Dynamics of Glassy Systems:

Lessons from a Family of Solvable Models

Leticia F. Cugliandolo

Sorbonne Université leticia@lpthe.jussieu.fr www.lpthe.jussieu.fr/~leticia

March Meeting, Onsager Prize Session, Anaheim, 2025

General description

Plan

— Many-body systems out of equilibrium

Collective non-equilibrium relaxation

simple: *e.g.*, domain growth coarsening & the growing length

hard : glasses & spin-glasses, computer science, ecology, etc.

- Characterisation of the spontaneous and perturbed global relaxation self-correlation and linear response
- Analytic description dynamic mean-field theory

models and equations separation of time scales & aging effective temperatures

time-reparametrization invariance & fluctuations

Many-Body Systems Out of Equilibrium

some examples

Many-body systems

Out of Equilibrium

Ferromagnetic Ising Model

Particles in Interaction

In physical systems the action-reaction principle is respected

beyond physics not necessarily, $\vec{\mathcal{F}}_{i \to j} \neq \vec{\mathcal{F}}_{j \to i}$ like in ecosystems, markets, etc.

Collective Non-Equilibrium Relaxation

the simplest example, coarsening

2d Ising model

Snapshots after an instantaneous quench from $T_0 \rightarrow \infty$ to $T \leq T_c$

At $T = T_c$ critical dynamics At $T < T_c$ coarsening

Dynamic scaling with a single characteristic growing length $\Re(t) \ll L$

Collective Non-Equilibrium Relaxation

harder cases : glasses & spin glasses

Glasses & Spin Glasses

Simulations

Molecular (Sodium Silicate)

Confocal microscopy

Colloids (e.g. $d \sim 162 \text{ nm}$ in water)

Experiments Granular matter

Exp & Simulations Spin glasses

Characterisation of the Collective Relaxation

when there is no "visible" length

Global Observables

two-time correlations and linear responses

Two-time dependencies

Self displacement & correlation – integrated linear response

$$\Delta^{2}(t,t') \equiv \frac{1}{N} \sum_{i} \left[\langle (x_{i}(t) - x_{i}(t'))^{2} \rangle \right]$$
 Displacement

$$C(t,t') \equiv \frac{1}{N} \sum_{i} \left[\langle x_{i}(t) x_{i}(t') \rangle \right]$$
 Correlation
$$\begin{cases} P_{i}(t,t') \\ P_$$

$$\sigma(t,t') \equiv \frac{1}{N} \sum_{i} \int_{0}^{t'} dt'' R_{i}(t,t'') = \frac{1}{N} \sum_{i} \int_{0}^{t'} dt'' \left[\frac{\delta \langle x_{i}(t) \rangle_{h}}{\delta h_{i}(t'')} \right]_{h=0}^{h=0}$$

Extend the notion of order parameter

They are not related by FDT out of equilibrium

The averages are thermal (and over initial conditions) $\langle \ldots \rangle$ and over quenched randomness [...] (if present)

t' "waiting-time" and t "measuring-time" after preparation

Slow relaxation & Aging

Loss of Stationarity

No identifiable growing length $\mathcal{R}(t)$

microscopic mechanisms?

Spin-glass experiments Hérisson & Ocio 02-04

Physical Aging

in words

Physical Aging & Memory

in words

Older systems (more time elapsed after the quench, longer t') relax more slowly than younger ones Breakdown of stationarity of correlation & integrated response $C(t,t') \neq C(t-t')$ $\sigma(t,t') \neq \sigma(t-t')$ of the same magnitude In each regime, rapid and slow, there is scaling * $C(t,t') = C_{r,s}\left(\frac{\mathcal{R}_{r,s}(t)}{\mathcal{R}_{r,s}(t')}\right) \qquad \sigma(t,t') = \sigma_{r,s}\left(\frac{\mathcal{R}_{r,s}(t)}{\mathcal{R}_{r,s}(t')}\right)$ * proven from general properties of temporal correlation functions LFC & Kurchan 94 but no obvious interpretation of $\mathcal{R}(t)$ in glassy systems

Mean-Field Modelling

Usual Curie-Weiss for PM-FM

Unusual for Glasses

Mean-Field Modelling

Classical *p*-spin Spherical Models

Potential energy

 $\mathcal{V} = -\sum_{i_1 \neq \dots \neq i_p} J_{i_1 \dots i_p} x_{i_1} \dots x_{i_p}$ *p* integer

quenched random couplings $J_{i_1...i_p}$ drawn from a Gaussian $P[\{J_{i_1...i_p}\}]$

(over-damped) Langevin dynamics for continuous spins $x_i \in \mathbb{R}$ coupled to a white bath $\langle \xi(t) \rangle = 0$ and $\langle \xi(t)\xi(t') \rangle = 2\gamma k_B T \delta(t-t')$

$$\gamma \frac{dx_i}{dt} = -\frac{\delta \mathcal{V}}{\delta x_i} + z_t x_i + \xi_i$$

 z_t is a Lagrange multiplier that fixes the spherical constraint $\sum_{i=1}^{N} x_i^2 = N$

p = 2 mean-field coarsening $p \ge 3$ RFOT modelling of glasses

Kirkpatrick, Thirumalai & Wolynes 87-89

Dynamic equations

Integro-differential eqs. on the correlation and linear response

In the $N \rightarrow \infty$ limit exact and closed causal Schwinger-Dyson equations (Average over randomness, random initial conditions and thermal noise)

$$(\gamma \partial_t - z_t)C(t, t') = \int dt'' \left[\Sigma(t, t'')C(t'', t') + D(t, t'')R(t', t'') \right] + 2\gamma k_B T R(t', t) (\gamma \partial_t - z_t)R(t, t') = \int dt'' \Sigma(t, t'')R(t'', t') + \delta(t - t')$$

where Σ and D are the self-energy and vertex, which for p spin models read

- $D(t,t') = \frac{p}{2}C^{p-1}(t,t') \qquad \Sigma(t,t') = \frac{p(p-1)}{2}C^{p-2}(t,t')R(t,t')$
- z_t is fixed by C(t,t) = 1

Sompolinsky & Zippelius 82, LFC & Kurchan 93

Similar to Mode-Coupling Theory for liquids Götze et al 80s or DMFT for quantum systems Georges & Kotliar 90s, but not necessarily in equilibrium

How to solve these equations?

Input from numerical solutions \implies

Asymptotic Ansatz

Weak ergodicity breaking

 $\lim_{t-t'\to\infty}\lim_{t'\to\infty}C(t,t')=q_{\rm EA}$

$$\lim_{t\gg t'}C(t,t')=0$$

Bouchaud 92

Weak long-term memory

 $\lim_{t-t'\to\infty}\lim_{t'\to\infty}R(t,t')\simeq 0$

but

$$\sigma(t,t') = \int_0^{t'} dt'' R(t,t'') \longrightarrow f(C(t,t')) = \text{finite}$$

LFC & Kurchan 93

allow us to solve the integro-differential eqs. asymptotically

Weak ergodicity breaking

 $\lim_{t-t'\to\infty}\lim_{t'\to\infty}C(t,t')=q_{\rm EA}$

$$\lim_{t\gg t'}C(t,t')=0$$

Bouchaud 92

Weak long-term memory

 $\lim_{t-t'\to\infty}\lim_{t'\to\infty}R(t,t')\simeq 0$

but

$$\sigma(t,t') = \int_0^{t'} dt'' \, R(t,t'') \longrightarrow f(C(t,t')) = \text{finite}$$

LFC & Kurchan 93

and capture aging

Slow relaxation & Aging

Loss of Stationarity

microscopic mechanisms?

Spin-glass experiments Hérisson & Ocio 02-04

Interpretation

Complex Landscapes

Beyond Ginzburg-Landau

TAP Free-energy Landscape

 $p \geq 3$ spin models

The dynamics is linked to the topography of the landscape

Both for physical and algorithmic dynamic rules

TAP Free-energy Landscape

 $p \geq 3$ spin models

Flat threshold as an attractor for the *p*-spin relaxation

Both for physical and algorithmic dynamic rules

Some surprising predictions

with physical consequences

Fluctuation-dissipation

Induced vs. spontaneous fluctuations in glasses

A quench from $T_0 \rightarrow \infty$ to $T < T_c$

parametric construction

 t_w fixed

 $t_{w_1} < t_{w_2} < t_{w_3}$

 $t-t_w: \quad 0 \to \infty$

used as a parameter

Breakdown of the equilibrium FDT $k_B T \chi = C$

Convergence to $k_B T \chi(C)$, two linear relations for $C \leq q_{ea}$

Mean-field models LFC & Kurchan 93 & effective temperature interpretation LFC, Kurchan & Peliti 97

Fluctuation-dissipation

Interpretation

Short-scale re-arrangements ruled by the equilibrium external bath & local properties of landscape The fluctuation-dissipation relation holds with the bath temperature *T* Large-scale re-arrangements follow the systems' internal dynamics & large scale props of landscape The fluctuation-disspation relation holds with another temperature T^*

After cooling from equilibrium at $T_0 > T_d$, hotter $T^* > T$ After heating from equilibrium at $T_0 < T_d$, colder $T^* < T$

Support for this interpretation :

Effective temperatures

Induced by one (or more) baths

Exercise : motion in contact with a complex bath

LFC & Kurchan 00, Ilg & Barrat 07, etc., cfr. tracer in pasive & active bath

Effective temperatures

Measurement with thermometers

Grigera & Israeloff 99 - Glassy D'Anna, Mayor, Barrat, Loreto & Nori 03 - Granular Boudet, Jagielka, Guerin, Barois, Pistolesi & Kellay 24 artificial active matter - robots

- Short internal time scale fast dynamics is tested and T is recorded.
- Long internal time scale slow dynamics is tested and T^* is recorded.

Related to the phenomenological *fictive temperatures* of **Tool 46**, **Gardon & Narayanaswamy 70**, **Moynihan et al 76**, **etc.** but measurable & with a thermodynamic interpretation Also appearing in stochastic thermodynamic relations

Time reparametrization invariance and fluctuations

Time reparametrization invariance

In the long t_W limit

Fast $t - t_W \ll t_W$

The aging part is **slow**

 $\mathcal{R}(t)/\mathcal{R}(t_w) = O(1)$

$$C_{\mathrm{ag}}(t,t_w) \sim f_{\mathrm{ag}}\left(\frac{\mathcal{R}(t)}{\mathcal{R}(t_w)}\right)$$

$$\partial_t C_{\mathrm{ag}}(t, t_w) \propto \frac{\mathcal{R}(t)}{\mathcal{R}(t)} \xrightarrow[t \to \infty]{} 0$$

$$\partial_t C_{\mathrm{ag}}(t,t_w) \ll C_{\mathrm{ag}}(t,t_w)$$

Eqs. for the slow relaxation $C_{ag} < q_{ea}$ are invariant under

 $t \to h(t) \quad C(t,t_w) \to C(h(t),h(t_w)) \quad R(t,t_w) \to \dot{h}(t')/h(t_w)R(h(t),h(t_w))$

Leading fluctuations

Global to local correlations & linear responses

$$C_{\rm ag}(t,t_w) \approx f_{\rm ag}\left(\frac{\mathcal{R}(t)}{\mathcal{R}(t_w)}\right)$$

global correlation

Global time-reparametrization invariance \Rightarrow

$$C_{\vec{r}}^{\mathrm{ag}}(t,t_w) \sim f_{\mathrm{ag}}\left(\frac{h_{\vec{r}}(t)}{h_{\vec{r}}(t_w)}\right)$$

Ex.
$$h_{\vec{r}_1} = \frac{t}{t_0}$$
, $h_{\vec{r}_2} = \ln\left(\frac{t}{t_0}\right)$, $h_{\vec{r}_3} = e^{\ln^{a>1}\left(\frac{t}{t_0}\right)}$ in different spatial regions

Castillo, Chamon, LFC, Iguain & Kennett 02, 03

Chamon, Charbonneau, LFC, Reichman & Sellitto 04

Jaubert, Chamon, LFC & Picco 07

More recent perspective : time-reparametrization invariance in SYK models Kitaev 15, Maldacena & Stanford 16, more in J. Kurchan's talk

Each problem

with its own peculiarities

& much more to say!

Local correlations & responses

3d Edwards-Anderson spin-glass

$$C_{\vec{r}}(t,t_w) \equiv \frac{1}{V_{\vec{r}}} \sum_{i \in V_{\vec{r}}} s_i(t) s_i(t_w) , \quad \chi_{\vec{r}}(t,t_w) \equiv \frac{1}{V_{\vec{r}}} \sum_{i \in V_{\vec{r}}} \int_{t_w}^t dt' \left. \frac{\delta s_i(t)}{\delta h_i(t')} \right|_{h=0}$$

+ Bulk : Parametric plot $\chi(t, t_w)$ vs $C(t, t_w)$ for t_w fixed and 7 t (> t_w)

 ρ corresponds to the maximum *t* yielding the smallest *C* (left-most +)

Castillo, Chamon, LFC, Iguain, Kennett 02

Kinetically constrained models + Charbonneau, Reichman & Sellitto 04

Sigma Model

Conditions & expression

$$h(\vec{r},t) = e^{-\phi(\vec{r},t)} \qquad C_{\rm ag}(\vec{r},t,t_w) = f_{\rm ag}(e^{-\int_{t_w}^t dt' \,\partial_{t'}\phi(\vec{r},t')})$$

- *i*. The action must be invariant under a global time reparametrization $t \to h(t)$.
- *ii.* If our interest is in short-ranged problems, the action must be written using local terms. The action can thus contain products evaluated at a single time and point in space of terms such as $\varphi(\vec{r},t)$, $\partial_t \varphi(\vec{r},t)$, $\nabla \varphi(\vec{r},t)$, $\nabla \partial_t \varphi(\vec{r},t)$, and similar derivatives.
- *iii.* The scaling form in eq. (29) is invariant under $\varphi(\vec{r}, t) \to \varphi(\vec{r}, t) + \Phi(\vec{r})$, with $\Phi(\vec{r})$ independent of time. Thus, the action must also have this symmetry.
- *iv.* The action must be positive definite.

These requirements largely restrict the possible actions. The one with the smallest number of spatial derivatives (most relevant terms) is

$$\mathcal{S}[\varphi] = \int d^d r \int dt \left[K \, \frac{\left(\nabla \partial_t \varphi(\vec{r}, t)\right)^2}{\partial_t \varphi(\vec{r}, t)} \right] \,, \tag{30}$$

Chamon & LFC 07

Sigma Model

Some consequences - 3d Edwards Anderson model

$$h(\vec{r},t) = e^{-\varphi(\vec{r},t)} \qquad C_{ag}(\vec{r},t,t_w) = f_{ag}(e^{-\int_{t_w}^t dt' \,\partial_{t'}\varphi(\vec{r},t')})$$

Distribution of local correlations depends on times t, t_w only through C, ξ

 $\rho(C_{\vec{r}}; t, t_w, \ell, \xi(t, t_w)) \to \rho(C_{\vec{r}}; C_{\mathrm{ag}}(t, t_w), \ell/\xi(t, t_w))$

 t, t_w such that $C_{ag}(t, t_w) = C$ ℓ such that $\ell/\xi = cst$ Jaubert, Chamon, LFC, Picco 07 predictions on the form of ρ derived from $S[\phi]$ too

Tests in Lennard-Jones systems Avila, Castillo, Mavimbela, Parsaeian 06-12

How general is this?

Coarsening & domain growth

e.g. the *d*-dimensional O(N) model in the large *N* limit (continuous space limit of the Heisenberg ferro with $N \to \infty$)

N component field $\vec{\phi} = (\phi_1, \dots, \phi_N)$ with Langevin dynamics

 $\partial_t \phi_{\alpha}(\vec{r},t) = \nabla^2 \phi_{\alpha}(\vec{r},t) + \lambda |N^{-1}\phi^2(\vec{r},t) - 1|\phi_{\alpha}(\vec{r},t) + \xi_{\alpha}(\vec{r},t)$

 $\phi_{\alpha}(\vec{k},0)$ Gaussian distributed with variance Δ^2

Time reparametrization invariance is reduced to time rescalings $t \rightarrow h(t) \implies t \rightarrow \lambda t$

Same in the p = 2 spherical model

Chamon, LFC, Yoshino 06

How general is this?

Coarsening & domain growth

Time reparametrization invariance is reduced to time rescalings

 $t \to h(t) \qquad \Rightarrow \qquad t \to \lambda t$

Ising FM, O(N) field theory, or p = 2 spherical model Related to $T^* \to \infty$ and simplicity of free-energy landscape

Triangular relations

Scaling of the aging global correlation

Take three times $t_1 \ge t_2 \ge t_3$ and compute the three global correlations $C(t_1, t_2), C(t_2, t_3), C(t_1, t_3)$

If, in the aging regime $C_{ag}^{ij} \equiv C_{ag}(t_i, t_j) = f_{ag}\left(\frac{h(t_i)}{h(t_j)}\right)$ with $t_i \ge t_j \Rightarrow$

$$C_{\rm ag}^{12} = f_{\rm ag} \left(\frac{h(t_1)}{h(t_3)} \frac{h(t_3)}{h(t_2)} \right) = f_{\rm ag} \left(\frac{f_{\rm ag}^{-1}(C_{\rm ag}^{13})}{f_{\rm ag}^{-1}(C_{\rm ag}^{23})} \right)$$

choose t_3 and t_1 so that $C^{13} = 0.3$ the arrow shows the t_2 'flow' from t_3 to t_1

e.g.
$$C^{12} = q_{\mathrm{ea}} C^{13} / C^{23}$$

Triangular relations

Scaling of the slow part of the global correlation

Take three times $t_1 \ge t_2 \ge t_3$ and compute the three local correlations $C_{\vec{r}}(t_1, t_2), C_{\vec{r}}(t_2, t_3), C_{\vec{r}}(t_1, t_3)$ If, in the aging regime $C_{\vec{r}}^{ij} \equiv C_{\vec{r}}(t_i, t_j) = f_{ag} \left(\frac{h_{\vec{r}}(t_i)}{h_{\vec{r}}(t_j)}\right)$ with $t_i \ge t_j \Rightarrow$

$$C_{\vec{r}}^{12} = f_{ag} \left(\frac{f_{ag}^{-1}(C_{\vec{r}}^{13})}{f_{ag}^{-1}(C_{\vec{r}}^{23})} \right)$$

choose t_3 and t_1 so that $C^{13} = 0.3$ the arrow shows the t_2 'flow' from t_3 to t_1

e.g.
$$C_{\vec{r}}^{12} = q_{\rm ea} C_{\vec{r}}^{13} / C_{\vec{r}}^{23}$$
.

Triangular relations

3d Edwards-Anderson model

Jaubert, Chamon, LFC & Picco 07