zero average (£,(t)) = O atall times ¢,

and delta-correlations (&, ()&, (")) = 2 vokpT 4y 6(t — 1').

Dissipation for 79 > 0 the averaged energy is not conserved,

2(E(t)) = m(v*(t)) # 0.




Brownian motion

Markov normal diffusion

For simplicity : take a one dimensional system, d = 1.

The relation between friction coefficient 75 and amplitude of the noise

correlation 2kl ensures | equipartition | for the velocity variable

m(v?(t)) — kgT

But the position variable = | diffuses

for >1 = —

m
70

and ¢ ”V is not normalizable.

<x2(t)> — 2Dt >t =m/v)

D = kgT/~,| diffusion constant.

The particle is out of equilibrium!




Stochastic dynamics

Open systems

Stochastic equation, noise, fluctuations Stochastic calculus
Dissipation, breakdown of time-reversal invariance, irreversibility.

Similar equations are proposed as phenomenological equations for the
evolution of more complex systems, even macroscopic ones, coupled

to even larger environments that act as baths.

L]
— —

17%5(9? t) + %¢(Z,t) = @ + &(7,1)

N

Inertia Dissipation  Deterministic Noise

Effective Langevin equation: time is present, no usual thermodynamics.



Temperakura
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Phase separation

Phase ordering kinetics

i

via spmodal process

with deep quench (unstable riion}

via nucleation process

with shallow iucnch |meta_st:|blc region)




Phase ordering kinetics

Are these quench dynamics fast processes ? Can we simply forget what
happens during the transient, .., and focus on the subsequent equili-

brium behaviour ?

No!

It turns out that this is a very slow regime. Its duration grows with the size

of the system and it diverges in the thermodynamic limit 1V — oo.

In this case we understand the mechanisms for relaxation: reduction of

the local curvature of the interfaces and matter diffusion.

The domains get rounder

The regions get darker and lighter
Lifshitz-Slyozov 60s & Huse 93
R(t) ~ t'/?

Dynamic scaling




Dynamic scaling

in phase ordering kinetics

Growing length /(t) and equilibrium reached for {(%.,) ~ L
Typically /(1) ~ t'/* and t., ~ L~

Excess energy w.r.t. the equilibrium one stored in the domain walls ; AE(t) ~ ¢~ (t)



Vortex dynamics

Quenched 3d xy model

M. Kobayashi & LFC





What do glasses look like ?

Experiments

Granular matter

Simulation

Molecular (Sodium Silicate) Polymer melt



Glasses

e.g., colloidal ensembles

Micrometric spheres immersed in a fluid

Crystal Glass

In the glass : no obvious growth of order, solid-like behaviour though

liquid-like structure, slow dynamics with, however, scaling properties.

What drives the slowing down ?




Non-potential forces

Apply external non-potential forces, f; # —V;V ({Z'}):
energy injection into the system.

Let the system evolve under f; from some initial condition.

0 T
| |

[ : : >
=0 t,, t=dt+t time
preparation waiting measuring

time time time

Typically, for t,, > 14 : the system reaches a non-equilibrium steady
state in which thermodynamics and (Boltzmann) statistical mechanics

do not obviously apply.

Dynamic phase transitions ? Which is the stationary measure ?




Bacteria colony

Active matter

Rabani, Ariel & Be’er, 13




Active dumbbells

Molecular dynamics

G. Gonnella, A. Lamura & A. Suma, 13




Active dumbbells

Phase segregation

Fixed density and fixed activity.

1T'=0.5 1T'=0.05 1T'=0.01

Mixed Large density fluctuations Segregation dense-gas

G. Gonnella, A. Lamura & A. Suma, 13



Active dumbbells

Spherical tracers to probe the dynamics of the “active bath"

G. Gonnella, G. L. Laghezza, A. Lamura, A. Suma & LFC




A quantum impurity

in a one dimensional harmonic trap

Z

Rb
© 000 OO0OO0OWO O OO
® 0 000 © 00 ¢ o0

%/’5 BT SR

K atom : the impurity (1.4 on average per tube) 1"~ 350 nK
Rb atoms : the bath (180 on average per tube) hﬁ\/ Iio/m ~ (.1

all confined in one dimensional tubes
Catani et al. 12 (Firenze)



Experiment

Sketch

Initially, the impurity is localized at the centre of the harmonic potential.

At ¢ = 0, the impurity is released.

It subsequently undergoes quantum Brownian motion in the quasi 1d

harmonic potential.




Experimental protocol

A quench of the system

Initial equilibrium of the coupled system : 0(ty) e FHo
with 7:[0 — 7:[gyst -+ 7:[env -+ ﬂint
~ 1 1
syst I, p 9 0

At time ty = 0 the impurity is released, the laser blade is switched-off

and the atom only feels the wide confining harmonic potential| kg — K

as well as the bath made by the other species.

What are the subsequent dynamics of the particle ?
Use it to characterise the environment




Breathing mode

Theory vs. experiment

g

c w/wp =1
=2

3

g

z w/wp =4
2

=

5

0 2 4 6 8 0 12 14 16 18 20
time [ms]

Dynamics with 7" and ", interpolation to lim; .. (2*(t)) — kgT'/k:

h2l<30 K* ]{BT (1 B e_”) <]€BT B kBT)

2 o o 2
(@*(0)) = 7RO — T Co(t) + o =

Bonart & LFC EPL 13




Closed quantum systems

Quantum quenches

Take an isolated quantum system with Hamiltonian 7—20

1)) the ground-state of the H,

Initialize it in, say,

Evolve this state with the Hamiltonian 7:[

Does the system reach equilibrium ?

Note that it the ergodic theory question posed in the quantum context

(and back to square one).

Motivated by cold-atom experiments & exact solutions of 1d quantum

models.



Methods

Analytic : dynamic generating functional

Perturbation theory (if there is a small parameter).
Mean-field (effective medium approximation, long-range interactions).

Self-consistent approximations, e.g. Gaussian closures, Hartree-Fock & large

N methods. Improvements over naive mean-field.

Dynamic renormalization group techniques for critical behavior. Janssen, 80s

Numerical

Classical: molecular dynamics, Monte Carlo methods.

Quantum: time-dependent density-functional RG for low-d systems.

Goals: Dynamic phase diagrams & collective effects,

“thermodynamic-like” properties




Thermodynamics ?

Model independent concepts and laws

Fluctuation theorems, work relations.
Morris, Evans, Gallavotti, Cohen, Jarzinsky, Crooks, Sasa...

Effective temperatures.
LFC, Kurchan, Peliti...

Stochastic thermodynamics

Sekimoto, Maes, Seifert...



Wrap-up

Collective phenomena out of equilibrium.
Understand concrete chosen systems.
Find general rules.
Close exchanges between theoreticians and experimentalists.

Technically difficult both theoretically as experimentally.



M2 Systemes complexes

Master recherches

Physique théorique des systemes complexes (PCS) parcours inter-
national avec le Politecnico di Torino. Martine Ben Amar, Jean-Baptiste

Fournier, Emmanuel Trizac
Modélisation statistique et algorithmique. Dominiqgue Mouhanna
Microfluidique. Marie-Caroline Jullien, Patrick Tabeling
Mécanique/Physique (a partir de la rentrée 2015). Matteo Ciccotti
Master Pro

Fluides complexes et Milieux divisés. Anke Lindner, Florent Carn



