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Statistical physics
Advantage

No need to solve the dynamic equations!

Under the ergodic hypothesis, after some equilibration time teq, macro-

scopic observables can be, on average, obtained with a static calcula-

tion, as an average over all configurations in phase space weighted with

a probability distribution function P ({~pi, ~xi})

〈A〉 =
∫ ∏

i

d~pid~xi P ({~pi, ~xi}) A({~pi, ~xi})

〈A〉 should coincide with A ≡ lim
τ→∞

1

τ

∫ teq+τ

teq

dt′A({~pi(t′), ~xi(t′)})

the time average typically measured experimentally

Boltzmann, late XIX
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Statistical Physics
Ensembles: recipes for P (~pi, ~xi) according to circumstances
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r(0)

r(tw)

tr( )

ε=ct

Isolated system

E = H({~pi, ~xi}) = ct

Microcanonical distribution

P ({~pi, ~xi}) ∝ δ(H({~pi, ~xi})− E)

Flat probability density

SE = kB ln g(E) β ≡ 1
kBT

= ∂SE
∂E

∣∣∣
E

Entropy Temperature

E = Esyst + Eenv + Eint
Neglect Eint (short-range interact.)

Esyst � Eenv β =
∂SEenv
∂Eenv

P ({~pi, ~xi}) ∝ e−βH({~pi,~xi})

Environment

System

Interaction

Canonical ensemble
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Statistical physics
Accomplishments

• Microscopic definition & derivation of thermodynamic concepts

(temperature, pressure, etc.) and laws (equations of state, etc.)

PV = nRT

• Theoretical understanding of collective effects⇒ phase diagrams

Phase transitions : sharp changes in the macro-

scopic behavior when an external (e.g. the tem-

perature of the environment) or an internal (e.g.

the interaction potential) parameter is changed

• Calculations can be difficult but the theoretical frame is set beyond doubt
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Statistical physics
Classical⇔ Quantum

Partition function correspondence

Quantum d dimensional ≡ Classical d+ 1 dimensional

Z(β) = Tr e−βĤ Z(β) =
∑
conf

e−βH(conf)

L
L

β

β-periodic imaginary time direction

φ(~x) φ(τ, ~x) = φ(τ + β, ~x)

Feynman-Hibbs 65, Trotter & Suzuki 76, Matsubara

Quantum Phase transitions, Quantum Monte Carlo methods, etc.
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Statistical Physics
Four very important players

L. D. Landau P. W. Anderson K. Wilson D. J. Thouless

Phase transitions

Symmetry breaking

Higgs Mechanism

Glassiness, Localization

Renormalization

Universality

Topology

Disorder, Localization

Theoretical description of phase transitions
Importance of randomness

More is different
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Beyond equilibrium
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Out of equilibrium
Possible reasons

• The equilibration time goes beyond the experimentally accessible times in

macroscopic systems in which teq grows with the system size,

lim
N�1

teq(N)� t

e.g., Critical slowing down, coarsening, glassy physics

• Driven systems Energy injection

~Fext 6= −~∇V (~x) e.g., active matter

• Integrability Iµ({~pi, ~xi}) = ct, µ = 1, . . . , N

Too many constants of motion inhibit equilibration to the Gibbs ensembles.

e.g., 1d bosonic gases
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Phase separation
Quench below the binodal: remnant interfaces

t1 < t2 < t3 < t4 < . . .

Coarsening process with growing lengthR(t) ' t1/z =⇒ teq ∼ Lz

Equilibration time diverges with the system size
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Phase separation
Quench below the binodal: universality

Microscopic details are irrelevant

but conservation laws and

dimension of order parameter fix the

=⇒
Dynamic universality class

t1 < t2 < t3 < t4 < . . .

Coarsening process classified according to R(t) ' t1/z
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Topological phase transitions
Vortices in the 2d XY model - O(2) field theory

H = −J
2

∑
〈ij〉

~si·~sj =⇒
∫
d2x

[
1

2
(~∇~φ(~x))2 − r

2
φ2(~x) +

λ

4
φ4(~x)

]
Unbinding of vortex pairs ρfree

v (T > TKT ) > 0 Kosterlitz & Thouless 70s

After a quench to T < TKT

Free vortex annihilation
Schlieren pattern

gray scale

sin2(2~si · êx)

Jelić & LFC 12

Growing length scaleR(t) ' (t/ ln t)1/z & free vortex density ρfree
v (t) ∼ R−2(t)

=⇒ teq ∼ Lz lnL

In boson gases, polaritons, etc. Blakie, Capusotto, Davis, Proukakis, Symanska, ...

numerics & Beugnon-Dalibard, ... Popovic et al., ... experiments. Last 10 years
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Rugged free-energy landscapes
Glassy physics: beyond the λφ4 Ginzburg-Landau Questions !

N degrees of freedom

fre
e-

en
er

gy
de

ns
ity

Figure adapted from a picture by C. Cammarota

Topography of the landscape on the N -dimensional substrate made

by the order parameters?

Numerous studies by theoretical physicists and probabilists
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Rugged free-energy landscapes
Glassy physics: beyond the λφ4 Ginzburg-Landau Questions !

N degrees of freedom

fre
e-

en
er

gy
de
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ity

Figure adapted from a picture by C. Cammarota

How to reach the absolute minimum?

Thermal activation, surfing over tilted regions, quantum tunneling ?

Optimisation problem Smart algorithms? Computer sc - applied math
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Rugged free-energy landscapes
Glassy physics: slow relaxation & loss of stationarity (aging)

Correlation Linear response

Different curves are measured after different reference times t′ after the quench:

breakdown of stationarity =⇒ far from equilibrium

No identifiable growing lengthR(t): microscopic mechanisms?

Spin-glass experiments Hérisson & Ocio 02-04
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Out of equilibrium
Possible reasons

• The equilibration time goes beyond the experimentally accessible times in
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Active matter
Natural & artificial systems

Experiments & observations Bartolo et al. Lyon, Bocquet et al. Paris, Cavagna et al.

Roma, di Leonardo et al. Roma, Dauchot et al. Paris, just to mention some Europeans
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Active Brownian particles
The standard model – ABPs

Spherical particles with diameter σd

Environment =⇒ Langevin dynamics

Scales =⇒ over-damped motion

Self-propulsion =⇒ active force ~Fact along ~ni = (cos θi(t), sin θi(t)).

γ~̇ri︸︷︷︸
friction

= Fact~ni︸ ︷︷ ︸
propulsion

− ~∇i
∑
j(6=i)

U(rij)︸ ︷︷ ︸
inter-particle interactions

+ ~ξi︸︷︷︸
translational
white noise

θ̇i = ηi︸ ︷︷ ︸
rotational

white noise

2d packing fraction φ = πσ2
dN/(4S) Péclet number Pe = Factσd/(kBT )

Bialké, Speck & Löwen, Fily & Marchetti 12
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Active Brownian particles
Typical motion of ABPs in interaction

The activity induces a persistent random motion

Long running periods and

sudden changes in direction
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Active Brownian particles
Complex out of equilibrium phase diagram

Motility induced

phase separation

(MIPS)

gas & dense

droplet

Cates & Tailleur 12

From virial pressure P (φ), translational and orientational correlations GT and G6,

distributions of local density and hexatic order φi and ψ6i, at fixed kBT = 0.05

Digregorio, Levis, Suma, LFC, Gonnella & Pagonabarraga 18
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Active Brownian particles
Out of equilibrium phase diagram First question (out of many !)

Free dislocation:
a 7-5 neighbor

Solid - Hexatic transition, driven by unbinding of dislocation pairs

as in Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young universality?

ρdisloc ' a exp
[
−b
(

φsh
φsh−φ

)ν]
ν ∼ 0.37 ∀Pe ?
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Active Brownian particles
Out of equilibrium phase diagram So many questions !

Dynamics of formation of the dense phase? but bubbles, hexatic order, ...

Universality with the Lifshitz-Slyozov lawR(t) ' t1/3 ? Geometry?

Redner et al 13, Stenhammar et al 14, ... , Caporusso et al 20, Caprini et al 20, ...
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Out of equilibrium
Possible reasons

• The equilibration time goes beyond the experimentally accessible times in

macroscopic systems in which teq grows with the system size,
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~Fext 6= −~∇V (~x) e.g., active matter

• Integrability Iµ({~pi, ~xi}) = ct, µ = 1, . . . , N

Too many constants of motion inhibit equilibration to the Gibbs ensembles

e.g., 1d bosonic gases
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Motivation
Isolated quantum systems: experiments and theory∼ 15y ago

A quantum Newton’s cradle
cold atoms in isolation
Kinoshita, Wenger & Weiss 06

Quantum quenches & Conformal field theory
Calabrese & Cardy 06

Numerics of lattice hard core bosons

Rigol, Dunjko, Yurovsky & Olshanii 07

and many others

1d lattice models & 1+1 field theories

Bernard, Calabrese, Caux, Doyon, Essler, Gambassi, Konik,

Mussardo, Polkovnikov, Prosen, Silva, Santoro, Spohn...

Impressive SISSA School

Alba, Bastianello, Bertini, Chiocchetta, Collura, De Luca, De

Nardis, Fagotti, Foini, Kormos, Marcuzzi, Marino, Pappalardi,

Piroli, Ros, Ruggiero, Sotiriadis, ...
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Quantum quenches
Definition & questions

• Take an isolated quantum system with Hamiltonian Ĥ0

• Initialize it in, say, |ψ0〉 the ground-state of Ĥ0 (or any ρ̂(t0))

• Unitary time-evolution Û = e−
i
~ Ĥt with a Hamiltonian Ĥ 6= Ĥ0.

Does the system reach (locally) a steady state?

Are the expected values of local observables determined by e−βĤ?

Does the evolution occur as in equilibrium?

Not for integrable models. Alternative, the Generalized Gibbs Ensemble
.

ρ̂GGE = Z−1({γµ}) e
−

N∑
µ=1

γµÎµ
& 〈ψ0|Îµ|ψ0〉 = 〈Îµ〉GGE fix {γµ}
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Out of equilibrium
Something in common?

lim
N�1

teq(N)� t

~F 6= −~∇V (~r)

Iµ = ct µ = 1, . . . , N
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Spin glasses
Aging, weak memory and fluctuation dissipation relations

χ(t, t′) =

∫ t

t′
dt′′

1

Teff(t, t′′)

∂C(t, t′′)

∂t′′
General

=

∫ t

t′
dt′′

1

Teff (C(t, t′′))

∂C(t, t′′)

∂t′′
Hypothesis

=

∫ C(t,t)

C(t,t′)
dC′′

1

Teff(C′′)
= χ(C)

Analytic results on mean-field models LFC & Kurchan 93-94

Experiments Hérisson & Ocio 02-04
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Spin glasses
Putting two-time scales in evidence

Global observables, χ and C

Separation of two-time scales

one with bath temperature T

the rest with Teff(C)

FDR & Effective temperatures LFC, Kurchan & Peliti 97 Experiments Hérisson &
Ocio 02-04 Relation to replica symmetry breaking Franz et al 98, Kurchan 20
Curved χ(C)?
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Glassy models
Aging, weak memory and fluctuation dissipation relations

One can interpret the mismatch between the linear response and

correlation function as evidence for an effective temperature whi-

chdepends on the time-scale at which we look at the relaxation

1

Teff(C)
= −dχ(C)

dC
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Active Brownian Particles
Co-existence in stationary MIPS: dense & dilute

Pe = 50 φ = 0.5

Integrated linear response & mean-square displacement: their ratio (FDR) τ = t− t′
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In a driven heterogeneous system

Linear response computed with Malliavin weights (no perturbation applied) as proposed

by Warren & Allen 12, and Szamel 17 for active matter systems.
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Active Brownian Particles
Dependence on the global packing fraction in MIPS

Pe = 50 φ dependence
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Vertical dashed lines are at the boundaries of MIPS φ< and φ> at this Pe

Teff(φ) ≈ T dil
eff (φ<)ndil(φ) + T dense

eff (φ>)ndense(φ) with ndil = Ndil/N , etc.

and for the dilute component the pressure is P = ρdilkBT
dil
eff like in a gas

Petrelli, LFC, Gonnella & Suma 20
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Active Brownian Particles
Co-existence in stationary MIPS

Co-existence of

– fast and hot particles in the dilute phase with T dil
eff

– slow and cold particles in the dense phase with T dil
eff
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Quantum Ising chain
Integrable system≡ free fermions in 1d

The initial Hamiltonian ĤΓ0 = −
∑
i

σ̂xi σ̂
x
i+1 + Γ0

∑
i

σ̂zi

The initial state |ψ0〉 is the ground state of ĤΓ0

Instantaneous quench in the transverse field Γ0 → Γ

Evolution with ĤΓ Iglói & Rieger 00

Equivalent to ĤΓ =
∑
k

εk(Γ) η̂†kη̂k with [ĤΓ, Îk] = 0 and Îk = η̂†kη̂k

Reviews: Karevski 06, Polkovnikov et al 10, Dziarmaga 10

Specially interesting case Γc = 1 the critical point Rossini et al 09
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Quantum Ising chain
Transverse magnetization quantum fluctuation-dissipation relation

~ ImRM (ω) = tanh

(
βMeff (ω)ω~

2

)
CM+ (ω)

Tr ĤΓ
e−β

E
eff ĤΓ

Z(βEeff)
= 〈ψ0|ĤΓ|ψ0〉

TMeff (ω) 6= ct =⇒
Out of equilibrium

de Nardis, Foini, Panfil, LFC, Gambassi & Konik 11-12, 17-19
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Quantum Ising chain
Transverse magnetization quantum fluctuation-dissipation relation

~ ImRM (ω) = tanh

(
βMeff (ω)ω~

2

)
CM+ (ω)

ĤΓ =
∑
k

εk(Γ) η̂†kη̂k

At ω = εk(Γ) βMeff (εk) = γk

the Lagrange multipliers in the GGE

ρ̂GGE ∝ e−
∑
k γk Îk

with Îk = η̂†kη̂k

de Nardis, Foini, Panfil, LFC, Gambassi & Konik 11-12, 17-19

35



Quantum quenches
Integrable models

With judiciously chosen operators, the frequency dependent effec-

tive temperature of the quantum fluctuation dissipation relation gives

us access to the Lagrange multipliers of the Generalized Gibbs En-

semble

βeff(ω)⇔ γµ
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Conclusions

The talk exhibited three out of equilibrium macroscopic situations:

slow relaxation of open complex systems, driven interacting systems with

energy injection from the surroundings, quenches in closed quantum -

also classical - systems.

Some basic statistical physics questions were discussed and concerned

phase diagrams, universality, role of topological defects, ...

Thermodynamic concepts out of equilibrium?

Effective temperatures (heat flows, entropy production, partial equilibrations,

fluctuations,...) importance of time-scales & observables. Also

stochastic thermodynamics, fluctuation theorems, etc.

There is much more to be done and understood
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Conclusions

The talk exhibited three out of equilibrium macroscopic situations:

slow relaxation of open complex systems, driven interacting systems with

energy injection from the surroundings, quenches in closed quantum -

also classical - systems.

Some basic statistical physics questions were discussed and concerned

phase diagrams, universality, role of topological defects, ...

Thermodynamic concepts out of equilibrium?

Effective temperatures (heat flows, entropy production, partial equilibrations,

fluctuations,...) importance of time-scales & observables but also

stochastic thermodynamics, fluctuation theorems, etc.

There is much more to be done and understood Thanks !
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Beyond

Econophysics

Social physics

Ecology

Biophysics

Computer science

X-physics
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Fluctuation-dissipation relations
Any evolution

Just measure

ImR̃AB(ω) and C̃AB
± (ω)

take the ratio and extract tanh(βABeff (ω)~ω/2)

In equilibrium all βABeff (ω) should be equal to the same constant
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Active Brownian Particles
Co-existence in equilibrium Teff = T

Pe = 0 φ = 0.710

Integrated linear response & mean-square displacement: their ratio (FDR) τ = t− tw
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Linear response computed with Malliavin weights (no perturbation applied) as proposed

by Warren & Allen 12 and Szamel 17 for active matter systems.

Petrelli, LFC, Gonnella & Suma 20
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Quantum Ising chain
Integrable system≡ free fermions in 1d

Equivalent to ĤΓ =
∑
k

εk(Γ) γ̂†kγ̂k with [ĤΓ, Îk] = 0 and Îk = γ̂†kγ̂k

Cz+(t) = 〈ψ0|[ŝzi (t+ t0), ŝzi (t0)]+|ψ0〉 R(t) = 〈ψ0|[ŝzi (t+ t0), ŝzi (t0)]−|ψ0〉
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