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Randomness

Impurities

No material is perfect and totally free of impurities

(vacancies, substitutions, amorphous structures, etc.)

First distinction
— Weak randomness : phase diagram respected, criticality may change

— Strong randomness : phases modified

Second distinction

— Annealed : fluctuating (easier)

— Quenched : frozen, static (harder)

To K tops K Ted;sm“



Quenched disorder

Variables frozen in time-scales over which other variables fluctuate

Time scales To K tobs K T
Tedésor could be the diffusion time-scale for magnetic impurities the ma-

gnetic moments of which will be the variables of a magnetic system,

or the flipping time of impurities that create random fields acting on
other magnetic variables.

Weak disorder (modifies the critical properties but not the phases) vs.
strong disorder (that modifies both).

e.g. random ferromagnets vs. spin-glasses.



Geometrical problems

Random graphs & Percolation
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Spin-glasses

Magnetic impurities (spins) randomly placed in an inert host

r; are random and time-independent since
the impurities do not move during experimental time-scales =

quenched randomness

RKKY potential

Magnetic impurities in a metal host

cos 2kpr;;

3
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S;S;
r J

very rapid oscillations about 0
positive & negative

spins can flip but not move
slow power law decay.



Spin-glasses

Models on a lattice with random couplings

Ising (or Heisenberg) spins s; = =1 sitting on a lattice
Ji; are random and time-independent since
the impurities do not move during experimental time-scales =

quenched randomness

Magnetic impurities in a metal host Edwards-Anderson model

Hy[{si}] == Jijsis;
(i7)

Ji; drawn from a pdf with

spins can flip but not move zero mean & finite variance



Spin-glasses

Magnetic impurities (spins) randomly placed in an inert host

Spin Glasses

Their traits arise from disorderly, discordant magnetic interactions
among atoms. Mathematical models of spin glasses are prototypes
for complex problems in computer science, neurology and evolution

by Daniel L. Stein



Neural networks

Models on graphs with random couplings

The neurons are Ising spins s; = £1 on a graph
J;; are random and time-independent since
the synapsis do not change during experimental time-scales =

quenched randomness

The neural net Hopfield model

Hy{si}] = = > Jijsis;
memory stored in the synapsis

Jij = 1/Np ZM 15”5”

the patterns &'

are drawn from a pdf with

spins can flip but not move zero mean & finite variance



Pinning by impurities

Competition between elasticity and quenched randomness

d-dimensional elastic manifold in a transverse /V-dimensional quenched

random potential.

Interface between two phases;
vortex line in type-Il supercond;
stretched polymer.

Distorted Abrikosov lattice
& . . . & .

Goa et al. 01
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Randomness

Properties

— Spatial inhomogeneity
— Frustration

(spectrum pushed up, degeneracy of ground state)

— Probability distribution of couplings, fields, etc.

— Self-averageness



Heterogeneity

Each variable, spin or other, feels a different local field, /2, = Zj.:l JiiS;,
contrary to what happens in a ferromagnetic sample, for instance.
Jij > ()
|
‘ 1 1t 1ot
|
‘ y
|
Homogeneous Heterogeneous
hi=4J V1 h; =2J h =—2J h; = —4J.

Each sample is a priori different but,
do they all have a different thermodynamic and dynamic behavior ?



Frustration

Properties
Hy[{s}t = =2 uj Jijsis Ising model
+ +
+ + + + — A — + A+
— + — +
Disordered Geometric
Bt > prM and Sgust > GEM

Frustration enhances the ground-state energy and entropy

One can expect to have metastable states too

One cannot satisfy all couplings simultaneously if Hloop Ji; <0




Self-averageness

The disorder-induced free-energy density distribution approaches a Gaussian

with vanishing dispersion in the thermodynamic limit :

iy oo fN(BT) = foo(BJT) independently of disorder

— Experiments : all typical samples behave in the same way.

— Theory : one can perform a (hard) average of disorder, |. . . |,

—BN foo(BT) = limy o0 [In Zx (5.])]

From here, we see that, e.g., the energy density is self-averaging

Replica theory

ZrN(8])] -1

Nn




Self-averageness

The question

Given two samples with different quenched randomness
(e.g. different interaction strengths .J;;s or random fields /2;)
but drawn from the same (kind of) distribution
is their behaviour going to be totally different ?

Which quantities are expected to be the same and which not ?



Self-averageness

Observables & distributions

Given a quantity A ;, which depends on the quenched randomness .J, it

Is distributed according to

P(4) = [ a7 p(7) 54 A
This pdf is expected to be narrower and narrower (more peaked) as
N — oo

Therefore, one will observe A = A, such that max, P(A)

However, it is difficult to calculate A, what about calculating

Al = [dA P(A) A



Self-averageness

Example : the disordered Ising chain

Hil{s:}] = ZJ sisit1  Ji iid. withany pdf p(.J;)

Compute the partition function Z by introducing 0; = s;5;11

Z{BIY = Y el mitmisin = - BEJ%—HQ(;oth@J

s;,—=*1 o,==*1
(boundary condition effects negligible for /N — ©0)

It is a product of /V i.i.d. random numbers

The free-energy is — B F'[{8J; }| = Z,f\il Incoth(BJ;) + N In2

It is a sum of /V i.i.d. random numbers



Self-averageness

Example : the disordered Ising chain

Hjyl{s;}] = Z]SZSH_l Ji Lid. with any pdf p(.J;)

The partition functlon & the free energy density are dlfferent objects

Z{ BT} = HQcothBJ) — Bf{BJ;}] = Zlncothﬁ,])ﬂnz

1=1

Take .J; to be i.i.d with zero mean [J;] = 0 & finite variance [/?] = o and

use the Central Limit Theorem :
X = + Y. x; is Gaussian distributed with average (X ) = (z;) and variance
(X —(X))?) =0*/N

Therefore f; is Gaussian distributed and its variance vanishes for N' — oo

t
Moreover, [ " = [f/]




Self-averageness

Systems with short-range interactions

d

Divide a, say, cubic system of volume V' = L% in n sub-cubes, of volume

v =/l with V = no

- . . Surface L/e
Eesen —BF;~ > In ¥ e—BH j(bulky)
EECEEEECE k=1  bulky
Bulk
: / For L > / the CLT
cas ] f = [ is Gaussian distributed and
t
JYP — [fj]



Self-averageness

Qquenched vs. annealed

Go back to the one dimensional disordered Ising chain and show that

the partition function and the spatial correlations
are not self-averaging.
The annealed free-energy is defined as — 32 ealed — n[7 ;]
The quenched free-energy is defined as — 3 Fauenched — My 7]
Jenssen’s inequality applied to the convex function — In v implies
—In[Z;] < —[In Z;]
and for the free-energies one deduces

Fannealed _ _6—1 ID[ZJ] < _6—1[111 ZJ] _ Fquenched



Plan of lecture

Definition & examples

Properties

List of methods

Thouless-Anderson-Palmer equations

— Local order parameters & landscapes (beyond Ginzburg-Landau)
— Statistical averages

— Real replicas

Replica theory

Relaxation dynamics (experiments, numerics)

Relaxation dynamics (theory)



Methods

disordered systems

Statics

TAP Thouless-Anderson-Palmer

Replica theory
Cavity or Peierls approx.

Bubbles & droplet arguments

functional RG!

Dynamics

\

> fully-connected (complete graph)
Gaussian approx. to field-theories

} dilute (random graph)

> finite dimensions

Generating functional for classical field theories (MSRJD).

Schwinger-Keldysh closed-time path-integral for quantum dissipative models
(the previous is recovered in the i — 0 limit).

Perturbation theory, renormalization group techniques, self-consistent

approximations
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Properties

— Spatial inhomogeneity
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Low temperature phases

Phenomenology : homogeneity vs inhomogeneity

In a ferromagnet in equilibrium at temperature 7" < T, (s;) = m(T) Vi
or (s;) = —m(T") Vi in the two homogeneous, symmetric and degenerate

equilibrium states



Low temperature phases

Phenomenology : homogeneity vs inhomogeneity

In a ferromagnet in equilibrium at temperature 7" < T, (s;) = m(T) Vi

or (s;) = —m(T") Vi in the two homogeneous, symmetric and degenerate

equilibrium states

If one were to follow the time evolution of each spin in one of the two equilibrium
states at 7' < T, one would see 5;(t) = m(T) + 0;(t) with d;(t) small
time-dependent fluctuation and the overline states for a running time average
5i(t) =771 [T at si(t)




Low temperature phases

Phenomenology : homogeneity vs inhomogeneity

In a spin-glass in equilibrium at temperature 7" < 7T, one expects (s;) =
m,;(T"), with a different value for each 7, in each inhomogeneous and degenerate

equilibrium state.

There may be many different ensembles {112;(7") } that are equilibrium states
(degeneracy, similar to what we saw in the frustrated magnets for the ground

states but here in the full low /" phase)

There is also the up-down symmetry {m,; (1)} — {—m; (1)}



Low temperature phases

Phenomenology : homogeneity vs inhomogeneity

In a spin-glass in equilibrium at temperature 7" < 7T, one expects (s;) =
m,;(T"), with a different value for each 7, in each inhomogeneous and degenerate

equilibrium state.

If one were to follow the time evolution of each spin in one of the possibly many
equilibrium states at 7" < T, one would see 5;(t) = m;(T") + 0;() with
0; (%) small time-dependent fluctuation and the overline states for a running time
average 5;(1) = 7! tt+T dt’ s;(t)

m;

S
??‘/'\
/@ﬂﬂ?l
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— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {1; }
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen
— Quenched disorder : static pdfs of couplings, fields, etc.

fannealed < fquenched

— Self-averageness

th—mo{ — th—)oo ftyp

— Complex free-energy landscapes

fquenched}
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Mean-field theory

Fully connected Ising models

General model

HJ[{SZ}] — —% ; JijSiSj with Ising variables s; = =1
i#]

O(1) scaling of the local fields = scaling of .J;;

What is a local field ?

It is the field felt by a selected site

hi :% Z Jiij
J(#4)

and we require it to be O (1)



Mean-field theory

Fully connected Ising models

General model

HJ[{SZ}] — —% ; JZ‘]‘SZ'SJ' with Ising variables s; = =1
i#]

O(1) scaling of the local fields = scaling of .J;;

In the Curie-Weiss ferromagnetic case

J J
Jij = N such that h; = TN Z)S] = 0(1)

in the two ferromagnetic s;, = 1 V2 or s; = —1 V1 phases



Mean-field theory

Fully connected Ising models

General model

Hy[{si}] = =5 Jijsis; withlsing variables s; = +1
i#]

O(1) scaling of the local fields = scaling of .J;;

In the Curie-Weiss ferromagnetic case

J
Jij = N such that h; = 2N Z)S] = 0(1)

in the ferromagnetic s; = 1 Vi or s; = —1 V1 phases

In the Sherrington-Kirkpatrick disordered case

J J
Jii = O(—— hthat h; ~ —— —
j = O J5p) swehthaths ~ 25 52 55.= O(1

in the PM or spin-glass phases s; = £1 V1



Mean-field theory

Fully connected Ising models

General model

HJ[{SZ}] — —% ; JijSiSj with Ising variables s; = =1
i#]

O(1) scaling of the local fields = scaling of .J;;

In the Sherrington-Kirkpatrick disordered case

J J
Jij = O(——==) suchthath; ~ —— >  s; = O(1)
] v N 2VN iz

in the PM or spin-glass phases, say, s; = =1 with equal probability
One can use a Gaussian pdf

P(J;;) = (2m0?)~1/2 exp[—Jin (20%)] with o> = J? /N



Mean-field theory

Fully connected Ising models

Even more general models (recall the K-sat problem)

Hj[{si}] = —% D JijiSiSjSL  with Ising variables  s; = &-1
iAok
O(1) scaling of the local fields = scaling of .J;

In the p = 3 Curie-Weiss ferromagnetic case

J
JZ]k = W such that hz ~ QNP— Z SjSk = (1)
gk (1)
in the two ferromagnetic s;, = 1 Vi or s; = —1 V1 phases

In the p = 3 disordered case

Jz’jk — O( ) such that h; ~

J J
> sisp=0(1)
VNP 2VNPT iy

in the PM or spin-glass phases s; = =1 with equal probability
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fquenched}



Randomness

Properties

— Spatial inhomogeneity

Not all sites behave in the same way, local order parameters {1; }
— Frustration

Impossibility to satisfy all conditions imposed by the Hamiltonian

(spectrum pushed up, degeneracy of ground state)

— Annealed vs quenched

Couplings, fields, etc. fluctuate or are frozen
— Quenched disorder : static pdfs of couplings

Gaussian pdf of J;; with o = J*/N
— Self-averageness

My oo = limpy_yoo [P

— Complex free-energy landscapes : beyond Ginzburg-Landau

fquenched]



Mean-field theory

Fully connected Curie-Weiss Ising model for PM-FM

Normalize .J by the size of the system /V to have (1) local fields
J
H=—35 Zz’;éj sisj —h ) ;i

The partition function reads 2 = f_ll du e PN with Ny = > S

f(u>:—%UQ—h“JFT[HTulﬂHTqul_T“lnl‘Tﬂ

Energy terms and entropic contribution stemming from N ({s; } ) yielding

the same u value.

Use the saddle-point, limy . fx (5, 5h) = f(us,), with
usp, = tanh (BJug, + fh) = (u) =m




Ginzburg-Landau for PM-FM

Continuous scalar statistical field theory with local aspects

Coarse-grain the spin

¢(F) — V;?_l Z'L’EVF Sj
Seth =0

|

The partition function is Z = [ D¢ e~ PVE(®) with 1V the volume and

f(¢) = [dr {3[Vo(M)? + T2 (F) + 30°(F) }

Elastic + potential energy with the latter inspired by the results for the fully-

connected model (entropy around ¢ ~ (0 and symmetry arguments.

Uniform saddle point in the V' — oo limit : ¢, (7) = (@(7)) = m
The free-energy density is limy . fi (5, J) = f(0s,)



2nd order phase-transition

Continuous scalar statistical field theory

bi-valued equilibrium states related by symmetry

upper
critical
lower

---------
L
L]
~
~

---------------------------------
---------

& T/

Ginzburg-Landau free-energy Scalar order parameter



MFT for disordered spin models

Fully connected SG : Sherrington-Kirkpatrick model

H = =530 Jijsisi — 2 hasi

with J;; i.i.d. Gaussian variables, |.J;;| = 0 and [J,?j] = J?/N = O(1/N).

One finds the naive free-energy landscape

({mz} _ ij]mzmg 4+ TZ 1+m,; In l—i—mz 4+ 1— mZ 111 m;
1#£] 1=1

and the (naive) TAP equations

Misp = tanh(8 >,y Jijmy,, + Bhi)

that determine the restricted averages 1m,; = (s;) = ;.




MFT for disordered spin models

Fully connected SG : A simple proof

The more traditional one assumes independence of the spins,
P({si}) = 11;pi(s:)

- 1+m; 1—m;
with pi<82') — —|—2m 557;,1 + 2m (532.7_1

and uses this form to express (H) — T'(S) with S = In N/ ({s;})
The energetic contribution is straightforward to evaluate

The entropic contribution is the one we already computed for the Curie-Weiss

model, taking care of keeping the indices

A more powerful proof expresses f as the Legendre transform of —(F'(h;)
with m; = N 10|~ (h;)]/Oh; and takes care of a “problem” to be solved

in the next slides Georges & Yedidia 91



MFT for disordered spin models

Missing : the Onsager reaction term

These equations are not completely correct. i
The Onsager reaction term is missing. < )

This term represents the reaction of the spin ¢ to itself

The magnetisation in 7 produces a field h’( )= §iMM; = J@]mz on spin
This field induces a magnetisation 11" .y = xj; '; ;) = X;j;Jij i on the spin j.
This magnetisation produces a field h’( )= = Ji; mt7<Z> = Jijx;;Jijm; on site ..

The equilibrium fluctuation-dissipation relation between susceptibilities and connec-
ted correlations implies \;; = 3 ((s; —(s;))?) = B(1— mj) and one then
/ 2\ 72



MFT for disordered spin models

The Onsager reaction term

The idea of Onsager — or cavity method — is that one has to study the ordering

of the spin 7 in the absence of its own effect on the rest of the system.

The total field produced by the sum of h,’i(j) = B(1 — m> )J2 m; over all
the spins 7 with which it can connect, has to be subtracted from the mean-field

created by the other spins in the sample, i.e. the total local field should be

hio¢ = Z Jijm; — Bmy Z J2 1 —

J(#4) J(#i)

recall that .J;; = O(1/+/N). Finally, the TAP equations read

m; = tanh{ Z [ﬁJijm] 62m2J2 (1— j)}}
7 (#4)



MFT for disordered spin models

Orders of magnitude

The Thouless-Anderson-Palmer (TAP) equations read

m; = tanh{ Z |BJiim; — 52miJz'2j(1 - m?)]}

J(F#4)
. . 1
The first term in the ths ) .., Jijm; =~ \/—N\/N = (O(1) because of the
central limit theorem.
1

The second term ) (., ij(l — m?) ~ 3 N = O(1) because all terms

in the sum are positive definite (1m; < 1 V)

Recall that m; = (s;)



MFT for disordered spin models

Orders of magnitude

The Thouless-Anderson-Palmer (TAP) equations read

m; = tanh{ Z [BJz-jmj — BQmiJZZj(l — m?)} }
7(#1)

1

The first term in the ths ) .., Jijm; =~ VN = O(1) because of the

=

central limit theorem.

1
2
The second term ) (., ij(l —m3) =~ ~ N = O(1) because all terms
in the sum are positive definite (1m; < 1 V)

Exercise
Check that higher order loops are negligible, (/ \\k
since sub-leading in powers of /V :



MFT for disordered spin models

Orders of magnitude

The Thouless-Anderson-Palmer (TAP) equations read
m; = tanh{ Z [BJZ]m] — BQmiJZZj(l — m?)} }
j(#1)

The first term in the ths ) .., Jijm; =~ VN = O(1) because of the

2=

central limit theorem.

1
The second term ) (., J?Z (1= ]) ~ N = O(1) because all terms

in the sum are positive definite (1m; < 1 V)

Exercise i i
Check that in the Curie Weiss model J;; = J/N < ) (/ \\_k

there is no need of Onsager terms



Landscape

Free-energy density at fixed randomness

The TAP equations are the extremization conditions on the TAP free-energy

1 g
FyPlimad) = =g 2 Jigmamy = 5 J(1—mid)(1 —m3)
e e

1 1
Ny T 2

N
1+mi . 14+mi 1—mi 1—my
‘|—TZ{ +m +m m . m

1 =1

Free Energy

Conformational coordinate

At low temperatures {mz}



Landscape

Free-energy density at fixed randomness

The TAP equations are the extremization conditions on the TAP free-energy

SF({mi}) _

Om; t
. o - . 52Fjap({mz’})
The stability of the solutions is determined by the Hessian

om;omy,

Free Energy

Conformational coordinate

At low temperatures {mz}



Landscape

Free-energy density at fixed randomness

free-energy density

\
4

N degrees of freedom

Figure adapted from a picture by C. Cammarota

Topography of the landscape on the /V-dimensional substrate made

by the NV order parameters ?




Features

At fixed randomness

There are N local order parameters, m;, : = 1,..., NV
The saddle-points are heterogeneous: m,; differ from site to site
At high temperatures only one trivial solution {7; = 0}

At low temperatures the TAP equations have many solutions {1, }, which

are extrema of the TAP free-energy landscape, i.e. saddles of all types,

Oézl,...,NJ

For each solution {1;“ }, there is also { —m2;“ } but apart from this trivial

doubling, the remaining solutions are not related by symmetry

The TAP free-energy can take different values at different {1;,“ } = f{} |



Features

All this is reshuffled for another realization of disorder

Still NV local order parameters, m;, 1 =1,..., N

The TAP equations have other solutions {771;“ }, extrema of the TAP free-

energy landscape, F}ap, labelledby v = 1, ..., N

1 N
A global order parameter ? The simplest guess — Z ms* cannot be since
1=1

it is = 0 One expects as many positive as negative 12;s and similarity in

all respects. Another try
1 N
=g

“Typicality expected” (though see below for equilibrium states)



Features

Numbers of metastable states

N local order parameters, m;, 1 =1,..., N

The TAP equations have many solutions {mzo‘} extrema of the TAP free-

energy landscape, &« = 1, ..., N}

One can count how many saddles of each kind exist and their complexity

N 1
NJ:Hfldmzé(mz—mO‘) N =1nN
=1

1

how many of these at each level of free-energy density, by inserting a delta-

function o ( 3ap({mf‘}) — ) =N;(f)

How many with a given stability NJ(f, K) with /A the number of positive

eigenvalues of the Hessian, with adequate delta-functions



Summary

Local & global order parameters

mz-o‘ — <Si>a

=0atl >"1,
«v labels the TAP state
# 0atl < T,
Magnetization
m = % Z m;" = (0 at all temperatures and for all «v

1

Edwards-Anderson order parameter

Gia = w 2o (mf)? = 5 2 (s

(

=Q0atl >1,.
~0atT <1,



Statistical averages

At fixed interactions

The average of a generic observableis | (O) = > w,(O),

In the FM case, each state ((¢) = ) has weigth w+ = 1/2 and the sum
s (0) = 5(0)+ + £(O0)_ with (O) . the average in each of the states. For
instance, the averaged magnetization vanishes if one sums over the & states or

it is different from zero if one restricts the sum to only one of them.

upper
critical
lower

FM case

The dashed blue line with

two minima =+ ¢y |

If we have many more ?




Statistical averages

At fixed interactions

The average of a generic observableis | (O) = > w,(O),

In the FM case, each state ((¢) = =) has weigth w+ = 1/2 and the sum
s (0) = 3(0)4+ + 5(O)_ with (O) the average in each of the states. For
instance, the averaged magnetization vanishes if one sums over the = states or

it is different from zero if one restricts the sum to only one of them.

c?ﬁg FMcase [ = [_
ower —BN f+ 1
€
f _ Ny __
s e~ BNf+ 4 e BNf— 4 e=BNfo — 2
,,,,,,,,,,,,, e~ BN fo
wo < w4+

T e BNt { ¢—BNf- 4 ¢—BNfo



Statistical averages

At fixed randomness

The average of a generic observableis | (O) = > w,(O),

For systems with quenched randomness w: =

where we added a super-script to the weight w

/ indicates that the weights depend on the the disorder realization

and ., is a label that identifies the TAP solution

One can sum over all saddles irrespec-
tively of their stability. Higher lying ones

will be exponentially suppressed or

will dominate depending on > 7 ( f, /)




Statistical averages

At fixed randomness

The average of a generic observableis | (O) = > w,(0),

For systems with quenched randomness w

J e BNy
o

— 7
Zv o —BNEy

The sum over «, in the case in which there are an exponential in N number of

TAP solutions, can be replaced by an integral over

(0) = 271(8,7) [ df e PN @A O, )

N ; is the number of solutions to the TAP egs. with free-energy density f.

For N — o0 the integral is dominated by the saddle point
1 1 OlnN,(f,5) 1 0% ;(f, B)

R — lexi
T N of N  Of complexity

fs jo fS p



Statistical averages

Consequences

The equilibrium free-energy f is given by the saddle-point evaluation of the

partition sum:

T

f:fsp_ Nlan(f8p76)

The rhs is the Landau free-energy of the problem, with fsp playing the role of
the energy and N~ In Vs (£, 3) of the entropy

The contribution of the complexity or configurational entropy contribution is ne-
gative and in some cases higher lying extrema (metastable states) can dominate

the partition sum with respect to lower lying ones if In Ny (fs,,, 5) oc IV

This feature is proposed to describe super-cooled liquids.



A global observable

Effect of multi-states

What is the expression of the global order parameter once one takes into ac-

count the multi-states ?
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an overlap between different states

and | Py(q") = 3 waws 0(¢" — qap)

we obtain q = % Z<3i>2 — qu/ PJ(Q/) q




Real replicas

How to see the TAP states ? overlaps between replicas

Take one sample and run it, with e.g. Monte Carlo, until it reaches equilibrium,

measure the spin configuration {s; }.

Re-initialize the same sample (same Jij), run it again until it reaches equili-

brium, & measure the spin configuration {; }.

Construct the overlap s, = N ! Zfil $;05;.

In a PM system the overlap will typically vanish as, say, N—1/2

upper
critical
lower

Many repetitions
for a system with NV > 1

P(stg) — 5(%0)




Real replicas

How to see the TAP states ? overlaps between replicas

Take one sample and run it, with e.g. Monte Carlo, until it reaches equilibrium,

measure the spin configuration { s; }.

Re-initialize the same sample (same Jij), run it again until it reaches equili-

brium, & measure the spin configuration {; }.

Construct the overlap ¢s, = N ! ijil $;05;.

In a FM system there are four possibilities

. N . N . N . N
. X . " . . - .
. . . r . . . .
. . .
. . . .
SO 805 | | S eS| Toveneer S5
! Pid .. - 3 e* g " + * .. " + P g .. "
Yan® LR Yan® Taw ‘an® Taw ‘an® Taw

(ow = M2 2 2 2

Many repetitions | P (¢s,) = 20(qso — m?) + 50(qse + m?)




Real replicas

Pdf of overlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with V= 4096 at’/" = 0.4 7,

Hy[{si}] = —3
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Finite size corrections in the Sherrington-Kirkpatrick model

Aspelmeier, Billoire, Marinari & Moore (2007)



Real replicas

Ooverlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with NV = 4096 at’/" = 0.4 7,

HJ[{SZ}] — —% Z JijSiSj
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Data in each panel for a different realization of the random couplings

Each sample has peaks at ¢, = =qpa >~ £0.75:

two configurations in the same (or the spin-reversed) state

PJ(QSJ)




Real replicas

Pdf of overlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with NV = 4096 at 7" = 0.4 T,

_ 1 _ 1
Hjl{si}| = —5 > Jijsis; Iso = 7 D Si0i Pj(qso)
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Data in each panel for a different realization of the random couplings

0.75 ~ gra < 1 and the width of the peaks at ¢;, = £grA:

dueto 0 < 1" < T, and finite /V, respectively




Real replicas

Pdf of overlaps between replicas at fixed randomness

Sherrington-Kirkpatrick model with V = 4096 at 7" = 0.4 1.

Hjl[{si}] = =3 ; Jijsis;
i#]
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Data in each panel for a different realization of the random couplings

Most samples also have peaks at [¢s,| < qpa:

replicas {s; } and {o; } falling in different states

PJ(QSJ)




Real replicas

Pdf of overlaps between replicas at fixed randomness

SK model with N — ocoat’l' < 1.

I}(q)

EA EA

What happens if one averages P;(q) over disorder



Real replicas

Disordered averaged pdf of overlaps P(q) = [P;(q)]

Parisi 79-82 prescription for the replica symmetry breaking Ansatz yields

PM —— FM ——
1 0 1 1 -m® 0 m?
High temperature FM

p-spin

-1 -Qga

0

Qea 1

Structural glasses

SK ——

—

-1 -Qga O Qea 1
q

Spin-glasses

Thermodynamic quantities, in particular the equilibrium free-energy density are

expressed as functions of ().

The equilibrium free-energy density predicted by the replica theory was confir-

med by Guerra & Talagrand 00-04 indepedent mathematical-physics mthods.



Typical vs. averaged

TAP vs. Replicas

Precursors

Look at an integer parameter n

and its . — 0 limit

In 1972 Fortuin and Kasteleyn studied the Potts model with n components :

n = 2 lIsing
n = 1 percolation

n = (O random resistors

Use the identify 2" = exp(n In x) and expand around 7 = 0 :

lim,_ 02" =1+ nlnx + O(n?)



Replica method

A sketch

Bl = tim RENBD] gy RG]

N —00 N N —00 n—0 Nn

Z v partition function of 7 independent copies of the system : replicas.

Gaussian average over disorder : coupling between replicas

Do Dig JijSis; = Zz‘;éj( aS?S?)Q

Quadratic decoupling with the Hubbard-Stratonovich trick

a b 1 "2
Qab ) ; 5isi + 500

(). is a 0 x 0 matrix but it admits an interpretation in terms of overlaps
The elements of (), can evaluated by saddle-point if one exchanges the
limits V — oo n — Owithn — 0 N — oo.



Replica method

In more detail

Z i partition function of 7 independent copies of the system : replicas.

ZRB. )= Y ) e R By et

{(sW=x1}  {s{M==x1}

\ .

Vs

notation Tr{sg}

One can exchange the order of the trace and the average over disorder

AL 5,J = Tryga dJZP J,L 6_62221 2inj Jij Sy s]
N 1s7} b J J
i#]

Z3(8, J)] = Trysey e PHenllstl]

H.i[{s!}| does not have any randomness but couples the replicas

Do Duizg JijSisi = Zz‘;éj( asgs?)Q




Replica method

In more detail

Z3(B, J)] = Trpgy e~ PHenllst)

Heog|{s?}] does not have any randomness but couples the replicas
b b
s (T s052) " = Yy o Xy sl o 3, 30, sl 30 sl

One sees (), here, introduce their definition via a delta or apply Hubbard-

Stratonovich
Once this done, one can exchange the trace (the sum over spin configurations)

and the integral over (),; and end up with

238, )] [ TLy dQue @)



Replica method

For the SK model

Qab — {ab andp = 2

— Nln¢(ga)

BF(qa) = NﬁJ [ qub—l—n

a#b

Z e BH(gab,5q) 7
H(qar5a) = —J Y aSaSs—h Y Sa,
ab a

C(Qab)



Replica method

In more detail

(Z3(8, J)] = Trygay e PHenlls)] o f [1., dQupe~F (@t

Heg|{s%}] and ()41 do not have any randomness but couple the replicas

The elements of (), can be evaluated by saddle-point if one exchanges the

limits N — ocon — Owithn — 0 N — oo.

At the saddle-point level one identifies )7} = N~ 1(>" . 57s?)

7711

The spin glass transition is from the paramagnetic state with Qa7gb = Otoa

spin glass state with Qa# + () as the temperature is decreased.



Replica method

SK model: replica symmetric Ansatz

Permutation symmetry between replicas =

Insert (),«, = g and (), = 1 in the effective Hamiltonian
Saddle-point with respect to g and n — 0

q= ffooo j—QZ—W e=%"/2 tanh (5J\/§z)

Note the similarity with the equation for 1 in the Curie-Weiss model

q=0for T >1T,.=J
qg#O0forT"<T,.=1J

Problem | Is this solution stable ? No
Problem Il Does it have a zero-temperature vanishing entropy ? No

Problem Il Ground state energy density ¢ = —0.77 == 0.01 while the replica symme-
tric value e = —0.798, is three standard deviations smaller (in units of .J)



Replica method

SK model: one step replica symmetry breaking

Permutation symmetry broken

1 X n matrix divided in diagonal blocks of size 1m X 1 and the rest



Replica method

SK model: one step replica symmetry breaking

Problem | Stability : improved but not solved
Problem Il Zero-temperature entropy : improved but not solved

Problem lll e closer to numerical value



Replica method

SK model: two step replica symmetry breaking

Permutation symmetry broken

mo9 mi n—m;
N
12, %
ql \ qo
0
o
0
9 g,
192
_ T

n X n matrix divided in diagonal blocks of size 119 X 1m9, and the rest in blocks

of size M1 X m1 and the rest



Replica method

SK model: two step replica symmetry breaking

)

2, q]

ql ! qo

(8]
(8]
0
9 g,
72

B 4

Problem | Stability : improved but not solved
Problem Il Zero-temperature entropy : improved but not solved

Problem lll e closer to numerical value



Replica method

SK model: full replica symmetry breaking

Blocks of size m; with parameter g;
e.g. for replica symmetric case one block a single g.
o0 number of breaking steps, that is, of blocks

m; — x and the parameter ¢; + q(x)

zfoldxq(x)zf—dqq quP

d_a;
dq

with | P(q) =

Problem | Stability : solved

Problem Il Zero-temperature entropy : solved S = ()
Problem lll e in agreement with numerical value
within numerical accuracy e = —0.7633



MFT for disordered spin models

Phase transition

2 L1721 — 72 G T
For large V' one expects ./ ~ |J | = J=/N with J = O(1)

Simplification m; = tanh {6 Zj(#i) Jijm; — BszJWQ (1— m?)}
j(#1)

A 2nd order phase transition = m; ~ 0 at [’ N 1. then using tanh y ~ vy
The TAP equations become m,; ~ (3 Zj(#) Jijmgi — B2 J*m;
Diagonalize this eq. going to the basis of eigenvectors of the Jz-j matrix

The eqgs read 1m ) ~ 6<J>\ - 5J2>m>\

The notation we use is such that

J\ is an eigenvalue of the .J;; matrix associated to the eigenvector v/

—

M. represents the projection of 172 on the eigenvector Uy, m = Uy - M

with 772 the /V-vector with components 1m;, 11 = (M1, ..., my)



MFT for disordered spin models

Phase transition

If we add a weak external field the eqs read 1y, ~ 3(J\ — 5J%)my + BhSX

The variation with respect to the field at linear order is

8mA
OhSXt

@m,\
OhSXt

and the staggered susceptibility (of the projection on /)

+p

Eext :6

= B(Jx — BJ%)

}_iext :6

_ ﬁmA
X\ = 6’h§Xt

=B (1-BJx+ ()2

—

hext :6

Random matrix theory tells us that the eigenvalues of the random matrix Jz-j —
O(1/+/N) are distributed with the Wigner semi-circle law and the largest ei-

genvalue is J " = 2.J

The staggered susceptibility of staggered magnetization in the direction of

the largest eigenvalue diverges at 3./ = 1 the correct value




MFT for disordered spin models

Phase transition

If we add a weak external field the egs read m., ~ (5(J) — BJ2)m>\ — BhiXt
The variation with respect to the field at linear order is

— B(Jy - pI2) 2

o +5
}_iext:_’ 8h)\ t n

hext :6

and the staggered susceptibility (of the projection on /)

- OmA

0= | =8 (L=BH+ (87

ﬁext :6

Random matrix theory tells us that the eigenvalues of the random matrix Jij are

distributed with the Wigner semi-circle law
For J;; = O(1/v/ N ) the largest eigenvalue is J}"** = 2.J
The staggered susceptibility for the largest eigenvalue diverges at 5. = 1

Without the reaction term the divergence is at the inexact value 177 = 27,



Plan of lecture

Definition & examples

Properties

List of methods

Thouless-Anderson-Palmer equations

— Local order parameters & landscapes (beyond Ginzburg-Landau)
— Statistical averages

— Real replicas

Replica theory

Relaxation dynamics (experiments, humerics)

Relaxation dynamics (theory)



Spin-glasses

slow relaxation & loss of stationarity (aging)

0.4

054 .

O 04- ib/ %31

S 0.3 T 02 L

= g Magnetization

2 021 M tipati _ fA % .4 relaxation after

T,_') | agne Ization .n0ISe 04 (_>é ' a field change

S 0.1 self correlation o}

© © 00

01 1 10 100 1000 01 A 10 100 1000
Time difference t-t' (s) Time difference t-t' (s)
Correlation Linear response
0 t, t/ t/ t/ time

Different curves are measured after log-spaced reference times ¢’ after the

quench: breakdown of stationarity — far from equilibrium

No identifiable growing length R(t): glassy microscopic mechanisms ?

Spin-glass experiments  Hérisson & Ocio 02-04



Ferromagnet vs glass

Not so different as long as correlations are concerned

ST 1.0 |
— 308
—~ > 0.6
;;s tW=§ - T |
O - 0.4 -
o1t 8 ,
64 -
128 —— A 0.2
256 N
1 10 100 1000 = 10" 10° 10" 10 10° 10“1105
t-t,,
2d Ising model - spin-spin Lennard-Jones - density-density
Sicilia et al. 07 Kob & Barrat 99

One correlation can exhibit stationary and non stationary relaxation

in different two-time regimes




Plan of lecture

Definition & examples

Properties

List of methods

Thouless-Anderson-Palmer equations

— Local order parameters & landscapes (beyond Ginzburg-Landau)
— Statistical averages

— Real replicas

Replica theory

Relaxation dynamics (experiments, numerics)

Relaxation dynamics (theory)



Models

Self generated disorder

Exact treatment

Langevin dynamics of spins with quenched random interactions on
a complete graph.

Particles in interaction moving in an infinitely dimensional space.

Approximate treatment (e.g. no quenched randomness)

Finite d : self-consistent resummation of infinite subsets of

diagrams mode-coupling theory, etc.

The exact treatment of an approximate model is identical to the ap-

proximate treatment of the realistic model



Schwinger-Dyson equations

Stochastic dynamics

In the NV — o0 limit exact causal Schwinger-Dyson equations

(0 — 2)C(t,ty) = /dt’ 2(t,t)C(t, tw) + D(t, t)R(tw, t')]
+ 2T R(t',t)
(O — z¢)R(t, ty) = /dt’ Y(t, R, ty) + 0(t — ty)

where the self-energy and vertex are functions of C' and /X and depend

on the choice of the model/approximation



Schwinger-Dyson equations

Stochastic dynamics

In the NV — o0 limit exact causal Schwinger-Dyson equations

(0 — 2z)C(t, ty) = /dt’ X(t, ") C(t, ty) + D(t, t)R(tw, t')]
+ 2T R(t,t)

(@—a@Rﬁﬁw:i/dﬂzaﬁqRWJwy+&t—%)

for p spin spherical models they read C' and R :

1
D(t, ty) = g(]p_l(t,tw) C N(tty) = p<p2 ) or=2(t,1,) R(t.1,,)

and the Lagrange multiplier z; is fixed by C'(¢, 1) = 1.



Dynamics of p spin models

Analytic results

separation of time-scales  C'(t,1,,) = Ceq(t — o) + Cug(t, tw)
X(t tw) = Xeq(t — tw) + Xag(t, tw)

Highly non-trivial relation between  and C' : violations of FDT.

(Approx) Time-reparametrization invariance t — h(t) in aging.

LFC & Kurchan 93

(Smart) numerical results

1e+00 1e+00
q
O 1e-01 t+ O 1e-01}
1e-02 ‘ : : 1e-02 : : : :
1e+01 1e+03 1e+05 1e+07 1e-05 1e-03 1e-01 1e+01 1e+03
t-t,, x=R(1)/R(t,,)

Kim & Latz 00

Meaning of R(t) ~ t*?




Glassy dynamics

Fluctuation-dissipation relation: parametric plot

1e+00
q
O 1e-01 ¢
1
08 -1/T FDT
1e-02 : ‘ ‘
1e+01 1e+03 1e+05 1e+07 0.6 1
t-t,, =
X
16+00 ‘ — ‘ ca
aging & slow (3 59)
0.2 t
x / epic & st O o o |
rapid & stationary (x ) 0O 02 04 Qs 0.8 1
C
1e-01

1e-01 1e+01 1e+03 1e+05
t-tw

Analytic solution to a mean-field model LFC & J. Kurchan 93



Summary

Main issues

In equilibrium phases with a number of states scaling with /V (possibly

exponential in /V)
Non-trivial organization of these states (ultrametricity)

Phase transitions of a new kind random first order ones as, e.g. inthe p > 3

cases relevant to glasses.

Experimentally, they remain out of equilibrium at low temperatures

teq > tobs
Aging
Violations of FDT with the appearance of effective temperatures]

Weird effects under temperature cycling effects protocols



Summary

Some properties of frustrated magnets absent in spin-glasses

Order-by-Disorder phenomena (an ordered state selected at /' 2 0 out of

the many degenerate ground states)

Often, a local pattern can be identified in the ground states of frustrated ma-

gnets

Frustrated magnets such as spin-ice also have ordered phases in which the

dynamics is one of coarsening kind

and their disordered phases are commonly critical

No weird rejuvenation and aging effects under temperature cycling protocols



