Coarsening

Leticia F. Cugliandolo

LPTHE Jussieu & LPT ENS, Paris France – IUF

leticia@lpt.ens.fr

with

J. J. Arenzon (Porto Alegre), A. J. Bray (Manchester) & A. Sicilia (Paris), cond-mat/0608270.

Plan

1. Review of Coarsening phenomena

ex. ferromagnetic systems.

2. The scaling hypothesis.

Analytical and numerical results.

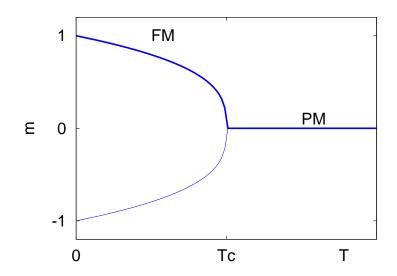
3. New: details on the domain conformations.

Analytical and numerical results.

- 4. Work in progress.
- 5. Why should one look at this problem?

Ferromagnets in equilibrium

A ferromagnetic system in contact with a heat bath at temperature T under no applied field (h=0) acquires a magnetization density m below a critical temperature T_c :



m is the order parameter.

Curie-Weiss mean-field theory (1907), Ginzburg-Landau theory (1937, 1950), Wilson renormalization group (1971).

The standard Ising model

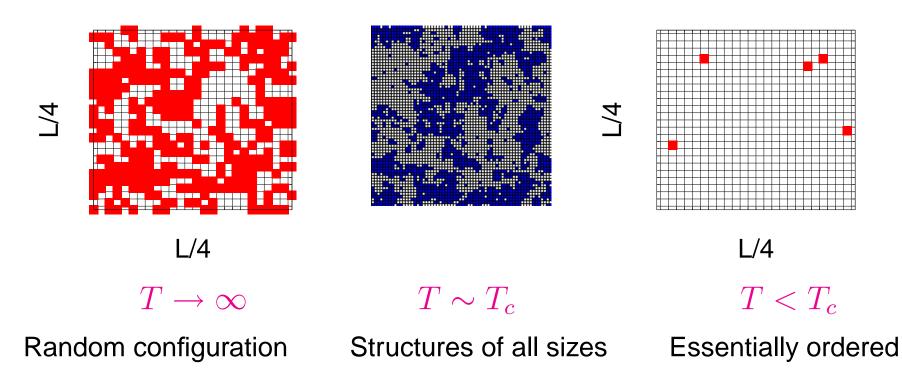
$$H=-J\sum_{\langle ij
angle}s_is_j\;,$$
 Ising, 1925

- The spins s_i take bimodal values, $s_i = \pm 1$.
- The sum $\sum_{\langle ij \rangle}$ runs over nearest neighbours on a d dimensional, typically hypercubic, lattice.
- -J>0 is the coupling strength.

One finds
$$\frac{T_c}{J} \left\{ \begin{array}{l} =0 \;, \qquad d=1 \qquad \text{exact (Ising, 1925)}, \\ \sim 2.27 \;, \qquad d=2 \qquad \text{exact (Onsager, 1944)}, \\ \sim 4.5 \;\;, \qquad d=3 \qquad \text{num. (D. P. Landau, 1976)}. \end{array} \right.$$

Equilibrium configurations

2d slices of a 3d Ising model



Self-similarity

Thermal fluct. (m < 1)

 $s_i = \pm 1$

Ginzburg-Landau

Coarse-graining ⇒ the local magnetization density

$$\phi(\vec{x}) = \frac{1}{\ell^d} \sum_{i \in V_{\vec{x},\ell}} s_i , \qquad Z = \sum_{\phi} e^{-\beta F(\phi)} .$$

Symmetry arguments ($\phi \to -\phi$) and $\langle \phi \rangle \sim 0$ at $T \sim T_c$ suggest

$$F(\phi) = \int d^d x \left[\frac{c}{2} (\nabla \phi)^2 + \frac{T - T_c}{T_c} \phi^2 + \frac{\lambda}{4} \phi^4 \right]$$

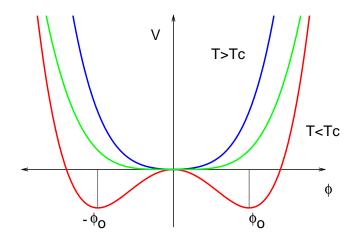
Energy-cost Symmetric domain-wall

double-well

Ginzburg-Landau

Large volume limit

 $F pprox L^d \Rightarrow$ saddle-point, mean-field or stationary phase approx.

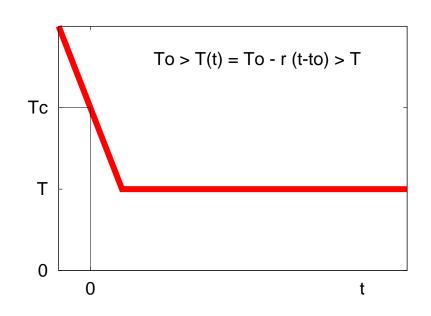


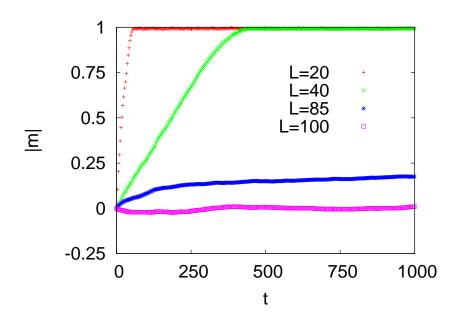
$$\langle \phi(\vec{x}) \rangle = \phi_o \propto (T_c - T)^{\frac{1}{2}}, \qquad \beta = \frac{1}{2}.$$

Essentially correct but for the critical region (e.g. $\beta \sim 1/3$).

Evolution

A rapid quench





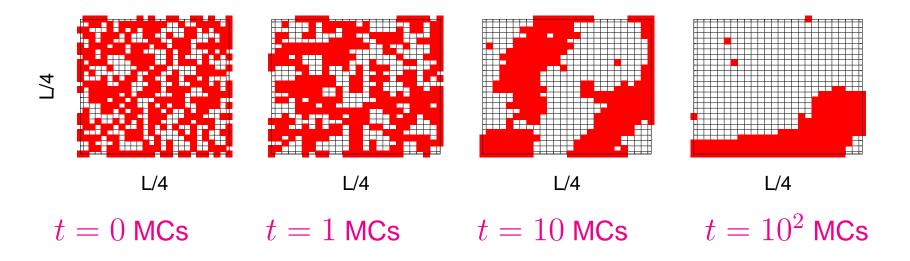
Stochastic dynamics; Monte Carlo updates

Note: the order parameter (m) is not conserved.

Slow dynamics

Domain growth

After a rapid quench



Time-dep. Ginzburg-Landau

$$\phi(\vec{x}) \to \phi(\vec{x}, t) = \frac{1}{\ell^d} \sum_{i \in V_{\vec{x}, \ell}} s_i(t)$$

Langevin dynamics in $F(\phi)$, model A (Hohenberg & Halperin 1977).

$$\gamma \frac{\partial \phi(\vec{x}, t)}{\partial t} = -\frac{\delta F(\phi)}{\delta \phi(\vec{x}, t)} + \eta(\vec{x}, t)
= \nabla^2 \phi(\vec{x}, t) + a\phi(\vec{x}, t) - \lambda \phi^3(\vec{x}, t) + \eta(\vec{x}, t) ,$$

with $\gamma=t_0^{-1}$ and η a Gaussian white noise,

$$\langle \eta \rangle = 0$$
 and $\langle \eta(\vec{x}, t) \eta(\vec{x}', t') \rangle = 2k_B T \gamma \delta(\vec{x} - \vec{x}') \delta(t - t')$.

Scaling theory

At late times there is a single length-scale, the typical radius of the domains R(T,t), such that the domain structure is (in statistical sense) independent of time when lengths are scaled by R(T,t), e.g.

$$C(r,t) \equiv \langle s_i(t)s_j(t)\rangle|_{|\vec{x}_i - \vec{x}_j| = r} \sim m_{eq}^2(T) f\left(\frac{r}{R(T,t)}\right),$$

$$C(t,t_w) \equiv \langle s_i(t)s_i(t_w)\rangle \sim m_{eq}^2(T) g\left(\frac{R(T,t)}{R(T,t_w)}\right),$$

etc. when $r \gg \xi(T)$, $t, t_w \gg t_0$ and $C < m_{eq}^2(T)$.

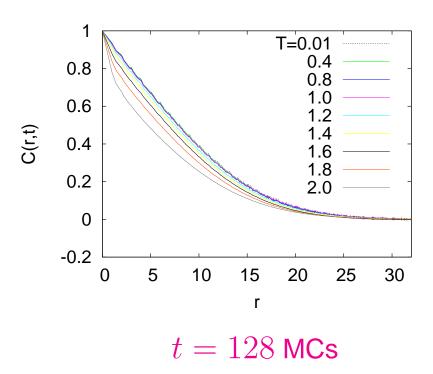
Suggested by experiments and numerical simulations. Proven in

- Ising chain with Glauber dynamics.
- Langevin dynamics of the ${\rm O}(N)$ model with $N\to\infty$, and the spherical ferromagnet. Review A. J. Bray, 1994.

MC dynamics 2dlM

Equal-times spatial correlation

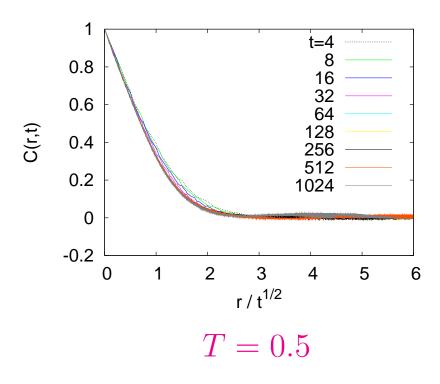


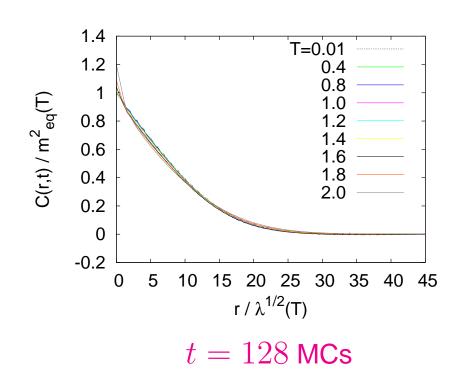


$$C(r,t) \equiv \langle s_i(t)s_j(t)\rangle|_{|\vec{x}_i - \vec{x}_j| = r} \sim m_{eq}^2(T) f\left(\frac{r}{R(T,t)}\right)$$

MC dynamics 2dIM

Equal-times spatial correlation : scaling



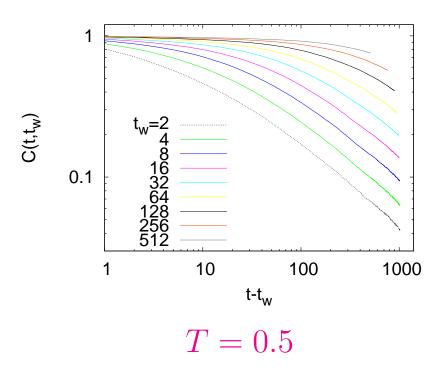


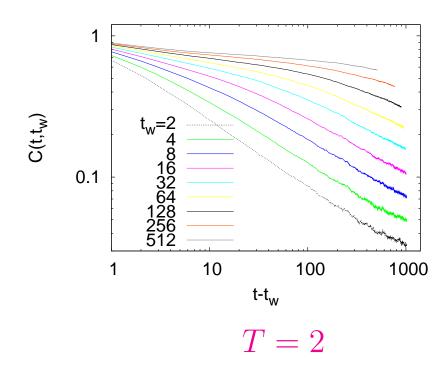
$$C(r,t) \sim m_{eq}^2(T) f\left(\frac{r}{R(T,t)}\right)$$

with
$$R(T,t) \sim [\,\lambda(T)t\,]^{1/2}$$

MC dynamics 2dlM

Two-times local correlation

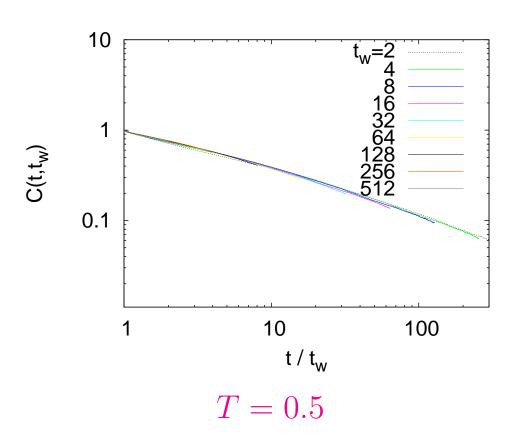




$$C(t, t_w) = N^{-1} \sum_{i=1}^{N} \langle s_i(t) s_i(t_w) \rangle \sim m_{eq}^2(T) g\left(\frac{R(T, t)}{R(T, t_w)}\right)$$

MC dynamics 2dlM

Two-times local correlation



$$C(t, t_w) \sim m_{eq}^2(T) \ g\left(\frac{R(T, t)}{R(T, t_w)}\right)$$
 for $C < m_{eq}^2(T) \sim 1$

MC dynamics 2dIM

The typical length-scale ⇔ a typical area

$$R(T,t) \sim \sqrt{\lambda(T)\ t} \qquad \Leftrightarrow \qquad A(T,t) \sim \lambda(T)\ t$$

NB the exponent $\frac{1}{2}$ is independent of T and the details of the dynamics, lattice, etc. as long as the order parameter is non-conserved.

The T-dependence in $\lambda(T)$ is due to the roughening of the domain walls.

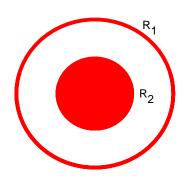
Fluctuations

What happens locally?

Basic question : what does ${\cal R}$ really mean ?

- How many domains?
- Which sizes?

Domains and hulls



Two hulls

$$A_1 = \pi R_1^2$$
$$A_2 = \pi R_2^2$$

Two domains

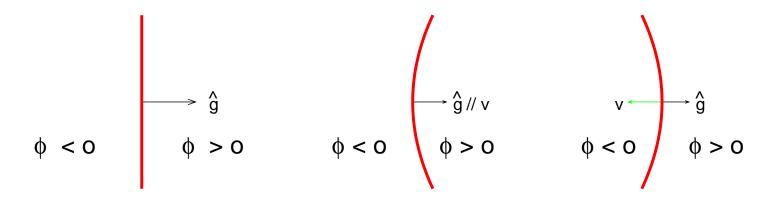
$$A_1 = \pi R_1^2$$
 $A_1 = \pi (R_1^2 - R_2^2)$
 $A_2 = \pi R_2^2$ $A_2 = \pi R_2^2$

Hull: the interior of a domain boundary.

- Typically hulls tend to be larger than domains $(A_1^h > A_2^h)$.
- There are as many hulls as domains (two).
- Each spin belongs to one and only one domain (e.g. spin at the center).
- A spin can belong to more than one hull (e.g. spin at the center).

Velocity of a quasi-planar wall

Time-dependent Ginzburg-Landau



$$v = -\vec{\nabla} \cdot \hat{g} = -K$$

where \hat{g} points in the direction $\phi>0$ and

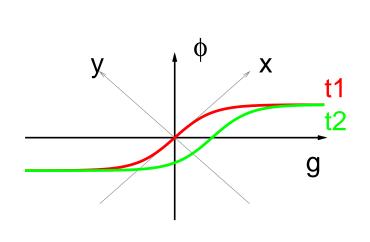
K is the mean curvature measured from the phase $\phi < 0$.

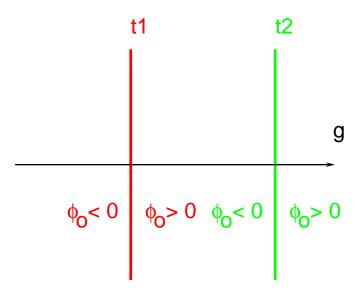
S. M. Allen & J. W. Cahn, Acta Metall. 27, 1085 (1979).

T=0 argument

Domain wall profile

View from the top





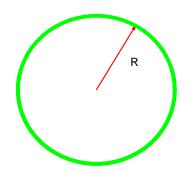
$$\begin{split} \frac{\partial \phi(\vec{x},t)}{\partial t} &= -\left. \frac{\partial \phi(\vec{x},t)}{\partial g} \right|_t \left. \frac{\partial g}{\partial t} \right|_\phi, \qquad \vec{\nabla} \phi(\vec{x},t) = \left. \frac{\partial \phi(\vec{x},t)}{\partial g} \right|_t \left. \hat{g} \right., \\ \nabla^2 \phi(\vec{x},t) &= \left. \frac{\partial^2 \phi(\vec{x},t)}{\partial g^2} \right|_t + \left. \frac{\partial \phi(\vec{x},t)}{\partial g} \right|_t \left. \vec{\nabla} \cdot \hat{g}. \end{split}$$

Using $\frac{\partial^2 \phi(\vec{x},t)}{\partial g^2}|_t = V'(\phi)$ in the GL equation : $v \equiv \partial_t g|_\phi = -\vec{\nabla} \cdot \hat{g}$.

Proof II

A spherical hull in d=2

Take a sphere with radius R, area $A=\pi R^2$ and perimeter $L=2\pi R$.



The time-variation of the <code>hull area</code>, $\frac{dA}{dt}=2\pi R$ $\frac{dR}{dt}=L\,v$, in

the case $v=-\frac{\lambda}{2\pi}\kappa$, with the curvature $\kappa=\frac{1}{R}$, is just constant

$$\frac{dA}{dt} = -\lambda$$

Proof III

A generic hull in d=2

with radius R, area A and perimeter L.

The time-variation of the *hull area*, $\frac{dA}{dt}=\oint \vec{v}\wedge d\vec{\ell}=\oint vd\ell$, in

the case $v=-\frac{\lambda}{2\pi}\kappa$, with κ the geodesic curvature, is also constant

$$\frac{dA}{dt} = -\lambda$$

due to the Gauss-Bonnet theorem $\int_A KdA + \int_{\partial A} \kappa d\ell = 2\pi \chi(A)$ that simply becomes $\oint \kappa d\ell = 2\pi$ for a planar 2d manifold with no holes.

Proof IV

A spherical hull in d=3

Take a sphere with radius R, volume $V=\frac{4}{3}\pi R^3$ and surface $A=4\pi R^2$.

The time variation of the *hull* volume, $\frac{dV}{dt}=4\pi R^2~\frac{dR}{dt}$, in the case $v=-\frac{\lambda}{2\pi}\kappa$, with κ the *mean* curvature, *is not* constant :

$$\frac{dV}{dt} = -2R \propto -V^{1/3} \ .$$

Guess : $\frac{dV}{dt} \sim -V^{1/3}$ for generic geometries.

The hull area distribution

$$d=2$$

 $\frac{dA}{dt} = -\lambda \Rightarrow$ all hulls tend to disappear at the same speed $-\lambda$.

- ullet hulls with initial area smaller than λt will have disappeared at t.
- hulls with initial area larger than λt will have decreased by λt .

The full hull area distribution is advected uniformly to the left at rate λ .

The number of hulls, per unit area of the system, with area greater than A satisfies

$$N_h(A,t) = N_h(A + \lambda t, 0) .$$

The hull area distribution II

The initial condition

Quench from an infinite temperature

random initial condition,

$$s_i=\pm 1$$
 with $p=\frac{1}{2}$: critical point of percolation in $d=2$.

$$N(A,0) \approx \frac{2c}{A} \quad \text{with} \quad c = \frac{1}{8\pi\sqrt{3}} \qquad \qquad (a^2 \ll A \ll L) \; .$$

ullet Quench from equilibrium at T_c : Ising cluster hulls at criticality.

$$N(A,0) \approx \frac{c}{A} \quad \text{with} \quad c = \frac{1}{8\pi\sqrt{3}} \qquad \qquad (a^2 \ll A \ll L) \; . \label{eq:N(A,0)}$$

Conformal field theory, scaling & numerical checks

J. Cardy and R. M. Ziff, J. Stat. Phys. 110, 1 (2003).

The prediction

$$N_h(A,t) = \frac{2c}{A+\lambda t}$$
, $n_h(A,t) \equiv -\frac{\partial N_h(A,t)}{\partial A} = \frac{2c}{(A+\lambda t)^2}$,

with the expected scaling forms

$$N_h(A,t) = (\lambda t)^{-1} f(A/\lambda t)$$
, $n_h(A,t) = (\lambda t)^{-2} f'(A/\lambda t)$.

Numerical simulations

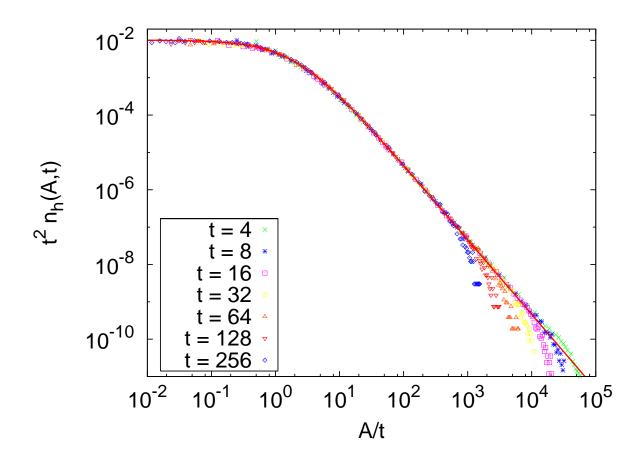
- \bullet 2d Ising model on a square lattice with periodic boundary conditions.
- Monte Carlo (MC) dynamics with heat-bath updates.
- $L = 10^3$, 2×10^3 samples, one time step corresponds to a MC sweep.
- Critical initial conditions generated with the Swendsen-Wang cluster algorithm to avoid critical slowing down.
- Hoshen-Kopelman algorithm to identify the domains.
- Our algorithm to identify the hulls inspired by the one used in

R. M. Ziff, cond-mat/0510633, StatPhys22...

Numerical tests

Number density of (finite) hulls per unit area

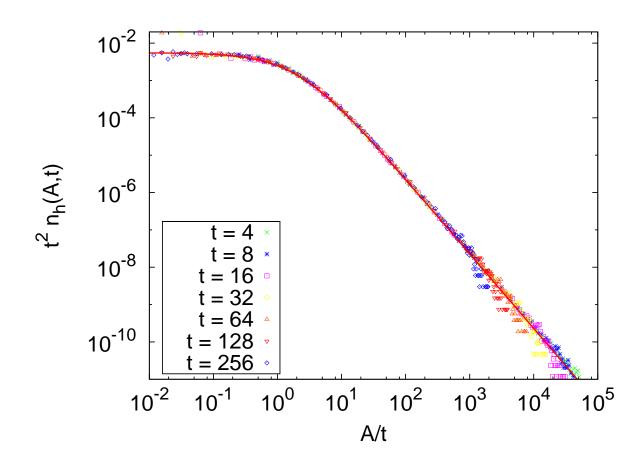
T=0 dynamics after a quench from $T o \infty$



The bending is a finite size effect due to the percolating hulls.

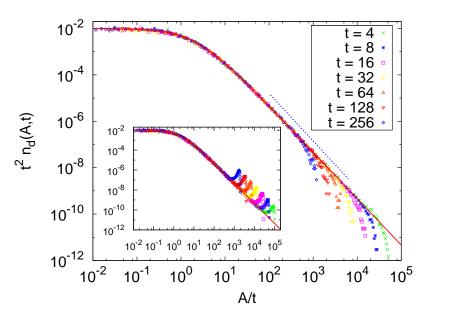
Number density of (finite) hulls per unit area

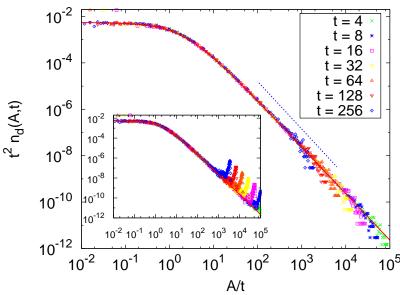
T=0 dynamics after a quench from equilibrium at T_c



Number density of *domains* per unit area

T=0 dynamics after a quench from $T o \infty$ (left) and T_c (right)

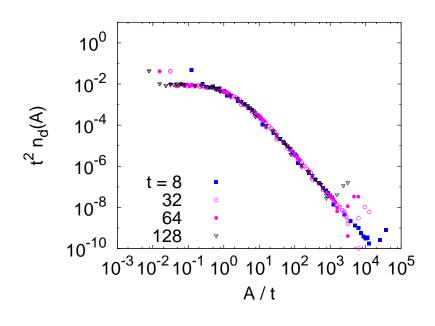


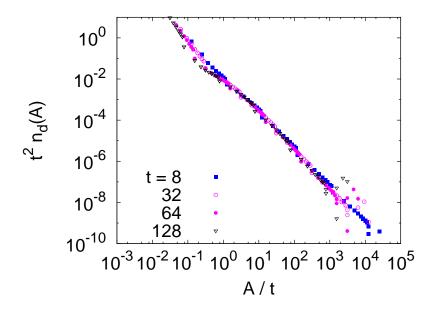


The insets include the contribution from the percolating cluster (hump).

Number density of domains per unit area

Finite T dynamics after a quench from $T \to \infty$

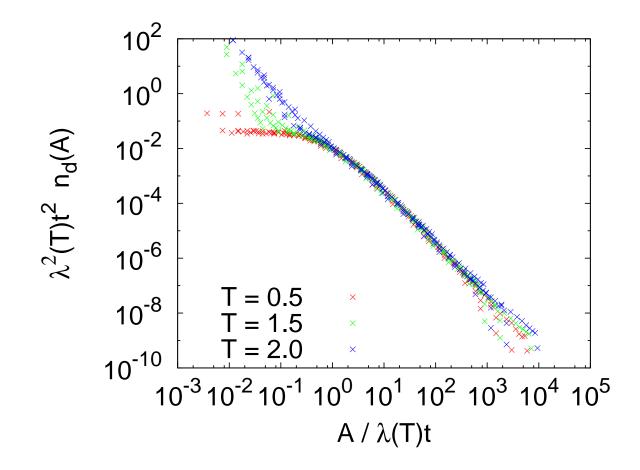




$$T = 0.5$$

$$T=2$$

Number density of domains per unit area $\text{Finite } T \text{ dynamics after a quench from } T \to \infty$ Scaling

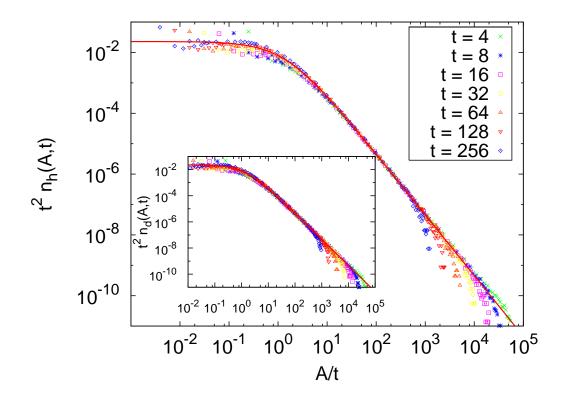


Random ferromagnet

$$H = \sum_{\langle ij
angle} J_{ij} s_i s_j \;, \qquad J_{ij} \; ext{uniform distributed in} \; [0.75, 1.25]$$

Number density of hulls and domains (inset) per unit area

T=0.5 dynamics; random initial conditions



Summary of results

- Exact results for hull pdfs.
- We proved scaling!
- The typical length-scale is not so typical after all :

power-law tails in N_h and n_h (as well as N_d and n_d).

Future work

- Finite T dynamics, numerical checks.
- 3d Ising model.
- Conserved order parameter (model B, Kawasaki dynamics); applications to phase separation.
- Potts model; application to soap films and adsorbed atoms.
- Quenched randomness, e.g. random ferromagnets, random field Ising model; application to hysteresis and the Barkhausen noise.
- Effect of annealing or finite cooling rates. Applications in cosmology: study of density of defects after a second-order phase transition.
- Understanding fluctuations in glassy systems.