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Plan

1. From Newton dynamics to Statistical Physics (N � 1).

– Microscopic definition of entropy, temperature, etc.

Thermodynamics recovered. Phase transitions shown.

– Interest in long-range interactions, quenched disorder & frustration

effects, exactly solvable models & quantum phase transitions.

2. Put time back in the game.

– Can a macroscopic system remain out of equilibrium ?

– A few classical examples : Brownian motion, phase separation &

glasses, active samples.

– A few quantum problems : impurity motion in quantum environ-

ments ; the equilibration (or not) of quantum closed systems and

back to square one.
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Part 1.

1. From Newton dynamics to Statistical Physics (N � 1).

– Microscopic definition of entropy, temperature, etc.

Thermodynamics recovered. Phase transitions shown.

– Interest in long-range interactions, quenched disorder & frustration

effects, exactly solvable models & quantum phase transitions.

2. Put time back in the game.

– Can a macroscopic system remain out of equilibrium ?

– A few classical examples: Brownian motion, phase separation &

glasses, active samples.

– A few quantum problems: impurity motion in quantum environ-

ments ; the equilibration (or not) of quantum closed systems and

back to square one.
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Newton dynamics
Take i = 1, . . . , N point-like particles with Hamiltonian

H =
∑
i

p2i
2mi

+
∑
i 6=j

V (|~xi − ~xj|)

Given the initial conditions {~pi(0), ~xi(0)} :

solve 2dN first-order or dN second-order differential equations.

ForN = 1, 2, 3, . . . one can try to extract some information analytically

dynamical systems but already N = 3 can be very hard (and rich).

For N � 1 no hope to progress this way until computers became avai-

lable in the, say, 70s molecular dynamics (still, N ' 103 − 104).
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Statistical physics
No need to solve the dynamic equations!

Under certain circumstances, ergodic hypothesis, after some equilibra-

tion time, teq, the macroscopic observables can be, on average, obtained

with a static calculation, as an average over all configurations in phase

space weighted with a probability distribution function P ({~pi, ~xi}) :

〈A〉 =
∫ ∏

i

d~pid~xi P ({~pi, ~xi}) A({~pi, ~xi})

Recipes for P ({~pi, ~xi}) are given and depend upon the conditions un-

der which the system evolves, whether it is isolated or in contact with an

environment.

L. Boltzmann, late XIX
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Ensembles
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r(tw)

tr( )

ε=ct

Isolated system⇒ total energy is conserved

E = H({~pi, ~xi})
Flat probability density

P ({~pi, ~xi}) ∝ δ(H({~pi, ~xi})− E)

Microcanonical distribution

SE = kB lnV(E) β ≡ 1
kBT

= ∂SE
∂E

∣∣∣
E

Entropy Temperature

E = Esyst + Eenv + Eint
Neglect Eint (short-range interact.)

Esyst � Eenv
P ({~pi, ~xi}) ∝ e−βH({~pi,~xi})

Canonical ensemble

Environment

System

Interaction
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Statistical physics

• Microscopic definition of thermodynamic concepts (entropy, tempera-

ture, etc.)

•Microscopic derivation of thermodynamic properties (equations of state,

etc.)

• Theoretical understanding of collective effects.

•Mathematical proof of the existence of phase transitions: sharp changes

in the macroscopic behavior of a system when an external (e.g. the

temperature of the environment) or an internal (e.g. a constant in the

interaction potential) parameter is changed. The best known example

is the solid – liquid – gas phase diagram.

• Calculations can be very difficult but the theoretical framework is set

beyond any doubt.
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Statistical physics
Generalized formalism

From the particle description {~pi, ~xi} to a field-theoretic one {~Π(~x), ~φ(~x)}
with matter density and velocity density fields.

Given an effective Hamiltonian density H[~Π, ~φ], construct the probability den-

sity in the relevant ensemble, typically the canonical one, and focus on the free-

energy density−βf = lnZ with the partition function Z =
∫
D~ΠD~φ e−βH.

Quantum fluctuations (bosons) can be included by upgrading the fields to ope-

rators, Πa 7→ Π̂a and φb 7→ φ̂b, satisfying canonical commutation relations,

[Π̂a(~x), φ̂b(~x
′)] = −i~δabδ(~x− ~x′), and constructing %̂ = Z−1e−βĤ with

Z = Tr%̂. Other subtleties (fermions, spin...) not to be discussed here. Mapping

from quantum model in d-dimensions to a classical one in d+1-dimensions⇒

Statistical Field Theory – Thermal Quantum Field Theory
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Methods
Analytic

Perturbation theory (if there is a small parameter).

Mean-field (effective medium approximation, long-range interactions), e.g. Curie-

Weiss model for ferromagnetic transition, early 20th century.

Self-consistent approximations, e.g. Gaussian closures, Hartree-Fock & large

N methods. Improvements over naive mean-field.

Renormalization group techniques for critical behavior. K. Wilson, 75

Conformal field theory & integrability for 2d cases. Lieb, Baxter, Cardy et al

Numerical

Monte Carlo methods: incomplete but intelligent sampling of the partition sum.

Goals: Order parameters, phase diagrams, critical behavior, thermodyn...
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Statistical physics
Some problems of current research

Ensemble inequivalence for systems with long-range interactions

(talk to T. Dauxois).

Disordered systems (spin-glasses) and functional order parameters.

– Applications beyond physics to social sciences, econophysics, etc.

(talk to P. Jensen), computer science, e.g. combinatorial optimisation.

Frustrated magnets (talk to P. Holdsworth).

Quantum phase transitions (talk to D. Carpentier, P. Degiovanni, A. Fe-

dorenko, P. Holdsworth, E. Orignac, T. Roscilde).

Exact results in low d classical and quantum integrable models (talk to F.

Delduc, M. Magro, J-M Maillet).
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Part 2.

1. From Newton dynamics to Statistical Physics (N � 1).

– Microscopic definition of entropy, temperature, etc.

Thermodynamics recovered. Phase transitions shown.

– Interest in long-range interactions, quenched disorder & frustration

effects, exactly solvable models & quantum phase transitions.

2. Put time back in the game.

– Can a macroscopic system remain out of equilibrium ?

– A few classical examples: Brownian motion, phase separation &

glasses, active samples.

– A few quantum problems: impurity motion in quantum environ-

ments ; the equilibration (or not) of quantum closed systems and

back to square one.
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Discussion

• A few variables ruled by Newton dynamics : dynamical systems (talk

to F. Bouchet, B. Castaing, K. Gawedzki).

• My aim here: exhibit examples of many-body systems in which a part

acts as an equilibrium bath but the rest cannot equilibrate with it.

– One goal: understand the evolution at a mesoscopic scale.

– Another goal: derive, if possible, generalisations of thermodynamic

concepts for these cases and later check whether these are gene-

ric for some class of out of equilibrium systems (talk to S. Ciliberto,

K. Gawedzki, S. Joubaud, A. Petrosyan).
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Out of equilibrium
How can a classical system stay out of equilibrium ?

• The equilibration time goes beyond the experimentally accessible times.

teq � t

No confining potential, e.g. harmonic oscillator in the ω → 0 limit:

teqx = γ/(Mω2)→∞. e.g., Diffusion processes.

Macroscopic systems in which the equilibration time grows with

the system size, limN�1 teq(N)� t

e.g., Critical dynamics, coarsening, glassy physics.

• Driven systems ~F 6= −~∇V (~r)

e.g., Sheared liquids, vibrated powders, active matter.
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Brownian motion

First example of dynamics of

an open system

The system : the Brownian

particle

The bath: the liquid

Interaction : collisional or po-

tential

‘Canonical setting’

A few Brownian particles or tracers • imbedded in, say, a molecular liquid.

Late XIX, early XX (Brown, Einstein, Langevin)
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Langevin approach
Stochastic Markov dynamics

From Newton’s equation ~F = m~a = m~̇v and ~v = ~̇x

mv̇a = −γ0va + ξa

with a = 1, . . . , d (the dimension of space), m the particle mass,

γ0 the friction coefficient,

and ~ξ the time-dependent thermal noise with Gaussian statistics,

zero average 〈ξa(t)〉 = 0 at all times t,

and delta-correlations 〈ξa(t)ξb(t′)〉 = 2 γ0kBT δab δ(t− t′).

Dissipation for γ0 > 0 the averaged energy is not conserved,

2〈E(t)〉 = m〈v2(t)〉 6= 0.
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Brownian motion
Markov normal diffusion

For simplicity : take a one dimensional system, d = 1.

The relation between friction coefficient γ0 and amplitude of the noise

correlation 2γ0kBT ensures equipartition for the velocity variable

m〈v2(t)〉 → kBT for t� tvr ≡ m
γ0

But the position variable x diffuses and e−βV is not normalizable.

〈x2(t)〉 → 2D t (t� tvr = m/γo)

D = kBT/γo diffusion constant.

The particle is out of equilibrium !
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Stochastic dynamics
Open systems

• Stochastic equation, noise, fluctuations Stochastic calculus

• Dissipation, breakdown of time-reversal invariance, irreversibility.

• Similar equations are proposed as phenomenological equations for the

evolution of more complex systems, even macroscopic ones, coupled

to even larger environments that act as baths.

m~̈φ(~x, t)︸ ︷︷ ︸ + γ0 ~̇φ(~x, t)︸ ︷︷ ︸ = F (~φ)︸ ︷︷ ︸ + ~ξ(~x, t)︸ ︷︷ ︸
Inertia Dissipation Deterministic Noise

Effective Langevin equation: time is present, no usual thermodynamics.
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Demixing transitions

Two species • and •, repulsive interactions between them.

Sketch
Experimental phase diagram

Binary alloy, Hansen & Anderko, 54

18



Phase separation

Modelled with an effective Langevin equation on a scalar field φ(~x, t) : that is

close to zero in the mixed green phase, and takes two opposite values in the

yellow and blue configurations.
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Phase ordering kinetics

Are these quench dynamics fast processes ? Can we simply forget what

happens during the transient, teq, and focus on the subsequent equili-

brium behaviour ?
No !

It turns out that this is a very slow regime. Its duration grows with the size

of the system and it diverges in the thermodynamic limit V → ∞.

In this case we understand the mechanisms for relaxation : reduction of

the local curvature of the interfaces and matter diffusion.

The domains get rounder

The regions get darker and lighter

Lifshitz-Slyozov 60s & Huse 93

R(t) ' t1/3

Dynamic scaling
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Vortex dynamics
Quenched 3d xy model

M. Kobayashi & LFC
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Vortex dynamics
3d xy model - reconnection

M. Kobayashi & LFC
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Every-day life glasses
• 3000 BC Glass discovered in the Middle East. LUXURIOUS OBJECTS.

• 1st century BC Blowpipe discovered on the Phoenician coast. Glass

manufacturing flourished in the Roman empire. EVERYDAY-LIFE USE.

• By the time of the Crusades glass manufacture had been revived in

Venice. CRISTALLO

• After 1890, the engineering of glass as a material developed very fast

everywhere.
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What do glasses look like ?
Experiments

Granular matter

Simulation

Molecular (Sodium Silicate)

Confocal microscopy - colloids

Polymer melt
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Structural glasses
Characteristics

• Selected variables (molecules, colloidal particles, vortices or polymers

in the pictures) are coupled to their surroundings (other kinds of mol-

ecules, water, etc.) that act as thermal baths in equilibrium.

• The interactions each variable feels are typically in competition, e.g.

Lennard-Jones potential, implying frustration.

• Each variable feels a different set of forces, heterogeneity and this

is time-dependent. Sometimes one talks about self-generated di-

sorder.
They continue to evolve in time, e.g. 〈V 〉 = f(t)

but one does not see any spatial structure developing.

What is the mechanism for relaxation ?
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Non-potential forces

Apply external non-potential forces, ~fi 6= −~∇iV ({~x}):

energy injection into the system.

Let the system evolve under ~fi from some initial condition.

timet=0 t t=dt+t w w

preparation

   time

waiting 

   time

measuring

   time

0 τ

• Typically, for tw > tst : the system reaches a non-equilibrium steady

state in which thermodynamics and (Boltzmann) statistical mechanics

do not obviously apply.

Dynamic phase transitions ? Which is the stationary measure ?
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Bacteria colony
Active matter

Rabani, Ariel and Be’er, 13
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Active dumbbells
Molecular dynamics

G. Gonnella, A. Lamura & A. Suma, 13
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Active dumbbells
Phase segregation

Fixed density and fixed activity.

T = 0.5 T = 0.05 T = 0.01

Mixed Large density fluctuations Segregation dense-gas

G. Gonnella, A. Lamura & A. Suma, 13
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Active dumbbells
Spherical tracers to probe the dynamics of the “active bath"

G. Gonnella, G. L. Laghezza, A. Lamura, A. Suma & LFC
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A quantum impurity
in a one dimensional harmonic trap

K atom : the impurity (1.4 on average per tube) T ' 350 nK

Rb atoms : the bath (180 on average per tube) ~β
√
κ0/m ' 0.1

all confined in one dimensional tubes
Catani et al. 12 (Firenze)
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Experiment
Sketch

Initially, the impurity is localized at the centre of the harmonic potential.

At t = 0, the impurity is released.

It subsequently undergoes quantum Brownian motion in the quasi 1d

harmonic potential.
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Experimental protocol
A quench of the system

Initial equilibrium of the coupled system : %̂(t0) ∝ e−βĤ0

with Ĥ0 = Ĥ0
syst + Ĥenv + Ĥint

and Ĥ0
syst =

1

2m
p̂2 +

1

2
κ0 x̂

2

At time t0 = 0 the impurity is released, the laser blade is switched-off

and the atom only feels the wide confining harmonic potential κ0 → κ
as well as the bath made by the other species.

What are the subsequent dynamics of the particle ?
Use it to characterise the environment
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Breathing mode
Theory vs. experiment

w/ωL = 1

w/ωL = 4

Dynamics withm∗ and κ∗, interpolation to limt→∞〈x2(t)〉 → kBT/κ:

〈x2(t)〉 =
~2κ0

4kBT
R(t)− κ∗

kBT
C2
eq(t) +

kBT

κ∗
+
(
1− e−Γt

)(kBT
κ
− kBT

κ∗

)
Bonart & LFC EPL 13
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Closed quantum systems
Quantum quenches

• Take an isolated quantum system with Hamiltonian Ĥ0

• Initialize it in, say, |ψ0〉 the ground-state of the Ĥ0.

• Evolve this state with the Hamiltonian Ĥ.

Does the system reach equilibrium ?

Note that it the ergodic theory question posed in the quantum context

(and back to square one).

Motivated by cold-atom experiments & exact solutions of 1d quantum

models.
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Methods

Analytic : dynamic generating functional

Perturbation theory (if there is a small parameter).

Mean-field (effective medium approximation, long-range interactions).

Self-consistent approximations, e.g. Gaussian closures, Hartree-Fock & large

N methods. Improvements over naive mean-field.

Dynamic renormalization group techniques for critical behavior. Janssen, 80s

Numerical

Classical: molecular dynamics, Monte Carlo methods.

Quantum: time-dependent density-functional RG for low-d systems.

Goals: Dynamic phase diagrams & collective effects,

“thermodynamic-like" properties
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Thermodynamics ?

• Fluctuation theorems, work relations.

Morris, Evans, Gallavotti, Cohen, Jarzinsky, Crooks, Sasa...

• Effective temperatures.

LFC, Kurchan, Peliti...

• Stochastic thermodynamics

Sekimoto, Maes, Seifert...

(Talk to S. Ciliberto, K. Gawedzki, S. Joubaud, A. Naert, A. Petrosyan.)
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