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General description

Plan

— Many-body systems out of equilibrium
Collective non-equilibrium relaxation

simple : e.g., domain growth coarsening & the growing length
hard : glasses & spin-glasses, computer science, ecology, etc.

— Characterisation of the spontaneous and perturbed global relaxation
self-correlation and linear response

— Analytic description - dynamic mean-field theory
models and equations
separation of time scales & aging
effective temperatures

time-reparametrization invariance & fluctuations



Many-Body Systems Out of Equilibrium

some examples




Many-body systems

Out of Equilibrium

Ferromagnetic Ising Model Particles in Interaction Active Matter
V=—J ¥ sisj V=Y V(rj)
(i) i#]
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Vowied
/./‘./,/

1n relaxation driven

In physical systems the action-reaction principle is respected

beyond physics not necessarily, /. j - fjﬂ- like in ecosystems, markets, etc.



The equilibration time of macroscopic

coarsening & glassy systems in a wide range of parameters,

e.g. low temperatures,

goes beyond the experimental window fex,

]%7i>1>n1 teq(N) > texp

feq grows with the system size V




Collective Non-Equilibrium Relaxation
the simplest example, coarsening




2d Ising model

Snapshots after an instantaneous quench from 7() — o to 7" < 7T,

=1,
At 1" = 1, critical dynamics At " < 1. coarsening

Dynamic scaling with a single characteristic growing length R (1) < L




Collective Non-Equilibrium Relaxation
harder cases : glasses & spin glasses




Glasses & Spin Glasses

Confocal microscopy

Simulations

Colloids (e.g. d ~ 162 nm in water)

Molecular (Sodium Silicate)

/

Exp & Simulations

Experiments

Spin glasses

Granular matter



Characterisation of the Collective Relaxation
when there is no “visible” length

Global Observables

two-time correlations and linear responses




Two-time dependencies

Self displacement & correlation — integrated linear response

A%(t,t) = ]l\,;[«x,-(t)—xi(t’))z}] Displacement } g
Cltr) = L3 (o)) Correlation 3
! )

1 2 ,-
o(t,t') = NZ/O dt” R;(t,1") /dt” S
l

h=0

Extend the notion of order parameter

They are not related by FDT out of equilibrium

The averages are thermal (and over initial conditions) (.. .)

and over quenched randomness [ : ] (if present)

¢’ “waiting-time” and ¢ “measuring-time” after preparation



Slow relaxation & Aging

Loss of Stationarity
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Different curves are measured after log-spaced times ¢’ after the quench

breakdown of stationarity — aging, far from equilibrium

No identifiable growing length & (1) microscopic mechanisms ?

Spin-glass experiments  Hérisson & Ocio 02-04



Physical Aging

in words

Older systems (more time elapsed after the quench, longer ')
relax more slowly than younger ones

Breakdown of stationarity of correlation & integrated response

Ct,t')£ACt—1t) ott)#c(t—1)

In each regime — rapid and _ slow - there is scaling®
N—— N e’
above plateau below plateau
Rks(t) / ist(t)
C(t,t') =Cry | 2255 o(t,t") = Oy | 2254
(1) = Cos { o) (1,6) = Ors { 7,,(7)
* proven from general properties of temporal correlation functions LFC & Kurchan 94

but no obvious interpretation of & (¢) in glassy systems




Physical Aging & Memory

in words

Older systems (more time elapsed after the quench, longer ')
relax more slowly than younger ones

Breakdown of stationarity of correlation & integrated response
C(t,t')£AC(t—1t) o(t,f') #Ac(t—1t") of the same magnitude

In each regime, rapid and slow, there is scaling™

C(t,t") = Cys (;{f—g,))) o(1,1') = Oy (%—g/)))

* proven from general properties of temporal correlation functions LFC & Kurchan 94

but no obvious interpretation of Q{(t) in glassy systems




Mean-Field Modelling
Usual Curie-Weiss for PM-FM
Unusual for Glasses




Mean-Field Modelling

Classical p-spin Spherical Models
Potential energy

V = — Z Jiy iy Xiy -+ Xi, p integer
i1 i

quenched random couplings J;, ; drawn from a Gaussian P|{J;, ;
1---1p 1 p

(over-damped) Langevin dynamics for continuous spins x; € R

coupled to a white bath (&(r)) = 0and (E(1)E(1)) = 2vkpT8(r — 1)

dt Gt G

N

Z; is a Lagrange multiplier that fixes the spherical constraint ) xl-2 =N
i=1

p = 2 mean-field coarsening
p > 3 RFOT modelling of glasses Kirkpatrick, Thirumalai & Wolynes 87-89



Dynamic equations

Integro-differential eqs. on the correlation and linear response

In the V — oo limit exact and closed causal Schwinger-Dyson equations

(Average over randomness, random initial conditions and thermal noise)
(Y0; — z)C(t,1') = /dt” 2(t,t")C(t",t")+ D(t,t")R(',1")]
+2vkgTR(t' 1)
(9, — 2 )R(t,1') = / " (1,1 R 1)+ 8(t —1')
where X and D are the self-energy and vertex, which for p spin models read

D(t,/')=2CP(¢t,1) 2(t,1") = 22D P21, ') R(t,1')

NS

s is fixed by C(7,1) =1 Sompolinsky & Zippelius 82, LFC & Kurchan 93

Similar to Mode-Coupling Theory for liquids Gétze et al 80s or DMFT for quantum systems

Georges & Kotliar 90s, but not necessarily in equilibrium



How to solve these equations ?
Input from numerical solutions —

Asymptotic Ansatz




Weak ergodicity breaking

lim lim C(z,t') = gga limC(t,') =0
t—t'—yo0 t/—o0 >t

Bouchaud 92

Weak long-term memory

lim lim R(z,t') ~0
t—1'—o00 t/—o0

but
l,/
o(t,1') = / di" R(t1,1") —s F(C(t,1')) = finite
0

LFC & Kurchan 93

allow us to solve the integro-differential eqs. asymptotically




Weak ergodicity breaking

lim lim C(z,t') = gga limC(t,') =0
t—1t'—o0 t/—oo >t

Bouchaud 92

Weak long-term memory

lim lim R(z,t') ~0
t—1'—o00 t/—o0

but
l,/
o(t,1') = / di" R(t1,1") —s F(C(t,1')) = finite
0

LFC & Kurchan 93

and capture aging




Slow relaxation & Aging

Loss of Stationarity
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Different curves are measured after log-spaced times ¢’ after the quench

breakdown of stationarity — aging, far from equilibrium

microscopic mechanisms ?

Spin-glass experiments

Hérisson & Ocio 02-04



Interpretation
Complex Landscapes

Beyond Ginzburg-Landau




TAP Free-energy Landscape

p > 3 spin models

mostly maxima

threshold approached from quench

tlgg e(t) = en

mostly minima

free-energy density

The dynamics is linked to the topography of the landscape

Both for physical and algorithmic dynamic rules



TAP Free-energy Landscape

p > 3 spin models

\
4

mostly maxima

threshold approached from quench

tlgl; e(t) = en

mostly minima

free-energy density

Flat threshold as an attractor for the p-spin relaxation

Both for physical and algorithmic dynamic rules



Some surprising predictions
with physical consequences




Fluctuation-dissipation

Induced vs. spontaneous fluctuations In glasses

A quench from 1o — oo to 1 < 1,

parametric construction
t,, fixed

twl < [W’Z < tw3

x(t,t)

used as a parameter

T >T

Breakdown of the equilibrium FDT kg1 % = C

Convergence to kg1 % (C), two linear relations for C < ¢,

Mean-field models LFC & Kurchan 93 & effective temperature interpretation LFC, Kurchan & Peliti 97



Fluctuation-dissipation

Interpretation

Short-scale re-arrangements ruled Large-scale re-arrangements follow
by the equilibrium external bath the systems’ internal dynamics

& local properties of landscape & large scale props of landscape
The fluctuation-dissipation relation The fluctuation-disspation relation
holds with the bath temperature 7' bolds with another temperature T i

~"

After cooling from equilibrium at 7y > 7, hotter T" > T
After heating from equilibrium at 7y < 7y, colder T* < T

Support for this interpretation :



Effective temperatures

Induced by one (or more) baths

Exercise : motion in contact with a complex bath

1

hot
thermal bath \1/ thermal bath

/ 0.8

N 0.2
thermal bath CO.l d  cold bath ¢l '

0 02 04 q_08 :
Sketch created by ChatGPT C

I'= 1ﬁcold + 1_‘hot
Leoa(t —1") =2v0(t —1")and T Thot(f —1") = Yhot e 1)/ ang T*

LFC & Kurchan 00, lig & Barrat 07, etc., Cfr. tracer in pasive & active bath



Effective temperatures

Measurement with thermometers

- <>
LFC, Kurchan & Peliti 97
VIV IIIIIIYS ) - .
A ’“
Thermometer ’ {
< (coordinate x) P 28
Observable A Coupling constant k
7
A A A A

Grigera & Israeloff 99 - glassy

D’Anna, Mayor, Barrat, Loreto & Nori 03 - granular
Boudet, Jagielka, Guerin, Barois, Pistolesi & Kellay 24
Thermal bath (temperature T) artificial active matter - robots

M copies of the system

Short internal time scale fast dynamics is tested and 7 is recorded.

Long internal time scale slow dynamics is tested and 7" is recorded.

Related to the phenomenological fictive temperatures of Tool 46, Gardon & Narayanaswamy
70, Moynihan et al 76, etc. but measurable & with a thermodynamic interpretation

Also appearing in stochastic thermodynamic relations



Time reparametrization invariance
and fluctuations




Time reparametrization invariance

Fast 1—1, <1,

1

stationary Ce

dea|

10-! 100 103
t—t,

10°

In the long 7,, limit

The aging part is slow

0;Cag(1,1,,) <K Cag(t,ty)

Egs. for the slow relaxation Cag < (eq are invariant under

t — h(t)

C(t,t) — C(h(1),h(ty))

R(t,t,,) = h(t') [h(tw) R(h(t), h(t,;))




Leading fluctuations

Global to local correlations & linear responses

Cag(t,tw) = fag (;&g%) global correlation

Global time-reparametrization invariance — C;g(t,tw) ~ fag (h7—(t))

lna>1 (L) . . . ]
Ex. /iy, — ,% hz, = In (%) hy, = e 0/ in different spatial regions
16400 ‘ ‘ ‘ 1 S
I \ - Castillo, Chamon, LFC, Iguain &
0-75 | | Kennett 02, 03
a1l | = 05 ¢
© Te0 s e Chamon, Charbonneau, LFC,
h2 — 0.25 h2 ¢ 1 Reichman & Sellitto 04
h3 — 0 o
180 o 1ea02  1oi0d 10406 0 025 05 075 1 Jaubert, Chamon, LFC & Picco 07

C
t-tw

More recent perspective : time-reparametrization invariance in SYK models
Kitaev 15, Maldacena & Stanford 16, more in J. Kurchan’s talk



Each problem
with its own peculiarities

& much more to say!




Local correlations & responses

3d Edwards-Anderson spin-glass

1 Os; (1)
2(t,1,) = si(1)si(t Yt ty) = — d /
W V;.’ l;ﬁ l l W 9 7’( W) V? l; Bhl(t/) b0
1 ,
)
- FOT
Xr 0.5
+ Bulk S
0 : *
0 0.5 1
C

+ Bulk : Parametric plot (7, 1,,) vs C(t,1,,) for ,, fixedand 7 ¢ (> 1,,)

P corresponds to the maximum 7 yielding the smallest C (left-most +)

Castillo, Chamon, LFC, Iguain, Kennett 02

Kinetically constrained models + Charbonneau, Reichman & Sellitto 04



Sigma Model

Conditions & expression

h(7, 1) = e ®(F0) Cag(F 1, 1y) = fag (e I @ 2001

i. The action must be invariant under a global time reparametrization ¢ — h(t).

it. If our interest is in short-ranged problems, the action must be written using local
terms. The action can thus contain products evaluated at a single time and point in
space of terms such as (7, t), 0,p(7,t), V(7 t), VOip(7,t), and similar derivatives.

i45. The scaling form in eq. (29) is invariant under ¢(7,t) = ¢(7,t) + ®(7), with ®(7)
independent of time. Thus, the action must also have this symmetry.

1. The action must be positive definite.

These requirements largely restrict the possible actions. The one with the smallest
number of spatial derivatives (most relevant terms) is

- o 0]

Chamon & LFC 07




Sigma Model

Some consequences - 3d Edwards Anderson model

7 t / = ./
h(7,t) = e~ ?7) Cag(F,1,1) = fag(e_ftw A ool ))
Distribution of local correlations depends on times 7. 7,, only through C,&

P(Gs 1,0, £,6(2,1)) = PGz Cag(2, 1), £/6(2,1))

4

Tto=1k —— ‘ ‘ “to=1k ——
t, =10k —— t, =10k ——
3l t, =100k —— | 3l t, =100k —— |
S 2 S 2
(o Q
1 1
0 ‘ 0
0 02 04 06 08 1 0 02 04 06 08 1
C C

t,t,, such that Cag (t, l‘w) =C / such that f/E_, — ¢St Jaubert, Chamon, LFC, Picco 07

predictions on the form of p derived from S| too

Tests in Lennard-Jones systems Avila, Castillo, Mavimbela, Parsaeian 06-12



How general is this ?

Coarsening & domain growth

e.g. the d-dimensional O(N) model in the large N limit (continuous

space limit of the Heisenberg ferro with V. —> <o)

N component field (B = (01,...,05) with Langevin dynamics

atq)a(?at) — Vz(‘)d(?at) —|—7\4‘N_1(1)2(?,l‘) - 1’¢a(?7t) _|_§OL(?J)

—

0o (k,0) Gaussian distributed with variance A

Time reparametrization invariance is reduced to time rescalings
t — h(t) = t—M

Same in the p = 2 spherical model Chamon, LFC, Yoshino 06



How general is this ?

Coarsening & domain growth

Time reparametrization invariance is reduced to time rescalings
t — h(t) = =M

04 -

1 L
3000 4000 5000 0
tt_(mes) 0 0.2 04 0.6 08 1

C

Ising FM, O(N) field theory, or p = 2 spherical model

Related to 7" — oo and simplicity of free-energy landscape



Triangular relations

Scaling of the aging global correlation

Take three times 11 > 1» > 13 and compute the three global correlations
C(t1,1), C(t2,13), C(t1,13)

If, in the aging regime C;Jg = Cag(ti,tj) = fag (%) witht; > 1; =
J

12 h(t1) h(t3) B fafgl(Cig)
Fie = (h(rg) h(tz)> e (fagl(cﬁ))

ag
{ea

1

0.8 | choose 73 and 7] so that C'® = 0.3
= 06 1 the arrow shows the 7, ‘flow’ from 73 to 7
04
{ea

0.2} SR

0 e.g. C12 — qeacl3/c23

0 02 04 06 08 1

C23



Triangular relations

Scaling of the slow part of the global correlation

Take three times 11 > 1, > 13 and compute the three local correlations
C(t1,12), Cr(t2,13), Cp(t1,13)

f, in the aging regime C/ = C(1;,1;) = fue ( ) with 7; > 1; =

o, (fe(G)
V(e

{ea

1

0.8 | choose 73 and 7] so that C'® = 0.3
= 06 1 the arrow shows the 7, ‘flow’ from 73 to 7
04
{ea
0.2} SR
12 _ 13 /23
N e.9. C:~ = qea C:7 / C2

0 02 04 06 08 1

C23



Triangular relations

Ceylty )

172
Cr 12 (Cg 13/Cr 13)

0.8

0.6

0.4

0.2

0.8 r

0.6 r

04 r

0.2

3d Edwards-Anderson model

E \ \’¥
N
\Ea\;\}\}\f?}‘;&&’
B\b{;::\
0 02 04 06 08 1
ch(t,?’tZ)
25%
1 50%
75%
0 0.2 0.4 0.6 0.8 1

C, 72 (Cy12/C, 1)

0.2 04 0.6 0.8 1
C, 72 (Cy12/C, 1)

1
0.8 |
Q]
g 06
o
C 04t
o
U 25%
0.2t 50%
75%
0
0
1
0.8 |
Q
g 06
"5
C 04t
o
&) 25%
0.2 | 509
75%
0

0 02 04 06 038 1

C, 22 (Cy12/C, 12)"2

Jaubert, Chamon, LFC & Picco 07



