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1. Review of Coarsening phenomena

ex. ferromagnetic systems.

2. The scaling hypothesis.

Analytical and numerical results.

3. New : details on the domain conformations.

Analytical and numerical results.

4. Work in progress.

5. Why should one look at this problem ?



Ferromagnets in equilibrium

A ferromagnetic system in contact with a heat bath at temperature T

under no applied field (h = 0) acquires a magnetization density m below

a critical temperature Tc :
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m is the order parameter.

Curie-Weiss mean-field theory (1907), Ginzburg-Landau the ory (1937, 1950),

Wilson renormalization group (1971).



The standard Ising model

H = −J
∑

〈 ij 〉
sisj , Ising, 1925

– The spins si take bimodal values, si = ±1.

– The sum
∑

〈 ij 〉 runs over nearest neighbours on a d dimensional,

typically hypercubic, lattice.

– J > 0 is the coupling strength.

One finds
Tc

J







= 0 , d = 1 exact (Ising, 1925 ),

∼ 2.27 , d = 2 exact (Onsager, 1944 ),

∼ 4.5 , d = 3 num. (D. P. Landau, 1976 ).



Equilibrium configurations

2d slices of a 3d Ising model
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T → ∞ T ∼ Tc T < Tc

Random configuration Structures of all sizes Essentially ordered

si = ±1 Self-similarity Thermal fluct. (m < 1)



Ginzburg-Landau

Coarse-graining ⇒ the local magnetization density

φ(~x) =
1

ℓd

∑

i∈V~x,ℓ

si , Z =
∑

φ

e−βF (φ) .

Symmetry arguments (φ → −φ) and 〈φ 〉 ∼ 0 at T ∼ Tc suggest

F (φ) =

∫

ddx

[
c

2
(∇φ)2 +

T − Tc

Tc
φ2 +

λ

4
φ4

]

︸ ︷︷ ︸ ︸ ︷︷ ︸

Energy-cost Symmetric

domain-wall double-well



Ginzburg-Landau

Large volume limit

F ≈ Ld ⇒ saddle-point, mean-field or stationary phase approx.

φ

V
T>Tc

T<Tc

φo- φo

〈φ(~x) 〉 = φo ∝ (Tc − T )
1

2 , β =
1

2
.

Essentially correct but for the critical region (e.g. β ∼ 1/3).



Evolution
A rapid quench
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Stochastic dynamics ; Monte Carlo updates

Note : the order parameter (m) is not conserved.

Slow dynamics



Domain growth

After a rapid quench
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Time-dep. Ginzburg-Landau

φ(~x) → φ(~x, t) =
1

ℓd

∑

i∈V~x,ℓ

si(t)

Langevin dynamics in F (φ), model A (Hohenberg & Halperin 1977) .

γ
∂φ(~x, t)

∂t
= − δF (φ)

δφ(~x, t)
+ η(~x, t)

= ∇2φ(~x, t) + aφ(~x, t) − λφ3(~x, t) + η(~x, t) ,

with γ = t−1
0 and η a Gaussian white noise,

〈 η 〉 = 0 and 〈 η(~x, t)η(~x′, t′) 〉 = 2kBTγ δ(~x − ~x′)δ(t − t′).



Scaling theory

At late times there is a single length-scale, the typical radius of the do-

mains R(T, t), such that the domain structure is (in statistical sense)

independent of time when lengths are scaled by R(T, t), e.g.

C(r, t) ≡ 〈 si(t)sj(t) 〉||~xi−~xj |=r ∼ m2
eq(T ) f

(
r

R(T, t)

)

,

C(t, tw) ≡ 〈 si(t)si(tw) 〉 ∼ m2
eq(T ) g

(
R(T, t)

R(T, tw)

)

,

etc. when r ≫ ξ(T ), t, tw ≫ t0 and C < m2
eq(T ).

Suggested by experiments and numerical simulations. Proven in

• Ising chain with Glauber dynamics.

• Langevin dynamics of the O(N ) model with N → ∞, and the

spherical ferromagnet. Review A. J. Bray, 1994.



MC dynamics 2dIM

Equal-times spatial correlation
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MC dynamics 2dIM
Equal-times spatial correlation : scaling
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MC dynamics 2dIM
Two-times local correlation
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MC dynamics 2dIM
Two-times local correlation
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MC dynamics 2dIM
The typical length-scale ⇔ a typical area

R(T, t) ∼
√

λ(T ) t ⇔ A(T, t) ∼ λ(T ) t
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λ1/2(T) from collapse*5
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NB the exponent 1
2 is independent of T and the details of the dynamics, lattice,

etc. as long as the order parameter is non-conserved.

The T -dependence in λ(T ) is due to the roughening of the domain walls.



Fluctuations
What happens locally ?

Basic question : what does R really mean ?

• How many domains ?

• Which sizes ?



Domains and hulls

R1

R2

Two hulls

A1 = πR2
1

A2 = πR2
2

Two domains

A1 = π(R2
1 − R2

2)

A2 = πR2
2

Hull : the interior of a domain boundary.

• Typically hulls tend to be larger than domains (Ah
1 > Ah

2 ).

• There are as many hulls as domains (two).

• Each spin belongs to one and only one domain (e.g. spin at the center).

• A spin can belong to more than one hull (e.g. spin at the center).



Velocity of a quasi-planar wall
Time-dependent Ginzburg-Landau

φ < o φ > o

ĝ

φ < o φ > o

ĝ // v

φ < o φ > o

ĝv

v = −~∇ · ĝ = −K

where ĝ points in the direction φ > 0 and

K is the mean curvature measured from the phase φ < 0.

S. M. Allen & J. W. Cahn, Acta Metall. 27, 1085 (1979).



T=0 argument

Domain wall profile View from the top

φ

g

xy
t1
t2

g

φo < 0 φo > 0 φo < 0 φo > 0

t1 t2

∂φ(~x, t)

∂t
= − ∂φ(~x, t)

∂g

∣
∣
∣
∣
t

∂g

∂t

∣
∣
∣
∣
φ

, ~∇φ(~x, t) =
∂φ(~x, t)

∂g

∣
∣
∣
∣
t
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∂g2

∣
∣
∣
∣
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+
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∂g

∣
∣
∣
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~∇ · ĝ.

Using
∂2φ(~x,t)

∂g2 |t = V ′(φ) in the GL equation : v ≡ ∂tg|φ = −~∇ · ĝ.



Proof II
A spherical hull in d = 2

Take a sphere with radius R,

area A = πR2 and perimeter

L = 2πR.

R

The time-variation of the hull area, dA
dt

= 2πR dR
dt

= Lv , in

the case v = − λ
2π

κ, with the curvature κ = 1
R

, is just constant

dA

dt
= −λ



Proof III
A generic hull in d = 2

with radius R, area A and

perimeter L.

The time-variation of the hull area, dA
dt

=
∮

~v ∧ d~ℓ =
∮

vdℓ , in

the case v = − λ
2π

κ, with κ the geodesic curvature, is also constant

dA

dt
= −λ

due to the Gauss-Bonnet theorem
∫

A
KdA+

∫

∂A
κdℓ = 2πχ(A) that

simply becomes
∮

κdℓ = 2π for a planar 2d manifold with no holes.



Proof IV
A spherical hull in d = 3

Take a sphere with radius R, volume V = 4
3
πR3 and surface A =

4πR2.

The time variation of the hull volume, dV
dt

= 4πR2 dR
dt

, in the case

v = − λ
2π

κ, with κ the mean curvature, is not constant :

dV

dt
= −2R ∝ −V 1/3 .

Guess : dV
dt

∼ −V 1/3 for generic geometries.



The hull area distribution
d = 2

dA
dt

= −λ ⇒ all hulls tend to disappear at the same speed −λ.

• hulls with initial area smaller than λt will have disappeared at t.

• hulls with initial area larger than λt will have decreased by λt.

The full hull area distribution is advected uniformly to the left at rate λ.

The number of hulls, per unit area of the system, with area greater than

A satisfies

Nh(A, t) = Nh(A + λt, 0) .



The hull area distribution II
The initial condition

• Quench from an infinite temperature ⇔ random initial condition,

si = ±1 with p = 1
2

: critical point of percolation in d = 2.

N(A, 0) ≈ 2c

A
with c =

1

8π
√

3
(a2 ≪ A ≪ L) .

• Quench from equilibrium at Tc : Ising cluster hulls at criticality.

N(A, 0) ≈ c

A
with c =

1

8π
√

3
(a2 ≪ A ≪ L) .

Conformal field theory, scaling & numerical checks

J. Cardy and R. M. Ziff, J. Stat. Phys. 110, 1 (2003).



The prediction

Nh(A, t) =
2c

A + λt
, nh(A, t) ≡ −∂Nh(A, t)

∂A
=

2c

(A + λt)2
,

with the expected scaling forms

Nh(A, t) = (λt)−1f (A/λt) , nh(A, t) = (λt)−2f ′ (A/λt) .



Numerical simulations

• 2d Ising model on a square lattice with periodic boundary conditions.

• Monte Carlo (MC) dynamics with heat-bath updates.

•L = 103, 2×103 samples, one time step corresponds to a MC sweep.

• Critical initial conditions generated with the Swendsen-Wang cluster

algorithm to avoid critical slowing down.

• Hoshen-Kopelman algorithm to identify the domains.

• Our algorithm to identify the hulls inspired by the one used in

R. M. Ziff, cond-mat/0510633, StatPhys22. .



Numerical tests
Number density of (finite) hulls per unit area

T = 0 dynamics after a quench from T → ∞
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The bending is a finite size effect due to the percolating hulls.



Numerical results
Number density of (finite) hulls per unit area

T = 0 dynamics after a quench from equilibrium at Tc
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Numerical results
Number density of domains per unit area

T = 0 dynamics after a quench from T → ∞ (left) and Tc (right)
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The insets include the contribution from the percolating cluster (hump).



Numerical results
Number density of domains per unit area

Finite T dynamics after a quench from T → ∞
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Numerical results
Number density of domains per unit area

Finite T dynamics after a quench from T → ∞
Scaling
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Random ferromagnet

H =
∑

〈 ij 〉

Jijsisj , Jij uniform distributed in [0.75, 1.25]

Number density of hulls and domains (inset) per unit area

T = 0.5 dynamics ; random initial conditions

10-10

10-8

10-6

10-4

10-2

10-2 10-1 100 101 102 103 104 105

t2  n
h(

A
,t)

A/t

t = 4
t = 8

t = 16
t = 32
t = 64

t = 128
t = 256

10-10

10-8

10-6

10-4

10-2

10-2 10-1 100 101 102 103 104 105

t2  n
d(

A
,t)



Summary of results

• Exact results for hull pdfs.

• We proved scaling !

• The typical length-scale is not so typical after all :

power-law tails in Nh and nh (as well as Nd and nd).



Future work

• Finite T dynamics, numerical checks.

• 3d Ising model.

• Conserved order parameter (model B, Kawasaki dynamics) ; applica-

tions to phase separation.

• Potts model ; application to soap films and adsorbed atoms.

• Quenched randomness, e.g. random ferromagnets, random field Ising

model ; application to hysteresis and the Barkhausen noise.

• Effect of annealing or finite cooling rates. Applications in cosmology :

study of density of defects after a second-order phase transition.

• Understanding fluctuations in glassy systems.


