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Equilibrium Statistical Physics

Advantage

No need to solve the Newton dynamics!

Under the ergodic hypothesis, after some equilibration time 1., a ma-
croscopic observable A of a macroscopic system can be, on average,
obtained with a static calculation, as an average over all configurations in
phase space weighted with a probability distribution function p({p,, «; })

) = [ TLdpde, pl{p. ) Al{p, )

1 teq _|_7_

(A) should coincide with A = lim — dt’ A({p,(t"), x;(t)})
T—00 T teq
the time average typically measured experimentally Ergodicity

Boltzmann, late XIX



Equilibrium Statistical Physics

Recipes for p({p,, «;}) according to circumstances

Microcanonical ensemble

p({p;, xi}) < d(H({p;, xi}) — €)
Flat probability density

Isolated system Se = kg 1ng(5) 6 — kBLT _ % .
&=H{p;zi}) =ct Entropy Temperature

E = gsyst + genv =+ gmt

Neglect &;,,; (short-range interact.)
_ 0Se.,. Interaction

gsyst < genv 6 T Oenw

p({p,, z;}) oc e PHUPi})

Environment

Canonical ensemble



Out of equilibrium

Three possible reasons

e The equilibration time goes beyond the experimentally accessible times in
macroscopic systems in which ¢, grows with the system size,

lim te, (N) > ¢
Jm oq(IV) >

e.g., diffusion, critical slowing down, coarsening, glassy physics

e Driven systems Energy injection

Fo #—-VV(x) 'y #1 e.g., active matter

Integrability I,({p;xi}) =ct, p=1,...,N

Too many constants of motion inhibit equilibration to the Gibbs ensembles

e.g., 1d bosonic gases




Motivation

Isolated quantum systems: experiments and theory ~ 15y ago

(Conformal) field theory methods for
quantum quenches
Calabrese & Cardy 06

Numerical study of

lattice hard core bosons

A gquantum Newton’s cradle Rigol, Dunjko, Yurovsky & Olshanii 07
experiment Mostly 1d systems
cold atoms in isolation

Kinoshita, Wenger & Weiss 06 And many others



Steady state

of a macroscopic system in isolation

In a non-integrable system there are a few constants of motion

IM({pz’v wz})

and the microcanonical measure is

u=1,....n

n

poc 11 0(lu({pis ®i}) —1p)

p=1

with 1,,({p;, x;}) fixed by the initial conditions to Z,, forall p = 1,....n

typically, just the energy, and the usual microcanonical measure

In an integrable system, thereare . = 1,..., N = #dof. constants ,,({p;, x;})

fixed by the initial conditions and

Yuzbashyan 18

N
poc 11 oUu({pi, @i}) = Tu)




The canonical version

Open system

One hardly works with a microcanonical measure

Equivalence of ensembles = canonical one;” but not obvious for integrable

cases

Are local observables characterised by a canonical measure ?

Is it a Generalized Gibbs Ensemble:

PGGE X G—BZM Yulu({P;, ®i})

with /3, fixed requiring [,,(07) = I,,(t) = (I,)ger ?

* the proof of the equivalence cannot be simply applied in integrable cases



Statistical Physics

An ergodic hypothesis

No need to solve the Newton dynamics!

Under a new ergodic hypothesis, after some characteristic time tcag,
a local observable A of a macroscopic system can be, on average, ob-
tained with a static calculation, as an average over all configurations in

phase space weighted with pGGE({pi, wz})

) = [ Tl dpde: poor(ipoad) Al{p, o)

(A) should coincide with A = lim — dt' A({p;(t"), z;(t")})

T—00 T tGaGR

the time average typically measured experimentally



Goal : sample poq¢

Stochastic dynamics: e.g., Langevin, Monte Carlo

L

The measure to sample is

pace({p;, ;}) o e B2, lu(ipis @i}) — o—BHaee({p:; @i})

Assuming one knows the parameters {3, },

couple the system Haor = >, Vulu({P;, xi}) to an equilibrium bath at

inverse temperature [ = 1/kBT and a Lagrange multiplier to stay on the sphere

Use, e.g., a white bath and Langevin stochastic dynamics

Jazelel

mT, = Py Pu(t) + ntyu(t) = — 52, (t) + &u(t)

with (£,/(1)) = 0 and (,(£), (#))) = 2nkpT6,.,6(t — ¢



~
AN

~

AN

Newton dynamics
after a quench of H,

the integrable model

“Ergodicity” & the GGE ensemble

also the GB measure of Hagk

Langevin relaxation at 3!

of Hage({Vu})

<— approaches the GB measure

<Iz/ (t > O)>zc

7., from initial conditions

<p/% (t > O)>Zc

<$a (t>0));.c.

(Iv)cGE

= ISP ({n})

{WM} fixed from Z,, = ]IS}GE

to represent a quench of H

<pi>GGE

<x/2,L>GGE

lim (7, (t))

t—00

= I° ({5%&})

lim (pi ()¢ ic.

t— 00

lim (x2 (t))e i.c.

t— 00
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Strategy

Choice of model

— Choose a simple classical integrable interacting model with
(not just harmonic oscillators)
an interesting phase diagram to atudy different initial conditions

and quenches across the phase transition(s)

— Solve the dynamics after the quenches

— Build a Generalised Gibbs Ensemble (GGE)

— Prove that the asymptotic limit of local observables is given by the GGE

Not trivial ! First interacting problem with phase transitions




The model

A particle moving on the sphere

o o

Strict constraints
) 2 .
o : %: zy, — N =0

(= 1,..., N label the coordinates ¢ D> xupu =0
m



The model

The potential and kinetic energies

Potential energy

V(Z)[{afu} —— Z)\ 2’ p. ) (i::xz — N)

with A1 < Ao < -+ < Ay the eigenvalues of a matrix from the

GOE ensemble in the /N — oo limit : Wigner’s semi-circle law™

P
S )
-2 0 2 )\
p2
and standard kinetic energy /X = Z 5 R Newton dynamics
m

*handy choice, not essential. This model is also a spin-glass like problem = Toolbox.



Neumann’s model

1859

Journal Newton dynamics on a sphere
T under an anisotropic
reine und angewandte Mathematik.
In zwanglosen Heften harmonic potential
1 2
2 Z,u )\M:C,u

Als Fortsetzung des von

A L Crelle with spring constants

gegriindeten Journals

herausgegeben
unter Mitwirkung der Herren A A
7 # %

Steiner, Schellbach, Kummer, Kronecker, Weierstrass

C. W. Borchardt.

Mit thatiger Beforderung hoher Koniglich - Preufsischer Behorde ) . .
De problemate quodam mechanico, quod ad primam

integralium ultraellipticorum classem revocatur.
(Auctore C. Neumann, Hallae.)

Sechs und funfzigster Band.

In vier Heften.

§. 1.
" Problema proponitur.
Berlin, 1859. . . e . .
Dreck wnd Verkg :” Geors By Sml puncti mobilis Cozrj_m:m_l_e :Jrlbog:nales z, y, 2; sit
'y} 2 =

Journal of Pure & Applied Math.
Crelle Journal



Neumann’s model

Integrable

N constants of motion in involution {1, /,,} = 0 fixed by the initial conditions

2
i — X
Iy=a2+ 2. )" (: ];\” )\”p ) K. Uhlenbeck 80s
v(Fn) oo

Studies by Avan, Babelon and Talon 90s and many others for | finite /V

Thermodynamic N — oo limit?

Draw the A1 < Ay < - -+ < A from Wigner’s semi-circle law
0

S

3 0 2 \ Kosterlitz, Thouless & Jones 76




Initial conditions

Drawn from canonical equilibrium with )\ELO) at '/

<37%\r>eq =qN <$?\r>eq — 0(1)
| | -
condensed extended To/Jo
To/Jo <1 To/Jo > 1

XN

Condensed on /Vth direction, with largest ALO) Extended

Relation to BEC

Kosterlitz, Thouless & Jones 76, Zannetti 15, Crisanti, Sarracino & Zannetti 19



Instantaneous quench

Global rescaling of all spring constants

Attimet = 0

to keep some memory of the initial conditions

J
M A, = TOAS”

No change in configuration {z,(07) = z,(0"), p,(07) = p,(07)} but
macroscopic energy change

;

> () J <1 Injection
AE = for —

<0 Jo > ] Extraction

\



Control parameters

Initial conditions

Total energy change & initial conditions

To/Jo
A |
|
e,
9 | ! 1
e |
Q
x I
O 4= - - - - - - - -
ks |
% IV | 1l
2 |
3 | . T/ o
e 1 .
Injection extraction

Quench: total energy change



Classical quenches

Strategy

Choose a sufficiently simple classical infegrable interacting model
(not just harmonic oscillators)
with an interesting phase diagram to investigate different initial

conditions and quenches across the phase transition(s)

Solve the dynamics after a quench

Build a Generalised Gibbs Ensemble

Prove that the asymptotic limit of local observables is captured
by the GGE




Dynamics of the particle

Interpretation

Motion: Stay condensed Iry to condense Remain or become extended

Energy: Extraction or little injection Extraction Injection or little extraction



Asymptotic measure

Is the Generalized Gibbs Ensemble the good one ?

The GGE “canonical” measure is

N
_/B Z /VMIH(pvw)
pece(@ ) = Z " ({n}t)e *

, L (ap = o)’

u=1,...,N
mN (Zy A~ A

(quartic & non-local) and we fix the 7, on average by imposing

<IM>GGE — <IM>7;.C. v

NB in interacting quantum integrable models the charges are usually not

known. But we do know them for this model !



Dynamics vs GGE

sace = (12(1))ie.  and  (p2)ace = (PA(1))ic




Dynamics vs GGE

e.g., comparison for quenches in Phase |

T(A)

| DynafnicsNEIOO —a—
N =1024 ——

31 (a) GGE N =100

N =00 — |

AJ

In gray, the initial functions

Similar coincidence in Phases I/, Il & |V
Interesting features linked to “fluctuations catastrophe” in Phase IV

Harmonic Ansatz = saddle-point evaluation of the GGE



Goals achieved

In the late times limit taken after the large /V limit

We solved

— the global dynamics with Schwinger-Dyson/
DMFT egs.
— the mode dynamics with parametric oscillator

techniques of the (soft) Neumann model

With the GGE measure The canonical GGE
_ — 1, (p,
pece(P x) = Z7 1 ({By.}) e B2y ndn (o) describes the
— we calculated & proved asymptotic dynamics of
2 _ TH _ 2(¢ . .
(T5,)ccE = S (25 (1))i.c. this non-trivial
<pZ>GGE =T, = <pﬁ(t)>i.c. integrable model

obtaining also {7,. 57, } Barbier, LFC, Lozano, Nessi 22
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Langevin dynamics

of the H ggr model

OHE
Dp + niu(t) = — 533(;((;])3 + &,.(1)

with the white noise (£,,(t)) = 0and (£,,(1)&, (")) = 2nkpT6,,0(t —t')

and the Hamiltonian GQE = Zu Yudy + z(z? — N)

_ 2
where IM:ggZ_FmLN S (Tppv — Tupp)

note the weird form !
A v T M

Check T



Tests

High temperatures, 0 < (.

Hace = 22, Yulu

Choice of parameters v, = ¢/J )\i — 12\,

1.5

a = 0.09375, N = 4000 f
—e—T1T =01—-T=0.2 T =04
GGE —GGE GGE

A/ (2)

Data points (...); andsolidlines (...).p = (...)aGe"

LFC, Gonzalez-Albaladejo, Lozano & Stariolo 25



Tests

Low temperatures, 5 > (3., condensation close to the North pole

Hace = 22, Yulu

Choice of parameters v, = ¢/J )\i — 12\,

la = 0.09375, N = 4000 | a = 0.09375

N = 4000

>H _ < . .>HGGE

Data points (...)c and dashed lines (... o

LFC, Gonzalez-Albaladejo, Lozano & Stariolo 25
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Newton dynamics
after a quench of H

the integrable model

“Ergodicity” & the GGE ensemble

Pagg o« e PHGGE

also the GB measure of Ho gk

Langevin relaxation at 31

of Hage({vu})

<— approaches the GB measure

<IV>GGE

Ty J
{’Y/JJ} fixed from II/ = IIS}GE

to represent a quench of H

<pi>GGE

<$i>GGE

lim (I, (¢))

t— 00

= 1;° ({BYuy)

lim <p2 (t>>§,’é.c.

t—00 H

lim (@2 (t))e.q.c.

t— 00 H
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