Phase diagrams (& effect temperatures)

of 2d active matter

Leticia F. Cugliandolo

Sorbonne Université Institut Universitaire de France

leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia

Work in collaboration with

D. Loi & S. Mossa (Grenoble, France, 2007-2009)

G. Gonnella, P. Digregorio, G.-L. Laghezza, A. Lamura, A. Mossa, I. Petrelli (Bari, Italia, 2013-2019) & A. Suma (Trieste, Italia & Philadelphia, USA, 2014-2019)
D. Levis & I. Pagonabarraga (Barcelona, España & Lausanne, Suisse, 2017-2019)

Viña del Mar, Chile, 2019

Better understanding of dense (monodisperse) 2d active matter

Aim

Why 2d?

Experimental realisations but...

in reality,

because $2d\ \mathrm{is}$ interesting from a

fundamental viewpoint

1. Equilibrium phases: solidification/melting

Special in two-dimensions

- 2. Self-propelled Brownian dumbbells & disks for active matter
- 3. Collective behaviour of dumbbells & disks in $2d\,$

Passive case

Active solid, hexatic, liquid, co-existence & Motility Induced Phase Separation (MIPS)

Topological defects

1. Equilibrium phases: solidification/melting

Special in two-dimensions

- 2. Self-propelled Brownian dumbbells & disks for active matter
- 3. Collective behaviour of dumbbells & disks in $2d\,$

Passive case

Active solid, hexatic, liquid, co-existence & Motility Induced Phase Separation (MIPS)

Topological defects

Freezing/Melting

Different routes in $3d \ {\rm and} \ 2d$: mechanisms ?

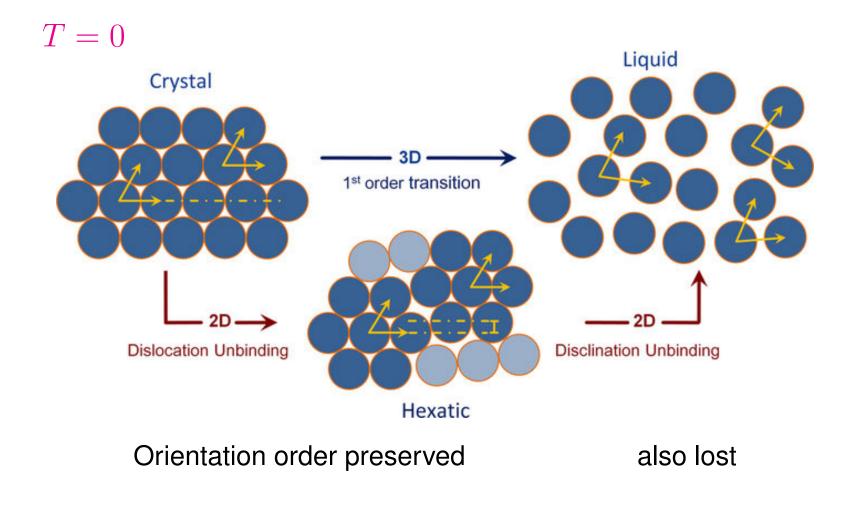
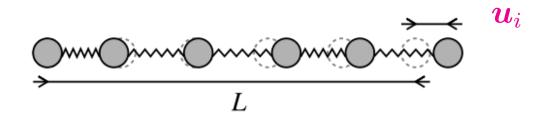


Image from Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)

Harmonic solids

$\label{eq:period} \mbox{Peierls: no finite T long-range translational order in $2d$ }$

Consider a crystal made of atoms connected to their nearest-neighbours by Hooke springs. At finite T the atomic positions, ϕ_i , fluctuate, $\phi_i = \mathbf{R}_i + \mathbf{u}_i$, with \mathbf{u}_i the local displacement from a regular lattice site i



Dashed: perfect lattice positions R_i Gray: actual positions ϕ_i

Does the long-range positional order (crystal) survive at finite $T\,\textbf{?}$

not in d = 2 since the mean-square displacement grows with distance

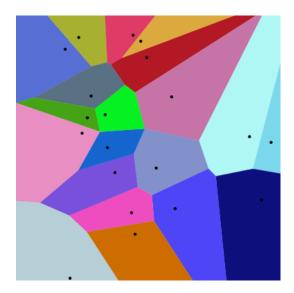
$$\Delta^2(\boldsymbol{r}) \equiv \langle (\boldsymbol{u}(\boldsymbol{r}) - \boldsymbol{u}(\boldsymbol{0}))^2 \rangle \simeq \frac{k_B T}{K} \ln r$$

Other kind of order?

Neighbours from Voronoi tessellation

A Voronoi diagram is induced by a set of points, called sites, that in our case are the centres of the disks.

The plane is subdivided into faces that correspond to the regions where one site is closest.

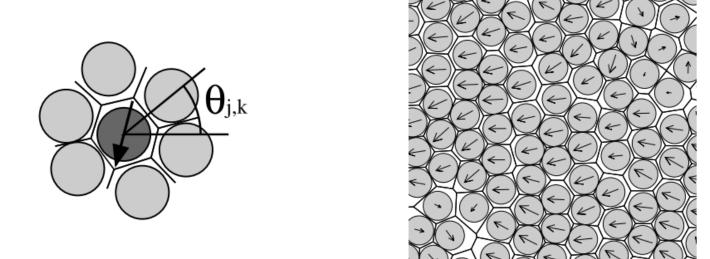


Focus on the central light-green face All points within this region are closer to the dot within it than to any other dot on the plane The region has five neighbouring cells from which it is separated by an edge The grey zone has six neighbouring cells

Orientational order

Hexatic order parameter

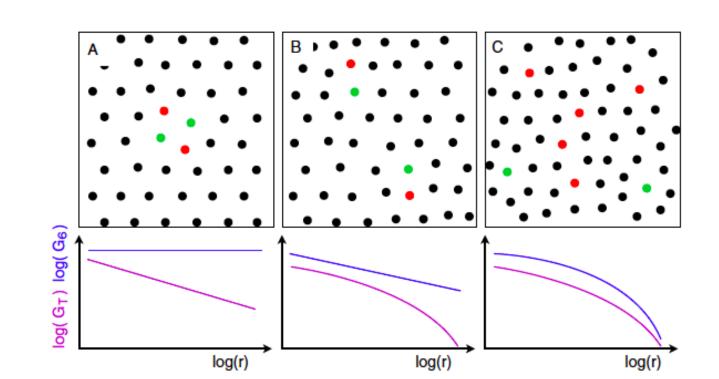
The local (six) order parameter $\psi_{6i} = \frac{1}{N_{nn}^i} \sum_{k=1}^{N_{nn}^i} e^{6i\theta_{ik}}$ (vector)



(For beads placed on the vertices of a triangular lattice, each bead i has six nearestneighbours, $k = 1, \ldots, N_{nn}^i = 6$, the angles are $\theta_{ik} = \frac{2\pi k}{6} + c$ and $\psi_{6i} = 1$) associates arrows (directions) to disks

and measures orientational order

Correlations & defectsHexaticPositional• 7 neighb • 5 neighb



 $\log r: \ G_6(r) = \begin{cases} \text{ct} & \text{solid} & \text{long range order} \\ r^{-\eta_6} & \text{hexatic} & \text{quasi long range order} \\ e^{-r/\xi_6} & \text{isotropic} & \text{disorder} \end{cases}$

Phases & transitions

BKT-HNY vs. a new scenario by Bernard & Krauth (2011)

	BKT-HNY	BK
Solid	QLR pos & LR orient	QLR pos & LR orient
transition	BKT (unbinding of dislocations)	ВКТ
Hexatic phase	SR pos & QLR orient	SR pos & QLR orient
transition	BKT (unbinding of disclinations)	1st order
Liquid	SR pos & orient	SR pos & orient

Basically, the phases are the same, but the low-lying transition is different, allowing for coexistence of the liquid and hexatic phases for hard enough particles

1. Equilibrium phases: solidification/melting

Special in two-dimensions

- 2. Self-propelled Brownian dumbbells and disks for active matter
- 3. Collective behaviour of dumbbells & disks in $2d\,$

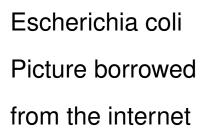
Passive case

Active solid, hexatic, liquid, co-existence & Motility Induced Phase Separation (MIPS)

Topological defects

Single active dumbbell

Diatomic molecule - toy model for bacteria

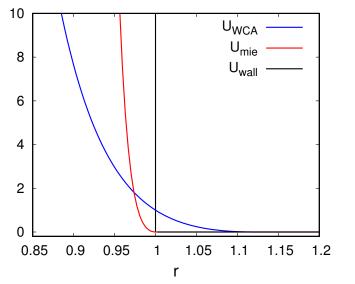


A rigid dumbbell

Interacting active dumbbells

Dissipation, noise, repulsive potential, propulsion

$$m_{\mathrm{d}}\ddot{\boldsymbol{r}}_{i}(t) = -\gamma\dot{\boldsymbol{r}}_{i}(t) + \mathbf{F}_{\mathrm{mie}_{i}}(t) + \mathbf{F}_{\mathrm{act}_{i}}(t) + \boldsymbol{\eta}_{i}(t)$$
$$m_{\mathrm{d}}\ddot{\boldsymbol{r}}_{i+1}(t) = -\gamma\dot{\boldsymbol{r}}_{i+1}(t) + \mathbf{F}_{\mathrm{mie}_{i+1}}(t) + \mathbf{F}_{\mathrm{act}_{i+1}}(t) + \boldsymbol{\eta}_{i+1}(t)$$

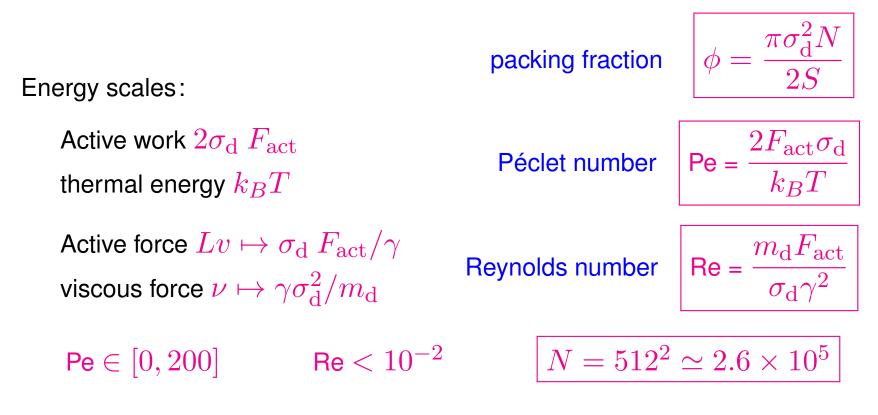


Mie potential from truncated Lennard-Jones with n=32 very hard

Active dumbbell

Control parameters

Number of dumbbells N and box volume S in two dimensions:



Stiff molecule limit: vibrations frozen.

Interest in the ϕ , $F_{\rm act}$ and $k_B T$ dependencies, $k_B T = 0.05$ fixed.

1. Equilibrium phases: solidification/melting

Special in two-dimensions

- 2. Self-propelled Brownian dumbbells & disks for active matter
- 3. Collective behaviour of dumbbells and disks in $2d\,$

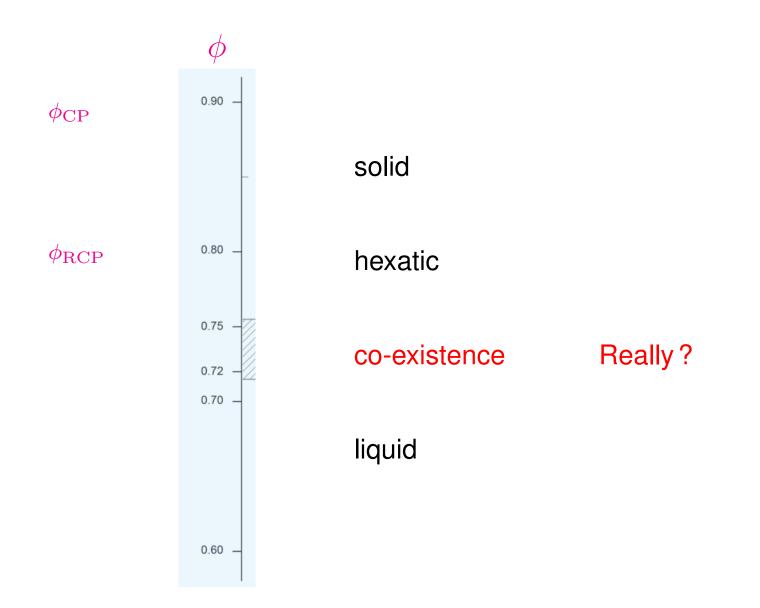
Passive case

Active solid, hexatic, liquid, co-existence & Motility Induced Phase Separation (MIPS)

Topological defects

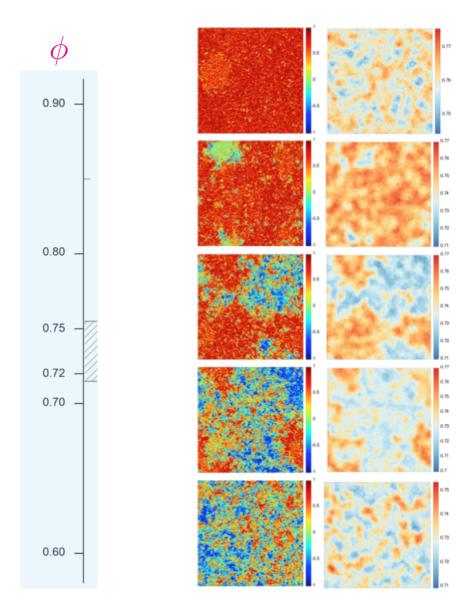
Passive dumbbells

Phase diagram



Passive dumbbells

Phase diagram



Images for ϕ in the striped region

1st column

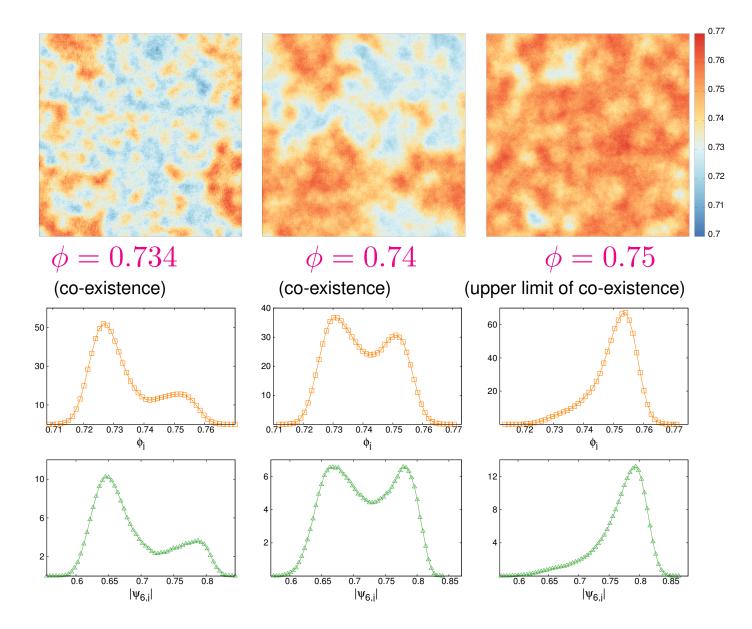
Local hexatic ψ_{6i} projected onto the direction of the average

2nd column

Local density ϕ_i

Passive dumbbells

Local density & local hexatic parameter



1. Equilibrium phases: solidification/melting

Special in two-dimensions

- 2. Self-propelled Brownian dumbbells & disks for active matter
- 3. Collective behaviour of dumbbells and disks in $2d\,$

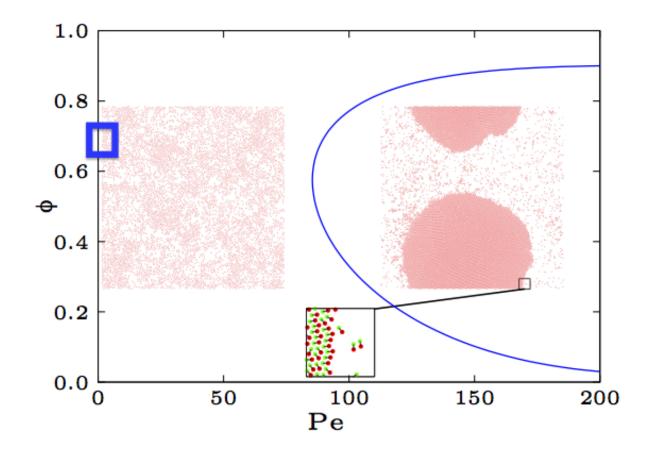
Passive case

Active solid, hexatic, liquid, co-existence & Motility Induced Phase Separation (MIPS)

Topological defects

Active dumbbells

OLD phase diagram & new Pe = 0 result

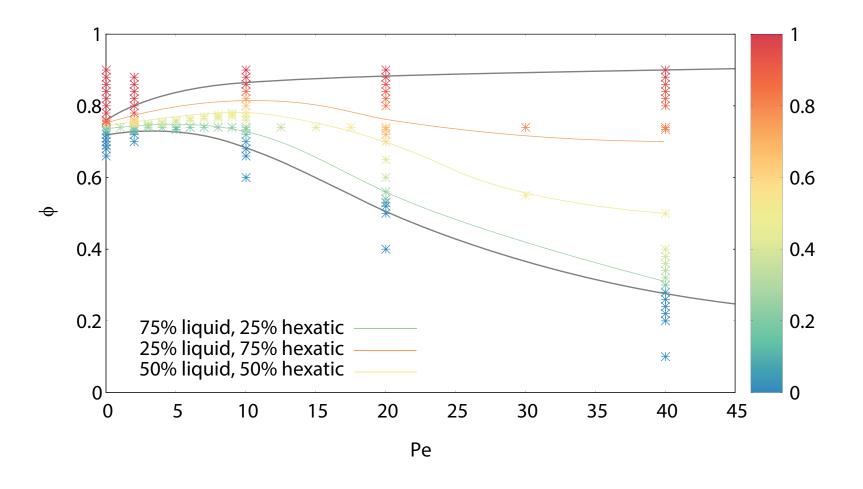


Connection between co-existence at Pe = 0 and MIPS at high Pe?

MIPS: motility induced phase separation (a dense bubble in a dilute background

Phase diagram

Active dumbbells



LFC, Digregorio, Gonnella & Suma, PRL 119, 268002 (2017) T=0.05Petrelli, Digregorio, LFC, Gonnella & Suma, EPJE (2018)

1. Equilibrium phases: solidification/melting

Special in two-dimensions

- 2. Self-propelled Brownian dumbbells & disks for active matter
- 3. Collective behaviour of dumbbells & disks in $2d\,$

Passive case

Active solid, hexatic, liquid, co-existence & Motility Induced Phase Separation (MIPS)

Topological defects

Overdamped Brownian particles (the standard model)

Active force \mathbf{F}_{act} along $\mathbf{n}_i = (\cos \theta_i(t), \sin \theta_i(t))$

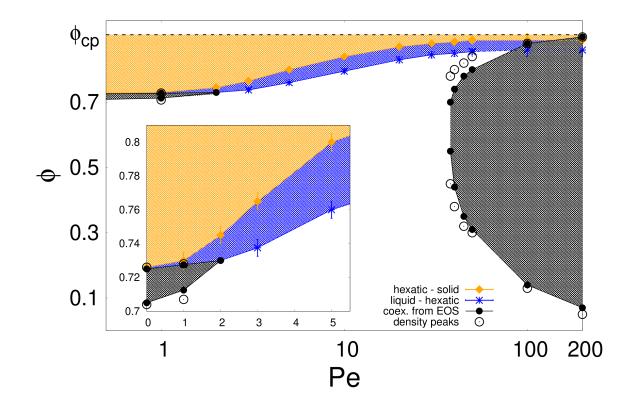
$$\gamma \dot{\mathbf{r}}_i = F_{\text{act}} \mathbf{n}_i - \boldsymbol{\nabla}_i \sum_{j(\neq i)} U_{\text{Mie}}(r_{ij}) + \boldsymbol{\xi}_i , \qquad \dot{\theta}_i = \eta_i ,$$

 \mathbf{r}_i position of the centre of *i*th part & $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$ inter-part distance,

short-ranged repulsive Mie potential,

 ξ and η zero-mean Gaussian noises with $\langle \xi_i^a(t) \, \xi_j^b(t') \rangle = 2\gamma k_B T \delta_{ij}^{ab} \delta(t-t')$ and $\langle \eta_i(t) \, \eta_j(t') \rangle = 2D_\theta \delta_{ij} \delta(t-t')$. The units of length, time and energy are given by σ_d , $\tau = D_{\theta}^{-1}$ and ε $D_{\theta} = 3k_B T/(\gamma \sigma_d^2)$, packing fraction $\phi = \pi \sigma_d^2 N/(4S)$, Péclet number Pe = $F_{\rm act} \sigma_d/(k_B T)$. Parameters $\gamma = 10$, $k_B T = 0.05$ and $\tau_p \simeq 60$

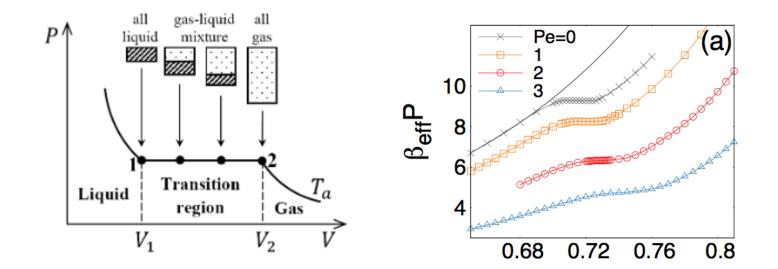
Phase diagram



Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003 (2018)

T = 0.05

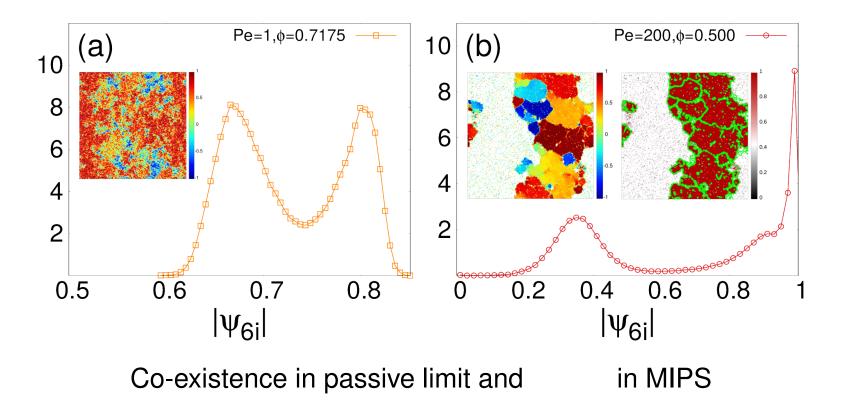
Equation of state (eos) : pressure



$$\Delta P = P - P_{\text{gas}} = \frac{F_{\text{act}}}{2V} \sum_{i} \langle \mathbf{n}_{i} \cdot \mathbf{r}_{i} \rangle - \frac{1}{4V} \sum_{i,j} \langle \nabla_{i} U(r_{ij}) \cdot (\mathbf{r}_{i} - \mathbf{r}_{j}) \rangle$$

Modulus of the local hexatic order parameter

Pe = 1



1. Equilibrium phases: solidification/melting

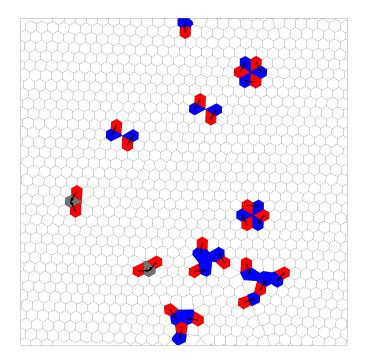
Special in two-dimensions

- 2. Self-propelled Brownian dumbbells & disks for active matter
- 3. Collective behaviour of dumbbells & disks in 2d

Active solid, hexatic, liquid, co-existence & Motility Induced Phase Separation (MIPS)

Topological defects (work in progress)

Topological defects (Voronoi cells with $\neq 6$ neighbours)

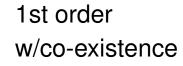


Dislocations, pairs of dislocations, vacancies, disclinations, grain boundaries

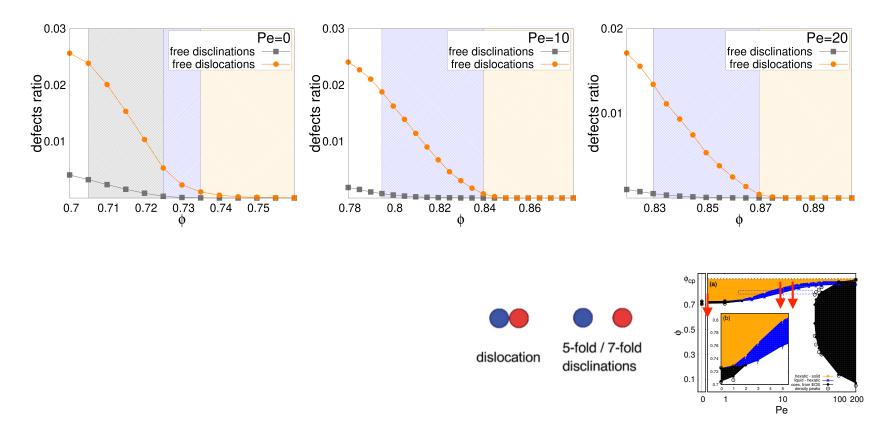
The classification in Pertsinidis & Ling, PRL 87, 098303 (2001)

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, in preparation

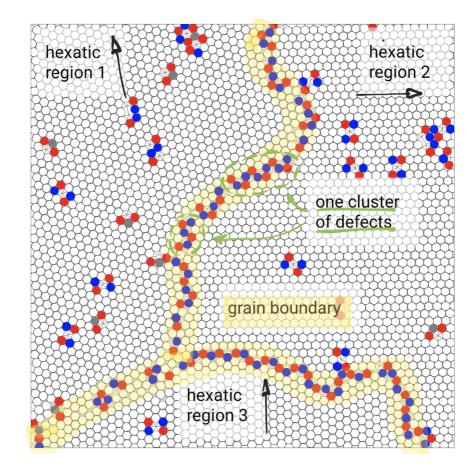
Solid-hexatic transition & the emergence of the liquid



à la KTHNY free dislocations at solid-hex free disclinations in the liquid

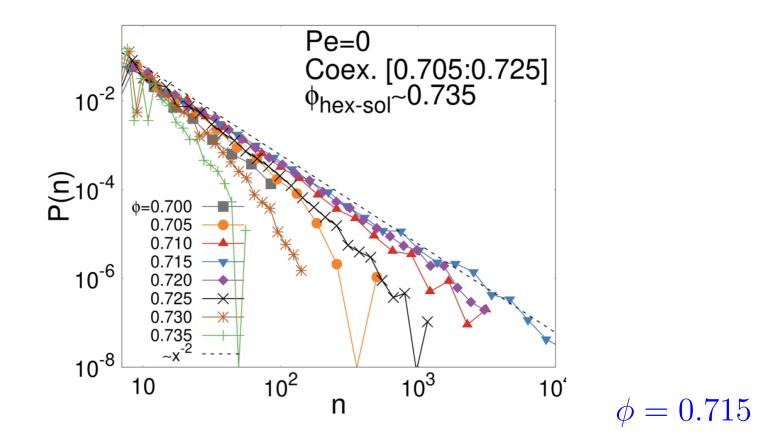


Lines of defects in dense region



Percolation of grain boundaries?

Algebraic distribution of defect cluster sizes



within the coexistence region \simeq percolation of grain boundaries

1. Equilibrium phases: solidification/melting

Special in two-dimensions

- 2. Self-propelled Brownian dumbbells & disks for active matter
- 3. Collective behaviour of dumbbells & disks in 2d

Active solid, hexatic, liquid, co-existence & Motility Induced Phase Separation (MIPS)

Topological defects

Fluctuation-dissipation

Linear relation between χ and Δ^2 in equilibrium

 $P(\boldsymbol{\zeta}, t_w) \to P_{\mathrm{eq}}(\boldsymbol{\zeta})$

• The dynamics are stationary

 $\Delta_{AB}^2(t,t_w) = \langle [A(t) - B(t_w)]^2 \rangle = [C_{AA}(0) + C_{BB}(0) - 2C_{AB}(t-t_w)]$

 $\rightarrow \Delta^2_{AB}(t-t_w)$

• The fluctuation-dissipation theorem between spontaneous (Δ^2_{AB}) and induced (R_{AB}) fluctuations

$$R_{AB}(t-t_w) = \frac{1}{2k_BT} \frac{\partial \Delta_{AB}^2(t-t_w)}{\partial t} \ \theta(t-t_w)$$

holds and implies

$$\chi_{AB}(t - t_w) \equiv \int_{t_w}^t dt' \, R_{AB}(t, t') = \frac{1}{2k_B T} [\Delta_{AB}^2(t - t_w) - \Delta_{AB}^2(0)]$$

Fluctuation-dissipation

Linear relation between χ and Δ^2 out of equilibrium?

$P(\boldsymbol{\zeta}, t_w) \neq P_{\mathrm{eq}}(\boldsymbol{\zeta})$

• The dynamics are stationary

 $\Delta_{AB}^2(t,t_w) = \langle [A(t) - B(t_w)]^2 \rangle = [C_{AA}(0) + C_{BB}(0) - 2C_{AB}(t-t_w)]$

 $\rightarrow \Delta^2_{AB}(t-t_w)$

• The fluctuation-dissipation theorem between spontaneous (Δ^2_{AB}) and induced (R_{AB}) fluctuations

$$R_{AB}(t-t_w) \neq \frac{1}{2k_BT} \frac{\partial \Delta_{AB}^2(t-t_w)}{\partial t} \ \theta(t-t_w)$$

does not hold but one can propose

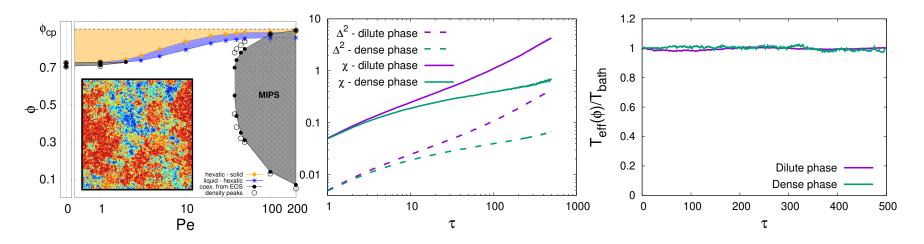
$$\chi_{AB}(t - t_w) \equiv \int_{t_w}^t dt' \, R_{AB}(t, t') = \frac{\left[\Delta_{AB}^2(t - t_w) - \Delta_{AB}^2(0)\right]}{2k_B T_{\text{eff}}(t - t_w)}$$

Teff = T

Co-existence in equilibrium

 $\mathrm{Pe}=\mathrm{O}~\phi=0.710$

Integrated linear response & mean-square displacement: their ratio (FDT) $au=t-t_w$



Method: linear response computed with Malliavin weights (no perturbation applied) as proposed by **G. Szamel** for active matter systems.

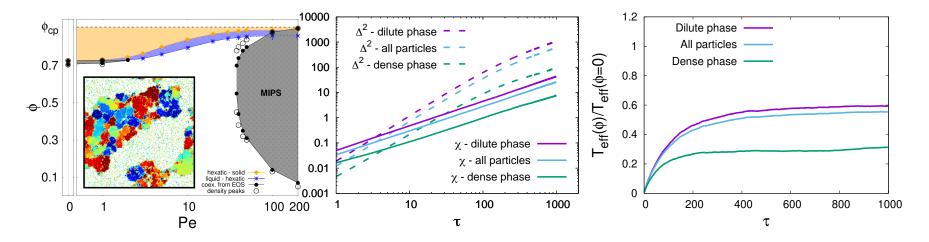
Petrelli, LFC, Gonnella & Suma, in preparation

Teff
$$\neq$$
 T

Co-existence in MIPS

 $\text{Pe} = \text{50} \quad \phi = 0.5$

Integrated linear response & mean-square displacement: their ratio (FDR) $au=t-t_w$

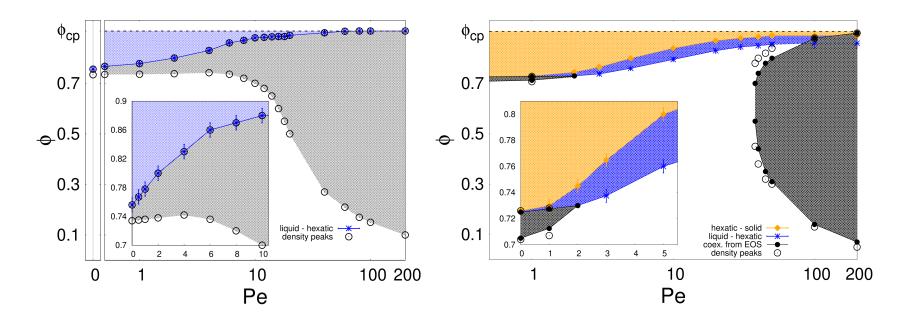


Method: linear response computed with Malliavin weights (no perturbation applied) as proposed by **G. Szamel** for active matter systems.

Petrelli, LFC, Gonnella & Suma, in preparation

Active Brownian systems

Conclusions : phase diagrams & plenty of interesting facts



Dumbbells

Disks

Thanks!