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Aim

Better understanding of melting in two dimensions

Why 2d?
Experimental realisations but in reality,

because it is interesting from a

fundamental viewpoint

a talk about a classical problem and a

timely active extension
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Plan

1. Equilibrium phases: solidification/melting

Special in two-dimensions

Solid, hexatic & liquid phases

Phase transitions

Topological defects

2. Active matter

Self-propelled Brownian disks in 2d

Phase diagram

Solid, hexatic & liquid phases ; motility induced phase separation
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Phases of matter
Solid, liquid and gas equilibrium phases

Typical & simple (P, T ) phase diagram

5



Equilibrium phases
Macroscopic properties

• A gas is an an air-like fluid substance which expands freely to fill any

space available, irrespective of its quantity.

• A liquid is a substance that flows freely but is of constant volume, ha-

ving a consistency like that of water or oil. It takes the shape of its

container

• A solid is a material with non-vanishing shear modulus.

• A crystal is a system with long-range positional order.

It has a periodic structure and its ‘particles’ are located close to the

nodes of a lattice.
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Hard disks in 2d
Zero temperature crystal: triangular lattice w/6 nearest neigh.

d = 2 packing fraction φ = Soccupied/S at close packing φcp ≈ 0.91
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Freezing/Melting
Different routes in 3d and 2d: mechanisms?

Image from Pal, Kamal & Raghunathan, Sc. Rep. 6, 32313 (2016)

T = 0 Position & orientation order lost

Orientation order preserved also lost
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Harmonic solids
Peierls 30s: no finite T translational long-range order in 2d

Consider a crystal made of atoms connected to their nearest-neighbours

by Hooke springs. At finite T the atomic positions, φi, fluctuate, φi =

Ri +ui, with ui the local displacement from a regular lattice site atRi

ui

Open dashed: perfect lattice positionsRi Filled gray: actual positions φi

Does the long-range positional order (crystal) survive at finite T ?

not in d = 2 since the mean-square displacement grows with distance

∆
2(r) ≡ ⟨(u(r) − u(0))2⟩ ≃ kBT ln r
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Positional order
Local density properties

The (fluctuating) local particle number density

ρ(r0) = ∑N
i=1 δ(r0 − ri)

with normalisation ∫ ddr0 ρ(r0) = N . In a homogeneous system, the coarse-grained

(averaged over a volume v) local density is constant [[ρ(r0)]] = N/V

Fluctuations

The density-density correlation function C(r+ r0, r0) = ⟨ρ(r+ r0)ρ(r0)⟩
The average ⟨. . .⟩ is over configurations in a steady state

For homogeneous (independence of r0) and isotropic (r ↦ ∣r∣ = r) cases, is

simply C(r + r0, r0) = C(r)

The double sum in C(r + r0, r0) = ⟨∑ij δ(r + r0 − ri)δ(r0 − rj)⟩ has

contributions from i = j and i ≠ j : Cself + Cdiff
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Positional order
Local density properties

The density-density correlation function

C(r + r0, r0) = ⟨ρ(r + r0)ρ(r0)⟩ = ∑ij⟨δ(r + r0 − ri)δ(r0 − ri)⟩

is linked to the structure factor

S(q) ≡ N−1⟨ρ̃(q)ρ̃(−q)⟩ = 1

N
⟨
N

∑
i=1

N

∑
j=1

e
−iq⋅(ri−rj)⟩

with ρ̃(q) the Fourier transform of ρ(r) by

N S(q) = ∫ d
d
r1 ∫ d

d
r2 C(r1, r2) e−iq⋅(r1−r2)

Exercise : prove it
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Colloidal suspensions
Structure factor: from fuzzy peaks to a disk as T increases

S(q) ≡ N−1⟨ρ̃(q)ρ̃(−q)⟩ = 1

N

N

∑
i=1

N

∑
j=1

⟨e−iq⋅(ri−rj)⟩

High T Low T

Liquid (later) Solid

Figure from Keim, Maret and von Grünberg, PRE 75, 031402 (2007)
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Crystals vs. Solids
3d vs. 2d

• A solid is a material with non-vanishing shear modulus.

• A crystal is a system with long-range positional order.

It has a periodic structure and its ‘particles’ are located close to the

nodes of a lattice.

The position fluctuations are bounded ∆
2
= ⟨(ri − rlatt

i )⟩ <∞
• 2d solids exist but have a weaker ordering than 3d ones.

− They are oriented crystals with no positional order.

− Critical phase with algebraic relaxation of position correlations.

− Phase transition à la Kosterlitz-Thouless (Nobel Prize).
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Harmonic solids
Peierls 30s: but finite T orientational long-range order possible

Consider a crystal made of atoms connected to their nearest-neighbours

by Hooke springs. At finite T the atomic positions, φi, fluctuate, φi =

Ri +ui, with ui the local displacement from a regular lattice site atRi

ui

Dashed: perfect lattice positionsRi Gray: actual positions φi

Does the long-range orientational order (solid) survive at finite T ?

yes, even in d = 2 since the correlation

Corient(r) ≡ ⟨u(r) ⋅ u(0)⟩→ cst
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Harmonic solids
No long-range translational but long-range orientational order

Angles preserved while no periodic order of the disks’ centres.

How can one quantify orientational order in general ?
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Neighbourhood
Voronoi tessellation to identify nearest-neighbours

A Voronoi diagram is induced by a set of points, called sites, that in our

case are the centres of the disks.

The plane is subdivided into faces that correspond to the regions where

one site is closest.

Focus on the central light-green face

All points within this region are closer to the dot within

it than to any other dot on the plane

The region has five neighbouring cells from which it is

separated by an edge

The grey zone has six neighbouring cells
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Orientational order
Hexatic order parameter

and measures orientational order

The local (six) order parameter ψ6j =
1

N
j
nn

N
j
nn

∑
k=1

e
6iθjk (vector)

(For beads placed on the vertices of a triangular lattice, each bead j has six nearest-

neighbours, k = 1, . . . , N
j
nn = 6, the angles verify ∆θjk =

2π
6

and ψ6j = 1)

associates arrows (directions) to disks
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2d colloidal suspensions
Hexatic correlation functions

Γ is the control parameter playing the role of inverse temperature

Figure from Keim, Maret & von Grünberg, PRE 75, 031402 (2007)
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Correlations & defects
Hexatic Positional • 7 neighb • 5 neighb

Solid Hexatic Liquid

long r∶ G(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ct r
−η

Solid long range order

r
−η6 e

−r/ξ
Hexatic quasi long range order

e
−r/ξ6 e

−r/ξ
Liquid disorder

Sketches from Gasser 10
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What drives the phase transitions?

Why did we highlight the particles with 5 & 7 neighbours?
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Defects
Unbinding of dislocations: from the solid to the hexatic

A bound pair of dislocations A free dislocation

In the crystal the centres of the disks form a triangular lattice

The blue disks have seven neighbours and the red ones have five.

On the left image : the external path closes and forms a perfect hexagon.

The effects of the defects are confined. This is the solid phase.
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Defects
Unbinding of dislocations: from the solid to the hexatic

A bound pair of dislocations A free dislocation

In the crystal the centres of the disks form a triangular lattice

The blue disks have seven neighbours and the red ones have five.

On the right image : the external path fails to close, no perfect hexagon.

The effect of the defects spreads & kills translation order: hexatic phase.
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Defects
Unbinding of dislocations: from the solid to the hexatic

A bound pair of dislocations A free dislocation

In the crystal the centres of the disks form a triangular lattice

The blue disks have seven neighbours and the red ones have five.

The underlying arrows are roughly aligned in both images. The hexatic

phase keeps quasi long-range orientational order.
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Defects
Unbinding of disclinations: from the hexatic to the liquid

The orientation winds by ±2π around the blue (seven) and red (five) defects.

Very similar to the vortices in the 2d XY magnetic model.

Halperin, Nelson & Young scenario: the unbinding of disclinations drives a

second BKT-like transition to the liquid.
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Freezing/Melting
Mechanisms in 2d

Arrows oriented (LR) less oriented (QLR) order lost

• five neighbours • seven neighbours

Voronoi tesselation
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Phases & transitions
Berezinskii, Kosterlitz, Thouless, Halperin, Nelson & Young 70s

BKT-HNY

Solid QLR positional & LR orientational

transition BKT (unbinding of dislocations)

Hexatic phase SR positional & QLR orientational

transition BKT (unbinding of disclinations)

Liquid SR positional & orientational

Two infinite order, ξ ∝ e
δ
−ν

with δ → 0,

Berenzinskii, Kosterlitz & Thouless

transitions
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Berezinskii-Kosterlitz-Thouless
The 2d XY model −J ∑

⟨ij⟩
s⃗i ⋅ s⃗j = −J ∑

⟨ij⟩
cos ∆θij

At very high temperature one expects disorder and

C(r) ≡ ⟨s⃗i ⋅ s⃗j⟩eq ∼ e
−r/ξeq(T/J)

with ∣r⃗i − r⃗j∣ = r

At very low temperature the harmonic approximation is exact and there is quasi

long-range order

C(r) ∼ r−ηe−r/ξeq(T/J)
with ξeq(T/J)→∞ so that C(r) ∼ r−η

There must be a transition in between.

Assumption: the transition is continuous and it is determined by the unbinding

of vortices (topological defects).

Proved with RG, assuming a continuous phase transition.

The correlation length diverges exponentially ξeq ≃ e
a/∣T−TBKT∣−ν

as T →

T
+
BKT and it remains infinite in the phase with quasi long-range order.
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Berezinskii-Kosterlitz-Thouless
Lack of universality of the transition in XY models

The RG proof yields, actually, an upper limit for the stability of the quasi

long-range ordered phase.

A first order phase transition at a lower T can preempt the BKT one.

It does for sufficiently steep potentials:

“First order phase transition in an XY model with nn interactions”

Domany, Schick & Swendsen, Phys. Rev. Lett. 52, 1535 (1984)
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Berezinskii-Kosterlitz-Thouless
Lack of universality of the transition in XY models

2
The RG proof yields, actually, an upper limit for the stability of the quasi long-range

ordered phase.

A first order phase transition at a lower T can preempt the BKT one.

It does for sufficiently steep potentials:

La Habana, 2005
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Phases & transitions
BKT-HNY vs. a new scenario by Bernard & Krauth 2011

BKT-HNY BK

Solid QLR pos & LR orient QLR pos & LR orient

transition BKT (unbinding of dislocations) BKT

Hexatic phase SR pos & QLR orient SR pos & QLR orient

transition BKT (unbinding of disclinations) 1st order

Liquid SR pos & orient SR pos & orient

Basically, the phases are the same, but the hexatic-liquid transition is different,

allowing for coexistence of the two phases for hard enough particles

Event driven MC simulations. Sketches from Bernard’s thesis.
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Hard disks
Pressure loop and finite N dependence: evidence for 1st order

Similar to Van der Waals model for 1st order phase transitions

P cannot increase with V (stability): phase separation via Maxwell construction

Hexatic Liquid
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Rather hard disks
Molecular dynamics of overdamped Brownian particles

γṙi = −_i∑j(≠i) UMie(rij) + ξi ,

ri position of the centre of the

ith particle

rij = ∣ri − rj∣ inter-part distance,

V
ε

r/σd

very short-ranged, purely repulsive, Mie potential (truncated Lennard-Jones)

ξ zero-mean Gaussian noise with ⟨ξai (t) ξbj(t′)⟩ = 2γkBTδ
ab
ij δ(t − t′)

packing fraction φ = πσ
2
dN/(4S)

parameters γ = 10 and kBT = 0.05 Digregorio et al. PRL (2018)
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Passive hard disks
Phase diagram

φCP ↑

φRCP ↑

φ

solid

hexatic

co-existence ; 1st order

liquid

n = 32, T = 0.05, γ = 10,m = 1, σd = 1, τp = 60,N ∼ 10
6

MareNostrum (Barcelona, España) & Galileo (Cineca, Italia) computer facilities
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Rather hard disks
Two local observables

Space-point dependent normalized density

ρ(r) = 1

N

N

∑
k=1

δ(r − rk)

averaged over a volume `
d

around the point r or the position of a particle i

Particle dependent hexatic order parameter – a vector –

ψ6j =
1

N
j
nn

N
i
nn

∑
k=1

e
6iθjk

projected on a preferred direction – the averaged one or a reference axis – and

averaged over a volume `
d

around a point r or the position of a particle i
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Rather hard disks
Local density & local hexatic parameter

φ

(co-existence) (co-existence) (upper limit of co-existence)

 10

 30

 50

 0.71  0.72  0.73  0.74  0.75  0.76

φj

 10

 20

 30

 40

 0.71  0.72  0.73  0.74  0.75  0.76  0.77

φj

 20

 40

 60

 0.72  0.73  0.74  0.75  0.76  0.77

φj

 2

 6

 10

 0.6  0.65  0.7  0.75  0.8

|ψ6,j|

 2

 4

 6

 0.6  0.65  0.7  0.75  0.8  0.85

|ψ6,j|

 4

 8

 12

 0.6  0.65  0.7  0.75  0.8  0.85
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What happens with the defects?
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Unbinding of defects
Solid-hexatic transition & the emergence of the liquid at Pe = 0

Dislocations

▲

Disclinations

�

Dislocations

▲

unbind at the solid - hexatic transition as in BKT-HNY

Disclinations � unbind when the liquid appears in the co-existence region

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)
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Unbinding of defects
Free dislocations at the solid-hexatic transition at Pe = 0

Dislocations

▲

unbind at the solid - hexatic transition, φSH from the measu-

rement of correlation functions and other observables, with νSH ≈ 0.37

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)
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Unbinding of defects
Free dislocations at the solid-hexatic transition at Pe = 0

Do Dislocations

▲

unbind at the solid - hexatic transition φSH ???

not so clear experimentally though still νSH ≈ 0.37

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)

Han, Ha, Alsayed, & Yodh, PRE 77, 041406 (2008) Short-range & repulsive microgel
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Unbinding of defects
Free disclinations close to the hexatic-liquid transition at Pe = 0

Disclinations

�

unbind when the liquid appears in co-existence at φH,H+L

and νHL = 0.5
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Unbinding of defects
Free disclinations close to the hexatic-liquid transition at Pe = 0

Disclinations

�

unbind when the liquid appears in co-existence at φH,H+L

and νHL = 0.5

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)

Anderson, Antonaglia, Millan, Engel & Glotzer, PRX 7, 021001 (2017) MC hard
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Grain boundaries & clusters
Classification

The classification in Pertsinidis & Ling, PRL 87, 098303 (2001)
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Proliferation of clusters
Within the co-existence region at Pe = 0

Clusters▲ proliferate within the co-existence region

Vacancies • remain approximately constant within the co-existence region
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Proliferation of clusters
Within the co-existence region at Pe = 0

Clusters▲ proliferate within the co-existence region

Vacancies • remain approximately constant within the co-existence region

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, Soft Matter 18, 566 (2022)

Qi, Gantapara & Dijkstra, Soft Matter 10, 5419 (2014) Event drive MD hard disks
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Is this really related to the 1st order nature of the transition?
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Soft disks
Defect ratio & size distribution

de
fe

ct
ra

tio

φ

P
(n

)

n

For soft disks the hexatic-liquid transition is continuous, no signature

of co-existence. Still, similar picture ; proliferation of clusters with aspects

of percolation at the hexatic-liquid transition.
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Not clear. Open issue.
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Plan

1. Equilibrium phases: solidification/melting

Special in two-dimensions
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Self-propelled Brownian disks in 2d

Phase diagram

Solid, hexatic & liquid phases ; motility induced phase separation
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Active matter
Definition

Active matter is composed of large numbers of active "agents", each of

which consumes energy in order to move or to exert mechanical forces.

Due to the energy consumption, these systems are intrinsically out of

thermal equilibrium.

Uniform energy injection within the samples (and not from the borders).

Coupling to the environment (bath) allows for the dissipation of the injec-

ted energy.
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Active matter
Realisations & modelling

•Wide range of scales: macroscopic to microscopic

Natural examples are birds, fish, cells, bacteria.

• Also artificial realisations: Janus particles, granular, etc.

• 3d, 2d and 1d.

• Modelling: very detailed to coarse-grained or schematic.

− microscopic or ab initio with focus on active mechanism,

− mesoscopic, just forces that do not derive from a potential,

− Cellular automata like in the Vicsek model.
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Active matter
Natural & artificial systems

Experiments & observations Bartolo et al. Lyon, Bocquet et al. Paris, Cavagna, et al.

Roma, di Leonardo et al. Roma, Dauchot et al. Paris, just to mention some Europeans

51



Active disks
Overdamped Brownian particles (the standard model)

Active force Fact along ni = (cos θi(t), sin θi(t))

γṙi = Factni −_i ∑
j(≠i)

UMie(rij) + ξi , θ̇i = ηi ,

ri position of the centre of ith part & rij = ∣ri − rj∣ inter-part distance,

short-ranged repulsive Mie potential,

ξ and η zero-mean Gaussian noises with

⟨ξai (t) ξbj(t′)⟩ = 2γkBTδ
ab
ij δ(t−t′) and ⟨ηi(t) ηj(t′)⟩ = 2Dθδijδ(t−t′).

The units of length, time and energy are given by σd, τ = D
−1
θ and ε

Dθ = 3kBT/(γσ2
d), φ = πσ

2
dN/(4S), γ = 10 and kBT = 0.05

Péclet number Pe = Factσd/(kBT ) measures activity
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Active Brownian disks
The typical motion of particles in interaction

The active force induces a persistent random motion due to

⟨Fact(t) ⋅ Fact(t′)⟩∝ F
2
act e

−(t−t′)/τp

with τp = D
−1
θ
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Active disks
Phase diagram with solid, hexatic, co-existence, MIPS & liquid

Motility

induced

phase

separation

gas & bubble

From pressureP (φ), correlationsGT &G6, distributions of φi &ψ6i at kBT = 0.05

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga, PRL 121, 098003

(2018)
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Active disks
Modulus of the local hexatic order parameter

Pe = 1 Pe = 200

Co-existence in passive limit and in MIPS
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Active disks
Solid, hexatic, liquid & MIPS

1st order à la KTHNY in MIPS
w/co-existence free dislocations at solid-hex

free disclinations in the liquid

Digregorio, Levis, LFC, Gonnella & Pagonabarraga, arXiv:1911.06366
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Defect clusters
Percolation features P (n) ∼ n−τ

τ ≈ d/df + 1

df from the radius of gyration of the clusters
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Defect clusters
Within MIPS: the grain boundaries

P (n) ≃ n−τe−n/n
∗

Independence of φ at fixed Pe within MIPS
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Melting
Mechanisms

– Unbinding of dislocations at solid - hexatic∀ Pe

νSH ≈ 0.37 (KTHNY) at all Pe Universality

– Unbinding of disclinations when the liquid appears∀ Pe

νHL ≈ 0.5 (KTHNY) but hard to tell

However, very hard to be sure about the “free-ness” of these defect.

– Clusters overwhelmingly abundant at ≈ the hexatic - liquid transition

Percolation features∀ Pe, no qualitative difference between 1st order

and continuous. df ↘ for Pe↗

Is the liquid invading and melting the hexatic through the interfaces between

micro-domains? Can one distinguish 1st order from continuous?
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Active Brownian systems
Phase diagrams & plenty of interesting facts

Disks Dumbbells
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Summary & conclusions

There is still a lot to be understood in the very "classic" problem of melting

of passive systems in two dimensions.

New picture with a first order phase transition towards the liquid.

The standard lore on topological effects is only partially verified.

Effects of activity?

We have established the phase diagram of active Brownian particles

and we have studied the statistics of topological defects.

This is a problem in which numerical simulations have been of great help.

P. Digregorio’s PhD Thesis, Università di Bari, Italia 2020.

61



Fluctuation-dissipation
Linear relation between χ and ∆

2
in equilibrium

P (ζ, tw)→ Peq(ζ)

• The dynamics are stationary

∆
2
AB(t, tw)=⟨[A(t) −B(tw)]2⟩=[CAA(0) +CBB(0) − 2CAB(t − tw)]

→ ∆
2
AB(t − tw)

• The fluctuation-dissipation theorem between spontaneous (∆
2
AB) and

induced (RAB) fluctuations

RAB(t − tw) =
1

2kBT

∂∆
2
AB(t − tw)
∂t

θ(t − tw)
holds and implies

χAB(t − tw) ≡∫
t

tw

dt
′
RAB(t, t′) =

1

2kBT
[∆2

AB(t − tw) −∆
2
AB(0)]
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Fluctuation-dissipation
Linear relation between χ and ∆

2
out of equilibrium?

P (ζ, tw) ≠ Peq(ζ)

• The dynamics are stationary

∆
2
AB(t, tw)=⟨[A(t) −B(tw)]2⟩=[CAA(0) +CBB(0) − 2CAB(t − tw)]

→ ∆
2
AB(t − tw)

• The fluctuation-dissipation theorem between spontaneous (∆
2
AB) and

induced (RAB) fluctuations

RAB(t − tw) ≠
1

2kBT

∂∆
2
AB(t − tw)
∂t

θ(t − tw)
does not hold but one can propose

χAB(t − tw) ≡∫
t

tw

dt
′
RAB(t, t′) =

[∆2
AB(t − tw) −∆

2
AB(0)]

2kBTeff(t − tw)
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Teff = T
Co-existence in equilibrium

Pe = 0 φ = 0.710

Integrated linear response & mean-square displacement: their ratio (FDT) τ = t− tw

 0.01

 0.1

 1

 10

 1  10  100  1000

τ

∆
2
 - dilute phase

∆
2
 - dense phase

χ - dilute phase

χ - dense phase

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  100  200  300  400  500

T
e

ff
(φ

)/
T

b
a

th

τ

Dilute phase

Dense phase

Method: linear response computed with Malliavin weights (no perturbation applied) as

proposed by G. Szamel for active matter systems.

Petrelli, LFC, Gonnella & Suma, in preparation
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Teff ≠ T
Co-existence in MIPS

Pe = 50 φ = 0.5

Integrated linear response & mean-square displacement: their ratio (FDR) τ = t− tw
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∆2 - dilute phase

∆2 - all particles

∆2 - dense phase
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τ

Dilute phase

All particles

Dense phase

Method: linear response computed with Malliavin weights (no perturbation applied) as

proposed by G. Szamel for active matter systems.

Petrelli, LFC, Gonnella & Suma, in preparation
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2d colloidal suspensions
Hexatic correlation functions

Figure from Keim, Maret & von Grünberg, PRE 75, 031402 (2007)
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Hard disks in two dimensions
Coexistence

“Two-step melting in two dimensions : first-order liquid-hexatic transition”

Bernard & Krauth, PRL 107, 155704 (2011)
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Hard disks in two dimensions
Pressure loop and finite N dependence

A system with PBCs has a ∼ flat interface with surface energy scaling as

S ≃ L
d−1

=
√
N and f ≃ N

−1/2
. Verified in the inset for φ ≃ 0.708

Hexatic Liquid
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Passive system
Structure factor - very low and very high density

φ = 0.66

φ = 0.76

Liquid

Solid

Bragg peaks

Primitive vectors

q1 =
4π

a
√

3
(
√

3
2
,−1

2
)

q2 =
4π

a
√

3
(0, 1)

Unit of length

a = ( π

2
√

3φ
)

1/2
σd
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Observables
Structure factor in 2d : test of positional order

ri and rj are the positions of the disks i and j and q is a wave-vector :

S(q) = 1

N
∑
ij

e
iq⋅(ri−rj)

Visualisation: two dimensional representation in the (qx, qy) plane.

Triangular lattice in real space Hexagonal lattice in reciprocal space
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Passive system
Structure factor - progressive increase in density

φ = 0.66 φ = 0.72 φ = 0.76
(liquid) (liquid) (solid)

φ = 0.734 φ = 0.74 φ = 0.75
(co-existence) (co-existence) (co-existence)
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Active system
Structure factor Pe = 10 & Pe = 40

φ = 0.734 φ = 0.84 φ = 0.88

Pe = 10
(liquid) (upper limit of co-existence)

φ = 0.26 φ = 0.28 φ = 0.34

Pe = 40
(liquid) (lower limit of co-existence)
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Kinetic energy
Two populations in co-existence region

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  50  100  150  200

K
in
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ti
c
 e

n
e
rg

y

Pe

single dumbbell
25-75 - liquid

25-75 - dense
50-50 - liquid

50-50 - dense

→ Liquid/disordered

→ Dense/hexatic

The averaged hexatic modulus is computed for each particle on a radius of 10 σd

around the particle itself, and a particle is considered to be inside a cluster only if this

value is greater than 0.75. Those particles contribute to the “dense” branch.

Petrelli, Digregorio, LFC, Gonnella, Suma, Eur. Phys. J. E 41, 128 (2018)
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Active dumbbell
Control parameters

Number of dumbbells N and box volume S in two dimensions:

packing fraction φ =
πσ

2
dN

2SEnergy scales:

Active work 2σd Fact

thermal energy kBT
Péclet number Pe =

2Factσd

kBT

Active force Lv ↦ σd Fact/γ
viscous force ν ↦ γσ

2
d/md

Reynolds number Re =
mdFact

σdγ
2

Pe ∈ [0, 200] Re < 10
−2

N = 512
2
≃ 2.6 × 10

5

Stiff molecule limit: vibrations frozen.

Interest in the φ, Fact and kBT dependencies, kBT = 0.05 fixed.
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Active disks
Equation of state (eos) : pressure

∆P = P − Pgas=
Fact

2V
∑i⟨ni ⋅ ri⟩ − 1

4V
∑i,j⟨_iU(rij)⋅(ri − rj)⟩
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