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General description
Plan

— Many-body systems out of equilibrium

Collective non-equilibrium relaxation

simple : e.g., domain growth coarsening & the growing length

hard : glasses & spin-glasses, computer science, ecology, etc.

— Characterisation of the spontaneous and perturbed global relaxation

self-correlation and linear response

— Analytic description - dynamic mean-field theory

models and equations

separation of time scales & aging

effective temperatures

time-reparametrization invariance & fluctuations
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Many-Body Systems Out of Equilibrium
some examples
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Many-body systems
Out of Equilibrium

Ferromagnetic Ising Model

V =−J ∑
〈i j〉

sis j

Particles in Interaction

V = ∑
i 6= j

V (ri j)

Active Matter

~Fi 6=−~∇iV

︸ ︷︷ ︸
in relaxation

︸ ︷︷ ︸
driven

In physical systems the action-reaction principle is respected

beyond physics not necessarily, ~Fi→ j 6= ~F j→i like in ecosystems, markets, etc.
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The equilibration time of macroscopic

coarsening & glassy systems in a wide range of parameters,
e.g. low temperatures,

goes beyond the experimental window texp

lim
N�1

teq(N)� texp

teq grows with the system size N
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Collective Non-Equilibrium Relaxation
the simplest example, coarsening
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2d Ising model
Snapshots after an instantaneous quench from T0→ ∞ to T ≤ Tc

t = 0 t1 t2

T = Tc

T < Tc

At T = Tc critical dynamics At T < Tc coarsening

Dynamic scaling with a single characteristic growing length R (t)� L
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Collective Non-Equilibrium Relaxation
harder cases : glasses & spin glasses
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Glasses & Spin Glasses

Simulations Confocal microscopy

Molecular (Sodium Silicate) Colloids (e.g. d ∼ 162 nm in water)

Experiments Exp & Simulations

Granular matter Spin glasses
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Characterisation of the Collective Relaxation
when there is no “visible” length

Global Observables
two-time correlations and linear responses
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Two-time dependencies
Self displacement & correlation – integrated linear response

∆2(t, t ′) ≡ 1
N ∑

i
[〈(xi(t)− xi(t ′))2〉] Displacement

C(t, t ′) ≡ 1
N ∑

i
[〈xi(t)xi(t ′)〉] Correlation

}

U
np

er
tu

rb
ed

σ(t, t ′) ≡ 1
N ∑

i

∫ t ′

0
dt ′′ Ri(t, t ′′) =

1
N ∑

i

∫ t ′

0
dt ′′ [

δ〈xi(t)〉h
δhi(t ′′)

∣∣∣∣
h=0

]

Extend the notion of order parameter

They are not related by FDT out of equilibrium

The averages are thermal (and over initial conditions) 〈. . .〉
and over quenched randomness [. . . ] (if present)

t ′ “waiting-time” and t “measuring-time” after preparation
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Slow relaxation & Aging
Loss of Stationarity

Correlation Integrated linear response

0 t ′ t ′ t ′ t ′ time

Different curves are measured after log-spaced times t ′ after the quench

breakdown of stationarity =⇒ aging, far from equilibrium

No identifiable growing length R (t) microscopic mechanisms?

Spin-glass experiments Hérisson & Ocio 02-04

12



Physical Aging
in words

Older systems (more time elapsed after the quench, longer t ′)
relax more slowly than younger ones

Breakdown of stationarity of correlation & integrated response

C(t, t ′) 6=C(t− t ′) σ(t, t ′) 6= σ(t− t ′)

In each regime – rapid︸ ︷︷ ︸
above plateau

and slow︸ ︷︷ ︸
below plateau

– there is scaling∗

C(t, t ′) =Cr,s

(
Rr,s(t)
Rr,s(t ′)

)
σ(t, t ′) = σr,s

(
Rr,s(t)
Rr,s(t ′)

)
∗ proven from general properties of temporal correlation functions LFC & Kurchan 94

but no obvious interpretation of R (t) in glassy systems
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Physical Aging & Memory
in words

Older systems (more time elapsed after the quench, longer t ′)
relax more slowly than younger ones

Breakdown of stationarity of correlation & integrated response

C(t, t ′) 6=C(t− t ′) σ(t, t ′) 6= σ(t− t ′) of the same magnitude

In each regime, rapid and slow, there is scaling∗

C(t, t ′) =Cr,s

(
Rr,s(t)
Rr,s(t ′)

)
σ(t, t ′) = σr,s

(
Rr,s(t)
Rr,s(t ′)

)
∗ proven from general properties of temporal correlation functions LFC & Kurchan 94

but no obvious interpretation of R (t) in glassy systems

14



Mean-Field Modelling
Usual Curie-Weiss for PM-FM

Unusual for Glasses
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Mean-Field Modelling
Classical p-spin Spherical Models

Potential energy

V =− ∑
i1 6= ... 6=ip

Ji1... ip xi1 . . . xip p integer

quenched random couplings Ji1... ip drawn from a Gaussian P[{Ji1... ip}]

(over-damped) Langevin dynamics for continuous spins xi ∈ R
coupled to a white bath 〈ξ(t)〉= 0 and 〈ξ(t)ξ(t ′)〉= 2γkBT δ(t− t ′)

γ
dxi

dt
=−δV

δxi
+ ztxi +ξi

zt is a Lagrange multiplier that fixes the spherical constraint
N
∑

i=1
x2

i = N

p = 2 mean-field coarsening
p≥ 3 RFOT modelling of glasses Kirkpatrick, Thirumalai & Wolynes 87-89

16



Dynamic equations
Integro-differential eqs. on the correlation and linear response

In the N→ ∞ limit exact and closed causal Schwinger-Dyson equations

(Average over randomness, random initial conditions and thermal noise)

(γ∂t − zt)C(t, t ′) =
∫

dt ′′
[
Σ(t, t ′′)C(t ′′, t ′)+D(t, t ′′)R(t ′, t ′′)

]
+2γkBT R(t ′, t)

(γ∂t − zt)R(t, t ′) =
∫

dt ′′ Σ(t, t ′′)R(t ′′, t ′)+δ(t− t ′)

where Σ and D are the self-energy and vertex, which for p spin models read

D(t, t ′) = p
2 Cp−1(t, t ′) Σ(t, t ′) = p(p−1)

2 Cp−2(t, t ′)R(t, t ′)

zt is fixed by C(t, t) = 1 Sompolinsky & Zippelius 82, LFC & Kurchan 93

Similar to Mode-Coupling Theory for liquids Götze et al 80s or DMFT for quantum systems

Georges & Kotliar 90s, but not necessarily in equilibrium
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How to solve these equations ?
Input from numerical solutions =⇒

Asymptotic Ansatz

18



Weak ergodicity breaking

lim
t−t ′→∞

lim
t ′→∞

C(t, t ′) = qEA lim
t�t ′

C(t, t ′) = 0

Bouchaud 92

Weak long-term memory

lim
t−t ′→∞

lim
t ′→∞

R(t, t ′)' 0

but

σ(t, t ′) =
∫ t ′

0
dt ′′ R(t, t ′′)−→ f (C(t, t ′)) = finite

LFC & Kurchan 93

allow us to solve the integro-differential eqs. asymptotically
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Weak ergodicity breaking

lim
t−t ′→∞

lim
t ′→∞

C(t, t ′) = qEA lim
t�t ′

C(t, t ′) = 0

Bouchaud 92

Weak long-term memory

lim
t−t ′→∞

lim
t ′→∞

R(t, t ′)' 0

but

σ(t, t ′) =
∫ t ′

0
dt ′′ R(t, t ′′)−→ f (C(t, t ′)) = finite

LFC & Kurchan 93

and capture aging
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Slow relaxation & Aging
Loss of Stationarity

Correlation Integrated linear response

0 t ′ t ′ t ′ t ′ time

Different curves are measured after log-spaced times t ′ after the quench

breakdown of stationarity =⇒ aging, far from equilibrium

microscopic mechanisms?

Spin-glass experiments Hérisson & Ocio 02-04
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Interpretation
Complex Landscapes

Beyond Ginzburg-Landau
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TAP Free-energy Landscape
p ≥ 3 spin models

N “order parameters”

fre
e-

en
er

gy
de

ns
ity

mostly maxima

threshold approached from quench

lim
t→∞

e(t) = eth

mostly minima

The dynamics is linked to the topography of the landscape

Both for physical and algorithmic dynamic rules
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TAP Free-energy Landscape
p ≥ 3 spin models

N “order parameters”

fre
e-

en
er

gy
de

ns
ity

mostly maxima

threshold approached from quench

lim
t→∞

e(t) = eth

mostly minima

Flat threshold as an attractor for the p-spin relaxation

Both for physical and algorithmic dynamic rules
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Some surprising predictions
with physical consequences
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Fluctuation-dissipation
Induced vs. spontaneous fluctuations in glasses

A quench from T0→ ∞ to T < Tc

T ∗T
tw3
tw2
tw1

1
kBT ∗

1
kBT

χ(
t,

t w
)

C(t, tw)
0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1

parametric construction

tw fixed

tw1 < tw2 < tw3

t− tw : 0→ ∞
used as a parameter

T ∗ > T

Breakdown of the equilibrium FDT kBT χ =C

Convergence to kBT χ(C), two linear relations for C ≶ qea

Mean-field models LFC & Kurchan 93 & effective temperature interpretation LFC, Kurchan & Peliti 97
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Fluctuation-dissipation
Interpretation

Short-scale re-arrangements ruled

by the equilibrium external bath

& local properties of landscape

The fluctuation-dissipation relation

holds with the bath temperature T

Large-scale re-arrangements follow

the systems’ internal dynamics

& large scale props of landscape

The fluctuation-disspation relation

holds with another temperature T ∗︸ ︷︷ ︸
After cooling from equilibrium at T0 > Td , hotter T ∗ > T

After heating from equilibrium at T0 < Td , colder T ∗ < T

Support for this interpretation :
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Effective temperatures
Induced by one (or more) baths

Exercise : motion in contact with a complex bath

Sketch created by ChatGPT

Γ = Γcold + Γhot

Γcold(t− t ′) = 2γδ(t− t ′) and T Γhot(t− t ′) = γhot e−(t−t ′)/τ and T ∗

LFC & Kurchan 00, Ilg & Barrat 07, etc., cfr. tracer in pasive & active bath
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Effective temperatures
Measurement with thermometers

LFC, Kurchan & Peliti 97

M
 c

o
p

ie
s 

o
f 

th
e 

sy
st

em

Observable A

’

’

Thermometer

(coordinate x)

Coupling constant k

Thermal bath (temperature T)

A A A A

.   .   .

α=1 α=3 α=Μ

x

α=2

Grigera & Israeloff 99 - glassy
D’Anna, Mayor, Barrat, Loreto & Nori 03 - granular
Boudet, Jagielka, Guerin, Barois, Pistolesi & Kellay 24

artificial active matter - robots

• Short internal time scale fast dynamics is tested and T is recorded.

• Long internal time scale slow dynamics is tested and T ∗ is recorded.

Related to the phenomenological fictive temperatures of Tool 46, Gardon & Narayanaswamy

70, Moynihan et al 76, etc. but measurable & with a thermodynamic interpretation

Also appearing in stochastic thermodynamic relations
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Time reparametrization invariance
and fluctuations
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Time reparametrization invariance
In the long tw limit

Fast t− tw� tw

tα

1
qea

Cag

aging

stationary Ceq

t − tw
10510310110−1

1

The aging part is slow

R (t)/R (tw) = O(1)

Cag(t, tw)∼ fag

(
R (t)

R (tw)

)
∂tCag(t, tw)∝ Ṙ (t)

R (t) −−−→t→∞
0

∂tCag(t, tw)�Cag(t, tw)

Eqs. for the slow relaxation Cag < qea are invariant under

t→ h(t) C(t, tw)→C(h(t),h(tw)) R(t, tw)→ ḣ(t ′)/h(tw)R(h(t),h(tw))
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Leading fluctuations
Global to local correlations & linear responses

Cag(t, tw)≈ fag

(
R (t)
R (tw)

)
global correlation

Global time-reparametrization invariance ⇒ Cag
~r (t, tw)∼ fag

(
h~r(t)

h~r(tw)

)
Ex. h~r1 =

t
t0

, h~r2 = ln
(

t
t0

)
, h~r3 = elna>1

(
t

t0

)
in different spatial regions

1e+00

1e-01

1e-02

1e+061e+041e+021e+00

C

t-tw

h2

h1

h3
 0

 0.25

 0.5

 0.75

 1

 0  0.25  0.5  0.75  1

χ

C

h3

h2

h1

Castillo, Chamon, LFC, Iguain &
Kennett 02, 03

Chamon, Charbonneau, LFC,
Reichman & Sellitto 04

Jaubert, Chamon, LFC & Picco 07

More recent perspective : time-reparametrization invariance in SYK models
Kitaev 15, Maldacena & Stanford 16, more in J. Kurchan’s talk
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Each problem
with its own peculiarities

& much more to say !
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Local correlations & responses
3d Edwards-Anderson spin-glass

C~r(t, tw)≡
1
V~r

∑
i∈V~r

si(t)si(tw) , χ~r(t, tw)≡
1
V~r

∑
i∈V~r

∫ t

tw
dt ′

δsi(t)
δhi(t ′)

∣∣∣∣
h=0

0

0.5
Cr 0

0.5

1

χr

5

15

25

ρ

(a)

0

0.5
Cr 0

0.5

1

χr

5

15

25

ρ
++++

+++
++ Bulk

FDT
(b)

0 0.5 1
Cr

0

0.5

1

χr

+ Bulk : Parametric plot χ(t, tw) vs C(t, tw) for tw fixed and 7 t (> tw)

ρ corresponds to the maximum t yielding the smallest C (left-most +)

Castillo, Chamon, LFC, Iguain, Kennett 02

Kinetically constrained models + Charbonneau, Reichman & Sellitto 04
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Sigma Model
Conditions & expression

h(~r, t)= e−ϕ(~r,t) Cag(~r, t, tw)= fag(e−
∫ t

tw dt ′ ∂t′ϕ(~r,t
′))

Chamon & LFC 07
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Sigma Model
Some consequences - 3d Edwards Anderson model

h(~r, t) = e−ϕ(~r,t) Cag(~r, t, tw) = fag(e−
∫ t

tw dt ′ ∂t′ϕ(~r, t ′))

Distribution of local correlations depends on times t, tw only through C,ξ

ρ(C~r; t, tw, `,ξ(t, tw))→ ρ(C~r; Cag(t, tw), `/ξ(t, tw))

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

ρ
(C

r)

Cr

tw=1k
tw=10k

tw=100k

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

ρ
(C

r)

Cr

tw=1k
tw=10k

tw=100k

t, tw such that Cag(t, tw) =C ` such that `/ξ = cst Jaubert, Chamon, LFC, Picco 07

predictions on the form of ρ derived from S[ϕ] too

Tests in Lennard-Jones systems Avila, Castillo, Mavimbela, Parsaeian 06-12
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How general is this?
Coarsening & domain growth

e.g. the d-dimensional O(N) model in the large N limit (continuous

space limit of the Heisenberg ferro with N→ ∞)

N component field~φ = (φ1, . . . ,φN) with Langevin dynamics

∂tφα(~r, t) = ∇2φα(~r, t)+λ|N−1φ2(~r, t)−1|φα(~r, t)+ξα(~r, t)

φα(~k,0) Gaussian distributed with variance ∆2

Time reparametrization invariance is reduced to time rescalings

t→ h(t) ⇒ t→ λt

Same in the p = 2 spherical model Chamon, LFC, Yoshino 06
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How general is this?
Coarsening & domain growth

Time reparametrization invariance is reduced to time rescalings

t→ h(t) ⇒ t→ λt

χ

C

Ising FM, O(N) field theory, or p = 2 spherical model

Related to T ∗→ ∞ and simplicity of free-energy landscape
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Triangular relations
Scaling of the aging global correlation

Take three times t1 ≥ t2 ≥ t3 and compute the three global correlations

C(t1, t2), C(t2, t3), C(t1, t3)

If, in the aging regime Ci j
ag ≡Cag(ti, t j) = fag

(
h(ti)
h(t j)

)
with ti ≥ t j⇒

C12
ag = fag

(
h(t1)
h(t3)

h(t3)
h(t2)

)
= fag

(
f−1
ag (C13

ag )

f−1
ag (C23

ag )

)
qea

1

0.8

0.6

0.4

0.2

0

10.80.60.40.20

C
23

C
1
2

choose t3 and t1 so that C13 = 0.3
the arrow shows the t2 ‘flow’ from t3 to t1

qea

e.g. C12 = qeaC13/C23
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Triangular relations
Scaling of the slow part of the global correlation

Take three times t1 ≥ t2 ≥ t3 and compute the three local correlations

C~r(t1, t2), C~r(t2, t3), C~r(t1, t3)

If, in the aging regime Ci j
~r ≡C~r(ti, t j) = fag

(
h~r(ti)
h~r(t j)

)
with ti ≥ t j⇒

C12
~r = fag

(
f−1
ag (C13

~r )

f−1
ag (C23

~r )

)
qea

1

0.8

0.6

0.4

0.2

0

10.80.60.40.20

C
23

C
1
2

choose t3 and t1 so that C13 = 0.3
the arrow shows the t2 ‘flow’ from t3 to t1

qea

e.g. C12
~r = qeaC13

~r /C23
~r .
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Triangular relations
3d Edwards-Anderson model
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Jaubert, Chamon, LFC & Picco 07

41


