Melting in two dimensional passive \& active matter

Leticia F. Cugliandolo

Sorbonne Université

 Institut Universitaire de France```
 leticia@lpthe.jussieu.fr
www.lpthe.jussieu.fr/~leticia
```

Work in collaboration with
G. Gonnella, P. Digregorio \& I. Petrelli (Bari, Italia)
A. Suma (Trieste, Italia \& Philadelphia, USA)
D. Levis \& I. Pagonabarraga (Barcelona, España \& Lausanne, Suisse)

## Aim

Better understanding of melting in two dimensions

Why $2 d$ ?
Experimental realisations but in reality,
because it is interesting from a
fundamental viewpoint
a talk about a classical problem and a
timely active extension

## Plan

1. Equilibrium phases: solidification/melting

Special in two-dimensions
Solid, hexatic \& liquid phases
Phase transitions
Topological defects
2. Active matter

Self-propelled Brownian disks in $2 d$
Phase diagram
Solid, hexatic \& liquid phases ; motility induced phase separation

## Plan

1. Equilibrium phases: solidification/melting

Special in two-dimensions
Solid, hexatic \& liquid phases
Phase transitions
Topological defects
2. Active matter

Self-propelled Brownian disks in $2 d$
Phase diagram
Solid, hexatic \& liquid phases ; motility induced phase separation

## Phases of matter

## Solid, liquid and gas equilibrium phases



Typical \& simple $(P, T)$ phase diagram

## Equilibrium phases

## Macroscopic properties

- A gas is an an air-like fluid substance which expands freely to fill any space available, irrespective of its quantity.
- A liquid is a substance that flows freely but is of constant volume, having a consistency like that of water or oil. It takes the shape of its container
- A solid is a material with non-vanishing shear modulus.
- A crystal is a system with long-range positional order.

It has a periodic structure and its 'particles' are located close to the nodes of a lattice.

## Hard disks in $2 d$

Zero temperature crystal: triangular lattice w/6 nearest neigh.

$d=2$ packing fraction $\phi=S_{\text {occupied }} / S$ at close packing $\phi_{\mathrm{cp}} \approx 0.91$

## Freezing/Melting

## Different routes in $3 d$ and $2 d$ : mechanisms?



Image from Pal, Kamal \& Raghunathan, Sc. Rep. 6, 32313 (2016)

## Harmonic solids

Peierls 30s: no finite $T$ translational long-range order in $2 d$

Consider a crystal made of atoms connected to their nearest-neighbours by Hooke springs. At finite $T$ the atomic positions, $\phi_{i}$, fluctuate, $\phi_{i}=$ $\boldsymbol{R}_{i}+u_{i}$, with $u_{i}$ the local displacement from a regular lattice site at $\boldsymbol{R}_{i}$


Open dashed: perfect lattice positions $\boldsymbol{R}_{i} \quad$ Filled gray: actual positions $\phi_{i}$

## Does the long-range positional order (crystal) survive at finite $T$ ?

not in $d=2$ since the mean-square displacement grows with distance

$$
\Delta^{2}(\boldsymbol{r}) \equiv\left\langle(\boldsymbol{u}(\boldsymbol{r})-\boldsymbol{u}(\mathbf{0}))^{2}\right\rangle \simeq k_{B} T \ln r
$$

## Positional order

## Local density properties

The (fluctuating) local particle number density

$$
\rho\left(\boldsymbol{r}_{0}\right)=\sum_{i=1}^{N} \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{i}\right)
$$

with normalisation $\int d^{d} \boldsymbol{r}_{0} \rho\left(\boldsymbol{r}_{0}\right)=N$. In a homogeneous system, the coarse-grained (averaged over a volume $v$ ) local density is constant $\left[\left[\rho\left(r_{0}\right)\right]\right]=N / V$

## Fluctuations

The density-density correlation function $C\left(\boldsymbol{r}+\boldsymbol{r}_{0}, \boldsymbol{r}_{0}\right)=\left\langle\rho\left(\boldsymbol{r}+\boldsymbol{r}_{0}\right) \rho\left(\boldsymbol{r}_{0}\right)\right\rangle$ The average $\langle\ldots\rangle$ is over configurations in a steady state

For homogeneous (independence of $\boldsymbol{r}_{0}$ ) and isotropic ( $r \mapsto|r|=r$ ) cases, is simply $C\left(\boldsymbol{r}+\boldsymbol{r}_{0}, \boldsymbol{r}_{0}\right)=C(r)$

The double sum in $C\left(\boldsymbol{r}+\boldsymbol{r}_{0}, \boldsymbol{r}_{0}\right)=\left\langle\sum_{i j} \delta\left(\boldsymbol{r}+\boldsymbol{r}_{0}-\boldsymbol{r}_{i}\right) \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{j}\right)\right\rangle$ has contributions from $i=j$ and $i \neq j: C_{\text {self }}+C_{\text {diff }}$

## Positional order

## Local density properties

The density-density correlation function
$C\left(\boldsymbol{r}+\boldsymbol{r}_{0}, \boldsymbol{r}_{0}\right)=\left\langle\rho\left(\boldsymbol{r}+\boldsymbol{r}_{0}\right) \rho\left(\boldsymbol{r}_{0}\right)\right\rangle=\sum_{i j}\left\langle\delta\left(\boldsymbol{r}+\boldsymbol{r}_{0}-\boldsymbol{r}_{i}\right) \delta\left(\boldsymbol{r}_{0}-\boldsymbol{r}_{i}\right)\right\rangle$
is linked to the structure factor

$$
S(\boldsymbol{q}) \equiv N^{-1}\langle\tilde{\rho}(\boldsymbol{q}) \tilde{\rho}(-\boldsymbol{q})\rangle=\frac{1}{N}\left\langle\sum_{i=1}^{N} \sum_{j=1}^{N} e^{-\mathrm{i} \boldsymbol{q} \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)}\right\rangle
$$

with $\tilde{\rho}(\boldsymbol{q})$ the Fourier transform of $\rho(\boldsymbol{r})$ by

$$
N S(\boldsymbol{q})=\int d^{d} \boldsymbol{r}_{1} \int d^{d} \boldsymbol{r}_{2} C\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) e^{-\mathrm{i} \boldsymbol{q} \cdot\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)}
$$

## Colloidal suspensions

Structure factor: from fuzzy peaks to a disk as $T$ increases

$$
S(\boldsymbol{q}) \equiv N^{-1}\langle\tilde{\rho}(\boldsymbol{q}) \tilde{\rho}(-\boldsymbol{q})\rangle=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N}\left\langle e^{-\mathrm{i} \boldsymbol{q} \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)}\right\rangle
$$

High $T$
Low $T$


Figure from Keim, Maret and von Grünberg, PRE 75, 031402 (2007)

## Crystals vs. Solids

$3 d$ vs. $2 d$

- A solid is a material with non-vanishing shear modulus.
- A crystal is a system with long-range positional order.

It has a periodic structure and its 'particles' are located close to the nodes of a lattice.

The position fluctuations are bounded $\Delta^{2}=\left\langle\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{i}^{\text {latt }}\right)\right\rangle<\infty$

- $2 d$ solids exist but have a weaker ordering than $3 d$ ones.
- They are oriented crystals with no positional order.
- Critical phase with algebraic relaxation of position correlations.
- Phase transition à la Kosterlitz-Thouless (Nobel Prize).


## Harmonic solids

## Peierls 30s: but finite $T$ orientational long-range order possible

Consider a crystal made of atoms connected to their nearest-neighbours by Hooke springs. At finite $T$ the atomic positions, $\phi_{i}$, fluctuate, $\phi_{i}=$ $\boldsymbol{R}_{i}+\boldsymbol{u}_{i}$, with $\boldsymbol{u}_{i}$ the local displacement from a regular lattice site at $\boldsymbol{R}_{i}$


Dashed: perfect lattice positions $\boldsymbol{R}_{i} \quad$ Gray: actual positions $\phi_{i}$
Does the long-range orientational order (solid) survive at finite $T$ ?
yes, even in $d=2$ since the correlation

$$
C_{\text {orient }}(\boldsymbol{r}) \equiv\langle\boldsymbol{u}(\boldsymbol{r}) \cdot \boldsymbol{u}(\mathbf{0})\rangle \rightarrow \mathrm{cst}
$$

## Harmonic solids

No long-range translational but long-range orientational order


Angles preserved while no periodic order of the disks' centres.

How can one quantify orientational order in general?

## Neighbourhood

## Voronoi tessellation to identify nearest-neighbours

A Voronoi diagram is induced by a set of points, called sites, that in our case are the centres of the disks.

The plane is subdivided into faces that correspond to the regions where one site is closest.


Focus on the central light-green face
All points within this region are closer to the dot within
it than to any other dot on the plane
The region has five neighbouring cells from which it is
separated by an edge
The grey zone has six neighbouring cells

## Orientational order

## Hexatic order parameter

The local (six) order parameter $\psi_{6 j}=\frac{1}{N_{\mathrm{nn}}^{j}} \sum_{k=1}^{N_{\mathrm{nn}}^{j}} e^{6 \mathrm{i} \theta_{j k}}$ (vector)

(For beads placed on the vertices of a triangular lattice, each bead $j$ has six nearestneighbours, $k=1, \ldots, N_{\mathrm{nn}}^{j}=6$, the angles verify $\Delta \theta_{j k}=\frac{2 \pi}{6}$ and $\psi_{6 j}=1$ ) associates arrows (directions) to disks
and measures orientational order

## $2 d$ colloidal suspensions

Hexatic correlation functions

$\Gamma$ is the control parameter playing the role of inverse temperature Figure from Keim, Maret \& von Grünberg, PRE 75, 031402 (2007)

## Correlations \& defects

Hexatic Positional • 7 neighb • 5 neighb


$$
\text { long } r: G(r)=\left\{\begin{array}{llll}
\text { ct } & r^{-\eta} & \text { Solid } & \text { long range order } \\
r^{-\eta_{6}} & e^{-r / \xi} & \text { Hexatic } & \text { quasi long range order } \\
e^{-r / \xi_{6}} & e^{-r / \xi} & \text { Liquid } & \text { disorder }
\end{array}\right.
$$

Sketches from Gasser 10

## What drives the phase transitions?

Why did we highlight the particles with 5 \& 7 neighbours?

## Defects

## Unbinding of dislocations: from the solid to the hexatic



A free dislocation

In the crystal the centres of the disks form a triangular lattice
The blue disks have seven neighbours and the red ones have five.
On the left image : the external path closes and forms a perfect hexagon.
The effects of the defects are confined. This is the solid phase.

## Defects

## Unbinding of dislocations: from the solid to the hexatic



A free dislocation

In the crystal the centres of the disks form a triangular lattice
The blue disks have seven neighbours and the red ones have five.
On the right image: the external path fails to close, no perfect hexagon.
The effect of the defects spreads \& kills translation order: hexatic phase.

## Defects

## Unbinding of dislocations: from the solid to the hexatic



A bound pair of dislocations


A free dislocation

In the crystal the centres of the disks form a triangular lattice
The blue disks have seven neighbours and the red ones have five.
The underlying arrows are roughly aligned in both images. The hexatic phase keeps quasi long-range orientational order.

## Defects

## Unbinding of disclinations: from the hexatic to the liquid



The orientation winds by $\pm 2 \pi$ around the blue (seven) and red (five) defects. Very similar to the vortices in the $2 d \mathrm{XY}$ magnetic model.

Halperin, Nelson \& Young scenario: the unbinding of disclinations drives a second BKT-like transition to the liquid.

## Freezing/Melting

Mechanisms in $2 d$


Voronoi tesselation

## Phases \& transitions

## Berezinskii, Kosterlitz, Thouless, Halperin, Nelson \& Young 70s

|  | BKT-HNY |
| :---: | :---: |
| Solid | QLR positional \& LR orientational |
| transition | BKT (unbinding of dislocations) |
| Hexatic phase | SR positional \& QLR orientational |
| transition | BKT (unbinding of disclinations) |
| Liquid | SR positional \& orientational |

Two infinite order, $\xi \propto e^{\delta^{-\nu}}$ with $\delta \rightarrow 0$,
Berenzinskii, Kosterlitz \& Thouless
transitions


## Berezinskii-Kosterlitz-Thouless

$$
\text { The } 2 d \mathbf{X Y} \text { model }-J \sum_{\langle i j\rangle} \vec{s}_{i} \cdot \vec{s}_{j}=-J \sum_{\langle i j\rangle} \cos \Delta \theta_{i j}
$$

At very high temperature one expects disorder and

$$
C(r) \equiv\left\langle\vec{s}_{i} \cdot \vec{s}_{j}\right\rangle_{\mathrm{eq}} \sim e^{-r / \xi_{\mathrm{eq}}(T / J)} \text { with }\left|\vec{r}_{i}-\vec{r}_{j}\right|=r
$$

At very low temperature the harmonic approximation is exact and there is quasi long-range order

$$
C(r) \sim r^{-\eta} e^{-r / \xi_{\mathrm{eq}}(T / J)} \text { with } \xi_{\mathrm{eq}}(T / J) \rightarrow \infty \text { so that } C(r) \sim r^{-\eta}
$$

There must be a transition in between.
Assumption: the transition is continuous and it is determined by the unbinding of vortices (topological defects).

Proved with RG, assuming a continuous phase transition.
The correlation length diverges exponentially $\xi_{\text {eq }} \simeq e^{a /\left|T-T_{\mathrm{BKT}}\right|^{-\nu}}$ as $T \rightarrow$ $T_{\mathrm{BKT}}^{+}$and it remains infinite in the phase with quasi long-range order.

## Berezinskii-Kosterlitz-Thouless

## Lack of universality of the transition in XY models

The RG proof yields, actually, an upper limit for the stability of the quasi long-range ordered phase.

A first order phase transition at a lower $T$ can preempt the BKT one.
It does for sufficiently steep potentials:

"First order phase transition in an XY model with nn interactions" Domany, Schick \& Swendsen, Phys. Rev. Lett. 52, 1535 (1984)

## Berezinskii-Kosterlitz-Thouless

## Lack of universality of the transition in XY models

The ${ }^{2}$ RG proof yields, actually, an upper limit for the stability of the quasi long-range ordered phase.

A first order phase transition at a lower $T$ can preempt the BKT one.
It does for sufficiently steep potentials:


## Phases \& transitions

## BKT-HNY vs. a new scenario by Bernard \& Krauth 2011

|  | BKT-HNY | BK |
| :---: | :---: | :---: |
| Solid | QLR pos \& LR orient | QLR pos \& LR orient |
| transition | BKT (unbinding of dislocations) | BKT |
| Hexatic phase | SR pos \& QLR orient | SR pos \& QLR orient |
| transition | BKT (unbinding of disclinations) | 1st order |
| Liquid | SR pos \& orient | SR pos \& orient |

Basically, the phases are the same, but the hexatic-liquid transition is different, allowing for coexistence of the two phases for hard enough particles

Event driven MC simulations. Sketches from Bernard's thesis.

## Hard disks

## Pressure loop and finite $N$ dependence: evidence for 1st order

Hexatic



Similar to Van der Waals model for 1st order phase transitions
$P$ cannot increase with $V$ (stability): phase separation via Maxwell construction

## Rather hard disks

## Molecular dynamics of overdamped Brownian particles

$$
\gamma \dot{\mathbf{r}}_{i}=-\nabla_{i} \sum_{j(\neq i)} U_{\mathrm{Mie}}\left(r_{i j}\right)+\boldsymbol{\xi}_{i}
$$

$r_{i}$ position of the centre of the $i$ th particle
$r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$ inter-part distance,

very short-ranged, purely repulsive, Mie potential (truncated Lennard-Jones) $\boldsymbol{\xi}$ zero-mean Gaussian noise with $\left\langle\xi_{i}^{a}(t) \xi_{j}^{b}\left(t^{\prime}\right)\right\rangle=2 \gamma k_{B} T \delta_{i j}^{a b} \delta\left(t-t^{\prime}\right)$ packing fraction $\phi=\pi \sigma_{d}^{2} N /(4 S)$ parameters $\gamma=10$ and $k_{B} T=0.05$

## Passive hard disks

## Phase diagram



MareNostrum (Barcelona, España) \& Galileo (Cineca, Italia) computer facilities

## Rather hard disks

## Two local observables

Space-point dependent normalized density

$$
\rho(\mathbf{r})=\frac{1}{N} \sum_{k=1}^{N} \delta\left(\mathbf{r}-\mathbf{r}_{k}\right)
$$

averaged over a volume $\ell^{d}$ around the point r or the position of a particle $i$

Particle dependent hexatic order parameter - a vector -

$$
\psi_{6 j}=\frac{1}{N_{\mathrm{nn}}^{j}} \sum_{k=1}^{N_{\mathrm{nn}}^{i}} e^{6 \mathrm{i} \theta_{j k}}
$$

projected on a preferred direction - the averaged one or a reference axis - and averaged over a volume $\ell^{d}$ around a point r or the position of a particle $i$

## Rather hard disks

## Local density \& local hexatic parameter



What happens with the defects?

## Unbinding of defects

## Solid-hexatic transition \& the emergence of the liquid at $\mathrm{Pe}=0$




Dislocations

Disclinations

Dislocations $\boldsymbol{\nabla}$ unbind at the solid - hexatic transition as in BKT-HNY
Disclinations $\square$ unbind when the liquid appears in the co-existence region

Digregorio, Levis, LFC, Gonnella \& Pagonabarraga, Soft Matter 18, 566 (2022)

## Unbinding of defects

Free dislocations at the solid-hexatic transition at $\mathrm{Pe}=0$


Dislocations $\boldsymbol{\nabla}$ unbind at the solid - hexatic transition, $\phi_{S H}$ from the measurement of correlation functions and other observables, with $\nu_{\mathrm{SH}} \approx 0.37$

Digregorio, Levis, LFC, Gonnella \& Pagonabarraga, Soft Matter 18, 566 (2022)

## Unbinding of defects

Free dislocations at the solid-hexatic transition at $\mathrm{Pe}=0$



Do Dislocations $\boldsymbol{\nabla}$ unbind at the solid - hexatic transition $\phi_{\mathrm{SH}}$ ???
not so clear experimentally though still $\nu_{\mathrm{SH}} \approx 0.37$
Digregorio, Levis, LFC, Gonnella \& Pagonabarraga, Soft Matter 18, 566 (2022)
Han, Ha, Alsayed, \& Yodh, PRE 77, 041406 (2008) Short-range \& repulsive microgel

## Unbinding of defects

Free disclinations close to the hexatic-liquid transition at $\mathrm{Pe}=0$


Disclinations $\square$ unbind when the liquid appears in co-existence at $\phi_{\mathrm{H}, \mathrm{H}+\mathrm{L}}$
and $\nu_{\mathrm{HL}}=0.5$

## Unbinding of defects

## Free disclinations close to the hexatic-liquid transition at $\mathrm{Pe}=0$




Disclinations $\square$ unbind when the liquid appears in co-existence at $\phi_{\mathrm{H}, \mathrm{H}+\mathrm{L}}$
and $\nu_{\mathrm{HL}}=0.5$

Digregorio, Levis, LFC, Gonnella \& Pagonabarraga, Soft Matter 18, 566 (2022)
Anderson, Antonaglia, Millan, Engel \& Glotzer, PRX 7, 021001 (2017) MC hard

## Grain boundaries \& clusters

## Classification



The classification in Pertsinidis \& Ling, PRL 87, 098303 (2001)

## Proliferation of clusters

Within the co-existence region at $\mathrm{Pe}=0$


Clusters $\boldsymbol{\Delta}$ proliferate within the co-existence region
Vacancies • remain approximately constant within the co-existence region

## Proliferation of clusters

Within the co-existence region at $\mathrm{Pe}=0$



Clusters $\boldsymbol{\Delta}$ proliferate within the co-existence region
Vacancies - remain approximately constant within the co-existence region

Digregorio, Levis, LFC, Gonnella \& Pagonabarraga, Soft Matter 18, 566 (2022)
Qi, Gantapara \& Dijkstra, Soft Matter 10, 5419 (2014) Event drive MD hard disks

Is this really related to the 1 st order nature of the transition?

## Soft disks

## Defect ratio \& size distribution



For soft disks the hexatic-liquid transition is continuous, no signature of co-existence. Still, similar picture ; proliferation of clusters with aspects of percolation at the hexatic-liquid transition.

Not clear. Open issue.

## Plan

1. Equilibrium phases: solidification/melting

Special in two-dimensions
Solid, hexatic \& liquid phases
Phase transitions
Topological defects
2. Active matter

Self-propelled Brownian disks in $2 d$
Phase diagram
Solid, hexatic \& liquid phases ; motility induced phase separation

## Active matter

## Definition

Active matter is composed of large numbers of active "agents", each of which consumes energy in order to move or to exert mechanical forces.

Due to the energy consumption, these systems are intrinsically out of thermal equilibrium.

Uniform energy injection within the samples (and not from the borders).

Coupling to the environment (bath) allows for the dissipation of the injected energy.

## Active matter

## Realisations \& modelling

- Wide range of scales: macroscopic to microscopic

Natural examples are birds, fish, cells, bacteria.

- Also artificial realisations: Janus particles, granular, etc.
- $3 d, 2 d$ and $1 d$.
- Modelling: very detailed to coarse-grained or schematic.
- microscopic or ab initio with focus on active mechanism,
- mesoscopic, just forces that do not derive from a potential,
- Cellular automata like in the Vicsek model.


## Active matter

Natural \& artificial systems


Experiments \& observations Bartolo et al. Lyon, Bocquet et al. Paris, Cavagna, et al. Roma, di Leonardo et al. Roma, Dauchot et al. Paris, just to mention some Europeans

## Active disks

## Overdamped Brownian particles (the standard model)

Active force $\mathbf{F}_{\text {act }}$ along $\mathbf{n}_{i}=\left(\cos \theta_{i}(t), \sin \theta_{i}(t)\right)$


$$
\gamma \dot{\mathbf{r}}_{i}=F_{\mathrm{act}} \mathbf{n}_{i}-\nabla_{i} \sum_{j(\neq i)} U_{\mathrm{Mie}}\left(r_{i j}\right)+\boldsymbol{\xi}_{i}, \quad \dot{\theta}_{i}=\eta_{i}
$$

$\mathbf{r}_{i}$ position of the centre of $i$ th part $\& r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$ inter-part distance,
short-ranged repulsive Mie potential,
$\xi$ and $\eta$ zero-mean Gaussian noises with
$\left\langle\xi_{i}^{a}(t) \xi_{j}^{b}\left(t^{\prime}\right)\right\rangle=2 \gamma k_{B} T \delta_{i j}^{a b} \delta\left(t-t^{\prime}\right)$ and $\left\langle\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)\right\rangle=2 D_{\theta} \delta_{i j} \delta\left(t-t^{\prime}\right)$.
The units of length, time and energy are given by $\sigma_{\mathrm{d}}, \tau=D_{\theta}^{-1}$ and $\varepsilon$
$D_{\theta}=3 k_{B} T /\left(\gamma \sigma_{d}^{2}\right), \phi=\pi \sigma_{d}^{2} N /(4 S), \gamma=10$ and $k_{B} T=0.05$
Péclet number $\mathrm{Pe}=F_{\mathrm{act}} \sigma_{\mathrm{d}} /\left(k_{B} T\right)$ measures activity

## Active Brownian disks

The typical motion of particles in interaction


The active force induces a persistent random motion due to

$$
\begin{aligned}
\left\langle\mathbf{F}_{\mathrm{act}}(t) \cdot \mathbf{F}_{\mathrm{act}}\left(t^{\prime}\right)\right\rangle \propto & F_{\text {act }}^{2} e^{-\left(t-t^{\prime}\right) / \tau_{p}} \\
& \text { with } \tau_{p}=D_{\theta}^{-1}
\end{aligned}
$$

## Active disks

## Phase diagram with solid, hexatic, co-existence, MIPS \& liquid



From pressure $P(\phi)$, correlations $G_{T} \& G_{6}$, distributions of $\phi_{i} \& \psi_{6 i}$ at $k_{B} T=0.05$
Digregorio, Levis, Suma, LFC, Gonnella \& Pagonabarraga, PRL 121, 098003 (2018)

## Active disks

## Modulus of the local hexatic order parameter

$$
\mathrm{Pe}=1
$$




Co-existence in passive limit and

## Active disks

## Solid, hexatic, liquid \& MIPS



Digregorio, Levis, LFC, Gonnella \& Pagonabarraga, arXiv:1911.06366

## Defect clusters

## Percolation features $P(n) \sim n^{-\tau}$


$d_{f}$ from the radius of gyration of the clusters

## Defect clusters

## Within MIPS: the grain boundaries



$$
P(n) \simeq n^{-\tau} e^{-n / n^{*}}
$$



Independence of $\phi$ at fixed Pe within MIPS

## Melting

## Mechanisms

- Unbinding of dislocations at solid - hexatic $\forall \mathrm{Pe}$
$\nu_{\mathrm{SH}} \approx 0.37$ (KTHNY) at all Pe Universality
- Unbinding of disclinations when the liquid appears $\forall \mathrm{Pe}$
$\nu_{\mathrm{HL}} \approx 0.5(\mathrm{KTHNY})$ but hard to tell
However, very hard to be sure about the "free-ness" of these defect.
- Clusters overwhelmingly abundant at $\approx$ the hexatic - liquid transition

Percolation features $\forall \mathrm{Pe}$, no qualitative difference between 1st order and continuous. $d_{f} \searrow$ for $\mathrm{Pe} \nearrow$

Is the liquid invading and melting the hexatic through the interfaces between micro-domains? Can one distinguish 1st order from continuous?

## Active Brownian systems

Phase diagrams \& plenty of interesting facts


## Summary \& conclusions

There is still a lot to be understood in the very "classic" problem of melting of passive systems in two dimensions.

New picture with a first order phase transition towards the liquid.
The standard lore on topological effects is only partially verified.

Effects of activity?
We have established the phase diagram of active Brownian particles and we have studied the statistics of topological defects.

This is a problem in which numerical simulations have been of great help.
P. Digregorio's PhD Thesis, Università di Bari, Italia 2020.

## Fluctuation-dissipation

Linear relation between $\chi$ and $\Delta^{2}$ in equilibrium

$$
P\left(\boldsymbol{\zeta}, t_{w}\right) \rightarrow P_{\mathrm{eq}}(\boldsymbol{\zeta})
$$

- The dynamics are stationary

$$
\begin{aligned}
\Delta_{A B}^{2}\left(t, t_{w}\right) & =\left\langle\left[A(t)-B\left(t_{w}\right)\right]^{2}\right\rangle=\left[C_{A A}(0)+C_{B B}(0)-2 C_{A B}\left(t-t_{w}\right)\right] \\
& \rightarrow \Delta_{A B}^{2}\left(t-t_{w}\right)
\end{aligned}
$$

The fluctuation-dissipation theorem between spontaneous $\left(\Delta_{A B}^{2}\right)$ and induced $\left(R_{A B}\right)$ fluctuations

$$
R_{A B}\left(t-t_{w}\right)=\frac{1}{2 k_{B} T} \frac{\partial \Delta_{A B}^{2}\left(t-t_{w}\right)}{\partial t} \theta\left(t-t_{w}\right)
$$

holds and implies

$$
\chi_{A B}\left(t-t_{w}\right) \equiv \int_{t_{w}}^{t} d t^{\prime} R_{A B}\left(t, t^{\prime}\right)=\frac{1}{2 k_{B} T}\left[\Delta_{A B}^{2}\left(t-t_{w}\right)-\Delta_{A B}^{2}(0)\right]
$$

## Fluctuation-dissipation

Linear relation between $\chi$ and $\Delta^{2}$ out of equilibrium?

$$
P\left(\boldsymbol{\zeta}, t_{w}\right) \neq P_{\mathrm{eq}}(\boldsymbol{\zeta})
$$

- The dynamics are stationary

$$
\begin{aligned}
\Delta_{A B}^{2}\left(t, t_{w}\right) & =\left\langle\left[A(t)-B\left(t_{w}\right)\right]^{2}\right\rangle=\left[C_{A A}(0)+C_{B B}(0)-2 C_{A B}\left(t-t_{w}\right)\right] \\
& \rightarrow \Delta_{A B}^{2}\left(t-t_{w}\right)
\end{aligned}
$$

The fluctuation-dissipation theorem between spontaneous $\left(\Delta_{A B}^{2}\right)$ and induced $\left(R_{A B}\right)$ fluctuations

$$
R_{A B}\left(t-t_{w}\right) \neq \frac{1}{2 k_{B} T} \frac{\partial \Delta_{A B}^{2}\left(t-t_{w}\right)}{\partial t} \theta\left(t-t_{w}\right)
$$

does not hold but one can propose

$$
\chi_{A B}\left(t-t_{w}\right) \equiv \int_{t_{w}}^{t} d t^{\prime} R_{A B}\left(t, t^{\prime}\right)=\frac{\left[\Delta_{A B}^{2}\left(t-t_{w}\right)-\Delta_{A B}^{2}(0)\right]}{2 k_{B} T_{\mathrm{eff}}\left(t-t_{w}\right)}
$$

## Teff = T

## Co-existence in equilibrium

$$
\mathrm{Pe}=0 \quad \phi=0.710
$$

Integrated linear response \& mean-square displacement: their ratio (FDT) $\tau=t-t_{w}$



Method: linear response computed with Malliavin weights (no perturbation applied) as proposed by G. Szamel for active matter systems.

Petrelli, LFC, Gonnella \& Suma, in preparation

## Teff $=$ T

## Co-existence in MIPS

$$
\mathrm{Pe}=50 \quad \phi=0.5
$$

Integrated linear response \& mean-square displacement: their ratio (FDR) $\tau=t-t_{w}$


Method: linear response computed with Malliavin weights (no perturbation applied) as proposed by G. Szamel for active matter systems.

Petrelli, LFC, Gonnella \& Suma, in preparation

## $2 d$ colloidal suspensions

Hexatic correlation functions


Figure from Keim, Maret \& von Grünberg, PRE 75, 031402 (2007)

## Hard disks in two dimensions

## Coexistence


"Two-step melting in two dimensions : first-order liquid-hexatic transition"
Bernard \& Krauth, PRL 107, 155704 (2011)

## Hard disks in two dimensions

Pressure loop and finite $N$ dependence

Hexatic Liquid


A system with PBCs has a ~ flat interface with surface energy scaling as $S \simeq L^{d-1}=\sqrt{N}$ and $f \simeq N^{-1 / 2}$. Verified in the inset for $\phi \simeq 0.708$

## Passive system

Structure factor - very low and very high density
$\phi=0.66$


Liquid

Solid
Bragg peaks
Primitive vectors

$$
\begin{aligned}
& \boldsymbol{q}_{1}=\frac{4 \pi}{a \sqrt{3}}\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right) \\
& \boldsymbol{q}_{2}=\frac{4 \pi}{a \sqrt{3}}(0,1) \\
& \text { Unit of length } \\
& a=\left(\frac{\pi}{2 \sqrt{3} \phi}\right)^{1 / 2} \sigma_{\mathrm{d}}
\end{aligned}
$$

## Observables

## Structure factor in $2 d$ : test of positional order

$r_{i}$ and $r_{j}$ are the positions of the disks $i$ and $j$ and $q$ is a wave-vector :

$$
S(\boldsymbol{q})=\frac{1}{N} \sum_{i j} e^{\mathrm{i} \boldsymbol{q} \cdot\left(r_{i}-r_{j}\right)}
$$

Visualisation: two dimensional representation in the ( $q_{x}, q_{y}$ ) plane.


## Passive system

## Structure factor - progressive increase in density

$\phi=0.66$
(liquid)

$\phi=0.734$
(co-existence)
$\phi=0.72$ (liquid)

$\phi=0.74$
(co-existence)

$$
\phi=\underset{\text { (solid) }}{0.76}
$$



$$
\begin{aligned}
& \phi=0.75 \\
& \text { (co-existence) }
\end{aligned}
$$



## Active system

## Structure factor $\mathrm{Pe}=10 \& \mathrm{Pe}=40$



## Kinetic energy

## Two populations in co-existence region



The averaged hexatic modulus is computed for each particle on a radius of $10 \sigma_{\mathrm{d}}$ around the particle itself, and a particle is considered to be inside a cluster only if this value is greater than 0.75 . Those particles contribute to the "dense" branch.

Petrelli, Digregorio, LFC, Gonnella, Suma, Eur. Phys. J. E 41, 128 (2018)

## Active dumbbell

## Control parameters

Number of dumbbells $N$ and box volume $S$ in two dimensions:

Energy scales:

$$
\text { packing fraction } \quad \phi=\frac{\pi \sigma_{\mathrm{d}}^{2} N}{2 S}
$$

Active work $2 \sigma_{\mathrm{d}} F_{\text {act }}$
thermal energy $k_{B} T$
Active force $L v \mapsto \sigma_{\text {d }} F_{\text {act }} / \gamma$
viscous force $\nu \mapsto \gamma \sigma_{\mathrm{d}}^{2} / m_{\mathrm{d}}$ Péclet number $\mathrm{Pe}=\frac{2 F_{\mathrm{act}} \sigma_{\mathrm{d}}}{k_{B} T}$

Reynolds number $\quad \operatorname{Re}=\frac{m_{\mathrm{d}} F_{\text {act }}}{\sigma_{\mathrm{d}} \gamma^{2}}$

$$
\operatorname{Pe} \in[0,200] \quad \operatorname{Re}<10^{-2}
$$

$$
N=512^{2} \simeq 2.6 \times 10^{5}
$$

Stiff molecule limit: vibrations frozen.
Interest in the $\phi, F_{\text {act }}$ and $k_{B} T$ dependencies, $k_{B} T=0.05$ fixed.

## Active disks

## Equation of state (eos) : pressure



$$
\Delta P=P-P_{\text {gas }}=\frac{F_{\text {act }}}{2 V} \sum_{i}\left\langle\mathbf{n}_{i} \cdot \mathbf{r}_{i}\right\rangle-\frac{1}{4 V} \sum_{i, j}\left\langle\nabla_{i} U\left(r_{i j}\right) \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\right\rangle
$$

