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Ferromagnets in equilibrium

A ferromagnetic system in contact with a heat bath at temperature '/’
under no applied field (i = () acquires a magnetization density 12 below

a critical temperature 7. :

1 FM

PM

m Is the order parameter.

Curie-Weiss mean-field theory (1907), Ginzburg-Landau the  ory (1937, 1950),

Wilson renormalization group (1971).



The standard Ising model

H = —JZSZ'S]' ,
(17)

Ising, 1925

— The spins s; take bimodal values, s; = =+-1.

— The sum Z<¢j> runs over nearest neighbours on a d dimensional,

typically hypercubic, lattice.

— J > 0 is the coupling strength.

One finds

1
J

\

exact (Ising, 1925),
exact (Onsager, 1944 ),

num. (D. P. Landau, 1976 ).



Equilibrium configurations

2d slices of a 3d Ising model
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s; = *1 Self-similarity Thermal fluct. (m < 1)



Ginzburg-Landau

Coarse-graining = the local magnetization density

o(F) zgid Ss, z=3 0
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Symmetry arguments (¢ — —¢@)and (¢ ) ~ Oat’l" ~ T, suggest
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Ginzburg-Landau

Large volume limit

FrLi= saddle-point, mean-field or stationary phase approx.

T>Tc

T<Tc

N|—

(O(Z)) = o x (T. —T)2 , B==.

Essentially correct but for the critical region (e.g. 7 ~ 1/3).



Evolution

A rapid quench
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Stochastic dynamics; Monte Carlo updates
Note : the order parameter (1) IS not conserved.

Slow dynamics
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Domain growth

L/4

After a rapid quench
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Time-dep. Ginzburg-Landau

8@) — 6T 1) = 75 3 il

iEVf,g
Langevin dynamics in /'(¢), model A (Hohenberg & Halperin 1977) .

Op(Z,t) _ 0F(9) ;

= V(. 1) + ap(Z,1) — A\ (Z,1) +n(T,1) |

with v = tal and 77 a Gaussian white noise,
(n) = 0and (n(z,)n(2",t") ) = 2kpT~yo(Z — 2")o(t —1').



Scaling theory

At late times there is a single length-scale, the typical radius of the do-
mains [2('I', 1), such that the domain structure is (in statistical sense)
independent of time when lengths are scaled by 12(7',1), e.g.

C(r 1) = {si(0)85() )| gy oy ~ zqu( )
Cltsta) = (s:(®s:(t) ~ 2, (1) 9 (s )

etc. when 1 > £(T), L. t,, > tgand C' < m? (T).
Suggested by experiments and numerical simulations. Proven in

Ising chain with Glauber dynamics.

Langevin dynamics of the O(/V) model with N — o0, and the

spherical ferromagnet. Review A. J. Bray, 1994.



MC dynamics 2dIM

C(r,Y)

Equal-times spatial correlation
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MC dynamics 2dIM

Equal-times spatial correlation : scaling

C(r,Y)

C(r,t)mmgq(T)f<R(; t)> with — R(T,t) ~ [Tt
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MC dynamics 2dIM

C(t.ty)

Two-times local correlation

C(t,t,)




MC dynamics 2dIM

Two-times local correlation
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MC dynamics 2dIM

The typical length-scale <= a typical area

R(T,t) ~ JNT)t &  A(T,t)~\T)t

10

)\l/z(T) from collapse*5 -
AY2(T) from halfvalue
Meg(T)

NB the exponent % is independent of 1" and the details of the dynamics, lattice,

etc. as long as the order parameter is non-conserved.

The T-dependence in \(7") is due to the roughening of the domain walls.



Fluctuations

What happens locally ?

Basic question : what does R really mean ?
How many domains ?

Which sizes ?



Domains and hulls

R

L Two hulls Two domains
AlzﬂR% Alzﬂ(R%—R%)
AQ — WR% AQ = WR%

Hull : the interior of a domain boundary.

Typically hulls tend to be larger than domains (A? > Ag).
There are as many hulls as domains (two).

Each spin belongs to one and only one domain (e.g. spin at the center).

A spin can belong to more than one hull (e.g. spin at the center).



Velocity of a quasi-planar wall

Time-dependent Ginzburg-Landau

«Q>

N N
— > g gllv %

¢ <0 ¢ >0 ¢<o0 ®=>0 p<o0 ®=>0

v:—€-§:—K

where ¢ points in the direction ¢ > 0 and

K is the mean curvature measured from the phase ¢ < 0.

S. M. Allen & J. W. Cahn, Acta Metall. 27, 1085 (1979).



T=0 argument

Domain wall profile View from the top
t1 t2

qb<0 qb>0 qb<0 qb>0

Ip(F,1)  OY(i,1)

dg > L 00(Z,t)| .
PoE,t)| | 06(E1)|
vQ f, £ — ) 4 ’ \VA
QS( ) agQ . @g . g

Using 8% L0, = V'(¢) inthe GL equation : v = dygly = —V - §



Proof Il

A spherical hullin d = 2

Take a sphere with radius 77,

area A = 7 1R? and perimeter
L =27R.

The time-variation of the hull area = 21 R dR — L v, in

’dt

the case v = —i/-ﬁ;, with the curvature K = l, IS just constant

2T
dA
_ _)\
dt

=y



Proof Il

A generic hullin d = 2

with radius 7, area A and

perimeter L.

The time-variation of the hull area

fv/\dé—fvdf,m

’dt
A

the case v = — K, with K the geodesic curvature, is also constant
dA
= )
dt

due to the Gauss-Bonnet theorem |, K'dA+ |, , kdl = 2mx(A) that

simply becomes 39 rdl = 21 for a planar 2d manifold with no holes.



Proof IV

A spherical hullind = 3

Take a sphere with radius 7, volume V' = %TFRB and surface A —
A R,

The time variation of the hull volume, Cé—‘t/ — A1 R? Cil—]f, In the case
A

U= —5_kK, with £ the mean curvature, is not constant :

dVv

= 2R —V'/3,
dt .

dV

Guess : - ~ — V3 for generic geometries.



The hull area distribution

d=?2

% — — )\ = all hulls tend to disappear at the same speed — .

hulls with initial area smaller than A\¢ will have disappeared at .
hulls with initial area larger than At will have decreased by At.
The full hull area distribution is advected uniformly to the left at rate .

The number of hulls, per unit area of the system, with area greater than

A satisfies

Nu(A,t) = Np(A+ At,0) .



The hull area distribution II

The initial condition

Quench from an infinite temperature <= random initial condition,

s; = 1 withp = % : critical point of percolation in d = 2.

2c 1
N(A,0) ~ — with ¢ =
( ) A 87T\/§

(0> << A< L) .

Quench from equilibrium at /. : Ising cluster hulls at criticality.
C 1
N(A0) ~ — with ¢ =
A 81v/3

(0> << A< L) .

Conformal field theory, scaling & numerical checks

J. Cardy and R. M. Ziff, J. Stat. Phys. 110, 1 (2003).



The prediction

2c¢ CONR(A1) 2c

A.t) = —
A+ Nt (4, 1)

Ni(4,1) = HA (A+ Mt)2’

with the expected scaling forms

Niu(A,1) = (M) f (A/A8) (A, t) = () f (A/X)



Numerical simulations

2d 1sing model on a square lattice with periodic boundary conditions.
Monte Carlo (MC) dynamics with heat-bath updates.
L = 10°, 2 x 10? samples, one time step corresponds to a MC sweep.

Critical initial conditions generated with the Swendsen-Wang cluster

algorithm to avoid critical slowing down.
Hoshen-Kopelman algorithm to identify the domains.
Our algorithm to identify the hulls inspired by the one used in

R. M. Ziff, cond-mat/0510633, StatPhys22. .



Numerical tests

Number density of (finite) hulls per unit area

1" = 0 dynamics after a quench from /" — oo
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The bending is a finite size effect due to the percolating hulls.



Numerical results

Number density of (finite) hulls per unit area

1" = 0 dynamics after a quench from equilibrium at /.




Numerical results

Number density of domains per unit area

1" = 0 dynamics after a quench from /" — oo (left) and /. (right)
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The insets include the contribution from the percolating cluster (hump).



Numerical results

t? ny(A)

Number density of domains per unit area

Finite /" dynamics after a quench from /" — o0
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Numerical results

Number density of domains per unit area

Finite /" dynamics after a quench from /" — o0

Scaling
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Random ferromagnet

H = Z Ji:5i5; . Ji; uniform distributed in [0.75, 1.25)]
(i)

Number density of hulls and domains (inset) per unit area

"= 0.5 dynamics ; random initial conditions
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Summary of results

Exact results for hull pdfs.
We proved scaling!
The typical length-scale is not so typical after all :

power-law tails in /V;, and n;, (as well as /V; and n,).



Future work

Finite /" dynamics, numerical checks.
3d 1sing model.

Conserved order parameter (model B, Kawasaki dynamics) ; applica-

tions to phase separation.
Potts model ; application to soap films and adsorbed atoms.

Quenched randomness, e.g. random ferromagnets, random field Ising

model ; application to hysteresis and the Barkhausen noise.

Effect of annealing or finite cooling rates. Applications in cosmology

study of density of defects after a second-order phase transition.

Understanding fluctuations in glassy systems.



